xref: /netbsd-src/sys/dev/ic/ath.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: ath.c,v 1.108 2010/01/19 22:06:24 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.108 2010/01/19 22:06:24 pooka Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #include <sys/param.h>
57 #include <sys/reboot.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #include <sys/mbuf.h>
62 #include <sys/malloc.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/errno.h>
67 #include <sys/callout.h>
68 #include <sys/bus.h>
69 #include <sys/endian.h>
70 
71 #include <net/if.h>
72 #include <net/if_dl.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_arp.h>
76 #include <net/if_ether.h>
77 #include <net/if_llc.h>
78 
79 #include <net80211/ieee80211_netbsd.h>
80 #include <net80211/ieee80211_var.h>
81 
82 #include <net/bpf.h>
83 
84 #ifdef INET
85 #include <netinet/in.h>
86 #endif
87 
88 #include <sys/device.h>
89 #include <dev/ic/ath_netbsd.h>
90 
91 #define	AR_DEBUG
92 #include <dev/ic/athvar.h>
93 #include "ah_desc.h"
94 #include "ah_devid.h"	/* XXX for softled */
95 #include "opt_ah.h"
96 
97 #ifdef ATH_TX99_DIAG
98 #include <dev/ath/ath_tx99/ath_tx99.h>
99 #endif
100 
101 /* unaligned little endian access */
102 #define LE_READ_2(p)							\
103 	((u_int16_t)							\
104 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
105 #define LE_READ_4(p)							\
106 	((u_int32_t)							\
107 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
108 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
109 
110 enum {
111 	ATH_LED_TX,
112 	ATH_LED_RX,
113 	ATH_LED_POLL,
114 };
115 
116 #ifdef	AH_NEED_DESC_SWAP
117 #define	HTOAH32(x)	htole32(x)
118 #else
119 #define	HTOAH32(x)	(x)
120 #endif
121 
122 static int	ath_ifinit(struct ifnet *);
123 static int	ath_init(struct ath_softc *);
124 static void	ath_stop_locked(struct ifnet *, int);
125 static void	ath_stop(struct ifnet *, int);
126 static void	ath_start(struct ifnet *);
127 static int	ath_media_change(struct ifnet *);
128 static void	ath_watchdog(struct ifnet *);
129 static int	ath_ioctl(struct ifnet *, u_long, void *);
130 static void	ath_fatal_proc(void *, int);
131 static void	ath_rxorn_proc(void *, int);
132 static void	ath_bmiss_proc(void *, int);
133 static void	ath_radar_proc(void *, int);
134 static int	ath_key_alloc(struct ieee80211com *,
135 			const struct ieee80211_key *,
136 			ieee80211_keyix *, ieee80211_keyix *);
137 static int	ath_key_delete(struct ieee80211com *,
138 			const struct ieee80211_key *);
139 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
140 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
141 static void	ath_key_update_begin(struct ieee80211com *);
142 static void	ath_key_update_end(struct ieee80211com *);
143 static void	ath_mode_init(struct ath_softc *);
144 static void	ath_setslottime(struct ath_softc *);
145 static void	ath_updateslot(struct ifnet *);
146 static int	ath_beaconq_setup(struct ath_hal *);
147 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
148 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
149 static void	ath_beacon_proc(void *, int);
150 static void	ath_bstuck_proc(void *, int);
151 static void	ath_beacon_free(struct ath_softc *);
152 static void	ath_beacon_config(struct ath_softc *);
153 static void	ath_descdma_cleanup(struct ath_softc *sc,
154 			struct ath_descdma *, ath_bufhead *);
155 static int	ath_desc_alloc(struct ath_softc *);
156 static void	ath_desc_free(struct ath_softc *);
157 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
158 static void	ath_node_free(struct ieee80211_node *);
159 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
160 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
161 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
162 			struct ieee80211_node *ni,
163 			int subtype, int rssi, u_int32_t rstamp);
164 static void	ath_setdefantenna(struct ath_softc *, u_int);
165 static void	ath_rx_proc(void *, int);
166 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
167 static int	ath_tx_setup(struct ath_softc *, int, int);
168 static int	ath_wme_update(struct ieee80211com *);
169 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
170 static void	ath_tx_cleanup(struct ath_softc *);
171 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
172 			     struct ath_buf *, struct mbuf *);
173 static void	ath_tx_proc_q0(void *, int);
174 static void	ath_tx_proc_q0123(void *, int);
175 static void	ath_tx_proc(void *, int);
176 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
177 static void	ath_draintxq(struct ath_softc *);
178 static void	ath_stoprecv(struct ath_softc *);
179 static int	ath_startrecv(struct ath_softc *);
180 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
181 static void	ath_next_scan(void *);
182 static void	ath_calibrate(void *);
183 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
184 static void	ath_setup_stationkey(struct ieee80211_node *);
185 static void	ath_newassoc(struct ieee80211_node *, int);
186 static int	ath_getchannels(struct ath_softc *, u_int cc,
187 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
188 static void	ath_led_event(struct ath_softc *, int);
189 static void	ath_update_txpow(struct ath_softc *);
190 static void	ath_freetx(struct mbuf *);
191 static void	ath_restore_diversity(struct ath_softc *);
192 
193 static int	ath_rate_setup(struct ath_softc *, u_int mode);
194 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
195 
196 static void	ath_bpfattach(struct ath_softc *);
197 static void	ath_announce(struct ath_softc *);
198 
199 int ath_dwelltime = 200;		/* 5 channels/second */
200 int ath_calinterval = 30;		/* calibrate every 30 secs */
201 int ath_outdoor = AH_TRUE;		/* outdoor operation */
202 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
203 int ath_countrycode = CTRY_DEFAULT;	/* country code */
204 int ath_regdomain = 0;			/* regulatory domain */
205 int ath_debug = 0;
206 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
207 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
208 
209 #ifdef AR_DEBUG
210 enum {
211 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
212 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
213 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
214 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
215 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
216 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
217 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
218 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
219 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
220 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
221 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
222 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
223 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
224 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
225 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
226 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
227 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
228 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
229 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
230 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
231 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
232 	ATH_DEBUG_ANY		= 0xffffffff
233 };
234 #define	IFF_DUMPPKTS(sc, m) \
235 	((sc->sc_debug & (m)) || \
236 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
237 #define	DPRINTF(sc, m, fmt, ...) do {				\
238 	if (sc->sc_debug & (m))					\
239 		printf(fmt, __VA_ARGS__);			\
240 } while (0)
241 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
242 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
243 		ath_keyprint(__func__, ix, hk, mac);		\
244 } while (0)
245 static	void ath_printrxbuf(struct ath_buf *bf, int);
246 static	void ath_printtxbuf(struct ath_buf *bf, int);
247 #else
248 #define        IFF_DUMPPKTS(sc, m) \
249 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
250 #define        DPRINTF(m, fmt, ...)
251 #define        KEYPRINTF(sc, k, ix, mac)
252 #endif
253 
254 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
255 
256 int
257 ath_attach(u_int16_t devid, struct ath_softc *sc)
258 {
259 	struct ifnet *ifp = &sc->sc_if;
260 	struct ieee80211com *ic = &sc->sc_ic;
261 	struct ath_hal *ah = NULL;
262 	HAL_STATUS status;
263 	int error = 0, i;
264 
265 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
266 
267 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
268 
269 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
270 
271 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
272 	if (ah == NULL) {
273 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
274 			status);
275 		error = ENXIO;
276 		goto bad;
277 	}
278 	if (ah->ah_abi != HAL_ABI_VERSION) {
279 		if_printf(ifp, "HAL ABI mismatch detected "
280 			"(HAL:0x%x != driver:0x%x)\n",
281 			ah->ah_abi, HAL_ABI_VERSION);
282 		error = ENXIO;
283 		goto bad;
284 	}
285 	sc->sc_ah = ah;
286 
287 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
288 	    "pmf-powerdown", false))
289 		goto bad;
290 
291 	/*
292 	 * Check if the MAC has multi-rate retry support.
293 	 * We do this by trying to setup a fake extended
294 	 * descriptor.  MAC's that don't have support will
295 	 * return false w/o doing anything.  MAC's that do
296 	 * support it will return true w/o doing anything.
297 	 */
298 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
299 
300 	/*
301 	 * Check if the device has hardware counters for PHY
302 	 * errors.  If so we need to enable the MIB interrupt
303 	 * so we can act on stat triggers.
304 	 */
305 	if (ath_hal_hwphycounters(ah))
306 		sc->sc_needmib = 1;
307 
308 	/*
309 	 * Get the hardware key cache size.
310 	 */
311 	sc->sc_keymax = ath_hal_keycachesize(ah);
312 	if (sc->sc_keymax > ATH_KEYMAX) {
313 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
314 			ATH_KEYMAX, sc->sc_keymax);
315 		sc->sc_keymax = ATH_KEYMAX;
316 	}
317 	/*
318 	 * Reset the key cache since some parts do not
319 	 * reset the contents on initial power up.
320 	 */
321 	for (i = 0; i < sc->sc_keymax; i++)
322 		ath_hal_keyreset(ah, i);
323 	/*
324 	 * Mark key cache slots associated with global keys
325 	 * as in use.  If we knew TKIP was not to be used we
326 	 * could leave the +32, +64, and +32+64 slots free.
327 	 * XXX only for splitmic.
328 	 */
329 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
330 		setbit(sc->sc_keymap, i);
331 		setbit(sc->sc_keymap, i+32);
332 		setbit(sc->sc_keymap, i+64);
333 		setbit(sc->sc_keymap, i+32+64);
334 	}
335 
336 	/*
337 	 * Collect the channel list using the default country
338 	 * code and including outdoor channels.  The 802.11 layer
339 	 * is resposible for filtering this list based on settings
340 	 * like the phy mode.
341 	 */
342 	error = ath_getchannels(sc, ath_countrycode,
343 			ath_outdoor, ath_xchanmode);
344 	if (error != 0)
345 		goto bad;
346 
347 	/*
348 	 * Setup rate tables for all potential media types.
349 	 */
350 	ath_rate_setup(sc, IEEE80211_MODE_11A);
351 	ath_rate_setup(sc, IEEE80211_MODE_11B);
352 	ath_rate_setup(sc, IEEE80211_MODE_11G);
353 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
354 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
355 	/* NB: setup here so ath_rate_update is happy */
356 	ath_setcurmode(sc, IEEE80211_MODE_11A);
357 
358 	/*
359 	 * Allocate tx+rx descriptors and populate the lists.
360 	 */
361 	error = ath_desc_alloc(sc);
362 	if (error != 0) {
363 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
364 		goto bad;
365 	}
366 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
367 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
368 #if 0
369 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
370 #endif
371 
372 	ATH_TXBUF_LOCK_INIT(sc);
373 
374 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
375 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
376 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
377 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
378 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
379 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
380 
381 	/*
382 	 * Allocate hardware transmit queues: one queue for
383 	 * beacon frames and one data queue for each QoS
384 	 * priority.  Note that the hal handles reseting
385 	 * these queues at the needed time.
386 	 *
387 	 * XXX PS-Poll
388 	 */
389 	sc->sc_bhalq = ath_beaconq_setup(ah);
390 	if (sc->sc_bhalq == (u_int) -1) {
391 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
392 		error = EIO;
393 		goto bad2;
394 	}
395 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
396 	if (sc->sc_cabq == NULL) {
397 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
398 		error = EIO;
399 		goto bad2;
400 	}
401 	/* NB: insure BK queue is the lowest priority h/w queue */
402 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
403 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
404 			ieee80211_wme_acnames[WME_AC_BK]);
405 		error = EIO;
406 		goto bad2;
407 	}
408 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
409 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
410 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
411 		/*
412 		 * Not enough hardware tx queues to properly do WME;
413 		 * just punt and assign them all to the same h/w queue.
414 		 * We could do a better job of this if, for example,
415 		 * we allocate queues when we switch from station to
416 		 * AP mode.
417 		 */
418 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
419 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
420 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
421 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
422 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
423 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
424 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
425 	}
426 
427 	/*
428 	 * Special case certain configurations.  Note the
429 	 * CAB queue is handled by these specially so don't
430 	 * include them when checking the txq setup mask.
431 	 */
432 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
433 	case 0x01:
434 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
435 		break;
436 	case 0x0f:
437 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
438 		break;
439 	default:
440 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
441 		break;
442 	}
443 
444 	/*
445 	 * Setup rate control.  Some rate control modules
446 	 * call back to change the anntena state so expose
447 	 * the necessary entry points.
448 	 * XXX maybe belongs in struct ath_ratectrl?
449 	 */
450 	sc->sc_setdefantenna = ath_setdefantenna;
451 	sc->sc_rc = ath_rate_attach(sc);
452 	if (sc->sc_rc == NULL) {
453 		error = EIO;
454 		goto bad2;
455 	}
456 
457 	sc->sc_blinking = 0;
458 	sc->sc_ledstate = 1;
459 	sc->sc_ledon = 0;			/* low true */
460 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
461 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
462 	/*
463 	 * Auto-enable soft led processing for IBM cards and for
464 	 * 5211 minipci cards.  Users can also manually enable/disable
465 	 * support with a sysctl.
466 	 */
467 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
468 	if (sc->sc_softled) {
469 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
470 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
471 	}
472 
473 	ifp->if_softc = sc;
474 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
475 	ifp->if_start = ath_start;
476 	ifp->if_stop = ath_stop;
477 	ifp->if_watchdog = ath_watchdog;
478 	ifp->if_ioctl = ath_ioctl;
479 	ifp->if_init = ath_ifinit;
480 	IFQ_SET_READY(&ifp->if_snd);
481 
482 	ic->ic_ifp = ifp;
483 	ic->ic_reset = ath_reset;
484 	ic->ic_newassoc = ath_newassoc;
485 	ic->ic_updateslot = ath_updateslot;
486 	ic->ic_wme.wme_update = ath_wme_update;
487 	/* XXX not right but it's not used anywhere important */
488 	ic->ic_phytype = IEEE80211_T_OFDM;
489 	ic->ic_opmode = IEEE80211_M_STA;
490 	ic->ic_caps =
491 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
492 		| IEEE80211_C_HOSTAP		/* hostap mode */
493 		| IEEE80211_C_MONITOR		/* monitor mode */
494 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
495 		| IEEE80211_C_SHSLOT		/* short slot time supported */
496 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
497 		| IEEE80211_C_TXFRAG		/* handle tx frags */
498 		;
499 	/*
500 	 * Query the hal to figure out h/w crypto support.
501 	 */
502 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
503 		ic->ic_caps |= IEEE80211_C_WEP;
504 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
505 		ic->ic_caps |= IEEE80211_C_AES;
506 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
507 		ic->ic_caps |= IEEE80211_C_AES_CCM;
508 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
509 		ic->ic_caps |= IEEE80211_C_CKIP;
510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
511 		ic->ic_caps |= IEEE80211_C_TKIP;
512 		/*
513 		 * Check if h/w does the MIC and/or whether the
514 		 * separate key cache entries are required to
515 		 * handle both tx+rx MIC keys.
516 		 */
517 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
518 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
519 
520 		/*
521 		 * If the h/w supports storing tx+rx MIC keys
522 		 * in one cache slot automatically enable use.
523 		 */
524 		if (ath_hal_hastkipsplit(ah) ||
525 		    !ath_hal_settkipsplit(ah, AH_FALSE))
526 			sc->sc_splitmic = 1;
527 
528 		/*
529 		 * If the h/w can do TKIP MIC together with WME then
530 		 * we use it; otherwise we force the MIC to be done
531 		 * in software by the net80211 layer.
532 		 */
533 		if (ath_hal_haswmetkipmic(ah))
534 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
535 	}
536 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
537 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
538 	/*
539 	 * Mark key cache slots associated with global keys
540 	 * as in use.  If we knew TKIP was not to be used we
541 	 * could leave the +32, +64, and +32+64 slots free.
542 	 */
543 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
544 		setbit(sc->sc_keymap, i);
545 		setbit(sc->sc_keymap, i+64);
546 		if (sc->sc_splitmic) {
547 			setbit(sc->sc_keymap, i+32);
548 			setbit(sc->sc_keymap, i+32+64);
549 		}
550 	}
551 	/*
552 	 * TPC support can be done either with a global cap or
553 	 * per-packet support.  The latter is not available on
554 	 * all parts.  We're a bit pedantic here as all parts
555 	 * support a global cap.
556 	 */
557 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
558 		ic->ic_caps |= IEEE80211_C_TXPMGT;
559 
560 	/*
561 	 * Mark WME capability only if we have sufficient
562 	 * hardware queues to do proper priority scheduling.
563 	 */
564 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
565 		ic->ic_caps |= IEEE80211_C_WME;
566 	/*
567 	 * Check for misc other capabilities.
568 	 */
569 	if (ath_hal_hasbursting(ah))
570 		ic->ic_caps |= IEEE80211_C_BURST;
571 
572 	/*
573 	 * Indicate we need the 802.11 header padded to a
574 	 * 32-bit boundary for 4-address and QoS frames.
575 	 */
576 	ic->ic_flags |= IEEE80211_F_DATAPAD;
577 
578 	/*
579 	 * Query the hal about antenna support.
580 	 */
581 	sc->sc_defant = ath_hal_getdefantenna(ah);
582 
583 	/*
584 	 * Not all chips have the VEOL support we want to
585 	 * use with IBSS beacons; check here for it.
586 	 */
587 	sc->sc_hasveol = ath_hal_hasveol(ah);
588 
589 	/* get mac address from hardware */
590 	ath_hal_getmac(ah, ic->ic_myaddr);
591 
592 	if_attach(ifp);
593 	/* call MI attach routine. */
594 	ieee80211_ifattach(ic);
595 	/* override default methods */
596 	ic->ic_node_alloc = ath_node_alloc;
597 	sc->sc_node_free = ic->ic_node_free;
598 	ic->ic_node_free = ath_node_free;
599 	ic->ic_node_getrssi = ath_node_getrssi;
600 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
601 	ic->ic_recv_mgmt = ath_recv_mgmt;
602 	sc->sc_newstate = ic->ic_newstate;
603 	ic->ic_newstate = ath_newstate;
604 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
605 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
606 	ic->ic_crypto.cs_key_delete = ath_key_delete;
607 	ic->ic_crypto.cs_key_set = ath_key_set;
608 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
609 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
610 	/* complete initialization */
611 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
612 
613 	ath_bpfattach(sc);
614 
615 	sc->sc_flags |= ATH_ATTACHED;
616 
617 	/*
618 	 * Setup dynamic sysctl's now that country code and
619 	 * regdomain are available from the hal.
620 	 */
621 	ath_sysctlattach(sc);
622 
623 	ieee80211_announce(ic);
624 	ath_announce(sc);
625 	return 0;
626 bad2:
627 	ath_tx_cleanup(sc);
628 	ath_desc_free(sc);
629 bad:
630 	if (ah)
631 		ath_hal_detach(ah);
632 	/* XXX don't get under the abstraction like this */
633 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
634 	return error;
635 }
636 
637 int
638 ath_detach(struct ath_softc *sc)
639 {
640 	struct ifnet *ifp = &sc->sc_if;
641 	int s;
642 
643 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
644 		return (0);
645 
646 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
647 		__func__, ifp->if_flags);
648 
649 	s = splnet();
650 	ath_stop(ifp, 1);
651 	bpf_ops->bpf_detach(ifp);
652 	/*
653 	 * NB: the order of these is important:
654 	 * o call the 802.11 layer before detaching the hal to
655 	 *   insure callbacks into the driver to delete global
656 	 *   key cache entries can be handled
657 	 * o reclaim the tx queue data structures after calling
658 	 *   the 802.11 layer as we'll get called back to reclaim
659 	 *   node state and potentially want to use them
660 	 * o to cleanup the tx queues the hal is called, so detach
661 	 *   it last
662 	 * Other than that, it's straightforward...
663 	 */
664 	ieee80211_ifdetach(&sc->sc_ic);
665 #ifdef ATH_TX99_DIAG
666 	if (sc->sc_tx99 != NULL)
667 		sc->sc_tx99->detach(sc->sc_tx99);
668 #endif
669 	ath_rate_detach(sc->sc_rc);
670 	ath_desc_free(sc);
671 	ath_tx_cleanup(sc);
672 	sysctl_teardown(&sc->sc_sysctllog);
673 	ath_hal_detach(sc->sc_ah);
674 	if_detach(ifp);
675 	splx(s);
676 
677 	return 0;
678 }
679 
680 void
681 ath_suspend(struct ath_softc *sc)
682 {
683 #if notyet
684 	/*
685 	 * Set the chip in full sleep mode.  Note that we are
686 	 * careful to do this only when bringing the interface
687 	 * completely to a stop.  When the chip is in this state
688 	 * it must be carefully woken up or references to
689 	 * registers in the PCI clock domain may freeze the bus
690 	 * (and system).  This varies by chip and is mostly an
691 	 * issue with newer parts that go to sleep more quickly.
692 	 */
693 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
694 #endif
695 }
696 
697 bool
698 ath_resume(struct ath_softc *sc)
699 {
700 	struct ath_hal *ah = sc->sc_ah;
701 	struct ieee80211com *ic = &sc->sc_ic;
702 	HAL_STATUS status;
703 	int i;
704 
705 #if notyet
706 	ath_hal_setpower(ah, HAL_PM_AWAKE);
707 #else
708 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
709 #endif
710 
711 	/*
712 	 * Reset the key cache since some parts do not
713 	 * reset the contents on initial power up.
714 	 */
715 	for (i = 0; i < sc->sc_keymax; i++)
716 		ath_hal_keyreset(ah, i);
717 
718 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
719 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
720 		if (ATH_TXQ_SETUP(sc, i))
721 			ath_hal_resettxqueue(ah, i);
722 
723 	if (sc->sc_softled) {
724 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
725 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
726 	}
727 	return true;
728 }
729 
730 /*
731  * Interrupt handler.  Most of the actual processing is deferred.
732  */
733 int
734 ath_intr(void *arg)
735 {
736 	struct ath_softc *sc = arg;
737 	struct ifnet *ifp = &sc->sc_if;
738 	struct ath_hal *ah = sc->sc_ah;
739 	HAL_INT status;
740 
741 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
742 		/*
743 		 * The hardware is not ready/present, don't touch anything.
744 		 * Note this can happen early on if the IRQ is shared.
745 		 */
746 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
747 		return 0;
748 	}
749 
750 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
751 		return 0;
752 
753 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
754 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
755 			__func__, ifp->if_flags);
756 		ath_hal_getisr(ah, &status);	/* clear ISR */
757 		ath_hal_intrset(ah, 0);		/* disable further intr's */
758 		return 1; /* XXX */
759 	}
760 	/*
761 	 * Figure out the reason(s) for the interrupt.  Note
762 	 * that the hal returns a pseudo-ISR that may include
763 	 * bits we haven't explicitly enabled so we mask the
764 	 * value to insure we only process bits we requested.
765 	 */
766 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
767 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
768 	status &= sc->sc_imask;			/* discard unasked for bits */
769 	if (status & HAL_INT_FATAL) {
770 		/*
771 		 * Fatal errors are unrecoverable.  Typically
772 		 * these are caused by DMA errors.  Unfortunately
773 		 * the exact reason is not (presently) returned
774 		 * by the hal.
775 		 */
776 		sc->sc_stats.ast_hardware++;
777 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
778 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
779 	} else if (status & HAL_INT_RXORN) {
780 		sc->sc_stats.ast_rxorn++;
781 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
782 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
783 	} else {
784 		if (status & HAL_INT_SWBA) {
785 			/*
786 			 * Software beacon alert--time to send a beacon.
787 			 * Handle beacon transmission directly; deferring
788 			 * this is too slow to meet timing constraints
789 			 * under load.
790 			 */
791 			ath_beacon_proc(sc, 0);
792 		}
793 		if (status & HAL_INT_RXEOL) {
794 			/*
795 			 * NB: the hardware should re-read the link when
796 			 *     RXE bit is written, but it doesn't work at
797 			 *     least on older hardware revs.
798 			 */
799 			sc->sc_stats.ast_rxeol++;
800 			sc->sc_rxlink = NULL;
801 		}
802 		if (status & HAL_INT_TXURN) {
803 			sc->sc_stats.ast_txurn++;
804 			/* bump tx trigger level */
805 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
806 		}
807 		if (status & HAL_INT_RX)
808 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
809 		if (status & HAL_INT_TX)
810 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
811 		if (status & HAL_INT_BMISS) {
812 			sc->sc_stats.ast_bmiss++;
813 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
814 		}
815 		if (status & HAL_INT_MIB) {
816 			sc->sc_stats.ast_mib++;
817 			/*
818 			 * Disable interrupts until we service the MIB
819 			 * interrupt; otherwise it will continue to fire.
820 			 */
821 			ath_hal_intrset(ah, 0);
822 			/*
823 			 * Let the hal handle the event.  We assume it will
824 			 * clear whatever condition caused the interrupt.
825 			 */
826 			ath_hal_mibevent(ah, &sc->sc_halstats);
827 			ath_hal_intrset(ah, sc->sc_imask);
828 		}
829 	}
830 	return 1;
831 }
832 
833 /* Swap transmit descriptor.
834  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
835  * function.
836  */
837 static inline void
838 ath_desc_swap(struct ath_desc *ds)
839 {
840 #ifdef AH_NEED_DESC_SWAP
841 	ds->ds_link = htole32(ds->ds_link);
842 	ds->ds_data = htole32(ds->ds_data);
843 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
844 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
845 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
846 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
847 #endif
848 }
849 
850 static void
851 ath_fatal_proc(void *arg, int pending)
852 {
853 	struct ath_softc *sc = arg;
854 	struct ifnet *ifp = &sc->sc_if;
855 
856 	if_printf(ifp, "hardware error; resetting\n");
857 	ath_reset(ifp);
858 }
859 
860 static void
861 ath_rxorn_proc(void *arg, int pending)
862 {
863 	struct ath_softc *sc = arg;
864 	struct ifnet *ifp = &sc->sc_if;
865 
866 	if_printf(ifp, "rx FIFO overrun; resetting\n");
867 	ath_reset(ifp);
868 }
869 
870 static void
871 ath_bmiss_proc(void *arg, int pending)
872 {
873 	struct ath_softc *sc = arg;
874 	struct ieee80211com *ic = &sc->sc_ic;
875 
876 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
877 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
878 		("unexpect operating mode %u", ic->ic_opmode));
879 	if (ic->ic_state == IEEE80211_S_RUN) {
880 		u_int64_t lastrx = sc->sc_lastrx;
881 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
882 
883 		DPRINTF(sc, ATH_DEBUG_BEACON,
884 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
885 		    " (%" PRIu64 ") bmiss %u\n",
886 		    __func__, tsf, tsf - lastrx, lastrx,
887 		    ic->ic_bmisstimeout*1024);
888 		/*
889 		 * Workaround phantom bmiss interrupts by sanity-checking
890 		 * the time of our last rx'd frame.  If it is within the
891 		 * beacon miss interval then ignore the interrupt.  If it's
892 		 * truly a bmiss we'll get another interrupt soon and that'll
893 		 * be dispatched up for processing.
894 		 */
895 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
896 			NET_LOCK_GIANT();
897 			ieee80211_beacon_miss(ic);
898 			NET_UNLOCK_GIANT();
899 		} else
900 			sc->sc_stats.ast_bmiss_phantom++;
901 	}
902 }
903 
904 static void
905 ath_radar_proc(void *arg, int pending)
906 {
907 #if 0
908 	struct ath_softc *sc = arg;
909 	struct ifnet *ifp = &sc->sc_if;
910 	struct ath_hal *ah = sc->sc_ah;
911 	HAL_CHANNEL hchan;
912 
913 	if (ath_hal_procdfs(ah, &hchan)) {
914 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
915 			hchan.channel, hchan.channelFlags, hchan.privFlags);
916 		/*
917 		 * Initiate channel change.
918 		 */
919 		/* XXX not yet */
920 	}
921 #endif
922 }
923 
924 static u_int
925 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
926 {
927 #define	N(a)	(sizeof(a) / sizeof(a[0]))
928 	static const u_int modeflags[] = {
929 		0,			/* IEEE80211_MODE_AUTO */
930 		CHANNEL_A,		/* IEEE80211_MODE_11A */
931 		CHANNEL_B,		/* IEEE80211_MODE_11B */
932 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
933 		0,			/* IEEE80211_MODE_FH */
934 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
935 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
936 	};
937 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
938 
939 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
940 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
941 	return modeflags[mode];
942 #undef N
943 }
944 
945 static int
946 ath_ifinit(struct ifnet *ifp)
947 {
948 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
949 
950 	return ath_init(sc);
951 }
952 
953 static void
954 ath_settkipmic(struct ath_softc *sc)
955 {
956 	struct ieee80211com *ic = &sc->sc_ic;
957 	struct ath_hal *ah = sc->sc_ah;
958 
959 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
960 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
961 		if (ic->ic_flags & IEEE80211_F_WME) {
962 			(void)ath_hal_settkipmic(ah, AH_FALSE);
963 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
964 		} else {
965 			(void)ath_hal_settkipmic(ah, AH_TRUE);
966 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
967 		}
968 	}
969 }
970 
971 static int
972 ath_init(struct ath_softc *sc)
973 {
974 	struct ifnet *ifp = &sc->sc_if;
975 	struct ieee80211com *ic = &sc->sc_ic;
976 	struct ath_hal *ah = sc->sc_ah;
977 	HAL_STATUS status;
978 	int error = 0;
979 
980 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
981 		__func__, ifp->if_flags);
982 
983 	if (device_is_active(sc->sc_dev)) {
984 		ATH_LOCK(sc);
985 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
986 	           !device_is_active(sc->sc_dev))
987 		return 0;
988 	else
989 		ATH_LOCK(sc);
990 
991 	/*
992 	 * Stop anything previously setup.  This is safe
993 	 * whether this is the first time through or not.
994 	 */
995 	ath_stop_locked(ifp, 0);
996 
997 	/*
998 	 * The basic interface to setting the hardware in a good
999 	 * state is ``reset''.  On return the hardware is known to
1000 	 * be powered up and with interrupts disabled.  This must
1001 	 * be followed by initialization of the appropriate bits
1002 	 * and then setup of the interrupt mask.
1003 	 */
1004 	ath_settkipmic(sc);
1005 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1006 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1007 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1008 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1009 			status);
1010 		error = EIO;
1011 		goto done;
1012 	}
1013 
1014 	/*
1015 	 * This is needed only to setup initial state
1016 	 * but it's best done after a reset.
1017 	 */
1018 	ath_update_txpow(sc);
1019 	/*
1020 	 * Likewise this is set during reset so update
1021 	 * state cached in the driver.
1022 	 */
1023 	ath_restore_diversity(sc);
1024 	sc->sc_calinterval = 1;
1025 	sc->sc_caltries = 0;
1026 
1027 	/*
1028 	 * Setup the hardware after reset: the key cache
1029 	 * is filled as needed and the receive engine is
1030 	 * set going.  Frame transmit is handled entirely
1031 	 * in the frame output path; there's nothing to do
1032 	 * here except setup the interrupt mask.
1033 	 */
1034 	if ((error = ath_startrecv(sc)) != 0) {
1035 		if_printf(ifp, "unable to start recv logic\n");
1036 		goto done;
1037 	}
1038 
1039 	/*
1040 	 * Enable interrupts.
1041 	 */
1042 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1043 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1044 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1045 	/*
1046 	 * Enable MIB interrupts when there are hardware phy counters.
1047 	 * Note we only do this (at the moment) for station mode.
1048 	 */
1049 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1050 		sc->sc_imask |= HAL_INT_MIB;
1051 	ath_hal_intrset(ah, sc->sc_imask);
1052 
1053 	ifp->if_flags |= IFF_RUNNING;
1054 	ic->ic_state = IEEE80211_S_INIT;
1055 
1056 	/*
1057 	 * The hardware should be ready to go now so it's safe
1058 	 * to kick the 802.11 state machine as it's likely to
1059 	 * immediately call back to us to send mgmt frames.
1060 	 */
1061 	ath_chan_change(sc, ic->ic_curchan);
1062 #ifdef ATH_TX99_DIAG
1063 	if (sc->sc_tx99 != NULL)
1064 		sc->sc_tx99->start(sc->sc_tx99);
1065 	else
1066 #endif
1067 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1068 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1069 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1070 	} else
1071 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1072 done:
1073 	ATH_UNLOCK(sc);
1074 	return error;
1075 }
1076 
1077 static void
1078 ath_stop_locked(struct ifnet *ifp, int disable)
1079 {
1080 	struct ath_softc *sc = ifp->if_softc;
1081 	struct ieee80211com *ic = &sc->sc_ic;
1082 	struct ath_hal *ah = sc->sc_ah;
1083 
1084 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1085 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1086 
1087 	ATH_LOCK_ASSERT(sc);
1088 	if (ifp->if_flags & IFF_RUNNING) {
1089 		/*
1090 		 * Shutdown the hardware and driver:
1091 		 *    reset 802.11 state machine
1092 		 *    turn off timers
1093 		 *    disable interrupts
1094 		 *    turn off the radio
1095 		 *    clear transmit machinery
1096 		 *    clear receive machinery
1097 		 *    drain and release tx queues
1098 		 *    reclaim beacon resources
1099 		 *    power down hardware
1100 		 *
1101 		 * Note that some of this work is not possible if the
1102 		 * hardware is gone (invalid).
1103 		 */
1104 #ifdef ATH_TX99_DIAG
1105 		if (sc->sc_tx99 != NULL)
1106 			sc->sc_tx99->stop(sc->sc_tx99);
1107 #endif
1108 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1109 		ifp->if_flags &= ~IFF_RUNNING;
1110 		ifp->if_timer = 0;
1111 		if (device_is_enabled(sc->sc_dev)) {
1112 			if (sc->sc_softled) {
1113 				callout_stop(&sc->sc_ledtimer);
1114 				ath_hal_gpioset(ah, sc->sc_ledpin,
1115 					!sc->sc_ledon);
1116 				sc->sc_blinking = 0;
1117 			}
1118 			ath_hal_intrset(ah, 0);
1119 		}
1120 		ath_draintxq(sc);
1121 		if (device_is_enabled(sc->sc_dev)) {
1122 			ath_stoprecv(sc);
1123 			ath_hal_phydisable(ah);
1124 		} else
1125 			sc->sc_rxlink = NULL;
1126 		IF_PURGE(&ifp->if_snd);
1127 		ath_beacon_free(sc);
1128 	}
1129 	if (disable)
1130 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1131 }
1132 
1133 static void
1134 ath_stop(struct ifnet *ifp, int disable)
1135 {
1136 	struct ath_softc *sc = ifp->if_softc;
1137 
1138 	ATH_LOCK(sc);
1139 	ath_stop_locked(ifp, disable);
1140 	ATH_UNLOCK(sc);
1141 }
1142 
1143 static void
1144 ath_restore_diversity(struct ath_softc *sc)
1145 {
1146 	struct ifnet *ifp = &sc->sc_if;
1147 	struct ath_hal *ah = sc->sc_ah;
1148 
1149 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1150 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1151 		if_printf(ifp, "could not restore diversity setting %d\n",
1152 		    sc->sc_diversity);
1153 		sc->sc_diversity = ath_hal_getdiversity(ah);
1154 	}
1155 }
1156 
1157 /*
1158  * Reset the hardware w/o losing operational state.  This is
1159  * basically a more efficient way of doing ath_stop, ath_init,
1160  * followed by state transitions to the current 802.11
1161  * operational state.  Used to recover from various errors and
1162  * to reset or reload hardware state.
1163  */
1164 int
1165 ath_reset(struct ifnet *ifp)
1166 {
1167 	struct ath_softc *sc = ifp->if_softc;
1168 	struct ieee80211com *ic = &sc->sc_ic;
1169 	struct ath_hal *ah = sc->sc_ah;
1170 	struct ieee80211_channel *c;
1171 	HAL_STATUS status;
1172 
1173 	/*
1174 	 * Convert to a HAL channel description with the flags
1175 	 * constrained to reflect the current operating mode.
1176 	 */
1177 	c = ic->ic_curchan;
1178 	sc->sc_curchan.channel = c->ic_freq;
1179 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1180 
1181 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1182 	ath_draintxq(sc);		/* stop xmit side */
1183 	ath_stoprecv(sc);		/* stop recv side */
1184 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1185 	/* NB: indicate channel change so we do a full reset */
1186 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1187 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1188 			__func__, status);
1189 	ath_update_txpow(sc);		/* update tx power state */
1190 	ath_restore_diversity(sc);
1191 	sc->sc_calinterval = 1;
1192 	sc->sc_caltries = 0;
1193 	if (ath_startrecv(sc) != 0)	/* restart recv */
1194 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1195 	/*
1196 	 * We may be doing a reset in response to an ioctl
1197 	 * that changes the channel so update any state that
1198 	 * might change as a result.
1199 	 */
1200 	ath_chan_change(sc, c);
1201 	if (ic->ic_state == IEEE80211_S_RUN)
1202 		ath_beacon_config(sc);	/* restart beacons */
1203 	ath_hal_intrset(ah, sc->sc_imask);
1204 
1205 	ath_start(ifp);			/* restart xmit */
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Cleanup driver resources when we run out of buffers
1211  * while processing fragments; return the tx buffers
1212  * allocated and drop node references.
1213  */
1214 static void
1215 ath_txfrag_cleanup(struct ath_softc *sc,
1216 	ath_bufhead *frags, struct ieee80211_node *ni)
1217 {
1218 	struct ath_buf *bf;
1219 
1220 	ATH_TXBUF_LOCK_ASSERT(sc);
1221 
1222 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1223 		STAILQ_REMOVE_HEAD(frags, bf_list);
1224 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1225 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1226 		ieee80211_node_decref(ni);
1227 	}
1228 }
1229 
1230 /*
1231  * Setup xmit of a fragmented frame.  Allocate a buffer
1232  * for each frag and bump the node reference count to
1233  * reflect the held reference to be setup by ath_tx_start.
1234  */
1235 static int
1236 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1237 	struct mbuf *m0, struct ieee80211_node *ni)
1238 {
1239 	struct mbuf *m;
1240 	struct ath_buf *bf;
1241 
1242 	ATH_TXBUF_LOCK(sc);
1243 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1244 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1245 		if (bf == NULL) {       /* out of buffers, cleanup */
1246 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1247 				__func__);
1248 			sc->sc_if.if_flags |= IFF_OACTIVE;
1249 			ath_txfrag_cleanup(sc, frags, ni);
1250 			break;
1251 		}
1252 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1253 		ieee80211_node_incref(ni);
1254 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1255 	}
1256 	ATH_TXBUF_UNLOCK(sc);
1257 
1258 	return !STAILQ_EMPTY(frags);
1259 }
1260 
1261 static void
1262 ath_start(struct ifnet *ifp)
1263 {
1264 	struct ath_softc *sc = ifp->if_softc;
1265 	struct ath_hal *ah = sc->sc_ah;
1266 	struct ieee80211com *ic = &sc->sc_ic;
1267 	struct ieee80211_node *ni;
1268 	struct ath_buf *bf;
1269 	struct mbuf *m, *next;
1270 	struct ieee80211_frame *wh;
1271 	struct ether_header *eh;
1272 	ath_bufhead frags;
1273 
1274 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1275 	    !device_is_active(sc->sc_dev))
1276 		return;
1277 	for (;;) {
1278 		/*
1279 		 * Grab a TX buffer and associated resources.
1280 		 */
1281 		ATH_TXBUF_LOCK(sc);
1282 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1283 		if (bf != NULL)
1284 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1285 		ATH_TXBUF_UNLOCK(sc);
1286 		if (bf == NULL) {
1287 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1288 				__func__);
1289 			sc->sc_stats.ast_tx_qstop++;
1290 			ifp->if_flags |= IFF_OACTIVE;
1291 			break;
1292 		}
1293 		/*
1294 		 * Poll the management queue for frames; they
1295 		 * have priority over normal data frames.
1296 		 */
1297 		IF_DEQUEUE(&ic->ic_mgtq, m);
1298 		if (m == NULL) {
1299 			/*
1300 			 * No data frames go out unless we're associated.
1301 			 */
1302 			if (ic->ic_state != IEEE80211_S_RUN) {
1303 				DPRINTF(sc, ATH_DEBUG_XMIT,
1304 				    "%s: discard data packet, state %s\n",
1305 				    __func__,
1306 				    ieee80211_state_name[ic->ic_state]);
1307 				sc->sc_stats.ast_tx_discard++;
1308 				ATH_TXBUF_LOCK(sc);
1309 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1310 				ATH_TXBUF_UNLOCK(sc);
1311 				break;
1312 			}
1313 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1314 			if (m == NULL) {
1315 				ATH_TXBUF_LOCK(sc);
1316 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1317 				ATH_TXBUF_UNLOCK(sc);
1318 				break;
1319 			}
1320 			STAILQ_INIT(&frags);
1321 			/*
1322 			 * Find the node for the destination so we can do
1323 			 * things like power save and fast frames aggregation.
1324 			 */
1325 			if (m->m_len < sizeof(struct ether_header) &&
1326 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1327 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1328 				ni = NULL;
1329 				goto bad;
1330 			}
1331 			eh = mtod(m, struct ether_header *);
1332 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1333 			if (ni == NULL) {
1334 				/* NB: ieee80211_find_txnode does stat+msg */
1335 				m_freem(m);
1336 				goto bad;
1337 			}
1338 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1339 			    (m->m_flags & M_PWR_SAV) == 0) {
1340 				/*
1341 				 * Station in power save mode; pass the frame
1342 				 * to the 802.11 layer and continue.  We'll get
1343 				 * the frame back when the time is right.
1344 				 */
1345 				ieee80211_pwrsave(ic, ni, m);
1346 				goto reclaim;
1347 			}
1348 			/* calculate priority so we can find the tx queue */
1349 			if (ieee80211_classify(ic, m, ni)) {
1350 				DPRINTF(sc, ATH_DEBUG_XMIT,
1351 					"%s: discard, classification failure\n",
1352 					__func__);
1353 				m_freem(m);
1354 				goto bad;
1355 			}
1356 			ifp->if_opackets++;
1357 
1358 			if (ifp->if_bpf)
1359 				bpf_ops->bpf_mtap(ifp->if_bpf, m);
1360 			/*
1361 			 * Encapsulate the packet in prep for transmission.
1362 			 */
1363 			m = ieee80211_encap(ic, m, ni);
1364 			if (m == NULL) {
1365 				DPRINTF(sc, ATH_DEBUG_XMIT,
1366 					"%s: encapsulation failure\n",
1367 					__func__);
1368 				sc->sc_stats.ast_tx_encap++;
1369 				goto bad;
1370 			}
1371 			/*
1372 			 * Check for fragmentation.  If this has frame
1373 			 * has been broken up verify we have enough
1374 			 * buffers to send all the fragments so all
1375 			 * go out or none...
1376 			 */
1377 			if ((m->m_flags & M_FRAG) &&
1378 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1379 				DPRINTF(sc, ATH_DEBUG_ANY,
1380 				    "%s: out of txfrag buffers\n", __func__);
1381 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1382 				ath_freetx(m);
1383 				goto bad;
1384 			}
1385 		} else {
1386 			/*
1387 			 * Hack!  The referenced node pointer is in the
1388 			 * rcvif field of the packet header.  This is
1389 			 * placed there by ieee80211_mgmt_output because
1390 			 * we need to hold the reference with the frame
1391 			 * and there's no other way (other than packet
1392 			 * tags which we consider too expensive to use)
1393 			 * to pass it along.
1394 			 */
1395 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1396 			m->m_pkthdr.rcvif = NULL;
1397 
1398 			wh = mtod(m, struct ieee80211_frame *);
1399 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1400 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1401 				/* fill time stamp */
1402 				u_int64_t tsf;
1403 				u_int32_t *tstamp;
1404 
1405 				tsf = ath_hal_gettsf64(ah);
1406 				/* XXX: adjust 100us delay to xmit */
1407 				tsf += 100;
1408 				tstamp = (u_int32_t *)&wh[1];
1409 				tstamp[0] = htole32(tsf & 0xffffffff);
1410 				tstamp[1] = htole32(tsf >> 32);
1411 			}
1412 			sc->sc_stats.ast_tx_mgmt++;
1413 		}
1414 
1415 	nextfrag:
1416 		next = m->m_nextpkt;
1417 		if (ath_tx_start(sc, ni, bf, m)) {
1418 	bad:
1419 			ifp->if_oerrors++;
1420 	reclaim:
1421 			ATH_TXBUF_LOCK(sc);
1422 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1423 			ath_txfrag_cleanup(sc, &frags, ni);
1424 			ATH_TXBUF_UNLOCK(sc);
1425 			if (ni != NULL)
1426 				ieee80211_free_node(ni);
1427 			continue;
1428 		}
1429 		if (next != NULL) {
1430 			m = next;
1431 			bf = STAILQ_FIRST(&frags);
1432 			KASSERT(bf != NULL, ("no buf for txfrag"));
1433 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1434 			goto nextfrag;
1435 		}
1436 
1437 		ifp->if_timer = 1;
1438 	}
1439 }
1440 
1441 static int
1442 ath_media_change(struct ifnet *ifp)
1443 {
1444 #define	IS_UP(ifp) \
1445 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1446 	int error;
1447 
1448 	error = ieee80211_media_change(ifp);
1449 	if (error == ENETRESET) {
1450 		if (IS_UP(ifp))
1451 			ath_init(ifp->if_softc);	/* XXX lose error */
1452 		error = 0;
1453 	}
1454 	return error;
1455 #undef IS_UP
1456 }
1457 
1458 #ifdef AR_DEBUG
1459 static void
1460 ath_keyprint(const char *tag, u_int ix,
1461 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1462 {
1463 	static const char *ciphers[] = {
1464 		"WEP",
1465 		"AES-OCB",
1466 		"AES-CCM",
1467 		"CKIP",
1468 		"TKIP",
1469 		"CLR",
1470 	};
1471 	int i, n;
1472 
1473 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1474 	for (i = 0, n = hk->kv_len; i < n; i++)
1475 		printf("%02x", hk->kv_val[i]);
1476 	printf(" mac %s", ether_sprintf(mac));
1477 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1478 		printf(" mic ");
1479 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1480 			printf("%02x", hk->kv_mic[i]);
1481 	}
1482 	printf("\n");
1483 }
1484 #endif
1485 
1486 /*
1487  * Set a TKIP key into the hardware.  This handles the
1488  * potential distribution of key state to multiple key
1489  * cache slots for TKIP.
1490  */
1491 static int
1492 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1493 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1494 {
1495 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1496 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1497 	struct ath_hal *ah = sc->sc_ah;
1498 
1499 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1500 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1501 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1502 		if (sc->sc_splitmic) {
1503 			/*
1504 			 * TX key goes at first index, RX key at the rx index.
1505 			 * The hal handles the MIC keys at index+64.
1506 			 */
1507 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1508 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1509 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1510 						zerobssid))
1511 				return 0;
1512 
1513 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1514 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1515 			/* XXX delete tx key on failure? */
1516 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1517 					hk, mac);
1518 		} else {
1519 			/*
1520 			 * Room for both TX+RX MIC keys in one key cache
1521 			 * slot, just set key at the first index; the HAL
1522 			 * will handle the reset.
1523 			 */
1524 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1525 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1526 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1527 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1528 		}
1529 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1530 		if (sc->sc_splitmic) {
1531 			/*
1532 			 * NB: must pass MIC key in expected location when
1533 			 * the keycache only holds one MIC key per entry.
1534 			 */
1535 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1536 		} else
1537 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1538 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1539 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1540 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1541 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1542 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1543 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1544 	}
1545 	return 0;
1546 #undef IEEE80211_KEY_XR
1547 }
1548 
1549 /*
1550  * Set a net80211 key into the hardware.  This handles the
1551  * potential distribution of key state to multiple key
1552  * cache slots for TKIP with hardware MIC support.
1553  */
1554 static int
1555 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1556 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1557 	struct ieee80211_node *bss)
1558 {
1559 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1560 	static const u_int8_t ciphermap[] = {
1561 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1562 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1563 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1564 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1565 		(u_int8_t) -1,		/* 4 is not allocated */
1566 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1567 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1568 	};
1569 	struct ath_hal *ah = sc->sc_ah;
1570 	const struct ieee80211_cipher *cip = k->wk_cipher;
1571 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1572 	const u_int8_t *mac;
1573 	HAL_KEYVAL hk;
1574 
1575 	memset(&hk, 0, sizeof(hk));
1576 	/*
1577 	 * Software crypto uses a "clear key" so non-crypto
1578 	 * state kept in the key cache are maintained and
1579 	 * so that rx frames have an entry to match.
1580 	 */
1581 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1582 		KASSERT(cip->ic_cipher < N(ciphermap),
1583 			("invalid cipher type %u", cip->ic_cipher));
1584 		hk.kv_type = ciphermap[cip->ic_cipher];
1585 		hk.kv_len = k->wk_keylen;
1586 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1587 	} else
1588 		hk.kv_type = HAL_CIPHER_CLR;
1589 
1590 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1591 		/*
1592 		 * Group keys on hardware that supports multicast frame
1593 		 * key search use a mac that is the sender's address with
1594 		 * the high bit set instead of the app-specified address.
1595 		 */
1596 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1597 		gmac[0] |= 0x80;
1598 		mac = gmac;
1599 	} else
1600 		mac = mac0;
1601 
1602 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1603 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1604 		return ath_keyset_tkip(sc, k, &hk, mac);
1605 	} else {
1606 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1607 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1608 	}
1609 #undef N
1610 }
1611 
1612 /*
1613  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1614  * each key, one for decrypt/encrypt and the other for the MIC.
1615  */
1616 static u_int16_t
1617 key_alloc_2pair(struct ath_softc *sc,
1618 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1619 {
1620 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1621 	u_int i, keyix;
1622 
1623 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1624 	/* XXX could optimize */
1625 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1626 		u_int8_t b = sc->sc_keymap[i];
1627 		if (b != 0xff) {
1628 			/*
1629 			 * One or more slots in this byte are free.
1630 			 */
1631 			keyix = i*NBBY;
1632 			while (b & 1) {
1633 		again:
1634 				keyix++;
1635 				b >>= 1;
1636 			}
1637 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1638 			if (isset(sc->sc_keymap, keyix+32) ||
1639 			    isset(sc->sc_keymap, keyix+64) ||
1640 			    isset(sc->sc_keymap, keyix+32+64)) {
1641 				/* full pair unavailable */
1642 				/* XXX statistic */
1643 				if (keyix == (i+1)*NBBY) {
1644 					/* no slots were appropriate, advance */
1645 					continue;
1646 				}
1647 				goto again;
1648 			}
1649 			setbit(sc->sc_keymap, keyix);
1650 			setbit(sc->sc_keymap, keyix+64);
1651 			setbit(sc->sc_keymap, keyix+32);
1652 			setbit(sc->sc_keymap, keyix+32+64);
1653 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1654 				"%s: key pair %u,%u %u,%u\n",
1655 				__func__, keyix, keyix+64,
1656 				keyix+32, keyix+32+64);
1657 			*txkeyix = keyix;
1658 			*rxkeyix = keyix+32;
1659 			return keyix;
1660 		}
1661 	}
1662 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1663 	return IEEE80211_KEYIX_NONE;
1664 #undef N
1665 }
1666 
1667 /*
1668  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1669  * each key, one for decrypt/encrypt and the other for the MIC.
1670  */
1671 static int
1672 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1673     ieee80211_keyix *rxkeyix)
1674 {
1675 #define N(a)	(sizeof(a)/sizeof(a[0]))
1676 	u_int i, keyix;
1677 
1678 	KASSERT(!sc->sc_splitmic, ("key cache split"));
1679 	/* XXX could optimize */
1680 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1681 		uint8_t b = sc->sc_keymap[i];
1682 		if (b != 0xff) {
1683 			/*
1684 			 * One or more slots in this byte are free.
1685 			 */
1686 			keyix = i*NBBY;
1687 			while (b & 1) {
1688 		again:
1689 				keyix++;
1690 				b >>= 1;
1691 			}
1692 			if (isset(sc->sc_keymap, keyix+64)) {
1693 				/* full pair unavailable */
1694 				/* XXX statistic */
1695 				if (keyix == (i+1)*NBBY) {
1696 					/* no slots were appropriate, advance */
1697 					continue;
1698 				}
1699 				goto again;
1700 			}
1701 			setbit(sc->sc_keymap, keyix);
1702 			setbit(sc->sc_keymap, keyix+64);
1703 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1704 				"%s: key pair %u,%u\n",
1705 				__func__, keyix, keyix+64);
1706 			*txkeyix = *rxkeyix = keyix;
1707 			return 1;
1708 		}
1709 	}
1710 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1711 	return 0;
1712 #undef N
1713 }
1714 
1715 /*
1716  * Allocate a single key cache slot.
1717  */
1718 static int
1719 key_alloc_single(struct ath_softc *sc,
1720 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1721 {
1722 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1723 	u_int i, keyix;
1724 
1725 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1726 	for (i = 0; i < N(sc->sc_keymap); i++) {
1727 		u_int8_t b = sc->sc_keymap[i];
1728 		if (b != 0xff) {
1729 			/*
1730 			 * One or more slots are free.
1731 			 */
1732 			keyix = i*NBBY;
1733 			while (b & 1)
1734 				keyix++, b >>= 1;
1735 			setbit(sc->sc_keymap, keyix);
1736 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1737 				__func__, keyix);
1738 			*txkeyix = *rxkeyix = keyix;
1739 			return 1;
1740 		}
1741 	}
1742 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1743 	return 0;
1744 #undef N
1745 }
1746 
1747 /*
1748  * Allocate one or more key cache slots for a uniacst key.  The
1749  * key itself is needed only to identify the cipher.  For hardware
1750  * TKIP with split cipher+MIC keys we allocate two key cache slot
1751  * pairs so that we can setup separate TX and RX MIC keys.  Note
1752  * that the MIC key for a TKIP key at slot i is assumed by the
1753  * hardware to be at slot i+64.  This limits TKIP keys to the first
1754  * 64 entries.
1755  */
1756 static int
1757 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1758 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1759 {
1760 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1761 
1762 	/*
1763 	 * Group key allocation must be handled specially for
1764 	 * parts that do not support multicast key cache search
1765 	 * functionality.  For those parts the key id must match
1766 	 * the h/w key index so lookups find the right key.  On
1767 	 * parts w/ the key search facility we install the sender's
1768 	 * mac address (with the high bit set) and let the hardware
1769 	 * find the key w/o using the key id.  This is preferred as
1770 	 * it permits us to support multiple users for adhoc and/or
1771 	 * multi-station operation.
1772 	 */
1773 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1774 		if (!(&ic->ic_nw_keys[0] <= k &&
1775 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1776 			/* should not happen */
1777 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1778 				"%s: bogus group key\n", __func__);
1779 			return 0;
1780 		}
1781 		/*
1782 		 * XXX we pre-allocate the global keys so
1783 		 * have no way to check if they've already been allocated.
1784 		 */
1785 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1786 		return 1;
1787 	}
1788 
1789 	/*
1790 	 * We allocate two pair for TKIP when using the h/w to do
1791 	 * the MIC.  For everything else, including software crypto,
1792 	 * we allocate a single entry.  Note that s/w crypto requires
1793 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1794 	 * not support pass-through cache entries and we map all
1795 	 * those requests to slot 0.
1796 	 */
1797 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1798 		return key_alloc_single(sc, keyix, rxkeyix);
1799 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1800 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1801 		if (sc->sc_splitmic)
1802 			return key_alloc_2pair(sc, keyix, rxkeyix);
1803 		else
1804 			return key_alloc_pair(sc, keyix, rxkeyix);
1805 	} else {
1806 		return key_alloc_single(sc, keyix, rxkeyix);
1807 	}
1808 }
1809 
1810 /*
1811  * Delete an entry in the key cache allocated by ath_key_alloc.
1812  */
1813 static int
1814 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1815 {
1816 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1817 	struct ath_hal *ah = sc->sc_ah;
1818 	const struct ieee80211_cipher *cip = k->wk_cipher;
1819 	u_int keyix = k->wk_keyix;
1820 
1821 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1822 
1823 	if (!device_has_power(sc->sc_dev)) {
1824 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1825 		    k->wk_keyix);
1826 	}
1827 
1828 	ath_hal_keyreset(ah, keyix);
1829 	/*
1830 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1831 	 */
1832 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1833 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1834 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1835 	if (keyix >= IEEE80211_WEP_NKID) {
1836 		/*
1837 		 * Don't touch keymap entries for global keys so
1838 		 * they are never considered for dynamic allocation.
1839 		 */
1840 		clrbit(sc->sc_keymap, keyix);
1841 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1842 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1843 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1844 			if (sc->sc_splitmic) {
1845 				/* +32 for RX key, +32+64 for RX key MIC */
1846 				clrbit(sc->sc_keymap, keyix+32);
1847 				clrbit(sc->sc_keymap, keyix+32+64);
1848 			}
1849 		}
1850 	}
1851 	return 1;
1852 }
1853 
1854 /*
1855  * Set the key cache contents for the specified key.  Key cache
1856  * slot(s) must already have been allocated by ath_key_alloc.
1857  */
1858 static int
1859 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1860 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1861 {
1862 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1863 
1864 	if (!device_has_power(sc->sc_dev)) {
1865 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1866 		    k->wk_keyix);
1867 	}
1868 	return ath_keyset(sc, k, mac, ic->ic_bss);
1869 }
1870 
1871 /*
1872  * Block/unblock tx+rx processing while a key change is done.
1873  * We assume the caller serializes key management operations
1874  * so we only need to worry about synchronization with other
1875  * uses that originate in the driver.
1876  */
1877 static void
1878 ath_key_update_begin(struct ieee80211com *ic)
1879 {
1880 	struct ifnet *ifp = ic->ic_ifp;
1881 	struct ath_softc *sc = ifp->if_softc;
1882 
1883 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1884 #if 0
1885 	tasklet_disable(&sc->sc_rxtq);
1886 #endif
1887 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1888 }
1889 
1890 static void
1891 ath_key_update_end(struct ieee80211com *ic)
1892 {
1893 	struct ifnet *ifp = ic->ic_ifp;
1894 	struct ath_softc *sc = ifp->if_softc;
1895 
1896 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1897 	IF_UNLOCK(&ifp->if_snd);
1898 #if 0
1899 	tasklet_enable(&sc->sc_rxtq);
1900 #endif
1901 }
1902 
1903 /*
1904  * Calculate the receive filter according to the
1905  * operating mode and state:
1906  *
1907  * o always accept unicast, broadcast, and multicast traffic
1908  * o maintain current state of phy error reception (the hal
1909  *   may enable phy error frames for noise immunity work)
1910  * o probe request frames are accepted only when operating in
1911  *   hostap, adhoc, or monitor modes
1912  * o enable promiscuous mode according to the interface state
1913  * o accept beacons:
1914  *   - when operating in adhoc mode so the 802.11 layer creates
1915  *     node table entries for peers,
1916  *   - when operating in station mode for collecting rssi data when
1917  *     the station is otherwise quiet, or
1918  *   - when scanning
1919  */
1920 static u_int32_t
1921 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1922 {
1923 	struct ieee80211com *ic = &sc->sc_ic;
1924 	struct ath_hal *ah = sc->sc_ah;
1925 	struct ifnet *ifp = &sc->sc_if;
1926 	u_int32_t rfilt;
1927 
1928 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1929 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1930 	if (ic->ic_opmode != IEEE80211_M_STA)
1931 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1932 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1933 	    (ifp->if_flags & IFF_PROMISC))
1934 		rfilt |= HAL_RX_FILTER_PROM;
1935 	if (ifp->if_flags & IFF_PROMISC)
1936 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1937 	if (ic->ic_opmode == IEEE80211_M_STA ||
1938 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1939 	    state == IEEE80211_S_SCAN)
1940 		rfilt |= HAL_RX_FILTER_BEACON;
1941 	return rfilt;
1942 }
1943 
1944 static void
1945 ath_mode_init(struct ath_softc *sc)
1946 {
1947 	struct ifnet *ifp = &sc->sc_if;
1948 	struct ieee80211com *ic = &sc->sc_ic;
1949 	struct ath_hal *ah = sc->sc_ah;
1950 	struct ether_multi *enm;
1951 	struct ether_multistep estep;
1952 	u_int32_t rfilt, mfilt[2], val;
1953 	int i;
1954 	uint8_t pos;
1955 
1956 	/* configure rx filter */
1957 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1958 	ath_hal_setrxfilter(ah, rfilt);
1959 
1960 	/* configure operational mode */
1961 	ath_hal_setopmode(ah);
1962 
1963 	/* Write keys to hardware; it may have been powered down. */
1964 	ath_key_update_begin(ic);
1965 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1966 		ath_key_set(ic,
1967 			    &ic->ic_crypto.cs_nw_keys[i],
1968 			    ic->ic_myaddr);
1969 	}
1970 	ath_key_update_end(ic);
1971 
1972 	/*
1973 	 * Handle any link-level address change.  Note that we only
1974 	 * need to force ic_myaddr; any other addresses are handled
1975 	 * as a byproduct of the ifnet code marking the interface
1976 	 * down then up.
1977 	 *
1978 	 * XXX should get from lladdr instead of arpcom but that's more work
1979 	 */
1980 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1981 	ath_hal_setmac(ah, ic->ic_myaddr);
1982 
1983 	/* calculate and install multicast filter */
1984 	ifp->if_flags &= ~IFF_ALLMULTI;
1985 	mfilt[0] = mfilt[1] = 0;
1986 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1987 	while (enm != NULL) {
1988 		void *dl;
1989 		/* XXX Punt on ranges. */
1990 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1991 			mfilt[0] = mfilt[1] = 0xffffffff;
1992 			ifp->if_flags |= IFF_ALLMULTI;
1993 			break;
1994 		}
1995 		dl = enm->enm_addrlo;
1996 		val = LE_READ_4((char *)dl + 0);
1997 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1998 		val = LE_READ_4((char *)dl + 3);
1999 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2000 		pos &= 0x3f;
2001 		mfilt[pos / 32] |= (1 << (pos % 32));
2002 
2003 		ETHER_NEXT_MULTI(estep, enm);
2004 	}
2005 
2006 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2007 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2008 		__func__, rfilt, mfilt[0], mfilt[1]);
2009 }
2010 
2011 /*
2012  * Set the slot time based on the current setting.
2013  */
2014 static void
2015 ath_setslottime(struct ath_softc *sc)
2016 {
2017 	struct ieee80211com *ic = &sc->sc_ic;
2018 	struct ath_hal *ah = sc->sc_ah;
2019 
2020 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2021 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2022 	else
2023 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2024 	sc->sc_updateslot = OK;
2025 }
2026 
2027 /*
2028  * Callback from the 802.11 layer to update the
2029  * slot time based on the current setting.
2030  */
2031 static void
2032 ath_updateslot(struct ifnet *ifp)
2033 {
2034 	struct ath_softc *sc = ifp->if_softc;
2035 	struct ieee80211com *ic = &sc->sc_ic;
2036 
2037 	/*
2038 	 * When not coordinating the BSS, change the hardware
2039 	 * immediately.  For other operation we defer the change
2040 	 * until beacon updates have propagated to the stations.
2041 	 */
2042 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2043 		sc->sc_updateslot = UPDATE;
2044 	else
2045 		ath_setslottime(sc);
2046 }
2047 
2048 /*
2049  * Setup a h/w transmit queue for beacons.
2050  */
2051 static int
2052 ath_beaconq_setup(struct ath_hal *ah)
2053 {
2054 	HAL_TXQ_INFO qi;
2055 
2056 	memset(&qi, 0, sizeof(qi));
2057 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2058 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2059 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2060 	/* NB: for dynamic turbo, don't enable any other interrupts */
2061 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2062 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2063 }
2064 
2065 /*
2066  * Setup the transmit queue parameters for the beacon queue.
2067  */
2068 static int
2069 ath_beaconq_config(struct ath_softc *sc)
2070 {
2071 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2072 	struct ieee80211com *ic = &sc->sc_ic;
2073 	struct ath_hal *ah = sc->sc_ah;
2074 	HAL_TXQ_INFO qi;
2075 
2076 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2077 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2078 		/*
2079 		 * Always burst out beacon and CAB traffic.
2080 		 */
2081 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2082 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2083 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2084 	} else {
2085 		struct wmeParams *wmep =
2086 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2087 		/*
2088 		 * Adhoc mode; important thing is to use 2x cwmin.
2089 		 */
2090 		qi.tqi_aifs = wmep->wmep_aifsn;
2091 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2092 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2093 	}
2094 
2095 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2096 		device_printf(sc->sc_dev, "unable to update parameters for "
2097 			"beacon hardware queue!\n");
2098 		return 0;
2099 	} else {
2100 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2101 		return 1;
2102 	}
2103 #undef ATH_EXPONENT_TO_VALUE
2104 }
2105 
2106 /*
2107  * Allocate and setup an initial beacon frame.
2108  */
2109 static int
2110 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2111 {
2112 	struct ieee80211com *ic = ni->ni_ic;
2113 	struct ath_buf *bf;
2114 	struct mbuf *m;
2115 	int error;
2116 
2117 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2118 	if (bf == NULL) {
2119 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2120 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2121 		return ENOMEM;			/* XXX */
2122 	}
2123 	/*
2124 	 * NB: the beacon data buffer must be 32-bit aligned;
2125 	 * we assume the mbuf routines will return us something
2126 	 * with this alignment (perhaps should assert).
2127 	 */
2128 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2129 	if (m == NULL) {
2130 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2131 			__func__);
2132 		sc->sc_stats.ast_be_nombuf++;
2133 		return ENOMEM;
2134 	}
2135 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2136 				     BUS_DMA_NOWAIT);
2137 	if (error == 0) {
2138 		bf->bf_m = m;
2139 		bf->bf_node = ieee80211_ref_node(ni);
2140 	} else {
2141 		m_freem(m);
2142 	}
2143 	return error;
2144 }
2145 
2146 /*
2147  * Setup the beacon frame for transmit.
2148  */
2149 static void
2150 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2151 {
2152 #define	USE_SHPREAMBLE(_ic) \
2153 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2154 		== IEEE80211_F_SHPREAMBLE)
2155 	struct ieee80211_node *ni = bf->bf_node;
2156 	struct ieee80211com *ic = ni->ni_ic;
2157 	struct mbuf *m = bf->bf_m;
2158 	struct ath_hal *ah = sc->sc_ah;
2159 	struct ath_desc *ds;
2160 	int flags, antenna;
2161 	const HAL_RATE_TABLE *rt;
2162 	u_int8_t rix, rate;
2163 
2164 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2165 		__func__, m, m->m_len);
2166 
2167 	/* setup descriptors */
2168 	ds = bf->bf_desc;
2169 
2170 	flags = HAL_TXDESC_NOACK;
2171 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2172 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2173 		flags |= HAL_TXDESC_VEOL;
2174 		/*
2175 		 * Let hardware handle antenna switching unless
2176 		 * the user has selected a transmit antenna
2177 		 * (sc_txantenna is not 0).
2178 		 */
2179 		antenna = sc->sc_txantenna;
2180 	} else {
2181 		ds->ds_link = 0;
2182 		/*
2183 		 * Switch antenna every 4 beacons, unless the user
2184 		 * has selected a transmit antenna (sc_txantenna
2185 		 * is not 0).
2186 		 *
2187 		 * XXX assumes two antenna
2188 		 */
2189 		if (sc->sc_txantenna == 0)
2190 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2191 		else
2192 			antenna = sc->sc_txantenna;
2193 	}
2194 
2195 	KASSERT(bf->bf_nseg == 1,
2196 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2197 	ds->ds_data = bf->bf_segs[0].ds_addr;
2198 	/*
2199 	 * Calculate rate code.
2200 	 * XXX everything at min xmit rate
2201 	 */
2202 	rix = sc->sc_minrateix;
2203 	rt = sc->sc_currates;
2204 	rate = rt->info[rix].rateCode;
2205 	if (USE_SHPREAMBLE(ic))
2206 		rate |= rt->info[rix].shortPreamble;
2207 	ath_hal_setuptxdesc(ah, ds
2208 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2209 		, sizeof(struct ieee80211_frame)/* header length */
2210 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2211 		, ni->ni_txpower		/* txpower XXX */
2212 		, rate, 1			/* series 0 rate/tries */
2213 		, HAL_TXKEYIX_INVALID		/* no encryption */
2214 		, antenna			/* antenna mode */
2215 		, flags				/* no ack, veol for beacons */
2216 		, 0				/* rts/cts rate */
2217 		, 0				/* rts/cts duration */
2218 	);
2219 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2220 	ath_hal_filltxdesc(ah, ds
2221 		, roundup(m->m_len, 4)		/* buffer length */
2222 		, AH_TRUE			/* first segment */
2223 		, AH_TRUE			/* last segment */
2224 		, ds				/* first descriptor */
2225 	);
2226 
2227 	/* NB: The desc swap function becomes void, if descriptor swapping
2228 	 * is not enabled
2229 	 */
2230 	ath_desc_swap(ds);
2231 
2232 #undef USE_SHPREAMBLE
2233 }
2234 
2235 /*
2236  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2237  * frame contents are done as needed and the slot time is
2238  * also adjusted based on current state.
2239  */
2240 static void
2241 ath_beacon_proc(void *arg, int pending)
2242 {
2243 	struct ath_softc *sc = arg;
2244 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2245 	struct ieee80211_node *ni = bf->bf_node;
2246 	struct ieee80211com *ic = ni->ni_ic;
2247 	struct ath_hal *ah = sc->sc_ah;
2248 	struct mbuf *m;
2249 	int ncabq, error, otherant;
2250 
2251 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2252 		__func__, pending);
2253 
2254 	if (ic->ic_opmode == IEEE80211_M_STA ||
2255 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2256 	    bf == NULL || bf->bf_m == NULL) {
2257 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2258 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2259 		return;
2260 	}
2261 	/*
2262 	 * Check if the previous beacon has gone out.  If
2263 	 * not don't try to post another, skip this period
2264 	 * and wait for the next.  Missed beacons indicate
2265 	 * a problem and should not occur.  If we miss too
2266 	 * many consecutive beacons reset the device.
2267 	 */
2268 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2269 		sc->sc_bmisscount++;
2270 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2271 			"%s: missed %u consecutive beacons\n",
2272 			__func__, sc->sc_bmisscount);
2273 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2274 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2275 		return;
2276 	}
2277 	if (sc->sc_bmisscount != 0) {
2278 		DPRINTF(sc, ATH_DEBUG_BEACON,
2279 			"%s: resume beacon xmit after %u misses\n",
2280 			__func__, sc->sc_bmisscount);
2281 		sc->sc_bmisscount = 0;
2282 	}
2283 
2284 	/*
2285 	 * Update dynamic beacon contents.  If this returns
2286 	 * non-zero then we need to remap the memory because
2287 	 * the beacon frame changed size (probably because
2288 	 * of the TIM bitmap).
2289 	 */
2290 	m = bf->bf_m;
2291 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2292 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2293 		/* XXX too conservative? */
2294 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2295 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2296 					     BUS_DMA_NOWAIT);
2297 		if (error != 0) {
2298 			if_printf(&sc->sc_if,
2299 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2300 			    __func__, error);
2301 			return;
2302 		}
2303 	}
2304 
2305 	/*
2306 	 * Handle slot time change when a non-ERP station joins/leaves
2307 	 * an 11g network.  The 802.11 layer notifies us via callback,
2308 	 * we mark updateslot, then wait one beacon before effecting
2309 	 * the change.  This gives associated stations at least one
2310 	 * beacon interval to note the state change.
2311 	 */
2312 	/* XXX locking */
2313 	if (sc->sc_updateslot == UPDATE)
2314 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2315 	else if (sc->sc_updateslot == COMMIT)
2316 		ath_setslottime(sc);		/* commit change to h/w */
2317 
2318 	/*
2319 	 * Check recent per-antenna transmit statistics and flip
2320 	 * the default antenna if noticeably more frames went out
2321 	 * on the non-default antenna.
2322 	 * XXX assumes 2 anntenae
2323 	 */
2324 	otherant = sc->sc_defant & 1 ? 2 : 1;
2325 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2326 		ath_setdefantenna(sc, otherant);
2327 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2328 
2329 	/*
2330 	 * Construct tx descriptor.
2331 	 */
2332 	ath_beacon_setup(sc, bf);
2333 
2334 	/*
2335 	 * Stop any current dma and put the new frame on the queue.
2336 	 * This should never fail since we check above that no frames
2337 	 * are still pending on the queue.
2338 	 */
2339 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2340 		DPRINTF(sc, ATH_DEBUG_ANY,
2341 			"%s: beacon queue %u did not stop?\n",
2342 			__func__, sc->sc_bhalq);
2343 	}
2344 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2345 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2346 
2347 	/*
2348 	 * Enable the CAB queue before the beacon queue to
2349 	 * insure cab frames are triggered by this beacon.
2350 	 */
2351 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2352 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2353 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2354 	ath_hal_txstart(ah, sc->sc_bhalq);
2355 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2356 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2357 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2358 
2359 	sc->sc_stats.ast_be_xmit++;
2360 }
2361 
2362 /*
2363  * Reset the hardware after detecting beacons have stopped.
2364  */
2365 static void
2366 ath_bstuck_proc(void *arg, int pending)
2367 {
2368 	struct ath_softc *sc = arg;
2369 	struct ifnet *ifp = &sc->sc_if;
2370 
2371 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2372 		sc->sc_bmisscount);
2373 	ath_reset(ifp);
2374 }
2375 
2376 /*
2377  * Reclaim beacon resources.
2378  */
2379 static void
2380 ath_beacon_free(struct ath_softc *sc)
2381 {
2382 	struct ath_buf *bf;
2383 
2384 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2385 		if (bf->bf_m != NULL) {
2386 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2387 			m_freem(bf->bf_m);
2388 			bf->bf_m = NULL;
2389 		}
2390 		if (bf->bf_node != NULL) {
2391 			ieee80211_free_node(bf->bf_node);
2392 			bf->bf_node = NULL;
2393 		}
2394 	}
2395 }
2396 
2397 /*
2398  * Configure the beacon and sleep timers.
2399  *
2400  * When operating as an AP this resets the TSF and sets
2401  * up the hardware to notify us when we need to issue beacons.
2402  *
2403  * When operating in station mode this sets up the beacon
2404  * timers according to the timestamp of the last received
2405  * beacon and the current TSF, configures PCF and DTIM
2406  * handling, programs the sleep registers so the hardware
2407  * will wakeup in time to receive beacons, and configures
2408  * the beacon miss handling so we'll receive a BMISS
2409  * interrupt when we stop seeing beacons from the AP
2410  * we've associated with.
2411  */
2412 static void
2413 ath_beacon_config(struct ath_softc *sc)
2414 {
2415 #define	TSF_TO_TU(_h,_l) \
2416 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2417 #define	FUDGE	2
2418 	struct ath_hal *ah = sc->sc_ah;
2419 	struct ieee80211com *ic = &sc->sc_ic;
2420 	struct ieee80211_node *ni = ic->ic_bss;
2421 	u_int32_t nexttbtt, intval, tsftu;
2422 	u_int64_t tsf;
2423 
2424 	/* extract tstamp from last beacon and convert to TU */
2425 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2426 			     LE_READ_4(ni->ni_tstamp.data));
2427 	/* NB: the beacon interval is kept internally in TU's */
2428 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2429 	if (nexttbtt == 0)		/* e.g. for ap mode */
2430 		nexttbtt = intval;
2431 	else if (intval)		/* NB: can be 0 for monitor mode */
2432 		nexttbtt = roundup(nexttbtt, intval);
2433 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2434 		__func__, nexttbtt, intval, ni->ni_intval);
2435 	if (ic->ic_opmode == IEEE80211_M_STA) {
2436 		HAL_BEACON_STATE bs;
2437 		int dtimperiod, dtimcount;
2438 		int cfpperiod, cfpcount;
2439 
2440 		/*
2441 		 * Setup dtim and cfp parameters according to
2442 		 * last beacon we received (which may be none).
2443 		 */
2444 		dtimperiod = ni->ni_dtim_period;
2445 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2446 			dtimperiod = 1;
2447 		dtimcount = ni->ni_dtim_count;
2448 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2449 			dtimcount = 0;		/* XXX? */
2450 		cfpperiod = 1;			/* NB: no PCF support yet */
2451 		cfpcount = 0;
2452 		/*
2453 		 * Pull nexttbtt forward to reflect the current
2454 		 * TSF and calculate dtim+cfp state for the result.
2455 		 */
2456 		tsf = ath_hal_gettsf64(ah);
2457 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2458 		do {
2459 			nexttbtt += intval;
2460 			if (--dtimcount < 0) {
2461 				dtimcount = dtimperiod - 1;
2462 				if (--cfpcount < 0)
2463 					cfpcount = cfpperiod - 1;
2464 			}
2465 		} while (nexttbtt < tsftu);
2466 		memset(&bs, 0, sizeof(bs));
2467 		bs.bs_intval = intval;
2468 		bs.bs_nexttbtt = nexttbtt;
2469 		bs.bs_dtimperiod = dtimperiod*intval;
2470 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2471 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2472 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2473 		bs.bs_cfpmaxduration = 0;
2474 #if 0
2475 		/*
2476 		 * The 802.11 layer records the offset to the DTIM
2477 		 * bitmap while receiving beacons; use it here to
2478 		 * enable h/w detection of our AID being marked in
2479 		 * the bitmap vector (to indicate frames for us are
2480 		 * pending at the AP).
2481 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2482 		 * XXX enable based on h/w rev for newer chips
2483 		 */
2484 		bs.bs_timoffset = ni->ni_timoff;
2485 #endif
2486 		/*
2487 		 * Calculate the number of consecutive beacons to miss
2488 		 * before taking a BMISS interrupt.  The configuration
2489 		 * is specified in ms, so we need to convert that to
2490 		 * TU's and then calculate based on the beacon interval.
2491 		 * Note that we clamp the result to at most 10 beacons.
2492 		 */
2493 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2494 		if (bs.bs_bmissthreshold > 10)
2495 			bs.bs_bmissthreshold = 10;
2496 		else if (bs.bs_bmissthreshold <= 0)
2497 			bs.bs_bmissthreshold = 1;
2498 
2499 		/*
2500 		 * Calculate sleep duration.  The configuration is
2501 		 * given in ms.  We insure a multiple of the beacon
2502 		 * period is used.  Also, if the sleep duration is
2503 		 * greater than the DTIM period then it makes senses
2504 		 * to make it a multiple of that.
2505 		 *
2506 		 * XXX fixed at 100ms
2507 		 */
2508 		bs.bs_sleepduration =
2509 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2510 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2511 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2512 
2513 		DPRINTF(sc, ATH_DEBUG_BEACON,
2514 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2515 			, __func__
2516 			, tsf, tsftu
2517 			, bs.bs_intval
2518 			, bs.bs_nexttbtt
2519 			, bs.bs_dtimperiod
2520 			, bs.bs_nextdtim
2521 			, bs.bs_bmissthreshold
2522 			, bs.bs_sleepduration
2523 			, bs.bs_cfpperiod
2524 			, bs.bs_cfpmaxduration
2525 			, bs.bs_cfpnext
2526 			, bs.bs_timoffset
2527 		);
2528 		ath_hal_intrset(ah, 0);
2529 		ath_hal_beacontimers(ah, &bs);
2530 		sc->sc_imask |= HAL_INT_BMISS;
2531 		ath_hal_intrset(ah, sc->sc_imask);
2532 	} else {
2533 		ath_hal_intrset(ah, 0);
2534 		if (nexttbtt == intval)
2535 			intval |= HAL_BEACON_RESET_TSF;
2536 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2537 			/*
2538 			 * In IBSS mode enable the beacon timers but only
2539 			 * enable SWBA interrupts if we need to manually
2540 			 * prepare beacon frames.  Otherwise we use a
2541 			 * self-linked tx descriptor and let the hardware
2542 			 * deal with things.
2543 			 */
2544 			intval |= HAL_BEACON_ENA;
2545 			if (!sc->sc_hasveol)
2546 				sc->sc_imask |= HAL_INT_SWBA;
2547 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2548 				/*
2549 				 * Pull nexttbtt forward to reflect
2550 				 * the current TSF.
2551 				 */
2552 				tsf = ath_hal_gettsf64(ah);
2553 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2554 				do {
2555 					nexttbtt += intval;
2556 				} while (nexttbtt < tsftu);
2557 			}
2558 			ath_beaconq_config(sc);
2559 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2560 			/*
2561 			 * In AP mode we enable the beacon timers and
2562 			 * SWBA interrupts to prepare beacon frames.
2563 			 */
2564 			intval |= HAL_BEACON_ENA;
2565 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2566 			ath_beaconq_config(sc);
2567 		}
2568 		ath_hal_beaconinit(ah, nexttbtt, intval);
2569 		sc->sc_bmisscount = 0;
2570 		ath_hal_intrset(ah, sc->sc_imask);
2571 		/*
2572 		 * When using a self-linked beacon descriptor in
2573 		 * ibss mode load it once here.
2574 		 */
2575 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2576 			ath_beacon_proc(sc, 0);
2577 	}
2578 	sc->sc_syncbeacon = 0;
2579 #undef UNDEF
2580 #undef TSF_TO_TU
2581 }
2582 
2583 static int
2584 ath_descdma_setup(struct ath_softc *sc,
2585 	struct ath_descdma *dd, ath_bufhead *head,
2586 	const char *name, int nbuf, int ndesc)
2587 {
2588 #define	DS2PHYS(_dd, _ds) \
2589 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2590 	struct ifnet *ifp = &sc->sc_if;
2591 	struct ath_desc *ds;
2592 	struct ath_buf *bf;
2593 	int i, bsize, error;
2594 
2595 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2596 	    __func__, name, nbuf, ndesc);
2597 
2598 	dd->dd_name = name;
2599 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2600 
2601 	/*
2602 	 * Setup DMA descriptor area.
2603 	 */
2604 	dd->dd_dmat = sc->sc_dmat;
2605 
2606 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2607 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2608 
2609 	if (error != 0) {
2610 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2611 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2612 		goto fail0;
2613 	}
2614 
2615 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2616 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2617 	if (error != 0) {
2618 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2619 		    nbuf * ndesc, dd->dd_name, error);
2620 		goto fail1;
2621 	}
2622 
2623 	/* allocate descriptors */
2624 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2625 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2626 	if (error != 0) {
2627 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2628 			"error %u\n", dd->dd_name, error);
2629 		goto fail2;
2630 	}
2631 
2632 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2633 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2634 	if (error != 0) {
2635 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2636 			dd->dd_name, error);
2637 		goto fail3;
2638 	}
2639 
2640 	ds = dd->dd_desc;
2641 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2642 	DPRINTF(sc, ATH_DEBUG_RESET,
2643 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2644 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2645 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2646 
2647 	/* allocate rx buffers */
2648 	bsize = sizeof(struct ath_buf) * nbuf;
2649 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2650 	if (bf == NULL) {
2651 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2652 			dd->dd_name, bsize);
2653 		goto fail4;
2654 	}
2655 	dd->dd_bufptr = bf;
2656 
2657 	STAILQ_INIT(head);
2658 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2659 		bf->bf_desc = ds;
2660 		bf->bf_daddr = DS2PHYS(dd, ds);
2661 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2662 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2663 		if (error != 0) {
2664 			if_printf(ifp, "unable to create dmamap for %s "
2665 				"buffer %u, error %u\n", dd->dd_name, i, error);
2666 			ath_descdma_cleanup(sc, dd, head);
2667 			return error;
2668 		}
2669 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2670 	}
2671 	return 0;
2672 fail4:
2673 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2674 fail3:
2675 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2676 fail2:
2677 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2678 fail1:
2679 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2680 fail0:
2681 	memset(dd, 0, sizeof(*dd));
2682 	return error;
2683 #undef DS2PHYS
2684 }
2685 
2686 static void
2687 ath_descdma_cleanup(struct ath_softc *sc,
2688 	struct ath_descdma *dd, ath_bufhead *head)
2689 {
2690 	struct ath_buf *bf;
2691 	struct ieee80211_node *ni;
2692 
2693 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2694 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2695 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2696 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2697 
2698 	STAILQ_FOREACH(bf, head, bf_list) {
2699 		if (bf->bf_m) {
2700 			m_freem(bf->bf_m);
2701 			bf->bf_m = NULL;
2702 		}
2703 		if (bf->bf_dmamap != NULL) {
2704 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2705 			bf->bf_dmamap = NULL;
2706 		}
2707 		ni = bf->bf_node;
2708 		bf->bf_node = NULL;
2709 		if (ni != NULL) {
2710 			/*
2711 			 * Reclaim node reference.
2712 			 */
2713 			ieee80211_free_node(ni);
2714 		}
2715 	}
2716 
2717 	STAILQ_INIT(head);
2718 	free(dd->dd_bufptr, M_ATHDEV);
2719 	memset(dd, 0, sizeof(*dd));
2720 }
2721 
2722 static int
2723 ath_desc_alloc(struct ath_softc *sc)
2724 {
2725 	int error;
2726 
2727 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2728 			"rx", ath_rxbuf, 1);
2729 	if (error != 0)
2730 		return error;
2731 
2732 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2733 			"tx", ath_txbuf, ATH_TXDESC);
2734 	if (error != 0) {
2735 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2736 		return error;
2737 	}
2738 
2739 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2740 			"beacon", 1, 1);
2741 	if (error != 0) {
2742 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2743 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2744 		return error;
2745 	}
2746 	return 0;
2747 }
2748 
2749 static void
2750 ath_desc_free(struct ath_softc *sc)
2751 {
2752 
2753 	if (sc->sc_bdma.dd_desc_len != 0)
2754 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2755 	if (sc->sc_txdma.dd_desc_len != 0)
2756 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2757 	if (sc->sc_rxdma.dd_desc_len != 0)
2758 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2759 }
2760 
2761 static struct ieee80211_node *
2762 ath_node_alloc(struct ieee80211_node_table *nt)
2763 {
2764 	struct ieee80211com *ic = nt->nt_ic;
2765 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2766 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2767 	struct ath_node *an;
2768 
2769 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2770 	if (an == NULL) {
2771 		/* XXX stat+msg */
2772 		return NULL;
2773 	}
2774 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2775 	ath_rate_node_init(sc, an);
2776 
2777 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2778 	return &an->an_node;
2779 }
2780 
2781 static void
2782 ath_node_free(struct ieee80211_node *ni)
2783 {
2784 	struct ieee80211com *ic = ni->ni_ic;
2785         struct ath_softc *sc = ic->ic_ifp->if_softc;
2786 
2787 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2788 
2789 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2790 	sc->sc_node_free(ni);
2791 }
2792 
2793 static u_int8_t
2794 ath_node_getrssi(const struct ieee80211_node *ni)
2795 {
2796 #define	HAL_EP_RND(x, mul) \
2797 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2798 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2799 	int32_t rssi;
2800 
2801 	/*
2802 	 * When only one frame is received there will be no state in
2803 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2804 	 */
2805 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2806 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2807 	else
2808 		rssi = ni->ni_rssi;
2809 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2810 #undef HAL_EP_RND
2811 }
2812 
2813 static int
2814 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2815 {
2816 	struct ath_hal *ah = sc->sc_ah;
2817 	int error;
2818 	struct mbuf *m;
2819 	struct ath_desc *ds;
2820 
2821 	m = bf->bf_m;
2822 	if (m == NULL) {
2823 		/*
2824 		 * NB: by assigning a page to the rx dma buffer we
2825 		 * implicitly satisfy the Atheros requirement that
2826 		 * this buffer be cache-line-aligned and sized to be
2827 		 * multiple of the cache line size.  Not doing this
2828 		 * causes weird stuff to happen (for the 5210 at least).
2829 		 */
2830 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2831 		if (m == NULL) {
2832 			DPRINTF(sc, ATH_DEBUG_ANY,
2833 				"%s: no mbuf/cluster\n", __func__);
2834 			sc->sc_stats.ast_rx_nombuf++;
2835 			return ENOMEM;
2836 		}
2837 		bf->bf_m = m;
2838 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2839 
2840 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2841 					     bf->bf_dmamap, m,
2842 					     BUS_DMA_NOWAIT);
2843 		if (error != 0) {
2844 			DPRINTF(sc, ATH_DEBUG_ANY,
2845 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2846 			    __func__, error);
2847 			sc->sc_stats.ast_rx_busdma++;
2848 			return error;
2849 		}
2850 		KASSERT(bf->bf_nseg == 1,
2851 			("multi-segment packet; nseg %u", bf->bf_nseg));
2852 	}
2853 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2854 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2855 
2856 	/*
2857 	 * Setup descriptors.  For receive we always terminate
2858 	 * the descriptor list with a self-linked entry so we'll
2859 	 * not get overrun under high load (as can happen with a
2860 	 * 5212 when ANI processing enables PHY error frames).
2861 	 *
2862 	 * To insure the last descriptor is self-linked we create
2863 	 * each descriptor as self-linked and add it to the end.  As
2864 	 * each additional descriptor is added the previous self-linked
2865 	 * entry is ``fixed'' naturally.  This should be safe even
2866 	 * if DMA is happening.  When processing RX interrupts we
2867 	 * never remove/process the last, self-linked, entry on the
2868 	 * descriptor list.  This insures the hardware always has
2869 	 * someplace to write a new frame.
2870 	 */
2871 	ds = bf->bf_desc;
2872 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2873 	ds->ds_data = bf->bf_segs[0].ds_addr;
2874 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2875 	ath_hal_setuprxdesc(ah, ds
2876 		, m->m_len		/* buffer size */
2877 		, 0
2878 	);
2879 
2880 	if (sc->sc_rxlink != NULL)
2881 		*sc->sc_rxlink = bf->bf_daddr;
2882 	sc->sc_rxlink = &ds->ds_link;
2883 	return 0;
2884 }
2885 
2886 /*
2887  * Extend 15-bit time stamp from rx descriptor to
2888  * a full 64-bit TSF using the specified TSF.
2889  */
2890 static inline u_int64_t
2891 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2892 {
2893 	if ((tsf & 0x7fff) < rstamp)
2894 		tsf -= 0x8000;
2895 	return ((tsf &~ 0x7fff) | rstamp);
2896 }
2897 
2898 /*
2899  * Intercept management frames to collect beacon rssi data
2900  * and to do ibss merges.
2901  */
2902 static void
2903 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2904 	struct ieee80211_node *ni,
2905 	int subtype, int rssi, u_int32_t rstamp)
2906 {
2907 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2908 
2909 	/*
2910 	 * Call up first so subsequent work can use information
2911 	 * potentially stored in the node (e.g. for ibss merge).
2912 	 */
2913 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2914 	switch (subtype) {
2915 	case IEEE80211_FC0_SUBTYPE_BEACON:
2916 		/* update rssi statistics for use by the hal */
2917 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2918 		if (sc->sc_syncbeacon &&
2919 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2920 			/*
2921 			 * Resync beacon timers using the tsf of the beacon
2922 			 * frame we just received.
2923 			 */
2924 			ath_beacon_config(sc);
2925 		}
2926 		/* fall thru... */
2927 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2928 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2929 		    ic->ic_state == IEEE80211_S_RUN) {
2930 			u_int64_t tsf = ath_extend_tsf(rstamp,
2931 				ath_hal_gettsf64(sc->sc_ah));
2932 
2933 			/*
2934 			 * Handle ibss merge as needed; check the tsf on the
2935 			 * frame before attempting the merge.  The 802.11 spec
2936 			 * says the station should change it's bssid to match
2937 			 * the oldest station with the same ssid, where oldest
2938 			 * is determined by the tsf.  Note that hardware
2939 			 * reconfiguration happens through callback to
2940 			 * ath_newstate as the state machine will go from
2941 			 * RUN -> RUN when this happens.
2942 			 */
2943 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2944 				DPRINTF(sc, ATH_DEBUG_STATE,
2945 				    "ibss merge, rstamp %u tsf %ju "
2946 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2947 				    (uintmax_t)ni->ni_tstamp.tsf);
2948 				(void) ieee80211_ibss_merge(ni);
2949 			}
2950 		}
2951 		break;
2952 	}
2953 }
2954 
2955 /*
2956  * Set the default antenna.
2957  */
2958 static void
2959 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2960 {
2961 	struct ath_hal *ah = sc->sc_ah;
2962 
2963 	/* XXX block beacon interrupts */
2964 	ath_hal_setdefantenna(ah, antenna);
2965 	if (sc->sc_defant != antenna)
2966 		sc->sc_stats.ast_ant_defswitch++;
2967 	sc->sc_defant = antenna;
2968 	sc->sc_rxotherant = 0;
2969 }
2970 
2971 static void
2972 ath_handle_micerror(struct ieee80211com *ic,
2973 	struct ieee80211_frame *wh, int keyix)
2974 {
2975 	struct ieee80211_node *ni;
2976 
2977 	/* XXX recheck MIC to deal w/ chips that lie */
2978 	/* XXX discard MIC errors on !data frames */
2979 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2980 	if (ni != NULL) {
2981 		ieee80211_notify_michael_failure(ic, wh, keyix);
2982 		ieee80211_free_node(ni);
2983 	}
2984 }
2985 
2986 static void
2987 ath_rx_proc(void *arg, int npending)
2988 {
2989 #define	PA2DESC(_sc, _pa) \
2990 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2991 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2992 	struct ath_softc *sc = arg;
2993 	struct ath_buf *bf;
2994 	struct ieee80211com *ic = &sc->sc_ic;
2995 	struct ifnet *ifp = &sc->sc_if;
2996 	struct ath_hal *ah = sc->sc_ah;
2997 	struct ath_desc *ds;
2998 	struct mbuf *m;
2999 	struct ieee80211_node *ni;
3000 	struct ath_node *an;
3001 	int len, ngood, type;
3002 	u_int phyerr;
3003 	HAL_STATUS status;
3004 	int16_t nf;
3005 	u_int64_t tsf;
3006 	uint8_t rxerr_tap, rxerr_mon;
3007 
3008 	NET_LOCK_GIANT();		/* XXX */
3009 
3010 	rxerr_tap =
3011 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3012 
3013 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3014 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3015 	else if (ifp->if_flags & IFF_PROMISC)
3016 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3017 
3018 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3019 	ngood = 0;
3020 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3021 	tsf = ath_hal_gettsf64(ah);
3022 	do {
3023 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3024 		if (bf == NULL) {		/* NB: shouldn't happen */
3025 			if_printf(ifp, "%s: no buffer!\n", __func__);
3026 			break;
3027 		}
3028 		ds = bf->bf_desc;
3029 		if (ds->ds_link == bf->bf_daddr) {
3030 			/* NB: never process the self-linked entry at the end */
3031 			break;
3032 		}
3033 		m = bf->bf_m;
3034 		if (m == NULL) {		/* NB: shouldn't happen */
3035 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3036 			break;
3037 		}
3038 		/* XXX sync descriptor memory */
3039 		/*
3040 		 * Must provide the virtual address of the current
3041 		 * descriptor, the physical address, and the virtual
3042 		 * address of the next descriptor in the h/w chain.
3043 		 * This allows the HAL to look ahead to see if the
3044 		 * hardware is done with a descriptor by checking the
3045 		 * done bit in the following descriptor and the address
3046 		 * of the current descriptor the DMA engine is working
3047 		 * on.  All this is necessary because of our use of
3048 		 * a self-linked list to avoid rx overruns.
3049 		 */
3050 		status = ath_hal_rxprocdesc(ah, ds,
3051 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3052 				&ds->ds_rxstat);
3053 #ifdef AR_DEBUG
3054 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3055 			ath_printrxbuf(bf, status == HAL_OK);
3056 #endif
3057 		if (status == HAL_EINPROGRESS)
3058 			break;
3059 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3060 		if (ds->ds_rxstat.rs_more) {
3061 			/*
3062 			 * Frame spans multiple descriptors; this
3063 			 * cannot happen yet as we don't support
3064 			 * jumbograms.  If not in monitor mode,
3065 			 * discard the frame.
3066 			 */
3067 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3068 				sc->sc_stats.ast_rx_toobig++;
3069 				goto rx_next;
3070 			}
3071 			/* fall thru for monitor mode handling... */
3072 		} else if (ds->ds_rxstat.rs_status != 0) {
3073 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3074 				sc->sc_stats.ast_rx_crcerr++;
3075 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3076 				sc->sc_stats.ast_rx_fifoerr++;
3077 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3078 				sc->sc_stats.ast_rx_phyerr++;
3079 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3080 				sc->sc_stats.ast_rx_phy[phyerr]++;
3081 				goto rx_next;
3082 			}
3083 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3084 				/*
3085 				 * Decrypt error.  If the error occurred
3086 				 * because there was no hardware key, then
3087 				 * let the frame through so the upper layers
3088 				 * can process it.  This is necessary for 5210
3089 				 * parts which have no way to setup a ``clear''
3090 				 * key cache entry.
3091 				 *
3092 				 * XXX do key cache faulting
3093 				 */
3094 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3095 					goto rx_accept;
3096 				sc->sc_stats.ast_rx_badcrypt++;
3097 			}
3098 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3099 				sc->sc_stats.ast_rx_badmic++;
3100 				/*
3101 				 * Do minimal work required to hand off
3102 				 * the 802.11 header for notifcation.
3103 				 */
3104 				/* XXX frag's and qos frames */
3105 				len = ds->ds_rxstat.rs_datalen;
3106 				if (len >= sizeof (struct ieee80211_frame)) {
3107 					bus_dmamap_sync(sc->sc_dmat,
3108 					    bf->bf_dmamap,
3109 					    0, bf->bf_dmamap->dm_mapsize,
3110 					    BUS_DMASYNC_POSTREAD);
3111 					ath_handle_micerror(ic,
3112 					    mtod(m, struct ieee80211_frame *),
3113 					    sc->sc_splitmic ?
3114 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3115 				}
3116 			}
3117 			ifp->if_ierrors++;
3118 			/*
3119 			 * Reject error frames, we normally don't want
3120 			 * to see them in monitor mode (in monitor mode
3121 			 * allow through packets that have crypto problems).
3122 			 */
3123 
3124 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3125 				goto rx_next;
3126 		}
3127 rx_accept:
3128 		/*
3129 		 * Sync and unmap the frame.  At this point we're
3130 		 * committed to passing the mbuf somewhere so clear
3131 		 * bf_m; this means a new sk_buff must be allocated
3132 		 * when the rx descriptor is setup again to receive
3133 		 * another frame.
3134 		 */
3135 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3136 		    0, bf->bf_dmamap->dm_mapsize,
3137 		    BUS_DMASYNC_POSTREAD);
3138 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3139 		bf->bf_m = NULL;
3140 
3141 		m->m_pkthdr.rcvif = ifp;
3142 		len = ds->ds_rxstat.rs_datalen;
3143 		m->m_pkthdr.len = m->m_len = len;
3144 
3145 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3146 
3147 		if (sc->sc_drvbpf) {
3148 			u_int8_t rix;
3149 
3150 			/*
3151 			 * Discard anything shorter than an ack or cts.
3152 			 */
3153 			if (len < IEEE80211_ACK_LEN) {
3154 				DPRINTF(sc, ATH_DEBUG_RECV,
3155 					"%s: runt packet %d\n",
3156 					__func__, len);
3157 				sc->sc_stats.ast_rx_tooshort++;
3158 				m_freem(m);
3159 				goto rx_next;
3160 			}
3161 			rix = ds->ds_rxstat.rs_rate;
3162 			sc->sc_rx_th.wr_tsf = htole64(
3163 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3164 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3165 			if (ds->ds_rxstat.rs_status &
3166 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3167 				sc->sc_rx_th.wr_flags |=
3168 				    IEEE80211_RADIOTAP_F_BADFCS;
3169 			}
3170 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3171 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3172 			sc->sc_rx_th.wr_antnoise = nf;
3173 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3174 
3175 			bpf_ops->bpf_mtap2(sc->sc_drvbpf,
3176 			    &sc->sc_rx_th, sc->sc_rx_th_len, m);
3177 		}
3178 
3179 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3180 			m_freem(m);
3181 			goto rx_next;
3182 		}
3183 		/*
3184 		 * From this point on we assume the frame is at least
3185 		 * as large as ieee80211_frame_min; verify that.
3186 		 */
3187 		if (len < IEEE80211_MIN_LEN) {
3188 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3189 				__func__, len);
3190 			sc->sc_stats.ast_rx_tooshort++;
3191 			m_freem(m);
3192 			goto rx_next;
3193 		}
3194 
3195 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3196 			ieee80211_dump_pkt(mtod(m, void *), len,
3197 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3198 				   ds->ds_rxstat.rs_rssi);
3199 		}
3200 
3201 		m_adj(m, -IEEE80211_CRC_LEN);
3202 
3203 		/*
3204 		 * Locate the node for sender, track state, and then
3205 		 * pass the (referenced) node up to the 802.11 layer
3206 		 * for its use.
3207 		 */
3208 		ni = ieee80211_find_rxnode_withkey(ic,
3209 			mtod(m, const struct ieee80211_frame_min *),
3210 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3211 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3212 		/*
3213 		 * Track rx rssi and do any rx antenna management.
3214 		 */
3215 		an = ATH_NODE(ni);
3216 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3217 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3218 		/*
3219 		 * Send frame up for processing.
3220 		 */
3221 		type = ieee80211_input(ic, m, ni,
3222 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3223 		ieee80211_free_node(ni);
3224 		if (sc->sc_diversity) {
3225 			/*
3226 			 * When using fast diversity, change the default rx
3227 			 * antenna if diversity chooses the other antenna 3
3228 			 * times in a row.
3229 			 */
3230 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3231 				if (++sc->sc_rxotherant >= 3)
3232 					ath_setdefantenna(sc,
3233 						ds->ds_rxstat.rs_antenna);
3234 			} else
3235 				sc->sc_rxotherant = 0;
3236 		}
3237 		if (sc->sc_softled) {
3238 			/*
3239 			 * Blink for any data frame.  Otherwise do a
3240 			 * heartbeat-style blink when idle.  The latter
3241 			 * is mainly for station mode where we depend on
3242 			 * periodic beacon frames to trigger the poll event.
3243 			 */
3244 			if (type == IEEE80211_FC0_TYPE_DATA) {
3245 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3246 				ath_led_event(sc, ATH_LED_RX);
3247 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3248 				ath_led_event(sc, ATH_LED_POLL);
3249 		}
3250 		/*
3251 		 * Arrange to update the last rx timestamp only for
3252 		 * frames from our ap when operating in station mode.
3253 		 * This assumes the rx key is always setup when associated.
3254 		 */
3255 		if (ic->ic_opmode == IEEE80211_M_STA &&
3256 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3257 			ngood++;
3258 rx_next:
3259 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3260 	} while (ath_rxbuf_init(sc, bf) == 0);
3261 
3262 	/* rx signal state monitoring */
3263 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3264 #if 0
3265 	if (ath_hal_radar_event(ah))
3266 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3267 #endif
3268 	if (ngood)
3269 		sc->sc_lastrx = tsf;
3270 
3271 #ifdef __NetBSD__
3272 	/* XXX Why isn't this necessary in FreeBSD? */
3273 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3274 		ath_start(ifp);
3275 #endif /* __NetBSD__ */
3276 
3277 	NET_UNLOCK_GIANT();		/* XXX */
3278 #undef PA2DESC
3279 }
3280 
3281 /*
3282  * Setup a h/w transmit queue.
3283  */
3284 static struct ath_txq *
3285 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3286 {
3287 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3288 	struct ath_hal *ah = sc->sc_ah;
3289 	HAL_TXQ_INFO qi;
3290 	int qnum;
3291 
3292 	memset(&qi, 0, sizeof(qi));
3293 	qi.tqi_subtype = subtype;
3294 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3295 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3296 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3297 	/*
3298 	 * Enable interrupts only for EOL and DESC conditions.
3299 	 * We mark tx descriptors to receive a DESC interrupt
3300 	 * when a tx queue gets deep; otherwise waiting for the
3301 	 * EOL to reap descriptors.  Note that this is done to
3302 	 * reduce interrupt load and this only defers reaping
3303 	 * descriptors, never transmitting frames.  Aside from
3304 	 * reducing interrupts this also permits more concurrency.
3305 	 * The only potential downside is if the tx queue backs
3306 	 * up in which case the top half of the kernel may backup
3307 	 * due to a lack of tx descriptors.
3308 	 */
3309 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3310 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3311 	if (qnum == -1) {
3312 		/*
3313 		 * NB: don't print a message, this happens
3314 		 * normally on parts with too few tx queues
3315 		 */
3316 		return NULL;
3317 	}
3318 	if (qnum >= N(sc->sc_txq)) {
3319 		device_printf(sc->sc_dev,
3320 			"hal qnum %u out of range, max %zu!\n",
3321 			qnum, N(sc->sc_txq));
3322 		ath_hal_releasetxqueue(ah, qnum);
3323 		return NULL;
3324 	}
3325 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3326 		struct ath_txq *txq = &sc->sc_txq[qnum];
3327 
3328 		txq->axq_qnum = qnum;
3329 		txq->axq_depth = 0;
3330 		txq->axq_intrcnt = 0;
3331 		txq->axq_link = NULL;
3332 		STAILQ_INIT(&txq->axq_q);
3333 		ATH_TXQ_LOCK_INIT(sc, txq);
3334 		sc->sc_txqsetup |= 1<<qnum;
3335 	}
3336 	return &sc->sc_txq[qnum];
3337 #undef N
3338 }
3339 
3340 /*
3341  * Setup a hardware data transmit queue for the specified
3342  * access control.  The hal may not support all requested
3343  * queues in which case it will return a reference to a
3344  * previously setup queue.  We record the mapping from ac's
3345  * to h/w queues for use by ath_tx_start and also track
3346  * the set of h/w queues being used to optimize work in the
3347  * transmit interrupt handler and related routines.
3348  */
3349 static int
3350 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3351 {
3352 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3353 	struct ath_txq *txq;
3354 
3355 	if (ac >= N(sc->sc_ac2q)) {
3356 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3357 			ac, N(sc->sc_ac2q));
3358 		return 0;
3359 	}
3360 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3361 	if (txq != NULL) {
3362 		sc->sc_ac2q[ac] = txq;
3363 		return 1;
3364 	} else
3365 		return 0;
3366 #undef N
3367 }
3368 
3369 /*
3370  * Update WME parameters for a transmit queue.
3371  */
3372 static int
3373 ath_txq_update(struct ath_softc *sc, int ac)
3374 {
3375 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3376 #define	ATH_TXOP_TO_US(v)		(v<<5)
3377 	struct ieee80211com *ic = &sc->sc_ic;
3378 	struct ath_txq *txq = sc->sc_ac2q[ac];
3379 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3380 	struct ath_hal *ah = sc->sc_ah;
3381 	HAL_TXQ_INFO qi;
3382 
3383 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3384 	qi.tqi_aifs = wmep->wmep_aifsn;
3385 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3386 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3387 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3388 
3389 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3390 		device_printf(sc->sc_dev, "unable to update hardware queue "
3391 			"parameters for %s traffic!\n",
3392 			ieee80211_wme_acnames[ac]);
3393 		return 0;
3394 	} else {
3395 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3396 		return 1;
3397 	}
3398 #undef ATH_TXOP_TO_US
3399 #undef ATH_EXPONENT_TO_VALUE
3400 }
3401 
3402 /*
3403  * Callback from the 802.11 layer to update WME parameters.
3404  */
3405 static int
3406 ath_wme_update(struct ieee80211com *ic)
3407 {
3408 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3409 
3410 	return !ath_txq_update(sc, WME_AC_BE) ||
3411 	    !ath_txq_update(sc, WME_AC_BK) ||
3412 	    !ath_txq_update(sc, WME_AC_VI) ||
3413 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3414 }
3415 
3416 /*
3417  * Reclaim resources for a setup queue.
3418  */
3419 static void
3420 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3421 {
3422 
3423 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3424 	ATH_TXQ_LOCK_DESTROY(txq);
3425 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3426 }
3427 
3428 /*
3429  * Reclaim all tx queue resources.
3430  */
3431 static void
3432 ath_tx_cleanup(struct ath_softc *sc)
3433 {
3434 	int i;
3435 
3436 	ATH_TXBUF_LOCK_DESTROY(sc);
3437 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3438 		if (ATH_TXQ_SETUP(sc, i))
3439 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3440 }
3441 
3442 /*
3443  * Defragment an mbuf chain, returning at most maxfrags separate
3444  * mbufs+clusters.  If this is not possible NULL is returned and
3445  * the original mbuf chain is left in it's present (potentially
3446  * modified) state.  We use two techniques: collapsing consecutive
3447  * mbufs and replacing consecutive mbufs by a cluster.
3448  */
3449 static struct mbuf *
3450 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3451 {
3452 	struct mbuf *m, *n, *n2, **prev;
3453 	u_int curfrags;
3454 
3455 	/*
3456 	 * Calculate the current number of frags.
3457 	 */
3458 	curfrags = 0;
3459 	for (m = m0; m != NULL; m = m->m_next)
3460 		curfrags++;
3461 	/*
3462 	 * First, try to collapse mbufs.  Note that we always collapse
3463 	 * towards the front so we don't need to deal with moving the
3464 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3465 	 * less data than the following.
3466 	 */
3467 	m = m0;
3468 again:
3469 	for (;;) {
3470 		n = m->m_next;
3471 		if (n == NULL)
3472 			break;
3473 		if (n->m_len < M_TRAILINGSPACE(m)) {
3474 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3475 				n->m_len);
3476 			m->m_len += n->m_len;
3477 			m->m_next = n->m_next;
3478 			m_free(n);
3479 			if (--curfrags <= maxfrags)
3480 				return m0;
3481 		} else
3482 			m = n;
3483 	}
3484 	KASSERT(maxfrags > 1,
3485 		("maxfrags %u, but normal collapse failed", maxfrags));
3486 	/*
3487 	 * Collapse consecutive mbufs to a cluster.
3488 	 */
3489 	prev = &m0->m_next;		/* NB: not the first mbuf */
3490 	while ((n = *prev) != NULL) {
3491 		if ((n2 = n->m_next) != NULL &&
3492 		    n->m_len + n2->m_len < MCLBYTES) {
3493 			m = m_getcl(how, MT_DATA, 0);
3494 			if (m == NULL)
3495 				goto bad;
3496 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3497 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3498 				n2->m_len);
3499 			m->m_len = n->m_len + n2->m_len;
3500 			m->m_next = n2->m_next;
3501 			*prev = m;
3502 			m_free(n);
3503 			m_free(n2);
3504 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3505 				return m0;
3506 			/*
3507 			 * Still not there, try the normal collapse
3508 			 * again before we allocate another cluster.
3509 			 */
3510 			goto again;
3511 		}
3512 		prev = &n->m_next;
3513 	}
3514 	/*
3515 	 * No place where we can collapse to a cluster; punt.
3516 	 * This can occur if, for example, you request 2 frags
3517 	 * but the packet requires that both be clusters (we
3518 	 * never reallocate the first mbuf to avoid moving the
3519 	 * packet header).
3520 	 */
3521 bad:
3522 	return NULL;
3523 }
3524 
3525 /*
3526  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3527  */
3528 static int
3529 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3530 {
3531 	int i;
3532 
3533 	for (i = 0; i < rt->rateCount; i++)
3534 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3535 			return i;
3536 	return 0;		/* NB: lowest rate */
3537 }
3538 
3539 static void
3540 ath_freetx(struct mbuf *m)
3541 {
3542 	struct mbuf *next;
3543 
3544 	do {
3545 		next = m->m_nextpkt;
3546 		m->m_nextpkt = NULL;
3547 		m_freem(m);
3548 	} while ((m = next) != NULL);
3549 }
3550 
3551 static int
3552 deduct_pad_bytes(int len, int hdrlen)
3553 {
3554 	/* XXX I am suspicious that this code, which I extracted
3555 	 * XXX from ath_tx_start() for reuse, does the right thing.
3556 	 */
3557 	return len - (hdrlen & 3);
3558 }
3559 
3560 static int
3561 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3562     struct mbuf *m0)
3563 {
3564 	struct ieee80211com *ic = &sc->sc_ic;
3565 	struct ath_hal *ah = sc->sc_ah;
3566 	struct ifnet *ifp = &sc->sc_if;
3567 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3568 	int i, error, iswep, ismcast, isfrag, ismrr;
3569 	int keyix, hdrlen, pktlen, try0;
3570 	u_int8_t rix, txrate, ctsrate;
3571 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3572 	struct ath_desc *ds, *ds0;
3573 	struct ath_txq *txq;
3574 	struct ieee80211_frame *wh;
3575 	u_int subtype, flags, ctsduration;
3576 	HAL_PKT_TYPE atype;
3577 	const HAL_RATE_TABLE *rt;
3578 	HAL_BOOL shortPreamble;
3579 	struct ath_node *an;
3580 	struct mbuf *m;
3581 	u_int pri;
3582 
3583 	wh = mtod(m0, struct ieee80211_frame *);
3584 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3585 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3586 	isfrag = m0->m_flags & M_FRAG;
3587 	hdrlen = ieee80211_anyhdrsize(wh);
3588 	/*
3589 	 * Packet length must not include any
3590 	 * pad bytes; deduct them here.
3591 	 */
3592 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3593 
3594 	if (iswep) {
3595 		const struct ieee80211_cipher *cip;
3596 		struct ieee80211_key *k;
3597 
3598 		/*
3599 		 * Construct the 802.11 header+trailer for an encrypted
3600 		 * frame. The only reason this can fail is because of an
3601 		 * unknown or unsupported cipher/key type.
3602 		 */
3603 		k = ieee80211_crypto_encap(ic, ni, m0);
3604 		if (k == NULL) {
3605 			/*
3606 			 * This can happen when the key is yanked after the
3607 			 * frame was queued.  Just discard the frame; the
3608 			 * 802.11 layer counts failures and provides
3609 			 * debugging/diagnostics.
3610 			 */
3611 			ath_freetx(m0);
3612 			return EIO;
3613 		}
3614 		/*
3615 		 * Adjust the packet + header lengths for the crypto
3616 		 * additions and calculate the h/w key index.  When
3617 		 * a s/w mic is done the frame will have had any mic
3618 		 * added to it prior to entry so m0->m_pkthdr.len above will
3619 		 * account for it. Otherwise we need to add it to the
3620 		 * packet length.
3621 		 */
3622 		cip = k->wk_cipher;
3623 		hdrlen += cip->ic_header;
3624 		pktlen += cip->ic_header + cip->ic_trailer;
3625 		/* NB: frags always have any TKIP MIC done in s/w */
3626 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3627 			pktlen += cip->ic_miclen;
3628 		keyix = k->wk_keyix;
3629 
3630 		/* packet header may have moved, reset our local pointer */
3631 		wh = mtod(m0, struct ieee80211_frame *);
3632 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3633 		/*
3634 		 * Use station key cache slot, if assigned.
3635 		 */
3636 		keyix = ni->ni_ucastkey.wk_keyix;
3637 		if (keyix == IEEE80211_KEYIX_NONE)
3638 			keyix = HAL_TXKEYIX_INVALID;
3639 	} else
3640 		keyix = HAL_TXKEYIX_INVALID;
3641 
3642 	pktlen += IEEE80211_CRC_LEN;
3643 
3644 	/*
3645 	 * Load the DMA map so any coalescing is done.  This
3646 	 * also calculates the number of descriptors we need.
3647 	 */
3648 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3649 				     BUS_DMA_NOWAIT);
3650 	if (error == EFBIG) {
3651 		/* XXX packet requires too many descriptors */
3652 		bf->bf_nseg = ATH_TXDESC+1;
3653 	} else if (error != 0) {
3654 		sc->sc_stats.ast_tx_busdma++;
3655 		ath_freetx(m0);
3656 		return error;
3657 	}
3658 	/*
3659 	 * Discard null packets and check for packets that
3660 	 * require too many TX descriptors.  We try to convert
3661 	 * the latter to a cluster.
3662 	 */
3663 	if (error == EFBIG) {		/* too many desc's, linearize */
3664 		sc->sc_stats.ast_tx_linear++;
3665 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3666 		if (m == NULL) {
3667 			ath_freetx(m0);
3668 			sc->sc_stats.ast_tx_nombuf++;
3669 			return ENOMEM;
3670 		}
3671 		m0 = m;
3672 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3673 					     BUS_DMA_NOWAIT);
3674 		if (error != 0) {
3675 			sc->sc_stats.ast_tx_busdma++;
3676 			ath_freetx(m0);
3677 			return error;
3678 		}
3679 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3680 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3681 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3682 		sc->sc_stats.ast_tx_nodata++;
3683 		ath_freetx(m0);
3684 		return EIO;
3685 	}
3686 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3687 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3688             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3689 	bf->bf_m = m0;
3690 	bf->bf_node = ni;			/* NB: held reference */
3691 
3692 	/* setup descriptors */
3693 	ds = bf->bf_desc;
3694 	rt = sc->sc_currates;
3695 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3696 
3697 	/*
3698 	 * NB: the 802.11 layer marks whether or not we should
3699 	 * use short preamble based on the current mode and
3700 	 * negotiated parameters.
3701 	 */
3702 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3703 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3704 		shortPreamble = AH_TRUE;
3705 		sc->sc_stats.ast_tx_shortpre++;
3706 	} else {
3707 		shortPreamble = AH_FALSE;
3708 	}
3709 
3710 	an = ATH_NODE(ni);
3711 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3712 	ismrr = 0;				/* default no multi-rate retry*/
3713 	/*
3714 	 * Calculate Atheros packet type from IEEE80211 packet header,
3715 	 * setup for rate calculations, and select h/w transmit queue.
3716 	 */
3717 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3718 	case IEEE80211_FC0_TYPE_MGT:
3719 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3720 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3721 			atype = HAL_PKT_TYPE_BEACON;
3722 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3723 			atype = HAL_PKT_TYPE_PROBE_RESP;
3724 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3725 			atype = HAL_PKT_TYPE_ATIM;
3726 		else
3727 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3728 		rix = sc->sc_minrateix;
3729 		txrate = rt->info[rix].rateCode;
3730 		if (shortPreamble)
3731 			txrate |= rt->info[rix].shortPreamble;
3732 		try0 = ATH_TXMGTTRY;
3733 		/* NB: force all management frames to highest queue */
3734 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3735 			/* NB: force all management frames to highest queue */
3736 			pri = WME_AC_VO;
3737 		} else
3738 			pri = WME_AC_BE;
3739 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3740 		break;
3741 	case IEEE80211_FC0_TYPE_CTL:
3742 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3743 		rix = sc->sc_minrateix;
3744 		txrate = rt->info[rix].rateCode;
3745 		if (shortPreamble)
3746 			txrate |= rt->info[rix].shortPreamble;
3747 		try0 = ATH_TXMGTTRY;
3748 		/* NB: force all ctl frames to highest queue */
3749 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3750 			/* NB: force all ctl frames to highest queue */
3751 			pri = WME_AC_VO;
3752 		} else
3753 			pri = WME_AC_BE;
3754 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3755 		break;
3756 	case IEEE80211_FC0_TYPE_DATA:
3757 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3758 		/*
3759 		 * Data frames: multicast frames go out at a fixed rate,
3760 		 * otherwise consult the rate control module for the
3761 		 * rate to use.
3762 		 */
3763 		if (ismcast) {
3764 			/*
3765 			 * Check mcast rate setting in case it's changed.
3766 			 * XXX move out of fastpath
3767 			 */
3768 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3769 				sc->sc_mcastrix =
3770 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3771 				sc->sc_mcastrate = ic->ic_mcast_rate;
3772 			}
3773 			rix = sc->sc_mcastrix;
3774 			txrate = rt->info[rix].rateCode;
3775 			try0 = 1;
3776 		} else {
3777 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3778 				&rix, &try0, &txrate);
3779 			sc->sc_txrate = txrate;		/* for LED blinking */
3780 			if (try0 != ATH_TXMAXTRY)
3781 				ismrr = 1;
3782 		}
3783 		pri = M_WME_GETAC(m0);
3784 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3785 			flags |= HAL_TXDESC_NOACK;
3786 		break;
3787 	default:
3788 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3789 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3790 		/* XXX statistic */
3791 		ath_freetx(m0);
3792 		return EIO;
3793 	}
3794 	txq = sc->sc_ac2q[pri];
3795 
3796 	/*
3797 	 * When servicing one or more stations in power-save mode
3798 	 * multicast frames must be buffered until after the beacon.
3799 	 * We use the CAB queue for that.
3800 	 */
3801 	if (ismcast && ic->ic_ps_sta) {
3802 		txq = sc->sc_cabq;
3803 		/* XXX? more bit in 802.11 frame header */
3804 	}
3805 
3806 	/*
3807 	 * Calculate miscellaneous flags.
3808 	 */
3809 	if (ismcast) {
3810 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3811 	} else if (pktlen > ic->ic_rtsthreshold) {
3812 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3813 		cix = rt->info[rix].controlRate;
3814 		sc->sc_stats.ast_tx_rts++;
3815 	}
3816 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3817 		sc->sc_stats.ast_tx_noack++;
3818 
3819 	/*
3820 	 * If 802.11g protection is enabled, determine whether
3821 	 * to use RTS/CTS or just CTS.  Note that this is only
3822 	 * done for OFDM unicast frames.
3823 	 */
3824 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3825 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3826 	    (flags & HAL_TXDESC_NOACK) == 0) {
3827 		/* XXX fragments must use CCK rates w/ protection */
3828 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3829 			flags |= HAL_TXDESC_RTSENA;
3830 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3831 			flags |= HAL_TXDESC_CTSENA;
3832 		if (isfrag) {
3833 			/*
3834 			 * For frags it would be desirable to use the
3835 			 * highest CCK rate for RTS/CTS.  But stations
3836 			 * farther away may detect it at a lower CCK rate
3837 			 * so use the configured protection rate instead
3838 			 * (for now).
3839 			 */
3840 			cix = rt->info[sc->sc_protrix].controlRate;
3841 		} else
3842 			cix = rt->info[sc->sc_protrix].controlRate;
3843 		sc->sc_stats.ast_tx_protect++;
3844 	}
3845 
3846 	/*
3847 	 * Calculate duration.  This logically belongs in the 802.11
3848 	 * layer but it lacks sufficient information to calculate it.
3849 	 */
3850 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3851 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3852 		u_int16_t dur;
3853 		/*
3854 		 * XXX not right with fragmentation.
3855 		 */
3856 		if (shortPreamble)
3857 			dur = rt->info[rix].spAckDuration;
3858 		else
3859 			dur = rt->info[rix].lpAckDuration;
3860 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3861 			dur += dur;             /* additional SIFS+ACK */
3862 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3863 			/*
3864 			 * Include the size of next fragment so NAV is
3865 			 * updated properly.  The last fragment uses only
3866 			 * the ACK duration
3867 			 */
3868 			dur += ath_hal_computetxtime(ah, rt,
3869 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3870 			        hdrlen) -
3871 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3872 			    rix, shortPreamble);
3873 		}
3874 		if (isfrag) {
3875 			/*
3876 			 * Force hardware to use computed duration for next
3877 			 * fragment by disabling multi-rate retry which updates
3878 			 * duration based on the multi-rate duration table.
3879 			 */
3880 			try0 = ATH_TXMAXTRY;
3881 		}
3882 		*(u_int16_t *)wh->i_dur = htole16(dur);
3883 	}
3884 
3885 	/*
3886 	 * Calculate RTS/CTS rate and duration if needed.
3887 	 */
3888 	ctsduration = 0;
3889 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3890 		/*
3891 		 * CTS transmit rate is derived from the transmit rate
3892 		 * by looking in the h/w rate table.  We must also factor
3893 		 * in whether or not a short preamble is to be used.
3894 		 */
3895 		/* NB: cix is set above where RTS/CTS is enabled */
3896 		KASSERT(cix != 0xff, ("cix not setup"));
3897 		ctsrate = rt->info[cix].rateCode;
3898 		/*
3899 		 * Compute the transmit duration based on the frame
3900 		 * size and the size of an ACK frame.  We call into the
3901 		 * HAL to do the computation since it depends on the
3902 		 * characteristics of the actual PHY being used.
3903 		 *
3904 		 * NB: CTS is assumed the same size as an ACK so we can
3905 		 *     use the precalculated ACK durations.
3906 		 */
3907 		if (shortPreamble) {
3908 			ctsrate |= rt->info[cix].shortPreamble;
3909 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3910 				ctsduration += rt->info[cix].spAckDuration;
3911 			ctsduration += ath_hal_computetxtime(ah,
3912 				rt, pktlen, rix, AH_TRUE);
3913 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3914 				ctsduration += rt->info[rix].spAckDuration;
3915 		} else {
3916 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3917 				ctsduration += rt->info[cix].lpAckDuration;
3918 			ctsduration += ath_hal_computetxtime(ah,
3919 				rt, pktlen, rix, AH_FALSE);
3920 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3921 				ctsduration += rt->info[rix].lpAckDuration;
3922 		}
3923 		/*
3924 		 * Must disable multi-rate retry when using RTS/CTS.
3925 		 */
3926 		ismrr = 0;
3927 		try0 = ATH_TXMGTTRY;		/* XXX */
3928 	} else
3929 		ctsrate = 0;
3930 
3931 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3932 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3933 			sc->sc_hwmap[txrate].ieeerate, -1);
3934 	if (ic->ic_rawbpf)
3935 		bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
3936 	if (sc->sc_drvbpf) {
3937 		u_int64_t tsf = ath_hal_gettsf64(ah);
3938 
3939 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3940 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3941 		if (iswep)
3942 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3943 		if (isfrag)
3944 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3945 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3946 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3947 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3948 
3949 		bpf_ops->bpf_mtap2(sc->sc_drvbpf,
3950 		    &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3951 	}
3952 
3953 	/*
3954 	 * Determine if a tx interrupt should be generated for
3955 	 * this descriptor.  We take a tx interrupt to reap
3956 	 * descriptors when the h/w hits an EOL condition or
3957 	 * when the descriptor is specifically marked to generate
3958 	 * an interrupt.  We periodically mark descriptors in this
3959 	 * way to insure timely replenishing of the supply needed
3960 	 * for sending frames.  Defering interrupts reduces system
3961 	 * load and potentially allows more concurrent work to be
3962 	 * done but if done to aggressively can cause senders to
3963 	 * backup.
3964 	 *
3965 	 * NB: use >= to deal with sc_txintrperiod changing
3966 	 *     dynamically through sysctl.
3967 	 */
3968 	if (flags & HAL_TXDESC_INTREQ) {
3969 		txq->axq_intrcnt = 0;
3970 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3971 		flags |= HAL_TXDESC_INTREQ;
3972 		txq->axq_intrcnt = 0;
3973 	}
3974 
3975 	/*
3976 	 * Formulate first tx descriptor with tx controls.
3977 	 */
3978 	/* XXX check return value? */
3979 	ath_hal_setuptxdesc(ah, ds
3980 		, pktlen		/* packet length */
3981 		, hdrlen		/* header length */
3982 		, atype			/* Atheros packet type */
3983 		, ni->ni_txpower	/* txpower */
3984 		, txrate, try0		/* series 0 rate/tries */
3985 		, keyix			/* key cache index */
3986 		, sc->sc_txantenna	/* antenna mode */
3987 		, flags			/* flags */
3988 		, ctsrate		/* rts/cts rate */
3989 		, ctsduration		/* rts/cts duration */
3990 	);
3991 	bf->bf_flags = flags;
3992 	/*
3993 	 * Setup the multi-rate retry state only when we're
3994 	 * going to use it.  This assumes ath_hal_setuptxdesc
3995 	 * initializes the descriptors (so we don't have to)
3996 	 * when the hardware supports multi-rate retry and
3997 	 * we don't use it.
3998 	 */
3999 	if (ismrr)
4000 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4001 
4002 	/*
4003 	 * Fillin the remainder of the descriptor info.
4004 	 */
4005 	ds0 = ds;
4006 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4007 		ds->ds_data = bf->bf_segs[i].ds_addr;
4008 		if (i == bf->bf_nseg - 1)
4009 			ds->ds_link = 0;
4010 		else
4011 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4012 		ath_hal_filltxdesc(ah, ds
4013 			, bf->bf_segs[i].ds_len	/* segment length */
4014 			, i == 0		/* first segment */
4015 			, i == bf->bf_nseg - 1	/* last segment */
4016 			, ds0			/* first descriptor */
4017 		);
4018 
4019 		/* NB: The desc swap function becomes void,
4020 		 * if descriptor swapping is not enabled
4021 		 */
4022 		ath_desc_swap(ds);
4023 
4024 		DPRINTF(sc, ATH_DEBUG_XMIT,
4025 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4026 			__func__, i, ds->ds_link, ds->ds_data,
4027 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4028 	}
4029 	/*
4030 	 * Insert the frame on the outbound list and
4031 	 * pass it on to the hardware.
4032 	 */
4033 	ATH_TXQ_LOCK(txq);
4034 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4035 	if (txq->axq_link == NULL) {
4036 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4037 		DPRINTF(sc, ATH_DEBUG_XMIT,
4038 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4039 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4040 		    txq->axq_depth);
4041 	} else {
4042 		*txq->axq_link = HTOAH32(bf->bf_daddr);
4043 		DPRINTF(sc, ATH_DEBUG_XMIT,
4044 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4045 		    __func__, txq->axq_qnum, txq->axq_link,
4046 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4047 	}
4048 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4049 	/*
4050 	 * The CAB queue is started from the SWBA handler since
4051 	 * frames only go out on DTIM and to avoid possible races.
4052 	 */
4053 	if (txq != sc->sc_cabq)
4054 		ath_hal_txstart(ah, txq->axq_qnum);
4055 	ATH_TXQ_UNLOCK(txq);
4056 
4057 	return 0;
4058 }
4059 
4060 /*
4061  * Process completed xmit descriptors from the specified queue.
4062  */
4063 static int
4064 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4065 {
4066 	struct ath_hal *ah = sc->sc_ah;
4067 	struct ieee80211com *ic = &sc->sc_ic;
4068 	struct ath_buf *bf;
4069 	struct ath_desc *ds, *ds0;
4070 	struct ieee80211_node *ni;
4071 	struct ath_node *an;
4072 	int sr, lr, pri, nacked;
4073 	HAL_STATUS status;
4074 
4075 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4076 		__func__, txq->axq_qnum,
4077 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4078 		txq->axq_link);
4079 	nacked = 0;
4080 	for (;;) {
4081 		ATH_TXQ_LOCK(txq);
4082 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4083 		bf = STAILQ_FIRST(&txq->axq_q);
4084 		if (bf == NULL) {
4085 			txq->axq_link = NULL;
4086 			ATH_TXQ_UNLOCK(txq);
4087 			break;
4088 		}
4089 		ds0 = &bf->bf_desc[0];
4090 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4091 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4092 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4093 			ath_printtxbuf(bf, status == HAL_OK);
4094 		if (status == HAL_EINPROGRESS) {
4095 			ATH_TXQ_UNLOCK(txq);
4096 			break;
4097 		}
4098 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4099 		ATH_TXQ_UNLOCK(txq);
4100 
4101 		ni = bf->bf_node;
4102 		if (ni != NULL) {
4103 			an = ATH_NODE(ni);
4104 			if (ds->ds_txstat.ts_status == 0) {
4105 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4106 				sc->sc_stats.ast_ant_tx[txant]++;
4107 				sc->sc_ant_tx[txant]++;
4108 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4109 					sc->sc_stats.ast_tx_altrate++;
4110 				sc->sc_stats.ast_tx_rssi =
4111 					ds->ds_txstat.ts_rssi;
4112 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4113 					ds->ds_txstat.ts_rssi);
4114 				pri = M_WME_GETAC(bf->bf_m);
4115 				if (pri >= WME_AC_VO)
4116 					ic->ic_wme.wme_hipri_traffic++;
4117 				ni->ni_inact = ni->ni_inact_reload;
4118 			} else {
4119 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4120 					sc->sc_stats.ast_tx_xretries++;
4121 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4122 					sc->sc_stats.ast_tx_fifoerr++;
4123 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4124 					sc->sc_stats.ast_tx_filtered++;
4125 			}
4126 			sr = ds->ds_txstat.ts_shortretry;
4127 			lr = ds->ds_txstat.ts_longretry;
4128 			sc->sc_stats.ast_tx_shortretry += sr;
4129 			sc->sc_stats.ast_tx_longretry += lr;
4130 			/*
4131 			 * Hand the descriptor to the rate control algorithm.
4132 			 */
4133 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4134 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4135 				/*
4136 				 * If frame was ack'd update the last rx time
4137 				 * used to workaround phantom bmiss interrupts.
4138 				 */
4139 				if (ds->ds_txstat.ts_status == 0)
4140 					nacked++;
4141 				ath_rate_tx_complete(sc, an, ds, ds0);
4142 			}
4143 			/*
4144 			 * Reclaim reference to node.
4145 			 *
4146 			 * NB: the node may be reclaimed here if, for example
4147 			 *     this is a DEAUTH message that was sent and the
4148 			 *     node was timed out due to inactivity.
4149 			 */
4150 			ieee80211_free_node(ni);
4151 		}
4152 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4153 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4154 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4155 		m_freem(bf->bf_m);
4156 		bf->bf_m = NULL;
4157 		bf->bf_node = NULL;
4158 
4159 		ATH_TXBUF_LOCK(sc);
4160 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4161 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4162 		ATH_TXBUF_UNLOCK(sc);
4163 	}
4164 	return nacked;
4165 }
4166 
4167 static inline int
4168 txqactive(struct ath_hal *ah, int qnum)
4169 {
4170 	u_int32_t txqs = 1<<qnum;
4171 	ath_hal_gettxintrtxqs(ah, &txqs);
4172 	return (txqs & (1<<qnum));
4173 }
4174 
4175 /*
4176  * Deferred processing of transmit interrupt; special-cased
4177  * for a single hardware transmit queue (e.g. 5210 and 5211).
4178  */
4179 static void
4180 ath_tx_proc_q0(void *arg, int npending)
4181 {
4182 	struct ath_softc *sc = arg;
4183 	struct ifnet *ifp = &sc->sc_if;
4184 
4185 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4186 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4187 	}
4188 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4189 		ath_tx_processq(sc, sc->sc_cabq);
4190 
4191 	if (sc->sc_softled)
4192 		ath_led_event(sc, ATH_LED_TX);
4193 
4194 	ath_start(ifp);
4195 }
4196 
4197 /*
4198  * Deferred processing of transmit interrupt; special-cased
4199  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4200  */
4201 static void
4202 ath_tx_proc_q0123(void *arg, int npending)
4203 {
4204 	struct ath_softc *sc = arg;
4205 	struct ifnet *ifp = &sc->sc_if;
4206 	int nacked;
4207 
4208 	/*
4209 	 * Process each active queue.
4210 	 */
4211 	nacked = 0;
4212 	if (txqactive(sc->sc_ah, 0))
4213 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4214 	if (txqactive(sc->sc_ah, 1))
4215 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4216 	if (txqactive(sc->sc_ah, 2))
4217 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4218 	if (txqactive(sc->sc_ah, 3))
4219 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4220 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4221 		ath_tx_processq(sc, sc->sc_cabq);
4222 	if (nacked) {
4223 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4224 	}
4225 
4226 	if (sc->sc_softled)
4227 		ath_led_event(sc, ATH_LED_TX);
4228 
4229 	ath_start(ifp);
4230 }
4231 
4232 /*
4233  * Deferred processing of transmit interrupt.
4234  */
4235 static void
4236 ath_tx_proc(void *arg, int npending)
4237 {
4238 	struct ath_softc *sc = arg;
4239 	struct ifnet *ifp = &sc->sc_if;
4240 	int i, nacked;
4241 
4242 	/*
4243 	 * Process each active queue.
4244 	 */
4245 	nacked = 0;
4246 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4247 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4248 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4249 	if (nacked) {
4250 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4251 	}
4252 
4253 	if (sc->sc_softled)
4254 		ath_led_event(sc, ATH_LED_TX);
4255 
4256 	ath_start(ifp);
4257 }
4258 
4259 static void
4260 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4261 {
4262 	struct ath_hal *ah = sc->sc_ah;
4263 	struct ieee80211_node *ni;
4264 	struct ath_buf *bf;
4265 	struct ath_desc *ds;
4266 
4267 	/*
4268 	 * NB: this assumes output has been stopped and
4269 	 *     we do not need to block ath_tx_tasklet
4270 	 */
4271 	for (;;) {
4272 		ATH_TXQ_LOCK(txq);
4273 		bf = STAILQ_FIRST(&txq->axq_q);
4274 		if (bf == NULL) {
4275 			txq->axq_link = NULL;
4276 			ATH_TXQ_UNLOCK(txq);
4277 			break;
4278 		}
4279 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4280 		ATH_TXQ_UNLOCK(txq);
4281 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4282 		if (sc->sc_debug & ATH_DEBUG_RESET)
4283 			ath_printtxbuf(bf,
4284 				ath_hal_txprocdesc(ah, bf->bf_desc,
4285 					&ds->ds_txstat) == HAL_OK);
4286 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4287 		m_freem(bf->bf_m);
4288 		bf->bf_m = NULL;
4289 		ni = bf->bf_node;
4290 		bf->bf_node = NULL;
4291 		if (ni != NULL) {
4292 			/*
4293 			 * Reclaim node reference.
4294 			 */
4295 			ieee80211_free_node(ni);
4296 		}
4297 		ATH_TXBUF_LOCK(sc);
4298 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4299 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4300 		ATH_TXBUF_UNLOCK(sc);
4301 	}
4302 }
4303 
4304 static void
4305 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4306 {
4307 	struct ath_hal *ah = sc->sc_ah;
4308 
4309 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4310 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4311 	    __func__, txq->axq_qnum,
4312 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4313 	    txq->axq_link);
4314 }
4315 
4316 /*
4317  * Drain the transmit queues and reclaim resources.
4318  */
4319 static void
4320 ath_draintxq(struct ath_softc *sc)
4321 {
4322 	struct ath_hal *ah = sc->sc_ah;
4323 	int i;
4324 
4325 	/* XXX return value */
4326 	if (device_is_active(sc->sc_dev)) {
4327 		/* don't touch the hardware if marked invalid */
4328 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4329 		DPRINTF(sc, ATH_DEBUG_RESET,
4330 		    "%s: beacon queue %p\n", __func__,
4331 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4332 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4333 			if (ATH_TXQ_SETUP(sc, i))
4334 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4335 	}
4336 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4337 		if (ATH_TXQ_SETUP(sc, i))
4338 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4339 }
4340 
4341 /*
4342  * Disable the receive h/w in preparation for a reset.
4343  */
4344 static void
4345 ath_stoprecv(struct ath_softc *sc)
4346 {
4347 #define	PA2DESC(_sc, _pa) \
4348 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4349 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4350 	struct ath_hal *ah = sc->sc_ah;
4351 	u_int64_t tsf;
4352 
4353 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4354 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4355 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4356 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4357 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4358 		struct ath_buf *bf;
4359 
4360 		printf("%s: rx queue %p, link %p\n", __func__,
4361 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4362 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4363 			struct ath_desc *ds = bf->bf_desc;
4364 			tsf = ath_hal_gettsf64(sc->sc_ah);
4365 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4366 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4367 				&ds->ds_rxstat);
4368 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4369 				ath_printrxbuf(bf, status == HAL_OK);
4370 		}
4371 	}
4372 	sc->sc_rxlink = NULL;		/* just in case */
4373 #undef PA2DESC
4374 }
4375 
4376 /*
4377  * Enable the receive h/w following a reset.
4378  */
4379 static int
4380 ath_startrecv(struct ath_softc *sc)
4381 {
4382 	struct ath_hal *ah = sc->sc_ah;
4383 	struct ath_buf *bf;
4384 
4385 	sc->sc_rxlink = NULL;
4386 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4387 		int error = ath_rxbuf_init(sc, bf);
4388 		if (error != 0) {
4389 			DPRINTF(sc, ATH_DEBUG_RECV,
4390 				"%s: ath_rxbuf_init failed %d\n",
4391 				__func__, error);
4392 			return error;
4393 		}
4394 	}
4395 
4396 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4397 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4398 	ath_hal_rxena(ah);		/* enable recv descriptors */
4399 	ath_mode_init(sc);		/* set filters, etc. */
4400 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4401 	return 0;
4402 }
4403 
4404 /*
4405  * Update internal state after a channel change.
4406  */
4407 static void
4408 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4409 {
4410 	struct ieee80211com *ic = &sc->sc_ic;
4411 	enum ieee80211_phymode mode;
4412 	u_int16_t flags;
4413 
4414 	/*
4415 	 * Change channels and update the h/w rate map
4416 	 * if we're switching; e.g. 11a to 11b/g.
4417 	 */
4418 	mode = ieee80211_chan2mode(ic, chan);
4419 	if (mode != sc->sc_curmode)
4420 		ath_setcurmode(sc, mode);
4421 	/*
4422 	 * Update BPF state.  NB: ethereal et. al. don't handle
4423 	 * merged flags well so pick a unique mode for their use.
4424 	 */
4425 	if (IEEE80211_IS_CHAN_A(chan))
4426 		flags = IEEE80211_CHAN_A;
4427 	/* XXX 11g schizophrenia */
4428 	else if (IEEE80211_IS_CHAN_G(chan) ||
4429 	    IEEE80211_IS_CHAN_PUREG(chan))
4430 		flags = IEEE80211_CHAN_G;
4431 	else
4432 		flags = IEEE80211_CHAN_B;
4433 	if (IEEE80211_IS_CHAN_T(chan))
4434 		flags |= IEEE80211_CHAN_TURBO;
4435 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4436 		htole16(chan->ic_freq);
4437 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4438 		htole16(flags);
4439 }
4440 
4441 #if 0
4442 /*
4443  * Poll for a channel clear indication; this is required
4444  * for channels requiring DFS and not previously visited
4445  * and/or with a recent radar detection.
4446  */
4447 static void
4448 ath_dfswait(void *arg)
4449 {
4450 	struct ath_softc *sc = arg;
4451 	struct ath_hal *ah = sc->sc_ah;
4452 	HAL_CHANNEL hchan;
4453 
4454 	ath_hal_radar_wait(ah, &hchan);
4455 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4456 		if_printf(&sc->sc_if,
4457 		    "channel %u/0x%x/0x%x has interference\n",
4458 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4459 		return;
4460 	}
4461 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4462 		/* XXX should not happen */
4463 		return;
4464 	}
4465 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4466 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4467 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4468 		if_printf(&sc->sc_if,
4469 		    "channel %u/0x%x/0x%x marked clear\n",
4470 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4471 	} else
4472 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4473 }
4474 #endif
4475 
4476 /*
4477  * Set/change channels.  If the channel is really being changed,
4478  * it's done by reseting the chip.  To accomplish this we must
4479  * first cleanup any pending DMA, then restart stuff after a la
4480  * ath_init.
4481  */
4482 static int
4483 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4484 {
4485 	struct ath_hal *ah = sc->sc_ah;
4486 	struct ieee80211com *ic = &sc->sc_ic;
4487 	HAL_CHANNEL hchan;
4488 
4489 	/*
4490 	 * Convert to a HAL channel description with
4491 	 * the flags constrained to reflect the current
4492 	 * operating mode.
4493 	 */
4494 	hchan.channel = chan->ic_freq;
4495 	hchan.channelFlags = ath_chan2flags(ic, chan);
4496 
4497 	DPRINTF(sc, ATH_DEBUG_RESET,
4498 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4499 	    __func__,
4500 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4501 		sc->sc_curchan.channelFlags),
4502 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4503 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4504 	        hchan.channel, hchan.channelFlags);
4505 	if (hchan.channel != sc->sc_curchan.channel ||
4506 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4507 		HAL_STATUS status;
4508 
4509 		/*
4510 		 * To switch channels clear any pending DMA operations;
4511 		 * wait long enough for the RX fifo to drain, reset the
4512 		 * hardware at the new frequency, and then re-enable
4513 		 * the relevant bits of the h/w.
4514 		 */
4515 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4516 		ath_draintxq(sc);		/* clear pending tx frames */
4517 		ath_stoprecv(sc);		/* turn off frame recv */
4518 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4519 			if_printf(ic->ic_ifp, "%s: unable to reset "
4520 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4521 			    __func__, ieee80211_chan2ieee(ic, chan),
4522 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4523 			return EIO;
4524 		}
4525 		sc->sc_curchan = hchan;
4526 		ath_update_txpow(sc);		/* update tx power state */
4527 		ath_restore_diversity(sc);
4528 		sc->sc_calinterval = 1;
4529 		sc->sc_caltries = 0;
4530 
4531 		/*
4532 		 * Re-enable rx framework.
4533 		 */
4534 		if (ath_startrecv(sc) != 0) {
4535 			if_printf(&sc->sc_if,
4536 				"%s: unable to restart recv logic\n", __func__);
4537 			return EIO;
4538 		}
4539 
4540 		/*
4541 		 * Change channels and update the h/w rate map
4542 		 * if we're switching; e.g. 11a to 11b/g.
4543 		 */
4544 		ic->ic_ibss_chan = chan;
4545 		ath_chan_change(sc, chan);
4546 
4547 #if 0
4548 		/*
4549 		 * Handle DFS required waiting period to determine
4550 		 * if channel is clear of radar traffic.
4551 		 */
4552 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4553 #define	DFS_AND_NOT_CLEAR(_c) \
4554 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4555 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4556 				if_printf(&sc->sc_if,
4557 					"wait for DFS clear channel signal\n");
4558 				/* XXX stop sndq */
4559 				sc->sc_if.if_flags |= IFF_OACTIVE;
4560 				callout_reset(&sc->sc_dfs_ch,
4561 					2 * hz, ath_dfswait, sc);
4562 			} else
4563 				callout_stop(&sc->sc_dfs_ch);
4564 #undef DFS_NOT_CLEAR
4565 		}
4566 #endif
4567 
4568 		/*
4569 		 * Re-enable interrupts.
4570 		 */
4571 		ath_hal_intrset(ah, sc->sc_imask);
4572 	}
4573 	return 0;
4574 }
4575 
4576 static void
4577 ath_next_scan(void *arg)
4578 {
4579 	struct ath_softc *sc = arg;
4580 	struct ieee80211com *ic = &sc->sc_ic;
4581 	int s;
4582 
4583 	/* don't call ath_start w/o network interrupts blocked */
4584 	s = splnet();
4585 
4586 	if (ic->ic_state == IEEE80211_S_SCAN)
4587 		ieee80211_next_scan(ic);
4588 	splx(s);
4589 }
4590 
4591 /*
4592  * Periodically recalibrate the PHY to account
4593  * for temperature/environment changes.
4594  */
4595 static void
4596 ath_calibrate(void *arg)
4597 {
4598 	struct ath_softc *sc = arg;
4599 	struct ath_hal *ah = sc->sc_ah;
4600 	HAL_BOOL iqCalDone;
4601 
4602 	sc->sc_stats.ast_per_cal++;
4603 
4604 	ATH_LOCK(sc);
4605 
4606 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4607 		/*
4608 		 * Rfgain is out of bounds, reset the chip
4609 		 * to load new gain values.
4610 		 */
4611 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4612 			"%s: rfgain change\n", __func__);
4613 		sc->sc_stats.ast_per_rfgain++;
4614 		ath_reset(&sc->sc_if);
4615 	}
4616 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4617 		DPRINTF(sc, ATH_DEBUG_ANY,
4618 			"%s: calibration of channel %u failed\n",
4619 			__func__, sc->sc_curchan.channel);
4620 		sc->sc_stats.ast_per_calfail++;
4621 	}
4622 	/*
4623 	 * Calibrate noise floor data again in case of change.
4624 	 */
4625 	ath_hal_process_noisefloor(ah);
4626 	/*
4627 	 * Poll more frequently when the IQ calibration is in
4628 	 * progress to speedup loading the final settings.
4629 	 * We temper this aggressive polling with an exponential
4630 	 * back off after 4 tries up to ath_calinterval.
4631 	 */
4632 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4633 		sc->sc_caltries = 0;
4634 		sc->sc_calinterval = ath_calinterval;
4635 	} else if (sc->sc_caltries > 4) {
4636 		sc->sc_caltries = 0;
4637 		sc->sc_calinterval <<= 1;
4638 		if (sc->sc_calinterval > ath_calinterval)
4639 			sc->sc_calinterval = ath_calinterval;
4640 	}
4641 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4642 		("bad calibration interval %u", sc->sc_calinterval));
4643 
4644 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4645 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4646 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4647 	sc->sc_caltries++;
4648 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4649 		ath_calibrate, sc);
4650 	ATH_UNLOCK(sc);
4651 }
4652 
4653 static int
4654 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4655 {
4656 	struct ifnet *ifp = ic->ic_ifp;
4657 	struct ath_softc *sc = ifp->if_softc;
4658 	struct ath_hal *ah = sc->sc_ah;
4659 	struct ieee80211_node *ni;
4660 	int i, error;
4661 	const u_int8_t *bssid;
4662 	u_int32_t rfilt;
4663 	static const HAL_LED_STATE leds[] = {
4664 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4665 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4666 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4667 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4668 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4669 	};
4670 
4671 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4672 		ieee80211_state_name[ic->ic_state],
4673 		ieee80211_state_name[nstate]);
4674 
4675 	callout_stop(&sc->sc_scan_ch);
4676 	callout_stop(&sc->sc_cal_ch);
4677 #if 0
4678 	callout_stop(&sc->sc_dfs_ch);
4679 #endif
4680 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4681 
4682 	if (nstate == IEEE80211_S_INIT) {
4683 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4684 		/*
4685 		 * NB: disable interrupts so we don't rx frames.
4686 		 */
4687 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4688 		/*
4689 		 * Notify the rate control algorithm.
4690 		 */
4691 		ath_rate_newstate(sc, nstate);
4692 		goto done;
4693 	}
4694 	ni = ic->ic_bss;
4695 	error = ath_chan_set(sc, ic->ic_curchan);
4696 	if (error != 0)
4697 		goto bad;
4698 	rfilt = ath_calcrxfilter(sc, nstate);
4699 	if (nstate == IEEE80211_S_SCAN)
4700 		bssid = ifp->if_broadcastaddr;
4701 	else
4702 		bssid = ni->ni_bssid;
4703 	ath_hal_setrxfilter(ah, rfilt);
4704 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4705 		 __func__, rfilt, ether_sprintf(bssid));
4706 
4707 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4708 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4709 	else
4710 		ath_hal_setassocid(ah, bssid, 0);
4711 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4712 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4713 			if (ath_hal_keyisvalid(ah, i))
4714 				ath_hal_keysetmac(ah, i, bssid);
4715 	}
4716 
4717 	/*
4718 	 * Notify the rate control algorithm so rates
4719 	 * are setup should ath_beacon_alloc be called.
4720 	 */
4721 	ath_rate_newstate(sc, nstate);
4722 
4723 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4724 		/* nothing to do */;
4725 	} else if (nstate == IEEE80211_S_RUN) {
4726 		DPRINTF(sc, ATH_DEBUG_STATE,
4727 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4728 			"capinfo=0x%04x chan=%d\n"
4729 			 , __func__
4730 			 , ic->ic_flags
4731 			 , ni->ni_intval
4732 			 , ether_sprintf(ni->ni_bssid)
4733 			 , ni->ni_capinfo
4734 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4735 
4736 		switch (ic->ic_opmode) {
4737 		case IEEE80211_M_HOSTAP:
4738 		case IEEE80211_M_IBSS:
4739 			/*
4740 			 * Allocate and setup the beacon frame.
4741 			 *
4742 			 * Stop any previous beacon DMA.  This may be
4743 			 * necessary, for example, when an ibss merge
4744 			 * causes reconfiguration; there will be a state
4745 			 * transition from RUN->RUN that means we may
4746 			 * be called with beacon transmission active.
4747 			 */
4748 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4749 			ath_beacon_free(sc);
4750 			error = ath_beacon_alloc(sc, ni);
4751 			if (error != 0)
4752 				goto bad;
4753 			/*
4754 			 * If joining an adhoc network defer beacon timer
4755 			 * configuration to the next beacon frame so we
4756 			 * have a current TSF to use.  Otherwise we're
4757 			 * starting an ibss/bss so there's no need to delay.
4758 			 */
4759 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4760 			    ic->ic_bss->ni_tstamp.tsf != 0)
4761 				sc->sc_syncbeacon = 1;
4762 			else
4763 				ath_beacon_config(sc);
4764 			break;
4765 		case IEEE80211_M_STA:
4766 			/*
4767 			 * Allocate a key cache slot to the station.
4768 			 */
4769 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4770 			    sc->sc_hasclrkey &&
4771 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4772 				ath_setup_stationkey(ni);
4773 			/*
4774 			 * Defer beacon timer configuration to the next
4775 			 * beacon frame so we have a current TSF to use
4776 			 * (any TSF collected when scanning is likely old).
4777 			 */
4778 			sc->sc_syncbeacon = 1;
4779 			break;
4780 		default:
4781 			break;
4782 		}
4783 		/*
4784 		 * Let the hal process statistics collected during a
4785 		 * scan so it can provide calibrated noise floor data.
4786 		 */
4787 		ath_hal_process_noisefloor(ah);
4788 		/*
4789 		 * Reset rssi stats; maybe not the best place...
4790 		 */
4791 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4792 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4793 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4794 	} else {
4795 		ath_hal_intrset(ah,
4796 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4797 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4798 	}
4799 done:
4800 	/*
4801 	 * Invoke the parent method to complete the work.
4802 	 */
4803 	error = sc->sc_newstate(ic, nstate, arg);
4804 	/*
4805 	 * Finally, start any timers.
4806 	 */
4807 	if (nstate == IEEE80211_S_RUN) {
4808 		/* start periodic recalibration timer */
4809 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4810 			ath_calibrate, sc);
4811 	} else if (nstate == IEEE80211_S_SCAN) {
4812 		/* start ap/neighbor scan timer */
4813 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4814 			ath_next_scan, sc);
4815 	}
4816 bad:
4817 	return error;
4818 }
4819 
4820 /*
4821  * Allocate a key cache slot to the station so we can
4822  * setup a mapping from key index to node. The key cache
4823  * slot is needed for managing antenna state and for
4824  * compression when stations do not use crypto.  We do
4825  * it uniliaterally here; if crypto is employed this slot
4826  * will be reassigned.
4827  */
4828 static void
4829 ath_setup_stationkey(struct ieee80211_node *ni)
4830 {
4831 	struct ieee80211com *ic = ni->ni_ic;
4832 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4833 	ieee80211_keyix keyix, rxkeyix;
4834 
4835 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4836 		/*
4837 		 * Key cache is full; we'll fall back to doing
4838 		 * the more expensive lookup in software.  Note
4839 		 * this also means no h/w compression.
4840 		 */
4841 		/* XXX msg+statistic */
4842 	} else {
4843 		/* XXX locking? */
4844 		ni->ni_ucastkey.wk_keyix = keyix;
4845 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4846 		/* NB: this will create a pass-thru key entry */
4847 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4848 	}
4849 }
4850 
4851 /*
4852  * Setup driver-specific state for a newly associated node.
4853  * Note that we're called also on a re-associate, the isnew
4854  * param tells us if this is the first time or not.
4855  */
4856 static void
4857 ath_newassoc(struct ieee80211_node *ni, int isnew)
4858 {
4859 	struct ieee80211com *ic = ni->ni_ic;
4860 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4861 
4862 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4863 	if (isnew &&
4864 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4865 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4866 		    ("new assoc with a unicast key already setup (keyix %u)",
4867 		    ni->ni_ucastkey.wk_keyix));
4868 		ath_setup_stationkey(ni);
4869 	}
4870 }
4871 
4872 static int
4873 ath_getchannels(struct ath_softc *sc, u_int cc,
4874 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4875 {
4876 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4877 	struct ieee80211com *ic = &sc->sc_ic;
4878 	struct ifnet *ifp = &sc->sc_if;
4879 	struct ath_hal *ah = sc->sc_ah;
4880 	HAL_CHANNEL *chans;
4881 	int i, ix, nchan;
4882 
4883 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4884 			M_TEMP, M_NOWAIT);
4885 	if (chans == NULL) {
4886 		if_printf(ifp, "unable to allocate channel table\n");
4887 		return ENOMEM;
4888 	}
4889 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4890 	    NULL, 0, NULL,
4891 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4892 		u_int32_t rd;
4893 
4894 		(void)ath_hal_getregdomain(ah, &rd);
4895 		if_printf(ifp, "unable to collect channel list from hal; "
4896 			"regdomain likely %u country code %u\n", rd, cc);
4897 		free(chans, M_TEMP);
4898 		return EINVAL;
4899 	}
4900 
4901 	/*
4902 	 * Convert HAL channels to ieee80211 ones and insert
4903 	 * them in the table according to their channel number.
4904 	 */
4905 	for (i = 0; i < nchan; i++) {
4906 		HAL_CHANNEL *c = &chans[i];
4907 		u_int16_t flags;
4908 
4909 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4910 		if (ix > IEEE80211_CHAN_MAX) {
4911 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4912 				ix, c->channel, c->channelFlags);
4913 			continue;
4914 		}
4915 		if (ix < 0) {
4916 			/* XXX can't handle stuff <2400 right now */
4917 			if (bootverbose)
4918 				if_printf(ifp, "hal channel %d (%u/%x) "
4919 				    "cannot be handled; ignored\n",
4920 				    ix, c->channel, c->channelFlags);
4921 			continue;
4922 		}
4923 		/*
4924 		 * Calculate net80211 flags; most are compatible
4925 		 * but some need massaging.  Note the static turbo
4926 		 * conversion can be removed once net80211 is updated
4927 		 * to understand static vs. dynamic turbo.
4928 		 */
4929 		flags = c->channelFlags & COMPAT;
4930 		if (c->channelFlags & CHANNEL_STURBO)
4931 			flags |= IEEE80211_CHAN_TURBO;
4932 		if (ic->ic_channels[ix].ic_freq == 0) {
4933 			ic->ic_channels[ix].ic_freq = c->channel;
4934 			ic->ic_channels[ix].ic_flags = flags;
4935 		} else {
4936 			/* channels overlap; e.g. 11g and 11b */
4937 			ic->ic_channels[ix].ic_flags |= flags;
4938 		}
4939 	}
4940 	free(chans, M_TEMP);
4941 	return 0;
4942 #undef COMPAT
4943 }
4944 
4945 static void
4946 ath_led_done(void *arg)
4947 {
4948 	struct ath_softc *sc = arg;
4949 
4950 	sc->sc_blinking = 0;
4951 }
4952 
4953 /*
4954  * Turn the LED off: flip the pin and then set a timer so no
4955  * update will happen for the specified duration.
4956  */
4957 static void
4958 ath_led_off(void *arg)
4959 {
4960 	struct ath_softc *sc = arg;
4961 
4962 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4963 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4964 }
4965 
4966 /*
4967  * Blink the LED according to the specified on/off times.
4968  */
4969 static void
4970 ath_led_blink(struct ath_softc *sc, int on, int off)
4971 {
4972 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4973 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4974 	sc->sc_blinking = 1;
4975 	sc->sc_ledoff = off;
4976 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4977 }
4978 
4979 static void
4980 ath_led_event(struct ath_softc *sc, int event)
4981 {
4982 
4983 	sc->sc_ledevent = ticks;	/* time of last event */
4984 	if (sc->sc_blinking)		/* don't interrupt active blink */
4985 		return;
4986 	switch (event) {
4987 	case ATH_LED_POLL:
4988 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4989 			sc->sc_hwmap[0].ledoff);
4990 		break;
4991 	case ATH_LED_TX:
4992 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4993 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4994 		break;
4995 	case ATH_LED_RX:
4996 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4997 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4998 		break;
4999 	}
5000 }
5001 
5002 static void
5003 ath_update_txpow(struct ath_softc *sc)
5004 {
5005 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5006 	struct ieee80211com *ic = &sc->sc_ic;
5007 	struct ath_hal *ah = sc->sc_ah;
5008 	u_int32_t txpow;
5009 
5010 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5011 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5012 		/* read back in case value is clamped */
5013 		(void)ath_hal_gettxpowlimit(ah, &txpow);
5014 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5015 	}
5016 	/*
5017 	 * Fetch max tx power level for status requests.
5018 	 */
5019 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5020 	ic->ic_bss->ni_txpower = txpow;
5021 }
5022 
5023 static void
5024 rate_setup(struct ath_softc *sc,
5025 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5026 {
5027 	int i, maxrates;
5028 
5029 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5030 		DPRINTF(sc, ATH_DEBUG_ANY,
5031 			"%s: rate table too small (%u > %u)\n",
5032 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5033 		maxrates = IEEE80211_RATE_MAXSIZE;
5034 	} else
5035 		maxrates = rt->rateCount;
5036 	for (i = 0; i < maxrates; i++)
5037 		rs->rs_rates[i] = rt->info[i].dot11Rate;
5038 	rs->rs_nrates = maxrates;
5039 }
5040 
5041 static int
5042 ath_rate_setup(struct ath_softc *sc, u_int mode)
5043 {
5044 	struct ath_hal *ah = sc->sc_ah;
5045 	struct ieee80211com *ic = &sc->sc_ic;
5046 	const HAL_RATE_TABLE *rt;
5047 
5048 	switch (mode) {
5049 	case IEEE80211_MODE_11A:
5050 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5051 		break;
5052 	case IEEE80211_MODE_11B:
5053 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5054 		break;
5055 	case IEEE80211_MODE_11G:
5056 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5057 		break;
5058 	case IEEE80211_MODE_TURBO_A:
5059 		/* XXX until static/dynamic turbo is fixed */
5060 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5061 		break;
5062 	case IEEE80211_MODE_TURBO_G:
5063 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5064 		break;
5065 	default:
5066 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5067 			__func__, mode);
5068 		return 0;
5069 	}
5070 	sc->sc_rates[mode] = rt;
5071 	if (rt != NULL) {
5072 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5073 		return 1;
5074 	} else
5075 		return 0;
5076 }
5077 
5078 static void
5079 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5080 {
5081 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5082 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5083 	static const struct {
5084 		u_int		rate;		/* tx/rx 802.11 rate */
5085 		u_int16_t	timeOn;		/* LED on time (ms) */
5086 		u_int16_t	timeOff;	/* LED off time (ms) */
5087 	} blinkrates[] = {
5088 		{ 108,  40,  10 },
5089 		{  96,  44,  11 },
5090 		{  72,  50,  13 },
5091 		{  48,  57,  14 },
5092 		{  36,  67,  16 },
5093 		{  24,  80,  20 },
5094 		{  22, 100,  25 },
5095 		{  18, 133,  34 },
5096 		{  12, 160,  40 },
5097 		{  10, 200,  50 },
5098 		{   6, 240,  58 },
5099 		{   4, 267,  66 },
5100 		{   2, 400, 100 },
5101 		{   0, 500, 130 },
5102 	};
5103 	const HAL_RATE_TABLE *rt;
5104 	int i, j;
5105 
5106 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5107 	rt = sc->sc_rates[mode];
5108 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5109 	for (i = 0; i < rt->rateCount; i++)
5110 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5111 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5112 	for (i = 0; i < 32; i++) {
5113 		u_int8_t ix = rt->rateCodeToIndex[i];
5114 		if (ix == 0xff) {
5115 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5116 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5117 			continue;
5118 		}
5119 		sc->sc_hwmap[i].ieeerate =
5120 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5121 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5122 		if (rt->info[ix].shortPreamble ||
5123 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5124 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5125 		/* NB: receive frames include FCS */
5126 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5127 			IEEE80211_RADIOTAP_F_FCS;
5128 		/* setup blink rate table to avoid per-packet lookup */
5129 		for (j = 0; j < N(blinkrates)-1; j++)
5130 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5131 				break;
5132 		/* NB: this uses the last entry if the rate isn't found */
5133 		/* XXX beware of overlow */
5134 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5135 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5136 	}
5137 	sc->sc_currates = rt;
5138 	sc->sc_curmode = mode;
5139 	/*
5140 	 * All protection frames are transmited at 2Mb/s for
5141 	 * 11g, otherwise at 1Mb/s.
5142 	 */
5143 	if (mode == IEEE80211_MODE_11G)
5144 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5145 	else
5146 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5147 	/* rate index used to send management frames */
5148 	sc->sc_minrateix = 0;
5149 	/*
5150 	 * Setup multicast rate state.
5151 	 */
5152 	/* XXX layering violation */
5153 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5154 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5155 	/* NB: caller is responsible for reseting rate control state */
5156 #undef N
5157 }
5158 
5159 #ifdef AR_DEBUG
5160 static void
5161 ath_printrxbuf(struct ath_buf *bf, int done)
5162 {
5163 	struct ath_desc *ds;
5164 	int i;
5165 
5166 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5167 		printf("R%d (%p %" PRIx64
5168 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5169 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5170 		    ds->ds_link, ds->ds_data,
5171 		    ds->ds_ctl0, ds->ds_ctl1,
5172 		    ds->ds_hw[0], ds->ds_hw[1],
5173 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5174 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5175 	}
5176 }
5177 
5178 static void
5179 ath_printtxbuf(struct ath_buf *bf, int done)
5180 {
5181 	struct ath_desc *ds;
5182 	int i;
5183 
5184 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5185 		printf("T%d (%p %" PRIx64
5186 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5187 		    i, ds,
5188 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5189 		    ds->ds_link, ds->ds_data,
5190 		    ds->ds_ctl0, ds->ds_ctl1,
5191 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5192 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5193 	}
5194 }
5195 #endif	/* AR_DEBUG */
5196 
5197 static void
5198 ath_watchdog(struct ifnet *ifp)
5199 {
5200 	struct ath_softc *sc = ifp->if_softc;
5201 	struct ieee80211com *ic = &sc->sc_ic;
5202 	struct ath_txq *axq;
5203 	int i;
5204 
5205 	ifp->if_timer = 0;
5206 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5207 	    !device_is_active(sc->sc_dev))
5208 		return;
5209 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5210 		if (!ATH_TXQ_SETUP(sc, i))
5211 			continue;
5212 		axq = &sc->sc_txq[i];
5213 		ATH_TXQ_LOCK(axq);
5214 		if (axq->axq_timer == 0)
5215 			;
5216 		else if (--axq->axq_timer == 0) {
5217 			ATH_TXQ_UNLOCK(axq);
5218 			if_printf(ifp, "device timeout (txq %d, "
5219 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5220 			if (sc->sc_txintrperiod > 1)
5221 				sc->sc_txintrperiod--;
5222 			ath_reset(ifp);
5223 			ifp->if_oerrors++;
5224 			sc->sc_stats.ast_watchdog++;
5225 			break;
5226 		} else
5227 			ifp->if_timer = 1;
5228 		ATH_TXQ_UNLOCK(axq);
5229 	}
5230 	ieee80211_watchdog(ic);
5231 }
5232 
5233 /*
5234  * Diagnostic interface to the HAL.  This is used by various
5235  * tools to do things like retrieve register contents for
5236  * debugging.  The mechanism is intentionally opaque so that
5237  * it can change frequently w/o concern for compatiblity.
5238  */
5239 static int
5240 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5241 {
5242 	struct ath_hal *ah = sc->sc_ah;
5243 	u_int id = ad->ad_id & ATH_DIAG_ID;
5244 	void *indata = NULL;
5245 	void *outdata = NULL;
5246 	u_int32_t insize = ad->ad_in_size;
5247 	u_int32_t outsize = ad->ad_out_size;
5248 	int error = 0;
5249 
5250 	if (ad->ad_id & ATH_DIAG_IN) {
5251 		/*
5252 		 * Copy in data.
5253 		 */
5254 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5255 		if (indata == NULL) {
5256 			error = ENOMEM;
5257 			goto bad;
5258 		}
5259 		error = copyin(ad->ad_in_data, indata, insize);
5260 		if (error)
5261 			goto bad;
5262 	}
5263 	if (ad->ad_id & ATH_DIAG_DYN) {
5264 		/*
5265 		 * Allocate a buffer for the results (otherwise the HAL
5266 		 * returns a pointer to a buffer where we can read the
5267 		 * results).  Note that we depend on the HAL leaving this
5268 		 * pointer for us to use below in reclaiming the buffer;
5269 		 * may want to be more defensive.
5270 		 */
5271 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5272 		if (outdata == NULL) {
5273 			error = ENOMEM;
5274 			goto bad;
5275 		}
5276 	}
5277 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5278 		if (outsize < ad->ad_out_size)
5279 			ad->ad_out_size = outsize;
5280 		if (outdata != NULL)
5281 			error = copyout(outdata, ad->ad_out_data,
5282 					ad->ad_out_size);
5283 	} else {
5284 		error = EINVAL;
5285 	}
5286 bad:
5287 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5288 		free(indata, M_TEMP);
5289 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5290 		free(outdata, M_TEMP);
5291 	return error;
5292 }
5293 
5294 static int
5295 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5296 {
5297 #define	IS_RUNNING(ifp) \
5298 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5299 	struct ath_softc *sc = ifp->if_softc;
5300 	struct ieee80211com *ic = &sc->sc_ic;
5301 	struct ifreq *ifr = (struct ifreq *)data;
5302 	int error = 0;
5303 
5304 	ATH_LOCK(sc);
5305 	switch (cmd) {
5306 	case SIOCSIFFLAGS:
5307 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5308 			break;
5309 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5310 		case IFF_UP|IFF_RUNNING:
5311 			/*
5312 			 * To avoid rescanning another access point,
5313 			 * do not call ath_init() here.  Instead,
5314 			 * only reflect promisc mode settings.
5315 			 */
5316 			ath_mode_init(sc);
5317 			break;
5318 		case IFF_UP:
5319 			/*
5320 			 * Beware of being called during attach/detach
5321 			 * to reset promiscuous mode.  In that case we
5322 			 * will still be marked UP but not RUNNING.
5323 			 * However trying to re-init the interface
5324 			 * is the wrong thing to do as we've already
5325 			 * torn down much of our state.  There's
5326 			 * probably a better way to deal with this.
5327 			 */
5328 			error = ath_init(sc);
5329 			break;
5330 		case IFF_RUNNING:
5331 			ath_stop_locked(ifp, 1);
5332 			break;
5333 		case 0:
5334 			break;
5335 		}
5336 		break;
5337 	case SIOCADDMULTI:
5338 	case SIOCDELMULTI:
5339 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5340 			if (ifp->if_flags & IFF_RUNNING)
5341 				ath_mode_init(sc);
5342 			error = 0;
5343 		}
5344 		break;
5345 	case SIOCGATHSTATS:
5346 		/* NB: embed these numbers to get a consistent view */
5347 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5348 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5349 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5350 		ATH_UNLOCK(sc);
5351 		/*
5352 		 * NB: Drop the softc lock in case of a page fault;
5353 		 * we'll accept any potential inconsisentcy in the
5354 		 * statistics.  The alternative is to copy the data
5355 		 * to a local structure.
5356 		 */
5357 		return copyout(&sc->sc_stats,
5358 				ifr->ifr_data, sizeof (sc->sc_stats));
5359 	case SIOCGATHDIAG:
5360 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5361 		break;
5362 	default:
5363 		error = ieee80211_ioctl(ic, cmd, data);
5364 		if (error != ENETRESET)
5365 			;
5366 		else if (IS_RUNNING(ifp) &&
5367 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5368 			error = ath_init(sc);
5369 		else
5370 			error = 0;
5371 		break;
5372 	}
5373 	ATH_UNLOCK(sc);
5374 	return error;
5375 #undef IS_RUNNING
5376 }
5377 
5378 static void
5379 ath_bpfattach(struct ath_softc *sc)
5380 {
5381 	struct ifnet *ifp = &sc->sc_if;
5382 
5383 	bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO,
5384 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5385 	    &sc->sc_drvbpf);
5386 
5387 	/*
5388 	 * Initialize constant fields.
5389 	 * XXX make header lengths a multiple of 32-bits so subsequent
5390 	 *     headers are properly aligned; this is a kludge to keep
5391 	 *     certain applications happy.
5392 	 *
5393 	 * NB: the channel is setup each time we transition to the
5394 	 *     RUN state to avoid filling it in for each frame.
5395 	 */
5396 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5397 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5398 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5399 
5400 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5401 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5402 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5403 }
5404 
5405 /*
5406  * Announce various information on device/driver attach.
5407  */
5408 static void
5409 ath_announce(struct ath_softc *sc)
5410 {
5411 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5412 	struct ifnet *ifp = &sc->sc_if;
5413 	struct ath_hal *ah = sc->sc_ah;
5414 	u_int modes, cc;
5415 
5416 	if_printf(ifp, "mac %d.%d phy %d.%d",
5417 		ah->ah_macVersion, ah->ah_macRev,
5418 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5419 	/*
5420 	 * Print radio revision(s).  We check the wireless modes
5421 	 * to avoid falsely printing revs for inoperable parts.
5422 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5423 	 */
5424 	ath_hal_getcountrycode(ah, &cc);
5425 	modes = ath_hal_getwirelessmodes(ah, cc);
5426 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5427 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5428 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5429 				ah->ah_analog5GhzRev >> 4,
5430 				ah->ah_analog5GhzRev & 0xf,
5431 				ah->ah_analog2GhzRev >> 4,
5432 				ah->ah_analog2GhzRev & 0xf);
5433 		else
5434 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5435 				ah->ah_analog5GhzRev & 0xf);
5436 	} else
5437 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5438 			ah->ah_analog5GhzRev & 0xf);
5439 	printf("\n");
5440 	if (bootverbose) {
5441 		int i;
5442 		for (i = 0; i <= WME_AC_VO; i++) {
5443 			struct ath_txq *txq = sc->sc_ac2q[i];
5444 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5445 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5446 		}
5447 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5448 			sc->sc_cabq->axq_qnum);
5449 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5450 	}
5451 	if (ath_rxbuf != ATH_RXBUF)
5452 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5453 	if (ath_txbuf != ATH_TXBUF)
5454 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5455 #undef HAL_MODE_DUALBAND
5456 }
5457