xref: /netbsd-src/sys/dev/ic/ath.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: ath.c,v 1.113 2011/11/28 00:30:17 jmcneill Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.113 2011/11/28 00:30:17 jmcneill Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #ifdef _KERNEL_OPT
55 #include "opt_inet.h"
56 #endif
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/errno.h>
69 #include <sys/callout.h>
70 #include <sys/bus.h>
71 #include <sys/endian.h>
72 
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_types.h>
77 #include <net/if_arp.h>
78 #include <net/if_ether.h>
79 #include <net/if_llc.h>
80 
81 #include <net80211/ieee80211_netbsd.h>
82 #include <net80211/ieee80211_var.h>
83 
84 #include <net/bpf.h>
85 
86 #ifdef INET
87 #include <netinet/in.h>
88 #endif
89 
90 #include <sys/device.h>
91 #include <dev/ic/ath_netbsd.h>
92 
93 #define	AR_DEBUG
94 #include <dev/ic/athvar.h>
95 #include "ah_desc.h"
96 #include "ah_devid.h"	/* XXX for softled */
97 #include "opt_ah.h"
98 
99 #ifdef ATH_TX99_DIAG
100 #include <dev/ath/ath_tx99/ath_tx99.h>
101 #endif
102 
103 /* unaligned little endian access */
104 #define LE_READ_2(p)							\
105 	((u_int16_t)							\
106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
107 #define LE_READ_4(p)							\
108 	((u_int32_t)							\
109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
111 
112 enum {
113 	ATH_LED_TX,
114 	ATH_LED_RX,
115 	ATH_LED_POLL,
116 };
117 
118 #ifdef	AH_NEED_DESC_SWAP
119 #define	HTOAH32(x)	htole32(x)
120 #else
121 #define	HTOAH32(x)	(x)
122 #endif
123 
124 static int	ath_ifinit(struct ifnet *);
125 static int	ath_init(struct ath_softc *);
126 static void	ath_stop_locked(struct ifnet *, int);
127 static void	ath_stop(struct ifnet *, int);
128 static void	ath_start(struct ifnet *);
129 static int	ath_media_change(struct ifnet *);
130 static void	ath_watchdog(struct ifnet *);
131 static int	ath_ioctl(struct ifnet *, u_long, void *);
132 static void	ath_fatal_proc(void *, int);
133 static void	ath_rxorn_proc(void *, int);
134 static void	ath_bmiss_proc(void *, int);
135 static void	ath_radar_proc(void *, int);
136 static int	ath_key_alloc(struct ieee80211com *,
137 			const struct ieee80211_key *,
138 			ieee80211_keyix *, ieee80211_keyix *);
139 static int	ath_key_delete(struct ieee80211com *,
140 			const struct ieee80211_key *);
141 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void	ath_key_update_begin(struct ieee80211com *);
144 static void	ath_key_update_end(struct ieee80211com *);
145 static void	ath_mode_init(struct ath_softc *);
146 static void	ath_setslottime(struct ath_softc *);
147 static void	ath_updateslot(struct ifnet *);
148 static int	ath_beaconq_setup(struct ath_hal *);
149 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
150 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
151 static void	ath_beacon_proc(void *, int);
152 static void	ath_bstuck_proc(void *, int);
153 static void	ath_beacon_free(struct ath_softc *);
154 static void	ath_beacon_config(struct ath_softc *);
155 static void	ath_descdma_cleanup(struct ath_softc *sc,
156 			struct ath_descdma *, ath_bufhead *);
157 static int	ath_desc_alloc(struct ath_softc *);
158 static void	ath_desc_free(struct ath_softc *);
159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
160 static void	ath_node_free(struct ieee80211_node *);
161 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
162 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
163 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
164 			struct ieee80211_node *ni,
165 			int subtype, int rssi, u_int32_t rstamp);
166 static void	ath_setdefantenna(struct ath_softc *, u_int);
167 static void	ath_rx_proc(void *, int);
168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
169 static int	ath_tx_setup(struct ath_softc *, int, int);
170 static int	ath_wme_update(struct ieee80211com *);
171 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
172 static void	ath_tx_cleanup(struct ath_softc *);
173 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
174 			     struct ath_buf *, struct mbuf *);
175 static void	ath_tx_proc_q0(void *, int);
176 static void	ath_tx_proc_q0123(void *, int);
177 static void	ath_tx_proc(void *, int);
178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179 static void	ath_draintxq(struct ath_softc *);
180 static void	ath_stoprecv(struct ath_softc *);
181 static int	ath_startrecv(struct ath_softc *);
182 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
183 static void	ath_next_scan(void *);
184 static void	ath_calibrate(void *);
185 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
186 static void	ath_setup_stationkey(struct ieee80211_node *);
187 static void	ath_newassoc(struct ieee80211_node *, int);
188 static int	ath_getchannels(struct ath_softc *, u_int cc,
189 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
190 static void	ath_led_event(struct ath_softc *, int);
191 static void	ath_update_txpow(struct ath_softc *);
192 static void	ath_freetx(struct mbuf *);
193 static void	ath_restore_diversity(struct ath_softc *);
194 
195 static int	ath_rate_setup(struct ath_softc *, u_int mode);
196 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
197 
198 static void	ath_bpfattach(struct ath_softc *);
199 static void	ath_announce(struct ath_softc *);
200 
201 int ath_dwelltime = 200;		/* 5 channels/second */
202 int ath_calinterval = 30;		/* calibrate every 30 secs */
203 int ath_outdoor = AH_TRUE;		/* outdoor operation */
204 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
205 int ath_countrycode = CTRY_DEFAULT;	/* country code */
206 int ath_regdomain = 0;			/* regulatory domain */
207 int ath_debug = 0;
208 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
209 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
210 
211 #ifdef AR_DEBUG
212 enum {
213 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
214 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
215 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
216 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
217 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
218 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
219 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
220 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
221 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
222 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
223 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
224 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
225 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
226 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
227 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
228 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
229 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
230 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
231 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
232 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
233 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
234 	ATH_DEBUG_ANY		= 0xffffffff
235 };
236 #define	IFF_DUMPPKTS(sc, m) \
237 	((sc->sc_debug & (m)) || \
238 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
239 #define	DPRINTF(sc, m, fmt, ...) do {				\
240 	if (sc->sc_debug & (m))					\
241 		printf(fmt, __VA_ARGS__);			\
242 } while (0)
243 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
244 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
245 		ath_keyprint(__func__, ix, hk, mac);		\
246 } while (0)
247 static	void ath_printrxbuf(struct ath_buf *bf, int);
248 static	void ath_printtxbuf(struct ath_buf *bf, int);
249 #else
250 #define        IFF_DUMPPKTS(sc, m) \
251 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
252 #define        DPRINTF(m, fmt, ...)
253 #define        KEYPRINTF(sc, k, ix, mac)
254 #endif
255 
256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
257 
258 int
259 ath_attach(u_int16_t devid, struct ath_softc *sc)
260 {
261 	struct ifnet *ifp = &sc->sc_if;
262 	struct ieee80211com *ic = &sc->sc_ic;
263 	struct ath_hal *ah = NULL;
264 	HAL_STATUS status;
265 	int error = 0, i;
266 
267 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
268 
269 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
270 
271 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
272 
273 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
274 	if (ah == NULL) {
275 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
276 			status);
277 		error = ENXIO;
278 		goto bad;
279 	}
280 	if (ah->ah_abi != HAL_ABI_VERSION) {
281 		if_printf(ifp, "HAL ABI mismatch detected "
282 			"(HAL:0x%x != driver:0x%x)\n",
283 			ah->ah_abi, HAL_ABI_VERSION);
284 		error = ENXIO;
285 		goto bad;
286 	}
287 	sc->sc_ah = ah;
288 
289 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
290 	    "pmf-powerdown", false))
291 		goto bad;
292 
293 	/*
294 	 * Check if the MAC has multi-rate retry support.
295 	 * We do this by trying to setup a fake extended
296 	 * descriptor.  MAC's that don't have support will
297 	 * return false w/o doing anything.  MAC's that do
298 	 * support it will return true w/o doing anything.
299 	 */
300 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
301 
302 	/*
303 	 * Check if the device has hardware counters for PHY
304 	 * errors.  If so we need to enable the MIB interrupt
305 	 * so we can act on stat triggers.
306 	 */
307 	if (ath_hal_hwphycounters(ah))
308 		sc->sc_needmib = 1;
309 
310 	/*
311 	 * Get the hardware key cache size.
312 	 */
313 	sc->sc_keymax = ath_hal_keycachesize(ah);
314 	if (sc->sc_keymax > ATH_KEYMAX) {
315 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
316 			ATH_KEYMAX, sc->sc_keymax);
317 		sc->sc_keymax = ATH_KEYMAX;
318 	}
319 	/*
320 	 * Reset the key cache since some parts do not
321 	 * reset the contents on initial power up.
322 	 */
323 	for (i = 0; i < sc->sc_keymax; i++)
324 		ath_hal_keyreset(ah, i);
325 	/*
326 	 * Mark key cache slots associated with global keys
327 	 * as in use.  If we knew TKIP was not to be used we
328 	 * could leave the +32, +64, and +32+64 slots free.
329 	 * XXX only for splitmic.
330 	 */
331 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
332 		setbit(sc->sc_keymap, i);
333 		setbit(sc->sc_keymap, i+32);
334 		setbit(sc->sc_keymap, i+64);
335 		setbit(sc->sc_keymap, i+32+64);
336 	}
337 
338 	/*
339 	 * Collect the channel list using the default country
340 	 * code and including outdoor channels.  The 802.11 layer
341 	 * is resposible for filtering this list based on settings
342 	 * like the phy mode.
343 	 */
344 	error = ath_getchannels(sc, ath_countrycode,
345 			ath_outdoor, ath_xchanmode);
346 	if (error != 0)
347 		goto bad;
348 
349 	/*
350 	 * Setup rate tables for all potential media types.
351 	 */
352 	ath_rate_setup(sc, IEEE80211_MODE_11A);
353 	ath_rate_setup(sc, IEEE80211_MODE_11B);
354 	ath_rate_setup(sc, IEEE80211_MODE_11G);
355 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
356 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
357 	/* NB: setup here so ath_rate_update is happy */
358 	ath_setcurmode(sc, IEEE80211_MODE_11A);
359 
360 	/*
361 	 * Allocate tx+rx descriptors and populate the lists.
362 	 */
363 	error = ath_desc_alloc(sc);
364 	if (error != 0) {
365 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
366 		goto bad;
367 	}
368 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
369 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
370 #if 0
371 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
372 #endif
373 
374 	ATH_TXBUF_LOCK_INIT(sc);
375 
376 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
377 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
378 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
379 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
380 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
381 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
382 
383 	/*
384 	 * Allocate hardware transmit queues: one queue for
385 	 * beacon frames and one data queue for each QoS
386 	 * priority.  Note that the hal handles reseting
387 	 * these queues at the needed time.
388 	 *
389 	 * XXX PS-Poll
390 	 */
391 	sc->sc_bhalq = ath_beaconq_setup(ah);
392 	if (sc->sc_bhalq == (u_int) -1) {
393 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
394 		error = EIO;
395 		goto bad2;
396 	}
397 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
398 	if (sc->sc_cabq == NULL) {
399 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
400 		error = EIO;
401 		goto bad2;
402 	}
403 	/* NB: insure BK queue is the lowest priority h/w queue */
404 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
405 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
406 			ieee80211_wme_acnames[WME_AC_BK]);
407 		error = EIO;
408 		goto bad2;
409 	}
410 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
411 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
412 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
413 		/*
414 		 * Not enough hardware tx queues to properly do WME;
415 		 * just punt and assign them all to the same h/w queue.
416 		 * We could do a better job of this if, for example,
417 		 * we allocate queues when we switch from station to
418 		 * AP mode.
419 		 */
420 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
421 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
422 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
423 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
424 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
425 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
426 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
427 	}
428 
429 	/*
430 	 * Special case certain configurations.  Note the
431 	 * CAB queue is handled by these specially so don't
432 	 * include them when checking the txq setup mask.
433 	 */
434 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
435 	case 0x01:
436 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
437 		break;
438 	case 0x0f:
439 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
440 		break;
441 	default:
442 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
443 		break;
444 	}
445 
446 	/*
447 	 * Setup rate control.  Some rate control modules
448 	 * call back to change the anntena state so expose
449 	 * the necessary entry points.
450 	 * XXX maybe belongs in struct ath_ratectrl?
451 	 */
452 	sc->sc_setdefantenna = ath_setdefantenna;
453 	sc->sc_rc = ath_rate_attach(sc);
454 	if (sc->sc_rc == NULL) {
455 		error = EIO;
456 		goto bad2;
457 	}
458 
459 	sc->sc_blinking = 0;
460 	sc->sc_ledstate = 1;
461 	sc->sc_ledon = 0;			/* low true */
462 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
463 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
464 	/*
465 	 * Auto-enable soft led processing for IBM cards and for
466 	 * 5211 minipci cards.  Users can also manually enable/disable
467 	 * support with a sysctl.
468 	 */
469 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
470 	if (sc->sc_softled) {
471 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
472 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
473 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
474 	}
475 
476 	ifp->if_softc = sc;
477 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
478 	ifp->if_start = ath_start;
479 	ifp->if_stop = ath_stop;
480 	ifp->if_watchdog = ath_watchdog;
481 	ifp->if_ioctl = ath_ioctl;
482 	ifp->if_init = ath_ifinit;
483 	IFQ_SET_READY(&ifp->if_snd);
484 
485 	ic->ic_ifp = ifp;
486 	ic->ic_reset = ath_reset;
487 	ic->ic_newassoc = ath_newassoc;
488 	ic->ic_updateslot = ath_updateslot;
489 	ic->ic_wme.wme_update = ath_wme_update;
490 	/* XXX not right but it's not used anywhere important */
491 	ic->ic_phytype = IEEE80211_T_OFDM;
492 	ic->ic_opmode = IEEE80211_M_STA;
493 	ic->ic_caps =
494 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
495 		| IEEE80211_C_HOSTAP		/* hostap mode */
496 		| IEEE80211_C_MONITOR		/* monitor mode */
497 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
498 		| IEEE80211_C_SHSLOT		/* short slot time supported */
499 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
500 		| IEEE80211_C_TXFRAG		/* handle tx frags */
501 		;
502 	/*
503 	 * Query the hal to figure out h/w crypto support.
504 	 */
505 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
506 		ic->ic_caps |= IEEE80211_C_WEP;
507 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
508 		ic->ic_caps |= IEEE80211_C_AES;
509 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
510 		ic->ic_caps |= IEEE80211_C_AES_CCM;
511 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
512 		ic->ic_caps |= IEEE80211_C_CKIP;
513 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
514 		ic->ic_caps |= IEEE80211_C_TKIP;
515 		/*
516 		 * Check if h/w does the MIC and/or whether the
517 		 * separate key cache entries are required to
518 		 * handle both tx+rx MIC keys.
519 		 */
520 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
521 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
522 
523 		/*
524 		 * If the h/w supports storing tx+rx MIC keys
525 		 * in one cache slot automatically enable use.
526 		 */
527 		if (ath_hal_hastkipsplit(ah) ||
528 		    !ath_hal_settkipsplit(ah, AH_FALSE))
529 			sc->sc_splitmic = 1;
530 
531 		/*
532 		 * If the h/w can do TKIP MIC together with WME then
533 		 * we use it; otherwise we force the MIC to be done
534 		 * in software by the net80211 layer.
535 		 */
536 		if (ath_hal_haswmetkipmic(ah))
537 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
538 	}
539 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
540 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
541 	/*
542 	 * Mark key cache slots associated with global keys
543 	 * as in use.  If we knew TKIP was not to be used we
544 	 * could leave the +32, +64, and +32+64 slots free.
545 	 */
546 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
547 		setbit(sc->sc_keymap, i);
548 		setbit(sc->sc_keymap, i+64);
549 		if (sc->sc_splitmic) {
550 			setbit(sc->sc_keymap, i+32);
551 			setbit(sc->sc_keymap, i+32+64);
552 		}
553 	}
554 	/*
555 	 * TPC support can be done either with a global cap or
556 	 * per-packet support.  The latter is not available on
557 	 * all parts.  We're a bit pedantic here as all parts
558 	 * support a global cap.
559 	 */
560 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
561 		ic->ic_caps |= IEEE80211_C_TXPMGT;
562 
563 	/*
564 	 * Mark WME capability only if we have sufficient
565 	 * hardware queues to do proper priority scheduling.
566 	 */
567 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
568 		ic->ic_caps |= IEEE80211_C_WME;
569 	/*
570 	 * Check for misc other capabilities.
571 	 */
572 	if (ath_hal_hasbursting(ah))
573 		ic->ic_caps |= IEEE80211_C_BURST;
574 
575 	/*
576 	 * Indicate we need the 802.11 header padded to a
577 	 * 32-bit boundary for 4-address and QoS frames.
578 	 */
579 	ic->ic_flags |= IEEE80211_F_DATAPAD;
580 
581 	/*
582 	 * Query the hal about antenna support.
583 	 */
584 	sc->sc_defant = ath_hal_getdefantenna(ah);
585 
586 	/*
587 	 * Not all chips have the VEOL support we want to
588 	 * use with IBSS beacons; check here for it.
589 	 */
590 	sc->sc_hasveol = ath_hal_hasveol(ah);
591 
592 	/* get mac address from hardware */
593 	ath_hal_getmac(ah, ic->ic_myaddr);
594 
595 	if_attach(ifp);
596 	/* call MI attach routine. */
597 	ieee80211_ifattach(ic);
598 	/* override default methods */
599 	ic->ic_node_alloc = ath_node_alloc;
600 	sc->sc_node_free = ic->ic_node_free;
601 	ic->ic_node_free = ath_node_free;
602 	ic->ic_node_getrssi = ath_node_getrssi;
603 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
604 	ic->ic_recv_mgmt = ath_recv_mgmt;
605 	sc->sc_newstate = ic->ic_newstate;
606 	ic->ic_newstate = ath_newstate;
607 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
608 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
609 	ic->ic_crypto.cs_key_delete = ath_key_delete;
610 	ic->ic_crypto.cs_key_set = ath_key_set;
611 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
612 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
613 	/* complete initialization */
614 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
615 
616 	ath_bpfattach(sc);
617 
618 	sc->sc_flags |= ATH_ATTACHED;
619 
620 	/*
621 	 * Setup dynamic sysctl's now that country code and
622 	 * regdomain are available from the hal.
623 	 */
624 	ath_sysctlattach(sc);
625 
626 	ieee80211_announce(ic);
627 	ath_announce(sc);
628 	return 0;
629 bad2:
630 	ath_tx_cleanup(sc);
631 	ath_desc_free(sc);
632 bad:
633 	if (ah)
634 		ath_hal_detach(ah);
635 	/* XXX don't get under the abstraction like this */
636 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
637 	return error;
638 }
639 
640 int
641 ath_detach(struct ath_softc *sc)
642 {
643 	struct ifnet *ifp = &sc->sc_if;
644 	int s;
645 
646 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
647 		return (0);
648 
649 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
650 		__func__, ifp->if_flags);
651 
652 	s = splnet();
653 	ath_stop(ifp, 1);
654 	bpf_detach(ifp);
655 	/*
656 	 * NB: the order of these is important:
657 	 * o call the 802.11 layer before detaching the hal to
658 	 *   insure callbacks into the driver to delete global
659 	 *   key cache entries can be handled
660 	 * o reclaim the tx queue data structures after calling
661 	 *   the 802.11 layer as we'll get called back to reclaim
662 	 *   node state and potentially want to use them
663 	 * o to cleanup the tx queues the hal is called, so detach
664 	 *   it last
665 	 * Other than that, it's straightforward...
666 	 */
667 	ieee80211_ifdetach(&sc->sc_ic);
668 #ifdef ATH_TX99_DIAG
669 	if (sc->sc_tx99 != NULL)
670 		sc->sc_tx99->detach(sc->sc_tx99);
671 #endif
672 	ath_rate_detach(sc->sc_rc);
673 	ath_desc_free(sc);
674 	ath_tx_cleanup(sc);
675 	sysctl_teardown(&sc->sc_sysctllog);
676 	ath_hal_detach(sc->sc_ah);
677 	if_detach(ifp);
678 	splx(s);
679 
680 	return 0;
681 }
682 
683 void
684 ath_suspend(struct ath_softc *sc)
685 {
686 #if notyet
687 	/*
688 	 * Set the chip in full sleep mode.  Note that we are
689 	 * careful to do this only when bringing the interface
690 	 * completely to a stop.  When the chip is in this state
691 	 * it must be carefully woken up or references to
692 	 * registers in the PCI clock domain may freeze the bus
693 	 * (and system).  This varies by chip and is mostly an
694 	 * issue with newer parts that go to sleep more quickly.
695 	 */
696 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
697 #endif
698 }
699 
700 bool
701 ath_resume(struct ath_softc *sc)
702 {
703 	struct ath_hal *ah = sc->sc_ah;
704 	struct ieee80211com *ic = &sc->sc_ic;
705 	HAL_STATUS status;
706 	int i;
707 
708 #if notyet
709 	ath_hal_setpower(ah, HAL_PM_AWAKE);
710 #else
711 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
712 #endif
713 
714 	/*
715 	 * Reset the key cache since some parts do not
716 	 * reset the contents on initial power up.
717 	 */
718 	for (i = 0; i < sc->sc_keymax; i++)
719 		ath_hal_keyreset(ah, i);
720 
721 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
722 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
723 		if (ATH_TXQ_SETUP(sc, i))
724 			ath_hal_resettxqueue(ah, i);
725 
726 	if (sc->sc_softled) {
727 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
728 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
729 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
730 	}
731 	return true;
732 }
733 
734 /*
735  * Interrupt handler.  Most of the actual processing is deferred.
736  */
737 int
738 ath_intr(void *arg)
739 {
740 	struct ath_softc *sc = arg;
741 	struct ifnet *ifp = &sc->sc_if;
742 	struct ath_hal *ah = sc->sc_ah;
743 	HAL_INT status = 0;
744 
745 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
746 		/*
747 		 * The hardware is not ready/present, don't touch anything.
748 		 * Note this can happen early on if the IRQ is shared.
749 		 */
750 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
751 		return 0;
752 	}
753 
754 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
755 		return 0;
756 
757 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
758 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
759 			__func__, ifp->if_flags);
760 		ath_hal_getisr(ah, &status);	/* clear ISR */
761 		ath_hal_intrset(ah, 0);		/* disable further intr's */
762 		return 1; /* XXX */
763 	}
764 	/*
765 	 * Figure out the reason(s) for the interrupt.  Note
766 	 * that the hal returns a pseudo-ISR that may include
767 	 * bits we haven't explicitly enabled so we mask the
768 	 * value to insure we only process bits we requested.
769 	 */
770 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
771 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
772 	status &= sc->sc_imask;			/* discard unasked for bits */
773 	if (status & HAL_INT_FATAL) {
774 		/*
775 		 * Fatal errors are unrecoverable.  Typically
776 		 * these are caused by DMA errors.  Unfortunately
777 		 * the exact reason is not (presently) returned
778 		 * by the hal.
779 		 */
780 		sc->sc_stats.ast_hardware++;
781 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
782 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
783 	} else if (status & HAL_INT_RXORN) {
784 		sc->sc_stats.ast_rxorn++;
785 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
786 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
787 	} else {
788 		if (status & HAL_INT_SWBA) {
789 			/*
790 			 * Software beacon alert--time to send a beacon.
791 			 * Handle beacon transmission directly; deferring
792 			 * this is too slow to meet timing constraints
793 			 * under load.
794 			 */
795 			ath_beacon_proc(sc, 0);
796 		}
797 		if (status & HAL_INT_RXEOL) {
798 			/*
799 			 * NB: the hardware should re-read the link when
800 			 *     RXE bit is written, but it doesn't work at
801 			 *     least on older hardware revs.
802 			 */
803 			sc->sc_stats.ast_rxeol++;
804 			sc->sc_rxlink = NULL;
805 		}
806 		if (status & HAL_INT_TXURN) {
807 			sc->sc_stats.ast_txurn++;
808 			/* bump tx trigger level */
809 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
810 		}
811 		if (status & HAL_INT_RX)
812 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
813 		if (status & HAL_INT_TX)
814 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
815 		if (status & HAL_INT_BMISS) {
816 			sc->sc_stats.ast_bmiss++;
817 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
818 		}
819 		if (status & HAL_INT_MIB) {
820 			sc->sc_stats.ast_mib++;
821 			/*
822 			 * Disable interrupts until we service the MIB
823 			 * interrupt; otherwise it will continue to fire.
824 			 */
825 			ath_hal_intrset(ah, 0);
826 			/*
827 			 * Let the hal handle the event.  We assume it will
828 			 * clear whatever condition caused the interrupt.
829 			 */
830 			ath_hal_mibevent(ah, &sc->sc_halstats);
831 			ath_hal_intrset(ah, sc->sc_imask);
832 		}
833 	}
834 	return 1;
835 }
836 
837 /* Swap transmit descriptor.
838  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
839  * function.
840  */
841 static inline void
842 ath_desc_swap(struct ath_desc *ds)
843 {
844 #ifdef AH_NEED_DESC_SWAP
845 	ds->ds_link = htole32(ds->ds_link);
846 	ds->ds_data = htole32(ds->ds_data);
847 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
848 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
849 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
850 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
851 #endif
852 }
853 
854 static void
855 ath_fatal_proc(void *arg, int pending)
856 {
857 	struct ath_softc *sc = arg;
858 	struct ifnet *ifp = &sc->sc_if;
859 
860 	if_printf(ifp, "hardware error; resetting\n");
861 	ath_reset(ifp);
862 }
863 
864 static void
865 ath_rxorn_proc(void *arg, int pending)
866 {
867 	struct ath_softc *sc = arg;
868 	struct ifnet *ifp = &sc->sc_if;
869 
870 	if_printf(ifp, "rx FIFO overrun; resetting\n");
871 	ath_reset(ifp);
872 }
873 
874 static void
875 ath_bmiss_proc(void *arg, int pending)
876 {
877 	struct ath_softc *sc = arg;
878 	struct ieee80211com *ic = &sc->sc_ic;
879 
880 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
881 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
882 		("unexpect operating mode %u", ic->ic_opmode));
883 	if (ic->ic_state == IEEE80211_S_RUN) {
884 		u_int64_t lastrx = sc->sc_lastrx;
885 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
886 
887 		DPRINTF(sc, ATH_DEBUG_BEACON,
888 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
889 		    " (%" PRIu64 ") bmiss %u\n",
890 		    __func__, tsf, tsf - lastrx, lastrx,
891 		    ic->ic_bmisstimeout*1024);
892 		/*
893 		 * Workaround phantom bmiss interrupts by sanity-checking
894 		 * the time of our last rx'd frame.  If it is within the
895 		 * beacon miss interval then ignore the interrupt.  If it's
896 		 * truly a bmiss we'll get another interrupt soon and that'll
897 		 * be dispatched up for processing.
898 		 */
899 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
900 			NET_LOCK_GIANT();
901 			ieee80211_beacon_miss(ic);
902 			NET_UNLOCK_GIANT();
903 		} else
904 			sc->sc_stats.ast_bmiss_phantom++;
905 	}
906 }
907 
908 static void
909 ath_radar_proc(void *arg, int pending)
910 {
911 #if 0
912 	struct ath_softc *sc = arg;
913 	struct ifnet *ifp = &sc->sc_if;
914 	struct ath_hal *ah = sc->sc_ah;
915 	HAL_CHANNEL hchan;
916 
917 	if (ath_hal_procdfs(ah, &hchan)) {
918 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
919 			hchan.channel, hchan.channelFlags, hchan.privFlags);
920 		/*
921 		 * Initiate channel change.
922 		 */
923 		/* XXX not yet */
924 	}
925 #endif
926 }
927 
928 static u_int
929 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
930 {
931 #define	N(a)	(sizeof(a) / sizeof(a[0]))
932 	static const u_int modeflags[] = {
933 		0,			/* IEEE80211_MODE_AUTO */
934 		CHANNEL_A,		/* IEEE80211_MODE_11A */
935 		CHANNEL_B,		/* IEEE80211_MODE_11B */
936 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
937 		0,			/* IEEE80211_MODE_FH */
938 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
939 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
940 	};
941 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
942 
943 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
944 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
945 	return modeflags[mode];
946 #undef N
947 }
948 
949 static int
950 ath_ifinit(struct ifnet *ifp)
951 {
952 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
953 
954 	return ath_init(sc);
955 }
956 
957 static void
958 ath_settkipmic(struct ath_softc *sc)
959 {
960 	struct ieee80211com *ic = &sc->sc_ic;
961 	struct ath_hal *ah = sc->sc_ah;
962 
963 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
964 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
965 		if (ic->ic_flags & IEEE80211_F_WME) {
966 			(void)ath_hal_settkipmic(ah, AH_FALSE);
967 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
968 		} else {
969 			(void)ath_hal_settkipmic(ah, AH_TRUE);
970 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
971 		}
972 	}
973 }
974 
975 static int
976 ath_init(struct ath_softc *sc)
977 {
978 	struct ifnet *ifp = &sc->sc_if;
979 	struct ieee80211com *ic = &sc->sc_ic;
980 	struct ath_hal *ah = sc->sc_ah;
981 	HAL_STATUS status;
982 	int error = 0, s;
983 
984 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
985 		__func__, ifp->if_flags);
986 
987 	if (device_is_active(sc->sc_dev)) {
988 		s = splnet();
989 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
990 	           !device_is_active(sc->sc_dev))
991 		return 0;
992 	else
993 		s = splnet();
994 
995 	/*
996 	 * Stop anything previously setup.  This is safe
997 	 * whether this is the first time through or not.
998 	 */
999 	ath_stop_locked(ifp, 0);
1000 
1001 	/*
1002 	 * The basic interface to setting the hardware in a good
1003 	 * state is ``reset''.  On return the hardware is known to
1004 	 * be powered up and with interrupts disabled.  This must
1005 	 * be followed by initialization of the appropriate bits
1006 	 * and then setup of the interrupt mask.
1007 	 */
1008 	ath_settkipmic(sc);
1009 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1010 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1011 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1012 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1013 			status);
1014 		error = EIO;
1015 		goto done;
1016 	}
1017 
1018 	/*
1019 	 * This is needed only to setup initial state
1020 	 * but it's best done after a reset.
1021 	 */
1022 	ath_update_txpow(sc);
1023 	/*
1024 	 * Likewise this is set during reset so update
1025 	 * state cached in the driver.
1026 	 */
1027 	ath_restore_diversity(sc);
1028 	sc->sc_calinterval = 1;
1029 	sc->sc_caltries = 0;
1030 
1031 	/*
1032 	 * Setup the hardware after reset: the key cache
1033 	 * is filled as needed and the receive engine is
1034 	 * set going.  Frame transmit is handled entirely
1035 	 * in the frame output path; there's nothing to do
1036 	 * here except setup the interrupt mask.
1037 	 */
1038 	if ((error = ath_startrecv(sc)) != 0) {
1039 		if_printf(ifp, "unable to start recv logic\n");
1040 		goto done;
1041 	}
1042 
1043 	/*
1044 	 * Enable interrupts.
1045 	 */
1046 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1047 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1048 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1049 	/*
1050 	 * Enable MIB interrupts when there are hardware phy counters.
1051 	 * Note we only do this (at the moment) for station mode.
1052 	 */
1053 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1054 		sc->sc_imask |= HAL_INT_MIB;
1055 	ath_hal_intrset(ah, sc->sc_imask);
1056 
1057 	ifp->if_flags |= IFF_RUNNING;
1058 	ic->ic_state = IEEE80211_S_INIT;
1059 
1060 	/*
1061 	 * The hardware should be ready to go now so it's safe
1062 	 * to kick the 802.11 state machine as it's likely to
1063 	 * immediately call back to us to send mgmt frames.
1064 	 */
1065 	ath_chan_change(sc, ic->ic_curchan);
1066 #ifdef ATH_TX99_DIAG
1067 	if (sc->sc_tx99 != NULL)
1068 		sc->sc_tx99->start(sc->sc_tx99);
1069 	else
1070 #endif
1071 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1072 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1073 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1074 	} else
1075 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1076 done:
1077 	splx(s);
1078 	return error;
1079 }
1080 
1081 static void
1082 ath_stop_locked(struct ifnet *ifp, int disable)
1083 {
1084 	struct ath_softc *sc = ifp->if_softc;
1085 	struct ieee80211com *ic = &sc->sc_ic;
1086 	struct ath_hal *ah = sc->sc_ah;
1087 
1088 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1089 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1090 
1091 	/* KASSERT() IPL_NET */
1092 	if (ifp->if_flags & IFF_RUNNING) {
1093 		/*
1094 		 * Shutdown the hardware and driver:
1095 		 *    reset 802.11 state machine
1096 		 *    turn off timers
1097 		 *    disable interrupts
1098 		 *    turn off the radio
1099 		 *    clear transmit machinery
1100 		 *    clear receive machinery
1101 		 *    drain and release tx queues
1102 		 *    reclaim beacon resources
1103 		 *    power down hardware
1104 		 *
1105 		 * Note that some of this work is not possible if the
1106 		 * hardware is gone (invalid).
1107 		 */
1108 #ifdef ATH_TX99_DIAG
1109 		if (sc->sc_tx99 != NULL)
1110 			sc->sc_tx99->stop(sc->sc_tx99);
1111 #endif
1112 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1113 		ifp->if_flags &= ~IFF_RUNNING;
1114 		ifp->if_timer = 0;
1115 		if (device_is_enabled(sc->sc_dev)) {
1116 			if (sc->sc_softled) {
1117 				callout_stop(&sc->sc_ledtimer);
1118 				ath_hal_gpioset(ah, sc->sc_ledpin,
1119 					!sc->sc_ledon);
1120 				sc->sc_blinking = 0;
1121 			}
1122 			ath_hal_intrset(ah, 0);
1123 		}
1124 		ath_draintxq(sc);
1125 		if (device_is_enabled(sc->sc_dev)) {
1126 			ath_stoprecv(sc);
1127 			ath_hal_phydisable(ah);
1128 		} else
1129 			sc->sc_rxlink = NULL;
1130 		IF_PURGE(&ifp->if_snd);
1131 		ath_beacon_free(sc);
1132 	}
1133 	if (disable)
1134 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1135 }
1136 
1137 static void
1138 ath_stop(struct ifnet *ifp, int disable)
1139 {
1140 	int s;
1141 
1142 	s = splnet();
1143 	ath_stop_locked(ifp, disable);
1144 	splx(s);
1145 }
1146 
1147 static void
1148 ath_restore_diversity(struct ath_softc *sc)
1149 {
1150 	struct ifnet *ifp = &sc->sc_if;
1151 	struct ath_hal *ah = sc->sc_ah;
1152 
1153 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1154 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1155 		if_printf(ifp, "could not restore diversity setting %d\n",
1156 		    sc->sc_diversity);
1157 		sc->sc_diversity = ath_hal_getdiversity(ah);
1158 	}
1159 }
1160 
1161 /*
1162  * Reset the hardware w/o losing operational state.  This is
1163  * basically a more efficient way of doing ath_stop, ath_init,
1164  * followed by state transitions to the current 802.11
1165  * operational state.  Used to recover from various errors and
1166  * to reset or reload hardware state.
1167  */
1168 int
1169 ath_reset(struct ifnet *ifp)
1170 {
1171 	struct ath_softc *sc = ifp->if_softc;
1172 	struct ieee80211com *ic = &sc->sc_ic;
1173 	struct ath_hal *ah = sc->sc_ah;
1174 	struct ieee80211_channel *c;
1175 	HAL_STATUS status;
1176 
1177 	/*
1178 	 * Convert to a HAL channel description with the flags
1179 	 * constrained to reflect the current operating mode.
1180 	 */
1181 	c = ic->ic_curchan;
1182 	sc->sc_curchan.channel = c->ic_freq;
1183 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1184 
1185 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1186 	ath_draintxq(sc);		/* stop xmit side */
1187 	ath_stoprecv(sc);		/* stop recv side */
1188 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1189 	/* NB: indicate channel change so we do a full reset */
1190 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1191 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1192 			__func__, status);
1193 	ath_update_txpow(sc);		/* update tx power state */
1194 	ath_restore_diversity(sc);
1195 	sc->sc_calinterval = 1;
1196 	sc->sc_caltries = 0;
1197 	if (ath_startrecv(sc) != 0)	/* restart recv */
1198 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1199 	/*
1200 	 * We may be doing a reset in response to an ioctl
1201 	 * that changes the channel so update any state that
1202 	 * might change as a result.
1203 	 */
1204 	ath_chan_change(sc, c);
1205 	if (ic->ic_state == IEEE80211_S_RUN)
1206 		ath_beacon_config(sc);	/* restart beacons */
1207 	ath_hal_intrset(ah, sc->sc_imask);
1208 
1209 	ath_start(ifp);			/* restart xmit */
1210 	return 0;
1211 }
1212 
1213 /*
1214  * Cleanup driver resources when we run out of buffers
1215  * while processing fragments; return the tx buffers
1216  * allocated and drop node references.
1217  */
1218 static void
1219 ath_txfrag_cleanup(struct ath_softc *sc,
1220 	ath_bufhead *frags, struct ieee80211_node *ni)
1221 {
1222 	struct ath_buf *bf;
1223 
1224 	ATH_TXBUF_LOCK_ASSERT(sc);
1225 
1226 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1227 		STAILQ_REMOVE_HEAD(frags, bf_list);
1228 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1229 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1230 		ieee80211_node_decref(ni);
1231 	}
1232 }
1233 
1234 /*
1235  * Setup xmit of a fragmented frame.  Allocate a buffer
1236  * for each frag and bump the node reference count to
1237  * reflect the held reference to be setup by ath_tx_start.
1238  */
1239 static int
1240 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1241 	struct mbuf *m0, struct ieee80211_node *ni)
1242 {
1243 	struct mbuf *m;
1244 	struct ath_buf *bf;
1245 
1246 	ATH_TXBUF_LOCK(sc);
1247 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1248 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1249 		if (bf == NULL) {       /* out of buffers, cleanup */
1250 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1251 				__func__);
1252 			sc->sc_if.if_flags |= IFF_OACTIVE;
1253 			ath_txfrag_cleanup(sc, frags, ni);
1254 			break;
1255 		}
1256 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1257 		ieee80211_node_incref(ni);
1258 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1259 	}
1260 	ATH_TXBUF_UNLOCK(sc);
1261 
1262 	return !STAILQ_EMPTY(frags);
1263 }
1264 
1265 static void
1266 ath_start(struct ifnet *ifp)
1267 {
1268 	struct ath_softc *sc = ifp->if_softc;
1269 	struct ath_hal *ah = sc->sc_ah;
1270 	struct ieee80211com *ic = &sc->sc_ic;
1271 	struct ieee80211_node *ni;
1272 	struct ath_buf *bf;
1273 	struct mbuf *m, *next;
1274 	struct ieee80211_frame *wh;
1275 	struct ether_header *eh;
1276 	ath_bufhead frags;
1277 
1278 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1279 	    !device_is_active(sc->sc_dev))
1280 		return;
1281 	for (;;) {
1282 		/*
1283 		 * Grab a TX buffer and associated resources.
1284 		 */
1285 		ATH_TXBUF_LOCK(sc);
1286 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1287 		if (bf != NULL)
1288 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1289 		ATH_TXBUF_UNLOCK(sc);
1290 		if (bf == NULL) {
1291 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1292 				__func__);
1293 			sc->sc_stats.ast_tx_qstop++;
1294 			ifp->if_flags |= IFF_OACTIVE;
1295 			break;
1296 		}
1297 		/*
1298 		 * Poll the management queue for frames; they
1299 		 * have priority over normal data frames.
1300 		 */
1301 		IF_DEQUEUE(&ic->ic_mgtq, m);
1302 		if (m == NULL) {
1303 			/*
1304 			 * No data frames go out unless we're associated.
1305 			 */
1306 			if (ic->ic_state != IEEE80211_S_RUN) {
1307 				DPRINTF(sc, ATH_DEBUG_XMIT,
1308 				    "%s: discard data packet, state %s\n",
1309 				    __func__,
1310 				    ieee80211_state_name[ic->ic_state]);
1311 				sc->sc_stats.ast_tx_discard++;
1312 				ATH_TXBUF_LOCK(sc);
1313 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1314 				ATH_TXBUF_UNLOCK(sc);
1315 				break;
1316 			}
1317 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1318 			if (m == NULL) {
1319 				ATH_TXBUF_LOCK(sc);
1320 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1321 				ATH_TXBUF_UNLOCK(sc);
1322 				break;
1323 			}
1324 			STAILQ_INIT(&frags);
1325 			/*
1326 			 * Find the node for the destination so we can do
1327 			 * things like power save and fast frames aggregation.
1328 			 */
1329 			if (m->m_len < sizeof(struct ether_header) &&
1330 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1331 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1332 				ni = NULL;
1333 				goto bad;
1334 			}
1335 			eh = mtod(m, struct ether_header *);
1336 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1337 			if (ni == NULL) {
1338 				/* NB: ieee80211_find_txnode does stat+msg */
1339 				m_freem(m);
1340 				goto bad;
1341 			}
1342 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1343 			    (m->m_flags & M_PWR_SAV) == 0) {
1344 				/*
1345 				 * Station in power save mode; pass the frame
1346 				 * to the 802.11 layer and continue.  We'll get
1347 				 * the frame back when the time is right.
1348 				 */
1349 				ieee80211_pwrsave(ic, ni, m);
1350 				goto reclaim;
1351 			}
1352 			/* calculate priority so we can find the tx queue */
1353 			if (ieee80211_classify(ic, m, ni)) {
1354 				DPRINTF(sc, ATH_DEBUG_XMIT,
1355 					"%s: discard, classification failure\n",
1356 					__func__);
1357 				m_freem(m);
1358 				goto bad;
1359 			}
1360 			ifp->if_opackets++;
1361 
1362 			bpf_mtap(ifp, m);
1363 			/*
1364 			 * Encapsulate the packet in prep for transmission.
1365 			 */
1366 			m = ieee80211_encap(ic, m, ni);
1367 			if (m == NULL) {
1368 				DPRINTF(sc, ATH_DEBUG_XMIT,
1369 					"%s: encapsulation failure\n",
1370 					__func__);
1371 				sc->sc_stats.ast_tx_encap++;
1372 				goto bad;
1373 			}
1374 			/*
1375 			 * Check for fragmentation.  If this has frame
1376 			 * has been broken up verify we have enough
1377 			 * buffers to send all the fragments so all
1378 			 * go out or none...
1379 			 */
1380 			if ((m->m_flags & M_FRAG) &&
1381 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1382 				DPRINTF(sc, ATH_DEBUG_ANY,
1383 				    "%s: out of txfrag buffers\n", __func__);
1384 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1385 				ath_freetx(m);
1386 				goto bad;
1387 			}
1388 		} else {
1389 			/*
1390 			 * Hack!  The referenced node pointer is in the
1391 			 * rcvif field of the packet header.  This is
1392 			 * placed there by ieee80211_mgmt_output because
1393 			 * we need to hold the reference with the frame
1394 			 * and there's no other way (other than packet
1395 			 * tags which we consider too expensive to use)
1396 			 * to pass it along.
1397 			 */
1398 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1399 			m->m_pkthdr.rcvif = NULL;
1400 
1401 			wh = mtod(m, struct ieee80211_frame *);
1402 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1403 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1404 				/* fill time stamp */
1405 				u_int64_t tsf;
1406 				u_int32_t *tstamp;
1407 
1408 				tsf = ath_hal_gettsf64(ah);
1409 				/* XXX: adjust 100us delay to xmit */
1410 				tsf += 100;
1411 				tstamp = (u_int32_t *)&wh[1];
1412 				tstamp[0] = htole32(tsf & 0xffffffff);
1413 				tstamp[1] = htole32(tsf >> 32);
1414 			}
1415 			sc->sc_stats.ast_tx_mgmt++;
1416 		}
1417 
1418 	nextfrag:
1419 		next = m->m_nextpkt;
1420 		if (ath_tx_start(sc, ni, bf, m)) {
1421 	bad:
1422 			ifp->if_oerrors++;
1423 	reclaim:
1424 			ATH_TXBUF_LOCK(sc);
1425 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1426 			ath_txfrag_cleanup(sc, &frags, ni);
1427 			ATH_TXBUF_UNLOCK(sc);
1428 			if (ni != NULL)
1429 				ieee80211_free_node(ni);
1430 			continue;
1431 		}
1432 		if (next != NULL) {
1433 			m = next;
1434 			bf = STAILQ_FIRST(&frags);
1435 			KASSERT(bf != NULL, ("no buf for txfrag"));
1436 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1437 			goto nextfrag;
1438 		}
1439 
1440 		ifp->if_timer = 1;
1441 	}
1442 }
1443 
1444 static int
1445 ath_media_change(struct ifnet *ifp)
1446 {
1447 #define	IS_UP(ifp) \
1448 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1449 	int error;
1450 
1451 	error = ieee80211_media_change(ifp);
1452 	if (error == ENETRESET) {
1453 		if (IS_UP(ifp))
1454 			ath_init(ifp->if_softc);	/* XXX lose error */
1455 		error = 0;
1456 	}
1457 	return error;
1458 #undef IS_UP
1459 }
1460 
1461 #ifdef AR_DEBUG
1462 static void
1463 ath_keyprint(const char *tag, u_int ix,
1464 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1465 {
1466 	static const char *ciphers[] = {
1467 		"WEP",
1468 		"AES-OCB",
1469 		"AES-CCM",
1470 		"CKIP",
1471 		"TKIP",
1472 		"CLR",
1473 	};
1474 	int i, n;
1475 
1476 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1477 	for (i = 0, n = hk->kv_len; i < n; i++)
1478 		printf("%02x", hk->kv_val[i]);
1479 	printf(" mac %s", ether_sprintf(mac));
1480 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1481 		printf(" mic ");
1482 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1483 			printf("%02x", hk->kv_mic[i]);
1484 	}
1485 	printf("\n");
1486 }
1487 #endif
1488 
1489 /*
1490  * Set a TKIP key into the hardware.  This handles the
1491  * potential distribution of key state to multiple key
1492  * cache slots for TKIP.
1493  */
1494 static int
1495 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1496 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1497 {
1498 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1499 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1500 	struct ath_hal *ah = sc->sc_ah;
1501 
1502 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1503 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1504 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1505 		if (sc->sc_splitmic) {
1506 			/*
1507 			 * TX key goes at first index, RX key at the rx index.
1508 			 * The hal handles the MIC keys at index+64.
1509 			 */
1510 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1511 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1512 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1513 						zerobssid))
1514 				return 0;
1515 
1516 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1517 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1518 			/* XXX delete tx key on failure? */
1519 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1520 					hk, mac);
1521 		} else {
1522 			/*
1523 			 * Room for both TX+RX MIC keys in one key cache
1524 			 * slot, just set key at the first index; the HAL
1525 			 * will handle the reset.
1526 			 */
1527 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1528 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1529 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1530 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1531 		}
1532 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1533 		if (sc->sc_splitmic) {
1534 			/*
1535 			 * NB: must pass MIC key in expected location when
1536 			 * the keycache only holds one MIC key per entry.
1537 			 */
1538 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1539 		} else
1540 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1541 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1542 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1543 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1544 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1545 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1546 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1547 	}
1548 	return 0;
1549 #undef IEEE80211_KEY_XR
1550 }
1551 
1552 /*
1553  * Set a net80211 key into the hardware.  This handles the
1554  * potential distribution of key state to multiple key
1555  * cache slots for TKIP with hardware MIC support.
1556  */
1557 static int
1558 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1559 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1560 	struct ieee80211_node *bss)
1561 {
1562 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1563 	static const u_int8_t ciphermap[] = {
1564 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1565 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1566 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1567 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1568 		(u_int8_t) -1,		/* 4 is not allocated */
1569 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1570 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1571 	};
1572 	struct ath_hal *ah = sc->sc_ah;
1573 	const struct ieee80211_cipher *cip = k->wk_cipher;
1574 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1575 	const u_int8_t *mac;
1576 	HAL_KEYVAL hk;
1577 
1578 	memset(&hk, 0, sizeof(hk));
1579 	/*
1580 	 * Software crypto uses a "clear key" so non-crypto
1581 	 * state kept in the key cache are maintained and
1582 	 * so that rx frames have an entry to match.
1583 	 */
1584 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1585 		KASSERT(cip->ic_cipher < N(ciphermap),
1586 			("invalid cipher type %u", cip->ic_cipher));
1587 		hk.kv_type = ciphermap[cip->ic_cipher];
1588 		hk.kv_len = k->wk_keylen;
1589 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1590 	} else
1591 		hk.kv_type = HAL_CIPHER_CLR;
1592 
1593 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1594 		/*
1595 		 * Group keys on hardware that supports multicast frame
1596 		 * key search use a mac that is the sender's address with
1597 		 * the high bit set instead of the app-specified address.
1598 		 */
1599 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1600 		gmac[0] |= 0x80;
1601 		mac = gmac;
1602 	} else
1603 		mac = mac0;
1604 
1605 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1606 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1607 		return ath_keyset_tkip(sc, k, &hk, mac);
1608 	} else {
1609 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1610 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1611 	}
1612 #undef N
1613 }
1614 
1615 /*
1616  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1617  * each key, one for decrypt/encrypt and the other for the MIC.
1618  */
1619 static u_int16_t
1620 key_alloc_2pair(struct ath_softc *sc,
1621 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1622 {
1623 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1624 	u_int i, keyix;
1625 
1626 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1627 	/* XXX could optimize */
1628 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1629 		u_int8_t b = sc->sc_keymap[i];
1630 		if (b != 0xff) {
1631 			/*
1632 			 * One or more slots in this byte are free.
1633 			 */
1634 			keyix = i*NBBY;
1635 			while (b & 1) {
1636 		again:
1637 				keyix++;
1638 				b >>= 1;
1639 			}
1640 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1641 			if (isset(sc->sc_keymap, keyix+32) ||
1642 			    isset(sc->sc_keymap, keyix+64) ||
1643 			    isset(sc->sc_keymap, keyix+32+64)) {
1644 				/* full pair unavailable */
1645 				/* XXX statistic */
1646 				if (keyix == (i+1)*NBBY) {
1647 					/* no slots were appropriate, advance */
1648 					continue;
1649 				}
1650 				goto again;
1651 			}
1652 			setbit(sc->sc_keymap, keyix);
1653 			setbit(sc->sc_keymap, keyix+64);
1654 			setbit(sc->sc_keymap, keyix+32);
1655 			setbit(sc->sc_keymap, keyix+32+64);
1656 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1657 				"%s: key pair %u,%u %u,%u\n",
1658 				__func__, keyix, keyix+64,
1659 				keyix+32, keyix+32+64);
1660 			*txkeyix = keyix;
1661 			*rxkeyix = keyix+32;
1662 			return keyix;
1663 		}
1664 	}
1665 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1666 	return IEEE80211_KEYIX_NONE;
1667 #undef N
1668 }
1669 
1670 /*
1671  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1672  * each key, one for decrypt/encrypt and the other for the MIC.
1673  */
1674 static int
1675 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1676     ieee80211_keyix *rxkeyix)
1677 {
1678 #define N(a)	(sizeof(a)/sizeof(a[0]))
1679 	u_int i, keyix;
1680 
1681 	KASSERT(!sc->sc_splitmic, ("key cache split"));
1682 	/* XXX could optimize */
1683 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1684 		uint8_t b = sc->sc_keymap[i];
1685 		if (b != 0xff) {
1686 			/*
1687 			 * One or more slots in this byte are free.
1688 			 */
1689 			keyix = i*NBBY;
1690 			while (b & 1) {
1691 		again:
1692 				keyix++;
1693 				b >>= 1;
1694 			}
1695 			if (isset(sc->sc_keymap, keyix+64)) {
1696 				/* full pair unavailable */
1697 				/* XXX statistic */
1698 				if (keyix == (i+1)*NBBY) {
1699 					/* no slots were appropriate, advance */
1700 					continue;
1701 				}
1702 				goto again;
1703 			}
1704 			setbit(sc->sc_keymap, keyix);
1705 			setbit(sc->sc_keymap, keyix+64);
1706 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1707 				"%s: key pair %u,%u\n",
1708 				__func__, keyix, keyix+64);
1709 			*txkeyix = *rxkeyix = keyix;
1710 			return 1;
1711 		}
1712 	}
1713 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1714 	return 0;
1715 #undef N
1716 }
1717 
1718 /*
1719  * Allocate a single key cache slot.
1720  */
1721 static int
1722 key_alloc_single(struct ath_softc *sc,
1723 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1724 {
1725 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1726 	u_int i, keyix;
1727 
1728 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1729 	for (i = 0; i < N(sc->sc_keymap); i++) {
1730 		u_int8_t b = sc->sc_keymap[i];
1731 		if (b != 0xff) {
1732 			/*
1733 			 * One or more slots are free.
1734 			 */
1735 			keyix = i*NBBY;
1736 			while (b & 1)
1737 				keyix++, b >>= 1;
1738 			setbit(sc->sc_keymap, keyix);
1739 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1740 				__func__, keyix);
1741 			*txkeyix = *rxkeyix = keyix;
1742 			return 1;
1743 		}
1744 	}
1745 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1746 	return 0;
1747 #undef N
1748 }
1749 
1750 /*
1751  * Allocate one or more key cache slots for a uniacst key.  The
1752  * key itself is needed only to identify the cipher.  For hardware
1753  * TKIP with split cipher+MIC keys we allocate two key cache slot
1754  * pairs so that we can setup separate TX and RX MIC keys.  Note
1755  * that the MIC key for a TKIP key at slot i is assumed by the
1756  * hardware to be at slot i+64.  This limits TKIP keys to the first
1757  * 64 entries.
1758  */
1759 static int
1760 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1761 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1762 {
1763 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1764 
1765 	/*
1766 	 * Group key allocation must be handled specially for
1767 	 * parts that do not support multicast key cache search
1768 	 * functionality.  For those parts the key id must match
1769 	 * the h/w key index so lookups find the right key.  On
1770 	 * parts w/ the key search facility we install the sender's
1771 	 * mac address (with the high bit set) and let the hardware
1772 	 * find the key w/o using the key id.  This is preferred as
1773 	 * it permits us to support multiple users for adhoc and/or
1774 	 * multi-station operation.
1775 	 */
1776 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1777 		if (!(&ic->ic_nw_keys[0] <= k &&
1778 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1779 			/* should not happen */
1780 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1781 				"%s: bogus group key\n", __func__);
1782 			return 0;
1783 		}
1784 		/*
1785 		 * XXX we pre-allocate the global keys so
1786 		 * have no way to check if they've already been allocated.
1787 		 */
1788 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1789 		return 1;
1790 	}
1791 
1792 	/*
1793 	 * We allocate two pair for TKIP when using the h/w to do
1794 	 * the MIC.  For everything else, including software crypto,
1795 	 * we allocate a single entry.  Note that s/w crypto requires
1796 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1797 	 * not support pass-through cache entries and we map all
1798 	 * those requests to slot 0.
1799 	 */
1800 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1801 		return key_alloc_single(sc, keyix, rxkeyix);
1802 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1803 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1804 		if (sc->sc_splitmic)
1805 			return key_alloc_2pair(sc, keyix, rxkeyix);
1806 		else
1807 			return key_alloc_pair(sc, keyix, rxkeyix);
1808 	} else {
1809 		return key_alloc_single(sc, keyix, rxkeyix);
1810 	}
1811 }
1812 
1813 /*
1814  * Delete an entry in the key cache allocated by ath_key_alloc.
1815  */
1816 static int
1817 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1818 {
1819 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1820 	struct ath_hal *ah = sc->sc_ah;
1821 	const struct ieee80211_cipher *cip = k->wk_cipher;
1822 	u_int keyix = k->wk_keyix;
1823 
1824 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1825 
1826 	if (!device_has_power(sc->sc_dev)) {
1827 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1828 		    k->wk_keyix);
1829 	}
1830 
1831 	ath_hal_keyreset(ah, keyix);
1832 	/*
1833 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1834 	 */
1835 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1836 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1837 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1838 	if (keyix >= IEEE80211_WEP_NKID) {
1839 		/*
1840 		 * Don't touch keymap entries for global keys so
1841 		 * they are never considered for dynamic allocation.
1842 		 */
1843 		clrbit(sc->sc_keymap, keyix);
1844 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1845 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1846 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1847 			if (sc->sc_splitmic) {
1848 				/* +32 for RX key, +32+64 for RX key MIC */
1849 				clrbit(sc->sc_keymap, keyix+32);
1850 				clrbit(sc->sc_keymap, keyix+32+64);
1851 			}
1852 		}
1853 	}
1854 	return 1;
1855 }
1856 
1857 /*
1858  * Set the key cache contents for the specified key.  Key cache
1859  * slot(s) must already have been allocated by ath_key_alloc.
1860  */
1861 static int
1862 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1863 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1864 {
1865 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1866 
1867 	if (!device_has_power(sc->sc_dev)) {
1868 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1869 		    k->wk_keyix);
1870 	}
1871 	return ath_keyset(sc, k, mac, ic->ic_bss);
1872 }
1873 
1874 /*
1875  * Block/unblock tx+rx processing while a key change is done.
1876  * We assume the caller serializes key management operations
1877  * so we only need to worry about synchronization with other
1878  * uses that originate in the driver.
1879  */
1880 static void
1881 ath_key_update_begin(struct ieee80211com *ic)
1882 {
1883 	struct ifnet *ifp = ic->ic_ifp;
1884 	struct ath_softc *sc = ifp->if_softc;
1885 
1886 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1887 #if 0
1888 	tasklet_disable(&sc->sc_rxtq);
1889 #endif
1890 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1891 }
1892 
1893 static void
1894 ath_key_update_end(struct ieee80211com *ic)
1895 {
1896 	struct ifnet *ifp = ic->ic_ifp;
1897 	struct ath_softc *sc = ifp->if_softc;
1898 
1899 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1900 	IF_UNLOCK(&ifp->if_snd);
1901 #if 0
1902 	tasklet_enable(&sc->sc_rxtq);
1903 #endif
1904 }
1905 
1906 /*
1907  * Calculate the receive filter according to the
1908  * operating mode and state:
1909  *
1910  * o always accept unicast, broadcast, and multicast traffic
1911  * o maintain current state of phy error reception (the hal
1912  *   may enable phy error frames for noise immunity work)
1913  * o probe request frames are accepted only when operating in
1914  *   hostap, adhoc, or monitor modes
1915  * o enable promiscuous mode according to the interface state
1916  * o accept beacons:
1917  *   - when operating in adhoc mode so the 802.11 layer creates
1918  *     node table entries for peers,
1919  *   - when operating in station mode for collecting rssi data when
1920  *     the station is otherwise quiet, or
1921  *   - when scanning
1922  */
1923 static u_int32_t
1924 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1925 {
1926 	struct ieee80211com *ic = &sc->sc_ic;
1927 	struct ath_hal *ah = sc->sc_ah;
1928 	struct ifnet *ifp = &sc->sc_if;
1929 	u_int32_t rfilt;
1930 
1931 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1932 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1933 	if (ic->ic_opmode != IEEE80211_M_STA)
1934 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1935 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1936 	    (ifp->if_flags & IFF_PROMISC))
1937 		rfilt |= HAL_RX_FILTER_PROM;
1938 	if (ifp->if_flags & IFF_PROMISC)
1939 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1940 	if (ic->ic_opmode == IEEE80211_M_STA ||
1941 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1942 	    state == IEEE80211_S_SCAN)
1943 		rfilt |= HAL_RX_FILTER_BEACON;
1944 	return rfilt;
1945 }
1946 
1947 static void
1948 ath_mode_init(struct ath_softc *sc)
1949 {
1950 	struct ifnet *ifp = &sc->sc_if;
1951 	struct ieee80211com *ic = &sc->sc_ic;
1952 	struct ath_hal *ah = sc->sc_ah;
1953 	struct ether_multi *enm;
1954 	struct ether_multistep estep;
1955 	u_int32_t rfilt, mfilt[2], val;
1956 	int i;
1957 	uint8_t pos;
1958 
1959 	/* configure rx filter */
1960 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1961 	ath_hal_setrxfilter(ah, rfilt);
1962 
1963 	/* configure operational mode */
1964 	ath_hal_setopmode(ah);
1965 
1966 	/* Write keys to hardware; it may have been powered down. */
1967 	ath_key_update_begin(ic);
1968 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1969 		ath_key_set(ic,
1970 			    &ic->ic_crypto.cs_nw_keys[i],
1971 			    ic->ic_myaddr);
1972 	}
1973 	ath_key_update_end(ic);
1974 
1975 	/*
1976 	 * Handle any link-level address change.  Note that we only
1977 	 * need to force ic_myaddr; any other addresses are handled
1978 	 * as a byproduct of the ifnet code marking the interface
1979 	 * down then up.
1980 	 *
1981 	 * XXX should get from lladdr instead of arpcom but that's more work
1982 	 */
1983 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1984 	ath_hal_setmac(ah, ic->ic_myaddr);
1985 
1986 	/* calculate and install multicast filter */
1987 	ifp->if_flags &= ~IFF_ALLMULTI;
1988 	mfilt[0] = mfilt[1] = 0;
1989 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1990 	while (enm != NULL) {
1991 		void *dl;
1992 		/* XXX Punt on ranges. */
1993 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1994 			mfilt[0] = mfilt[1] = 0xffffffff;
1995 			ifp->if_flags |= IFF_ALLMULTI;
1996 			break;
1997 		}
1998 		dl = enm->enm_addrlo;
1999 		val = LE_READ_4((char *)dl + 0);
2000 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2001 		val = LE_READ_4((char *)dl + 3);
2002 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2003 		pos &= 0x3f;
2004 		mfilt[pos / 32] |= (1 << (pos % 32));
2005 
2006 		ETHER_NEXT_MULTI(estep, enm);
2007 	}
2008 
2009 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2010 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2011 		__func__, rfilt, mfilt[0], mfilt[1]);
2012 }
2013 
2014 /*
2015  * Set the slot time based on the current setting.
2016  */
2017 static void
2018 ath_setslottime(struct ath_softc *sc)
2019 {
2020 	struct ieee80211com *ic = &sc->sc_ic;
2021 	struct ath_hal *ah = sc->sc_ah;
2022 
2023 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2024 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2025 	else
2026 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2027 	sc->sc_updateslot = OK;
2028 }
2029 
2030 /*
2031  * Callback from the 802.11 layer to update the
2032  * slot time based on the current setting.
2033  */
2034 static void
2035 ath_updateslot(struct ifnet *ifp)
2036 {
2037 	struct ath_softc *sc = ifp->if_softc;
2038 	struct ieee80211com *ic = &sc->sc_ic;
2039 
2040 	/*
2041 	 * When not coordinating the BSS, change the hardware
2042 	 * immediately.  For other operation we defer the change
2043 	 * until beacon updates have propagated to the stations.
2044 	 */
2045 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2046 		sc->sc_updateslot = UPDATE;
2047 	else
2048 		ath_setslottime(sc);
2049 }
2050 
2051 /*
2052  * Setup a h/w transmit queue for beacons.
2053  */
2054 static int
2055 ath_beaconq_setup(struct ath_hal *ah)
2056 {
2057 	HAL_TXQ_INFO qi;
2058 
2059 	memset(&qi, 0, sizeof(qi));
2060 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2061 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2062 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2063 	/* NB: for dynamic turbo, don't enable any other interrupts */
2064 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2065 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2066 }
2067 
2068 /*
2069  * Setup the transmit queue parameters for the beacon queue.
2070  */
2071 static int
2072 ath_beaconq_config(struct ath_softc *sc)
2073 {
2074 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2075 	struct ieee80211com *ic = &sc->sc_ic;
2076 	struct ath_hal *ah = sc->sc_ah;
2077 	HAL_TXQ_INFO qi;
2078 
2079 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2080 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2081 		/*
2082 		 * Always burst out beacon and CAB traffic.
2083 		 */
2084 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2085 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2086 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2087 	} else {
2088 		struct wmeParams *wmep =
2089 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2090 		/*
2091 		 * Adhoc mode; important thing is to use 2x cwmin.
2092 		 */
2093 		qi.tqi_aifs = wmep->wmep_aifsn;
2094 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2095 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2096 	}
2097 
2098 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2099 		device_printf(sc->sc_dev, "unable to update parameters for "
2100 			"beacon hardware queue!\n");
2101 		return 0;
2102 	} else {
2103 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2104 		return 1;
2105 	}
2106 #undef ATH_EXPONENT_TO_VALUE
2107 }
2108 
2109 /*
2110  * Allocate and setup an initial beacon frame.
2111  */
2112 static int
2113 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2114 {
2115 	struct ieee80211com *ic = ni->ni_ic;
2116 	struct ath_buf *bf;
2117 	struct mbuf *m;
2118 	int error;
2119 
2120 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2121 	if (bf == NULL) {
2122 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2123 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2124 		return ENOMEM;			/* XXX */
2125 	}
2126 	/*
2127 	 * NB: the beacon data buffer must be 32-bit aligned;
2128 	 * we assume the mbuf routines will return us something
2129 	 * with this alignment (perhaps should assert).
2130 	 */
2131 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2132 	if (m == NULL) {
2133 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2134 			__func__);
2135 		sc->sc_stats.ast_be_nombuf++;
2136 		return ENOMEM;
2137 	}
2138 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2139 				     BUS_DMA_NOWAIT);
2140 	if (error == 0) {
2141 		bf->bf_m = m;
2142 		bf->bf_node = ieee80211_ref_node(ni);
2143 	} else {
2144 		m_freem(m);
2145 	}
2146 	return error;
2147 }
2148 
2149 /*
2150  * Setup the beacon frame for transmit.
2151  */
2152 static void
2153 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2154 {
2155 #define	USE_SHPREAMBLE(_ic) \
2156 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2157 		== IEEE80211_F_SHPREAMBLE)
2158 	struct ieee80211_node *ni = bf->bf_node;
2159 	struct ieee80211com *ic = ni->ni_ic;
2160 	struct mbuf *m = bf->bf_m;
2161 	struct ath_hal *ah = sc->sc_ah;
2162 	struct ath_desc *ds;
2163 	int flags, antenna;
2164 	const HAL_RATE_TABLE *rt;
2165 	u_int8_t rix, rate;
2166 
2167 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2168 		__func__, m, m->m_len);
2169 
2170 	/* setup descriptors */
2171 	ds = bf->bf_desc;
2172 
2173 	flags = HAL_TXDESC_NOACK;
2174 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2175 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2176 		flags |= HAL_TXDESC_VEOL;
2177 		/*
2178 		 * Let hardware handle antenna switching unless
2179 		 * the user has selected a transmit antenna
2180 		 * (sc_txantenna is not 0).
2181 		 */
2182 		antenna = sc->sc_txantenna;
2183 	} else {
2184 		ds->ds_link = 0;
2185 		/*
2186 		 * Switch antenna every 4 beacons, unless the user
2187 		 * has selected a transmit antenna (sc_txantenna
2188 		 * is not 0).
2189 		 *
2190 		 * XXX assumes two antenna
2191 		 */
2192 		if (sc->sc_txantenna == 0)
2193 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2194 		else
2195 			antenna = sc->sc_txantenna;
2196 	}
2197 
2198 	KASSERT(bf->bf_nseg == 1,
2199 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2200 	ds->ds_data = bf->bf_segs[0].ds_addr;
2201 	/*
2202 	 * Calculate rate code.
2203 	 * XXX everything at min xmit rate
2204 	 */
2205 	rix = sc->sc_minrateix;
2206 	rt = sc->sc_currates;
2207 	rate = rt->info[rix].rateCode;
2208 	if (USE_SHPREAMBLE(ic))
2209 		rate |= rt->info[rix].shortPreamble;
2210 	ath_hal_setuptxdesc(ah, ds
2211 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2212 		, sizeof(struct ieee80211_frame)/* header length */
2213 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2214 		, ni->ni_txpower		/* txpower XXX */
2215 		, rate, 1			/* series 0 rate/tries */
2216 		, HAL_TXKEYIX_INVALID		/* no encryption */
2217 		, antenna			/* antenna mode */
2218 		, flags				/* no ack, veol for beacons */
2219 		, 0				/* rts/cts rate */
2220 		, 0				/* rts/cts duration */
2221 	);
2222 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2223 	ath_hal_filltxdesc(ah, ds
2224 		, roundup(m->m_len, 4)		/* buffer length */
2225 		, AH_TRUE			/* first segment */
2226 		, AH_TRUE			/* last segment */
2227 		, ds				/* first descriptor */
2228 	);
2229 
2230 	/* NB: The desc swap function becomes void, if descriptor swapping
2231 	 * is not enabled
2232 	 */
2233 	ath_desc_swap(ds);
2234 
2235 #undef USE_SHPREAMBLE
2236 }
2237 
2238 /*
2239  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2240  * frame contents are done as needed and the slot time is
2241  * also adjusted based on current state.
2242  */
2243 static void
2244 ath_beacon_proc(void *arg, int pending)
2245 {
2246 	struct ath_softc *sc = arg;
2247 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2248 	struct ieee80211_node *ni = bf->bf_node;
2249 	struct ieee80211com *ic = ni->ni_ic;
2250 	struct ath_hal *ah = sc->sc_ah;
2251 	struct mbuf *m;
2252 	int ncabq, error, otherant;
2253 
2254 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2255 		__func__, pending);
2256 
2257 	if (ic->ic_opmode == IEEE80211_M_STA ||
2258 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2259 	    bf == NULL || bf->bf_m == NULL) {
2260 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2261 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2262 		return;
2263 	}
2264 	/*
2265 	 * Check if the previous beacon has gone out.  If
2266 	 * not don't try to post another, skip this period
2267 	 * and wait for the next.  Missed beacons indicate
2268 	 * a problem and should not occur.  If we miss too
2269 	 * many consecutive beacons reset the device.
2270 	 */
2271 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2272 		sc->sc_bmisscount++;
2273 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2274 			"%s: missed %u consecutive beacons\n",
2275 			__func__, sc->sc_bmisscount);
2276 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2277 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2278 		return;
2279 	}
2280 	if (sc->sc_bmisscount != 0) {
2281 		DPRINTF(sc, ATH_DEBUG_BEACON,
2282 			"%s: resume beacon xmit after %u misses\n",
2283 			__func__, sc->sc_bmisscount);
2284 		sc->sc_bmisscount = 0;
2285 	}
2286 
2287 	/*
2288 	 * Update dynamic beacon contents.  If this returns
2289 	 * non-zero then we need to remap the memory because
2290 	 * the beacon frame changed size (probably because
2291 	 * of the TIM bitmap).
2292 	 */
2293 	m = bf->bf_m;
2294 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2295 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2296 		/* XXX too conservative? */
2297 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2298 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2299 					     BUS_DMA_NOWAIT);
2300 		if (error != 0) {
2301 			if_printf(&sc->sc_if,
2302 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2303 			    __func__, error);
2304 			return;
2305 		}
2306 	}
2307 
2308 	/*
2309 	 * Handle slot time change when a non-ERP station joins/leaves
2310 	 * an 11g network.  The 802.11 layer notifies us via callback,
2311 	 * we mark updateslot, then wait one beacon before effecting
2312 	 * the change.  This gives associated stations at least one
2313 	 * beacon interval to note the state change.
2314 	 */
2315 	/* XXX locking */
2316 	if (sc->sc_updateslot == UPDATE)
2317 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2318 	else if (sc->sc_updateslot == COMMIT)
2319 		ath_setslottime(sc);		/* commit change to h/w */
2320 
2321 	/*
2322 	 * Check recent per-antenna transmit statistics and flip
2323 	 * the default antenna if noticeably more frames went out
2324 	 * on the non-default antenna.
2325 	 * XXX assumes 2 anntenae
2326 	 */
2327 	otherant = sc->sc_defant & 1 ? 2 : 1;
2328 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2329 		ath_setdefantenna(sc, otherant);
2330 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2331 
2332 	/*
2333 	 * Construct tx descriptor.
2334 	 */
2335 	ath_beacon_setup(sc, bf);
2336 
2337 	/*
2338 	 * Stop any current dma and put the new frame on the queue.
2339 	 * This should never fail since we check above that no frames
2340 	 * are still pending on the queue.
2341 	 */
2342 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2343 		DPRINTF(sc, ATH_DEBUG_ANY,
2344 			"%s: beacon queue %u did not stop?\n",
2345 			__func__, sc->sc_bhalq);
2346 	}
2347 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2348 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2349 
2350 	/*
2351 	 * Enable the CAB queue before the beacon queue to
2352 	 * insure cab frames are triggered by this beacon.
2353 	 */
2354 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2355 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2356 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2357 	ath_hal_txstart(ah, sc->sc_bhalq);
2358 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2359 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2360 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2361 
2362 	sc->sc_stats.ast_be_xmit++;
2363 }
2364 
2365 /*
2366  * Reset the hardware after detecting beacons have stopped.
2367  */
2368 static void
2369 ath_bstuck_proc(void *arg, int pending)
2370 {
2371 	struct ath_softc *sc = arg;
2372 	struct ifnet *ifp = &sc->sc_if;
2373 
2374 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2375 		sc->sc_bmisscount);
2376 	ath_reset(ifp);
2377 }
2378 
2379 /*
2380  * Reclaim beacon resources.
2381  */
2382 static void
2383 ath_beacon_free(struct ath_softc *sc)
2384 {
2385 	struct ath_buf *bf;
2386 
2387 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2388 		if (bf->bf_m != NULL) {
2389 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2390 			m_freem(bf->bf_m);
2391 			bf->bf_m = NULL;
2392 		}
2393 		if (bf->bf_node != NULL) {
2394 			ieee80211_free_node(bf->bf_node);
2395 			bf->bf_node = NULL;
2396 		}
2397 	}
2398 }
2399 
2400 /*
2401  * Configure the beacon and sleep timers.
2402  *
2403  * When operating as an AP this resets the TSF and sets
2404  * up the hardware to notify us when we need to issue beacons.
2405  *
2406  * When operating in station mode this sets up the beacon
2407  * timers according to the timestamp of the last received
2408  * beacon and the current TSF, configures PCF and DTIM
2409  * handling, programs the sleep registers so the hardware
2410  * will wakeup in time to receive beacons, and configures
2411  * the beacon miss handling so we'll receive a BMISS
2412  * interrupt when we stop seeing beacons from the AP
2413  * we've associated with.
2414  */
2415 static void
2416 ath_beacon_config(struct ath_softc *sc)
2417 {
2418 #define	TSF_TO_TU(_h,_l) \
2419 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2420 #define	FUDGE	2
2421 	struct ath_hal *ah = sc->sc_ah;
2422 	struct ieee80211com *ic = &sc->sc_ic;
2423 	struct ieee80211_node *ni = ic->ic_bss;
2424 	u_int32_t nexttbtt, intval, tsftu;
2425 	u_int64_t tsf;
2426 
2427 	/* extract tstamp from last beacon and convert to TU */
2428 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2429 			     LE_READ_4(ni->ni_tstamp.data));
2430 	/* NB: the beacon interval is kept internally in TU's */
2431 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2432 	if (nexttbtt == 0)		/* e.g. for ap mode */
2433 		nexttbtt = intval;
2434 	else if (intval)		/* NB: can be 0 for monitor mode */
2435 		nexttbtt = roundup(nexttbtt, intval);
2436 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2437 		__func__, nexttbtt, intval, ni->ni_intval);
2438 	if (ic->ic_opmode == IEEE80211_M_STA) {
2439 		HAL_BEACON_STATE bs;
2440 		int dtimperiod, dtimcount;
2441 		int cfpperiod, cfpcount;
2442 
2443 		/*
2444 		 * Setup dtim and cfp parameters according to
2445 		 * last beacon we received (which may be none).
2446 		 */
2447 		dtimperiod = ni->ni_dtim_period;
2448 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2449 			dtimperiod = 1;
2450 		dtimcount = ni->ni_dtim_count;
2451 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2452 			dtimcount = 0;		/* XXX? */
2453 		cfpperiod = 1;			/* NB: no PCF support yet */
2454 		cfpcount = 0;
2455 		/*
2456 		 * Pull nexttbtt forward to reflect the current
2457 		 * TSF and calculate dtim+cfp state for the result.
2458 		 */
2459 		tsf = ath_hal_gettsf64(ah);
2460 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2461 		do {
2462 			nexttbtt += intval;
2463 			if (--dtimcount < 0) {
2464 				dtimcount = dtimperiod - 1;
2465 				if (--cfpcount < 0)
2466 					cfpcount = cfpperiod - 1;
2467 			}
2468 		} while (nexttbtt < tsftu);
2469 		memset(&bs, 0, sizeof(bs));
2470 		bs.bs_intval = intval;
2471 		bs.bs_nexttbtt = nexttbtt;
2472 		bs.bs_dtimperiod = dtimperiod*intval;
2473 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2474 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2475 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2476 		bs.bs_cfpmaxduration = 0;
2477 #if 0
2478 		/*
2479 		 * The 802.11 layer records the offset to the DTIM
2480 		 * bitmap while receiving beacons; use it here to
2481 		 * enable h/w detection of our AID being marked in
2482 		 * the bitmap vector (to indicate frames for us are
2483 		 * pending at the AP).
2484 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2485 		 * XXX enable based on h/w rev for newer chips
2486 		 */
2487 		bs.bs_timoffset = ni->ni_timoff;
2488 #endif
2489 		/*
2490 		 * Calculate the number of consecutive beacons to miss
2491 		 * before taking a BMISS interrupt.  The configuration
2492 		 * is specified in ms, so we need to convert that to
2493 		 * TU's and then calculate based on the beacon interval.
2494 		 * Note that we clamp the result to at most 10 beacons.
2495 		 */
2496 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2497 		if (bs.bs_bmissthreshold > 10)
2498 			bs.bs_bmissthreshold = 10;
2499 		else if (bs.bs_bmissthreshold <= 0)
2500 			bs.bs_bmissthreshold = 1;
2501 
2502 		/*
2503 		 * Calculate sleep duration.  The configuration is
2504 		 * given in ms.  We insure a multiple of the beacon
2505 		 * period is used.  Also, if the sleep duration is
2506 		 * greater than the DTIM period then it makes senses
2507 		 * to make it a multiple of that.
2508 		 *
2509 		 * XXX fixed at 100ms
2510 		 */
2511 		bs.bs_sleepduration =
2512 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2513 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2514 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2515 
2516 		DPRINTF(sc, ATH_DEBUG_BEACON,
2517 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2518 			, __func__
2519 			, tsf, tsftu
2520 			, bs.bs_intval
2521 			, bs.bs_nexttbtt
2522 			, bs.bs_dtimperiod
2523 			, bs.bs_nextdtim
2524 			, bs.bs_bmissthreshold
2525 			, bs.bs_sleepduration
2526 			, bs.bs_cfpperiod
2527 			, bs.bs_cfpmaxduration
2528 			, bs.bs_cfpnext
2529 			, bs.bs_timoffset
2530 		);
2531 		ath_hal_intrset(ah, 0);
2532 		ath_hal_beacontimers(ah, &bs);
2533 		sc->sc_imask |= HAL_INT_BMISS;
2534 		ath_hal_intrset(ah, sc->sc_imask);
2535 	} else {
2536 		ath_hal_intrset(ah, 0);
2537 		if (nexttbtt == intval)
2538 			intval |= HAL_BEACON_RESET_TSF;
2539 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2540 			/*
2541 			 * In IBSS mode enable the beacon timers but only
2542 			 * enable SWBA interrupts if we need to manually
2543 			 * prepare beacon frames.  Otherwise we use a
2544 			 * self-linked tx descriptor and let the hardware
2545 			 * deal with things.
2546 			 */
2547 			intval |= HAL_BEACON_ENA;
2548 			if (!sc->sc_hasveol)
2549 				sc->sc_imask |= HAL_INT_SWBA;
2550 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2551 				/*
2552 				 * Pull nexttbtt forward to reflect
2553 				 * the current TSF.
2554 				 */
2555 				tsf = ath_hal_gettsf64(ah);
2556 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2557 				do {
2558 					nexttbtt += intval;
2559 				} while (nexttbtt < tsftu);
2560 			}
2561 			ath_beaconq_config(sc);
2562 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2563 			/*
2564 			 * In AP mode we enable the beacon timers and
2565 			 * SWBA interrupts to prepare beacon frames.
2566 			 */
2567 			intval |= HAL_BEACON_ENA;
2568 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2569 			ath_beaconq_config(sc);
2570 		}
2571 		ath_hal_beaconinit(ah, nexttbtt, intval);
2572 		sc->sc_bmisscount = 0;
2573 		ath_hal_intrset(ah, sc->sc_imask);
2574 		/*
2575 		 * When using a self-linked beacon descriptor in
2576 		 * ibss mode load it once here.
2577 		 */
2578 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2579 			ath_beacon_proc(sc, 0);
2580 	}
2581 	sc->sc_syncbeacon = 0;
2582 #undef UNDEF
2583 #undef TSF_TO_TU
2584 }
2585 
2586 static int
2587 ath_descdma_setup(struct ath_softc *sc,
2588 	struct ath_descdma *dd, ath_bufhead *head,
2589 	const char *name, int nbuf, int ndesc)
2590 {
2591 #define	DS2PHYS(_dd, _ds) \
2592 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2593 	struct ifnet *ifp = &sc->sc_if;
2594 	struct ath_desc *ds;
2595 	struct ath_buf *bf;
2596 	int i, bsize, error;
2597 
2598 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2599 	    __func__, name, nbuf, ndesc);
2600 
2601 	dd->dd_name = name;
2602 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2603 
2604 	/*
2605 	 * Setup DMA descriptor area.
2606 	 */
2607 	dd->dd_dmat = sc->sc_dmat;
2608 
2609 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2610 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2611 
2612 	if (error != 0) {
2613 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2614 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2615 		goto fail0;
2616 	}
2617 
2618 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2619 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2620 	if (error != 0) {
2621 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2622 		    nbuf * ndesc, dd->dd_name, error);
2623 		goto fail1;
2624 	}
2625 
2626 	/* allocate descriptors */
2627 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2628 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2629 	if (error != 0) {
2630 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2631 			"error %u\n", dd->dd_name, error);
2632 		goto fail2;
2633 	}
2634 
2635 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2636 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2637 	if (error != 0) {
2638 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2639 			dd->dd_name, error);
2640 		goto fail3;
2641 	}
2642 
2643 	ds = dd->dd_desc;
2644 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2645 	DPRINTF(sc, ATH_DEBUG_RESET,
2646 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2647 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2648 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2649 
2650 	/* allocate rx buffers */
2651 	bsize = sizeof(struct ath_buf) * nbuf;
2652 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2653 	if (bf == NULL) {
2654 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2655 			dd->dd_name, bsize);
2656 		goto fail4;
2657 	}
2658 	dd->dd_bufptr = bf;
2659 
2660 	STAILQ_INIT(head);
2661 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2662 		bf->bf_desc = ds;
2663 		bf->bf_daddr = DS2PHYS(dd, ds);
2664 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2665 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2666 		if (error != 0) {
2667 			if_printf(ifp, "unable to create dmamap for %s "
2668 				"buffer %u, error %u\n", dd->dd_name, i, error);
2669 			ath_descdma_cleanup(sc, dd, head);
2670 			return error;
2671 		}
2672 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2673 	}
2674 	return 0;
2675 fail4:
2676 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2677 fail3:
2678 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2679 fail2:
2680 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2681 fail1:
2682 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2683 fail0:
2684 	memset(dd, 0, sizeof(*dd));
2685 	return error;
2686 #undef DS2PHYS
2687 }
2688 
2689 static void
2690 ath_descdma_cleanup(struct ath_softc *sc,
2691 	struct ath_descdma *dd, ath_bufhead *head)
2692 {
2693 	struct ath_buf *bf;
2694 	struct ieee80211_node *ni;
2695 
2696 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2697 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2698 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2699 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2700 
2701 	STAILQ_FOREACH(bf, head, bf_list) {
2702 		if (bf->bf_m) {
2703 			m_freem(bf->bf_m);
2704 			bf->bf_m = NULL;
2705 		}
2706 		if (bf->bf_dmamap != NULL) {
2707 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2708 			bf->bf_dmamap = NULL;
2709 		}
2710 		ni = bf->bf_node;
2711 		bf->bf_node = NULL;
2712 		if (ni != NULL) {
2713 			/*
2714 			 * Reclaim node reference.
2715 			 */
2716 			ieee80211_free_node(ni);
2717 		}
2718 	}
2719 
2720 	STAILQ_INIT(head);
2721 	free(dd->dd_bufptr, M_ATHDEV);
2722 	memset(dd, 0, sizeof(*dd));
2723 }
2724 
2725 static int
2726 ath_desc_alloc(struct ath_softc *sc)
2727 {
2728 	int error;
2729 
2730 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2731 			"rx", ath_rxbuf, 1);
2732 	if (error != 0)
2733 		return error;
2734 
2735 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2736 			"tx", ath_txbuf, ATH_TXDESC);
2737 	if (error != 0) {
2738 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2739 		return error;
2740 	}
2741 
2742 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2743 			"beacon", 1, 1);
2744 	if (error != 0) {
2745 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2746 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2747 		return error;
2748 	}
2749 	return 0;
2750 }
2751 
2752 static void
2753 ath_desc_free(struct ath_softc *sc)
2754 {
2755 
2756 	if (sc->sc_bdma.dd_desc_len != 0)
2757 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2758 	if (sc->sc_txdma.dd_desc_len != 0)
2759 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2760 	if (sc->sc_rxdma.dd_desc_len != 0)
2761 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2762 }
2763 
2764 static struct ieee80211_node *
2765 ath_node_alloc(struct ieee80211_node_table *nt)
2766 {
2767 	struct ieee80211com *ic = nt->nt_ic;
2768 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2769 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2770 	struct ath_node *an;
2771 
2772 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2773 	if (an == NULL) {
2774 		/* XXX stat+msg */
2775 		return NULL;
2776 	}
2777 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2778 	ath_rate_node_init(sc, an);
2779 
2780 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2781 	return &an->an_node;
2782 }
2783 
2784 static void
2785 ath_node_free(struct ieee80211_node *ni)
2786 {
2787 	struct ieee80211com *ic = ni->ni_ic;
2788         struct ath_softc *sc = ic->ic_ifp->if_softc;
2789 
2790 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2791 
2792 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2793 	sc->sc_node_free(ni);
2794 }
2795 
2796 static u_int8_t
2797 ath_node_getrssi(const struct ieee80211_node *ni)
2798 {
2799 #define	HAL_EP_RND(x, mul) \
2800 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2801 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2802 	int32_t rssi;
2803 
2804 	/*
2805 	 * When only one frame is received there will be no state in
2806 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2807 	 */
2808 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2809 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2810 	else
2811 		rssi = ni->ni_rssi;
2812 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2813 #undef HAL_EP_RND
2814 }
2815 
2816 static int
2817 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2818 {
2819 	struct ath_hal *ah = sc->sc_ah;
2820 	int error;
2821 	struct mbuf *m;
2822 	struct ath_desc *ds;
2823 
2824 	m = bf->bf_m;
2825 	if (m == NULL) {
2826 		/*
2827 		 * NB: by assigning a page to the rx dma buffer we
2828 		 * implicitly satisfy the Atheros requirement that
2829 		 * this buffer be cache-line-aligned and sized to be
2830 		 * multiple of the cache line size.  Not doing this
2831 		 * causes weird stuff to happen (for the 5210 at least).
2832 		 */
2833 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2834 		if (m == NULL) {
2835 			DPRINTF(sc, ATH_DEBUG_ANY,
2836 				"%s: no mbuf/cluster\n", __func__);
2837 			sc->sc_stats.ast_rx_nombuf++;
2838 			return ENOMEM;
2839 		}
2840 		bf->bf_m = m;
2841 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2842 
2843 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2844 					     bf->bf_dmamap, m,
2845 					     BUS_DMA_NOWAIT);
2846 		if (error != 0) {
2847 			DPRINTF(sc, ATH_DEBUG_ANY,
2848 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2849 			    __func__, error);
2850 			sc->sc_stats.ast_rx_busdma++;
2851 			return error;
2852 		}
2853 		KASSERT(bf->bf_nseg == 1,
2854 			("multi-segment packet; nseg %u", bf->bf_nseg));
2855 	}
2856 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2857 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2858 
2859 	/*
2860 	 * Setup descriptors.  For receive we always terminate
2861 	 * the descriptor list with a self-linked entry so we'll
2862 	 * not get overrun under high load (as can happen with a
2863 	 * 5212 when ANI processing enables PHY error frames).
2864 	 *
2865 	 * To insure the last descriptor is self-linked we create
2866 	 * each descriptor as self-linked and add it to the end.  As
2867 	 * each additional descriptor is added the previous self-linked
2868 	 * entry is ``fixed'' naturally.  This should be safe even
2869 	 * if DMA is happening.  When processing RX interrupts we
2870 	 * never remove/process the last, self-linked, entry on the
2871 	 * descriptor list.  This insures the hardware always has
2872 	 * someplace to write a new frame.
2873 	 */
2874 	ds = bf->bf_desc;
2875 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2876 	ds->ds_data = bf->bf_segs[0].ds_addr;
2877 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2878 	ath_hal_setuprxdesc(ah, ds
2879 		, m->m_len		/* buffer size */
2880 		, 0
2881 	);
2882 
2883 	if (sc->sc_rxlink != NULL)
2884 		*sc->sc_rxlink = bf->bf_daddr;
2885 	sc->sc_rxlink = &ds->ds_link;
2886 	return 0;
2887 }
2888 
2889 /*
2890  * Extend 15-bit time stamp from rx descriptor to
2891  * a full 64-bit TSF using the specified TSF.
2892  */
2893 static inline u_int64_t
2894 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2895 {
2896 	if ((tsf & 0x7fff) < rstamp)
2897 		tsf -= 0x8000;
2898 	return ((tsf &~ 0x7fff) | rstamp);
2899 }
2900 
2901 /*
2902  * Intercept management frames to collect beacon rssi data
2903  * and to do ibss merges.
2904  */
2905 static void
2906 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2907 	struct ieee80211_node *ni,
2908 	int subtype, int rssi, u_int32_t rstamp)
2909 {
2910 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2911 
2912 	/*
2913 	 * Call up first so subsequent work can use information
2914 	 * potentially stored in the node (e.g. for ibss merge).
2915 	 */
2916 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2917 	switch (subtype) {
2918 	case IEEE80211_FC0_SUBTYPE_BEACON:
2919 		/* update rssi statistics for use by the hal */
2920 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2921 		if (sc->sc_syncbeacon &&
2922 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2923 			/*
2924 			 * Resync beacon timers using the tsf of the beacon
2925 			 * frame we just received.
2926 			 */
2927 			ath_beacon_config(sc);
2928 		}
2929 		/* fall thru... */
2930 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2931 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2932 		    ic->ic_state == IEEE80211_S_RUN) {
2933 			u_int64_t tsf = ath_extend_tsf(rstamp,
2934 				ath_hal_gettsf64(sc->sc_ah));
2935 
2936 			/*
2937 			 * Handle ibss merge as needed; check the tsf on the
2938 			 * frame before attempting the merge.  The 802.11 spec
2939 			 * says the station should change it's bssid to match
2940 			 * the oldest station with the same ssid, where oldest
2941 			 * is determined by the tsf.  Note that hardware
2942 			 * reconfiguration happens through callback to
2943 			 * ath_newstate as the state machine will go from
2944 			 * RUN -> RUN when this happens.
2945 			 */
2946 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2947 				DPRINTF(sc, ATH_DEBUG_STATE,
2948 				    "ibss merge, rstamp %u tsf %ju "
2949 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2950 				    (uintmax_t)ni->ni_tstamp.tsf);
2951 				(void) ieee80211_ibss_merge(ni);
2952 			}
2953 		}
2954 		break;
2955 	}
2956 }
2957 
2958 /*
2959  * Set the default antenna.
2960  */
2961 static void
2962 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2963 {
2964 	struct ath_hal *ah = sc->sc_ah;
2965 
2966 	/* XXX block beacon interrupts */
2967 	ath_hal_setdefantenna(ah, antenna);
2968 	if (sc->sc_defant != antenna)
2969 		sc->sc_stats.ast_ant_defswitch++;
2970 	sc->sc_defant = antenna;
2971 	sc->sc_rxotherant = 0;
2972 }
2973 
2974 static void
2975 ath_handle_micerror(struct ieee80211com *ic,
2976 	struct ieee80211_frame *wh, int keyix)
2977 {
2978 	struct ieee80211_node *ni;
2979 
2980 	/* XXX recheck MIC to deal w/ chips that lie */
2981 	/* XXX discard MIC errors on !data frames */
2982 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2983 	if (ni != NULL) {
2984 		ieee80211_notify_michael_failure(ic, wh, keyix);
2985 		ieee80211_free_node(ni);
2986 	}
2987 }
2988 
2989 static void
2990 ath_rx_proc(void *arg, int npending)
2991 {
2992 #define	PA2DESC(_sc, _pa) \
2993 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2994 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2995 	struct ath_softc *sc = arg;
2996 	struct ath_buf *bf;
2997 	struct ieee80211com *ic = &sc->sc_ic;
2998 	struct ifnet *ifp = &sc->sc_if;
2999 	struct ath_hal *ah = sc->sc_ah;
3000 	struct ath_desc *ds;
3001 	struct mbuf *m;
3002 	struct ieee80211_node *ni;
3003 	struct ath_node *an;
3004 	int len, ngood, type;
3005 	u_int phyerr;
3006 	HAL_STATUS status;
3007 	int16_t nf;
3008 	u_int64_t tsf;
3009 	uint8_t rxerr_tap, rxerr_mon;
3010 
3011 	NET_LOCK_GIANT();		/* XXX */
3012 
3013 	rxerr_tap =
3014 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3015 
3016 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3017 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3018 	else if (ifp->if_flags & IFF_PROMISC)
3019 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3020 
3021 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3022 	ngood = 0;
3023 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3024 	tsf = ath_hal_gettsf64(ah);
3025 	do {
3026 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3027 		if (bf == NULL) {		/* NB: shouldn't happen */
3028 			if_printf(ifp, "%s: no buffer!\n", __func__);
3029 			break;
3030 		}
3031 		ds = bf->bf_desc;
3032 		if (ds->ds_link == bf->bf_daddr) {
3033 			/* NB: never process the self-linked entry at the end */
3034 			break;
3035 		}
3036 		m = bf->bf_m;
3037 		if (m == NULL) {		/* NB: shouldn't happen */
3038 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3039 			break;
3040 		}
3041 		/* XXX sync descriptor memory */
3042 		/*
3043 		 * Must provide the virtual address of the current
3044 		 * descriptor, the physical address, and the virtual
3045 		 * address of the next descriptor in the h/w chain.
3046 		 * This allows the HAL to look ahead to see if the
3047 		 * hardware is done with a descriptor by checking the
3048 		 * done bit in the following descriptor and the address
3049 		 * of the current descriptor the DMA engine is working
3050 		 * on.  All this is necessary because of our use of
3051 		 * a self-linked list to avoid rx overruns.
3052 		 */
3053 		status = ath_hal_rxprocdesc(ah, ds,
3054 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3055 				&ds->ds_rxstat);
3056 #ifdef AR_DEBUG
3057 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3058 			ath_printrxbuf(bf, status == HAL_OK);
3059 #endif
3060 		if (status == HAL_EINPROGRESS)
3061 			break;
3062 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3063 		if (ds->ds_rxstat.rs_more) {
3064 			/*
3065 			 * Frame spans multiple descriptors; this
3066 			 * cannot happen yet as we don't support
3067 			 * jumbograms.  If not in monitor mode,
3068 			 * discard the frame.
3069 			 */
3070 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3071 				sc->sc_stats.ast_rx_toobig++;
3072 				goto rx_next;
3073 			}
3074 			/* fall thru for monitor mode handling... */
3075 		} else if (ds->ds_rxstat.rs_status != 0) {
3076 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3077 				sc->sc_stats.ast_rx_crcerr++;
3078 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3079 				sc->sc_stats.ast_rx_fifoerr++;
3080 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3081 				sc->sc_stats.ast_rx_phyerr++;
3082 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3083 				sc->sc_stats.ast_rx_phy[phyerr]++;
3084 				goto rx_next;
3085 			}
3086 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3087 				/*
3088 				 * Decrypt error.  If the error occurred
3089 				 * because there was no hardware key, then
3090 				 * let the frame through so the upper layers
3091 				 * can process it.  This is necessary for 5210
3092 				 * parts which have no way to setup a ``clear''
3093 				 * key cache entry.
3094 				 *
3095 				 * XXX do key cache faulting
3096 				 */
3097 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3098 					goto rx_accept;
3099 				sc->sc_stats.ast_rx_badcrypt++;
3100 			}
3101 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3102 				sc->sc_stats.ast_rx_badmic++;
3103 				/*
3104 				 * Do minimal work required to hand off
3105 				 * the 802.11 header for notifcation.
3106 				 */
3107 				/* XXX frag's and qos frames */
3108 				len = ds->ds_rxstat.rs_datalen;
3109 				if (len >= sizeof (struct ieee80211_frame)) {
3110 					bus_dmamap_sync(sc->sc_dmat,
3111 					    bf->bf_dmamap,
3112 					    0, bf->bf_dmamap->dm_mapsize,
3113 					    BUS_DMASYNC_POSTREAD);
3114 					ath_handle_micerror(ic,
3115 					    mtod(m, struct ieee80211_frame *),
3116 					    sc->sc_splitmic ?
3117 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3118 				}
3119 			}
3120 			ifp->if_ierrors++;
3121 			/*
3122 			 * Reject error frames, we normally don't want
3123 			 * to see them in monitor mode (in monitor mode
3124 			 * allow through packets that have crypto problems).
3125 			 */
3126 
3127 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3128 				goto rx_next;
3129 		}
3130 rx_accept:
3131 		/*
3132 		 * Sync and unmap the frame.  At this point we're
3133 		 * committed to passing the mbuf somewhere so clear
3134 		 * bf_m; this means a new sk_buff must be allocated
3135 		 * when the rx descriptor is setup again to receive
3136 		 * another frame.
3137 		 */
3138 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3139 		    0, bf->bf_dmamap->dm_mapsize,
3140 		    BUS_DMASYNC_POSTREAD);
3141 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3142 		bf->bf_m = NULL;
3143 
3144 		m->m_pkthdr.rcvif = ifp;
3145 		len = ds->ds_rxstat.rs_datalen;
3146 		m->m_pkthdr.len = m->m_len = len;
3147 
3148 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3149 
3150 		if (sc->sc_drvbpf) {
3151 			u_int8_t rix;
3152 
3153 			/*
3154 			 * Discard anything shorter than an ack or cts.
3155 			 */
3156 			if (len < IEEE80211_ACK_LEN) {
3157 				DPRINTF(sc, ATH_DEBUG_RECV,
3158 					"%s: runt packet %d\n",
3159 					__func__, len);
3160 				sc->sc_stats.ast_rx_tooshort++;
3161 				m_freem(m);
3162 				goto rx_next;
3163 			}
3164 			rix = ds->ds_rxstat.rs_rate;
3165 			sc->sc_rx_th.wr_tsf = htole64(
3166 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3167 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3168 			if (ds->ds_rxstat.rs_status &
3169 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3170 				sc->sc_rx_th.wr_flags |=
3171 				    IEEE80211_RADIOTAP_F_BADFCS;
3172 			}
3173 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3174 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3175 			sc->sc_rx_th.wr_antnoise = nf;
3176 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3177 
3178 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3179 			    sc->sc_rx_th_len, m);
3180 		}
3181 
3182 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3183 			m_freem(m);
3184 			goto rx_next;
3185 		}
3186 		/*
3187 		 * From this point on we assume the frame is at least
3188 		 * as large as ieee80211_frame_min; verify that.
3189 		 */
3190 		if (len < IEEE80211_MIN_LEN) {
3191 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3192 				__func__, len);
3193 			sc->sc_stats.ast_rx_tooshort++;
3194 			m_freem(m);
3195 			goto rx_next;
3196 		}
3197 
3198 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3199 			ieee80211_dump_pkt(mtod(m, void *), len,
3200 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3201 				   ds->ds_rxstat.rs_rssi);
3202 		}
3203 
3204 		m_adj(m, -IEEE80211_CRC_LEN);
3205 
3206 		/*
3207 		 * Locate the node for sender, track state, and then
3208 		 * pass the (referenced) node up to the 802.11 layer
3209 		 * for its use.
3210 		 */
3211 		ni = ieee80211_find_rxnode_withkey(ic,
3212 			mtod(m, const struct ieee80211_frame_min *),
3213 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3214 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3215 		/*
3216 		 * Track rx rssi and do any rx antenna management.
3217 		 */
3218 		an = ATH_NODE(ni);
3219 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3220 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3221 		/*
3222 		 * Send frame up for processing.
3223 		 */
3224 		type = ieee80211_input(ic, m, ni,
3225 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3226 		ieee80211_free_node(ni);
3227 		if (sc->sc_diversity) {
3228 			/*
3229 			 * When using fast diversity, change the default rx
3230 			 * antenna if diversity chooses the other antenna 3
3231 			 * times in a row.
3232 			 */
3233 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3234 				if (++sc->sc_rxotherant >= 3)
3235 					ath_setdefantenna(sc,
3236 						ds->ds_rxstat.rs_antenna);
3237 			} else
3238 				sc->sc_rxotherant = 0;
3239 		}
3240 		if (sc->sc_softled) {
3241 			/*
3242 			 * Blink for any data frame.  Otherwise do a
3243 			 * heartbeat-style blink when idle.  The latter
3244 			 * is mainly for station mode where we depend on
3245 			 * periodic beacon frames to trigger the poll event.
3246 			 */
3247 			if (type == IEEE80211_FC0_TYPE_DATA) {
3248 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3249 				ath_led_event(sc, ATH_LED_RX);
3250 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3251 				ath_led_event(sc, ATH_LED_POLL);
3252 		}
3253 		/*
3254 		 * Arrange to update the last rx timestamp only for
3255 		 * frames from our ap when operating in station mode.
3256 		 * This assumes the rx key is always setup when associated.
3257 		 */
3258 		if (ic->ic_opmode == IEEE80211_M_STA &&
3259 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3260 			ngood++;
3261 rx_next:
3262 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3263 	} while (ath_rxbuf_init(sc, bf) == 0);
3264 
3265 	/* rx signal state monitoring */
3266 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3267 #if 0
3268 	if (ath_hal_radar_event(ah))
3269 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3270 #endif
3271 	if (ngood)
3272 		sc->sc_lastrx = tsf;
3273 
3274 #ifdef __NetBSD__
3275 	/* XXX Why isn't this necessary in FreeBSD? */
3276 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3277 		ath_start(ifp);
3278 #endif /* __NetBSD__ */
3279 
3280 	NET_UNLOCK_GIANT();		/* XXX */
3281 #undef PA2DESC
3282 }
3283 
3284 /*
3285  * Setup a h/w transmit queue.
3286  */
3287 static struct ath_txq *
3288 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3289 {
3290 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3291 	struct ath_hal *ah = sc->sc_ah;
3292 	HAL_TXQ_INFO qi;
3293 	int qnum;
3294 
3295 	memset(&qi, 0, sizeof(qi));
3296 	qi.tqi_subtype = subtype;
3297 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3298 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3299 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3300 	/*
3301 	 * Enable interrupts only for EOL and DESC conditions.
3302 	 * We mark tx descriptors to receive a DESC interrupt
3303 	 * when a tx queue gets deep; otherwise waiting for the
3304 	 * EOL to reap descriptors.  Note that this is done to
3305 	 * reduce interrupt load and this only defers reaping
3306 	 * descriptors, never transmitting frames.  Aside from
3307 	 * reducing interrupts this also permits more concurrency.
3308 	 * The only potential downside is if the tx queue backs
3309 	 * up in which case the top half of the kernel may backup
3310 	 * due to a lack of tx descriptors.
3311 	 */
3312 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3313 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3314 	if (qnum == -1) {
3315 		/*
3316 		 * NB: don't print a message, this happens
3317 		 * normally on parts with too few tx queues
3318 		 */
3319 		return NULL;
3320 	}
3321 	if (qnum >= N(sc->sc_txq)) {
3322 		device_printf(sc->sc_dev,
3323 			"hal qnum %u out of range, max %zu!\n",
3324 			qnum, N(sc->sc_txq));
3325 		ath_hal_releasetxqueue(ah, qnum);
3326 		return NULL;
3327 	}
3328 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3329 		struct ath_txq *txq = &sc->sc_txq[qnum];
3330 
3331 		txq->axq_qnum = qnum;
3332 		txq->axq_depth = 0;
3333 		txq->axq_intrcnt = 0;
3334 		txq->axq_link = NULL;
3335 		STAILQ_INIT(&txq->axq_q);
3336 		ATH_TXQ_LOCK_INIT(sc, txq);
3337 		sc->sc_txqsetup |= 1<<qnum;
3338 	}
3339 	return &sc->sc_txq[qnum];
3340 #undef N
3341 }
3342 
3343 /*
3344  * Setup a hardware data transmit queue for the specified
3345  * access control.  The hal may not support all requested
3346  * queues in which case it will return a reference to a
3347  * previously setup queue.  We record the mapping from ac's
3348  * to h/w queues for use by ath_tx_start and also track
3349  * the set of h/w queues being used to optimize work in the
3350  * transmit interrupt handler and related routines.
3351  */
3352 static int
3353 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3354 {
3355 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3356 	struct ath_txq *txq;
3357 
3358 	if (ac >= N(sc->sc_ac2q)) {
3359 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3360 			ac, N(sc->sc_ac2q));
3361 		return 0;
3362 	}
3363 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3364 	if (txq != NULL) {
3365 		sc->sc_ac2q[ac] = txq;
3366 		return 1;
3367 	} else
3368 		return 0;
3369 #undef N
3370 }
3371 
3372 /*
3373  * Update WME parameters for a transmit queue.
3374  */
3375 static int
3376 ath_txq_update(struct ath_softc *sc, int ac)
3377 {
3378 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3379 #define	ATH_TXOP_TO_US(v)		(v<<5)
3380 	struct ieee80211com *ic = &sc->sc_ic;
3381 	struct ath_txq *txq = sc->sc_ac2q[ac];
3382 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3383 	struct ath_hal *ah = sc->sc_ah;
3384 	HAL_TXQ_INFO qi;
3385 
3386 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3387 	qi.tqi_aifs = wmep->wmep_aifsn;
3388 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3389 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3390 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3391 
3392 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3393 		device_printf(sc->sc_dev, "unable to update hardware queue "
3394 			"parameters for %s traffic!\n",
3395 			ieee80211_wme_acnames[ac]);
3396 		return 0;
3397 	} else {
3398 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3399 		return 1;
3400 	}
3401 #undef ATH_TXOP_TO_US
3402 #undef ATH_EXPONENT_TO_VALUE
3403 }
3404 
3405 /*
3406  * Callback from the 802.11 layer to update WME parameters.
3407  */
3408 static int
3409 ath_wme_update(struct ieee80211com *ic)
3410 {
3411 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3412 
3413 	return !ath_txq_update(sc, WME_AC_BE) ||
3414 	    !ath_txq_update(sc, WME_AC_BK) ||
3415 	    !ath_txq_update(sc, WME_AC_VI) ||
3416 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3417 }
3418 
3419 /*
3420  * Reclaim resources for a setup queue.
3421  */
3422 static void
3423 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3424 {
3425 
3426 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3427 	ATH_TXQ_LOCK_DESTROY(txq);
3428 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3429 }
3430 
3431 /*
3432  * Reclaim all tx queue resources.
3433  */
3434 static void
3435 ath_tx_cleanup(struct ath_softc *sc)
3436 {
3437 	int i;
3438 
3439 	ATH_TXBUF_LOCK_DESTROY(sc);
3440 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3441 		if (ATH_TXQ_SETUP(sc, i))
3442 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3443 }
3444 
3445 /*
3446  * Defragment an mbuf chain, returning at most maxfrags separate
3447  * mbufs+clusters.  If this is not possible NULL is returned and
3448  * the original mbuf chain is left in it's present (potentially
3449  * modified) state.  We use two techniques: collapsing consecutive
3450  * mbufs and replacing consecutive mbufs by a cluster.
3451  */
3452 static struct mbuf *
3453 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3454 {
3455 	struct mbuf *m, *n, *n2, **prev;
3456 	u_int curfrags;
3457 
3458 	/*
3459 	 * Calculate the current number of frags.
3460 	 */
3461 	curfrags = 0;
3462 	for (m = m0; m != NULL; m = m->m_next)
3463 		curfrags++;
3464 	/*
3465 	 * First, try to collapse mbufs.  Note that we always collapse
3466 	 * towards the front so we don't need to deal with moving the
3467 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3468 	 * less data than the following.
3469 	 */
3470 	m = m0;
3471 again:
3472 	for (;;) {
3473 		n = m->m_next;
3474 		if (n == NULL)
3475 			break;
3476 		if (n->m_len < M_TRAILINGSPACE(m)) {
3477 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3478 				n->m_len);
3479 			m->m_len += n->m_len;
3480 			m->m_next = n->m_next;
3481 			m_free(n);
3482 			if (--curfrags <= maxfrags)
3483 				return m0;
3484 		} else
3485 			m = n;
3486 	}
3487 	KASSERT(maxfrags > 1,
3488 		("maxfrags %u, but normal collapse failed", maxfrags));
3489 	/*
3490 	 * Collapse consecutive mbufs to a cluster.
3491 	 */
3492 	prev = &m0->m_next;		/* NB: not the first mbuf */
3493 	while ((n = *prev) != NULL) {
3494 		if ((n2 = n->m_next) != NULL &&
3495 		    n->m_len + n2->m_len < MCLBYTES) {
3496 			m = m_getcl(how, MT_DATA, 0);
3497 			if (m == NULL)
3498 				goto bad;
3499 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3500 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3501 				n2->m_len);
3502 			m->m_len = n->m_len + n2->m_len;
3503 			m->m_next = n2->m_next;
3504 			*prev = m;
3505 			m_free(n);
3506 			m_free(n2);
3507 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3508 				return m0;
3509 			/*
3510 			 * Still not there, try the normal collapse
3511 			 * again before we allocate another cluster.
3512 			 */
3513 			goto again;
3514 		}
3515 		prev = &n->m_next;
3516 	}
3517 	/*
3518 	 * No place where we can collapse to a cluster; punt.
3519 	 * This can occur if, for example, you request 2 frags
3520 	 * but the packet requires that both be clusters (we
3521 	 * never reallocate the first mbuf to avoid moving the
3522 	 * packet header).
3523 	 */
3524 bad:
3525 	return NULL;
3526 }
3527 
3528 /*
3529  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3530  */
3531 static int
3532 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3533 {
3534 	int i;
3535 
3536 	for (i = 0; i < rt->rateCount; i++)
3537 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3538 			return i;
3539 	return 0;		/* NB: lowest rate */
3540 }
3541 
3542 static void
3543 ath_freetx(struct mbuf *m)
3544 {
3545 	struct mbuf *next;
3546 
3547 	do {
3548 		next = m->m_nextpkt;
3549 		m->m_nextpkt = NULL;
3550 		m_freem(m);
3551 	} while ((m = next) != NULL);
3552 }
3553 
3554 static int
3555 deduct_pad_bytes(int len, int hdrlen)
3556 {
3557 	/* XXX I am suspicious that this code, which I extracted
3558 	 * XXX from ath_tx_start() for reuse, does the right thing.
3559 	 */
3560 	return len - (hdrlen & 3);
3561 }
3562 
3563 static int
3564 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3565     struct mbuf *m0)
3566 {
3567 	struct ieee80211com *ic = &sc->sc_ic;
3568 	struct ath_hal *ah = sc->sc_ah;
3569 	struct ifnet *ifp = &sc->sc_if;
3570 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3571 	int i, error, iswep, ismcast, isfrag, ismrr;
3572 	int keyix, hdrlen, pktlen, try0;
3573 	u_int8_t rix, txrate, ctsrate;
3574 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3575 	struct ath_desc *ds, *ds0;
3576 	struct ath_txq *txq;
3577 	struct ieee80211_frame *wh;
3578 	u_int subtype, flags, ctsduration;
3579 	HAL_PKT_TYPE atype;
3580 	const HAL_RATE_TABLE *rt;
3581 	HAL_BOOL shortPreamble;
3582 	struct ath_node *an;
3583 	struct mbuf *m;
3584 	u_int pri;
3585 
3586 	wh = mtod(m0, struct ieee80211_frame *);
3587 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3588 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3589 	isfrag = m0->m_flags & M_FRAG;
3590 	hdrlen = ieee80211_anyhdrsize(wh);
3591 	/*
3592 	 * Packet length must not include any
3593 	 * pad bytes; deduct them here.
3594 	 */
3595 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3596 
3597 	if (iswep) {
3598 		const struct ieee80211_cipher *cip;
3599 		struct ieee80211_key *k;
3600 
3601 		/*
3602 		 * Construct the 802.11 header+trailer for an encrypted
3603 		 * frame. The only reason this can fail is because of an
3604 		 * unknown or unsupported cipher/key type.
3605 		 */
3606 		k = ieee80211_crypto_encap(ic, ni, m0);
3607 		if (k == NULL) {
3608 			/*
3609 			 * This can happen when the key is yanked after the
3610 			 * frame was queued.  Just discard the frame; the
3611 			 * 802.11 layer counts failures and provides
3612 			 * debugging/diagnostics.
3613 			 */
3614 			ath_freetx(m0);
3615 			return EIO;
3616 		}
3617 		/*
3618 		 * Adjust the packet + header lengths for the crypto
3619 		 * additions and calculate the h/w key index.  When
3620 		 * a s/w mic is done the frame will have had any mic
3621 		 * added to it prior to entry so m0->m_pkthdr.len above will
3622 		 * account for it. Otherwise we need to add it to the
3623 		 * packet length.
3624 		 */
3625 		cip = k->wk_cipher;
3626 		hdrlen += cip->ic_header;
3627 		pktlen += cip->ic_header + cip->ic_trailer;
3628 		/* NB: frags always have any TKIP MIC done in s/w */
3629 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3630 			pktlen += cip->ic_miclen;
3631 		keyix = k->wk_keyix;
3632 
3633 		/* packet header may have moved, reset our local pointer */
3634 		wh = mtod(m0, struct ieee80211_frame *);
3635 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3636 		/*
3637 		 * Use station key cache slot, if assigned.
3638 		 */
3639 		keyix = ni->ni_ucastkey.wk_keyix;
3640 		if (keyix == IEEE80211_KEYIX_NONE)
3641 			keyix = HAL_TXKEYIX_INVALID;
3642 	} else
3643 		keyix = HAL_TXKEYIX_INVALID;
3644 
3645 	pktlen += IEEE80211_CRC_LEN;
3646 
3647 	/*
3648 	 * Load the DMA map so any coalescing is done.  This
3649 	 * also calculates the number of descriptors we need.
3650 	 */
3651 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3652 				     BUS_DMA_NOWAIT);
3653 	if (error == EFBIG) {
3654 		/* XXX packet requires too many descriptors */
3655 		bf->bf_nseg = ATH_TXDESC+1;
3656 	} else if (error != 0) {
3657 		sc->sc_stats.ast_tx_busdma++;
3658 		ath_freetx(m0);
3659 		return error;
3660 	}
3661 	/*
3662 	 * Discard null packets and check for packets that
3663 	 * require too many TX descriptors.  We try to convert
3664 	 * the latter to a cluster.
3665 	 */
3666 	if (error == EFBIG) {		/* too many desc's, linearize */
3667 		sc->sc_stats.ast_tx_linear++;
3668 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3669 		if (m == NULL) {
3670 			ath_freetx(m0);
3671 			sc->sc_stats.ast_tx_nombuf++;
3672 			return ENOMEM;
3673 		}
3674 		m0 = m;
3675 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3676 					     BUS_DMA_NOWAIT);
3677 		if (error != 0) {
3678 			sc->sc_stats.ast_tx_busdma++;
3679 			ath_freetx(m0);
3680 			return error;
3681 		}
3682 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3683 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3684 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3685 		sc->sc_stats.ast_tx_nodata++;
3686 		ath_freetx(m0);
3687 		return EIO;
3688 	}
3689 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3690 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3691             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3692 	bf->bf_m = m0;
3693 	bf->bf_node = ni;			/* NB: held reference */
3694 
3695 	/* setup descriptors */
3696 	ds = bf->bf_desc;
3697 	rt = sc->sc_currates;
3698 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3699 
3700 	/*
3701 	 * NB: the 802.11 layer marks whether or not we should
3702 	 * use short preamble based on the current mode and
3703 	 * negotiated parameters.
3704 	 */
3705 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3706 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3707 		shortPreamble = AH_TRUE;
3708 		sc->sc_stats.ast_tx_shortpre++;
3709 	} else {
3710 		shortPreamble = AH_FALSE;
3711 	}
3712 
3713 	an = ATH_NODE(ni);
3714 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3715 	ismrr = 0;				/* default no multi-rate retry*/
3716 	/*
3717 	 * Calculate Atheros packet type from IEEE80211 packet header,
3718 	 * setup for rate calculations, and select h/w transmit queue.
3719 	 */
3720 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3721 	case IEEE80211_FC0_TYPE_MGT:
3722 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3723 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3724 			atype = HAL_PKT_TYPE_BEACON;
3725 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3726 			atype = HAL_PKT_TYPE_PROBE_RESP;
3727 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3728 			atype = HAL_PKT_TYPE_ATIM;
3729 		else
3730 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3731 		rix = sc->sc_minrateix;
3732 		txrate = rt->info[rix].rateCode;
3733 		if (shortPreamble)
3734 			txrate |= rt->info[rix].shortPreamble;
3735 		try0 = ATH_TXMGTTRY;
3736 		/* NB: force all management frames to highest queue */
3737 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3738 			/* NB: force all management frames to highest queue */
3739 			pri = WME_AC_VO;
3740 		} else
3741 			pri = WME_AC_BE;
3742 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3743 		break;
3744 	case IEEE80211_FC0_TYPE_CTL:
3745 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3746 		rix = sc->sc_minrateix;
3747 		txrate = rt->info[rix].rateCode;
3748 		if (shortPreamble)
3749 			txrate |= rt->info[rix].shortPreamble;
3750 		try0 = ATH_TXMGTTRY;
3751 		/* NB: force all ctl frames to highest queue */
3752 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3753 			/* NB: force all ctl frames to highest queue */
3754 			pri = WME_AC_VO;
3755 		} else
3756 			pri = WME_AC_BE;
3757 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3758 		break;
3759 	case IEEE80211_FC0_TYPE_DATA:
3760 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3761 		/*
3762 		 * Data frames: multicast frames go out at a fixed rate,
3763 		 * otherwise consult the rate control module for the
3764 		 * rate to use.
3765 		 */
3766 		if (ismcast) {
3767 			/*
3768 			 * Check mcast rate setting in case it's changed.
3769 			 * XXX move out of fastpath
3770 			 */
3771 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3772 				sc->sc_mcastrix =
3773 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3774 				sc->sc_mcastrate = ic->ic_mcast_rate;
3775 			}
3776 			rix = sc->sc_mcastrix;
3777 			txrate = rt->info[rix].rateCode;
3778 			try0 = 1;
3779 		} else {
3780 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3781 				&rix, &try0, &txrate);
3782 			sc->sc_txrate = txrate;		/* for LED blinking */
3783 			if (try0 != ATH_TXMAXTRY)
3784 				ismrr = 1;
3785 		}
3786 		pri = M_WME_GETAC(m0);
3787 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3788 			flags |= HAL_TXDESC_NOACK;
3789 		break;
3790 	default:
3791 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3792 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3793 		/* XXX statistic */
3794 		ath_freetx(m0);
3795 		return EIO;
3796 	}
3797 	txq = sc->sc_ac2q[pri];
3798 
3799 	/*
3800 	 * When servicing one or more stations in power-save mode
3801 	 * multicast frames must be buffered until after the beacon.
3802 	 * We use the CAB queue for that.
3803 	 */
3804 	if (ismcast && ic->ic_ps_sta) {
3805 		txq = sc->sc_cabq;
3806 		/* XXX? more bit in 802.11 frame header */
3807 	}
3808 
3809 	/*
3810 	 * Calculate miscellaneous flags.
3811 	 */
3812 	if (ismcast) {
3813 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3814 	} else if (pktlen > ic->ic_rtsthreshold) {
3815 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3816 		cix = rt->info[rix].controlRate;
3817 		sc->sc_stats.ast_tx_rts++;
3818 	}
3819 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3820 		sc->sc_stats.ast_tx_noack++;
3821 
3822 	/*
3823 	 * If 802.11g protection is enabled, determine whether
3824 	 * to use RTS/CTS or just CTS.  Note that this is only
3825 	 * done for OFDM unicast frames.
3826 	 */
3827 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3828 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3829 	    (flags & HAL_TXDESC_NOACK) == 0) {
3830 		/* XXX fragments must use CCK rates w/ protection */
3831 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3832 			flags |= HAL_TXDESC_RTSENA;
3833 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3834 			flags |= HAL_TXDESC_CTSENA;
3835 		if (isfrag) {
3836 			/*
3837 			 * For frags it would be desirable to use the
3838 			 * highest CCK rate for RTS/CTS.  But stations
3839 			 * farther away may detect it at a lower CCK rate
3840 			 * so use the configured protection rate instead
3841 			 * (for now).
3842 			 */
3843 			cix = rt->info[sc->sc_protrix].controlRate;
3844 		} else
3845 			cix = rt->info[sc->sc_protrix].controlRate;
3846 		sc->sc_stats.ast_tx_protect++;
3847 	}
3848 
3849 	/*
3850 	 * Calculate duration.  This logically belongs in the 802.11
3851 	 * layer but it lacks sufficient information to calculate it.
3852 	 */
3853 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3854 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3855 		u_int16_t dur;
3856 		/*
3857 		 * XXX not right with fragmentation.
3858 		 */
3859 		if (shortPreamble)
3860 			dur = rt->info[rix].spAckDuration;
3861 		else
3862 			dur = rt->info[rix].lpAckDuration;
3863 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3864 			dur += dur;             /* additional SIFS+ACK */
3865 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3866 			/*
3867 			 * Include the size of next fragment so NAV is
3868 			 * updated properly.  The last fragment uses only
3869 			 * the ACK duration
3870 			 */
3871 			dur += ath_hal_computetxtime(ah, rt,
3872 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3873 			        hdrlen) -
3874 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3875 			    rix, shortPreamble);
3876 		}
3877 		if (isfrag) {
3878 			/*
3879 			 * Force hardware to use computed duration for next
3880 			 * fragment by disabling multi-rate retry which updates
3881 			 * duration based on the multi-rate duration table.
3882 			 */
3883 			try0 = ATH_TXMAXTRY;
3884 		}
3885 		*(u_int16_t *)wh->i_dur = htole16(dur);
3886 	}
3887 
3888 	/*
3889 	 * Calculate RTS/CTS rate and duration if needed.
3890 	 */
3891 	ctsduration = 0;
3892 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3893 		/*
3894 		 * CTS transmit rate is derived from the transmit rate
3895 		 * by looking in the h/w rate table.  We must also factor
3896 		 * in whether or not a short preamble is to be used.
3897 		 */
3898 		/* NB: cix is set above where RTS/CTS is enabled */
3899 		KASSERT(cix != 0xff, ("cix not setup"));
3900 		ctsrate = rt->info[cix].rateCode;
3901 		/*
3902 		 * Compute the transmit duration based on the frame
3903 		 * size and the size of an ACK frame.  We call into the
3904 		 * HAL to do the computation since it depends on the
3905 		 * characteristics of the actual PHY being used.
3906 		 *
3907 		 * NB: CTS is assumed the same size as an ACK so we can
3908 		 *     use the precalculated ACK durations.
3909 		 */
3910 		if (shortPreamble) {
3911 			ctsrate |= rt->info[cix].shortPreamble;
3912 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3913 				ctsduration += rt->info[cix].spAckDuration;
3914 			ctsduration += ath_hal_computetxtime(ah,
3915 				rt, pktlen, rix, AH_TRUE);
3916 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3917 				ctsduration += rt->info[rix].spAckDuration;
3918 		} else {
3919 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3920 				ctsduration += rt->info[cix].lpAckDuration;
3921 			ctsduration += ath_hal_computetxtime(ah,
3922 				rt, pktlen, rix, AH_FALSE);
3923 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3924 				ctsduration += rt->info[rix].lpAckDuration;
3925 		}
3926 		/*
3927 		 * Must disable multi-rate retry when using RTS/CTS.
3928 		 */
3929 		ismrr = 0;
3930 		try0 = ATH_TXMGTTRY;		/* XXX */
3931 	} else
3932 		ctsrate = 0;
3933 
3934 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3935 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3936 			sc->sc_hwmap[txrate].ieeerate, -1);
3937 	bpf_mtap3(ic->ic_rawbpf, m0);
3938 	if (sc->sc_drvbpf) {
3939 		u_int64_t tsf = ath_hal_gettsf64(ah);
3940 
3941 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3942 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3943 		if (iswep)
3944 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3945 		if (isfrag)
3946 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3947 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3948 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3949 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3950 
3951 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3952 	}
3953 
3954 	/*
3955 	 * Determine if a tx interrupt should be generated for
3956 	 * this descriptor.  We take a tx interrupt to reap
3957 	 * descriptors when the h/w hits an EOL condition or
3958 	 * when the descriptor is specifically marked to generate
3959 	 * an interrupt.  We periodically mark descriptors in this
3960 	 * way to insure timely replenishing of the supply needed
3961 	 * for sending frames.  Defering interrupts reduces system
3962 	 * load and potentially allows more concurrent work to be
3963 	 * done but if done to aggressively can cause senders to
3964 	 * backup.
3965 	 *
3966 	 * NB: use >= to deal with sc_txintrperiod changing
3967 	 *     dynamically through sysctl.
3968 	 */
3969 	if (flags & HAL_TXDESC_INTREQ) {
3970 		txq->axq_intrcnt = 0;
3971 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3972 		flags |= HAL_TXDESC_INTREQ;
3973 		txq->axq_intrcnt = 0;
3974 	}
3975 
3976 	/*
3977 	 * Formulate first tx descriptor with tx controls.
3978 	 */
3979 	/* XXX check return value? */
3980 	ath_hal_setuptxdesc(ah, ds
3981 		, pktlen		/* packet length */
3982 		, hdrlen		/* header length */
3983 		, atype			/* Atheros packet type */
3984 		, ni->ni_txpower	/* txpower */
3985 		, txrate, try0		/* series 0 rate/tries */
3986 		, keyix			/* key cache index */
3987 		, sc->sc_txantenna	/* antenna mode */
3988 		, flags			/* flags */
3989 		, ctsrate		/* rts/cts rate */
3990 		, ctsduration		/* rts/cts duration */
3991 	);
3992 	bf->bf_flags = flags;
3993 	/*
3994 	 * Setup the multi-rate retry state only when we're
3995 	 * going to use it.  This assumes ath_hal_setuptxdesc
3996 	 * initializes the descriptors (so we don't have to)
3997 	 * when the hardware supports multi-rate retry and
3998 	 * we don't use it.
3999 	 */
4000 	if (ismrr)
4001 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4002 
4003 	/*
4004 	 * Fillin the remainder of the descriptor info.
4005 	 */
4006 	ds0 = ds;
4007 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4008 		ds->ds_data = bf->bf_segs[i].ds_addr;
4009 		if (i == bf->bf_nseg - 1)
4010 			ds->ds_link = 0;
4011 		else
4012 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4013 		ath_hal_filltxdesc(ah, ds
4014 			, bf->bf_segs[i].ds_len	/* segment length */
4015 			, i == 0		/* first segment */
4016 			, i == bf->bf_nseg - 1	/* last segment */
4017 			, ds0			/* first descriptor */
4018 		);
4019 
4020 		/* NB: The desc swap function becomes void,
4021 		 * if descriptor swapping is not enabled
4022 		 */
4023 		ath_desc_swap(ds);
4024 
4025 		DPRINTF(sc, ATH_DEBUG_XMIT,
4026 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4027 			__func__, i, ds->ds_link, ds->ds_data,
4028 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4029 	}
4030 	/*
4031 	 * Insert the frame on the outbound list and
4032 	 * pass it on to the hardware.
4033 	 */
4034 	ATH_TXQ_LOCK(txq);
4035 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4036 	if (txq->axq_link == NULL) {
4037 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4038 		DPRINTF(sc, ATH_DEBUG_XMIT,
4039 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4040 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4041 		    txq->axq_depth);
4042 	} else {
4043 		*txq->axq_link = HTOAH32(bf->bf_daddr);
4044 		DPRINTF(sc, ATH_DEBUG_XMIT,
4045 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4046 		    __func__, txq->axq_qnum, txq->axq_link,
4047 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4048 	}
4049 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4050 	/*
4051 	 * The CAB queue is started from the SWBA handler since
4052 	 * frames only go out on DTIM and to avoid possible races.
4053 	 */
4054 	if (txq != sc->sc_cabq)
4055 		ath_hal_txstart(ah, txq->axq_qnum);
4056 	ATH_TXQ_UNLOCK(txq);
4057 
4058 	return 0;
4059 }
4060 
4061 /*
4062  * Process completed xmit descriptors from the specified queue.
4063  */
4064 static int
4065 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4066 {
4067 	struct ath_hal *ah = sc->sc_ah;
4068 	struct ieee80211com *ic = &sc->sc_ic;
4069 	struct ath_buf *bf;
4070 	struct ath_desc *ds, *ds0;
4071 	struct ieee80211_node *ni;
4072 	struct ath_node *an;
4073 	int sr, lr, pri, nacked;
4074 	HAL_STATUS status;
4075 
4076 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4077 		__func__, txq->axq_qnum,
4078 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4079 		txq->axq_link);
4080 	nacked = 0;
4081 	for (;;) {
4082 		ATH_TXQ_LOCK(txq);
4083 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4084 		bf = STAILQ_FIRST(&txq->axq_q);
4085 		if (bf == NULL) {
4086 			txq->axq_link = NULL;
4087 			ATH_TXQ_UNLOCK(txq);
4088 			break;
4089 		}
4090 		ds0 = &bf->bf_desc[0];
4091 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4092 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4093 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4094 			ath_printtxbuf(bf, status == HAL_OK);
4095 		if (status == HAL_EINPROGRESS) {
4096 			ATH_TXQ_UNLOCK(txq);
4097 			break;
4098 		}
4099 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4100 		ATH_TXQ_UNLOCK(txq);
4101 
4102 		ni = bf->bf_node;
4103 		if (ni != NULL) {
4104 			an = ATH_NODE(ni);
4105 			if (ds->ds_txstat.ts_status == 0) {
4106 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4107 				sc->sc_stats.ast_ant_tx[txant]++;
4108 				sc->sc_ant_tx[txant]++;
4109 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4110 					sc->sc_stats.ast_tx_altrate++;
4111 				sc->sc_stats.ast_tx_rssi =
4112 					ds->ds_txstat.ts_rssi;
4113 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4114 					ds->ds_txstat.ts_rssi);
4115 				pri = M_WME_GETAC(bf->bf_m);
4116 				if (pri >= WME_AC_VO)
4117 					ic->ic_wme.wme_hipri_traffic++;
4118 				ni->ni_inact = ni->ni_inact_reload;
4119 			} else {
4120 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4121 					sc->sc_stats.ast_tx_xretries++;
4122 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4123 					sc->sc_stats.ast_tx_fifoerr++;
4124 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4125 					sc->sc_stats.ast_tx_filtered++;
4126 			}
4127 			sr = ds->ds_txstat.ts_shortretry;
4128 			lr = ds->ds_txstat.ts_longretry;
4129 			sc->sc_stats.ast_tx_shortretry += sr;
4130 			sc->sc_stats.ast_tx_longretry += lr;
4131 			/*
4132 			 * Hand the descriptor to the rate control algorithm.
4133 			 */
4134 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4135 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4136 				/*
4137 				 * If frame was ack'd update the last rx time
4138 				 * used to workaround phantom bmiss interrupts.
4139 				 */
4140 				if (ds->ds_txstat.ts_status == 0)
4141 					nacked++;
4142 				ath_rate_tx_complete(sc, an, ds, ds0);
4143 			}
4144 			/*
4145 			 * Reclaim reference to node.
4146 			 *
4147 			 * NB: the node may be reclaimed here if, for example
4148 			 *     this is a DEAUTH message that was sent and the
4149 			 *     node was timed out due to inactivity.
4150 			 */
4151 			ieee80211_free_node(ni);
4152 		}
4153 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4154 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4155 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4156 		m_freem(bf->bf_m);
4157 		bf->bf_m = NULL;
4158 		bf->bf_node = NULL;
4159 
4160 		ATH_TXBUF_LOCK(sc);
4161 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4162 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4163 		ATH_TXBUF_UNLOCK(sc);
4164 	}
4165 	return nacked;
4166 }
4167 
4168 static inline int
4169 txqactive(struct ath_hal *ah, int qnum)
4170 {
4171 	u_int32_t txqs = 1<<qnum;
4172 	ath_hal_gettxintrtxqs(ah, &txqs);
4173 	return (txqs & (1<<qnum));
4174 }
4175 
4176 /*
4177  * Deferred processing of transmit interrupt; special-cased
4178  * for a single hardware transmit queue (e.g. 5210 and 5211).
4179  */
4180 static void
4181 ath_tx_proc_q0(void *arg, int npending)
4182 {
4183 	struct ath_softc *sc = arg;
4184 	struct ifnet *ifp = &sc->sc_if;
4185 
4186 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4187 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4188 	}
4189 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4190 		ath_tx_processq(sc, sc->sc_cabq);
4191 
4192 	if (sc->sc_softled)
4193 		ath_led_event(sc, ATH_LED_TX);
4194 
4195 	ath_start(ifp);
4196 }
4197 
4198 /*
4199  * Deferred processing of transmit interrupt; special-cased
4200  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4201  */
4202 static void
4203 ath_tx_proc_q0123(void *arg, int npending)
4204 {
4205 	struct ath_softc *sc = arg;
4206 	struct ifnet *ifp = &sc->sc_if;
4207 	int nacked;
4208 
4209 	/*
4210 	 * Process each active queue.
4211 	 */
4212 	nacked = 0;
4213 	if (txqactive(sc->sc_ah, 0))
4214 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4215 	if (txqactive(sc->sc_ah, 1))
4216 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4217 	if (txqactive(sc->sc_ah, 2))
4218 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4219 	if (txqactive(sc->sc_ah, 3))
4220 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4221 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4222 		ath_tx_processq(sc, sc->sc_cabq);
4223 	if (nacked) {
4224 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4225 	}
4226 
4227 	if (sc->sc_softled)
4228 		ath_led_event(sc, ATH_LED_TX);
4229 
4230 	ath_start(ifp);
4231 }
4232 
4233 /*
4234  * Deferred processing of transmit interrupt.
4235  */
4236 static void
4237 ath_tx_proc(void *arg, int npending)
4238 {
4239 	struct ath_softc *sc = arg;
4240 	struct ifnet *ifp = &sc->sc_if;
4241 	int i, nacked;
4242 
4243 	/*
4244 	 * Process each active queue.
4245 	 */
4246 	nacked = 0;
4247 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4248 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4249 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4250 	if (nacked) {
4251 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4252 	}
4253 
4254 	if (sc->sc_softled)
4255 		ath_led_event(sc, ATH_LED_TX);
4256 
4257 	ath_start(ifp);
4258 }
4259 
4260 static void
4261 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4262 {
4263 	struct ath_hal *ah = sc->sc_ah;
4264 	struct ieee80211_node *ni;
4265 	struct ath_buf *bf;
4266 	struct ath_desc *ds;
4267 
4268 	/*
4269 	 * NB: this assumes output has been stopped and
4270 	 *     we do not need to block ath_tx_tasklet
4271 	 */
4272 	for (;;) {
4273 		ATH_TXQ_LOCK(txq);
4274 		bf = STAILQ_FIRST(&txq->axq_q);
4275 		if (bf == NULL) {
4276 			txq->axq_link = NULL;
4277 			ATH_TXQ_UNLOCK(txq);
4278 			break;
4279 		}
4280 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4281 		ATH_TXQ_UNLOCK(txq);
4282 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4283 		if (sc->sc_debug & ATH_DEBUG_RESET)
4284 			ath_printtxbuf(bf,
4285 				ath_hal_txprocdesc(ah, bf->bf_desc,
4286 					&ds->ds_txstat) == HAL_OK);
4287 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4288 		m_freem(bf->bf_m);
4289 		bf->bf_m = NULL;
4290 		ni = bf->bf_node;
4291 		bf->bf_node = NULL;
4292 		if (ni != NULL) {
4293 			/*
4294 			 * Reclaim node reference.
4295 			 */
4296 			ieee80211_free_node(ni);
4297 		}
4298 		ATH_TXBUF_LOCK(sc);
4299 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4300 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4301 		ATH_TXBUF_UNLOCK(sc);
4302 	}
4303 }
4304 
4305 static void
4306 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4307 {
4308 	struct ath_hal *ah = sc->sc_ah;
4309 
4310 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4311 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4312 	    __func__, txq->axq_qnum,
4313 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4314 	    txq->axq_link);
4315 }
4316 
4317 /*
4318  * Drain the transmit queues and reclaim resources.
4319  */
4320 static void
4321 ath_draintxq(struct ath_softc *sc)
4322 {
4323 	struct ath_hal *ah = sc->sc_ah;
4324 	int i;
4325 
4326 	/* XXX return value */
4327 	if (device_is_active(sc->sc_dev)) {
4328 		/* don't touch the hardware if marked invalid */
4329 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4330 		DPRINTF(sc, ATH_DEBUG_RESET,
4331 		    "%s: beacon queue %p\n", __func__,
4332 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4333 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4334 			if (ATH_TXQ_SETUP(sc, i))
4335 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4336 	}
4337 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4338 		if (ATH_TXQ_SETUP(sc, i))
4339 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4340 }
4341 
4342 /*
4343  * Disable the receive h/w in preparation for a reset.
4344  */
4345 static void
4346 ath_stoprecv(struct ath_softc *sc)
4347 {
4348 #define	PA2DESC(_sc, _pa) \
4349 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4350 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4351 	struct ath_hal *ah = sc->sc_ah;
4352 	u_int64_t tsf;
4353 
4354 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4355 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4356 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4357 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4358 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4359 		struct ath_buf *bf;
4360 
4361 		printf("%s: rx queue %p, link %p\n", __func__,
4362 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4363 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4364 			struct ath_desc *ds = bf->bf_desc;
4365 			tsf = ath_hal_gettsf64(sc->sc_ah);
4366 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4367 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4368 				&ds->ds_rxstat);
4369 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4370 				ath_printrxbuf(bf, status == HAL_OK);
4371 		}
4372 	}
4373 	sc->sc_rxlink = NULL;		/* just in case */
4374 #undef PA2DESC
4375 }
4376 
4377 /*
4378  * Enable the receive h/w following a reset.
4379  */
4380 static int
4381 ath_startrecv(struct ath_softc *sc)
4382 {
4383 	struct ath_hal *ah = sc->sc_ah;
4384 	struct ath_buf *bf;
4385 
4386 	sc->sc_rxlink = NULL;
4387 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4388 		int error = ath_rxbuf_init(sc, bf);
4389 		if (error != 0) {
4390 			DPRINTF(sc, ATH_DEBUG_RECV,
4391 				"%s: ath_rxbuf_init failed %d\n",
4392 				__func__, error);
4393 			return error;
4394 		}
4395 	}
4396 
4397 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4398 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4399 	ath_hal_rxena(ah);		/* enable recv descriptors */
4400 	ath_mode_init(sc);		/* set filters, etc. */
4401 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4402 	return 0;
4403 }
4404 
4405 /*
4406  * Update internal state after a channel change.
4407  */
4408 static void
4409 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4410 {
4411 	struct ieee80211com *ic = &sc->sc_ic;
4412 	enum ieee80211_phymode mode;
4413 	u_int16_t flags;
4414 
4415 	/*
4416 	 * Change channels and update the h/w rate map
4417 	 * if we're switching; e.g. 11a to 11b/g.
4418 	 */
4419 	mode = ieee80211_chan2mode(ic, chan);
4420 	if (mode != sc->sc_curmode)
4421 		ath_setcurmode(sc, mode);
4422 	/*
4423 	 * Update BPF state.  NB: ethereal et. al. don't handle
4424 	 * merged flags well so pick a unique mode for their use.
4425 	 */
4426 	if (IEEE80211_IS_CHAN_A(chan))
4427 		flags = IEEE80211_CHAN_A;
4428 	/* XXX 11g schizophrenia */
4429 	else if (IEEE80211_IS_CHAN_G(chan) ||
4430 	    IEEE80211_IS_CHAN_PUREG(chan))
4431 		flags = IEEE80211_CHAN_G;
4432 	else
4433 		flags = IEEE80211_CHAN_B;
4434 	if (IEEE80211_IS_CHAN_T(chan))
4435 		flags |= IEEE80211_CHAN_TURBO;
4436 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4437 		htole16(chan->ic_freq);
4438 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4439 		htole16(flags);
4440 }
4441 
4442 #if 0
4443 /*
4444  * Poll for a channel clear indication; this is required
4445  * for channels requiring DFS and not previously visited
4446  * and/or with a recent radar detection.
4447  */
4448 static void
4449 ath_dfswait(void *arg)
4450 {
4451 	struct ath_softc *sc = arg;
4452 	struct ath_hal *ah = sc->sc_ah;
4453 	HAL_CHANNEL hchan;
4454 
4455 	ath_hal_radar_wait(ah, &hchan);
4456 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4457 		if_printf(&sc->sc_if,
4458 		    "channel %u/0x%x/0x%x has interference\n",
4459 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4460 		return;
4461 	}
4462 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4463 		/* XXX should not happen */
4464 		return;
4465 	}
4466 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4467 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4468 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4469 		if_printf(&sc->sc_if,
4470 		    "channel %u/0x%x/0x%x marked clear\n",
4471 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4472 	} else
4473 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4474 }
4475 #endif
4476 
4477 /*
4478  * Set/change channels.  If the channel is really being changed,
4479  * it's done by reseting the chip.  To accomplish this we must
4480  * first cleanup any pending DMA, then restart stuff after a la
4481  * ath_init.
4482  */
4483 static int
4484 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4485 {
4486 	struct ath_hal *ah = sc->sc_ah;
4487 	struct ieee80211com *ic = &sc->sc_ic;
4488 	HAL_CHANNEL hchan;
4489 
4490 	/*
4491 	 * Convert to a HAL channel description with
4492 	 * the flags constrained to reflect the current
4493 	 * operating mode.
4494 	 */
4495 	hchan.channel = chan->ic_freq;
4496 	hchan.channelFlags = ath_chan2flags(ic, chan);
4497 
4498 	DPRINTF(sc, ATH_DEBUG_RESET,
4499 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4500 	    __func__,
4501 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4502 		sc->sc_curchan.channelFlags),
4503 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4504 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4505 	        hchan.channel, hchan.channelFlags);
4506 	if (hchan.channel != sc->sc_curchan.channel ||
4507 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4508 		HAL_STATUS status;
4509 
4510 		/*
4511 		 * To switch channels clear any pending DMA operations;
4512 		 * wait long enough for the RX fifo to drain, reset the
4513 		 * hardware at the new frequency, and then re-enable
4514 		 * the relevant bits of the h/w.
4515 		 */
4516 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4517 		ath_draintxq(sc);		/* clear pending tx frames */
4518 		ath_stoprecv(sc);		/* turn off frame recv */
4519 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4520 			if_printf(ic->ic_ifp, "%s: unable to reset "
4521 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4522 			    __func__, ieee80211_chan2ieee(ic, chan),
4523 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4524 			return EIO;
4525 		}
4526 		sc->sc_curchan = hchan;
4527 		ath_update_txpow(sc);		/* update tx power state */
4528 		ath_restore_diversity(sc);
4529 		sc->sc_calinterval = 1;
4530 		sc->sc_caltries = 0;
4531 
4532 		/*
4533 		 * Re-enable rx framework.
4534 		 */
4535 		if (ath_startrecv(sc) != 0) {
4536 			if_printf(&sc->sc_if,
4537 				"%s: unable to restart recv logic\n", __func__);
4538 			return EIO;
4539 		}
4540 
4541 		/*
4542 		 * Change channels and update the h/w rate map
4543 		 * if we're switching; e.g. 11a to 11b/g.
4544 		 */
4545 		ic->ic_ibss_chan = chan;
4546 		ath_chan_change(sc, chan);
4547 
4548 #if 0
4549 		/*
4550 		 * Handle DFS required waiting period to determine
4551 		 * if channel is clear of radar traffic.
4552 		 */
4553 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4554 #define	DFS_AND_NOT_CLEAR(_c) \
4555 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4556 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4557 				if_printf(&sc->sc_if,
4558 					"wait for DFS clear channel signal\n");
4559 				/* XXX stop sndq */
4560 				sc->sc_if.if_flags |= IFF_OACTIVE;
4561 				callout_reset(&sc->sc_dfs_ch,
4562 					2 * hz, ath_dfswait, sc);
4563 			} else
4564 				callout_stop(&sc->sc_dfs_ch);
4565 #undef DFS_NOT_CLEAR
4566 		}
4567 #endif
4568 
4569 		/*
4570 		 * Re-enable interrupts.
4571 		 */
4572 		ath_hal_intrset(ah, sc->sc_imask);
4573 	}
4574 	return 0;
4575 }
4576 
4577 static void
4578 ath_next_scan(void *arg)
4579 {
4580 	struct ath_softc *sc = arg;
4581 	struct ieee80211com *ic = &sc->sc_ic;
4582 	int s;
4583 
4584 	/* don't call ath_start w/o network interrupts blocked */
4585 	s = splnet();
4586 
4587 	if (ic->ic_state == IEEE80211_S_SCAN)
4588 		ieee80211_next_scan(ic);
4589 	splx(s);
4590 }
4591 
4592 /*
4593  * Periodically recalibrate the PHY to account
4594  * for temperature/environment changes.
4595  */
4596 static void
4597 ath_calibrate(void *arg)
4598 {
4599 	struct ath_softc *sc = arg;
4600 	struct ath_hal *ah = sc->sc_ah;
4601 	HAL_BOOL iqCalDone;
4602 	int s;
4603 
4604 	sc->sc_stats.ast_per_cal++;
4605 
4606 	 s = splnet();
4607 
4608 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4609 		/*
4610 		 * Rfgain is out of bounds, reset the chip
4611 		 * to load new gain values.
4612 		 */
4613 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4614 			"%s: rfgain change\n", __func__);
4615 		sc->sc_stats.ast_per_rfgain++;
4616 		ath_reset(&sc->sc_if);
4617 	}
4618 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4619 		DPRINTF(sc, ATH_DEBUG_ANY,
4620 			"%s: calibration of channel %u failed\n",
4621 			__func__, sc->sc_curchan.channel);
4622 		sc->sc_stats.ast_per_calfail++;
4623 	}
4624 	/*
4625 	 * Calibrate noise floor data again in case of change.
4626 	 */
4627 	ath_hal_process_noisefloor(ah);
4628 	/*
4629 	 * Poll more frequently when the IQ calibration is in
4630 	 * progress to speedup loading the final settings.
4631 	 * We temper this aggressive polling with an exponential
4632 	 * back off after 4 tries up to ath_calinterval.
4633 	 */
4634 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4635 		sc->sc_caltries = 0;
4636 		sc->sc_calinterval = ath_calinterval;
4637 	} else if (sc->sc_caltries > 4) {
4638 		sc->sc_caltries = 0;
4639 		sc->sc_calinterval <<= 1;
4640 		if (sc->sc_calinterval > ath_calinterval)
4641 			sc->sc_calinterval = ath_calinterval;
4642 	}
4643 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4644 		("bad calibration interval %u", sc->sc_calinterval));
4645 
4646 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4647 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4648 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4649 	sc->sc_caltries++;
4650 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4651 		ath_calibrate, sc);
4652 	splx(s);
4653 }
4654 
4655 static int
4656 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4657 {
4658 	struct ifnet *ifp = ic->ic_ifp;
4659 	struct ath_softc *sc = ifp->if_softc;
4660 	struct ath_hal *ah = sc->sc_ah;
4661 	struct ieee80211_node *ni;
4662 	int i, error;
4663 	const u_int8_t *bssid;
4664 	u_int32_t rfilt;
4665 	static const HAL_LED_STATE leds[] = {
4666 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4667 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4668 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4669 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4670 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4671 	};
4672 
4673 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4674 		ieee80211_state_name[ic->ic_state],
4675 		ieee80211_state_name[nstate]);
4676 
4677 	callout_stop(&sc->sc_scan_ch);
4678 	callout_stop(&sc->sc_cal_ch);
4679 #if 0
4680 	callout_stop(&sc->sc_dfs_ch);
4681 #endif
4682 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4683 
4684 	if (nstate == IEEE80211_S_INIT) {
4685 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4686 		/*
4687 		 * NB: disable interrupts so we don't rx frames.
4688 		 */
4689 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4690 		/*
4691 		 * Notify the rate control algorithm.
4692 		 */
4693 		ath_rate_newstate(sc, nstate);
4694 		goto done;
4695 	}
4696 	ni = ic->ic_bss;
4697 	error = ath_chan_set(sc, ic->ic_curchan);
4698 	if (error != 0)
4699 		goto bad;
4700 	rfilt = ath_calcrxfilter(sc, nstate);
4701 	if (nstate == IEEE80211_S_SCAN)
4702 		bssid = ifp->if_broadcastaddr;
4703 	else
4704 		bssid = ni->ni_bssid;
4705 	ath_hal_setrxfilter(ah, rfilt);
4706 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4707 		 __func__, rfilt, ether_sprintf(bssid));
4708 
4709 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4710 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4711 	else
4712 		ath_hal_setassocid(ah, bssid, 0);
4713 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4714 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4715 			if (ath_hal_keyisvalid(ah, i))
4716 				ath_hal_keysetmac(ah, i, bssid);
4717 	}
4718 
4719 	/*
4720 	 * Notify the rate control algorithm so rates
4721 	 * are setup should ath_beacon_alloc be called.
4722 	 */
4723 	ath_rate_newstate(sc, nstate);
4724 
4725 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4726 		/* nothing to do */;
4727 	} else if (nstate == IEEE80211_S_RUN) {
4728 		DPRINTF(sc, ATH_DEBUG_STATE,
4729 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4730 			"capinfo=0x%04x chan=%d\n"
4731 			 , __func__
4732 			 , ic->ic_flags
4733 			 , ni->ni_intval
4734 			 , ether_sprintf(ni->ni_bssid)
4735 			 , ni->ni_capinfo
4736 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4737 
4738 		switch (ic->ic_opmode) {
4739 		case IEEE80211_M_HOSTAP:
4740 		case IEEE80211_M_IBSS:
4741 			/*
4742 			 * Allocate and setup the beacon frame.
4743 			 *
4744 			 * Stop any previous beacon DMA.  This may be
4745 			 * necessary, for example, when an ibss merge
4746 			 * causes reconfiguration; there will be a state
4747 			 * transition from RUN->RUN that means we may
4748 			 * be called with beacon transmission active.
4749 			 */
4750 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4751 			ath_beacon_free(sc);
4752 			error = ath_beacon_alloc(sc, ni);
4753 			if (error != 0)
4754 				goto bad;
4755 			/*
4756 			 * If joining an adhoc network defer beacon timer
4757 			 * configuration to the next beacon frame so we
4758 			 * have a current TSF to use.  Otherwise we're
4759 			 * starting an ibss/bss so there's no need to delay.
4760 			 */
4761 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4762 			    ic->ic_bss->ni_tstamp.tsf != 0)
4763 				sc->sc_syncbeacon = 1;
4764 			else
4765 				ath_beacon_config(sc);
4766 			break;
4767 		case IEEE80211_M_STA:
4768 			/*
4769 			 * Allocate a key cache slot to the station.
4770 			 */
4771 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4772 			    sc->sc_hasclrkey &&
4773 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4774 				ath_setup_stationkey(ni);
4775 			/*
4776 			 * Defer beacon timer configuration to the next
4777 			 * beacon frame so we have a current TSF to use
4778 			 * (any TSF collected when scanning is likely old).
4779 			 */
4780 			sc->sc_syncbeacon = 1;
4781 			break;
4782 		default:
4783 			break;
4784 		}
4785 		/*
4786 		 * Let the hal process statistics collected during a
4787 		 * scan so it can provide calibrated noise floor data.
4788 		 */
4789 		ath_hal_process_noisefloor(ah);
4790 		/*
4791 		 * Reset rssi stats; maybe not the best place...
4792 		 */
4793 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4794 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4795 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4796 	} else {
4797 		ath_hal_intrset(ah,
4798 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4799 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4800 	}
4801 done:
4802 	/*
4803 	 * Invoke the parent method to complete the work.
4804 	 */
4805 	error = sc->sc_newstate(ic, nstate, arg);
4806 	/*
4807 	 * Finally, start any timers.
4808 	 */
4809 	if (nstate == IEEE80211_S_RUN) {
4810 		/* start periodic recalibration timer */
4811 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4812 			ath_calibrate, sc);
4813 	} else if (nstate == IEEE80211_S_SCAN) {
4814 		/* start ap/neighbor scan timer */
4815 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4816 			ath_next_scan, sc);
4817 	}
4818 bad:
4819 	return error;
4820 }
4821 
4822 /*
4823  * Allocate a key cache slot to the station so we can
4824  * setup a mapping from key index to node. The key cache
4825  * slot is needed for managing antenna state and for
4826  * compression when stations do not use crypto.  We do
4827  * it uniliaterally here; if crypto is employed this slot
4828  * will be reassigned.
4829  */
4830 static void
4831 ath_setup_stationkey(struct ieee80211_node *ni)
4832 {
4833 	struct ieee80211com *ic = ni->ni_ic;
4834 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4835 	ieee80211_keyix keyix, rxkeyix;
4836 
4837 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4838 		/*
4839 		 * Key cache is full; we'll fall back to doing
4840 		 * the more expensive lookup in software.  Note
4841 		 * this also means no h/w compression.
4842 		 */
4843 		/* XXX msg+statistic */
4844 	} else {
4845 		/* XXX locking? */
4846 		ni->ni_ucastkey.wk_keyix = keyix;
4847 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4848 		/* NB: this will create a pass-thru key entry */
4849 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4850 	}
4851 }
4852 
4853 /*
4854  * Setup driver-specific state for a newly associated node.
4855  * Note that we're called also on a re-associate, the isnew
4856  * param tells us if this is the first time or not.
4857  */
4858 static void
4859 ath_newassoc(struct ieee80211_node *ni, int isnew)
4860 {
4861 	struct ieee80211com *ic = ni->ni_ic;
4862 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4863 
4864 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4865 	if (isnew &&
4866 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4867 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4868 		    ("new assoc with a unicast key already setup (keyix %u)",
4869 		    ni->ni_ucastkey.wk_keyix));
4870 		ath_setup_stationkey(ni);
4871 	}
4872 }
4873 
4874 static int
4875 ath_getchannels(struct ath_softc *sc, u_int cc,
4876 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4877 {
4878 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4879 	struct ieee80211com *ic = &sc->sc_ic;
4880 	struct ifnet *ifp = &sc->sc_if;
4881 	struct ath_hal *ah = sc->sc_ah;
4882 	HAL_CHANNEL *chans;
4883 	int i, ix, nchan;
4884 
4885 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4886 			M_TEMP, M_NOWAIT);
4887 	if (chans == NULL) {
4888 		if_printf(ifp, "unable to allocate channel table\n");
4889 		return ENOMEM;
4890 	}
4891 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4892 	    NULL, 0, NULL,
4893 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4894 		u_int32_t rd;
4895 
4896 		(void)ath_hal_getregdomain(ah, &rd);
4897 		if_printf(ifp, "unable to collect channel list from hal; "
4898 			"regdomain likely %u country code %u\n", rd, cc);
4899 		free(chans, M_TEMP);
4900 		return EINVAL;
4901 	}
4902 
4903 	/*
4904 	 * Convert HAL channels to ieee80211 ones and insert
4905 	 * them in the table according to their channel number.
4906 	 */
4907 	for (i = 0; i < nchan; i++) {
4908 		HAL_CHANNEL *c = &chans[i];
4909 		u_int16_t flags;
4910 
4911 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4912 		if (ix > IEEE80211_CHAN_MAX) {
4913 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4914 				ix, c->channel, c->channelFlags);
4915 			continue;
4916 		}
4917 		if (ix < 0) {
4918 			/* XXX can't handle stuff <2400 right now */
4919 			if (bootverbose)
4920 				if_printf(ifp, "hal channel %d (%u/%x) "
4921 				    "cannot be handled; ignored\n",
4922 				    ix, c->channel, c->channelFlags);
4923 			continue;
4924 		}
4925 		/*
4926 		 * Calculate net80211 flags; most are compatible
4927 		 * but some need massaging.  Note the static turbo
4928 		 * conversion can be removed once net80211 is updated
4929 		 * to understand static vs. dynamic turbo.
4930 		 */
4931 		flags = c->channelFlags & COMPAT;
4932 		if (c->channelFlags & CHANNEL_STURBO)
4933 			flags |= IEEE80211_CHAN_TURBO;
4934 		if (ic->ic_channels[ix].ic_freq == 0) {
4935 			ic->ic_channels[ix].ic_freq = c->channel;
4936 			ic->ic_channels[ix].ic_flags = flags;
4937 		} else {
4938 			/* channels overlap; e.g. 11g and 11b */
4939 			ic->ic_channels[ix].ic_flags |= flags;
4940 		}
4941 	}
4942 	free(chans, M_TEMP);
4943 	return 0;
4944 #undef COMPAT
4945 }
4946 
4947 static void
4948 ath_led_done(void *arg)
4949 {
4950 	struct ath_softc *sc = arg;
4951 
4952 	sc->sc_blinking = 0;
4953 }
4954 
4955 /*
4956  * Turn the LED off: flip the pin and then set a timer so no
4957  * update will happen for the specified duration.
4958  */
4959 static void
4960 ath_led_off(void *arg)
4961 {
4962 	struct ath_softc *sc = arg;
4963 
4964 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4965 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4966 }
4967 
4968 /*
4969  * Blink the LED according to the specified on/off times.
4970  */
4971 static void
4972 ath_led_blink(struct ath_softc *sc, int on, int off)
4973 {
4974 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4975 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4976 	sc->sc_blinking = 1;
4977 	sc->sc_ledoff = off;
4978 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4979 }
4980 
4981 static void
4982 ath_led_event(struct ath_softc *sc, int event)
4983 {
4984 
4985 	sc->sc_ledevent = ticks;	/* time of last event */
4986 	if (sc->sc_blinking)		/* don't interrupt active blink */
4987 		return;
4988 	switch (event) {
4989 	case ATH_LED_POLL:
4990 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4991 			sc->sc_hwmap[0].ledoff);
4992 		break;
4993 	case ATH_LED_TX:
4994 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4995 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4996 		break;
4997 	case ATH_LED_RX:
4998 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4999 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
5000 		break;
5001 	}
5002 }
5003 
5004 static void
5005 ath_update_txpow(struct ath_softc *sc)
5006 {
5007 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5008 	struct ieee80211com *ic = &sc->sc_ic;
5009 	struct ath_hal *ah = sc->sc_ah;
5010 	u_int32_t txpow;
5011 
5012 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5013 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5014 		/* read back in case value is clamped */
5015 		(void)ath_hal_gettxpowlimit(ah, &txpow);
5016 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5017 	}
5018 	/*
5019 	 * Fetch max tx power level for status requests.
5020 	 */
5021 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5022 	ic->ic_bss->ni_txpower = txpow;
5023 }
5024 
5025 static void
5026 rate_setup(struct ath_softc *sc,
5027 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5028 {
5029 	int i, maxrates;
5030 
5031 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5032 		DPRINTF(sc, ATH_DEBUG_ANY,
5033 			"%s: rate table too small (%u > %u)\n",
5034 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5035 		maxrates = IEEE80211_RATE_MAXSIZE;
5036 	} else
5037 		maxrates = rt->rateCount;
5038 	for (i = 0; i < maxrates; i++)
5039 		rs->rs_rates[i] = rt->info[i].dot11Rate;
5040 	rs->rs_nrates = maxrates;
5041 }
5042 
5043 static int
5044 ath_rate_setup(struct ath_softc *sc, u_int mode)
5045 {
5046 	struct ath_hal *ah = sc->sc_ah;
5047 	struct ieee80211com *ic = &sc->sc_ic;
5048 	const HAL_RATE_TABLE *rt;
5049 
5050 	switch (mode) {
5051 	case IEEE80211_MODE_11A:
5052 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5053 		break;
5054 	case IEEE80211_MODE_11B:
5055 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5056 		break;
5057 	case IEEE80211_MODE_11G:
5058 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5059 		break;
5060 	case IEEE80211_MODE_TURBO_A:
5061 		/* XXX until static/dynamic turbo is fixed */
5062 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5063 		break;
5064 	case IEEE80211_MODE_TURBO_G:
5065 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5066 		break;
5067 	default:
5068 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5069 			__func__, mode);
5070 		return 0;
5071 	}
5072 	sc->sc_rates[mode] = rt;
5073 	if (rt != NULL) {
5074 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5075 		return 1;
5076 	} else
5077 		return 0;
5078 }
5079 
5080 static void
5081 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5082 {
5083 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5084 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5085 	static const struct {
5086 		u_int		rate;		/* tx/rx 802.11 rate */
5087 		u_int16_t	timeOn;		/* LED on time (ms) */
5088 		u_int16_t	timeOff;	/* LED off time (ms) */
5089 	} blinkrates[] = {
5090 		{ 108,  40,  10 },
5091 		{  96,  44,  11 },
5092 		{  72,  50,  13 },
5093 		{  48,  57,  14 },
5094 		{  36,  67,  16 },
5095 		{  24,  80,  20 },
5096 		{  22, 100,  25 },
5097 		{  18, 133,  34 },
5098 		{  12, 160,  40 },
5099 		{  10, 200,  50 },
5100 		{   6, 240,  58 },
5101 		{   4, 267,  66 },
5102 		{   2, 400, 100 },
5103 		{   0, 500, 130 },
5104 	};
5105 	const HAL_RATE_TABLE *rt;
5106 	int i, j;
5107 
5108 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5109 	rt = sc->sc_rates[mode];
5110 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5111 	for (i = 0; i < rt->rateCount; i++)
5112 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5113 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5114 	for (i = 0; i < 32; i++) {
5115 		u_int8_t ix = rt->rateCodeToIndex[i];
5116 		if (ix == 0xff) {
5117 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5118 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5119 			continue;
5120 		}
5121 		sc->sc_hwmap[i].ieeerate =
5122 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5123 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5124 		if (rt->info[ix].shortPreamble ||
5125 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5126 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5127 		/* NB: receive frames include FCS */
5128 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5129 			IEEE80211_RADIOTAP_F_FCS;
5130 		/* setup blink rate table to avoid per-packet lookup */
5131 		for (j = 0; j < N(blinkrates)-1; j++)
5132 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5133 				break;
5134 		/* NB: this uses the last entry if the rate isn't found */
5135 		/* XXX beware of overlow */
5136 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5137 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5138 	}
5139 	sc->sc_currates = rt;
5140 	sc->sc_curmode = mode;
5141 	/*
5142 	 * All protection frames are transmited at 2Mb/s for
5143 	 * 11g, otherwise at 1Mb/s.
5144 	 */
5145 	if (mode == IEEE80211_MODE_11G)
5146 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5147 	else
5148 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5149 	/* rate index used to send management frames */
5150 	sc->sc_minrateix = 0;
5151 	/*
5152 	 * Setup multicast rate state.
5153 	 */
5154 	/* XXX layering violation */
5155 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5156 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5157 	/* NB: caller is responsible for reseting rate control state */
5158 #undef N
5159 }
5160 
5161 #ifdef AR_DEBUG
5162 static void
5163 ath_printrxbuf(struct ath_buf *bf, int done)
5164 {
5165 	struct ath_desc *ds;
5166 	int i;
5167 
5168 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5169 		printf("R%d (%p %" PRIx64
5170 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5171 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5172 		    ds->ds_link, ds->ds_data,
5173 		    ds->ds_ctl0, ds->ds_ctl1,
5174 		    ds->ds_hw[0], ds->ds_hw[1],
5175 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5176 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5177 	}
5178 }
5179 
5180 static void
5181 ath_printtxbuf(struct ath_buf *bf, int done)
5182 {
5183 	struct ath_desc *ds;
5184 	int i;
5185 
5186 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5187 		printf("T%d (%p %" PRIx64
5188 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5189 		    i, ds,
5190 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5191 		    ds->ds_link, ds->ds_data,
5192 		    ds->ds_ctl0, ds->ds_ctl1,
5193 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5194 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5195 	}
5196 }
5197 #endif	/* AR_DEBUG */
5198 
5199 static void
5200 ath_watchdog(struct ifnet *ifp)
5201 {
5202 	struct ath_softc *sc = ifp->if_softc;
5203 	struct ieee80211com *ic = &sc->sc_ic;
5204 	struct ath_txq *axq;
5205 	int i;
5206 
5207 	ifp->if_timer = 0;
5208 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5209 	    !device_is_active(sc->sc_dev))
5210 		return;
5211 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5212 		if (!ATH_TXQ_SETUP(sc, i))
5213 			continue;
5214 		axq = &sc->sc_txq[i];
5215 		ATH_TXQ_LOCK(axq);
5216 		if (axq->axq_timer == 0)
5217 			;
5218 		else if (--axq->axq_timer == 0) {
5219 			ATH_TXQ_UNLOCK(axq);
5220 			if_printf(ifp, "device timeout (txq %d, "
5221 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5222 			if (sc->sc_txintrperiod > 1)
5223 				sc->sc_txintrperiod--;
5224 			ath_reset(ifp);
5225 			ifp->if_oerrors++;
5226 			sc->sc_stats.ast_watchdog++;
5227 			break;
5228 		} else
5229 			ifp->if_timer = 1;
5230 		ATH_TXQ_UNLOCK(axq);
5231 	}
5232 	ieee80211_watchdog(ic);
5233 }
5234 
5235 /*
5236  * Diagnostic interface to the HAL.  This is used by various
5237  * tools to do things like retrieve register contents for
5238  * debugging.  The mechanism is intentionally opaque so that
5239  * it can change frequently w/o concern for compatiblity.
5240  */
5241 static int
5242 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5243 {
5244 	struct ath_hal *ah = sc->sc_ah;
5245 	u_int id = ad->ad_id & ATH_DIAG_ID;
5246 	void *indata = NULL;
5247 	void *outdata = NULL;
5248 	u_int32_t insize = ad->ad_in_size;
5249 	u_int32_t outsize = ad->ad_out_size;
5250 	int error = 0;
5251 
5252 	if (ad->ad_id & ATH_DIAG_IN) {
5253 		/*
5254 		 * Copy in data.
5255 		 */
5256 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5257 		if (indata == NULL) {
5258 			error = ENOMEM;
5259 			goto bad;
5260 		}
5261 		error = copyin(ad->ad_in_data, indata, insize);
5262 		if (error)
5263 			goto bad;
5264 	}
5265 	if (ad->ad_id & ATH_DIAG_DYN) {
5266 		/*
5267 		 * Allocate a buffer for the results (otherwise the HAL
5268 		 * returns a pointer to a buffer where we can read the
5269 		 * results).  Note that we depend on the HAL leaving this
5270 		 * pointer for us to use below in reclaiming the buffer;
5271 		 * may want to be more defensive.
5272 		 */
5273 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5274 		if (outdata == NULL) {
5275 			error = ENOMEM;
5276 			goto bad;
5277 		}
5278 	}
5279 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5280 		if (outsize < ad->ad_out_size)
5281 			ad->ad_out_size = outsize;
5282 		if (outdata != NULL)
5283 			error = copyout(outdata, ad->ad_out_data,
5284 					ad->ad_out_size);
5285 	} else {
5286 		error = EINVAL;
5287 	}
5288 bad:
5289 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5290 		free(indata, M_TEMP);
5291 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5292 		free(outdata, M_TEMP);
5293 	return error;
5294 }
5295 
5296 static int
5297 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5298 {
5299 #define	IS_RUNNING(ifp) \
5300 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5301 	struct ath_softc *sc = ifp->if_softc;
5302 	struct ieee80211com *ic = &sc->sc_ic;
5303 	struct ifreq *ifr = (struct ifreq *)data;
5304 	int error = 0, s;
5305 
5306 	s = splnet();
5307 	switch (cmd) {
5308 	case SIOCSIFFLAGS:
5309 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5310 			break;
5311 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5312 		case IFF_UP|IFF_RUNNING:
5313 			/*
5314 			 * To avoid rescanning another access point,
5315 			 * do not call ath_init() here.  Instead,
5316 			 * only reflect promisc mode settings.
5317 			 */
5318 			ath_mode_init(sc);
5319 			break;
5320 		case IFF_UP:
5321 			/*
5322 			 * Beware of being called during attach/detach
5323 			 * to reset promiscuous mode.  In that case we
5324 			 * will still be marked UP but not RUNNING.
5325 			 * However trying to re-init the interface
5326 			 * is the wrong thing to do as we've already
5327 			 * torn down much of our state.  There's
5328 			 * probably a better way to deal with this.
5329 			 */
5330 			error = ath_init(sc);
5331 			break;
5332 		case IFF_RUNNING:
5333 			ath_stop_locked(ifp, 1);
5334 			break;
5335 		case 0:
5336 			break;
5337 		}
5338 		break;
5339 	case SIOCADDMULTI:
5340 	case SIOCDELMULTI:
5341 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5342 			if (ifp->if_flags & IFF_RUNNING)
5343 				ath_mode_init(sc);
5344 			error = 0;
5345 		}
5346 		break;
5347 	case SIOCGATHSTATS:
5348 		/* NB: embed these numbers to get a consistent view */
5349 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5350 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5351 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5352 		splx(s);
5353 		/*
5354 		 * NB: Drop the softc lock in case of a page fault;
5355 		 * we'll accept any potential inconsisentcy in the
5356 		 * statistics.  The alternative is to copy the data
5357 		 * to a local structure.
5358 		 */
5359 		return copyout(&sc->sc_stats,
5360 				ifr->ifr_data, sizeof (sc->sc_stats));
5361 	case SIOCGATHDIAG:
5362 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5363 		break;
5364 	default:
5365 		error = ieee80211_ioctl(ic, cmd, data);
5366 		if (error != ENETRESET)
5367 			;
5368 		else if (IS_RUNNING(ifp) &&
5369 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5370 			error = ath_init(sc);
5371 		else
5372 			error = 0;
5373 		break;
5374 	}
5375 	splx(s);
5376 	return error;
5377 #undef IS_RUNNING
5378 }
5379 
5380 static void
5381 ath_bpfattach(struct ath_softc *sc)
5382 {
5383 	struct ifnet *ifp = &sc->sc_if;
5384 
5385 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5386 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5387 	    &sc->sc_drvbpf);
5388 
5389 	/*
5390 	 * Initialize constant fields.
5391 	 * XXX make header lengths a multiple of 32-bits so subsequent
5392 	 *     headers are properly aligned; this is a kludge to keep
5393 	 *     certain applications happy.
5394 	 *
5395 	 * NB: the channel is setup each time we transition to the
5396 	 *     RUN state to avoid filling it in for each frame.
5397 	 */
5398 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5399 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5400 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5401 
5402 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5403 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5404 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5405 }
5406 
5407 /*
5408  * Announce various information on device/driver attach.
5409  */
5410 static void
5411 ath_announce(struct ath_softc *sc)
5412 {
5413 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5414 	struct ifnet *ifp = &sc->sc_if;
5415 	struct ath_hal *ah = sc->sc_ah;
5416 	u_int modes, cc;
5417 
5418 	if_printf(ifp, "mac %d.%d phy %d.%d",
5419 		ah->ah_macVersion, ah->ah_macRev,
5420 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5421 	/*
5422 	 * Print radio revision(s).  We check the wireless modes
5423 	 * to avoid falsely printing revs for inoperable parts.
5424 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5425 	 */
5426 	ath_hal_getcountrycode(ah, &cc);
5427 	modes = ath_hal_getwirelessmodes(ah, cc);
5428 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5429 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5430 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5431 				ah->ah_analog5GhzRev >> 4,
5432 				ah->ah_analog5GhzRev & 0xf,
5433 				ah->ah_analog2GhzRev >> 4,
5434 				ah->ah_analog2GhzRev & 0xf);
5435 		else
5436 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5437 				ah->ah_analog5GhzRev & 0xf);
5438 	} else
5439 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5440 			ah->ah_analog5GhzRev & 0xf);
5441 	printf("\n");
5442 	if (bootverbose) {
5443 		int i;
5444 		for (i = 0; i <= WME_AC_VO; i++) {
5445 			struct ath_txq *txq = sc->sc_ac2q[i];
5446 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5447 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5448 		}
5449 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5450 			sc->sc_cabq->axq_qnum);
5451 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5452 	}
5453 	if (ath_rxbuf != ATH_RXBUF)
5454 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5455 	if (ath_txbuf != ATH_TXBUF)
5456 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5457 #undef HAL_MODE_DUALBAND
5458 }
5459