xref: /netbsd-src/sys/dev/ic/ath.c (revision 5b84b3983f71fd20a534cfa5d1556623a8aaa717)
1 /*	$NetBSD: ath.c,v 1.58 2005/08/21 00:25:51 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.94 2005/07/07 00:04:50 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.58 2005/08/21 00:25:51 dyoung Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75 
76 #include <machine/bus.h>
77 
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85 
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88 
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92 
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96 
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99 
100 #define	AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ic/athhal_desc.h>
103 #include <contrib/dev/ic/athhal_devid.h>	/* XXX for softled */
104 
105 /* unaligned little endian access */
106 #define LE_READ_2(p)							\
107 	((u_int16_t)							\
108 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
109 #define LE_READ_4(p)							\
110 	((u_int32_t)							\
111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
112 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
113 
114 enum {
115 	ATH_LED_TX,
116 	ATH_LED_RX,
117 	ATH_LED_POLL,
118 };
119 
120 static int	ath_ifinit(struct ifnet *);
121 static int	ath_init(struct ath_softc *);
122 static void	ath_stop_locked(struct ifnet *, int);
123 static void	ath_stop(struct ifnet *, int);
124 static void	ath_start(struct ifnet *);
125 static int	ath_media_change(struct ifnet *);
126 static void	ath_watchdog(struct ifnet *);
127 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
128 static void	ath_fatal_proc(void *, int);
129 static void	ath_rxorn_proc(void *, int);
130 static void	ath_bmiss_proc(void *, int);
131 static int	ath_key_alloc(struct ieee80211com *,
132 			const struct ieee80211_key *);
133 static int	ath_key_delete(struct ieee80211com *,
134 			const struct ieee80211_key *);
135 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
136 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
137 static void	ath_key_update_begin(struct ieee80211com *);
138 static void	ath_key_update_end(struct ieee80211com *);
139 static void	ath_mode_init(struct ath_softc *);
140 static void	ath_setslottime(struct ath_softc *);
141 static void	ath_updateslot(struct ifnet *);
142 static int	ath_beaconq_setup(struct ath_hal *);
143 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
144 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
145 static void	ath_beacon_proc(void *, int);
146 static void	ath_bstuck_proc(void *, int);
147 static void	ath_beacon_free(struct ath_softc *);
148 static void	ath_beacon_config(struct ath_softc *);
149 static void	ath_descdma_cleanup(struct ath_softc *sc,
150 			struct ath_descdma *, ath_bufhead *);
151 static int	ath_desc_alloc(struct ath_softc *);
152 static void	ath_desc_free(struct ath_softc *);
153 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
154 static void	ath_node_free(struct ieee80211_node *);
155 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
156 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
158 			struct ieee80211_node *ni,
159 			int subtype, int rssi, u_int32_t rstamp);
160 static void	ath_setdefantenna(struct ath_softc *, u_int);
161 static void	ath_rx_proc(void *, int);
162 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
163 static int	ath_tx_setup(struct ath_softc *, int, int);
164 static int	ath_wme_update(struct ieee80211com *);
165 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
166 static void	ath_tx_cleanup(struct ath_softc *);
167 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
168 			     struct ath_buf *, struct mbuf *);
169 static void	ath_tx_proc_q0(void *, int);
170 static void	ath_tx_proc_q0123(void *, int);
171 static void	ath_tx_proc(void *, int);
172 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
173 static void	ath_draintxq(struct ath_softc *);
174 static void	ath_stoprecv(struct ath_softc *);
175 static int	ath_startrecv(struct ath_softc *);
176 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
177 static void	ath_next_scan(void *);
178 static void	ath_calibrate(void *);
179 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
180 static void	ath_setup_stationkey(struct ieee80211_node *);
181 static void	ath_newassoc(struct ieee80211com *,
182 			struct ieee80211_node *, int);
183 static int	ath_getchannels(struct ath_softc *, u_int cc,
184 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
185 static void	ath_led_event(struct ath_softc *, int);
186 static void	ath_update_txpow(struct ath_softc *);
187 
188 static int	ath_rate_setup(struct ath_softc *, u_int mode);
189 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
190 
191 #ifdef __NetBSD__
192 int	ath_enable(struct ath_softc *);
193 void	ath_disable(struct ath_softc *);
194 void	ath_power(int, void *);
195 #endif
196 
197 static void	ath_bpfattach(struct ath_softc *);
198 static void	ath_announce(struct ath_softc *);
199 
200 int ath_dwelltime = 200;		/* 5 channels/second */
201 int ath_calinterval = 30;		/* calibrate every 30 secs */
202 int ath_outdoor = AH_TRUE;		/* outdoor operation */
203 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
204 int ath_countrycode = CTRY_DEFAULT;	/* country code */
205 int ath_regdomain = 0;			/* regulatory domain */
206 int ath_debug = 0;
207 
208 #ifdef AR_DEBUG
209 enum {
210 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
211 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
212 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
213 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
214 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
215 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
216 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
217 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
218 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
219 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
220 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
221 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
222 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
223 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
224 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
225 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
226 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
227 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
228 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
229 	ATH_DEBUG_ANY		= 0xffffffff
230 };
231 #define	IFF_DUMPPKTS(sc, m) \
232 	((sc->sc_debug & (m)) || \
233 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
234 #define	DPRINTF(sc, m, fmt, ...) do {				\
235 	if (sc->sc_debug & (m))					\
236 		printf(fmt, __VA_ARGS__);			\
237 } while (0)
238 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
239 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
240 		ath_keyprint(__func__, ix, hk, mac);		\
241 } while (0)
242 static	void ath_printrxbuf(struct ath_buf *bf, int);
243 static	void ath_printtxbuf(struct ath_buf *bf, int);
244 #else
245 #define	IFF_DUMPPKTS(sc, m) \
246 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
247 #define	DPRINTF(m, fmt, ...)
248 #define	KEYPRINTF(sc, k, ix, mac)
249 #endif
250 
251 #ifdef __NetBSD__
252 int
253 ath_activate(struct device *self, enum devact act)
254 {
255 	struct ath_softc *sc = (struct ath_softc *)self;
256 	int rv = 0, s;
257 
258 	s = splnet();
259 	switch (act) {
260 	case DVACT_ACTIVATE:
261 		rv = EOPNOTSUPP;
262 		break;
263 	case DVACT_DEACTIVATE:
264 		if_deactivate(&sc->sc_if);
265 		break;
266 	}
267 	splx(s);
268 	return rv;
269 }
270 
271 int
272 ath_enable(struct ath_softc *sc)
273 {
274 	if (ATH_IS_ENABLED(sc) == 0) {
275 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
276 			printf("%s: device enable failed\n",
277 				sc->sc_dev.dv_xname);
278 			return (EIO);
279 		}
280 		sc->sc_flags |= ATH_ENABLED;
281 	}
282 	return (0);
283 }
284 
285 void
286 ath_disable(struct ath_softc *sc)
287 {
288 	if (!ATH_IS_ENABLED(sc))
289 		return;
290 	if (sc->sc_disable != NULL)
291 		(*sc->sc_disable)(sc);
292 	sc->sc_flags &= ~ATH_ENABLED;
293 }
294 #endif /* __NetBSD__ */
295 
296 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
297 
298 int
299 ath_attach(u_int16_t devid, struct ath_softc *sc)
300 {
301 	struct ifnet *ifp = &sc->sc_if;
302 	struct ieee80211com *ic = &sc->sc_ic;
303 	struct ath_hal *ah = NULL;
304 	HAL_STATUS status;
305 	int error = 0, i;
306 
307 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
308 
309 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
310 
311 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
312 	if (ah == NULL) {
313 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314 			status);
315 		error = ENXIO;
316 		goto bad;
317 	}
318 	if (ah->ah_abi != HAL_ABI_VERSION) {
319 		if_printf(ifp, "HAL ABI mismatch detected "
320 			"(HAL:0x%x != driver:0x%x)\n",
321 			ah->ah_abi, HAL_ABI_VERSION);
322 		error = ENXIO;
323 		goto bad;
324 	}
325 	sc->sc_ah = ah;
326 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
327 
328 	/*
329 	 * Check if the MAC has multi-rate retry support.
330 	 * We do this by trying to setup a fake extended
331 	 * descriptor.  MAC's that don't have support will
332 	 * return false w/o doing anything.  MAC's that do
333 	 * support it will return true w/o doing anything.
334 	 */
335 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
336 
337 	/*
338 	 * Check if the device has hardware counters for PHY
339 	 * errors.  If so we need to enable the MIB interrupt
340 	 * so we can act on stat triggers.
341 	 */
342 	if (ath_hal_hwphycounters(ah))
343 		sc->sc_needmib = 1;
344 
345 	/*
346 	 * Get the hardware key cache size.
347 	 */
348 	sc->sc_keymax = ath_hal_keycachesize(ah);
349 	if (sc->sc_keymax > ATH_KEYMAX) {
350 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
351 			ATH_KEYMAX, sc->sc_keymax);
352 		sc->sc_keymax = ATH_KEYMAX;
353 	}
354 	/*
355 	 * Reset the key cache since some parts do not
356 	 * reset the contents on initial power up.
357 	 */
358 	for (i = 0; i < sc->sc_keymax; i++)
359 		ath_hal_keyreset(ah, i);
360 	/*
361 	 * Mark key cache slots associated with global keys
362 	 * as in use.  If we knew TKIP was not to be used we
363 	 * could leave the +32, +64, and +32+64 slots free.
364 	 * XXX only for splitmic.
365 	 */
366 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
367 		setbit(sc->sc_keymap, i);
368 		setbit(sc->sc_keymap, i+32);
369 		setbit(sc->sc_keymap, i+64);
370 		setbit(sc->sc_keymap, i+32+64);
371 	}
372 
373 	/*
374 	 * Collect the channel list using the default country
375 	 * code and including outdoor channels.  The 802.11 layer
376 	 * is resposible for filtering this list based on settings
377 	 * like the phy mode.
378 	 */
379 	error = ath_getchannels(sc, ath_countrycode,
380 			ath_outdoor, ath_xchanmode);
381 	if (error != 0)
382 		goto bad;
383 	/*
384 	 * TPC support can be done either with a global cap or
385 	 * per-packet support.  The latter is not available on
386 	 * all parts.  We're a bit pedantic here as all parts
387 	 * support a global cap.
388 	 */
389 	sc->sc_hastpc = ath_hal_hastpc(ah);
390 	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
391 		ic->ic_caps |= IEEE80211_C_TXPMGT;
392 	/*
393 	 * Query the hal about antenna support.
394 	 */
395 	if (ath_hal_hasdiversity(ah)) {
396 		sc->sc_hasdiversity = 1;
397 		sc->sc_diversity = ath_hal_getdiversity(ah);
398 	}
399 	sc->sc_defant = ath_hal_getdefantenna(ah);
400 
401 	/*
402 	 * Setup dynamic sysctl's now that country code and regdomain
403 	 * are available from the hal, and both TPC and diversity
404 	 * capabilities are known.
405 	 */
406 	ath_sysctlattach(sc);
407 
408 	/*
409 	 * Setup rate tables for all potential media types.
410 	 */
411 	ath_rate_setup(sc, IEEE80211_MODE_11A);
412 	ath_rate_setup(sc, IEEE80211_MODE_11B);
413 	ath_rate_setup(sc, IEEE80211_MODE_11G);
414 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
415 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
416 	/* NB: setup here so ath_rate_update is happy */
417 	ath_setcurmode(sc, IEEE80211_MODE_11A);
418 
419 	/*
420 	 * Allocate tx+rx descriptors and populate the lists.
421 	 */
422 	error = ath_desc_alloc(sc);
423 	if (error != 0) {
424 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
425 		goto bad;
426 	}
427 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
428 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
429 
430 	ATH_TXBUF_LOCK_INIT(sc);
431 
432 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
433 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
434 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
435 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
436 	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
437 
438 	/*
439 	 * Allocate hardware transmit queues: one queue for
440 	 * beacon frames and one data queue for each QoS
441 	 * priority.  Note that the hal handles reseting
442 	 * these queues at the needed time.
443 	 *
444 	 * XXX PS-Poll
445 	 */
446 	sc->sc_bhalq = ath_beaconq_setup(ah);
447 	if (sc->sc_bhalq == (u_int) -1) {
448 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
449 		error = EIO;
450 		goto bad2;
451 	}
452 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
453 	if (sc->sc_cabq == NULL) {
454 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
455 		error = EIO;
456 		goto bad2;
457 	}
458 	/* NB: insure BK queue is the lowest priority h/w queue */
459 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
460 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
461 			ieee80211_wme_acnames[WME_AC_BK]);
462 		error = EIO;
463 		goto bad2;
464 	}
465 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
466 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
467 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
468 		/*
469 		 * Not enough hardware tx queues to properly do WME;
470 		 * just punt and assign them all to the same h/w queue.
471 		 * We could do a better job of this if, for example,
472 		 * we allocate queues when we switch from station to
473 		 * AP mode.
474 		 */
475 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
476 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
477 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
478 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
479 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
480 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
481 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
482 	}
483 
484 	/*
485 	 * Special case certain configurations.  Note the
486 	 * CAB queue is handled by these specially so don't
487 	 * include them when checking the txq setup mask.
488 	 */
489 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
490 	case 0x01:
491 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
492 		break;
493 	case 0x0f:
494 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
495 		break;
496 	default:
497 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
498 		break;
499 	}
500 
501 	/*
502 	 * Setup rate control.  Some rate control modules
503 	 * call back to change the anntena state so expose
504 	 * the necessary entry points.
505 	 * XXX maybe belongs in struct ath_ratectrl?
506 	 */
507 	sc->sc_setdefantenna = ath_setdefantenna;
508 	sc->sc_rc = ath_rate_attach(sc);
509 	if (sc->sc_rc == NULL) {
510 		error = EIO;
511 		goto bad2;
512 	}
513 
514 	sc->sc_blinking = 0;
515 	sc->sc_ledstate = 1;
516 	sc->sc_ledon = 0;			/* low true */
517 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
518 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
519 	/*
520 	 * Auto-enable soft led processing for IBM cards and for
521 	 * 5211 minipci cards.  Users can also manually enable/disable
522 	 * support with a sysctl.
523 	 */
524 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
525 	if (sc->sc_softled) {
526 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
527 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
528 	}
529 
530 	ifp->if_softc = sc;
531 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
532 	ifp->if_start = ath_start;
533 	ifp->if_watchdog = ath_watchdog;
534 	ifp->if_ioctl = ath_ioctl;
535 	ifp->if_init = ath_ifinit;
536 	IFQ_SET_READY(&ifp->if_snd);
537 
538 	ic->ic_ifp = ifp;
539 	ic->ic_reset = ath_reset;
540 	ic->ic_newassoc = ath_newassoc;
541 	ic->ic_updateslot = ath_updateslot;
542 	ic->ic_wme.wme_update = ath_wme_update;
543 	/* XXX not right but it's not used anywhere important */
544 	ic->ic_phytype = IEEE80211_T_OFDM;
545 	ic->ic_opmode = IEEE80211_M_STA;
546 	ic->ic_caps =
547 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
548 		| IEEE80211_C_HOSTAP		/* hostap mode */
549 		| IEEE80211_C_MONITOR		/* monitor mode */
550 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
551 		| IEEE80211_C_SHSLOT		/* short slot time supported */
552 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
553 		;
554 	/*
555 	 * Query the hal to figure out h/w crypto support.
556 	 */
557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
558 		ic->ic_caps |= IEEE80211_C_WEP;
559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
560 		ic->ic_caps |= IEEE80211_C_AES;
561 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
562 		ic->ic_caps |= IEEE80211_C_AES_CCM;
563 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
564 		ic->ic_caps |= IEEE80211_C_CKIP;
565 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
566 		ic->ic_caps |= IEEE80211_C_TKIP;
567 		/*
568 		 * Check if h/w does the MIC and/or whether the
569 		 * separate key cache entries are required to
570 		 * handle both tx+rx MIC keys.
571 		 */
572 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
573 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
574 		if (ath_hal_tkipsplit(ah))
575 			sc->sc_splitmic = 1;
576 	}
577 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
578 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
579 
580 	/*
581 	 * Mark WME capability only if we have sufficient
582 	 * hardware queues to do proper priority scheduling.
583 	 */
584 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
585 		ic->ic_caps |= IEEE80211_C_WME;
586 	/*
587 	 * Check for misc other capabilities.
588 	 */
589 	if (ath_hal_hasbursting(ah))
590 		ic->ic_caps |= IEEE80211_C_BURST;
591 
592 	/*
593 	 * Indicate we need the 802.11 header padded to a
594 	 * 32-bit boundary for 4-address and QoS frames.
595 	 */
596 	ic->ic_flags |= IEEE80211_F_DATAPAD;
597 
598 	/*
599 	 * Not all chips have the VEOL support we want to
600 	 * use with IBSS beacons; check here for it.
601 	 */
602 	sc->sc_hasveol = ath_hal_hasveol(ah);
603 
604 	/* get mac address from hardware */
605 	ath_hal_getmac(ah, ic->ic_myaddr);
606 
607 	if_attach(ifp);
608 	/* call MI attach routine. */
609 	ieee80211_ifattach(ic);
610 	/* override default methods */
611 	ic->ic_node_alloc = ath_node_alloc;
612 	sc->sc_node_free = ic->ic_node_free;
613 	ic->ic_node_free = ath_node_free;
614 	ic->ic_node_getrssi = ath_node_getrssi;
615 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
616 	ic->ic_recv_mgmt = ath_recv_mgmt;
617 	sc->sc_newstate = ic->ic_newstate;
618 	ic->ic_newstate = ath_newstate;
619 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
620 	ic->ic_crypto.cs_key_delete = ath_key_delete;
621 	ic->ic_crypto.cs_key_set = ath_key_set;
622 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
623 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
624 	/* complete initialization */
625 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
626 
627 	ath_bpfattach(sc);
628 
629 #ifdef __NetBSD__
630 	sc->sc_flags |= ATH_ATTACHED;
631 	/*
632 	 * Make sure the interface is shutdown during reboot.
633 	 */
634 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
635 	if (sc->sc_sdhook == NULL)
636 		printf("%s: WARNING: unable to establish shutdown hook\n",
637 			sc->sc_dev.dv_xname);
638 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
639 	if (sc->sc_powerhook == NULL)
640 		printf("%s: WARNING: unable to establish power hook\n",
641 			sc->sc_dev.dv_xname);
642 #endif
643 	ieee80211_announce(ic);
644 	ath_announce(sc);
645 	return 0;
646 bad2:
647 	ath_tx_cleanup(sc);
648 	ath_desc_free(sc);
649 bad:
650 	if (ah)
651 		ath_hal_detach(ah);
652 	sc->sc_invalid = 1;
653 	return error;
654 }
655 
656 int
657 ath_detach(struct ath_softc *sc)
658 {
659 	struct ifnet *ifp = &sc->sc_if;
660 	int s;
661 
662 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
663 		return (0);
664 
665 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
666 		__func__, ifp->if_flags);
667 
668 	s = splnet();
669 	ath_stop(ifp, 1);
670 #if NBPFILTER > 0
671 	bpfdetach(ifp);
672 #endif
673 	/*
674 	 * NB: the order of these is important:
675 	 * o call the 802.11 layer before detaching the hal to
676 	 *   insure callbacks into the driver to delete global
677 	 *   key cache entries can be handled
678 	 * o reclaim the tx queue data structures after calling
679 	 *   the 802.11 layer as we'll get called back to reclaim
680 	 *   node state and potentially want to use them
681 	 * o to cleanup the tx queues the hal is called, so detach
682 	 *   it last
683 	 * Other than that, it's straightforward...
684 	 */
685 	ieee80211_ifdetach(&sc->sc_ic);
686 	ath_rate_detach(sc->sc_rc);
687 	ath_desc_free(sc);
688 	ath_tx_cleanup(sc);
689 	sysctl_teardown(&sc->sc_sysctllog);
690 	ath_hal_detach(sc->sc_ah);
691 	if_detach(ifp);
692 	splx(s);
693 	powerhook_disestablish(sc->sc_powerhook);
694 	shutdownhook_disestablish(sc->sc_sdhook);
695 
696 	return 0;
697 }
698 
699 #ifdef __NetBSD__
700 void
701 ath_power(int why, void *arg)
702 {
703 	struct ath_softc *sc = arg;
704 	int s;
705 
706 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
707 
708 	s = splnet();
709 	switch (why) {
710 	case PWR_SUSPEND:
711 	case PWR_STANDBY:
712 		ath_suspend(sc, why);
713 		break;
714 	case PWR_RESUME:
715 		ath_resume(sc, why);
716 		break;
717 	case PWR_SOFTSUSPEND:
718 	case PWR_SOFTSTANDBY:
719 	case PWR_SOFTRESUME:
720 		break;
721 	}
722 	splx(s);
723 }
724 #endif
725 
726 void
727 ath_suspend(struct ath_softc *sc, int why)
728 {
729 	struct ifnet *ifp = &sc->sc_if;
730 
731 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
732 		__func__, ifp->if_flags);
733 
734 	ath_stop(ifp, 1);
735 	if (sc->sc_power != NULL)
736 		(*sc->sc_power)(sc, why);
737 }
738 
739 void
740 ath_resume(struct ath_softc *sc, int why)
741 {
742 	struct ifnet *ifp = &sc->sc_if;
743 
744 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
745 		__func__, ifp->if_flags);
746 
747 	if (ifp->if_flags & IFF_UP) {
748 		ath_init(sc);
749 #if 0
750 		(void)ath_intr(sc);
751 #endif
752 		if (sc->sc_power != NULL)
753 			(*sc->sc_power)(sc, why);
754 		if (ifp->if_flags & IFF_RUNNING)
755 			ath_start(ifp);
756 	}
757 	if (sc->sc_softled) {
758 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
759 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
760 	}
761 }
762 
763 void
764 ath_shutdown(void *arg)
765 {
766 	struct ath_softc *sc = arg;
767 
768 	ath_stop(&sc->sc_if, 1);
769 }
770 
771 /*
772  * Interrupt handler.  Most of the actual processing is deferred.
773  */
774 int
775 ath_intr(void *arg)
776 {
777 	struct ath_softc *sc = arg;
778 	struct ifnet *ifp = &sc->sc_if;
779 	struct ath_hal *ah = sc->sc_ah;
780 	HAL_INT status;
781 
782 	if (sc->sc_invalid) {
783 		/*
784 		 * The hardware is not ready/present, don't touch anything.
785 		 * Note this can happen early on if the IRQ is shared.
786 		 */
787 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
788 		return 0;
789 	}
790 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
791 		return 0;
792 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
793 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
794 			__func__, ifp->if_flags);
795 		ath_hal_getisr(ah, &status);	/* clear ISR */
796 		ath_hal_intrset(ah, 0);		/* disable further intr's */
797 		return 1; /* XXX */
798 	}
799 	/*
800 	 * Figure out the reason(s) for the interrupt.  Note
801 	 * that the hal returns a pseudo-ISR that may include
802 	 * bits we haven't explicitly enabled so we mask the
803 	 * value to insure we only process bits we requested.
804 	 */
805 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
806 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
807 	status &= sc->sc_imask;			/* discard unasked for bits */
808 	if (status & HAL_INT_FATAL) {
809 		/*
810 		 * Fatal errors are unrecoverable.  Typically
811 		 * these are caused by DMA errors.  Unfortunately
812 		 * the exact reason is not (presently) returned
813 		 * by the hal.
814 		 */
815 		sc->sc_stats.ast_hardware++;
816 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
817 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
818 	} else if (status & HAL_INT_RXORN) {
819 		sc->sc_stats.ast_rxorn++;
820 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
821 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
822 	} else {
823 		if (status & HAL_INT_SWBA) {
824 			/*
825 			 * Software beacon alert--time to send a beacon.
826 			 * Handle beacon transmission directly; deferring
827 			 * this is too slow to meet timing constraints
828 			 * under load.
829 			 */
830 			ath_beacon_proc(sc, 0);
831 		}
832 		if (status & HAL_INT_RXEOL) {
833 			/*
834 			 * NB: the hardware should re-read the link when
835 			 *     RXE bit is written, but it doesn't work at
836 			 *     least on older hardware revs.
837 			 */
838 			sc->sc_stats.ast_rxeol++;
839 			sc->sc_rxlink = NULL;
840 		}
841 		if (status & HAL_INT_TXURN) {
842 			sc->sc_stats.ast_txurn++;
843 			/* bump tx trigger level */
844 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
845 		}
846 		if (status & HAL_INT_RX)
847 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
848 		if (status & HAL_INT_TX)
849 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
850 		if (status & HAL_INT_BMISS) {
851 			sc->sc_stats.ast_bmiss++;
852 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
853 		}
854 		if (status & HAL_INT_MIB) {
855 			sc->sc_stats.ast_mib++;
856 			/*
857 			 * Disable interrupts until we service the MIB
858 			 * interrupt; otherwise it will continue to fire.
859 			 */
860 			ath_hal_intrset(ah, 0);
861 			/*
862 			 * Let the hal handle the event.  We assume it will
863 			 * clear whatever condition caused the interrupt.
864 			 */
865 			ath_hal_mibevent(ah,
866 				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
867 			ath_hal_intrset(ah, sc->sc_imask);
868 		}
869 	}
870 	return 1;
871 }
872 
873 static void
874 ath_fatal_proc(void *arg, int pending)
875 {
876 	struct ath_softc *sc = arg;
877 	struct ifnet *ifp = &sc->sc_if;
878 
879 	if_printf(ifp, "hardware error; resetting\n");
880 	ath_reset(ifp);
881 }
882 
883 static void
884 ath_rxorn_proc(void *arg, int pending)
885 {
886 	struct ath_softc *sc = arg;
887 	struct ifnet *ifp = &sc->sc_if;
888 
889 	if_printf(ifp, "rx FIFO overrun; resetting\n");
890 	ath_reset(ifp);
891 }
892 
893 static void
894 ath_bmiss_proc(void *arg, int pending)
895 {
896 	struct ath_softc *sc = arg;
897 	struct ieee80211com *ic = &sc->sc_ic;
898 
899 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
900 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
901 		("unexpect operating mode %u", ic->ic_opmode));
902 	if (ic->ic_state == IEEE80211_S_RUN) {
903 		/*
904 		 * Rather than go directly to scan state, try to
905 		 * reassociate first.  If that fails then the state
906 		 * machine will drop us into scanning after timing
907 		 * out waiting for a probe response.
908 		 */
909 		NET_LOCK_GIANT();
910 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
911 		NET_UNLOCK_GIANT();
912 	}
913 }
914 
915 static u_int
916 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
917 {
918 #define	N(a)	(sizeof(a) / sizeof(a[0]))
919 	static const u_int modeflags[] = {
920 		0,			/* IEEE80211_MODE_AUTO */
921 		CHANNEL_A,		/* IEEE80211_MODE_11A */
922 		CHANNEL_B,		/* IEEE80211_MODE_11B */
923 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
924 		0,			/* IEEE80211_MODE_FH */
925 		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
926 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
927 	};
928 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
929 
930 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
931 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
932 	return modeflags[mode];
933 #undef N
934 }
935 
936 static int
937 ath_ifinit(struct ifnet *ifp)
938 {
939 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
940 
941 	return ath_init(sc);
942 }
943 
944 static int
945 ath_init(struct ath_softc *sc)
946 {
947 	struct ifnet *ifp = &sc->sc_if;
948 	struct ieee80211com *ic = &sc->sc_ic;
949 	struct ieee80211_node *ni;
950 	struct ath_hal *ah = sc->sc_ah;
951 	HAL_STATUS status;
952 	int error = 0;
953 
954 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
955 		__func__, ifp->if_flags);
956 
957 	ATH_LOCK(sc);
958 
959 	if ((error = ath_enable(sc)) != 0)
960 		return error;
961 
962 	/*
963 	 * Stop anything previously setup.  This is safe
964 	 * whether this is the first time through or not.
965 	 */
966 	ath_stop_locked(ifp, 0);
967 
968 	/*
969 	 * The basic interface to setting the hardware in a good
970 	 * state is ``reset''.  On return the hardware is known to
971 	 * be powered up and with interrupts disabled.  This must
972 	 * be followed by initialization of the appropriate bits
973 	 * and then setup of the interrupt mask.
974 	 */
975 	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
976 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
977 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
978 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
979 			status);
980 		error = EIO;
981 		goto done;
982 	}
983 
984 	/*
985 	 * This is needed only to setup initial state
986 	 * but it's best done after a reset.
987 	 */
988 	ath_update_txpow(sc);
989 
990 	/*
991 	 * Setup the hardware after reset: the key cache
992 	 * is filled as needed and the receive engine is
993 	 * set going.  Frame transmit is handled entirely
994 	 * in the frame output path; there's nothing to do
995 	 * here except setup the interrupt mask.
996 	 */
997 	if ((error = ath_startrecv(sc)) != 0) {
998 		if_printf(ifp, "unable to start recv logic\n");
999 		goto done;
1000 	}
1001 
1002 	/*
1003 	 * Enable interrupts.
1004 	 */
1005 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1006 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1007 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1008 	/*
1009 	 * Enable MIB interrupts when there are hardware phy counters.
1010 	 * Note we only do this (at the moment) for station mode.
1011 	 */
1012 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1013 		sc->sc_imask |= HAL_INT_MIB;
1014 	ath_hal_intrset(ah, sc->sc_imask);
1015 
1016 	ifp->if_flags |= IFF_RUNNING;
1017 	ic->ic_state = IEEE80211_S_INIT;
1018 
1019 	/*
1020 	 * The hardware should be ready to go now so it's safe
1021 	 * to kick the 802.11 state machine as it's likely to
1022 	 * immediately call back to us to send mgmt frames.
1023 	 */
1024 	ni = ic->ic_bss;
1025 	ni->ni_chan = ic->ic_ibss_chan;
1026 	ath_chan_change(sc, ni->ni_chan);
1027 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1028 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1029 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1030 	} else
1031 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1032 done:
1033 	ATH_UNLOCK(sc);
1034 	return error;
1035 }
1036 
1037 static void
1038 ath_stop_locked(struct ifnet *ifp, int disable)
1039 {
1040 	struct ath_softc *sc = ifp->if_softc;
1041 	struct ieee80211com *ic = &sc->sc_ic;
1042 	struct ath_hal *ah = sc->sc_ah;
1043 
1044 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1045 		__func__, sc->sc_invalid, ifp->if_flags);
1046 
1047 	ATH_LOCK_ASSERT(sc);
1048 	if (ifp->if_flags & IFF_RUNNING) {
1049 		/*
1050 		 * Shutdown the hardware and driver:
1051 		 *    reset 802.11 state machine
1052 		 *    turn off timers
1053 		 *    disable interrupts
1054 		 *    turn off the radio
1055 		 *    clear transmit machinery
1056 		 *    clear receive machinery
1057 		 *    drain and release tx queues
1058 		 *    reclaim beacon resources
1059 		 *    power down hardware
1060 		 *
1061 		 * Note that some of this work is not possible if the
1062 		 * hardware is gone (invalid).
1063 		 */
1064 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1065 		ifp->if_flags &= ~IFF_RUNNING;
1066 		ifp->if_timer = 0;
1067 		if (!sc->sc_invalid) {
1068 			if (sc->sc_softled) {
1069 				callout_stop(&sc->sc_ledtimer);
1070 				ath_hal_gpioset(ah, sc->sc_ledpin,
1071 					!sc->sc_ledon);
1072 				sc->sc_blinking = 0;
1073 			}
1074 			ath_hal_intrset(ah, 0);
1075 		}
1076 		ath_draintxq(sc);
1077 		if (!sc->sc_invalid) {
1078 			ath_stoprecv(sc);
1079 			ath_hal_phydisable(ah);
1080 		} else
1081 			sc->sc_rxlink = NULL;
1082 		IF_PURGE(&ifp->if_snd);
1083 		ath_beacon_free(sc);
1084 		if (disable)
1085 			ath_disable(sc);
1086 	}
1087 }
1088 
1089 static void
1090 ath_stop(struct ifnet *ifp, int disable)
1091 {
1092 	struct ath_softc *sc = ifp->if_softc;
1093 
1094 	ATH_LOCK(sc);
1095 	ath_stop_locked(ifp, disable);
1096 	if (!sc->sc_invalid) {
1097 		/*
1098 		 * Set the chip in full sleep mode.  Note that we are
1099 		 * careful to do this only when bringing the interface
1100 		 * completely to a stop.  When the chip is in this state
1101 		 * it must be carefully woken up or references to
1102 		 * registers in the PCI clock domain may freeze the bus
1103 		 * (and system).  This varies by chip and is mostly an
1104 		 * issue with newer parts that go to sleep more quickly.
1105 		 */
1106 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
1107 	}
1108 	ATH_UNLOCK(sc);
1109 }
1110 
1111 /*
1112  * Reset the hardware w/o losing operational state.  This is
1113  * basically a more efficient way of doing ath_stop, ath_init,
1114  * followed by state transitions to the current 802.11
1115  * operational state.  Used to recover from various errors and
1116  * to reset or reload hardware state.
1117  */
1118 int
1119 ath_reset(struct ifnet *ifp)
1120 {
1121 	struct ath_softc *sc = ifp->if_softc;
1122 	struct ieee80211com *ic = &sc->sc_ic;
1123 	struct ath_hal *ah = sc->sc_ah;
1124 	struct ieee80211_channel *c;
1125 	HAL_STATUS status;
1126 
1127 	/*
1128 	 * Convert to a HAL channel description with the flags
1129 	 * constrained to reflect the current operating mode.
1130 	 */
1131 	c = ic->ic_ibss_chan;
1132 	sc->sc_curchan.channel = c->ic_freq;
1133 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1134 
1135 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1136 	ath_draintxq(sc);		/* stop xmit side */
1137 	ath_stoprecv(sc);		/* stop recv side */
1138 	/* NB: indicate channel change so we do a full reset */
1139 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1140 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1141 			__func__, status);
1142 	ath_update_txpow(sc);		/* update tx power state */
1143 	if (ath_startrecv(sc) != 0)	/* restart recv */
1144 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1145 	/*
1146 	 * We may be doing a reset in response to an ioctl
1147 	 * that changes the channel so update any state that
1148 	 * might change as a result.
1149 	 */
1150 	ath_chan_change(sc, c);
1151 	if (ic->ic_state == IEEE80211_S_RUN)
1152 		ath_beacon_config(sc);	/* restart beacons */
1153 	ath_hal_intrset(ah, sc->sc_imask);
1154 
1155 	ath_start(ifp);			/* restart xmit */
1156 	return 0;
1157 }
1158 
1159 static void
1160 ath_start(struct ifnet *ifp)
1161 {
1162 	struct ath_softc *sc = ifp->if_softc;
1163 	struct ath_hal *ah = sc->sc_ah;
1164 	struct ieee80211com *ic = &sc->sc_ic;
1165 	struct ieee80211_node *ni;
1166 	struct ath_buf *bf;
1167 	struct mbuf *m;
1168 	struct ieee80211_frame *wh;
1169 	struct ether_header *eh;
1170 
1171 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1172 		return;
1173 	for (;;) {
1174 		/*
1175 		 * Grab a TX buffer and associated resources.
1176 		 */
1177 		ATH_TXBUF_LOCK(sc);
1178 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1179 		if (bf != NULL)
1180 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1181 		ATH_TXBUF_UNLOCK(sc);
1182 		if (bf == NULL) {
1183 			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1184 				__func__);
1185 			sc->sc_stats.ast_tx_qstop++;
1186 			ifp->if_flags |= IFF_OACTIVE;
1187 			break;
1188 		}
1189 		/*
1190 		 * Poll the management queue for frames; they
1191 		 * have priority over normal data frames.
1192 		 */
1193 		IF_DEQUEUE(&ic->ic_mgtq, m);
1194 		if (m == NULL) {
1195 			/*
1196 			 * No data frames go out unless we're associated.
1197 			 */
1198 			if (ic->ic_state != IEEE80211_S_RUN) {
1199 				DPRINTF(sc, ATH_DEBUG_ANY,
1200 					"%s: ignore data packet, state %u\n",
1201 					__func__, ic->ic_state);
1202 				sc->sc_stats.ast_tx_discard++;
1203 				ATH_TXBUF_LOCK(sc);
1204 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1205 				ATH_TXBUF_UNLOCK(sc);
1206 				break;
1207 			}
1208 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1209 			if (m == NULL) {
1210 				ATH_TXBUF_LOCK(sc);
1211 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1212 				ATH_TXBUF_UNLOCK(sc);
1213 				break;
1214 			}
1215 			/*
1216 			 * Find the node for the destination so we can do
1217 			 * things like power save and fast frames aggregation.
1218 			 */
1219 			if (m->m_len < sizeof(struct ether_header) &&
1220 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1221 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1222 				ni = NULL;
1223 				goto bad;
1224 			}
1225 			eh = mtod(m, struct ether_header *);
1226 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1227 			if (ni == NULL) {
1228 				/* NB: ieee80211_find_txnode does stat+msg */
1229 				m_freem(m);
1230 				goto bad;
1231 			}
1232 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1233 			    (m->m_flags & M_PWR_SAV) == 0) {
1234 				/*
1235 				 * Station in power save mode; pass the frame
1236 				 * to the 802.11 layer and continue.  We'll get
1237 				 * the frame back when the time is right.
1238 				 */
1239 				ieee80211_pwrsave(ic, ni, m);
1240 				goto reclaim;
1241 			}
1242 			/* calculate priority so we can find the tx queue */
1243 			if (ieee80211_classify(ic, m, ni)) {
1244 				DPRINTF(sc, ATH_DEBUG_XMIT,
1245 					"%s: discard, classification failure\n",
1246 					__func__);
1247 				m_freem(m);
1248 				goto bad;
1249 			}
1250 			ifp->if_opackets++;
1251 
1252 #if NBPFILTER > 0
1253 			if (ifp->if_bpf)
1254 				bpf_mtap(ifp->if_bpf, m);
1255 #endif
1256 			/*
1257 			 * Encapsulate the packet in prep for transmission.
1258 			 */
1259 			m = ieee80211_encap(ic, m, ni);
1260 			if (m == NULL) {
1261 				DPRINTF(sc, ATH_DEBUG_ANY,
1262 					"%s: encapsulation failure\n",
1263 					__func__);
1264 				sc->sc_stats.ast_tx_encap++;
1265 				goto bad;
1266 			}
1267 		} else {
1268 			/*
1269 			 * Hack!  The referenced node pointer is in the
1270 			 * rcvif field of the packet header.  This is
1271 			 * placed there by ieee80211_mgmt_output because
1272 			 * we need to hold the reference with the frame
1273 			 * and there's no other way (other than packet
1274 			 * tags which we consider too expensive to use)
1275 			 * to pass it along.
1276 			 */
1277 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1278 			m->m_pkthdr.rcvif = NULL;
1279 
1280 			wh = mtod(m, struct ieee80211_frame *);
1281 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1282 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1283 				/* fill time stamp */
1284 				u_int64_t tsf;
1285 				u_int32_t *tstamp;
1286 
1287 				tsf = ath_hal_gettsf64(ah);
1288 				/* XXX: adjust 100us delay to xmit */
1289 				tsf += 100;
1290 				tstamp = (u_int32_t *)&wh[1];
1291 				tstamp[0] = htole32(tsf & 0xffffffff);
1292 				tstamp[1] = htole32(tsf >> 32);
1293 			}
1294 			sc->sc_stats.ast_tx_mgmt++;
1295 		}
1296 
1297 		if (ath_tx_start(sc, ni, bf, m)) {
1298 	bad:
1299 			ifp->if_oerrors++;
1300 	reclaim:
1301 			ATH_TXBUF_LOCK(sc);
1302 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1303 			ATH_TXBUF_UNLOCK(sc);
1304 			if (ni != NULL)
1305 				ieee80211_free_node(ni);
1306 			continue;
1307 		}
1308 
1309 		sc->sc_tx_timer = 5;
1310 		ifp->if_timer = 1;
1311 	}
1312 }
1313 
1314 static int
1315 ath_media_change(struct ifnet *ifp)
1316 {
1317 #define	IS_UP(ifp) \
1318 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1319 	int error;
1320 
1321 	error = ieee80211_media_change(ifp);
1322 	if (error == ENETRESET) {
1323 		if (IS_UP(ifp))
1324 			ath_init(ifp->if_softc);	/* XXX lose error */
1325 		error = 0;
1326 	}
1327 	return error;
1328 #undef IS_UP
1329 }
1330 
1331 #ifdef AR_DEBUG
1332 static void
1333 ath_keyprint(const char *tag, u_int ix,
1334 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1335 {
1336 	static const char *ciphers[] = {
1337 		"WEP",
1338 		"AES-OCB",
1339 		"AES-CCM",
1340 		"CKIP",
1341 		"TKIP",
1342 		"CLR",
1343 	};
1344 	int i, n;
1345 
1346 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1347 	for (i = 0, n = hk->kv_len; i < n; i++)
1348 		printf("%02x", hk->kv_val[i]);
1349 	printf(" mac %s", ether_sprintf(mac));
1350 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1351 		printf(" mic ");
1352 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1353 			printf("%02x", hk->kv_mic[i]);
1354 	}
1355 	printf("\n");
1356 }
1357 #endif
1358 
1359 /*
1360  * Set a TKIP key into the hardware.  This handles the
1361  * potential distribution of key state to multiple key
1362  * cache slots for TKIP.
1363  */
1364 static int
1365 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1366 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1367 {
1368 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1369 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1370 	struct ath_hal *ah = sc->sc_ah;
1371 
1372 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1373 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1374 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1375 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1376 		/*
1377 		 * TX key goes at first index, RX key at +32.
1378 		 * The hal handles the MIC keys at index+64.
1379 		 */
1380 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1381 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1382 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1383 			return 0;
1384 
1385 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1386 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1387 		/* XXX delete tx key on failure? */
1388 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1389 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1390 		/*
1391 		 * TX/RX key goes at first index.
1392 		 * The hal handles the MIC keys are index+64.
1393 		 */
1394 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1395 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1396 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1397 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1398 	}
1399 	return 0;
1400 #undef IEEE80211_KEY_XR
1401 }
1402 
1403 /*
1404  * Set a net80211 key into the hardware.  This handles the
1405  * potential distribution of key state to multiple key
1406  * cache slots for TKIP with hardware MIC support.
1407  */
1408 static int
1409 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1410 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1411 	struct ieee80211_node *bss)
1412 {
1413 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1414 	static const u_int8_t ciphermap[] = {
1415 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1416 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1417 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1418 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1419 		(u_int8_t) -1,		/* 4 is not allocated */
1420 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1421 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1422 	};
1423 	struct ath_hal *ah = sc->sc_ah;
1424 	const struct ieee80211_cipher *cip = k->wk_cipher;
1425 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1426 	const u_int8_t *mac;
1427 	HAL_KEYVAL hk;
1428 
1429 	memset(&hk, 0, sizeof(hk));
1430 	/*
1431 	 * Software crypto uses a "clear key" so non-crypto
1432 	 * state kept in the key cache are maintained and
1433 	 * so that rx frames have an entry to match.
1434 	 */
1435 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1436 		KASSERT(cip->ic_cipher < N(ciphermap),
1437 			("invalid cipher type %u", cip->ic_cipher));
1438 		hk.kv_type = ciphermap[cip->ic_cipher];
1439 		hk.kv_len = k->wk_keylen;
1440 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1441 	} else
1442 		hk.kv_type = HAL_CIPHER_CLR;
1443 
1444 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1445 		/*
1446 		 * Group keys on hardware that supports multicast frame
1447 		 * key search use a mac that is the sender's address with
1448 		 * the high bit set instead of the app-specified address.
1449 		 */
1450 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1451 		gmac[0] |= 0x80;
1452 		mac = gmac;
1453 	} else
1454 		mac = mac0;
1455 
1456 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1457 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1458 	    sc->sc_splitmic) {
1459 		return ath_keyset_tkip(sc, k, &hk, mac);
1460 	} else {
1461 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1462 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1463 	}
1464 #undef N
1465 }
1466 
1467 /*
1468  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1469  * each key, one for decrypt/encrypt and the other for the MIC.
1470  */
1471 static u_int16_t
1472 key_alloc_2pair(struct ath_softc *sc)
1473 {
1474 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1475 	u_int i, keyix;
1476 
1477 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1478 	/* XXX could optimize */
1479 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1480 		u_int8_t b = sc->sc_keymap[i];
1481 		if (b != 0xff) {
1482 			/*
1483 			 * One or more slots in this byte are free.
1484 			 */
1485 			keyix = i*NBBY;
1486 			while (b & 1) {
1487 		again:
1488 				keyix++;
1489 				b >>= 1;
1490 			}
1491 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1492 			if (isset(sc->sc_keymap, keyix+32) ||
1493 			    isset(sc->sc_keymap, keyix+64) ||
1494 			    isset(sc->sc_keymap, keyix+32+64)) {
1495 				/* full pair unavailable */
1496 				/* XXX statistic */
1497 				if (keyix == (i+1)*NBBY) {
1498 					/* no slots were appropriate, advance */
1499 					continue;
1500 				}
1501 				goto again;
1502 			}
1503 			setbit(sc->sc_keymap, keyix);
1504 			setbit(sc->sc_keymap, keyix+64);
1505 			setbit(sc->sc_keymap, keyix+32);
1506 			setbit(sc->sc_keymap, keyix+32+64);
1507 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1508 				"%s: key pair %u,%u %u,%u\n",
1509 				__func__, keyix, keyix+64,
1510 				keyix+32, keyix+32+64);
1511 			return keyix;
1512 		}
1513 	}
1514 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1515 	return IEEE80211_KEYIX_NONE;
1516 #undef N
1517 }
1518 
1519 /*
1520  * Allocate a single key cache slot.
1521  */
1522 static u_int16_t
1523 key_alloc_single(struct ath_softc *sc)
1524 {
1525 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1526 	u_int i, keyix;
1527 
1528 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1529 	for (i = 0; i < N(sc->sc_keymap); i++) {
1530 		u_int8_t b = sc->sc_keymap[i];
1531 		if (b != 0xff) {
1532 			/*
1533 			 * One or more slots are free.
1534 			 */
1535 			keyix = i*NBBY;
1536 			while (b & 1)
1537 				keyix++, b >>= 1;
1538 			setbit(sc->sc_keymap, keyix);
1539 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1540 				__func__, keyix);
1541 			return keyix;
1542 		}
1543 	}
1544 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1545 	return IEEE80211_KEYIX_NONE;
1546 #undef N
1547 }
1548 
1549 /*
1550  * Allocate one or more key cache slots for a uniacst key.  The
1551  * key itself is needed only to identify the cipher.  For hardware
1552  * TKIP with split cipher+MIC keys we allocate two key cache slot
1553  * pairs so that we can setup separate TX and RX MIC keys.  Note
1554  * that the MIC key for a TKIP key at slot i is assumed by the
1555  * hardware to be at slot i+64.  This limits TKIP keys to the first
1556  * 64 entries.
1557  */
1558 static int
1559 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1560 {
1561 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1562 
1563 	/*
1564 	 * Group key allocation must be handled specially for
1565 	 * parts that do not support multicast key cache search
1566 	 * functionality.  For those parts the key id must match
1567 	 * the h/w key index so lookups find the right key.  On
1568 	 * parts w/ the key search facility we install the sender's
1569 	 * mac address (with the high bit set) and let the hardware
1570 	 * find the key w/o using the key id.  This is preferred as
1571 	 * it permits us to support multiple users for adhoc and/or
1572 	 * multi-station operation.
1573 	 */
1574 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1575 		u_int keyix;
1576 
1577 		if (!(&ic->ic_nw_keys[0] <= k &&
1578 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1579 			/* should not happen */
1580 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1581 				"%s: bogus group key\n", __func__);
1582 			return IEEE80211_KEYIX_NONE;
1583 		}
1584 		keyix = k - ic->ic_nw_keys;
1585 		/*
1586 		 * XXX we pre-allocate the global keys so
1587 		 * have no way to check if they've already been allocated.
1588 		 */
1589 		return keyix;
1590 	}
1591 
1592 	/*
1593 	 * We allocate two pair for TKIP when using the h/w to do
1594 	 * the MIC.  For everything else, including software crypto,
1595 	 * we allocate a single entry.  Note that s/w crypto requires
1596 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1597 	 * not support pass-through cache entries and we map all
1598 	 * those requests to slot 0.
1599 	 */
1600 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1601 		return key_alloc_single(sc);
1602 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1603 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1604 		return key_alloc_2pair(sc);
1605 	} else {
1606 		return key_alloc_single(sc);
1607 	}
1608 }
1609 
1610 /*
1611  * Delete an entry in the key cache allocated by ath_key_alloc.
1612  */
1613 static int
1614 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1615 {
1616 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1617 	struct ath_hal *ah = sc->sc_ah;
1618 	const struct ieee80211_cipher *cip = k->wk_cipher;
1619 	struct ieee80211_node *ni;
1620 	u_int keyix = k->wk_keyix;
1621 
1622 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1623 
1624 	ath_hal_keyreset(ah, keyix);
1625 	/*
1626 	 * Check the key->node map and flush any ref.
1627 	 */
1628 	ni = sc->sc_keyixmap[keyix];
1629 	if (ni != NULL) {
1630 		ieee80211_free_node(ni);
1631 		sc->sc_keyixmap[keyix] = NULL;
1632 	}
1633 	/*
1634 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1635 	 */
1636 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1637 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1638 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1639 		ni = sc->sc_keyixmap[keyix+32];
1640 		if (ni != NULL) {			/* as above... */
1641 			ieee80211_free_node(ni);
1642 			sc->sc_keyixmap[keyix+32] = NULL;
1643 		}
1644 	}
1645 	if (keyix >= IEEE80211_WEP_NKID) {
1646 		/*
1647 		 * Don't touch keymap entries for global keys so
1648 		 * they are never considered for dynamic allocation.
1649 		 */
1650 		clrbit(sc->sc_keymap, keyix);
1651 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1652 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1653 		    sc->sc_splitmic) {
1654 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1655 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1656 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1657 		}
1658 	}
1659 	return 1;
1660 }
1661 
1662 /*
1663  * Set the key cache contents for the specified key.  Key cache
1664  * slot(s) must already have been allocated by ath_key_alloc.
1665  */
1666 static int
1667 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1668 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1669 {
1670 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1671 
1672 	return ath_keyset(sc, k, mac, ic->ic_bss);
1673 }
1674 
1675 /*
1676  * Block/unblock tx+rx processing while a key change is done.
1677  * We assume the caller serializes key management operations
1678  * so we only need to worry about synchronization with other
1679  * uses that originate in the driver.
1680  */
1681 static void
1682 ath_key_update_begin(struct ieee80211com *ic)
1683 {
1684 	struct ifnet *ifp = ic->ic_ifp;
1685 	struct ath_softc *sc = ifp->if_softc;
1686 
1687 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1688 #if 0
1689 	tasklet_disable(&sc->sc_rxtq);
1690 #endif
1691 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1692 }
1693 
1694 static void
1695 ath_key_update_end(struct ieee80211com *ic)
1696 {
1697 	struct ifnet *ifp = ic->ic_ifp;
1698 	struct ath_softc *sc = ifp->if_softc;
1699 
1700 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1701 	IF_UNLOCK(&ifp->if_snd);
1702 #if 0
1703 	tasklet_enable(&sc->sc_rxtq);
1704 #endif
1705 }
1706 
1707 /*
1708  * Calculate the receive filter according to the
1709  * operating mode and state:
1710  *
1711  * o always accept unicast, broadcast, and multicast traffic
1712  * o maintain current state of phy error reception (the hal
1713  *   may enable phy error frames for noise immunity work)
1714  * o probe request frames are accepted only when operating in
1715  *   hostap, adhoc, or monitor modes
1716  * o enable promiscuous mode according to the interface state
1717  * o accept beacons:
1718  *   - when operating in adhoc mode so the 802.11 layer creates
1719  *     node table entries for peers,
1720  *   - when operating in station mode for collecting rssi data when
1721  *     the station is otherwise quiet, or
1722  *   - when scanning
1723  */
1724 static u_int32_t
1725 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1726 {
1727 	struct ieee80211com *ic = &sc->sc_ic;
1728 	struct ath_hal *ah = sc->sc_ah;
1729 	struct ifnet *ifp = &sc->sc_if;
1730 	u_int32_t rfilt;
1731 
1732 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1733 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1734 	if (ic->ic_opmode != IEEE80211_M_STA)
1735 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1736 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1737 	    (ifp->if_flags & IFF_PROMISC))
1738 		rfilt |= HAL_RX_FILTER_PROM;
1739 	if (ic->ic_opmode == IEEE80211_M_STA ||
1740 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1741 	    state == IEEE80211_S_SCAN)
1742 		rfilt |= HAL_RX_FILTER_BEACON;
1743 	return rfilt;
1744 }
1745 
1746 static void
1747 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1748 {
1749 	u_int32_t val;
1750 	u_int8_t pos;
1751 
1752 	/* calculate XOR of eight 6bit values */
1753 	val = LE_READ_4(dl + 0);
1754 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1755 	val = LE_READ_4(dl + 3);
1756 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1757 	pos &= 0x3f;
1758 	mfilt[pos / 32] |= (1 << (pos % 32));
1759 }
1760 
1761 static void
1762 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1763 {
1764 	struct ifnet *ifp = &sc->sc_if;
1765 	struct ether_multi *enm;
1766 	struct ether_multistep estep;
1767 
1768 	mfilt[0] = mfilt[1] = 0;
1769 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1770 	while (enm != NULL) {
1771 		/* XXX Punt on ranges. */
1772 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1773 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1774 			ifp->if_flags |= IFF_ALLMULTI;
1775 			return;
1776 		}
1777 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1778 		ETHER_NEXT_MULTI(estep, enm);
1779 	}
1780 	ifp->if_flags &= ~IFF_ALLMULTI;
1781 }
1782 
1783 static void
1784 ath_mode_init(struct ath_softc *sc)
1785 {
1786 	struct ieee80211com *ic = &sc->sc_ic;
1787 	struct ath_hal *ah = sc->sc_ah;
1788 	u_int32_t rfilt, mfilt[2];
1789 
1790 	/* configure rx filter */
1791 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1792 	ath_hal_setrxfilter(ah, rfilt);
1793 
1794 	/* configure operational mode */
1795 	ath_hal_setopmode(ah);
1796 
1797 	/*
1798 	 * Handle any link-level address change.  Note that we only
1799 	 * need to force ic_myaddr; any other addresses are handled
1800 	 * as a byproduct of the ifnet code marking the interface
1801 	 * down then up.
1802 	 *
1803 	 * XXX should get from lladdr instead of arpcom but that's more work
1804 	 */
1805 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1806 	ath_hal_setmac(ah, ic->ic_myaddr);
1807 
1808 	/* calculate and install multicast filter */
1809 #ifdef __FreeBSD__
1810 	if ((sc->sc_if.if_flags & IFF_ALLMULTI) == 0)
1811 		ath_mcastfilter_compute(sc, mfilt);
1812 	else
1813 		mfilt[0] = mfilt[1] = ~0;
1814 #endif
1815 #ifdef __NetBSD__
1816 	ath_mcastfilter_compute(sc, mfilt);
1817 #endif
1818 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1819 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1820 		__func__, rfilt, mfilt[0], mfilt[1]);
1821 }
1822 
1823 /*
1824  * Set the slot time based on the current setting.
1825  */
1826 static void
1827 ath_setslottime(struct ath_softc *sc)
1828 {
1829 	struct ieee80211com *ic = &sc->sc_ic;
1830 	struct ath_hal *ah = sc->sc_ah;
1831 
1832 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1833 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1834 	else
1835 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1836 	sc->sc_updateslot = OK;
1837 }
1838 
1839 /*
1840  * Callback from the 802.11 layer to update the
1841  * slot time based on the current setting.
1842  */
1843 static void
1844 ath_updateslot(struct ifnet *ifp)
1845 {
1846 	struct ath_softc *sc = ifp->if_softc;
1847 	struct ieee80211com *ic = &sc->sc_ic;
1848 
1849 	/*
1850 	 * When not coordinating the BSS, change the hardware
1851 	 * immediately.  For other operation we defer the change
1852 	 * until beacon updates have propagated to the stations.
1853 	 */
1854 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1855 		sc->sc_updateslot = UPDATE;
1856 	else
1857 		ath_setslottime(sc);
1858 }
1859 
1860 /*
1861  * Setup a h/w transmit queue for beacons.
1862  */
1863 static int
1864 ath_beaconq_setup(struct ath_hal *ah)
1865 {
1866 	HAL_TXQ_INFO qi;
1867 
1868 	memset(&qi, 0, sizeof(qi));
1869 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1870 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1871 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1872 	/* NB: for dynamic turbo, don't enable any other interrupts */
1873 	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1874 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1875 }
1876 
1877 /*
1878  * Setup the transmit queue parameters for the beacon queue.
1879  */
1880 static int
1881 ath_beaconq_config(struct ath_softc *sc)
1882 {
1883 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1884 	struct ieee80211com *ic = &sc->sc_ic;
1885 	struct ath_hal *ah = sc->sc_ah;
1886 	HAL_TXQ_INFO qi;
1887 
1888 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1889 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1890 		/*
1891 		 * Always burst out beacon and CAB traffic.
1892 		 */
1893 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1894 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1895 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1896 	} else {
1897 		struct wmeParams *wmep =
1898 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1899 		/*
1900 		 * Adhoc mode; important thing is to use 2x cwmin.
1901 		 */
1902 		qi.tqi_aifs = wmep->wmep_aifsn;
1903 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1904 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1905 	}
1906 
1907 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1908 		device_printf(sc->sc_dev, "unable to update parameters for "
1909 			"beacon hardware queue!\n");
1910 		return 0;
1911 	} else {
1912 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1913 		return 1;
1914 	}
1915 #undef ATH_EXPONENT_TO_VALUE
1916 }
1917 
1918 /*
1919  * Allocate and setup an initial beacon frame.
1920  */
1921 static int
1922 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1923 {
1924 	struct ieee80211com *ic = ni->ni_ic;
1925 	struct ath_buf *bf;
1926 	struct mbuf *m;
1927 	int error;
1928 
1929 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1930 	if (bf == NULL) {
1931 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1932 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1933 		return ENOMEM;			/* XXX */
1934 	}
1935 	/*
1936 	 * NB: the beacon data buffer must be 32-bit aligned;
1937 	 * we assume the mbuf routines will return us something
1938 	 * with this alignment (perhaps should assert).
1939 	 */
1940 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1941 	if (m == NULL) {
1942 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1943 			__func__);
1944 		sc->sc_stats.ast_be_nombuf++;
1945 		return ENOMEM;
1946 	}
1947 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1948 				     BUS_DMA_NOWAIT);
1949 	if (error == 0) {
1950 		bf->bf_m = m;
1951 		bf->bf_node = ieee80211_ref_node(ni);
1952 	} else {
1953 		m_freem(m);
1954 	}
1955 	return error;
1956 }
1957 
1958 /*
1959  * Setup the beacon frame for transmit.
1960  */
1961 static void
1962 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1963 {
1964 #define	USE_SHPREAMBLE(_ic) \
1965 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1966 		== IEEE80211_F_SHPREAMBLE)
1967 	struct ieee80211_node *ni = bf->bf_node;
1968 	struct ieee80211com *ic = ni->ni_ic;
1969 	struct mbuf *m = bf->bf_m;
1970 	struct ath_hal *ah = sc->sc_ah;
1971 	struct ath_node *an = ATH_NODE(ni);
1972 	struct ath_desc *ds;
1973 	int flags, antenna;
1974 	u_int8_t rate;
1975 
1976 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1977 		__func__, m, m->m_len);
1978 
1979 	/* setup descriptors */
1980 	ds = bf->bf_desc;
1981 
1982 	flags = HAL_TXDESC_NOACK;
1983 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1984 		ds->ds_link = bf->bf_daddr;	/* self-linked */
1985 		flags |= HAL_TXDESC_VEOL;
1986 		/*
1987 		 * Let hardware handle antenna switching unless
1988 		 * the user has selected a transmit antenna
1989 		 * (sc_txantenna is not 0).
1990 		 */
1991 		antenna = sc->sc_txantenna;
1992 	} else {
1993 		ds->ds_link = 0;
1994 		/*
1995 		 * Switch antenna every 4 beacons, unless the user
1996 		 * has selected a transmit antenna (sc_txantenna
1997 		 * is not 0).
1998 		 *
1999 		 * XXX assumes two antenna
2000 		 */
2001 		if (sc->sc_txantenna == 0)
2002 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2003 		else
2004 			antenna = sc->sc_txantenna;
2005 	}
2006 
2007 	KASSERT(bf->bf_nseg == 1,
2008 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2009 	ds->ds_data = bf->bf_segs[0].ds_addr;
2010 	/*
2011 	 * Calculate rate code.
2012 	 * XXX everything at min xmit rate
2013 	 */
2014 	if (USE_SHPREAMBLE(ic))
2015 		rate = an->an_tx_mgtratesp;
2016 	else
2017 		rate = an->an_tx_mgtrate;
2018 	ath_hal_setuptxdesc(ah, ds
2019 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2020 		, sizeof(struct ieee80211_frame)/* header length */
2021 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2022 		, ni->ni_txpower		/* txpower XXX */
2023 		, rate, 1			/* series 0 rate/tries */
2024 		, HAL_TXKEYIX_INVALID		/* no encryption */
2025 		, antenna			/* antenna mode */
2026 		, flags				/* no ack, veol for beacons */
2027 		, 0				/* rts/cts rate */
2028 		, 0				/* rts/cts duration */
2029 	);
2030 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2031 	ath_hal_filltxdesc(ah, ds
2032 		, roundup(m->m_len, 4)		/* buffer length */
2033 		, AH_TRUE			/* first segment */
2034 		, AH_TRUE			/* last segment */
2035 		, ds				/* first descriptor */
2036 	);
2037 #undef USE_SHPREAMBLE
2038 }
2039 
2040 /*
2041  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2042  * frame contents are done as needed and the slot time is
2043  * also adjusted based on current state.
2044  */
2045 static void
2046 ath_beacon_proc(void *arg, int pending)
2047 {
2048 	struct ath_softc *sc = arg;
2049 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2050 	struct ieee80211_node *ni = bf->bf_node;
2051 	struct ieee80211com *ic = ni->ni_ic;
2052 	struct ath_hal *ah = sc->sc_ah;
2053 	struct mbuf *m;
2054 	int ncabq, error, otherant;
2055 
2056 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2057 		__func__, pending);
2058 
2059 	if (ic->ic_opmode == IEEE80211_M_STA ||
2060 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2061 	    bf == NULL || bf->bf_m == NULL) {
2062 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2063 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2064 		return;
2065 	}
2066 	/*
2067 	 * Check if the previous beacon has gone out.  If
2068 	 * not don't don't try to post another, skip this
2069 	 * period and wait for the next.  Missed beacons
2070 	 * indicate a problem and should not occur.  If we
2071 	 * miss too many consecutive beacons reset the device.
2072 	 */
2073 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2074 		sc->sc_bmisscount++;
2075 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2076 			"%s: missed %u consecutive beacons\n",
2077 			__func__, sc->sc_bmisscount);
2078 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2079 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2080 		return;
2081 	}
2082 	if (sc->sc_bmisscount != 0) {
2083 		DPRINTF(sc, ATH_DEBUG_BEACON,
2084 			"%s: resume beacon xmit after %u misses\n",
2085 			__func__, sc->sc_bmisscount);
2086 		sc->sc_bmisscount = 0;
2087 	}
2088 
2089 	/*
2090 	 * Update dynamic beacon contents.  If this returns
2091 	 * non-zero then we need to remap the memory because
2092 	 * the beacon frame changed size (probably because
2093 	 * of the TIM bitmap).
2094 	 */
2095 	m = bf->bf_m;
2096 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2097 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2098 		/* XXX too conservative? */
2099 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2100 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2101 					     BUS_DMA_NOWAIT);
2102 		if (error != 0) {
2103 			if_printf(&sc->sc_if,
2104 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2105 			    __func__, error);
2106 			return;
2107 		}
2108 	}
2109 
2110 	/*
2111 	 * Handle slot time change when a non-ERP station joins/leaves
2112 	 * an 11g network.  The 802.11 layer notifies us via callback,
2113 	 * we mark updateslot, then wait one beacon before effecting
2114 	 * the change.  This gives associated stations at least one
2115 	 * beacon interval to note the state change.
2116 	 */
2117 	/* XXX locking */
2118 	if (sc->sc_updateslot == UPDATE)
2119 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2120 	else if (sc->sc_updateslot == COMMIT)
2121 		ath_setslottime(sc);		/* commit change to h/w */
2122 
2123 	/*
2124 	 * Check recent per-antenna transmit statistics and flip
2125 	 * the default antenna if noticeably more frames went out
2126 	 * on the non-default antenna.
2127 	 * XXX assumes 2 anntenae
2128 	 */
2129 	otherant = sc->sc_defant & 1 ? 2 : 1;
2130 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2131 		ath_setdefantenna(sc, otherant);
2132 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2133 
2134 	/*
2135 	 * Construct tx descriptor.
2136 	 */
2137 	ath_beacon_setup(sc, bf);
2138 
2139 	/*
2140 	 * Stop any current dma and put the new frame on the queue.
2141 	 * This should never fail since we check above that no frames
2142 	 * are still pending on the queue.
2143 	 */
2144 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2145 		DPRINTF(sc, ATH_DEBUG_ANY,
2146 			"%s: beacon queue %u did not stop?\n",
2147 			__func__, sc->sc_bhalq);
2148 	}
2149 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2150 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2151 
2152 	/*
2153 	 * Enable the CAB queue before the beacon queue to
2154 	 * insure cab frames are triggered by this beacon.
2155 	 */
2156 	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
2157 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2158 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2159 	ath_hal_txstart(ah, sc->sc_bhalq);
2160 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2161 		"%s: TXDP[%u] = %p (%p)\n", __func__,
2162 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2163 
2164 	sc->sc_stats.ast_be_xmit++;
2165 }
2166 
2167 /*
2168  * Reset the hardware after detecting beacons have stopped.
2169  */
2170 static void
2171 ath_bstuck_proc(void *arg, int pending)
2172 {
2173 	struct ath_softc *sc = arg;
2174 	struct ifnet *ifp = &sc->sc_if;
2175 
2176 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2177 		sc->sc_bmisscount);
2178 	ath_reset(ifp);
2179 }
2180 
2181 /*
2182  * Reclaim beacon resources.
2183  */
2184 static void
2185 ath_beacon_free(struct ath_softc *sc)
2186 {
2187 	struct ath_buf *bf;
2188 
2189 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2190 		if (bf->bf_m != NULL) {
2191 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2192 			m_freem(bf->bf_m);
2193 			bf->bf_m = NULL;
2194 		}
2195 		if (bf->bf_node != NULL) {
2196 			ieee80211_free_node(bf->bf_node);
2197 			bf->bf_node = NULL;
2198 		}
2199 	}
2200 }
2201 
2202 /*
2203  * Configure the beacon and sleep timers.
2204  *
2205  * When operating as an AP this resets the TSF and sets
2206  * up the hardware to notify us when we need to issue beacons.
2207  *
2208  * When operating in station mode this sets up the beacon
2209  * timers according to the timestamp of the last received
2210  * beacon and the current TSF, configures PCF and DTIM
2211  * handling, programs the sleep registers so the hardware
2212  * will wakeup in time to receive beacons, and configures
2213  * the beacon miss handling so we'll receive a BMISS
2214  * interrupt when we stop seeing beacons from the AP
2215  * we've associated with.
2216  */
2217 static void
2218 ath_beacon_config(struct ath_softc *sc)
2219 {
2220 #define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
2221 	struct ath_hal *ah = sc->sc_ah;
2222 	struct ieee80211com *ic = &sc->sc_ic;
2223 	struct ieee80211_node *ni = ic->ic_bss;
2224 	u_int32_t nexttbtt, intval;
2225 
2226 	/* extract tstamp from last beacon and convert to TU */
2227 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2228 			     LE_READ_4(ni->ni_tstamp.data));
2229 	/* NB: the beacon interval is kept internally in TU's */
2230 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2231 	if (nexttbtt == 0)		/* e.g. for ap mode */
2232 		nexttbtt = intval;
2233 	else if (intval)		/* NB: can be 0 for monitor mode */
2234 		nexttbtt = roundup(nexttbtt, intval);
2235 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2236 		__func__, nexttbtt, intval, ni->ni_intval);
2237 	if (ic->ic_opmode == IEEE80211_M_STA) {
2238 		HAL_BEACON_STATE bs;
2239 		u_int64_t tsf;
2240 		u_int32_t tsftu;
2241 		int dtimperiod, dtimcount;
2242 		int cfpperiod, cfpcount;
2243 
2244 		/*
2245 		 * Setup dtim and cfp parameters according to
2246 		 * last beacon we received (which may be none).
2247 		 */
2248 		dtimperiod = ni->ni_dtim_period;
2249 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2250 			dtimperiod = 1;
2251 		dtimcount = ni->ni_dtim_count;
2252 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2253 			dtimcount = 0;		/* XXX? */
2254 		cfpperiod = 1;			/* NB: no PCF support yet */
2255 		cfpcount = 0;
2256 #define	FUDGE	2
2257 		/*
2258 		 * Pull nexttbtt forward to reflect the current
2259 		 * TSF and calculate dtim+cfp state for the result.
2260 		 */
2261 		tsf = ath_hal_gettsf64(ah);
2262 		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2263 		do {
2264 			nexttbtt += intval;
2265 			if (--dtimcount < 0) {
2266 				dtimcount = dtimperiod - 1;
2267 				if (--cfpcount < 0)
2268 					cfpcount = cfpperiod - 1;
2269 			}
2270 		} while (nexttbtt < tsftu);
2271 #undef FUDGE
2272 		memset(&bs, 0, sizeof(bs));
2273 		bs.bs_intval = intval;
2274 		bs.bs_nexttbtt = nexttbtt;
2275 		bs.bs_dtimperiod = dtimperiod*intval;
2276 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2277 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2278 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2279 		bs.bs_cfpmaxduration = 0;
2280 #if 0
2281 		/*
2282 		 * The 802.11 layer records the offset to the DTIM
2283 		 * bitmap while receiving beacons; use it here to
2284 		 * enable h/w detection of our AID being marked in
2285 		 * the bitmap vector (to indicate frames for us are
2286 		 * pending at the AP).
2287 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2288 		 * XXX enable based on h/w rev for newer chips
2289 		 */
2290 		bs.bs_timoffset = ni->ni_timoff;
2291 #endif
2292 		/*
2293 		 * Calculate the number of consecutive beacons to miss
2294 		 * before taking a BMISS interrupt.  The configuration
2295 		 * is specified in ms, so we need to convert that to
2296 		 * TU's and then calculate based on the beacon interval.
2297 		 * Note that we clamp the result to at most 10 beacons.
2298 		 */
2299 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2300 		if (bs.bs_bmissthreshold > 10)
2301 			bs.bs_bmissthreshold = 10;
2302 		else if (bs.bs_bmissthreshold <= 0)
2303 			bs.bs_bmissthreshold = 1;
2304 
2305 		/*
2306 		 * Calculate sleep duration.  The configuration is
2307 		 * given in ms.  We insure a multiple of the beacon
2308 		 * period is used.  Also, if the sleep duration is
2309 		 * greater than the DTIM period then it makes senses
2310 		 * to make it a multiple of that.
2311 		 *
2312 		 * XXX fixed at 100ms
2313 		 */
2314 		bs.bs_sleepduration =
2315 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2316 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2317 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2318 
2319 		DPRINTF(sc, ATH_DEBUG_BEACON,
2320 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2321 			, __func__
2322 			, tsf, tsftu
2323 			, bs.bs_intval
2324 			, bs.bs_nexttbtt
2325 			, bs.bs_dtimperiod
2326 			, bs.bs_nextdtim
2327 			, bs.bs_bmissthreshold
2328 			, bs.bs_sleepduration
2329 			, bs.bs_cfpperiod
2330 			, bs.bs_cfpmaxduration
2331 			, bs.bs_cfpnext
2332 			, bs.bs_timoffset
2333 		);
2334 		ath_hal_intrset(ah, 0);
2335 		ath_hal_beacontimers(ah, &bs);
2336 		sc->sc_imask |= HAL_INT_BMISS;
2337 		ath_hal_intrset(ah, sc->sc_imask);
2338 	} else {
2339 		ath_hal_intrset(ah, 0);
2340 		if (nexttbtt == intval)
2341 			intval |= HAL_BEACON_RESET_TSF;
2342 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2343 			/*
2344 			 * In IBSS mode enable the beacon timers but only
2345 			 * enable SWBA interrupts if we need to manually
2346 			 * prepare beacon frames.  Otherwise we use a
2347 			 * self-linked tx descriptor and let the hardware
2348 			 * deal with things.
2349 			 */
2350 			intval |= HAL_BEACON_ENA;
2351 			if (!sc->sc_hasveol)
2352 				sc->sc_imask |= HAL_INT_SWBA;
2353 			ath_beaconq_config(sc);
2354 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2355 			/*
2356 			 * In AP mode we enable the beacon timers and
2357 			 * SWBA interrupts to prepare beacon frames.
2358 			 */
2359 			intval |= HAL_BEACON_ENA;
2360 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2361 			ath_beaconq_config(sc);
2362 		}
2363 		ath_hal_beaconinit(ah, nexttbtt, intval);
2364 		sc->sc_bmisscount = 0;
2365 		ath_hal_intrset(ah, sc->sc_imask);
2366 		/*
2367 		 * When using a self-linked beacon descriptor in
2368 		 * ibss mode load it once here.
2369 		 */
2370 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2371 			ath_beacon_proc(sc, 0);
2372 	}
2373 #undef TSF_TO_TU
2374 }
2375 
2376 static int
2377 ath_descdma_setup(struct ath_softc *sc,
2378 	struct ath_descdma *dd, ath_bufhead *head,
2379 	const char *name, int nbuf, int ndesc)
2380 {
2381 #define	DS2PHYS(_dd, _ds) \
2382 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2383 	struct ifnet *ifp = &sc->sc_if;
2384 	struct ath_desc *ds;
2385 	struct ath_buf *bf;
2386 	int i, bsize, error;
2387 
2388 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2389 	    __func__, name, nbuf, ndesc);
2390 
2391 	dd->dd_name = name;
2392 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2393 
2394 	/*
2395 	 * Setup DMA descriptor area.
2396 	 */
2397 	dd->dd_dmat = sc->sc_dmat;
2398 
2399 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2400 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2401 
2402 	if (error != 0) {
2403 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2404 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2405 		goto fail0;
2406 	}
2407 
2408 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2409 	    dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2410 	if (error != 0) {
2411 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2412 		    nbuf * ndesc, dd->dd_name, error);
2413 		goto fail1;
2414 	}
2415 
2416 	/* allocate descriptors */
2417 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2418 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2419 	if (error != 0) {
2420 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2421 			"error %u\n", dd->dd_name, error);
2422 		goto fail2;
2423 	}
2424 
2425 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2426 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2427 	if (error != 0) {
2428 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2429 			dd->dd_name, error);
2430 		goto fail3;
2431 	}
2432 
2433 	ds = dd->dd_desc;
2434 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2435 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2436 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2437 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2438 
2439 	/* allocate rx buffers */
2440 	bsize = sizeof(struct ath_buf) * nbuf;
2441 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2442 	if (bf == NULL) {
2443 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2444 			dd->dd_name, bsize);
2445 		goto fail4;
2446 	}
2447 	dd->dd_bufptr = bf;
2448 
2449 	STAILQ_INIT(head);
2450 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2451 		bf->bf_desc = ds;
2452 		bf->bf_daddr = DS2PHYS(dd, ds);
2453 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2454 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2455 		if (error != 0) {
2456 			if_printf(ifp, "unable to create dmamap for %s "
2457 				"buffer %u, error %u\n", dd->dd_name, i, error);
2458 			ath_descdma_cleanup(sc, dd, head);
2459 			return error;
2460 		}
2461 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2462 	}
2463 	return 0;
2464 fail4:
2465 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2466 fail3:
2467 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2468 fail2:
2469 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2470 fail1:
2471 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2472 fail0:
2473 	memset(dd, 0, sizeof(*dd));
2474 	return error;
2475 #undef DS2PHYS
2476 }
2477 
2478 static void
2479 ath_descdma_cleanup(struct ath_softc *sc,
2480 	struct ath_descdma *dd, ath_bufhead *head)
2481 {
2482 	struct ath_buf *bf;
2483 	struct ieee80211_node *ni;
2484 
2485 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2486 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2487 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2488 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2489 
2490 	STAILQ_FOREACH(bf, head, bf_list) {
2491 		if (bf->bf_m) {
2492 			m_freem(bf->bf_m);
2493 			bf->bf_m = NULL;
2494 		}
2495 		if (bf->bf_dmamap != NULL) {
2496 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2497 			bf->bf_dmamap = NULL;
2498 		}
2499 		ni = bf->bf_node;
2500 		bf->bf_node = NULL;
2501 		if (ni != NULL) {
2502 			/*
2503 			 * Reclaim node reference.
2504 			 */
2505 			ieee80211_free_node(ni);
2506 		}
2507 	}
2508 
2509 	STAILQ_INIT(head);
2510 	free(dd->dd_bufptr, M_ATHDEV);
2511 	memset(dd, 0, sizeof(*dd));
2512 }
2513 
2514 static int
2515 ath_desc_alloc(struct ath_softc *sc)
2516 {
2517 	int error;
2518 
2519 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2520 			"rx", ATH_RXBUF, 1);
2521 	if (error != 0)
2522 		return error;
2523 
2524 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2525 			"tx", ATH_TXBUF, ATH_TXDESC);
2526 	if (error != 0) {
2527 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2528 		return error;
2529 	}
2530 
2531 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2532 			"beacon", 1, 1);
2533 	if (error != 0) {
2534 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2535 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2536 		return error;
2537 	}
2538 	return 0;
2539 }
2540 
2541 static void
2542 ath_desc_free(struct ath_softc *sc)
2543 {
2544 
2545 	if (sc->sc_bdma.dd_desc_len != 0)
2546 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2547 	if (sc->sc_txdma.dd_desc_len != 0)
2548 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2549 	if (sc->sc_rxdma.dd_desc_len != 0)
2550 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2551 }
2552 
2553 static struct ieee80211_node *
2554 ath_node_alloc(struct ieee80211_node_table *nt)
2555 {
2556 	struct ieee80211com *ic = nt->nt_ic;
2557 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2558 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2559 	struct ath_node *an;
2560 
2561 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2562 	if (an == NULL) {
2563 		/* XXX stat+msg */
2564 		return NULL;
2565 	}
2566 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2567 	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2568 	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2569 	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2570 	ath_rate_node_init(sc, an);
2571 
2572 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2573 	return &an->an_node;
2574 }
2575 
2576 static void
2577 ath_node_free(struct ieee80211_node *ni)
2578 {
2579 	struct ieee80211com *ic = ni->ni_ic;
2580         struct ath_softc *sc = ic->ic_ifp->if_softc;
2581 
2582 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2583 
2584 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2585 	sc->sc_node_free(ni);
2586 }
2587 
2588 static u_int8_t
2589 ath_node_getrssi(const struct ieee80211_node *ni)
2590 {
2591 #define	HAL_EP_RND(x, mul) \
2592 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2593 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2594 	int32_t rssi;
2595 
2596 	/*
2597 	 * When only one frame is received there will be no state in
2598 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2599 	 */
2600 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2601 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2602 	else
2603 		rssi = ni->ni_rssi;
2604 	/* NB: theoretically we shouldn't need this, but be paranoid */
2605 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2606 #undef HAL_EP_RND
2607 }
2608 
2609 static int
2610 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2611 {
2612 	struct ath_hal *ah = sc->sc_ah;
2613 	int error;
2614 	struct mbuf *m;
2615 	struct ath_desc *ds;
2616 
2617 	m = bf->bf_m;
2618 	if (m == NULL) {
2619 		/*
2620 		 * NB: by assigning a page to the rx dma buffer we
2621 		 * implicitly satisfy the Atheros requirement that
2622 		 * this buffer be cache-line-aligned and sized to be
2623 		 * multiple of the cache line size.  Not doing this
2624 		 * causes weird stuff to happen (for the 5210 at least).
2625 		 */
2626 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2627 		if (m == NULL) {
2628 			DPRINTF(sc, ATH_DEBUG_ANY,
2629 				"%s: no mbuf/cluster\n", __func__);
2630 			sc->sc_stats.ast_rx_nombuf++;
2631 			return ENOMEM;
2632 		}
2633 		bf->bf_m = m;
2634 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2635 
2636 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2637 					     bf->bf_dmamap, m,
2638 					     BUS_DMA_NOWAIT);
2639 		if (error != 0) {
2640 			DPRINTF(sc, ATH_DEBUG_ANY,
2641 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2642 			    __func__, error);
2643 			sc->sc_stats.ast_rx_busdma++;
2644 			return error;
2645 		}
2646 		KASSERT(bf->bf_nseg == 1,
2647 			("multi-segment packet; nseg %u", bf->bf_nseg));
2648 	}
2649 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2650 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2651 
2652 	/*
2653 	 * Setup descriptors.  For receive we always terminate
2654 	 * the descriptor list with a self-linked entry so we'll
2655 	 * not get overrun under high load (as can happen with a
2656 	 * 5212 when ANI processing enables PHY error frames).
2657 	 *
2658 	 * To insure the last descriptor is self-linked we create
2659 	 * each descriptor as self-linked and add it to the end.  As
2660 	 * each additional descriptor is added the previous self-linked
2661 	 * entry is ``fixed'' naturally.  This should be safe even
2662 	 * if DMA is happening.  When processing RX interrupts we
2663 	 * never remove/process the last, self-linked, entry on the
2664 	 * descriptor list.  This insures the hardware always has
2665 	 * someplace to write a new frame.
2666 	 */
2667 	ds = bf->bf_desc;
2668 	ds->ds_link = bf->bf_daddr;	/* link to self */
2669 	ds->ds_data = bf->bf_segs[0].ds_addr;
2670 	ath_hal_setuprxdesc(ah, ds
2671 		, m->m_len		/* buffer size */
2672 		, 0
2673 	);
2674 
2675 	if (sc->sc_rxlink != NULL)
2676 		*sc->sc_rxlink = bf->bf_daddr;
2677 	sc->sc_rxlink = &ds->ds_link;
2678 	return 0;
2679 }
2680 
2681 /*
2682  * Extend 15-bit time stamp from rx descriptor to
2683  * a full 64-bit TSF using the current h/w TSF.
2684  */
2685 static __inline u_int64_t
2686 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2687 {
2688 	u_int64_t tsf;
2689 
2690 	tsf = ath_hal_gettsf64(ah);
2691 	if ((tsf & 0x7fff) < rstamp)
2692 		tsf -= 0x8000;
2693 	return ((tsf &~ 0x7fff) | rstamp);
2694 }
2695 
2696 /*
2697  * Intercept management frames to collect beacon rssi data
2698  * and to do ibss merges.
2699  */
2700 static void
2701 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2702 	struct ieee80211_node *ni,
2703 	int subtype, int rssi, u_int32_t rstamp)
2704 {
2705 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2706 
2707 	/*
2708 	 * Call up first so subsequent work can use information
2709 	 * potentially stored in the node (e.g. for ibss merge).
2710 	 */
2711 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2712 	switch (subtype) {
2713 	case IEEE80211_FC0_SUBTYPE_BEACON:
2714 		/* update rssi statistics for use by the hal */
2715 		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2716 		/* fall thru... */
2717 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2718 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2719 		    ic->ic_state == IEEE80211_S_RUN) {
2720 			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2721 
2722 			/*
2723 			 * Handle ibss merge as needed; check the tsf on the
2724 			 * frame before attempting the merge.  The 802.11 spec
2725 			 * says the station should change it's bssid to match
2726 			 * the oldest station with the same ssid, where oldest
2727 			 * is determined by the tsf.  Note that hardware
2728 			 * reconfiguration happens through callback to
2729 			 * ath_newstate as the state machine will go from
2730 			 * RUN -> RUN when this happens.
2731 			 */
2732 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2733 				DPRINTF(sc, ATH_DEBUG_STATE,
2734 				    "ibss merge, rstamp %u tsf %ju "
2735 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2736 				    (uintmax_t)ni->ni_tstamp.tsf);
2737 				(void) ieee80211_ibss_merge(ic, ni);
2738 			}
2739 		}
2740 		break;
2741 	}
2742 }
2743 
2744 /*
2745  * Set the default antenna.
2746  */
2747 static void
2748 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2749 {
2750 	struct ath_hal *ah = sc->sc_ah;
2751 
2752 	/* XXX block beacon interrupts */
2753 	ath_hal_setdefantenna(ah, antenna);
2754 	if (sc->sc_defant != antenna)
2755 		sc->sc_stats.ast_ant_defswitch++;
2756 	sc->sc_defant = antenna;
2757 	sc->sc_rxotherant = 0;
2758 }
2759 
2760 static void
2761 ath_rx_proc(void *arg, int npending)
2762 {
2763 #define	PA2DESC(_sc, _pa) \
2764 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2765 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2766 	struct ath_softc *sc = arg;
2767 	struct ath_buf *bf;
2768 	struct ieee80211com *ic = &sc->sc_ic;
2769 	struct ifnet *ifp = &sc->sc_if;
2770 	struct ath_hal *ah = sc->sc_ah;
2771 	struct ath_desc *ds;
2772 	struct mbuf *m;
2773 	struct ieee80211_node *ni;
2774 	struct ath_node *an;
2775 	int len, type;
2776 	u_int phyerr;
2777 	HAL_STATUS status;
2778 
2779 	NET_LOCK_GIANT();		/* XXX */
2780 
2781 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2782 	do {
2783 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2784 		if (bf == NULL) {		/* NB: shouldn't happen */
2785 			if_printf(ifp, "%s: no buffer!\n", __func__);
2786 			break;
2787 		}
2788 		ds = bf->bf_desc;
2789 		if (ds->ds_link == bf->bf_daddr) {
2790 			/* NB: never process the self-linked entry at the end */
2791 			break;
2792 		}
2793 		m = bf->bf_m;
2794 		if (m == NULL) {		/* NB: shouldn't happen */
2795 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2796 			continue;
2797 		}
2798 		/* XXX sync descriptor memory */
2799 		/*
2800 		 * Must provide the virtual address of the current
2801 		 * descriptor, the physical address, and the virtual
2802 		 * address of the next descriptor in the h/w chain.
2803 		 * This allows the HAL to look ahead to see if the
2804 		 * hardware is done with a descriptor by checking the
2805 		 * done bit in the following descriptor and the address
2806 		 * of the current descriptor the DMA engine is working
2807 		 * on.  All this is necessary because of our use of
2808 		 * a self-linked list to avoid rx overruns.
2809 		 */
2810 		status = ath_hal_rxprocdesc(ah, ds,
2811 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2812 #ifdef AR_DEBUG
2813 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2814 			ath_printrxbuf(bf, status == HAL_OK);
2815 #endif
2816 		if (status == HAL_EINPROGRESS)
2817 			break;
2818 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2819 		if (ds->ds_rxstat.rs_more) {
2820 			/*
2821 			 * Frame spans multiple descriptors; this
2822 			 * cannot happen yet as we don't support
2823 			 * jumbograms.  If not in monitor mode,
2824 			 * discard the frame.
2825 			 */
2826 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2827 				sc->sc_stats.ast_rx_toobig++;
2828 				goto rx_next;
2829 			}
2830 			/* fall thru for monitor mode handling... */
2831 		} else if (ds->ds_rxstat.rs_status != 0) {
2832 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2833 				sc->sc_stats.ast_rx_crcerr++;
2834 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2835 				sc->sc_stats.ast_rx_fifoerr++;
2836 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2837 				sc->sc_stats.ast_rx_phyerr++;
2838 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2839 				sc->sc_stats.ast_rx_phy[phyerr]++;
2840 				goto rx_next;
2841 			}
2842 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2843 				/*
2844 				 * Decrypt error.  If the error occurred
2845 				 * because there was no hardware key, then
2846 				 * let the frame through so the upper layers
2847 				 * can process it.  This is necessary for 5210
2848 				 * parts which have no way to setup a ``clear''
2849 				 * key cache entry.
2850 				 *
2851 				 * XXX do key cache faulting
2852 				 */
2853 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2854 					goto rx_accept;
2855 				sc->sc_stats.ast_rx_badcrypt++;
2856 			}
2857 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2858 				sc->sc_stats.ast_rx_badmic++;
2859 				/*
2860 				 * Do minimal work required to hand off
2861 				 * the 802.11 header for notifcation.
2862 				 */
2863 				/* XXX frag's and qos frames */
2864 				len = ds->ds_rxstat.rs_datalen;
2865 				if (len >= sizeof (struct ieee80211_frame)) {
2866 					bus_dmamap_sync(sc->sc_dmat,
2867 					    bf->bf_dmamap,
2868 					    0, bf->bf_dmamap->dm_mapsize,
2869 					    BUS_DMASYNC_POSTREAD);
2870 					ieee80211_notify_michael_failure(ic,
2871 					    mtod(m, struct ieee80211_frame *),
2872 					    sc->sc_splitmic ?
2873 					        ds->ds_rxstat.rs_keyix-32 :
2874 					        ds->ds_rxstat.rs_keyix
2875 					);
2876 				}
2877 			}
2878 			ifp->if_ierrors++;
2879 			/*
2880 			 * Reject error frames, we normally don't want
2881 			 * to see them in monitor mode (in monitor mode
2882 			 * allow through packets that have crypto problems).
2883 			 */
2884 			if ((ds->ds_rxstat.rs_status &~
2885 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2886 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2887 				goto rx_next;
2888 		}
2889 rx_accept:
2890 		/*
2891 		 * Sync and unmap the frame.  At this point we're
2892 		 * committed to passing the mbuf somewhere so clear
2893 		 * bf_m; this means a new sk_buff must be allocated
2894 		 * when the rx descriptor is setup again to receive
2895 		 * another frame.
2896 		 */
2897 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2898 		    0, bf->bf_dmamap->dm_mapsize,
2899 		    BUS_DMASYNC_POSTREAD);
2900 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2901 		bf->bf_m = NULL;
2902 
2903 		m->m_pkthdr.rcvif = ifp;
2904 		len = ds->ds_rxstat.rs_datalen;
2905 		m->m_pkthdr.len = m->m_len = len;
2906 
2907 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2908 
2909 #if NBPFILTER > 0
2910 		if (sc->sc_drvbpf) {
2911 			u_int8_t rix;
2912 
2913 			/*
2914 			 * Discard anything shorter than an ack or cts.
2915 			 */
2916 			if (len < IEEE80211_ACK_LEN) {
2917 				DPRINTF(sc, ATH_DEBUG_RECV,
2918 					"%s: runt packet %d\n",
2919 					__func__, len);
2920 				sc->sc_stats.ast_rx_tooshort++;
2921 				m_freem(m);
2922 				goto rx_next;
2923 			}
2924 			rix = ds->ds_rxstat.rs_rate;
2925 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2926 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2927 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2928 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2929 			/* XXX TSF */
2930 
2931 			bpf_mtap2(sc->sc_drvbpf,
2932 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2933 		}
2934 #endif
2935 
2936 		/*
2937 		 * From this point on we assume the frame is at least
2938 		 * as large as ieee80211_frame_min; verify that.
2939 		 */
2940 		if (len < IEEE80211_MIN_LEN) {
2941 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2942 				__func__, len);
2943 			sc->sc_stats.ast_rx_tooshort++;
2944 			m_freem(m);
2945 			goto rx_next;
2946 		}
2947 
2948 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2949 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2950 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2951 				   ds->ds_rxstat.rs_rssi);
2952 		}
2953 
2954 		m_adj(m, -IEEE80211_CRC_LEN);
2955 
2956 		/*
2957 		 * Locate the node for sender, track state, and then
2958 		 * pass the (referenced) node up to the 802.11 layer
2959 		 * for its use.  If the sender is unknown spam the
2960 		 * frame; it'll be dropped where it's not wanted.
2961 		 */
2962 		if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID &&
2963 		    (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) {
2964 			/*
2965 			 * Fast path: node is present in the key map;
2966 			 * grab a reference for processing the frame.
2967 			 */
2968 			an = ATH_NODE(ieee80211_ref_node(ni));
2969 			ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2970 			type = ieee80211_input(ic, m, ni,
2971 				ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2972 		} else {
2973 			/*
2974 			 * Locate the node for sender, track state, and then
2975 			 * pass the (referenced) node up to the 802.11 layer
2976 			 * for its use.
2977 			 */
2978 			ni = ieee80211_find_rxnode(ic,
2979 				mtod(m, const struct ieee80211_frame_min *));
2980 			/*
2981 			 * Track rx rssi and do any rx antenna management.
2982 			 */
2983 			an = ATH_NODE(ni);
2984 			ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2985 			/*
2986 			 * Send frame up for processing.
2987 			 */
2988 			type = ieee80211_input(ic, m, ni,
2989 				ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2990 			if (ni != ic->ic_bss) {
2991 				u_int16_t keyix;
2992 				/*
2993 				 * If the station has a key cache slot assigned
2994 				 * update the key->node mapping table.
2995 				 */
2996 				keyix = ni->ni_ucastkey.wk_keyix;
2997 				if (keyix != IEEE80211_KEYIX_NONE &&
2998 				    sc->sc_keyixmap[keyix] == NULL)
2999 					sc->sc_keyixmap[keyix] =
3000 						ieee80211_ref_node(ni);
3001 			}
3002 		}
3003 		ieee80211_free_node(ni);
3004 		if (sc->sc_diversity) {
3005 			/*
3006 			 * When using fast diversity, change the default rx
3007 			 * antenna if diversity chooses the other antenna 3
3008 			 * times in a row.
3009 			 */
3010 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3011 				if (++sc->sc_rxotherant >= 3)
3012 					ath_setdefantenna(sc,
3013 						ds->ds_rxstat.rs_antenna);
3014 			} else
3015 				sc->sc_rxotherant = 0;
3016 		}
3017 		if (sc->sc_softled) {
3018 			/*
3019 			 * Blink for any data frame.  Otherwise do a
3020 			 * heartbeat-style blink when idle.  The latter
3021 			 * is mainly for station mode where we depend on
3022 			 * periodic beacon frames to trigger the poll event.
3023 			 */
3024 			if (type == IEEE80211_FC0_TYPE_DATA) {
3025 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3026 				ath_led_event(sc, ATH_LED_RX);
3027 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3028 				ath_led_event(sc, ATH_LED_POLL);
3029 		}
3030 rx_next:
3031 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3032 	} while (ath_rxbuf_init(sc, bf) == 0);
3033 
3034 	/* rx signal state monitoring */
3035 	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
3036 
3037 #ifdef __NetBSD__
3038 	/* XXX Why isn't this necessary in FreeBSD? */
3039 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3040 		ath_start(ifp);
3041 #endif /* __NetBSD__ */
3042 
3043 	NET_UNLOCK_GIANT();		/* XXX */
3044 #undef PA2DESC
3045 }
3046 
3047 /*
3048  * Setup a h/w transmit queue.
3049  */
3050 static struct ath_txq *
3051 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3052 {
3053 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3054 	struct ath_hal *ah = sc->sc_ah;
3055 	HAL_TXQ_INFO qi;
3056 	int qnum;
3057 
3058 	memset(&qi, 0, sizeof(qi));
3059 	qi.tqi_subtype = subtype;
3060 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3061 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3062 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3063 	/*
3064 	 * Enable interrupts only for EOL and DESC conditions.
3065 	 * We mark tx descriptors to receive a DESC interrupt
3066 	 * when a tx queue gets deep; otherwise waiting for the
3067 	 * EOL to reap descriptors.  Note that this is done to
3068 	 * reduce interrupt load and this only defers reaping
3069 	 * descriptors, never transmitting frames.  Aside from
3070 	 * reducing interrupts this also permits more concurrency.
3071 	 * The only potential downside is if the tx queue backs
3072 	 * up in which case the top half of the kernel may backup
3073 	 * due to a lack of tx descriptors.
3074 	 */
3075 	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
3076 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3077 	if (qnum == -1) {
3078 		/*
3079 		 * NB: don't print a message, this happens
3080 		 * normally on parts with too few tx queues
3081 		 */
3082 		return NULL;
3083 	}
3084 	if (qnum >= N(sc->sc_txq)) {
3085 		device_printf(sc->sc_dev,
3086 			"hal qnum %u out of range, max %zu!\n",
3087 			qnum, N(sc->sc_txq));
3088 		ath_hal_releasetxqueue(ah, qnum);
3089 		return NULL;
3090 	}
3091 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3092 		struct ath_txq *txq = &sc->sc_txq[qnum];
3093 
3094 		txq->axq_qnum = qnum;
3095 		txq->axq_depth = 0;
3096 		txq->axq_intrcnt = 0;
3097 		txq->axq_link = NULL;
3098 		STAILQ_INIT(&txq->axq_q);
3099 		ATH_TXQ_LOCK_INIT(sc, txq);
3100 		sc->sc_txqsetup |= 1<<qnum;
3101 	}
3102 	return &sc->sc_txq[qnum];
3103 #undef N
3104 }
3105 
3106 /*
3107  * Setup a hardware data transmit queue for the specified
3108  * access control.  The hal may not support all requested
3109  * queues in which case it will return a reference to a
3110  * previously setup queue.  We record the mapping from ac's
3111  * to h/w queues for use by ath_tx_start and also track
3112  * the set of h/w queues being used to optimize work in the
3113  * transmit interrupt handler and related routines.
3114  */
3115 static int
3116 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3117 {
3118 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3119 	struct ath_txq *txq;
3120 
3121 	if (ac >= N(sc->sc_ac2q)) {
3122 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3123 			ac, N(sc->sc_ac2q));
3124 		return 0;
3125 	}
3126 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3127 	if (txq != NULL) {
3128 		sc->sc_ac2q[ac] = txq;
3129 		return 1;
3130 	} else
3131 		return 0;
3132 #undef N
3133 }
3134 
3135 /*
3136  * Update WME parameters for a transmit queue.
3137  */
3138 static int
3139 ath_txq_update(struct ath_softc *sc, int ac)
3140 {
3141 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3142 #define	ATH_TXOP_TO_US(v)		(v<<5)
3143 	struct ieee80211com *ic = &sc->sc_ic;
3144 	struct ath_txq *txq = sc->sc_ac2q[ac];
3145 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3146 	struct ath_hal *ah = sc->sc_ah;
3147 	HAL_TXQ_INFO qi;
3148 
3149 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3150 	qi.tqi_aifs = wmep->wmep_aifsn;
3151 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3152 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3153 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3154 
3155 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3156 		device_printf(sc->sc_dev, "unable to update hardware queue "
3157 			"parameters for %s traffic!\n",
3158 			ieee80211_wme_acnames[ac]);
3159 		return 0;
3160 	} else {
3161 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3162 		return 1;
3163 	}
3164 #undef ATH_TXOP_TO_US
3165 #undef ATH_EXPONENT_TO_VALUE
3166 }
3167 
3168 /*
3169  * Callback from the 802.11 layer to update WME parameters.
3170  */
3171 static int
3172 ath_wme_update(struct ieee80211com *ic)
3173 {
3174 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3175 
3176 	return !ath_txq_update(sc, WME_AC_BE) ||
3177 	    !ath_txq_update(sc, WME_AC_BK) ||
3178 	    !ath_txq_update(sc, WME_AC_VI) ||
3179 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3180 }
3181 
3182 /*
3183  * Reclaim resources for a setup queue.
3184  */
3185 static void
3186 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3187 {
3188 
3189 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3190 	ATH_TXQ_LOCK_DESTROY(txq);
3191 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3192 }
3193 
3194 /*
3195  * Reclaim all tx queue resources.
3196  */
3197 static void
3198 ath_tx_cleanup(struct ath_softc *sc)
3199 {
3200 	int i;
3201 
3202 	ATH_TXBUF_LOCK_DESTROY(sc);
3203 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3204 		if (ATH_TXQ_SETUP(sc, i))
3205 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3206 }
3207 
3208 /*
3209  * Defragment an mbuf chain, returning at most maxfrags separate
3210  * mbufs+clusters.  If this is not possible NULL is returned and
3211  * the original mbuf chain is left in it's present (potentially
3212  * modified) state.  We use two techniques: collapsing consecutive
3213  * mbufs and replacing consecutive mbufs by a cluster.
3214  */
3215 static struct mbuf *
3216 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3217 {
3218 	struct mbuf *m, *n, *n2, **prev;
3219 	u_int curfrags;
3220 
3221 	/*
3222 	 * Calculate the current number of frags.
3223 	 */
3224 	curfrags = 0;
3225 	for (m = m0; m != NULL; m = m->m_next)
3226 		curfrags++;
3227 	/*
3228 	 * First, try to collapse mbufs.  Note that we always collapse
3229 	 * towards the front so we don't need to deal with moving the
3230 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3231 	 * less data than the following.
3232 	 */
3233 	m = m0;
3234 again:
3235 	for (;;) {
3236 		n = m->m_next;
3237 		if (n == NULL)
3238 			break;
3239 		if ((m->m_flags & M_RDONLY) == 0 &&
3240 		    n->m_len < M_TRAILINGSPACE(m)) {
3241 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3242 				n->m_len);
3243 			m->m_len += n->m_len;
3244 			m->m_next = n->m_next;
3245 			m_free(n);
3246 			if (--curfrags <= maxfrags)
3247 				return m0;
3248 		} else
3249 			m = n;
3250 	}
3251 	KASSERT(maxfrags > 1,
3252 		("maxfrags %u, but normal collapse failed", maxfrags));
3253 	/*
3254 	 * Collapse consecutive mbufs to a cluster.
3255 	 */
3256 	prev = &m0->m_next;		/* NB: not the first mbuf */
3257 	while ((n = *prev) != NULL) {
3258 		if ((n2 = n->m_next) != NULL &&
3259 		    n->m_len + n2->m_len < MCLBYTES) {
3260 			m = m_getcl(how, MT_DATA, 0);
3261 			if (m == NULL)
3262 				goto bad;
3263 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3264 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3265 				n2->m_len);
3266 			m->m_len = n->m_len + n2->m_len;
3267 			m->m_next = n2->m_next;
3268 			*prev = m;
3269 			m_free(n);
3270 			m_free(n2);
3271 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3272 				return m0;
3273 			/*
3274 			 * Still not there, try the normal collapse
3275 			 * again before we allocate another cluster.
3276 			 */
3277 			goto again;
3278 		}
3279 		prev = &n->m_next;
3280 	}
3281 	/*
3282 	 * No place where we can collapse to a cluster; punt.
3283 	 * This can occur if, for example, you request 2 frags
3284 	 * but the packet requires that both be clusters (we
3285 	 * never reallocate the first mbuf to avoid moving the
3286 	 * packet header).
3287 	 */
3288 bad:
3289 	return NULL;
3290 }
3291 
3292 static int
3293 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3294     struct mbuf *m0)
3295 {
3296 #define	CTS_DURATION \
3297 	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3298 #define	updateCTSForBursting(_ah, _ds, _txq) \
3299 	ath_hal_updateCTSForBursting(_ah, _ds, \
3300 	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3301 	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3302 	    txopLimit, CTS_DURATION)
3303 	struct ieee80211com *ic = &sc->sc_ic;
3304 	struct ath_hal *ah = sc->sc_ah;
3305 	struct ifnet *ifp = &sc->sc_if;
3306 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3307 	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3308 	u_int8_t rix, txrate, ctsrate;
3309 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3310 	struct ath_desc *ds, *ds0;
3311 	struct ath_txq *txq;
3312 	struct ieee80211_frame *wh;
3313 	u_int subtype, flags, ctsduration;
3314 	HAL_PKT_TYPE atype;
3315 	const HAL_RATE_TABLE *rt;
3316 	HAL_BOOL shortPreamble;
3317 	struct ath_node *an;
3318 	struct mbuf *m;
3319 	u_int pri;
3320 
3321 	wh = mtod(m0, struct ieee80211_frame *);
3322 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3323 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3324 	hdrlen = ieee80211_anyhdrsize(wh);
3325 	/*
3326 	 * Packet length must not include any
3327 	 * pad bytes; deduct them here.
3328 	 */
3329 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3330 
3331 	if (iswep) {
3332 		const struct ieee80211_cipher *cip;
3333 		struct ieee80211_key *k;
3334 
3335 		/*
3336 		 * Construct the 802.11 header+trailer for an encrypted
3337 		 * frame. The only reason this can fail is because of an
3338 		 * unknown or unsupported cipher/key type.
3339 		 */
3340 		k = ieee80211_crypto_encap(ic, ni, m0);
3341 		if (k == NULL) {
3342 			/*
3343 			 * This can happen when the key is yanked after the
3344 			 * frame was queued.  Just discard the frame; the
3345 			 * 802.11 layer counts failures and provides
3346 			 * debugging/diagnostics.
3347 			 */
3348 			m_freem(m0);
3349 			return EIO;
3350 		}
3351 		/*
3352 		 * Adjust the packet + header lengths for the crypto
3353 		 * additions and calculate the h/w key index.  When
3354 		 * a s/w mic is done the frame will have had any mic
3355 		 * added to it prior to entry so skb->len above will
3356 		 * account for it. Otherwise we need to add it to the
3357 		 * packet length.
3358 		 */
3359 		cip = k->wk_cipher;
3360 		hdrlen += cip->ic_header;
3361 		pktlen += cip->ic_header + cip->ic_trailer;
3362 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3363 			pktlen += cip->ic_miclen;
3364 		keyix = k->wk_keyix;
3365 
3366 		/* packet header may have moved, reset our local pointer */
3367 		wh = mtod(m0, struct ieee80211_frame *);
3368 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3369 		/*
3370 		 * Use station key cache slot, if assigned.
3371 		 */
3372 		keyix = ni->ni_ucastkey.wk_keyix;
3373 		if (keyix == IEEE80211_KEYIX_NONE)
3374 			keyix = HAL_TXKEYIX_INVALID;
3375 	} else
3376 		keyix = HAL_TXKEYIX_INVALID;
3377 
3378 	pktlen += IEEE80211_CRC_LEN;
3379 
3380 	/*
3381 	 * Load the DMA map so any coalescing is done.  This
3382 	 * also calculates the number of descriptors we need.
3383 	 */
3384 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3385 				     BUS_DMA_NOWAIT);
3386 	if (error == EFBIG) {
3387 		/* XXX packet requires too many descriptors */
3388 		bf->bf_nseg = ATH_TXDESC+1;
3389 	} else if (error != 0) {
3390 		sc->sc_stats.ast_tx_busdma++;
3391 		m_freem(m0);
3392 		return error;
3393 	}
3394 	/*
3395 	 * Discard null packets and check for packets that
3396 	 * require too many TX descriptors.  We try to convert
3397 	 * the latter to a cluster.
3398 	 */
3399 	if (error == EFBIG) {		/* too many desc's, linearize */
3400 		sc->sc_stats.ast_tx_linear++;
3401 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3402 		if (m == NULL) {
3403 			m_freem(m0);
3404 			sc->sc_stats.ast_tx_nombuf++;
3405 			return ENOMEM;
3406 		}
3407 		m0 = m;
3408 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3409 					     BUS_DMA_NOWAIT);
3410 		if (error != 0) {
3411 			sc->sc_stats.ast_tx_busdma++;
3412 			m_freem(m0);
3413 			return error;
3414 		}
3415 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3416 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3417 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3418 		sc->sc_stats.ast_tx_nodata++;
3419 		m_freem(m0);
3420 		return EIO;
3421 	}
3422 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3423 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3424             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3425 	bf->bf_m = m0;
3426 	bf->bf_node = ni;			/* NB: held reference */
3427 
3428 	/* setup descriptors */
3429 	ds = bf->bf_desc;
3430 	rt = sc->sc_currates;
3431 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3432 
3433 	/*
3434 	 * NB: the 802.11 layer marks whether or not we should
3435 	 * use short preamble based on the current mode and
3436 	 * negotiated parameters.
3437 	 */
3438 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3439 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3440 		shortPreamble = AH_TRUE;
3441 		sc->sc_stats.ast_tx_shortpre++;
3442 	} else {
3443 		shortPreamble = AH_FALSE;
3444 	}
3445 
3446 	an = ATH_NODE(ni);
3447 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3448 	/*
3449 	 * Calculate Atheros packet type from IEEE80211 packet header,
3450 	 * setup for rate calculations, and select h/w transmit queue.
3451 	 */
3452 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3453 	case IEEE80211_FC0_TYPE_MGT:
3454 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3455 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3456 			atype = HAL_PKT_TYPE_BEACON;
3457 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3458 			atype = HAL_PKT_TYPE_PROBE_RESP;
3459 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3460 			atype = HAL_PKT_TYPE_ATIM;
3461 		else
3462 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3463 		rix = 0;			/* XXX lowest rate */
3464 		try0 = ATH_TXMAXTRY;
3465 		if (shortPreamble)
3466 			txrate = an->an_tx_mgtratesp;
3467 		else
3468 			txrate = an->an_tx_mgtrate;
3469 		/* NB: force all management frames to highest queue */
3470 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3471 			/* NB: force all management frames to highest queue */
3472 			pri = WME_AC_VO;
3473 		} else
3474 			pri = WME_AC_BE;
3475 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3476 		break;
3477 	case IEEE80211_FC0_TYPE_CTL:
3478 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3479 		rix = 0;			/* XXX lowest rate */
3480 		try0 = ATH_TXMAXTRY;
3481 		if (shortPreamble)
3482 			txrate = an->an_tx_mgtratesp;
3483 		else
3484 			txrate = an->an_tx_mgtrate;
3485 		/* NB: force all ctl frames to highest queue */
3486 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3487 			/* NB: force all ctl frames to highest queue */
3488 			pri = WME_AC_VO;
3489 		} else
3490 			pri = WME_AC_BE;
3491 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3492 		break;
3493 	case IEEE80211_FC0_TYPE_DATA:
3494 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3495 		/*
3496 		 * Data frames; consult the rate control module for
3497 		 * unicast frames.  Send multicast frames at the
3498 		 * lowest rate.
3499 		 */
3500 		if (!ismcast) {
3501 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3502 				&rix, &try0, &txrate);
3503 		} else {
3504 			rix = 0;
3505 			try0 = ATH_TXMAXTRY;
3506 			txrate = an->an_tx_mgtrate;
3507 		}
3508 		sc->sc_txrate = txrate;			/* for LED blinking */
3509 		/*
3510 		 * Default all non-QoS traffic to the background queue.
3511 		 */
3512 		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3513 			pri = M_WME_GETAC(m0);
3514 			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3515 				flags |= HAL_TXDESC_NOACK;
3516 				sc->sc_stats.ast_tx_noack++;
3517 			}
3518 		} else
3519 			pri = WME_AC_BE;
3520 		break;
3521 	default:
3522 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3523 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3524 		/* XXX statistic */
3525 		m_freem(m0);
3526 		return EIO;
3527 	}
3528 	txq = sc->sc_ac2q[pri];
3529 
3530 	/*
3531 	 * When servicing one or more stations in power-save mode
3532 	 * multicast frames must be buffered until after the beacon.
3533 	 * We use the CAB queue for that.
3534 	 */
3535 	if (ismcast && ic->ic_ps_sta) {
3536 		txq = sc->sc_cabq;
3537 		/* XXX? more bit in 802.11 frame header */
3538 	}
3539 
3540 	/*
3541 	 * Calculate miscellaneous flags.
3542 	 */
3543 	if (ismcast) {
3544 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3545 		sc->sc_stats.ast_tx_noack++;
3546 	} else if (pktlen > ic->ic_rtsthreshold) {
3547 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3548 		cix = rt->info[rix].controlRate;
3549 		sc->sc_stats.ast_tx_rts++;
3550 	}
3551 
3552 	/*
3553 	 * If 802.11g protection is enabled, determine whether
3554 	 * to use RTS/CTS or just CTS.  Note that this is only
3555 	 * done for OFDM unicast frames.
3556 	 */
3557 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3558 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3559 	    (flags & HAL_TXDESC_NOACK) == 0) {
3560 		/* XXX fragments must use CCK rates w/ protection */
3561 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3562 			flags |= HAL_TXDESC_RTSENA;
3563 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3564 			flags |= HAL_TXDESC_CTSENA;
3565 		cix = rt->info[sc->sc_protrix].controlRate;
3566 		sc->sc_stats.ast_tx_protect++;
3567 	}
3568 
3569 	/*
3570 	 * Calculate duration.  This logically belongs in the 802.11
3571 	 * layer but it lacks sufficient information to calculate it.
3572 	 */
3573 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3574 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3575 		u_int16_t dur;
3576 		/*
3577 		 * XXX not right with fragmentation.
3578 		 */
3579 		if (shortPreamble)
3580 			dur = rt->info[rix].spAckDuration;
3581 		else
3582 			dur = rt->info[rix].lpAckDuration;
3583 		*(u_int16_t *)wh->i_dur = htole16(dur);
3584 	}
3585 
3586 	/*
3587 	 * Calculate RTS/CTS rate and duration if needed.
3588 	 */
3589 	ctsduration = 0;
3590 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3591 		/*
3592 		 * CTS transmit rate is derived from the transmit rate
3593 		 * by looking in the h/w rate table.  We must also factor
3594 		 * in whether or not a short preamble is to be used.
3595 		 */
3596 		/* NB: cix is set above where RTS/CTS is enabled */
3597 		KASSERT(cix != 0xff, ("cix not setup"));
3598 		ctsrate = rt->info[cix].rateCode;
3599 		/*
3600 		 * Compute the transmit duration based on the frame
3601 		 * size and the size of an ACK frame.  We call into the
3602 		 * HAL to do the computation since it depends on the
3603 		 * characteristics of the actual PHY being used.
3604 		 *
3605 		 * NB: CTS is assumed the same size as an ACK so we can
3606 		 *     use the precalculated ACK durations.
3607 		 */
3608 		if (shortPreamble) {
3609 			ctsrate |= rt->info[cix].shortPreamble;
3610 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3611 				ctsduration += rt->info[cix].spAckDuration;
3612 			ctsduration += ath_hal_computetxtime(ah,
3613 				rt, pktlen, rix, AH_TRUE);
3614 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3615 				ctsduration += rt->info[cix].spAckDuration;
3616 		} else {
3617 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3618 				ctsduration += rt->info[cix].lpAckDuration;
3619 			ctsduration += ath_hal_computetxtime(ah,
3620 				rt, pktlen, rix, AH_FALSE);
3621 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3622 				ctsduration += rt->info[cix].lpAckDuration;
3623 		}
3624 		/*
3625 		 * Must disable multi-rate retry when using RTS/CTS.
3626 		 */
3627 		try0 = ATH_TXMAXTRY;
3628 	} else
3629 		ctsrate = 0;
3630 
3631 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3632 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3633 			sc->sc_hwmap[txrate].ieeerate, -1);
3634 
3635 	if (ic->ic_rawbpf)
3636 		bpf_mtap(ic->ic_rawbpf, m0);
3637 	if (sc->sc_drvbpf) {
3638 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3639 		if (iswep)
3640 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3641 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3642 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3643 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3644 
3645 		bpf_mtap2(sc->sc_drvbpf,
3646 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3647 	}
3648 
3649 	/*
3650 	 * Determine if a tx interrupt should be generated for
3651 	 * this descriptor.  We take a tx interrupt to reap
3652 	 * descriptors when the h/w hits an EOL condition or
3653 	 * when the descriptor is specifically marked to generate
3654 	 * an interrupt.  We periodically mark descriptors in this
3655 	 * way to insure timely replenishing of the supply needed
3656 	 * for sending frames.  Defering interrupts reduces system
3657 	 * load and potentially allows more concurrent work to be
3658 	 * done but if done to aggressively can cause senders to
3659 	 * backup.
3660 	 *
3661 	 * NB: use >= to deal with sc_txintrperiod changing
3662 	 *     dynamically through sysctl.
3663 	 */
3664 	if (flags & HAL_TXDESC_INTREQ) {
3665 		txq->axq_intrcnt = 0;
3666 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3667 		flags |= HAL_TXDESC_INTREQ;
3668 		txq->axq_intrcnt = 0;
3669 	}
3670 
3671 	/*
3672 	 * Formulate first tx descriptor with tx controls.
3673 	 */
3674 	/* XXX check return value? */
3675 	ath_hal_setuptxdesc(ah, ds
3676 		, pktlen		/* packet length */
3677 		, hdrlen		/* header length */
3678 		, atype			/* Atheros packet type */
3679 		, ni->ni_txpower	/* txpower */
3680 		, txrate, try0		/* series 0 rate/tries */
3681 		, keyix			/* key cache index */
3682 		, sc->sc_txantenna	/* antenna mode */
3683 		, flags			/* flags */
3684 		, ctsrate		/* rts/cts rate */
3685 		, ctsduration		/* rts/cts duration */
3686 	);
3687 	bf->bf_flags = flags;
3688 	/*
3689 	 * Setup the multi-rate retry state only when we're
3690 	 * going to use it.  This assumes ath_hal_setuptxdesc
3691 	 * initializes the descriptors (so we don't have to)
3692 	 * when the hardware supports multi-rate retry and
3693 	 * we don't use it.
3694 	 */
3695 	if (try0 != ATH_TXMAXTRY)
3696 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3697 
3698 	/*
3699 	 * Fillin the remainder of the descriptor info.
3700 	 */
3701 	ds0 = ds;
3702 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3703 		ds->ds_data = bf->bf_segs[i].ds_addr;
3704 		if (i == bf->bf_nseg - 1)
3705 			ds->ds_link = 0;
3706 		else
3707 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3708 		ath_hal_filltxdesc(ah, ds
3709 			, bf->bf_segs[i].ds_len	/* segment length */
3710 			, i == 0		/* first segment */
3711 			, i == bf->bf_nseg - 1	/* last segment */
3712 			, ds0			/* first descriptor */
3713 		);
3714 		DPRINTF(sc, ATH_DEBUG_XMIT,
3715 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3716 			__func__, i, ds->ds_link, ds->ds_data,
3717 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3718 	}
3719 	/*
3720 	 * Insert the frame on the outbound list and
3721 	 * pass it on to the hardware.
3722 	 */
3723 	ATH_TXQ_LOCK(txq);
3724 	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3725 		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3726 			cap->cap_wmeParams[pri].wmep_txopLimit);
3727 		/*
3728 		 * When bursting, potentially extend the CTS duration
3729 		 * of a previously queued frame to cover this frame
3730 		 * and not exceed the txopLimit.  If that can be done
3731 		 * then disable RTS/CTS on this frame since it's now
3732 		 * covered (burst extension).  Otherwise we must terminate
3733 		 * the burst before this frame goes out so as not to
3734 		 * violate the WME parameters.  All this is complicated
3735 		 * as we need to update the state of packets on the
3736 		 * (live) hardware queue.  The logic is buried in the hal
3737 		 * because it's highly chip-specific.
3738 		 */
3739 		if (txopLimit != 0) {
3740 			sc->sc_stats.ast_tx_ctsburst++;
3741 			if (updateCTSForBursting(ah, ds0, txq) == 0) {
3742 				/*
3743 				 * This frame was not covered by RTS/CTS from
3744 				 * the previous frame in the burst; update the
3745 				 * descriptor pointers so this frame is now
3746 				 * treated as the last frame for extending a
3747 				 * burst.
3748 				 */
3749 				txq->axq_lastdsWithCTS = ds0;
3750 				/* set gating Desc to final desc */
3751 				txq->axq_gatingds =
3752 					(struct ath_desc *)txq->axq_link;
3753 			} else
3754 				sc->sc_stats.ast_tx_ctsext++;
3755 		}
3756 	}
3757 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3758 	if (txq->axq_link == NULL) {
3759 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3760 		DPRINTF(sc, ATH_DEBUG_XMIT,
3761 			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3762 			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3763 			txq->axq_depth);
3764 	} else {
3765 		*txq->axq_link = bf->bf_daddr;
3766 		DPRINTF(sc, ATH_DEBUG_XMIT,
3767 			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3768 			txq->axq_qnum, txq->axq_link,
3769 			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3770 	}
3771 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3772 	/*
3773 	 * The CAB queue is started from the SWBA handler since
3774 	 * frames only go out on DTIM and to avoid possible races.
3775 	 */
3776 	if (txq != sc->sc_cabq)
3777 		ath_hal_txstart(ah, txq->axq_qnum);
3778 	ATH_TXQ_UNLOCK(txq);
3779 
3780 	return 0;
3781 #undef updateCTSForBursting
3782 #undef CTS_DURATION
3783 }
3784 
3785 /*
3786  * Process completed xmit descriptors from the specified queue.
3787  */
3788 static void
3789 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3790 {
3791 	struct ath_hal *ah = sc->sc_ah;
3792 	struct ieee80211com *ic = &sc->sc_ic;
3793 	struct ath_buf *bf;
3794 	struct ath_desc *ds, *ds0;
3795 	struct ieee80211_node *ni;
3796 	struct ath_node *an;
3797 	int sr, lr, pri;
3798 	HAL_STATUS status;
3799 
3800 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3801 		__func__, txq->axq_qnum,
3802 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3803 		txq->axq_link);
3804 	for (;;) {
3805 		ATH_TXQ_LOCK(txq);
3806 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3807 		bf = STAILQ_FIRST(&txq->axq_q);
3808 		if (bf == NULL) {
3809 			txq->axq_link = NULL;
3810 			ATH_TXQ_UNLOCK(txq);
3811 			break;
3812 		}
3813 		ds0 = &bf->bf_desc[0];
3814 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3815 		status = ath_hal_txprocdesc(ah, ds);
3816 #ifdef AR_DEBUG
3817 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3818 			ath_printtxbuf(bf, status == HAL_OK);
3819 #endif
3820 		if (status == HAL_EINPROGRESS) {
3821 			ATH_TXQ_UNLOCK(txq);
3822 			break;
3823 		}
3824 		if (ds0 == txq->axq_lastdsWithCTS)
3825 			txq->axq_lastdsWithCTS = NULL;
3826 		if (ds == txq->axq_gatingds)
3827 			txq->axq_gatingds = NULL;
3828 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3829 		ATH_TXQ_UNLOCK(txq);
3830 
3831 		ni = bf->bf_node;
3832 		if (ni != NULL) {
3833 			an = ATH_NODE(ni);
3834 			if (ds->ds_txstat.ts_status == 0) {
3835 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3836 				sc->sc_stats.ast_ant_tx[txant]++;
3837 				sc->sc_ant_tx[txant]++;
3838 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3839 					sc->sc_stats.ast_tx_altrate++;
3840 				sc->sc_stats.ast_tx_rssi =
3841 					ds->ds_txstat.ts_rssi;
3842 				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3843 					ds->ds_txstat.ts_rssi);
3844 				pri = M_WME_GETAC(bf->bf_m);
3845 				if (pri >= WME_AC_VO)
3846 					ic->ic_wme.wme_hipri_traffic++;
3847 				ni->ni_inact = ni->ni_inact_reload;
3848 			} else {
3849 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3850 					sc->sc_stats.ast_tx_xretries++;
3851 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3852 					sc->sc_stats.ast_tx_fifoerr++;
3853 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3854 					sc->sc_stats.ast_tx_filtered++;
3855 			}
3856 			sr = ds->ds_txstat.ts_shortretry;
3857 			lr = ds->ds_txstat.ts_longretry;
3858 			sc->sc_stats.ast_tx_shortretry += sr;
3859 			sc->sc_stats.ast_tx_longretry += lr;
3860 			/*
3861 			 * Hand the descriptor to the rate control algorithm.
3862 			 */
3863 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3864 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3865 				ath_rate_tx_complete(sc, an, ds, ds0);
3866 			/*
3867 			 * Reclaim reference to node.
3868 			 *
3869 			 * NB: the node may be reclaimed here if, for example
3870 			 *     this is a DEAUTH message that was sent and the
3871 			 *     node was timed out due to inactivity.
3872 			 */
3873 			ieee80211_free_node(ni);
3874 		}
3875 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3876 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3877 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3878 		m_freem(bf->bf_m);
3879 		bf->bf_m = NULL;
3880 		bf->bf_node = NULL;
3881 
3882 		ATH_TXBUF_LOCK(sc);
3883 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3884 		ATH_TXBUF_UNLOCK(sc);
3885 	}
3886 }
3887 
3888 /*
3889  * Deferred processing of transmit interrupt; special-cased
3890  * for a single hardware transmit queue (e.g. 5210 and 5211).
3891  */
3892 static void
3893 ath_tx_proc_q0(void *arg, int npending)
3894 {
3895 	struct ath_softc *sc = arg;
3896 	struct ifnet *ifp = &sc->sc_if;
3897 
3898 	ath_tx_processq(sc, &sc->sc_txq[0]);
3899 	ath_tx_processq(sc, sc->sc_cabq);
3900 	ifp->if_flags &= ~IFF_OACTIVE;
3901 	sc->sc_tx_timer = 0;
3902 
3903 	if (sc->sc_softled)
3904 		ath_led_event(sc, ATH_LED_TX);
3905 
3906 	ath_start(ifp);
3907 }
3908 
3909 /*
3910  * Deferred processing of transmit interrupt; special-cased
3911  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3912  */
3913 static void
3914 ath_tx_proc_q0123(void *arg, int npending)
3915 {
3916 	struct ath_softc *sc = arg;
3917 	struct ifnet *ifp = &sc->sc_if;
3918 
3919 	/*
3920 	 * Process each active queue.
3921 	 */
3922 	ath_tx_processq(sc, &sc->sc_txq[0]);
3923 	ath_tx_processq(sc, &sc->sc_txq[1]);
3924 	ath_tx_processq(sc, &sc->sc_txq[2]);
3925 	ath_tx_processq(sc, &sc->sc_txq[3]);
3926 	ath_tx_processq(sc, sc->sc_cabq);
3927 
3928 	ifp->if_flags &= ~IFF_OACTIVE;
3929 	sc->sc_tx_timer = 0;
3930 
3931 	if (sc->sc_softled)
3932 		ath_led_event(sc, ATH_LED_TX);
3933 
3934 	ath_start(ifp);
3935 }
3936 
3937 /*
3938  * Deferred processing of transmit interrupt.
3939  */
3940 static void
3941 ath_tx_proc(void *arg, int npending)
3942 {
3943 	struct ath_softc *sc = arg;
3944 	struct ifnet *ifp = &sc->sc_if;
3945 	int i;
3946 
3947 	/*
3948 	 * Process each active queue.
3949 	 */
3950 	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3951 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3952 		if (ATH_TXQ_SETUP(sc, i))
3953 			ath_tx_processq(sc, &sc->sc_txq[i]);
3954 
3955 	ifp->if_flags &= ~IFF_OACTIVE;
3956 	sc->sc_tx_timer = 0;
3957 
3958 	if (sc->sc_softled)
3959 		ath_led_event(sc, ATH_LED_TX);
3960 
3961 	ath_start(ifp);
3962 }
3963 
3964 static void
3965 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3966 {
3967 	struct ath_hal *ah = sc->sc_ah;
3968 	struct ieee80211_node *ni;
3969 	struct ath_buf *bf;
3970 
3971 	/*
3972 	 * NB: this assumes output has been stopped and
3973 	 *     we do not need to block ath_tx_tasklet
3974 	 */
3975 	for (;;) {
3976 		ATH_TXQ_LOCK(txq);
3977 		bf = STAILQ_FIRST(&txq->axq_q);
3978 		if (bf == NULL) {
3979 			txq->axq_link = NULL;
3980 			ATH_TXQ_UNLOCK(txq);
3981 			break;
3982 		}
3983 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3984 		ATH_TXQ_UNLOCK(txq);
3985 #ifdef AR_DEBUG
3986 		if (sc->sc_debug & ATH_DEBUG_RESET)
3987 			ath_printtxbuf(bf,
3988 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3989 #endif /* AR_DEBUG */
3990 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3991 		m_freem(bf->bf_m);
3992 		bf->bf_m = NULL;
3993 		ni = bf->bf_node;
3994 		bf->bf_node = NULL;
3995 		if (ni != NULL) {
3996 			/*
3997 			 * Reclaim node reference.
3998 			 */
3999 			ieee80211_free_node(ni);
4000 		}
4001 		ATH_TXBUF_LOCK(sc);
4002 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4003 		ATH_TXBUF_UNLOCK(sc);
4004 	}
4005 }
4006 
4007 static void
4008 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4009 {
4010 	struct ath_hal *ah = sc->sc_ah;
4011 
4012 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4013 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4014 	    __func__, txq->axq_qnum,
4015 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4016 	    txq->axq_link);
4017 }
4018 
4019 /*
4020  * Drain the transmit queues and reclaim resources.
4021  */
4022 static void
4023 ath_draintxq(struct ath_softc *sc)
4024 {
4025 	struct ath_hal *ah = sc->sc_ah;
4026 	struct ifnet *ifp = &sc->sc_if;
4027 	int i;
4028 
4029 	/* XXX return value */
4030 	if (!sc->sc_invalid) {
4031 		/* don't touch the hardware if marked invalid */
4032 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4033 		DPRINTF(sc, ATH_DEBUG_RESET,
4034 		    "%s: beacon queue %p\n", __func__,
4035 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4036 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4037 			if (ATH_TXQ_SETUP(sc, i))
4038 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4039 	}
4040 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4041 		if (ATH_TXQ_SETUP(sc, i))
4042 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4043 	ifp->if_flags &= ~IFF_OACTIVE;
4044 	sc->sc_tx_timer = 0;
4045 }
4046 
4047 /*
4048  * Disable the receive h/w in preparation for a reset.
4049  */
4050 static void
4051 ath_stoprecv(struct ath_softc *sc)
4052 {
4053 #define	PA2DESC(_sc, _pa) \
4054 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4055 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4056 	struct ath_hal *ah = sc->sc_ah;
4057 
4058 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4059 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4060 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4061 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4062 #ifdef AR_DEBUG
4063 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4064 		struct ath_buf *bf;
4065 
4066 		printf("%s: rx queue %p, link %p\n", __func__,
4067 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4068 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4069 			struct ath_desc *ds = bf->bf_desc;
4070 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4071 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4072 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4073 				ath_printrxbuf(bf, status == HAL_OK);
4074 		}
4075 	}
4076 #endif
4077 	sc->sc_rxlink = NULL;		/* just in case */
4078 #undef PA2DESC
4079 }
4080 
4081 /*
4082  * Enable the receive h/w following a reset.
4083  */
4084 static int
4085 ath_startrecv(struct ath_softc *sc)
4086 {
4087 	struct ath_hal *ah = sc->sc_ah;
4088 	struct ath_buf *bf;
4089 
4090 	sc->sc_rxlink = NULL;
4091 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4092 		int error = ath_rxbuf_init(sc, bf);
4093 		if (error != 0) {
4094 			DPRINTF(sc, ATH_DEBUG_RECV,
4095 				"%s: ath_rxbuf_init failed %d\n",
4096 				__func__, error);
4097 			return error;
4098 		}
4099 	}
4100 
4101 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4102 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4103 	ath_hal_rxena(ah);		/* enable recv descriptors */
4104 	ath_mode_init(sc);		/* set filters, etc. */
4105 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4106 	return 0;
4107 }
4108 
4109 /*
4110  * Update internal state after a channel change.
4111  */
4112 static void
4113 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4114 {
4115 	struct ieee80211com *ic = &sc->sc_ic;
4116 	enum ieee80211_phymode mode;
4117 	u_int16_t flags;
4118 
4119 	/*
4120 	 * Change channels and update the h/w rate map
4121 	 * if we're switching; e.g. 11a to 11b/g.
4122 	 */
4123 	mode = ieee80211_chan2mode(ic, chan);
4124 	if (mode != sc->sc_curmode)
4125 		ath_setcurmode(sc, mode);
4126 	/*
4127 	 * Update BPF state.  NB: ethereal et. al. don't handle
4128 	 * merged flags well so pick a unique mode for their use.
4129 	 */
4130 	if (IEEE80211_IS_CHAN_A(chan))
4131 		flags = IEEE80211_CHAN_A;
4132 	/* XXX 11g schizophrenia */
4133 	else if (IEEE80211_IS_CHAN_G(chan) ||
4134 	    IEEE80211_IS_CHAN_PUREG(chan))
4135 		flags = IEEE80211_CHAN_G;
4136 	else
4137 		flags = IEEE80211_CHAN_B;
4138 	if (IEEE80211_IS_CHAN_T(chan))
4139 		flags |= IEEE80211_CHAN_TURBO;
4140 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4141 		htole16(chan->ic_freq);
4142 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4143 		htole16(flags);
4144 }
4145 
4146 /*
4147  * Set/change channels.  If the channel is really being changed,
4148  * it's done by reseting the chip.  To accomplish this we must
4149  * first cleanup any pending DMA, then restart stuff after a la
4150  * ath_init.
4151  */
4152 static int
4153 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4154 {
4155 	struct ath_hal *ah = sc->sc_ah;
4156 	struct ieee80211com *ic = &sc->sc_ic;
4157 	HAL_CHANNEL hchan;
4158 
4159 	/*
4160 	 * Convert to a HAL channel description with
4161 	 * the flags constrained to reflect the current
4162 	 * operating mode.
4163 	 */
4164 	hchan.channel = chan->ic_freq;
4165 	hchan.channelFlags = ath_chan2flags(ic, chan);
4166 
4167 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4168 	    __func__,
4169 	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
4170 		sc->sc_curchan.channelFlags),
4171 	    	sc->sc_curchan.channel,
4172 	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4173 	if (hchan.channel != sc->sc_curchan.channel ||
4174 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4175 		HAL_STATUS status;
4176 
4177 		/*
4178 		 * To switch channels clear any pending DMA operations;
4179 		 * wait long enough for the RX fifo to drain, reset the
4180 		 * hardware at the new frequency, and then re-enable
4181 		 * the relevant bits of the h/w.
4182 		 */
4183 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4184 		ath_draintxq(sc);		/* clear pending tx frames */
4185 		ath_stoprecv(sc);		/* turn off frame recv */
4186 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4187 			if_printf(&sc->sc_if, "ath_chan_set: unable to reset "
4188 				"channel %u (%u Mhz)\n",
4189 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4190 			return EIO;
4191 		}
4192 		sc->sc_curchan = hchan;
4193 		ath_update_txpow(sc);		/* update tx power state */
4194 
4195 		/*
4196 		 * Re-enable rx framework.
4197 		 */
4198 		if (ath_startrecv(sc) != 0) {
4199 			if_printf(&sc->sc_if,
4200 				"ath_chan_set: unable to restart recv logic\n");
4201 			return EIO;
4202 		}
4203 
4204 		/*
4205 		 * Change channels and update the h/w rate map
4206 		 * if we're switching; e.g. 11a to 11b/g.
4207 		 */
4208 		ic->ic_ibss_chan = chan;
4209 		ath_chan_change(sc, chan);
4210 
4211 		/*
4212 		 * Re-enable interrupts.
4213 		 */
4214 		ath_hal_intrset(ah, sc->sc_imask);
4215 	}
4216 	return 0;
4217 }
4218 
4219 static void
4220 ath_next_scan(void *arg)
4221 {
4222 	struct ath_softc *sc = arg;
4223 	struct ieee80211com *ic = &sc->sc_ic;
4224 	int s;
4225 
4226 	/* don't call ath_start w/o network interrupts blocked */
4227 	s = splnet();
4228 
4229 	if (ic->ic_state == IEEE80211_S_SCAN)
4230 		ieee80211_next_scan(ic);
4231 	splx(s);
4232 }
4233 
4234 /*
4235  * Periodically recalibrate the PHY to account
4236  * for temperature/environment changes.
4237  */
4238 static void
4239 ath_calibrate(void *arg)
4240 {
4241 	struct ath_softc *sc = arg;
4242 	struct ath_hal *ah = sc->sc_ah;
4243 
4244 	sc->sc_stats.ast_per_cal++;
4245 
4246 	ATH_LOCK(sc);
4247 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4248 		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4249 
4250 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4251 		/*
4252 		 * Rfgain is out of bounds, reset the chip
4253 		 * to load new gain values.
4254 		 */
4255 		sc->sc_stats.ast_per_rfgain++;
4256 		ath_reset(&sc->sc_if);
4257 	}
4258 	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4259 		DPRINTF(sc, ATH_DEBUG_ANY,
4260 			"%s: calibration of channel %u failed\n",
4261 			__func__, sc->sc_curchan.channel);
4262 		sc->sc_stats.ast_per_calfail++;
4263 	}
4264 	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4265 	ATH_UNLOCK(sc);
4266 }
4267 
4268 static int
4269 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4270 {
4271 	struct ifnet *ifp = ic->ic_ifp;
4272 	struct ath_softc *sc = ifp->if_softc;
4273 	struct ath_hal *ah = sc->sc_ah;
4274 	struct ieee80211_node *ni;
4275 	int i, error;
4276 	const u_int8_t *bssid;
4277 	u_int32_t rfilt;
4278 	static const HAL_LED_STATE leds[] = {
4279 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4280 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4281 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4282 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4283 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4284 	};
4285 
4286 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4287 		ieee80211_state_name[ic->ic_state],
4288 		ieee80211_state_name[nstate]);
4289 
4290 	callout_stop(&sc->sc_scan_ch);
4291 	callout_stop(&sc->sc_cal_ch);
4292 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4293 
4294 	if (nstate == IEEE80211_S_INIT) {
4295 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4296 		/*
4297 		 * NB: disable interrupts so we don't rx frames.
4298 		 */
4299 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4300 		/*
4301 		 * Notify the rate control algorithm.
4302 		 */
4303 		ath_rate_newstate(sc, nstate);
4304 		goto done;
4305 	}
4306 	ni = ic->ic_bss;
4307 	error = ath_chan_set(sc, ni->ni_chan);
4308 	if (error != 0)
4309 		goto bad;
4310 	rfilt = ath_calcrxfilter(sc, nstate);
4311 	if (nstate == IEEE80211_S_SCAN)
4312 		bssid = ifp->if_broadcastaddr;
4313 	else
4314 		bssid = ni->ni_bssid;
4315 	ath_hal_setrxfilter(ah, rfilt);
4316 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4317 		 __func__, rfilt, ether_sprintf(bssid));
4318 
4319 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4320 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4321 	else
4322 		ath_hal_setassocid(ah, bssid, 0);
4323 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4324 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4325 			if (ath_hal_keyisvalid(ah, i))
4326 				ath_hal_keysetmac(ah, i, bssid);
4327 	}
4328 
4329 	/*
4330 	 * Notify the rate control algorithm so rates
4331 	 * are setup should ath_beacon_alloc be called.
4332 	 */
4333 	ath_rate_newstate(sc, nstate);
4334 
4335 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4336 		/* nothing to do */;
4337 	} else if (nstate == IEEE80211_S_RUN) {
4338 		DPRINTF(sc, ATH_DEBUG_STATE,
4339 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4340 			"capinfo=0x%04x chan=%d\n"
4341 			 , __func__
4342 			 , ic->ic_flags
4343 			 , ni->ni_intval
4344 			 , ether_sprintf(ni->ni_bssid)
4345 			 , ni->ni_capinfo
4346 			 , ieee80211_chan2ieee(ic, ni->ni_chan));
4347 
4348 		switch (ic->ic_opmode) {
4349 		case IEEE80211_M_HOSTAP:
4350 		case IEEE80211_M_IBSS:
4351 			/*
4352 			 * Allocate and setup the beacon frame.
4353 			 *
4354 			 * Stop any previous beacon DMA.  This may be
4355 			 * necessary, for example, when an ibss merge
4356 			 * causes reconfiguration; there will be a state
4357 			 * transition from RUN->RUN that means we may
4358 			 * be called with beacon transmission active.
4359 			 */
4360 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4361 			ath_beacon_free(sc);
4362 			error = ath_beacon_alloc(sc, ni);
4363 			if (error != 0)
4364 				goto bad;
4365 			break;
4366 		case IEEE80211_M_STA:
4367 			/*
4368 			 * Allocate a key cache slot to the station.
4369 			 */
4370 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4371 			    sc->sc_hasclrkey &&
4372 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4373 				ath_setup_stationkey(ni);
4374 			break;
4375 		default:
4376 			break;
4377 		}
4378 
4379 		/*
4380 		 * Configure the beacon and sleep timers.
4381 		 */
4382 		ath_beacon_config(sc);
4383 	} else {
4384 		ath_hal_intrset(ah,
4385 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4386 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4387 	}
4388 done:
4389 	/*
4390 	 * Invoke the parent method to complete the work.
4391 	 */
4392 	error = sc->sc_newstate(ic, nstate, arg);
4393 	/*
4394 	 * Finally, start any timers.
4395 	 */
4396 	if (nstate == IEEE80211_S_RUN) {
4397 		/* start periodic recalibration timer */
4398 		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4399 			ath_calibrate, sc);
4400 	} else if (nstate == IEEE80211_S_SCAN) {
4401 		/* start ap/neighbor scan timer */
4402 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4403 			ath_next_scan, sc);
4404 	}
4405 bad:
4406 	return error;
4407 }
4408 
4409 /*
4410  * Allocate a key cache slot to the station so we can
4411  * setup a mapping from key index to node. The key cache
4412  * slot is needed for managing antenna state and for
4413  * compression when stations do not use crypto.  We do
4414  * it uniliaterally here; if crypto is employed this slot
4415  * will be reassigned.
4416  */
4417 static void
4418 ath_setup_stationkey(struct ieee80211_node *ni)
4419 {
4420 	struct ieee80211com *ic = ni->ni_ic;
4421 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4422 	u_int16_t keyix;
4423 
4424 	keyix = ath_key_alloc(ic, &ni->ni_ucastkey);
4425 	if (keyix == IEEE80211_KEYIX_NONE) {
4426 		/*
4427 		 * Key cache is full; we'll fall back to doing
4428 		 * the more expensive lookup in software.  Note
4429 		 * this also means no h/w compression.
4430 		 */
4431 		/* XXX msg+statistic */
4432 	} else {
4433 		ni->ni_ucastkey.wk_keyix = keyix;
4434 		/* NB: this will create a pass-thru key entry */
4435 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4436 	}
4437 }
4438 
4439 /*
4440  * Setup driver-specific state for a newly associated node.
4441  * Note that we're called also on a re-associate, the isnew
4442  * param tells us if this is the first time or not.
4443  */
4444 static void
4445 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4446 {
4447 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4448 
4449 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4450 	if (isnew &&
4451 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4452 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4453 		    ("new assoc with a unicast key already setup (keyix %u)",
4454 		    ni->ni_ucastkey.wk_keyix));
4455 		ath_setup_stationkey(ni);
4456 	}
4457 }
4458 
4459 static int
4460 ath_getchannels(struct ath_softc *sc, u_int cc,
4461 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4462 {
4463 	struct ieee80211com *ic = &sc->sc_ic;
4464 	struct ifnet *ifp = &sc->sc_if;
4465 	struct ath_hal *ah = sc->sc_ah;
4466 	HAL_CHANNEL *chans;
4467 	int i, ix, nchan;
4468 
4469 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4470 			M_TEMP, M_NOWAIT);
4471 	if (chans == NULL) {
4472 		if_printf(ifp, "unable to allocate channel table\n");
4473 		return ENOMEM;
4474 	}
4475 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4476 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4477 		u_int32_t rd;
4478 
4479 		ath_hal_getregdomain(ah, &rd);
4480 		if_printf(ifp, "unable to collect channel list from hal; "
4481 			"regdomain likely %u country code %u\n", rd, cc);
4482 		free(chans, M_TEMP);
4483 		return EINVAL;
4484 	}
4485 
4486 	/*
4487 	 * Convert HAL channels to ieee80211 ones and insert
4488 	 * them in the table according to their channel number.
4489 	 */
4490 	for (i = 0; i < nchan; i++) {
4491 		HAL_CHANNEL *c = &chans[i];
4492 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4493 		if (ix > IEEE80211_CHAN_MAX) {
4494 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4495 				ix, c->channel, c->channelFlags);
4496 			continue;
4497 		}
4498 		DPRINTF(sc, ATH_DEBUG_ANY,
4499 		    "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
4500 		    sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
4501 		    ix);
4502 		/* NB: flags are known to be compatible */
4503 		if (ic->ic_channels[ix].ic_freq == 0) {
4504 			ic->ic_channels[ix].ic_freq = c->channel;
4505 			ic->ic_channels[ix].ic_flags = c->channelFlags;
4506 		} else {
4507 			/* channels overlap; e.g. 11g and 11b */
4508 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4509 		}
4510 	}
4511 	free(chans, M_TEMP);
4512 	return 0;
4513 }
4514 
4515 static void
4516 ath_led_done(void *arg)
4517 {
4518 	struct ath_softc *sc = arg;
4519 
4520 	sc->sc_blinking = 0;
4521 }
4522 
4523 /*
4524  * Turn the LED off: flip the pin and then set a timer so no
4525  * update will happen for the specified duration.
4526  */
4527 static void
4528 ath_led_off(void *arg)
4529 {
4530 	struct ath_softc *sc = arg;
4531 
4532 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4533 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4534 }
4535 
4536 /*
4537  * Blink the LED according to the specified on/off times.
4538  */
4539 static void
4540 ath_led_blink(struct ath_softc *sc, int on, int off)
4541 {
4542 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4543 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4544 	sc->sc_blinking = 1;
4545 	sc->sc_ledoff = off;
4546 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4547 }
4548 
4549 static void
4550 ath_led_event(struct ath_softc *sc, int event)
4551 {
4552 
4553 	sc->sc_ledevent = ticks;	/* time of last event */
4554 	if (sc->sc_blinking)		/* don't interrupt active blink */
4555 		return;
4556 	switch (event) {
4557 	case ATH_LED_POLL:
4558 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4559 			sc->sc_hwmap[0].ledoff);
4560 		break;
4561 	case ATH_LED_TX:
4562 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4563 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4564 		break;
4565 	case ATH_LED_RX:
4566 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4567 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4568 		break;
4569 	}
4570 }
4571 
4572 static void
4573 ath_update_txpow(struct ath_softc *sc)
4574 {
4575 	struct ieee80211com *ic = &sc->sc_ic;
4576 	struct ath_hal *ah = sc->sc_ah;
4577 	u_int32_t txpow;
4578 
4579 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4580 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4581 		/* read back in case value is clamped */
4582 		ath_hal_gettxpowlimit(ah, &txpow);
4583 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4584 	}
4585 	/*
4586 	 * Fetch max tx power level for status requests.
4587 	 */
4588 	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4589 	ic->ic_bss->ni_txpower = txpow;
4590 }
4591 
4592 static int
4593 ath_rate_setup(struct ath_softc *sc, u_int mode)
4594 {
4595 	struct ath_hal *ah = sc->sc_ah;
4596 	struct ieee80211com *ic = &sc->sc_ic;
4597 	const HAL_RATE_TABLE *rt;
4598 	struct ieee80211_rateset *rs;
4599 	int i, maxrates;
4600 
4601 	switch (mode) {
4602 	case IEEE80211_MODE_11A:
4603 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4604 		break;
4605 	case IEEE80211_MODE_11B:
4606 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4607 		break;
4608 	case IEEE80211_MODE_11G:
4609 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4610 		break;
4611 	case IEEE80211_MODE_TURBO_A:
4612 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4613 		break;
4614 	case IEEE80211_MODE_TURBO_G:
4615 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4616 		break;
4617 	default:
4618 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4619 			__func__, mode);
4620 		return 0;
4621 	}
4622 	rt = sc->sc_rates[mode];
4623 	if (rt == NULL)
4624 		return 0;
4625 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4626 		DPRINTF(sc, ATH_DEBUG_ANY,
4627 			"%s: rate table too small (%u > %u)\n",
4628 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4629 		maxrates = IEEE80211_RATE_MAXSIZE;
4630 	} else
4631 		maxrates = rt->rateCount;
4632 	rs = &ic->ic_sup_rates[mode];
4633 	for (i = 0; i < maxrates; i++)
4634 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4635 	rs->rs_nrates = maxrates;
4636 	return 1;
4637 }
4638 
4639 static void
4640 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4641 {
4642 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4643 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4644 	static const struct {
4645 		u_int		rate;		/* tx/rx 802.11 rate */
4646 		u_int16_t	timeOn;		/* LED on time (ms) */
4647 		u_int16_t	timeOff;	/* LED off time (ms) */
4648 	} blinkrates[] = {
4649 		{ 108,  40,  10 },
4650 		{  96,  44,  11 },
4651 		{  72,  50,  13 },
4652 		{  48,  57,  14 },
4653 		{  36,  67,  16 },
4654 		{  24,  80,  20 },
4655 		{  22, 100,  25 },
4656 		{  18, 133,  34 },
4657 		{  12, 160,  40 },
4658 		{  10, 200,  50 },
4659 		{   6, 240,  58 },
4660 		{   4, 267,  66 },
4661 		{   2, 400, 100 },
4662 		{   0, 500, 130 },
4663 	};
4664 	const HAL_RATE_TABLE *rt;
4665 	int i, j;
4666 
4667 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4668 	rt = sc->sc_rates[mode];
4669 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4670 	for (i = 0; i < rt->rateCount; i++)
4671 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4672 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4673 	for (i = 0; i < 32; i++) {
4674 		u_int8_t ix = rt->rateCodeToIndex[i];
4675 		if (ix == 0xff) {
4676 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4677 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4678 			continue;
4679 		}
4680 		sc->sc_hwmap[i].ieeerate =
4681 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4682 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4683 		if (rt->info[ix].shortPreamble ||
4684 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4685 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4686 		/* NB: receive frames include FCS */
4687 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4688 			IEEE80211_RADIOTAP_F_FCS;
4689 		/* setup blink rate table to avoid per-packet lookup */
4690 		for (j = 0; j < N(blinkrates)-1; j++)
4691 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4692 				break;
4693 		/* NB: this uses the last entry if the rate isn't found */
4694 		/* XXX beware of overlow */
4695 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4696 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4697 	}
4698 	sc->sc_currates = rt;
4699 	sc->sc_curmode = mode;
4700 	/*
4701 	 * All protection frames are transmited at 2Mb/s for
4702 	 * 11g, otherwise at 1Mb/s.
4703 	 * XXX select protection rate index from rate table.
4704 	 */
4705 	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4706 	/* NB: caller is responsible for reseting rate control state */
4707 #undef N
4708 }
4709 
4710 #ifdef AR_DEBUG
4711 static void
4712 ath_printrxbuf(struct ath_buf *bf, int done)
4713 {
4714 	struct ath_desc *ds;
4715 	int i;
4716 
4717 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4718 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4719 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4720 		    ds->ds_link, ds->ds_data,
4721 		    ds->ds_ctl0, ds->ds_ctl1,
4722 		    ds->ds_hw[0], ds->ds_hw[1],
4723 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4724 	}
4725 }
4726 
4727 static void
4728 ath_printtxbuf(struct ath_buf *bf, int done)
4729 {
4730 	struct ath_desc *ds;
4731 	int i;
4732 
4733 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4734 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4735 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4736 		    ds->ds_link, ds->ds_data,
4737 		    ds->ds_ctl0, ds->ds_ctl1,
4738 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4739 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4740 	}
4741 }
4742 #endif /* AR_DEBUG */
4743 
4744 static void
4745 ath_watchdog(struct ifnet *ifp)
4746 {
4747 	struct ath_softc *sc = ifp->if_softc;
4748 	struct ieee80211com *ic = &sc->sc_ic;
4749 
4750 	ifp->if_timer = 0;
4751 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4752 		return;
4753 	if (sc->sc_tx_timer) {
4754 		if (--sc->sc_tx_timer == 0) {
4755 			if_printf(ifp, "device timeout\n");
4756 			ath_reset(ifp);
4757 			ifp->if_oerrors++;
4758 			sc->sc_stats.ast_watchdog++;
4759 		} else
4760 			ifp->if_timer = 1;
4761 	}
4762 	ieee80211_watchdog(ic);
4763 }
4764 
4765 /*
4766  * Diagnostic interface to the HAL.  This is used by various
4767  * tools to do things like retrieve register contents for
4768  * debugging.  The mechanism is intentionally opaque so that
4769  * it can change frequently w/o concern for compatiblity.
4770  */
4771 static int
4772 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4773 {
4774 	struct ath_hal *ah = sc->sc_ah;
4775 	u_int id = ad->ad_id & ATH_DIAG_ID;
4776 	void *indata = NULL;
4777 	void *outdata = NULL;
4778 	u_int32_t insize = ad->ad_in_size;
4779 	u_int32_t outsize = ad->ad_out_size;
4780 	int error = 0;
4781 
4782 	if (ad->ad_id & ATH_DIAG_IN) {
4783 		/*
4784 		 * Copy in data.
4785 		 */
4786 		indata = malloc(insize, M_TEMP, M_NOWAIT);
4787 		if (indata == NULL) {
4788 			error = ENOMEM;
4789 			goto bad;
4790 		}
4791 		error = copyin(ad->ad_in_data, indata, insize);
4792 		if (error)
4793 			goto bad;
4794 	}
4795 	if (ad->ad_id & ATH_DIAG_DYN) {
4796 		/*
4797 		 * Allocate a buffer for the results (otherwise the HAL
4798 		 * returns a pointer to a buffer where we can read the
4799 		 * results).  Note that we depend on the HAL leaving this
4800 		 * pointer for us to use below in reclaiming the buffer;
4801 		 * may want to be more defensive.
4802 		 */
4803 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4804 		if (outdata == NULL) {
4805 			error = ENOMEM;
4806 			goto bad;
4807 		}
4808 	}
4809 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4810 		if (outsize < ad->ad_out_size)
4811 			ad->ad_out_size = outsize;
4812 		if (outdata != NULL)
4813 			error = copyout(outdata, ad->ad_out_data,
4814 					ad->ad_out_size);
4815 	} else {
4816 		error = EINVAL;
4817 	}
4818 bad:
4819 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4820 		free(indata, M_TEMP);
4821 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4822 		free(outdata, M_TEMP);
4823 	return error;
4824 }
4825 
4826 static int
4827 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4828 {
4829 #define	IS_RUNNING(ifp) \
4830 	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4831 	struct ath_softc *sc = ifp->if_softc;
4832 	struct ieee80211com *ic = &sc->sc_ic;
4833 	struct ifreq *ifr = (struct ifreq *)data;
4834 	int error = 0;
4835 
4836 	ATH_LOCK(sc);
4837 	switch (cmd) {
4838 	case SIOCSIFFLAGS:
4839 		if (IS_RUNNING(ifp)) {
4840 			/*
4841 			 * To avoid rescanning another access point,
4842 			 * do not call ath_init() here.  Instead,
4843 			 * only reflect promisc mode settings.
4844 			 */
4845 			ath_mode_init(sc);
4846 		} else if (ifp->if_flags & IFF_UP) {
4847 			/*
4848 			 * Beware of being called during attach/detach
4849 			 * to reset promiscuous mode.  In that case we
4850 			 * will still be marked UP but not RUNNING.
4851 			 * However trying to re-init the interface
4852 			 * is the wrong thing to do as we've already
4853 			 * torn down much of our state.  There's
4854 			 * probably a better way to deal with this.
4855 			 */
4856 			if (!sc->sc_invalid && ic->ic_bss != NULL)
4857 				ath_init(sc);	/* XXX lose error */
4858 		} else
4859 			ath_stop_locked(ifp, 1);
4860 		break;
4861 	case SIOCADDMULTI:
4862 	case SIOCDELMULTI:
4863 		error = (cmd == SIOCADDMULTI) ?
4864 		    ether_addmulti(ifr, &sc->sc_ec) :
4865 		    ether_delmulti(ifr, &sc->sc_ec);
4866 		if (error == ENETRESET) {
4867 			if (ifp->if_flags & IFF_RUNNING)
4868 				ath_mode_init(sc);
4869 			error = 0;
4870 		}
4871 		break;
4872 	case SIOCGATHSTATS:
4873 		/* NB: embed these numbers to get a consistent view */
4874 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4875 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4876 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4877 		ATH_UNLOCK(sc);
4878 		/*
4879 		 * NB: Drop the softc lock in case of a page fault;
4880 		 * we'll accept any potential inconsisentcy in the
4881 		 * statistics.  The alternative is to copy the data
4882 		 * to a local structure.
4883 		 */
4884 		return copyout(&sc->sc_stats,
4885 				ifr->ifr_data, sizeof (sc->sc_stats));
4886 	case SIOCGATHDIAG:
4887 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4888 		break;
4889 	default:
4890 		error = ieee80211_ioctl(ic, cmd, data);
4891 		if (error == ENETRESET) {
4892 			if (IS_RUNNING(ifp) &&
4893 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4894 				ath_init(sc);	/* XXX lose error */
4895 			error = 0;
4896 		}
4897 		if (error == ERESTART)
4898 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4899 		break;
4900 	}
4901 	ATH_UNLOCK(sc);
4902 	return error;
4903 #undef IS_RUNNING
4904 }
4905 
4906 static void
4907 ath_bpfattach(struct ath_softc *sc)
4908 {
4909 	struct ifnet *ifp = &sc->sc_if;
4910 
4911 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4912 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4913 		&sc->sc_drvbpf);
4914 	/*
4915 	 * Initialize constant fields.
4916 	 * XXX make header lengths a multiple of 32-bits so subsequent
4917 	 *     headers are properly aligned; this is a kludge to keep
4918 	 *     certain applications happy.
4919 	 *
4920 	 * NB: the channel is setup each time we transition to the
4921 	 *     RUN state to avoid filling it in for each frame.
4922 	 */
4923 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4924 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4925 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4926 
4927 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4928 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4929 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4930 }
4931 
4932 /*
4933  * Announce various information on device/driver attach.
4934  */
4935 static void
4936 ath_announce(struct ath_softc *sc)
4937 {
4938 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4939 	struct ifnet *ifp = &sc->sc_if;
4940 	struct ath_hal *ah = sc->sc_ah;
4941 	u_int modes, cc;
4942 
4943 	if_printf(ifp, "mac %d.%d phy %d.%d",
4944 		ah->ah_macVersion, ah->ah_macRev,
4945 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4946 	/*
4947 	 * Print radio revision(s).  We check the wireless modes
4948 	 * to avoid falsely printing revs for inoperable parts.
4949 	 * Dual-band radio revs are returned in the 5Ghz rev number.
4950 	 */
4951 	ath_hal_getcountrycode(ah, &cc);
4952 	modes = ath_hal_getwirelessmodes(ah, cc);
4953 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4954 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4955 			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4956 				ah->ah_analog5GhzRev >> 4,
4957 				ah->ah_analog5GhzRev & 0xf,
4958 				ah->ah_analog2GhzRev >> 4,
4959 				ah->ah_analog2GhzRev & 0xf);
4960 		else
4961 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4962 				ah->ah_analog5GhzRev & 0xf);
4963 	} else
4964 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4965 			ah->ah_analog5GhzRev & 0xf);
4966 	printf("\n");
4967 	if (bootverbose) {
4968 		int i;
4969 		for (i = 0; i <= WME_AC_VO; i++) {
4970 			struct ath_txq *txq = sc->sc_ac2q[i];
4971 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4972 				txq->axq_qnum, ieee80211_wme_acnames[i]);
4973 		}
4974 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4975 			sc->sc_cabq->axq_qnum);
4976 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4977 	}
4978 #undef HAL_MODE_DUALBAND
4979 }
4980