1 /* $NetBSD: ath.c,v 1.58 2005/08/21 00:25:51 dyoung Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.94 2005/07/07 00:04:50 sam Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.58 2005/08/21 00:25:51 dyoung Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #include "opt_inet.h" 55 56 #ifdef __NetBSD__ 57 #include "bpfilter.h" 58 #endif /* __NetBSD__ */ 59 60 #include <sys/param.h> 61 #include <sys/reboot.h> 62 #include <sys/systm.h> 63 #include <sys/types.h> 64 #include <sys/sysctl.h> 65 #include <sys/mbuf.h> 66 #include <sys/malloc.h> 67 #include <sys/lock.h> 68 #include <sys/kernel.h> 69 #include <sys/socket.h> 70 #include <sys/sockio.h> 71 #include <sys/errno.h> 72 #include <sys/callout.h> 73 #include <machine/bus.h> 74 #include <sys/endian.h> 75 76 #include <machine/bus.h> 77 78 #include <net/if.h> 79 #include <net/if_dl.h> 80 #include <net/if_media.h> 81 #include <net/if_types.h> 82 #include <net/if_arp.h> 83 #include <net/if_ether.h> 84 #include <net/if_llc.h> 85 86 #include <net80211/ieee80211_netbsd.h> 87 #include <net80211/ieee80211_var.h> 88 89 #if NBPFILTER > 0 90 #include <net/bpf.h> 91 #endif 92 93 #ifdef INET 94 #include <netinet/in.h> 95 #endif 96 97 #include <sys/device.h> 98 #include <dev/ic/ath_netbsd.h> 99 100 #define AR_DEBUG 101 #include <dev/ic/athvar.h> 102 #include <contrib/dev/ic/athhal_desc.h> 103 #include <contrib/dev/ic/athhal_devid.h> /* XXX for softled */ 104 105 /* unaligned little endian access */ 106 #define LE_READ_2(p) \ 107 ((u_int16_t) \ 108 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 109 #define LE_READ_4(p) \ 110 ((u_int32_t) \ 111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 112 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 113 114 enum { 115 ATH_LED_TX, 116 ATH_LED_RX, 117 ATH_LED_POLL, 118 }; 119 120 static int ath_ifinit(struct ifnet *); 121 static int ath_init(struct ath_softc *); 122 static void ath_stop_locked(struct ifnet *, int); 123 static void ath_stop(struct ifnet *, int); 124 static void ath_start(struct ifnet *); 125 static int ath_media_change(struct ifnet *); 126 static void ath_watchdog(struct ifnet *); 127 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 128 static void ath_fatal_proc(void *, int); 129 static void ath_rxorn_proc(void *, int); 130 static void ath_bmiss_proc(void *, int); 131 static int ath_key_alloc(struct ieee80211com *, 132 const struct ieee80211_key *); 133 static int ath_key_delete(struct ieee80211com *, 134 const struct ieee80211_key *); 135 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 136 const u_int8_t mac[IEEE80211_ADDR_LEN]); 137 static void ath_key_update_begin(struct ieee80211com *); 138 static void ath_key_update_end(struct ieee80211com *); 139 static void ath_mode_init(struct ath_softc *); 140 static void ath_setslottime(struct ath_softc *); 141 static void ath_updateslot(struct ifnet *); 142 static int ath_beaconq_setup(struct ath_hal *); 143 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 144 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 145 static void ath_beacon_proc(void *, int); 146 static void ath_bstuck_proc(void *, int); 147 static void ath_beacon_free(struct ath_softc *); 148 static void ath_beacon_config(struct ath_softc *); 149 static void ath_descdma_cleanup(struct ath_softc *sc, 150 struct ath_descdma *, ath_bufhead *); 151 static int ath_desc_alloc(struct ath_softc *); 152 static void ath_desc_free(struct ath_softc *); 153 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 154 static void ath_node_free(struct ieee80211_node *); 155 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 157 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 158 struct ieee80211_node *ni, 159 int subtype, int rssi, u_int32_t rstamp); 160 static void ath_setdefantenna(struct ath_softc *, u_int); 161 static void ath_rx_proc(void *, int); 162 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 163 static int ath_tx_setup(struct ath_softc *, int, int); 164 static int ath_wme_update(struct ieee80211com *); 165 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 166 static void ath_tx_cleanup(struct ath_softc *); 167 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 168 struct ath_buf *, struct mbuf *); 169 static void ath_tx_proc_q0(void *, int); 170 static void ath_tx_proc_q0123(void *, int); 171 static void ath_tx_proc(void *, int); 172 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 173 static void ath_draintxq(struct ath_softc *); 174 static void ath_stoprecv(struct ath_softc *); 175 static int ath_startrecv(struct ath_softc *); 176 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 177 static void ath_next_scan(void *); 178 static void ath_calibrate(void *); 179 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 180 static void ath_setup_stationkey(struct ieee80211_node *); 181 static void ath_newassoc(struct ieee80211com *, 182 struct ieee80211_node *, int); 183 static int ath_getchannels(struct ath_softc *, u_int cc, 184 HAL_BOOL outdoor, HAL_BOOL xchanmode); 185 static void ath_led_event(struct ath_softc *, int); 186 static void ath_update_txpow(struct ath_softc *); 187 188 static int ath_rate_setup(struct ath_softc *, u_int mode); 189 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 190 191 #ifdef __NetBSD__ 192 int ath_enable(struct ath_softc *); 193 void ath_disable(struct ath_softc *); 194 void ath_power(int, void *); 195 #endif 196 197 static void ath_bpfattach(struct ath_softc *); 198 static void ath_announce(struct ath_softc *); 199 200 int ath_dwelltime = 200; /* 5 channels/second */ 201 int ath_calinterval = 30; /* calibrate every 30 secs */ 202 int ath_outdoor = AH_TRUE; /* outdoor operation */ 203 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 204 int ath_countrycode = CTRY_DEFAULT; /* country code */ 205 int ath_regdomain = 0; /* regulatory domain */ 206 int ath_debug = 0; 207 208 #ifdef AR_DEBUG 209 enum { 210 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 211 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 212 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 213 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 214 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 215 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 216 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 217 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 218 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 219 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 220 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 221 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 222 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 223 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 224 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 225 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 226 ATH_DEBUG_NODE = 0x00080000, /* node management */ 227 ATH_DEBUG_LED = 0x00100000, /* led management */ 228 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 229 ATH_DEBUG_ANY = 0xffffffff 230 }; 231 #define IFF_DUMPPKTS(sc, m) \ 232 ((sc->sc_debug & (m)) || \ 233 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 234 #define DPRINTF(sc, m, fmt, ...) do { \ 235 if (sc->sc_debug & (m)) \ 236 printf(fmt, __VA_ARGS__); \ 237 } while (0) 238 #define KEYPRINTF(sc, ix, hk, mac) do { \ 239 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 240 ath_keyprint(__func__, ix, hk, mac); \ 241 } while (0) 242 static void ath_printrxbuf(struct ath_buf *bf, int); 243 static void ath_printtxbuf(struct ath_buf *bf, int); 244 #else 245 #define IFF_DUMPPKTS(sc, m) \ 246 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 247 #define DPRINTF(m, fmt, ...) 248 #define KEYPRINTF(sc, k, ix, mac) 249 #endif 250 251 #ifdef __NetBSD__ 252 int 253 ath_activate(struct device *self, enum devact act) 254 { 255 struct ath_softc *sc = (struct ath_softc *)self; 256 int rv = 0, s; 257 258 s = splnet(); 259 switch (act) { 260 case DVACT_ACTIVATE: 261 rv = EOPNOTSUPP; 262 break; 263 case DVACT_DEACTIVATE: 264 if_deactivate(&sc->sc_if); 265 break; 266 } 267 splx(s); 268 return rv; 269 } 270 271 int 272 ath_enable(struct ath_softc *sc) 273 { 274 if (ATH_IS_ENABLED(sc) == 0) { 275 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { 276 printf("%s: device enable failed\n", 277 sc->sc_dev.dv_xname); 278 return (EIO); 279 } 280 sc->sc_flags |= ATH_ENABLED; 281 } 282 return (0); 283 } 284 285 void 286 ath_disable(struct ath_softc *sc) 287 { 288 if (!ATH_IS_ENABLED(sc)) 289 return; 290 if (sc->sc_disable != NULL) 291 (*sc->sc_disable)(sc); 292 sc->sc_flags &= ~ATH_ENABLED; 293 } 294 #endif /* __NetBSD__ */ 295 296 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 297 298 int 299 ath_attach(u_int16_t devid, struct ath_softc *sc) 300 { 301 struct ifnet *ifp = &sc->sc_if; 302 struct ieee80211com *ic = &sc->sc_ic; 303 struct ath_hal *ah = NULL; 304 HAL_STATUS status; 305 int error = 0, i; 306 307 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 308 309 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 310 311 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 312 if (ah == NULL) { 313 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 314 status); 315 error = ENXIO; 316 goto bad; 317 } 318 if (ah->ah_abi != HAL_ABI_VERSION) { 319 if_printf(ifp, "HAL ABI mismatch detected " 320 "(HAL:0x%x != driver:0x%x)\n", 321 ah->ah_abi, HAL_ABI_VERSION); 322 error = ENXIO; 323 goto bad; 324 } 325 sc->sc_ah = ah; 326 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 327 328 /* 329 * Check if the MAC has multi-rate retry support. 330 * We do this by trying to setup a fake extended 331 * descriptor. MAC's that don't have support will 332 * return false w/o doing anything. MAC's that do 333 * support it will return true w/o doing anything. 334 */ 335 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 336 337 /* 338 * Check if the device has hardware counters for PHY 339 * errors. If so we need to enable the MIB interrupt 340 * so we can act on stat triggers. 341 */ 342 if (ath_hal_hwphycounters(ah)) 343 sc->sc_needmib = 1; 344 345 /* 346 * Get the hardware key cache size. 347 */ 348 sc->sc_keymax = ath_hal_keycachesize(ah); 349 if (sc->sc_keymax > ATH_KEYMAX) { 350 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 351 ATH_KEYMAX, sc->sc_keymax); 352 sc->sc_keymax = ATH_KEYMAX; 353 } 354 /* 355 * Reset the key cache since some parts do not 356 * reset the contents on initial power up. 357 */ 358 for (i = 0; i < sc->sc_keymax; i++) 359 ath_hal_keyreset(ah, i); 360 /* 361 * Mark key cache slots associated with global keys 362 * as in use. If we knew TKIP was not to be used we 363 * could leave the +32, +64, and +32+64 slots free. 364 * XXX only for splitmic. 365 */ 366 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 367 setbit(sc->sc_keymap, i); 368 setbit(sc->sc_keymap, i+32); 369 setbit(sc->sc_keymap, i+64); 370 setbit(sc->sc_keymap, i+32+64); 371 } 372 373 /* 374 * Collect the channel list using the default country 375 * code and including outdoor channels. The 802.11 layer 376 * is resposible for filtering this list based on settings 377 * like the phy mode. 378 */ 379 error = ath_getchannels(sc, ath_countrycode, 380 ath_outdoor, ath_xchanmode); 381 if (error != 0) 382 goto bad; 383 /* 384 * TPC support can be done either with a global cap or 385 * per-packet support. The latter is not available on 386 * all parts. We're a bit pedantic here as all parts 387 * support a global cap. 388 */ 389 sc->sc_hastpc = ath_hal_hastpc(ah); 390 if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah)) 391 ic->ic_caps |= IEEE80211_C_TXPMGT; 392 /* 393 * Query the hal about antenna support. 394 */ 395 if (ath_hal_hasdiversity(ah)) { 396 sc->sc_hasdiversity = 1; 397 sc->sc_diversity = ath_hal_getdiversity(ah); 398 } 399 sc->sc_defant = ath_hal_getdefantenna(ah); 400 401 /* 402 * Setup dynamic sysctl's now that country code and regdomain 403 * are available from the hal, and both TPC and diversity 404 * capabilities are known. 405 */ 406 ath_sysctlattach(sc); 407 408 /* 409 * Setup rate tables for all potential media types. 410 */ 411 ath_rate_setup(sc, IEEE80211_MODE_11A); 412 ath_rate_setup(sc, IEEE80211_MODE_11B); 413 ath_rate_setup(sc, IEEE80211_MODE_11G); 414 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 415 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 416 /* NB: setup here so ath_rate_update is happy */ 417 ath_setcurmode(sc, IEEE80211_MODE_11A); 418 419 /* 420 * Allocate tx+rx descriptors and populate the lists. 421 */ 422 error = ath_desc_alloc(sc); 423 if (error != 0) { 424 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 425 goto bad; 426 } 427 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 428 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE); 429 430 ATH_TXBUF_LOCK_INIT(sc); 431 432 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 433 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 434 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 435 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 436 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc); 437 438 /* 439 * Allocate hardware transmit queues: one queue for 440 * beacon frames and one data queue for each QoS 441 * priority. Note that the hal handles reseting 442 * these queues at the needed time. 443 * 444 * XXX PS-Poll 445 */ 446 sc->sc_bhalq = ath_beaconq_setup(ah); 447 if (sc->sc_bhalq == (u_int) -1) { 448 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 449 error = EIO; 450 goto bad2; 451 } 452 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 453 if (sc->sc_cabq == NULL) { 454 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 455 error = EIO; 456 goto bad2; 457 } 458 /* NB: insure BK queue is the lowest priority h/w queue */ 459 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 460 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 461 ieee80211_wme_acnames[WME_AC_BK]); 462 error = EIO; 463 goto bad2; 464 } 465 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 466 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 467 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 468 /* 469 * Not enough hardware tx queues to properly do WME; 470 * just punt and assign them all to the same h/w queue. 471 * We could do a better job of this if, for example, 472 * we allocate queues when we switch from station to 473 * AP mode. 474 */ 475 if (sc->sc_ac2q[WME_AC_VI] != NULL) 476 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 477 if (sc->sc_ac2q[WME_AC_BE] != NULL) 478 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 479 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 480 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 481 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 482 } 483 484 /* 485 * Special case certain configurations. Note the 486 * CAB queue is handled by these specially so don't 487 * include them when checking the txq setup mask. 488 */ 489 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 490 case 0x01: 491 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 492 break; 493 case 0x0f: 494 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 495 break; 496 default: 497 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 498 break; 499 } 500 501 /* 502 * Setup rate control. Some rate control modules 503 * call back to change the anntena state so expose 504 * the necessary entry points. 505 * XXX maybe belongs in struct ath_ratectrl? 506 */ 507 sc->sc_setdefantenna = ath_setdefantenna; 508 sc->sc_rc = ath_rate_attach(sc); 509 if (sc->sc_rc == NULL) { 510 error = EIO; 511 goto bad2; 512 } 513 514 sc->sc_blinking = 0; 515 sc->sc_ledstate = 1; 516 sc->sc_ledon = 0; /* low true */ 517 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 518 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE); 519 /* 520 * Auto-enable soft led processing for IBM cards and for 521 * 5211 minipci cards. Users can also manually enable/disable 522 * support with a sysctl. 523 */ 524 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 525 if (sc->sc_softled) { 526 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 527 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 528 } 529 530 ifp->if_softc = sc; 531 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 532 ifp->if_start = ath_start; 533 ifp->if_watchdog = ath_watchdog; 534 ifp->if_ioctl = ath_ioctl; 535 ifp->if_init = ath_ifinit; 536 IFQ_SET_READY(&ifp->if_snd); 537 538 ic->ic_ifp = ifp; 539 ic->ic_reset = ath_reset; 540 ic->ic_newassoc = ath_newassoc; 541 ic->ic_updateslot = ath_updateslot; 542 ic->ic_wme.wme_update = ath_wme_update; 543 /* XXX not right but it's not used anywhere important */ 544 ic->ic_phytype = IEEE80211_T_OFDM; 545 ic->ic_opmode = IEEE80211_M_STA; 546 ic->ic_caps = 547 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 548 | IEEE80211_C_HOSTAP /* hostap mode */ 549 | IEEE80211_C_MONITOR /* monitor mode */ 550 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 551 | IEEE80211_C_SHSLOT /* short slot time supported */ 552 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 553 ; 554 /* 555 * Query the hal to figure out h/w crypto support. 556 */ 557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 558 ic->ic_caps |= IEEE80211_C_WEP; 559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 560 ic->ic_caps |= IEEE80211_C_AES; 561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 562 ic->ic_caps |= IEEE80211_C_AES_CCM; 563 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 564 ic->ic_caps |= IEEE80211_C_CKIP; 565 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 566 ic->ic_caps |= IEEE80211_C_TKIP; 567 /* 568 * Check if h/w does the MIC and/or whether the 569 * separate key cache entries are required to 570 * handle both tx+rx MIC keys. 571 */ 572 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 573 ic->ic_caps |= IEEE80211_C_TKIPMIC; 574 if (ath_hal_tkipsplit(ah)) 575 sc->sc_splitmic = 1; 576 } 577 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 578 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 579 580 /* 581 * Mark WME capability only if we have sufficient 582 * hardware queues to do proper priority scheduling. 583 */ 584 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 585 ic->ic_caps |= IEEE80211_C_WME; 586 /* 587 * Check for misc other capabilities. 588 */ 589 if (ath_hal_hasbursting(ah)) 590 ic->ic_caps |= IEEE80211_C_BURST; 591 592 /* 593 * Indicate we need the 802.11 header padded to a 594 * 32-bit boundary for 4-address and QoS frames. 595 */ 596 ic->ic_flags |= IEEE80211_F_DATAPAD; 597 598 /* 599 * Not all chips have the VEOL support we want to 600 * use with IBSS beacons; check here for it. 601 */ 602 sc->sc_hasveol = ath_hal_hasveol(ah); 603 604 /* get mac address from hardware */ 605 ath_hal_getmac(ah, ic->ic_myaddr); 606 607 if_attach(ifp); 608 /* call MI attach routine. */ 609 ieee80211_ifattach(ic); 610 /* override default methods */ 611 ic->ic_node_alloc = ath_node_alloc; 612 sc->sc_node_free = ic->ic_node_free; 613 ic->ic_node_free = ath_node_free; 614 ic->ic_node_getrssi = ath_node_getrssi; 615 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 616 ic->ic_recv_mgmt = ath_recv_mgmt; 617 sc->sc_newstate = ic->ic_newstate; 618 ic->ic_newstate = ath_newstate; 619 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 620 ic->ic_crypto.cs_key_delete = ath_key_delete; 621 ic->ic_crypto.cs_key_set = ath_key_set; 622 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 623 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 624 /* complete initialization */ 625 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 626 627 ath_bpfattach(sc); 628 629 #ifdef __NetBSD__ 630 sc->sc_flags |= ATH_ATTACHED; 631 /* 632 * Make sure the interface is shutdown during reboot. 633 */ 634 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc); 635 if (sc->sc_sdhook == NULL) 636 printf("%s: WARNING: unable to establish shutdown hook\n", 637 sc->sc_dev.dv_xname); 638 sc->sc_powerhook = powerhook_establish(ath_power, sc); 639 if (sc->sc_powerhook == NULL) 640 printf("%s: WARNING: unable to establish power hook\n", 641 sc->sc_dev.dv_xname); 642 #endif 643 ieee80211_announce(ic); 644 ath_announce(sc); 645 return 0; 646 bad2: 647 ath_tx_cleanup(sc); 648 ath_desc_free(sc); 649 bad: 650 if (ah) 651 ath_hal_detach(ah); 652 sc->sc_invalid = 1; 653 return error; 654 } 655 656 int 657 ath_detach(struct ath_softc *sc) 658 { 659 struct ifnet *ifp = &sc->sc_if; 660 int s; 661 662 if ((sc->sc_flags & ATH_ATTACHED) == 0) 663 return (0); 664 665 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 666 __func__, ifp->if_flags); 667 668 s = splnet(); 669 ath_stop(ifp, 1); 670 #if NBPFILTER > 0 671 bpfdetach(ifp); 672 #endif 673 /* 674 * NB: the order of these is important: 675 * o call the 802.11 layer before detaching the hal to 676 * insure callbacks into the driver to delete global 677 * key cache entries can be handled 678 * o reclaim the tx queue data structures after calling 679 * the 802.11 layer as we'll get called back to reclaim 680 * node state and potentially want to use them 681 * o to cleanup the tx queues the hal is called, so detach 682 * it last 683 * Other than that, it's straightforward... 684 */ 685 ieee80211_ifdetach(&sc->sc_ic); 686 ath_rate_detach(sc->sc_rc); 687 ath_desc_free(sc); 688 ath_tx_cleanup(sc); 689 sysctl_teardown(&sc->sc_sysctllog); 690 ath_hal_detach(sc->sc_ah); 691 if_detach(ifp); 692 splx(s); 693 powerhook_disestablish(sc->sc_powerhook); 694 shutdownhook_disestablish(sc->sc_sdhook); 695 696 return 0; 697 } 698 699 #ifdef __NetBSD__ 700 void 701 ath_power(int why, void *arg) 702 { 703 struct ath_softc *sc = arg; 704 int s; 705 706 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why); 707 708 s = splnet(); 709 switch (why) { 710 case PWR_SUSPEND: 711 case PWR_STANDBY: 712 ath_suspend(sc, why); 713 break; 714 case PWR_RESUME: 715 ath_resume(sc, why); 716 break; 717 case PWR_SOFTSUSPEND: 718 case PWR_SOFTSTANDBY: 719 case PWR_SOFTRESUME: 720 break; 721 } 722 splx(s); 723 } 724 #endif 725 726 void 727 ath_suspend(struct ath_softc *sc, int why) 728 { 729 struct ifnet *ifp = &sc->sc_if; 730 731 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 732 __func__, ifp->if_flags); 733 734 ath_stop(ifp, 1); 735 if (sc->sc_power != NULL) 736 (*sc->sc_power)(sc, why); 737 } 738 739 void 740 ath_resume(struct ath_softc *sc, int why) 741 { 742 struct ifnet *ifp = &sc->sc_if; 743 744 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 745 __func__, ifp->if_flags); 746 747 if (ifp->if_flags & IFF_UP) { 748 ath_init(sc); 749 #if 0 750 (void)ath_intr(sc); 751 #endif 752 if (sc->sc_power != NULL) 753 (*sc->sc_power)(sc, why); 754 if (ifp->if_flags & IFF_RUNNING) 755 ath_start(ifp); 756 } 757 if (sc->sc_softled) { 758 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 759 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 760 } 761 } 762 763 void 764 ath_shutdown(void *arg) 765 { 766 struct ath_softc *sc = arg; 767 768 ath_stop(&sc->sc_if, 1); 769 } 770 771 /* 772 * Interrupt handler. Most of the actual processing is deferred. 773 */ 774 int 775 ath_intr(void *arg) 776 { 777 struct ath_softc *sc = arg; 778 struct ifnet *ifp = &sc->sc_if; 779 struct ath_hal *ah = sc->sc_ah; 780 HAL_INT status; 781 782 if (sc->sc_invalid) { 783 /* 784 * The hardware is not ready/present, don't touch anything. 785 * Note this can happen early on if the IRQ is shared. 786 */ 787 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 788 return 0; 789 } 790 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 791 return 0; 792 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 793 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 794 __func__, ifp->if_flags); 795 ath_hal_getisr(ah, &status); /* clear ISR */ 796 ath_hal_intrset(ah, 0); /* disable further intr's */ 797 return 1; /* XXX */ 798 } 799 /* 800 * Figure out the reason(s) for the interrupt. Note 801 * that the hal returns a pseudo-ISR that may include 802 * bits we haven't explicitly enabled so we mask the 803 * value to insure we only process bits we requested. 804 */ 805 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 806 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 807 status &= sc->sc_imask; /* discard unasked for bits */ 808 if (status & HAL_INT_FATAL) { 809 /* 810 * Fatal errors are unrecoverable. Typically 811 * these are caused by DMA errors. Unfortunately 812 * the exact reason is not (presently) returned 813 * by the hal. 814 */ 815 sc->sc_stats.ast_hardware++; 816 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 817 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 818 } else if (status & HAL_INT_RXORN) { 819 sc->sc_stats.ast_rxorn++; 820 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 821 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 822 } else { 823 if (status & HAL_INT_SWBA) { 824 /* 825 * Software beacon alert--time to send a beacon. 826 * Handle beacon transmission directly; deferring 827 * this is too slow to meet timing constraints 828 * under load. 829 */ 830 ath_beacon_proc(sc, 0); 831 } 832 if (status & HAL_INT_RXEOL) { 833 /* 834 * NB: the hardware should re-read the link when 835 * RXE bit is written, but it doesn't work at 836 * least on older hardware revs. 837 */ 838 sc->sc_stats.ast_rxeol++; 839 sc->sc_rxlink = NULL; 840 } 841 if (status & HAL_INT_TXURN) { 842 sc->sc_stats.ast_txurn++; 843 /* bump tx trigger level */ 844 ath_hal_updatetxtriglevel(ah, AH_TRUE); 845 } 846 if (status & HAL_INT_RX) 847 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 848 if (status & HAL_INT_TX) 849 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 850 if (status & HAL_INT_BMISS) { 851 sc->sc_stats.ast_bmiss++; 852 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 853 } 854 if (status & HAL_INT_MIB) { 855 sc->sc_stats.ast_mib++; 856 /* 857 * Disable interrupts until we service the MIB 858 * interrupt; otherwise it will continue to fire. 859 */ 860 ath_hal_intrset(ah, 0); 861 /* 862 * Let the hal handle the event. We assume it will 863 * clear whatever condition caused the interrupt. 864 */ 865 ath_hal_mibevent(ah, 866 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats); 867 ath_hal_intrset(ah, sc->sc_imask); 868 } 869 } 870 return 1; 871 } 872 873 static void 874 ath_fatal_proc(void *arg, int pending) 875 { 876 struct ath_softc *sc = arg; 877 struct ifnet *ifp = &sc->sc_if; 878 879 if_printf(ifp, "hardware error; resetting\n"); 880 ath_reset(ifp); 881 } 882 883 static void 884 ath_rxorn_proc(void *arg, int pending) 885 { 886 struct ath_softc *sc = arg; 887 struct ifnet *ifp = &sc->sc_if; 888 889 if_printf(ifp, "rx FIFO overrun; resetting\n"); 890 ath_reset(ifp); 891 } 892 893 static void 894 ath_bmiss_proc(void *arg, int pending) 895 { 896 struct ath_softc *sc = arg; 897 struct ieee80211com *ic = &sc->sc_ic; 898 899 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 900 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 901 ("unexpect operating mode %u", ic->ic_opmode)); 902 if (ic->ic_state == IEEE80211_S_RUN) { 903 /* 904 * Rather than go directly to scan state, try to 905 * reassociate first. If that fails then the state 906 * machine will drop us into scanning after timing 907 * out waiting for a probe response. 908 */ 909 NET_LOCK_GIANT(); 910 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 911 NET_UNLOCK_GIANT(); 912 } 913 } 914 915 static u_int 916 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 917 { 918 #define N(a) (sizeof(a) / sizeof(a[0])) 919 static const u_int modeflags[] = { 920 0, /* IEEE80211_MODE_AUTO */ 921 CHANNEL_A, /* IEEE80211_MODE_11A */ 922 CHANNEL_B, /* IEEE80211_MODE_11B */ 923 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 924 0, /* IEEE80211_MODE_FH */ 925 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */ 926 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 927 }; 928 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 929 930 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 931 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 932 return modeflags[mode]; 933 #undef N 934 } 935 936 static int 937 ath_ifinit(struct ifnet *ifp) 938 { 939 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc; 940 941 return ath_init(sc); 942 } 943 944 static int 945 ath_init(struct ath_softc *sc) 946 { 947 struct ifnet *ifp = &sc->sc_if; 948 struct ieee80211com *ic = &sc->sc_ic; 949 struct ieee80211_node *ni; 950 struct ath_hal *ah = sc->sc_ah; 951 HAL_STATUS status; 952 int error = 0; 953 954 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 955 __func__, ifp->if_flags); 956 957 ATH_LOCK(sc); 958 959 if ((error = ath_enable(sc)) != 0) 960 return error; 961 962 /* 963 * Stop anything previously setup. This is safe 964 * whether this is the first time through or not. 965 */ 966 ath_stop_locked(ifp, 0); 967 968 /* 969 * The basic interface to setting the hardware in a good 970 * state is ``reset''. On return the hardware is known to 971 * be powered up and with interrupts disabled. This must 972 * be followed by initialization of the appropriate bits 973 * and then setup of the interrupt mask. 974 */ 975 sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq; 976 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan); 977 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 978 if_printf(ifp, "unable to reset hardware; hal status %u\n", 979 status); 980 error = EIO; 981 goto done; 982 } 983 984 /* 985 * This is needed only to setup initial state 986 * but it's best done after a reset. 987 */ 988 ath_update_txpow(sc); 989 990 /* 991 * Setup the hardware after reset: the key cache 992 * is filled as needed and the receive engine is 993 * set going. Frame transmit is handled entirely 994 * in the frame output path; there's nothing to do 995 * here except setup the interrupt mask. 996 */ 997 if ((error = ath_startrecv(sc)) != 0) { 998 if_printf(ifp, "unable to start recv logic\n"); 999 goto done; 1000 } 1001 1002 /* 1003 * Enable interrupts. 1004 */ 1005 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1006 | HAL_INT_RXEOL | HAL_INT_RXORN 1007 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1008 /* 1009 * Enable MIB interrupts when there are hardware phy counters. 1010 * Note we only do this (at the moment) for station mode. 1011 */ 1012 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1013 sc->sc_imask |= HAL_INT_MIB; 1014 ath_hal_intrset(ah, sc->sc_imask); 1015 1016 ifp->if_flags |= IFF_RUNNING; 1017 ic->ic_state = IEEE80211_S_INIT; 1018 1019 /* 1020 * The hardware should be ready to go now so it's safe 1021 * to kick the 802.11 state machine as it's likely to 1022 * immediately call back to us to send mgmt frames. 1023 */ 1024 ni = ic->ic_bss; 1025 ni->ni_chan = ic->ic_ibss_chan; 1026 ath_chan_change(sc, ni->ni_chan); 1027 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1028 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1029 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1030 } else 1031 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1032 done: 1033 ATH_UNLOCK(sc); 1034 return error; 1035 } 1036 1037 static void 1038 ath_stop_locked(struct ifnet *ifp, int disable) 1039 { 1040 struct ath_softc *sc = ifp->if_softc; 1041 struct ieee80211com *ic = &sc->sc_ic; 1042 struct ath_hal *ah = sc->sc_ah; 1043 1044 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1045 __func__, sc->sc_invalid, ifp->if_flags); 1046 1047 ATH_LOCK_ASSERT(sc); 1048 if (ifp->if_flags & IFF_RUNNING) { 1049 /* 1050 * Shutdown the hardware and driver: 1051 * reset 802.11 state machine 1052 * turn off timers 1053 * disable interrupts 1054 * turn off the radio 1055 * clear transmit machinery 1056 * clear receive machinery 1057 * drain and release tx queues 1058 * reclaim beacon resources 1059 * power down hardware 1060 * 1061 * Note that some of this work is not possible if the 1062 * hardware is gone (invalid). 1063 */ 1064 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1065 ifp->if_flags &= ~IFF_RUNNING; 1066 ifp->if_timer = 0; 1067 if (!sc->sc_invalid) { 1068 if (sc->sc_softled) { 1069 callout_stop(&sc->sc_ledtimer); 1070 ath_hal_gpioset(ah, sc->sc_ledpin, 1071 !sc->sc_ledon); 1072 sc->sc_blinking = 0; 1073 } 1074 ath_hal_intrset(ah, 0); 1075 } 1076 ath_draintxq(sc); 1077 if (!sc->sc_invalid) { 1078 ath_stoprecv(sc); 1079 ath_hal_phydisable(ah); 1080 } else 1081 sc->sc_rxlink = NULL; 1082 IF_PURGE(&ifp->if_snd); 1083 ath_beacon_free(sc); 1084 if (disable) 1085 ath_disable(sc); 1086 } 1087 } 1088 1089 static void 1090 ath_stop(struct ifnet *ifp, int disable) 1091 { 1092 struct ath_softc *sc = ifp->if_softc; 1093 1094 ATH_LOCK(sc); 1095 ath_stop_locked(ifp, disable); 1096 if (!sc->sc_invalid) { 1097 /* 1098 * Set the chip in full sleep mode. Note that we are 1099 * careful to do this only when bringing the interface 1100 * completely to a stop. When the chip is in this state 1101 * it must be carefully woken up or references to 1102 * registers in the PCI clock domain may freeze the bus 1103 * (and system). This varies by chip and is mostly an 1104 * issue with newer parts that go to sleep more quickly. 1105 */ 1106 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0); 1107 } 1108 ATH_UNLOCK(sc); 1109 } 1110 1111 /* 1112 * Reset the hardware w/o losing operational state. This is 1113 * basically a more efficient way of doing ath_stop, ath_init, 1114 * followed by state transitions to the current 802.11 1115 * operational state. Used to recover from various errors and 1116 * to reset or reload hardware state. 1117 */ 1118 int 1119 ath_reset(struct ifnet *ifp) 1120 { 1121 struct ath_softc *sc = ifp->if_softc; 1122 struct ieee80211com *ic = &sc->sc_ic; 1123 struct ath_hal *ah = sc->sc_ah; 1124 struct ieee80211_channel *c; 1125 HAL_STATUS status; 1126 1127 /* 1128 * Convert to a HAL channel description with the flags 1129 * constrained to reflect the current operating mode. 1130 */ 1131 c = ic->ic_ibss_chan; 1132 sc->sc_curchan.channel = c->ic_freq; 1133 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1134 1135 ath_hal_intrset(ah, 0); /* disable interrupts */ 1136 ath_draintxq(sc); /* stop xmit side */ 1137 ath_stoprecv(sc); /* stop recv side */ 1138 /* NB: indicate channel change so we do a full reset */ 1139 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1140 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1141 __func__, status); 1142 ath_update_txpow(sc); /* update tx power state */ 1143 if (ath_startrecv(sc) != 0) /* restart recv */ 1144 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1145 /* 1146 * We may be doing a reset in response to an ioctl 1147 * that changes the channel so update any state that 1148 * might change as a result. 1149 */ 1150 ath_chan_change(sc, c); 1151 if (ic->ic_state == IEEE80211_S_RUN) 1152 ath_beacon_config(sc); /* restart beacons */ 1153 ath_hal_intrset(ah, sc->sc_imask); 1154 1155 ath_start(ifp); /* restart xmit */ 1156 return 0; 1157 } 1158 1159 static void 1160 ath_start(struct ifnet *ifp) 1161 { 1162 struct ath_softc *sc = ifp->if_softc; 1163 struct ath_hal *ah = sc->sc_ah; 1164 struct ieee80211com *ic = &sc->sc_ic; 1165 struct ieee80211_node *ni; 1166 struct ath_buf *bf; 1167 struct mbuf *m; 1168 struct ieee80211_frame *wh; 1169 struct ether_header *eh; 1170 1171 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 1172 return; 1173 for (;;) { 1174 /* 1175 * Grab a TX buffer and associated resources. 1176 */ 1177 ATH_TXBUF_LOCK(sc); 1178 bf = STAILQ_FIRST(&sc->sc_txbuf); 1179 if (bf != NULL) 1180 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1181 ATH_TXBUF_UNLOCK(sc); 1182 if (bf == NULL) { 1183 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n", 1184 __func__); 1185 sc->sc_stats.ast_tx_qstop++; 1186 ifp->if_flags |= IFF_OACTIVE; 1187 break; 1188 } 1189 /* 1190 * Poll the management queue for frames; they 1191 * have priority over normal data frames. 1192 */ 1193 IF_DEQUEUE(&ic->ic_mgtq, m); 1194 if (m == NULL) { 1195 /* 1196 * No data frames go out unless we're associated. 1197 */ 1198 if (ic->ic_state != IEEE80211_S_RUN) { 1199 DPRINTF(sc, ATH_DEBUG_ANY, 1200 "%s: ignore data packet, state %u\n", 1201 __func__, ic->ic_state); 1202 sc->sc_stats.ast_tx_discard++; 1203 ATH_TXBUF_LOCK(sc); 1204 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1205 ATH_TXBUF_UNLOCK(sc); 1206 break; 1207 } 1208 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1209 if (m == NULL) { 1210 ATH_TXBUF_LOCK(sc); 1211 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1212 ATH_TXBUF_UNLOCK(sc); 1213 break; 1214 } 1215 /* 1216 * Find the node for the destination so we can do 1217 * things like power save and fast frames aggregation. 1218 */ 1219 if (m->m_len < sizeof(struct ether_header) && 1220 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1221 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1222 ni = NULL; 1223 goto bad; 1224 } 1225 eh = mtod(m, struct ether_header *); 1226 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1227 if (ni == NULL) { 1228 /* NB: ieee80211_find_txnode does stat+msg */ 1229 m_freem(m); 1230 goto bad; 1231 } 1232 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1233 (m->m_flags & M_PWR_SAV) == 0) { 1234 /* 1235 * Station in power save mode; pass the frame 1236 * to the 802.11 layer and continue. We'll get 1237 * the frame back when the time is right. 1238 */ 1239 ieee80211_pwrsave(ic, ni, m); 1240 goto reclaim; 1241 } 1242 /* calculate priority so we can find the tx queue */ 1243 if (ieee80211_classify(ic, m, ni)) { 1244 DPRINTF(sc, ATH_DEBUG_XMIT, 1245 "%s: discard, classification failure\n", 1246 __func__); 1247 m_freem(m); 1248 goto bad; 1249 } 1250 ifp->if_opackets++; 1251 1252 #if NBPFILTER > 0 1253 if (ifp->if_bpf) 1254 bpf_mtap(ifp->if_bpf, m); 1255 #endif 1256 /* 1257 * Encapsulate the packet in prep for transmission. 1258 */ 1259 m = ieee80211_encap(ic, m, ni); 1260 if (m == NULL) { 1261 DPRINTF(sc, ATH_DEBUG_ANY, 1262 "%s: encapsulation failure\n", 1263 __func__); 1264 sc->sc_stats.ast_tx_encap++; 1265 goto bad; 1266 } 1267 } else { 1268 /* 1269 * Hack! The referenced node pointer is in the 1270 * rcvif field of the packet header. This is 1271 * placed there by ieee80211_mgmt_output because 1272 * we need to hold the reference with the frame 1273 * and there's no other way (other than packet 1274 * tags which we consider too expensive to use) 1275 * to pass it along. 1276 */ 1277 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1278 m->m_pkthdr.rcvif = NULL; 1279 1280 wh = mtod(m, struct ieee80211_frame *); 1281 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1282 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1283 /* fill time stamp */ 1284 u_int64_t tsf; 1285 u_int32_t *tstamp; 1286 1287 tsf = ath_hal_gettsf64(ah); 1288 /* XXX: adjust 100us delay to xmit */ 1289 tsf += 100; 1290 tstamp = (u_int32_t *)&wh[1]; 1291 tstamp[0] = htole32(tsf & 0xffffffff); 1292 tstamp[1] = htole32(tsf >> 32); 1293 } 1294 sc->sc_stats.ast_tx_mgmt++; 1295 } 1296 1297 if (ath_tx_start(sc, ni, bf, m)) { 1298 bad: 1299 ifp->if_oerrors++; 1300 reclaim: 1301 ATH_TXBUF_LOCK(sc); 1302 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1303 ATH_TXBUF_UNLOCK(sc); 1304 if (ni != NULL) 1305 ieee80211_free_node(ni); 1306 continue; 1307 } 1308 1309 sc->sc_tx_timer = 5; 1310 ifp->if_timer = 1; 1311 } 1312 } 1313 1314 static int 1315 ath_media_change(struct ifnet *ifp) 1316 { 1317 #define IS_UP(ifp) \ 1318 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) 1319 int error; 1320 1321 error = ieee80211_media_change(ifp); 1322 if (error == ENETRESET) { 1323 if (IS_UP(ifp)) 1324 ath_init(ifp->if_softc); /* XXX lose error */ 1325 error = 0; 1326 } 1327 return error; 1328 #undef IS_UP 1329 } 1330 1331 #ifdef AR_DEBUG 1332 static void 1333 ath_keyprint(const char *tag, u_int ix, 1334 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1335 { 1336 static const char *ciphers[] = { 1337 "WEP", 1338 "AES-OCB", 1339 "AES-CCM", 1340 "CKIP", 1341 "TKIP", 1342 "CLR", 1343 }; 1344 int i, n; 1345 1346 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1347 for (i = 0, n = hk->kv_len; i < n; i++) 1348 printf("%02x", hk->kv_val[i]); 1349 printf(" mac %s", ether_sprintf(mac)); 1350 if (hk->kv_type == HAL_CIPHER_TKIP) { 1351 printf(" mic "); 1352 for (i = 0; i < sizeof(hk->kv_mic); i++) 1353 printf("%02x", hk->kv_mic[i]); 1354 } 1355 printf("\n"); 1356 } 1357 #endif 1358 1359 /* 1360 * Set a TKIP key into the hardware. This handles the 1361 * potential distribution of key state to multiple key 1362 * cache slots for TKIP. 1363 */ 1364 static int 1365 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1366 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1367 { 1368 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1369 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1370 struct ath_hal *ah = sc->sc_ah; 1371 1372 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1373 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1374 KASSERT(sc->sc_splitmic, ("key cache !split")); 1375 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1376 /* 1377 * TX key goes at first index, RX key at +32. 1378 * The hal handles the MIC keys at index+64. 1379 */ 1380 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1381 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1382 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 1383 return 0; 1384 1385 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1386 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1387 /* XXX delete tx key on failure? */ 1388 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 1389 } else if (k->wk_flags & IEEE80211_KEY_XR) { 1390 /* 1391 * TX/RX key goes at first index. 1392 * The hal handles the MIC keys are index+64. 1393 */ 1394 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ? 1395 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic)); 1396 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1397 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1398 } 1399 return 0; 1400 #undef IEEE80211_KEY_XR 1401 } 1402 1403 /* 1404 * Set a net80211 key into the hardware. This handles the 1405 * potential distribution of key state to multiple key 1406 * cache slots for TKIP with hardware MIC support. 1407 */ 1408 static int 1409 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1410 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1411 struct ieee80211_node *bss) 1412 { 1413 #define N(a) (sizeof(a)/sizeof(a[0])) 1414 static const u_int8_t ciphermap[] = { 1415 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1416 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1417 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1418 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1419 (u_int8_t) -1, /* 4 is not allocated */ 1420 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1421 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1422 }; 1423 struct ath_hal *ah = sc->sc_ah; 1424 const struct ieee80211_cipher *cip = k->wk_cipher; 1425 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1426 const u_int8_t *mac; 1427 HAL_KEYVAL hk; 1428 1429 memset(&hk, 0, sizeof(hk)); 1430 /* 1431 * Software crypto uses a "clear key" so non-crypto 1432 * state kept in the key cache are maintained and 1433 * so that rx frames have an entry to match. 1434 */ 1435 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1436 KASSERT(cip->ic_cipher < N(ciphermap), 1437 ("invalid cipher type %u", cip->ic_cipher)); 1438 hk.kv_type = ciphermap[cip->ic_cipher]; 1439 hk.kv_len = k->wk_keylen; 1440 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1441 } else 1442 hk.kv_type = HAL_CIPHER_CLR; 1443 1444 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1445 /* 1446 * Group keys on hardware that supports multicast frame 1447 * key search use a mac that is the sender's address with 1448 * the high bit set instead of the app-specified address. 1449 */ 1450 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1451 gmac[0] |= 0x80; 1452 mac = gmac; 1453 } else 1454 mac = mac0; 1455 1456 if (hk.kv_type == HAL_CIPHER_TKIP && 1457 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1458 sc->sc_splitmic) { 1459 return ath_keyset_tkip(sc, k, &hk, mac); 1460 } else { 1461 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1462 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 1463 } 1464 #undef N 1465 } 1466 1467 /* 1468 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1469 * each key, one for decrypt/encrypt and the other for the MIC. 1470 */ 1471 static u_int16_t 1472 key_alloc_2pair(struct ath_softc *sc) 1473 { 1474 #define N(a) (sizeof(a)/sizeof(a[0])) 1475 u_int i, keyix; 1476 1477 KASSERT(sc->sc_splitmic, ("key cache !split")); 1478 /* XXX could optimize */ 1479 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1480 u_int8_t b = sc->sc_keymap[i]; 1481 if (b != 0xff) { 1482 /* 1483 * One or more slots in this byte are free. 1484 */ 1485 keyix = i*NBBY; 1486 while (b & 1) { 1487 again: 1488 keyix++; 1489 b >>= 1; 1490 } 1491 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1492 if (isset(sc->sc_keymap, keyix+32) || 1493 isset(sc->sc_keymap, keyix+64) || 1494 isset(sc->sc_keymap, keyix+32+64)) { 1495 /* full pair unavailable */ 1496 /* XXX statistic */ 1497 if (keyix == (i+1)*NBBY) { 1498 /* no slots were appropriate, advance */ 1499 continue; 1500 } 1501 goto again; 1502 } 1503 setbit(sc->sc_keymap, keyix); 1504 setbit(sc->sc_keymap, keyix+64); 1505 setbit(sc->sc_keymap, keyix+32); 1506 setbit(sc->sc_keymap, keyix+32+64); 1507 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1508 "%s: key pair %u,%u %u,%u\n", 1509 __func__, keyix, keyix+64, 1510 keyix+32, keyix+32+64); 1511 return keyix; 1512 } 1513 } 1514 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1515 return IEEE80211_KEYIX_NONE; 1516 #undef N 1517 } 1518 1519 /* 1520 * Allocate a single key cache slot. 1521 */ 1522 static u_int16_t 1523 key_alloc_single(struct ath_softc *sc) 1524 { 1525 #define N(a) (sizeof(a)/sizeof(a[0])) 1526 u_int i, keyix; 1527 1528 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1529 for (i = 0; i < N(sc->sc_keymap); i++) { 1530 u_int8_t b = sc->sc_keymap[i]; 1531 if (b != 0xff) { 1532 /* 1533 * One or more slots are free. 1534 */ 1535 keyix = i*NBBY; 1536 while (b & 1) 1537 keyix++, b >>= 1; 1538 setbit(sc->sc_keymap, keyix); 1539 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1540 __func__, keyix); 1541 return keyix; 1542 } 1543 } 1544 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1545 return IEEE80211_KEYIX_NONE; 1546 #undef N 1547 } 1548 1549 /* 1550 * Allocate one or more key cache slots for a uniacst key. The 1551 * key itself is needed only to identify the cipher. For hardware 1552 * TKIP with split cipher+MIC keys we allocate two key cache slot 1553 * pairs so that we can setup separate TX and RX MIC keys. Note 1554 * that the MIC key for a TKIP key at slot i is assumed by the 1555 * hardware to be at slot i+64. This limits TKIP keys to the first 1556 * 64 entries. 1557 */ 1558 static int 1559 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k) 1560 { 1561 struct ath_softc *sc = ic->ic_ifp->if_softc; 1562 1563 /* 1564 * Group key allocation must be handled specially for 1565 * parts that do not support multicast key cache search 1566 * functionality. For those parts the key id must match 1567 * the h/w key index so lookups find the right key. On 1568 * parts w/ the key search facility we install the sender's 1569 * mac address (with the high bit set) and let the hardware 1570 * find the key w/o using the key id. This is preferred as 1571 * it permits us to support multiple users for adhoc and/or 1572 * multi-station operation. 1573 */ 1574 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1575 u_int keyix; 1576 1577 if (!(&ic->ic_nw_keys[0] <= k && 1578 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1579 /* should not happen */ 1580 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1581 "%s: bogus group key\n", __func__); 1582 return IEEE80211_KEYIX_NONE; 1583 } 1584 keyix = k - ic->ic_nw_keys; 1585 /* 1586 * XXX we pre-allocate the global keys so 1587 * have no way to check if they've already been allocated. 1588 */ 1589 return keyix; 1590 } 1591 1592 /* 1593 * We allocate two pair for TKIP when using the h/w to do 1594 * the MIC. For everything else, including software crypto, 1595 * we allocate a single entry. Note that s/w crypto requires 1596 * a pass-through slot on the 5211 and 5212. The 5210 does 1597 * not support pass-through cache entries and we map all 1598 * those requests to slot 0. 1599 */ 1600 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1601 return key_alloc_single(sc); 1602 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1603 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) { 1604 return key_alloc_2pair(sc); 1605 } else { 1606 return key_alloc_single(sc); 1607 } 1608 } 1609 1610 /* 1611 * Delete an entry in the key cache allocated by ath_key_alloc. 1612 */ 1613 static int 1614 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1615 { 1616 struct ath_softc *sc = ic->ic_ifp->if_softc; 1617 struct ath_hal *ah = sc->sc_ah; 1618 const struct ieee80211_cipher *cip = k->wk_cipher; 1619 struct ieee80211_node *ni; 1620 u_int keyix = k->wk_keyix; 1621 1622 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1623 1624 ath_hal_keyreset(ah, keyix); 1625 /* 1626 * Check the key->node map and flush any ref. 1627 */ 1628 ni = sc->sc_keyixmap[keyix]; 1629 if (ni != NULL) { 1630 ieee80211_free_node(ni); 1631 sc->sc_keyixmap[keyix] = NULL; 1632 } 1633 /* 1634 * Handle split tx/rx keying required for TKIP with h/w MIC. 1635 */ 1636 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1637 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) { 1638 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1639 ni = sc->sc_keyixmap[keyix+32]; 1640 if (ni != NULL) { /* as above... */ 1641 ieee80211_free_node(ni); 1642 sc->sc_keyixmap[keyix+32] = NULL; 1643 } 1644 } 1645 if (keyix >= IEEE80211_WEP_NKID) { 1646 /* 1647 * Don't touch keymap entries for global keys so 1648 * they are never considered for dynamic allocation. 1649 */ 1650 clrbit(sc->sc_keymap, keyix); 1651 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1652 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1653 sc->sc_splitmic) { 1654 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1655 clrbit(sc->sc_keymap, keyix+32); /* RX key */ 1656 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */ 1657 } 1658 } 1659 return 1; 1660 } 1661 1662 /* 1663 * Set the key cache contents for the specified key. Key cache 1664 * slot(s) must already have been allocated by ath_key_alloc. 1665 */ 1666 static int 1667 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1668 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1669 { 1670 struct ath_softc *sc = ic->ic_ifp->if_softc; 1671 1672 return ath_keyset(sc, k, mac, ic->ic_bss); 1673 } 1674 1675 /* 1676 * Block/unblock tx+rx processing while a key change is done. 1677 * We assume the caller serializes key management operations 1678 * so we only need to worry about synchronization with other 1679 * uses that originate in the driver. 1680 */ 1681 static void 1682 ath_key_update_begin(struct ieee80211com *ic) 1683 { 1684 struct ifnet *ifp = ic->ic_ifp; 1685 struct ath_softc *sc = ifp->if_softc; 1686 1687 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1688 #if 0 1689 tasklet_disable(&sc->sc_rxtq); 1690 #endif 1691 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 1692 } 1693 1694 static void 1695 ath_key_update_end(struct ieee80211com *ic) 1696 { 1697 struct ifnet *ifp = ic->ic_ifp; 1698 struct ath_softc *sc = ifp->if_softc; 1699 1700 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1701 IF_UNLOCK(&ifp->if_snd); 1702 #if 0 1703 tasklet_enable(&sc->sc_rxtq); 1704 #endif 1705 } 1706 1707 /* 1708 * Calculate the receive filter according to the 1709 * operating mode and state: 1710 * 1711 * o always accept unicast, broadcast, and multicast traffic 1712 * o maintain current state of phy error reception (the hal 1713 * may enable phy error frames for noise immunity work) 1714 * o probe request frames are accepted only when operating in 1715 * hostap, adhoc, or monitor modes 1716 * o enable promiscuous mode according to the interface state 1717 * o accept beacons: 1718 * - when operating in adhoc mode so the 802.11 layer creates 1719 * node table entries for peers, 1720 * - when operating in station mode for collecting rssi data when 1721 * the station is otherwise quiet, or 1722 * - when scanning 1723 */ 1724 static u_int32_t 1725 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1726 { 1727 struct ieee80211com *ic = &sc->sc_ic; 1728 struct ath_hal *ah = sc->sc_ah; 1729 struct ifnet *ifp = &sc->sc_if; 1730 u_int32_t rfilt; 1731 1732 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1733 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1734 if (ic->ic_opmode != IEEE80211_M_STA) 1735 rfilt |= HAL_RX_FILTER_PROBEREQ; 1736 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1737 (ifp->if_flags & IFF_PROMISC)) 1738 rfilt |= HAL_RX_FILTER_PROM; 1739 if (ic->ic_opmode == IEEE80211_M_STA || 1740 ic->ic_opmode == IEEE80211_M_IBSS || 1741 state == IEEE80211_S_SCAN) 1742 rfilt |= HAL_RX_FILTER_BEACON; 1743 return rfilt; 1744 } 1745 1746 static void 1747 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt) 1748 { 1749 u_int32_t val; 1750 u_int8_t pos; 1751 1752 /* calculate XOR of eight 6bit values */ 1753 val = LE_READ_4(dl + 0); 1754 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1755 val = LE_READ_4(dl + 3); 1756 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1757 pos &= 0x3f; 1758 mfilt[pos / 32] |= (1 << (pos % 32)); 1759 } 1760 1761 static void 1762 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt) 1763 { 1764 struct ifnet *ifp = &sc->sc_if; 1765 struct ether_multi *enm; 1766 struct ether_multistep estep; 1767 1768 mfilt[0] = mfilt[1] = 0; 1769 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1770 while (enm != NULL) { 1771 /* XXX Punt on ranges. */ 1772 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 1773 mfilt[0] = mfilt[1] = ~((u_int32_t)0); 1774 ifp->if_flags |= IFF_ALLMULTI; 1775 return; 1776 } 1777 ath_mcastfilter_accum(enm->enm_addrlo, mfilt); 1778 ETHER_NEXT_MULTI(estep, enm); 1779 } 1780 ifp->if_flags &= ~IFF_ALLMULTI; 1781 } 1782 1783 static void 1784 ath_mode_init(struct ath_softc *sc) 1785 { 1786 struct ieee80211com *ic = &sc->sc_ic; 1787 struct ath_hal *ah = sc->sc_ah; 1788 u_int32_t rfilt, mfilt[2]; 1789 1790 /* configure rx filter */ 1791 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1792 ath_hal_setrxfilter(ah, rfilt); 1793 1794 /* configure operational mode */ 1795 ath_hal_setopmode(ah); 1796 1797 /* 1798 * Handle any link-level address change. Note that we only 1799 * need to force ic_myaddr; any other addresses are handled 1800 * as a byproduct of the ifnet code marking the interface 1801 * down then up. 1802 * 1803 * XXX should get from lladdr instead of arpcom but that's more work 1804 */ 1805 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl)); 1806 ath_hal_setmac(ah, ic->ic_myaddr); 1807 1808 /* calculate and install multicast filter */ 1809 #ifdef __FreeBSD__ 1810 if ((sc->sc_if.if_flags & IFF_ALLMULTI) == 0) 1811 ath_mcastfilter_compute(sc, mfilt); 1812 else 1813 mfilt[0] = mfilt[1] = ~0; 1814 #endif 1815 #ifdef __NetBSD__ 1816 ath_mcastfilter_compute(sc, mfilt); 1817 #endif 1818 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1819 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 1820 __func__, rfilt, mfilt[0], mfilt[1]); 1821 } 1822 1823 /* 1824 * Set the slot time based on the current setting. 1825 */ 1826 static void 1827 ath_setslottime(struct ath_softc *sc) 1828 { 1829 struct ieee80211com *ic = &sc->sc_ic; 1830 struct ath_hal *ah = sc->sc_ah; 1831 1832 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1833 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 1834 else 1835 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 1836 sc->sc_updateslot = OK; 1837 } 1838 1839 /* 1840 * Callback from the 802.11 layer to update the 1841 * slot time based on the current setting. 1842 */ 1843 static void 1844 ath_updateslot(struct ifnet *ifp) 1845 { 1846 struct ath_softc *sc = ifp->if_softc; 1847 struct ieee80211com *ic = &sc->sc_ic; 1848 1849 /* 1850 * When not coordinating the BSS, change the hardware 1851 * immediately. For other operation we defer the change 1852 * until beacon updates have propagated to the stations. 1853 */ 1854 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1855 sc->sc_updateslot = UPDATE; 1856 else 1857 ath_setslottime(sc); 1858 } 1859 1860 /* 1861 * Setup a h/w transmit queue for beacons. 1862 */ 1863 static int 1864 ath_beaconq_setup(struct ath_hal *ah) 1865 { 1866 HAL_TXQ_INFO qi; 1867 1868 memset(&qi, 0, sizeof(qi)); 1869 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 1870 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 1871 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 1872 /* NB: for dynamic turbo, don't enable any other interrupts */ 1873 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1874 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 1875 } 1876 1877 /* 1878 * Setup the transmit queue parameters for the beacon queue. 1879 */ 1880 static int 1881 ath_beaconq_config(struct ath_softc *sc) 1882 { 1883 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 1884 struct ieee80211com *ic = &sc->sc_ic; 1885 struct ath_hal *ah = sc->sc_ah; 1886 HAL_TXQ_INFO qi; 1887 1888 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 1889 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1890 /* 1891 * Always burst out beacon and CAB traffic. 1892 */ 1893 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 1894 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 1895 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 1896 } else { 1897 struct wmeParams *wmep = 1898 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 1899 /* 1900 * Adhoc mode; important thing is to use 2x cwmin. 1901 */ 1902 qi.tqi_aifs = wmep->wmep_aifsn; 1903 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 1904 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 1905 } 1906 1907 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 1908 device_printf(sc->sc_dev, "unable to update parameters for " 1909 "beacon hardware queue!\n"); 1910 return 0; 1911 } else { 1912 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 1913 return 1; 1914 } 1915 #undef ATH_EXPONENT_TO_VALUE 1916 } 1917 1918 /* 1919 * Allocate and setup an initial beacon frame. 1920 */ 1921 static int 1922 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1923 { 1924 struct ieee80211com *ic = ni->ni_ic; 1925 struct ath_buf *bf; 1926 struct mbuf *m; 1927 int error; 1928 1929 bf = STAILQ_FIRST(&sc->sc_bbuf); 1930 if (bf == NULL) { 1931 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 1932 sc->sc_stats.ast_be_nombuf++; /* XXX */ 1933 return ENOMEM; /* XXX */ 1934 } 1935 /* 1936 * NB: the beacon data buffer must be 32-bit aligned; 1937 * we assume the mbuf routines will return us something 1938 * with this alignment (perhaps should assert). 1939 */ 1940 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 1941 if (m == NULL) { 1942 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 1943 __func__); 1944 sc->sc_stats.ast_be_nombuf++; 1945 return ENOMEM; 1946 } 1947 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 1948 BUS_DMA_NOWAIT); 1949 if (error == 0) { 1950 bf->bf_m = m; 1951 bf->bf_node = ieee80211_ref_node(ni); 1952 } else { 1953 m_freem(m); 1954 } 1955 return error; 1956 } 1957 1958 /* 1959 * Setup the beacon frame for transmit. 1960 */ 1961 static void 1962 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 1963 { 1964 #define USE_SHPREAMBLE(_ic) \ 1965 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 1966 == IEEE80211_F_SHPREAMBLE) 1967 struct ieee80211_node *ni = bf->bf_node; 1968 struct ieee80211com *ic = ni->ni_ic; 1969 struct mbuf *m = bf->bf_m; 1970 struct ath_hal *ah = sc->sc_ah; 1971 struct ath_node *an = ATH_NODE(ni); 1972 struct ath_desc *ds; 1973 int flags, antenna; 1974 u_int8_t rate; 1975 1976 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 1977 __func__, m, m->m_len); 1978 1979 /* setup descriptors */ 1980 ds = bf->bf_desc; 1981 1982 flags = HAL_TXDESC_NOACK; 1983 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 1984 ds->ds_link = bf->bf_daddr; /* self-linked */ 1985 flags |= HAL_TXDESC_VEOL; 1986 /* 1987 * Let hardware handle antenna switching unless 1988 * the user has selected a transmit antenna 1989 * (sc_txantenna is not 0). 1990 */ 1991 antenna = sc->sc_txantenna; 1992 } else { 1993 ds->ds_link = 0; 1994 /* 1995 * Switch antenna every 4 beacons, unless the user 1996 * has selected a transmit antenna (sc_txantenna 1997 * is not 0). 1998 * 1999 * XXX assumes two antenna 2000 */ 2001 if (sc->sc_txantenna == 0) 2002 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2003 else 2004 antenna = sc->sc_txantenna; 2005 } 2006 2007 KASSERT(bf->bf_nseg == 1, 2008 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2009 ds->ds_data = bf->bf_segs[0].ds_addr; 2010 /* 2011 * Calculate rate code. 2012 * XXX everything at min xmit rate 2013 */ 2014 if (USE_SHPREAMBLE(ic)) 2015 rate = an->an_tx_mgtratesp; 2016 else 2017 rate = an->an_tx_mgtrate; 2018 ath_hal_setuptxdesc(ah, ds 2019 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2020 , sizeof(struct ieee80211_frame)/* header length */ 2021 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2022 , ni->ni_txpower /* txpower XXX */ 2023 , rate, 1 /* series 0 rate/tries */ 2024 , HAL_TXKEYIX_INVALID /* no encryption */ 2025 , antenna /* antenna mode */ 2026 , flags /* no ack, veol for beacons */ 2027 , 0 /* rts/cts rate */ 2028 , 0 /* rts/cts duration */ 2029 ); 2030 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2031 ath_hal_filltxdesc(ah, ds 2032 , roundup(m->m_len, 4) /* buffer length */ 2033 , AH_TRUE /* first segment */ 2034 , AH_TRUE /* last segment */ 2035 , ds /* first descriptor */ 2036 ); 2037 #undef USE_SHPREAMBLE 2038 } 2039 2040 /* 2041 * Transmit a beacon frame at SWBA. Dynamic updates to the 2042 * frame contents are done as needed and the slot time is 2043 * also adjusted based on current state. 2044 */ 2045 static void 2046 ath_beacon_proc(void *arg, int pending) 2047 { 2048 struct ath_softc *sc = arg; 2049 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2050 struct ieee80211_node *ni = bf->bf_node; 2051 struct ieee80211com *ic = ni->ni_ic; 2052 struct ath_hal *ah = sc->sc_ah; 2053 struct mbuf *m; 2054 int ncabq, error, otherant; 2055 2056 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2057 __func__, pending); 2058 2059 if (ic->ic_opmode == IEEE80211_M_STA || 2060 ic->ic_opmode == IEEE80211_M_MONITOR || 2061 bf == NULL || bf->bf_m == NULL) { 2062 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2063 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2064 return; 2065 } 2066 /* 2067 * Check if the previous beacon has gone out. If 2068 * not don't don't try to post another, skip this 2069 * period and wait for the next. Missed beacons 2070 * indicate a problem and should not occur. If we 2071 * miss too many consecutive beacons reset the device. 2072 */ 2073 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2074 sc->sc_bmisscount++; 2075 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2076 "%s: missed %u consecutive beacons\n", 2077 __func__, sc->sc_bmisscount); 2078 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2079 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask); 2080 return; 2081 } 2082 if (sc->sc_bmisscount != 0) { 2083 DPRINTF(sc, ATH_DEBUG_BEACON, 2084 "%s: resume beacon xmit after %u misses\n", 2085 __func__, sc->sc_bmisscount); 2086 sc->sc_bmisscount = 0; 2087 } 2088 2089 /* 2090 * Update dynamic beacon contents. If this returns 2091 * non-zero then we need to remap the memory because 2092 * the beacon frame changed size (probably because 2093 * of the TIM bitmap). 2094 */ 2095 m = bf->bf_m; 2096 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 2097 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 2098 /* XXX too conservative? */ 2099 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2100 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2101 BUS_DMA_NOWAIT); 2102 if (error != 0) { 2103 if_printf(&sc->sc_if, 2104 "%s: bus_dmamap_load_mbuf failed, error %u\n", 2105 __func__, error); 2106 return; 2107 } 2108 } 2109 2110 /* 2111 * Handle slot time change when a non-ERP station joins/leaves 2112 * an 11g network. The 802.11 layer notifies us via callback, 2113 * we mark updateslot, then wait one beacon before effecting 2114 * the change. This gives associated stations at least one 2115 * beacon interval to note the state change. 2116 */ 2117 /* XXX locking */ 2118 if (sc->sc_updateslot == UPDATE) 2119 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2120 else if (sc->sc_updateslot == COMMIT) 2121 ath_setslottime(sc); /* commit change to h/w */ 2122 2123 /* 2124 * Check recent per-antenna transmit statistics and flip 2125 * the default antenna if noticeably more frames went out 2126 * on the non-default antenna. 2127 * XXX assumes 2 anntenae 2128 */ 2129 otherant = sc->sc_defant & 1 ? 2 : 1; 2130 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2131 ath_setdefantenna(sc, otherant); 2132 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2133 2134 /* 2135 * Construct tx descriptor. 2136 */ 2137 ath_beacon_setup(sc, bf); 2138 2139 /* 2140 * Stop any current dma and put the new frame on the queue. 2141 * This should never fail since we check above that no frames 2142 * are still pending on the queue. 2143 */ 2144 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2145 DPRINTF(sc, ATH_DEBUG_ANY, 2146 "%s: beacon queue %u did not stop?\n", 2147 __func__, sc->sc_bhalq); 2148 } 2149 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2150 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2151 2152 /* 2153 * Enable the CAB queue before the beacon queue to 2154 * insure cab frames are triggered by this beacon. 2155 */ 2156 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */ 2157 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2158 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2159 ath_hal_txstart(ah, sc->sc_bhalq); 2160 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2161 "%s: TXDP[%u] = %p (%p)\n", __func__, 2162 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc); 2163 2164 sc->sc_stats.ast_be_xmit++; 2165 } 2166 2167 /* 2168 * Reset the hardware after detecting beacons have stopped. 2169 */ 2170 static void 2171 ath_bstuck_proc(void *arg, int pending) 2172 { 2173 struct ath_softc *sc = arg; 2174 struct ifnet *ifp = &sc->sc_if; 2175 2176 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2177 sc->sc_bmisscount); 2178 ath_reset(ifp); 2179 } 2180 2181 /* 2182 * Reclaim beacon resources. 2183 */ 2184 static void 2185 ath_beacon_free(struct ath_softc *sc) 2186 { 2187 struct ath_buf *bf; 2188 2189 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2190 if (bf->bf_m != NULL) { 2191 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2192 m_freem(bf->bf_m); 2193 bf->bf_m = NULL; 2194 } 2195 if (bf->bf_node != NULL) { 2196 ieee80211_free_node(bf->bf_node); 2197 bf->bf_node = NULL; 2198 } 2199 } 2200 } 2201 2202 /* 2203 * Configure the beacon and sleep timers. 2204 * 2205 * When operating as an AP this resets the TSF and sets 2206 * up the hardware to notify us when we need to issue beacons. 2207 * 2208 * When operating in station mode this sets up the beacon 2209 * timers according to the timestamp of the last received 2210 * beacon and the current TSF, configures PCF and DTIM 2211 * handling, programs the sleep registers so the hardware 2212 * will wakeup in time to receive beacons, and configures 2213 * the beacon miss handling so we'll receive a BMISS 2214 * interrupt when we stop seeing beacons from the AP 2215 * we've associated with. 2216 */ 2217 static void 2218 ath_beacon_config(struct ath_softc *sc) 2219 { 2220 #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10)) 2221 struct ath_hal *ah = sc->sc_ah; 2222 struct ieee80211com *ic = &sc->sc_ic; 2223 struct ieee80211_node *ni = ic->ic_bss; 2224 u_int32_t nexttbtt, intval; 2225 2226 /* extract tstamp from last beacon and convert to TU */ 2227 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2228 LE_READ_4(ni->ni_tstamp.data)); 2229 /* NB: the beacon interval is kept internally in TU's */ 2230 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2231 if (nexttbtt == 0) /* e.g. for ap mode */ 2232 nexttbtt = intval; 2233 else if (intval) /* NB: can be 0 for monitor mode */ 2234 nexttbtt = roundup(nexttbtt, intval); 2235 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2236 __func__, nexttbtt, intval, ni->ni_intval); 2237 if (ic->ic_opmode == IEEE80211_M_STA) { 2238 HAL_BEACON_STATE bs; 2239 u_int64_t tsf; 2240 u_int32_t tsftu; 2241 int dtimperiod, dtimcount; 2242 int cfpperiod, cfpcount; 2243 2244 /* 2245 * Setup dtim and cfp parameters according to 2246 * last beacon we received (which may be none). 2247 */ 2248 dtimperiod = ni->ni_dtim_period; 2249 if (dtimperiod <= 0) /* NB: 0 if not known */ 2250 dtimperiod = 1; 2251 dtimcount = ni->ni_dtim_count; 2252 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2253 dtimcount = 0; /* XXX? */ 2254 cfpperiod = 1; /* NB: no PCF support yet */ 2255 cfpcount = 0; 2256 #define FUDGE 2 2257 /* 2258 * Pull nexttbtt forward to reflect the current 2259 * TSF and calculate dtim+cfp state for the result. 2260 */ 2261 tsf = ath_hal_gettsf64(ah); 2262 tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE; 2263 do { 2264 nexttbtt += intval; 2265 if (--dtimcount < 0) { 2266 dtimcount = dtimperiod - 1; 2267 if (--cfpcount < 0) 2268 cfpcount = cfpperiod - 1; 2269 } 2270 } while (nexttbtt < tsftu); 2271 #undef FUDGE 2272 memset(&bs, 0, sizeof(bs)); 2273 bs.bs_intval = intval; 2274 bs.bs_nexttbtt = nexttbtt; 2275 bs.bs_dtimperiod = dtimperiod*intval; 2276 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2277 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2278 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2279 bs.bs_cfpmaxduration = 0; 2280 #if 0 2281 /* 2282 * The 802.11 layer records the offset to the DTIM 2283 * bitmap while receiving beacons; use it here to 2284 * enable h/w detection of our AID being marked in 2285 * the bitmap vector (to indicate frames for us are 2286 * pending at the AP). 2287 * XXX do DTIM handling in s/w to WAR old h/w bugs 2288 * XXX enable based on h/w rev for newer chips 2289 */ 2290 bs.bs_timoffset = ni->ni_timoff; 2291 #endif 2292 /* 2293 * Calculate the number of consecutive beacons to miss 2294 * before taking a BMISS interrupt. The configuration 2295 * is specified in ms, so we need to convert that to 2296 * TU's and then calculate based on the beacon interval. 2297 * Note that we clamp the result to at most 10 beacons. 2298 */ 2299 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2300 if (bs.bs_bmissthreshold > 10) 2301 bs.bs_bmissthreshold = 10; 2302 else if (bs.bs_bmissthreshold <= 0) 2303 bs.bs_bmissthreshold = 1; 2304 2305 /* 2306 * Calculate sleep duration. The configuration is 2307 * given in ms. We insure a multiple of the beacon 2308 * period is used. Also, if the sleep duration is 2309 * greater than the DTIM period then it makes senses 2310 * to make it a multiple of that. 2311 * 2312 * XXX fixed at 100ms 2313 */ 2314 bs.bs_sleepduration = 2315 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2316 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2317 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2318 2319 DPRINTF(sc, ATH_DEBUG_BEACON, 2320 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2321 , __func__ 2322 , tsf, tsftu 2323 , bs.bs_intval 2324 , bs.bs_nexttbtt 2325 , bs.bs_dtimperiod 2326 , bs.bs_nextdtim 2327 , bs.bs_bmissthreshold 2328 , bs.bs_sleepduration 2329 , bs.bs_cfpperiod 2330 , bs.bs_cfpmaxduration 2331 , bs.bs_cfpnext 2332 , bs.bs_timoffset 2333 ); 2334 ath_hal_intrset(ah, 0); 2335 ath_hal_beacontimers(ah, &bs); 2336 sc->sc_imask |= HAL_INT_BMISS; 2337 ath_hal_intrset(ah, sc->sc_imask); 2338 } else { 2339 ath_hal_intrset(ah, 0); 2340 if (nexttbtt == intval) 2341 intval |= HAL_BEACON_RESET_TSF; 2342 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2343 /* 2344 * In IBSS mode enable the beacon timers but only 2345 * enable SWBA interrupts if we need to manually 2346 * prepare beacon frames. Otherwise we use a 2347 * self-linked tx descriptor and let the hardware 2348 * deal with things. 2349 */ 2350 intval |= HAL_BEACON_ENA; 2351 if (!sc->sc_hasveol) 2352 sc->sc_imask |= HAL_INT_SWBA; 2353 ath_beaconq_config(sc); 2354 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2355 /* 2356 * In AP mode we enable the beacon timers and 2357 * SWBA interrupts to prepare beacon frames. 2358 */ 2359 intval |= HAL_BEACON_ENA; 2360 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2361 ath_beaconq_config(sc); 2362 } 2363 ath_hal_beaconinit(ah, nexttbtt, intval); 2364 sc->sc_bmisscount = 0; 2365 ath_hal_intrset(ah, sc->sc_imask); 2366 /* 2367 * When using a self-linked beacon descriptor in 2368 * ibss mode load it once here. 2369 */ 2370 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2371 ath_beacon_proc(sc, 0); 2372 } 2373 #undef TSF_TO_TU 2374 } 2375 2376 static int 2377 ath_descdma_setup(struct ath_softc *sc, 2378 struct ath_descdma *dd, ath_bufhead *head, 2379 const char *name, int nbuf, int ndesc) 2380 { 2381 #define DS2PHYS(_dd, _ds) \ 2382 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2383 struct ifnet *ifp = &sc->sc_if; 2384 struct ath_desc *ds; 2385 struct ath_buf *bf; 2386 int i, bsize, error; 2387 2388 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2389 __func__, name, nbuf, ndesc); 2390 2391 dd->dd_name = name; 2392 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2393 2394 /* 2395 * Setup DMA descriptor area. 2396 */ 2397 dd->dd_dmat = sc->sc_dmat; 2398 2399 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE, 2400 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0); 2401 2402 if (error != 0) { 2403 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2404 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2405 goto fail0; 2406 } 2407 2408 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg, 2409 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT); 2410 if (error != 0) { 2411 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n", 2412 nbuf * ndesc, dd->dd_name, error); 2413 goto fail1; 2414 } 2415 2416 /* allocate descriptors */ 2417 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1, 2418 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2419 if (error != 0) { 2420 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2421 "error %u\n", dd->dd_name, error); 2422 goto fail2; 2423 } 2424 2425 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, 2426 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT); 2427 if (error != 0) { 2428 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2429 dd->dd_name, error); 2430 goto fail3; 2431 } 2432 2433 ds = dd->dd_desc; 2434 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr; 2435 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2436 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2437 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2438 2439 /* allocate rx buffers */ 2440 bsize = sizeof(struct ath_buf) * nbuf; 2441 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2442 if (bf == NULL) { 2443 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2444 dd->dd_name, bsize); 2445 goto fail4; 2446 } 2447 dd->dd_bufptr = bf; 2448 2449 STAILQ_INIT(head); 2450 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2451 bf->bf_desc = ds; 2452 bf->bf_daddr = DS2PHYS(dd, ds); 2453 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc, 2454 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap); 2455 if (error != 0) { 2456 if_printf(ifp, "unable to create dmamap for %s " 2457 "buffer %u, error %u\n", dd->dd_name, i, error); 2458 ath_descdma_cleanup(sc, dd, head); 2459 return error; 2460 } 2461 STAILQ_INSERT_TAIL(head, bf, bf_list); 2462 } 2463 return 0; 2464 fail4: 2465 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2466 fail3: 2467 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2468 fail2: 2469 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len); 2470 fail1: 2471 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2472 fail0: 2473 memset(dd, 0, sizeof(*dd)); 2474 return error; 2475 #undef DS2PHYS 2476 } 2477 2478 static void 2479 ath_descdma_cleanup(struct ath_softc *sc, 2480 struct ath_descdma *dd, ath_bufhead *head) 2481 { 2482 struct ath_buf *bf; 2483 struct ieee80211_node *ni; 2484 2485 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2486 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2487 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len); 2488 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2489 2490 STAILQ_FOREACH(bf, head, bf_list) { 2491 if (bf->bf_m) { 2492 m_freem(bf->bf_m); 2493 bf->bf_m = NULL; 2494 } 2495 if (bf->bf_dmamap != NULL) { 2496 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2497 bf->bf_dmamap = NULL; 2498 } 2499 ni = bf->bf_node; 2500 bf->bf_node = NULL; 2501 if (ni != NULL) { 2502 /* 2503 * Reclaim node reference. 2504 */ 2505 ieee80211_free_node(ni); 2506 } 2507 } 2508 2509 STAILQ_INIT(head); 2510 free(dd->dd_bufptr, M_ATHDEV); 2511 memset(dd, 0, sizeof(*dd)); 2512 } 2513 2514 static int 2515 ath_desc_alloc(struct ath_softc *sc) 2516 { 2517 int error; 2518 2519 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2520 "rx", ATH_RXBUF, 1); 2521 if (error != 0) 2522 return error; 2523 2524 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2525 "tx", ATH_TXBUF, ATH_TXDESC); 2526 if (error != 0) { 2527 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2528 return error; 2529 } 2530 2531 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2532 "beacon", 1, 1); 2533 if (error != 0) { 2534 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2535 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2536 return error; 2537 } 2538 return 0; 2539 } 2540 2541 static void 2542 ath_desc_free(struct ath_softc *sc) 2543 { 2544 2545 if (sc->sc_bdma.dd_desc_len != 0) 2546 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2547 if (sc->sc_txdma.dd_desc_len != 0) 2548 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2549 if (sc->sc_rxdma.dd_desc_len != 0) 2550 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2551 } 2552 2553 static struct ieee80211_node * 2554 ath_node_alloc(struct ieee80211_node_table *nt) 2555 { 2556 struct ieee80211com *ic = nt->nt_ic; 2557 struct ath_softc *sc = ic->ic_ifp->if_softc; 2558 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2559 struct ath_node *an; 2560 2561 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2562 if (an == NULL) { 2563 /* XXX stat+msg */ 2564 return NULL; 2565 } 2566 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2567 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 2568 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 2569 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 2570 ath_rate_node_init(sc, an); 2571 2572 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2573 return &an->an_node; 2574 } 2575 2576 static void 2577 ath_node_free(struct ieee80211_node *ni) 2578 { 2579 struct ieee80211com *ic = ni->ni_ic; 2580 struct ath_softc *sc = ic->ic_ifp->if_softc; 2581 2582 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2583 2584 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2585 sc->sc_node_free(ni); 2586 } 2587 2588 static u_int8_t 2589 ath_node_getrssi(const struct ieee80211_node *ni) 2590 { 2591 #define HAL_EP_RND(x, mul) \ 2592 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2593 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2594 int32_t rssi; 2595 2596 /* 2597 * When only one frame is received there will be no state in 2598 * avgrssi so fallback on the value recorded by the 802.11 layer. 2599 */ 2600 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2601 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2602 else 2603 rssi = ni->ni_rssi; 2604 /* NB: theoretically we shouldn't need this, but be paranoid */ 2605 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2606 #undef HAL_EP_RND 2607 } 2608 2609 static int 2610 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2611 { 2612 struct ath_hal *ah = sc->sc_ah; 2613 int error; 2614 struct mbuf *m; 2615 struct ath_desc *ds; 2616 2617 m = bf->bf_m; 2618 if (m == NULL) { 2619 /* 2620 * NB: by assigning a page to the rx dma buffer we 2621 * implicitly satisfy the Atheros requirement that 2622 * this buffer be cache-line-aligned and sized to be 2623 * multiple of the cache line size. Not doing this 2624 * causes weird stuff to happen (for the 5210 at least). 2625 */ 2626 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2627 if (m == NULL) { 2628 DPRINTF(sc, ATH_DEBUG_ANY, 2629 "%s: no mbuf/cluster\n", __func__); 2630 sc->sc_stats.ast_rx_nombuf++; 2631 return ENOMEM; 2632 } 2633 bf->bf_m = m; 2634 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2635 2636 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2637 bf->bf_dmamap, m, 2638 BUS_DMA_NOWAIT); 2639 if (error != 0) { 2640 DPRINTF(sc, ATH_DEBUG_ANY, 2641 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2642 __func__, error); 2643 sc->sc_stats.ast_rx_busdma++; 2644 return error; 2645 } 2646 KASSERT(bf->bf_nseg == 1, 2647 ("multi-segment packet; nseg %u", bf->bf_nseg)); 2648 } 2649 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2650 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2651 2652 /* 2653 * Setup descriptors. For receive we always terminate 2654 * the descriptor list with a self-linked entry so we'll 2655 * not get overrun under high load (as can happen with a 2656 * 5212 when ANI processing enables PHY error frames). 2657 * 2658 * To insure the last descriptor is self-linked we create 2659 * each descriptor as self-linked and add it to the end. As 2660 * each additional descriptor is added the previous self-linked 2661 * entry is ``fixed'' naturally. This should be safe even 2662 * if DMA is happening. When processing RX interrupts we 2663 * never remove/process the last, self-linked, entry on the 2664 * descriptor list. This insures the hardware always has 2665 * someplace to write a new frame. 2666 */ 2667 ds = bf->bf_desc; 2668 ds->ds_link = bf->bf_daddr; /* link to self */ 2669 ds->ds_data = bf->bf_segs[0].ds_addr; 2670 ath_hal_setuprxdesc(ah, ds 2671 , m->m_len /* buffer size */ 2672 , 0 2673 ); 2674 2675 if (sc->sc_rxlink != NULL) 2676 *sc->sc_rxlink = bf->bf_daddr; 2677 sc->sc_rxlink = &ds->ds_link; 2678 return 0; 2679 } 2680 2681 /* 2682 * Extend 15-bit time stamp from rx descriptor to 2683 * a full 64-bit TSF using the current h/w TSF. 2684 */ 2685 static __inline u_int64_t 2686 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp) 2687 { 2688 u_int64_t tsf; 2689 2690 tsf = ath_hal_gettsf64(ah); 2691 if ((tsf & 0x7fff) < rstamp) 2692 tsf -= 0x8000; 2693 return ((tsf &~ 0x7fff) | rstamp); 2694 } 2695 2696 /* 2697 * Intercept management frames to collect beacon rssi data 2698 * and to do ibss merges. 2699 */ 2700 static void 2701 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2702 struct ieee80211_node *ni, 2703 int subtype, int rssi, u_int32_t rstamp) 2704 { 2705 struct ath_softc *sc = ic->ic_ifp->if_softc; 2706 2707 /* 2708 * Call up first so subsequent work can use information 2709 * potentially stored in the node (e.g. for ibss merge). 2710 */ 2711 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2712 switch (subtype) { 2713 case IEEE80211_FC0_SUBTYPE_BEACON: 2714 /* update rssi statistics for use by the hal */ 2715 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi); 2716 /* fall thru... */ 2717 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2718 if (ic->ic_opmode == IEEE80211_M_IBSS && 2719 ic->ic_state == IEEE80211_S_RUN) { 2720 u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp); 2721 2722 /* 2723 * Handle ibss merge as needed; check the tsf on the 2724 * frame before attempting the merge. The 802.11 spec 2725 * says the station should change it's bssid to match 2726 * the oldest station with the same ssid, where oldest 2727 * is determined by the tsf. Note that hardware 2728 * reconfiguration happens through callback to 2729 * ath_newstate as the state machine will go from 2730 * RUN -> RUN when this happens. 2731 */ 2732 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2733 DPRINTF(sc, ATH_DEBUG_STATE, 2734 "ibss merge, rstamp %u tsf %ju " 2735 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2736 (uintmax_t)ni->ni_tstamp.tsf); 2737 (void) ieee80211_ibss_merge(ic, ni); 2738 } 2739 } 2740 break; 2741 } 2742 } 2743 2744 /* 2745 * Set the default antenna. 2746 */ 2747 static void 2748 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2749 { 2750 struct ath_hal *ah = sc->sc_ah; 2751 2752 /* XXX block beacon interrupts */ 2753 ath_hal_setdefantenna(ah, antenna); 2754 if (sc->sc_defant != antenna) 2755 sc->sc_stats.ast_ant_defswitch++; 2756 sc->sc_defant = antenna; 2757 sc->sc_rxotherant = 0; 2758 } 2759 2760 static void 2761 ath_rx_proc(void *arg, int npending) 2762 { 2763 #define PA2DESC(_sc, _pa) \ 2764 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 2765 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 2766 struct ath_softc *sc = arg; 2767 struct ath_buf *bf; 2768 struct ieee80211com *ic = &sc->sc_ic; 2769 struct ifnet *ifp = &sc->sc_if; 2770 struct ath_hal *ah = sc->sc_ah; 2771 struct ath_desc *ds; 2772 struct mbuf *m; 2773 struct ieee80211_node *ni; 2774 struct ath_node *an; 2775 int len, type; 2776 u_int phyerr; 2777 HAL_STATUS status; 2778 2779 NET_LOCK_GIANT(); /* XXX */ 2780 2781 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 2782 do { 2783 bf = STAILQ_FIRST(&sc->sc_rxbuf); 2784 if (bf == NULL) { /* NB: shouldn't happen */ 2785 if_printf(ifp, "%s: no buffer!\n", __func__); 2786 break; 2787 } 2788 ds = bf->bf_desc; 2789 if (ds->ds_link == bf->bf_daddr) { 2790 /* NB: never process the self-linked entry at the end */ 2791 break; 2792 } 2793 m = bf->bf_m; 2794 if (m == NULL) { /* NB: shouldn't happen */ 2795 if_printf(ifp, "%s: no mbuf!\n", __func__); 2796 continue; 2797 } 2798 /* XXX sync descriptor memory */ 2799 /* 2800 * Must provide the virtual address of the current 2801 * descriptor, the physical address, and the virtual 2802 * address of the next descriptor in the h/w chain. 2803 * This allows the HAL to look ahead to see if the 2804 * hardware is done with a descriptor by checking the 2805 * done bit in the following descriptor and the address 2806 * of the current descriptor the DMA engine is working 2807 * on. All this is necessary because of our use of 2808 * a self-linked list to avoid rx overruns. 2809 */ 2810 status = ath_hal_rxprocdesc(ah, ds, 2811 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 2812 #ifdef AR_DEBUG 2813 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 2814 ath_printrxbuf(bf, status == HAL_OK); 2815 #endif 2816 if (status == HAL_EINPROGRESS) 2817 break; 2818 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 2819 if (ds->ds_rxstat.rs_more) { 2820 /* 2821 * Frame spans multiple descriptors; this 2822 * cannot happen yet as we don't support 2823 * jumbograms. If not in monitor mode, 2824 * discard the frame. 2825 */ 2826 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2827 sc->sc_stats.ast_rx_toobig++; 2828 goto rx_next; 2829 } 2830 /* fall thru for monitor mode handling... */ 2831 } else if (ds->ds_rxstat.rs_status != 0) { 2832 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 2833 sc->sc_stats.ast_rx_crcerr++; 2834 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 2835 sc->sc_stats.ast_rx_fifoerr++; 2836 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 2837 sc->sc_stats.ast_rx_phyerr++; 2838 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 2839 sc->sc_stats.ast_rx_phy[phyerr]++; 2840 goto rx_next; 2841 } 2842 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 2843 /* 2844 * Decrypt error. If the error occurred 2845 * because there was no hardware key, then 2846 * let the frame through so the upper layers 2847 * can process it. This is necessary for 5210 2848 * parts which have no way to setup a ``clear'' 2849 * key cache entry. 2850 * 2851 * XXX do key cache faulting 2852 */ 2853 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 2854 goto rx_accept; 2855 sc->sc_stats.ast_rx_badcrypt++; 2856 } 2857 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 2858 sc->sc_stats.ast_rx_badmic++; 2859 /* 2860 * Do minimal work required to hand off 2861 * the 802.11 header for notifcation. 2862 */ 2863 /* XXX frag's and qos frames */ 2864 len = ds->ds_rxstat.rs_datalen; 2865 if (len >= sizeof (struct ieee80211_frame)) { 2866 bus_dmamap_sync(sc->sc_dmat, 2867 bf->bf_dmamap, 2868 0, bf->bf_dmamap->dm_mapsize, 2869 BUS_DMASYNC_POSTREAD); 2870 ieee80211_notify_michael_failure(ic, 2871 mtod(m, struct ieee80211_frame *), 2872 sc->sc_splitmic ? 2873 ds->ds_rxstat.rs_keyix-32 : 2874 ds->ds_rxstat.rs_keyix 2875 ); 2876 } 2877 } 2878 ifp->if_ierrors++; 2879 /* 2880 * Reject error frames, we normally don't want 2881 * to see them in monitor mode (in monitor mode 2882 * allow through packets that have crypto problems). 2883 */ 2884 if ((ds->ds_rxstat.rs_status &~ 2885 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) || 2886 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) 2887 goto rx_next; 2888 } 2889 rx_accept: 2890 /* 2891 * Sync and unmap the frame. At this point we're 2892 * committed to passing the mbuf somewhere so clear 2893 * bf_m; this means a new sk_buff must be allocated 2894 * when the rx descriptor is setup again to receive 2895 * another frame. 2896 */ 2897 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2898 0, bf->bf_dmamap->dm_mapsize, 2899 BUS_DMASYNC_POSTREAD); 2900 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2901 bf->bf_m = NULL; 2902 2903 m->m_pkthdr.rcvif = ifp; 2904 len = ds->ds_rxstat.rs_datalen; 2905 m->m_pkthdr.len = m->m_len = len; 2906 2907 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 2908 2909 #if NBPFILTER > 0 2910 if (sc->sc_drvbpf) { 2911 u_int8_t rix; 2912 2913 /* 2914 * Discard anything shorter than an ack or cts. 2915 */ 2916 if (len < IEEE80211_ACK_LEN) { 2917 DPRINTF(sc, ATH_DEBUG_RECV, 2918 "%s: runt packet %d\n", 2919 __func__, len); 2920 sc->sc_stats.ast_rx_tooshort++; 2921 m_freem(m); 2922 goto rx_next; 2923 } 2924 rix = ds->ds_rxstat.rs_rate; 2925 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 2926 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 2927 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi; 2928 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 2929 /* XXX TSF */ 2930 2931 bpf_mtap2(sc->sc_drvbpf, 2932 &sc->sc_rx_th, sc->sc_rx_th_len, m); 2933 } 2934 #endif 2935 2936 /* 2937 * From this point on we assume the frame is at least 2938 * as large as ieee80211_frame_min; verify that. 2939 */ 2940 if (len < IEEE80211_MIN_LEN) { 2941 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 2942 __func__, len); 2943 sc->sc_stats.ast_rx_tooshort++; 2944 m_freem(m); 2945 goto rx_next; 2946 } 2947 2948 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 2949 ieee80211_dump_pkt(mtod(m, caddr_t), len, 2950 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 2951 ds->ds_rxstat.rs_rssi); 2952 } 2953 2954 m_adj(m, -IEEE80211_CRC_LEN); 2955 2956 /* 2957 * Locate the node for sender, track state, and then 2958 * pass the (referenced) node up to the 802.11 layer 2959 * for its use. If the sender is unknown spam the 2960 * frame; it'll be dropped where it's not wanted. 2961 */ 2962 if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID && 2963 (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) { 2964 /* 2965 * Fast path: node is present in the key map; 2966 * grab a reference for processing the frame. 2967 */ 2968 an = ATH_NODE(ieee80211_ref_node(ni)); 2969 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 2970 type = ieee80211_input(ic, m, ni, 2971 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 2972 } else { 2973 /* 2974 * Locate the node for sender, track state, and then 2975 * pass the (referenced) node up to the 802.11 layer 2976 * for its use. 2977 */ 2978 ni = ieee80211_find_rxnode(ic, 2979 mtod(m, const struct ieee80211_frame_min *)); 2980 /* 2981 * Track rx rssi and do any rx antenna management. 2982 */ 2983 an = ATH_NODE(ni); 2984 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 2985 /* 2986 * Send frame up for processing. 2987 */ 2988 type = ieee80211_input(ic, m, ni, 2989 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 2990 if (ni != ic->ic_bss) { 2991 u_int16_t keyix; 2992 /* 2993 * If the station has a key cache slot assigned 2994 * update the key->node mapping table. 2995 */ 2996 keyix = ni->ni_ucastkey.wk_keyix; 2997 if (keyix != IEEE80211_KEYIX_NONE && 2998 sc->sc_keyixmap[keyix] == NULL) 2999 sc->sc_keyixmap[keyix] = 3000 ieee80211_ref_node(ni); 3001 } 3002 } 3003 ieee80211_free_node(ni); 3004 if (sc->sc_diversity) { 3005 /* 3006 * When using fast diversity, change the default rx 3007 * antenna if diversity chooses the other antenna 3 3008 * times in a row. 3009 */ 3010 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3011 if (++sc->sc_rxotherant >= 3) 3012 ath_setdefantenna(sc, 3013 ds->ds_rxstat.rs_antenna); 3014 } else 3015 sc->sc_rxotherant = 0; 3016 } 3017 if (sc->sc_softled) { 3018 /* 3019 * Blink for any data frame. Otherwise do a 3020 * heartbeat-style blink when idle. The latter 3021 * is mainly for station mode where we depend on 3022 * periodic beacon frames to trigger the poll event. 3023 */ 3024 if (type == IEEE80211_FC0_TYPE_DATA) { 3025 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3026 ath_led_event(sc, ATH_LED_RX); 3027 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3028 ath_led_event(sc, ATH_LED_POLL); 3029 } 3030 rx_next: 3031 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3032 } while (ath_rxbuf_init(sc, bf) == 0); 3033 3034 /* rx signal state monitoring */ 3035 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats); 3036 3037 #ifdef __NetBSD__ 3038 /* XXX Why isn't this necessary in FreeBSD? */ 3039 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 3040 ath_start(ifp); 3041 #endif /* __NetBSD__ */ 3042 3043 NET_UNLOCK_GIANT(); /* XXX */ 3044 #undef PA2DESC 3045 } 3046 3047 /* 3048 * Setup a h/w transmit queue. 3049 */ 3050 static struct ath_txq * 3051 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3052 { 3053 #define N(a) (sizeof(a)/sizeof(a[0])) 3054 struct ath_hal *ah = sc->sc_ah; 3055 HAL_TXQ_INFO qi; 3056 int qnum; 3057 3058 memset(&qi, 0, sizeof(qi)); 3059 qi.tqi_subtype = subtype; 3060 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3061 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3062 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3063 /* 3064 * Enable interrupts only for EOL and DESC conditions. 3065 * We mark tx descriptors to receive a DESC interrupt 3066 * when a tx queue gets deep; otherwise waiting for the 3067 * EOL to reap descriptors. Note that this is done to 3068 * reduce interrupt load and this only defers reaping 3069 * descriptors, never transmitting frames. Aside from 3070 * reducing interrupts this also permits more concurrency. 3071 * The only potential downside is if the tx queue backs 3072 * up in which case the top half of the kernel may backup 3073 * due to a lack of tx descriptors. 3074 */ 3075 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE; 3076 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3077 if (qnum == -1) { 3078 /* 3079 * NB: don't print a message, this happens 3080 * normally on parts with too few tx queues 3081 */ 3082 return NULL; 3083 } 3084 if (qnum >= N(sc->sc_txq)) { 3085 device_printf(sc->sc_dev, 3086 "hal qnum %u out of range, max %zu!\n", 3087 qnum, N(sc->sc_txq)); 3088 ath_hal_releasetxqueue(ah, qnum); 3089 return NULL; 3090 } 3091 if (!ATH_TXQ_SETUP(sc, qnum)) { 3092 struct ath_txq *txq = &sc->sc_txq[qnum]; 3093 3094 txq->axq_qnum = qnum; 3095 txq->axq_depth = 0; 3096 txq->axq_intrcnt = 0; 3097 txq->axq_link = NULL; 3098 STAILQ_INIT(&txq->axq_q); 3099 ATH_TXQ_LOCK_INIT(sc, txq); 3100 sc->sc_txqsetup |= 1<<qnum; 3101 } 3102 return &sc->sc_txq[qnum]; 3103 #undef N 3104 } 3105 3106 /* 3107 * Setup a hardware data transmit queue for the specified 3108 * access control. The hal may not support all requested 3109 * queues in which case it will return a reference to a 3110 * previously setup queue. We record the mapping from ac's 3111 * to h/w queues for use by ath_tx_start and also track 3112 * the set of h/w queues being used to optimize work in the 3113 * transmit interrupt handler and related routines. 3114 */ 3115 static int 3116 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3117 { 3118 #define N(a) (sizeof(a)/sizeof(a[0])) 3119 struct ath_txq *txq; 3120 3121 if (ac >= N(sc->sc_ac2q)) { 3122 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3123 ac, N(sc->sc_ac2q)); 3124 return 0; 3125 } 3126 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3127 if (txq != NULL) { 3128 sc->sc_ac2q[ac] = txq; 3129 return 1; 3130 } else 3131 return 0; 3132 #undef N 3133 } 3134 3135 /* 3136 * Update WME parameters for a transmit queue. 3137 */ 3138 static int 3139 ath_txq_update(struct ath_softc *sc, int ac) 3140 { 3141 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3142 #define ATH_TXOP_TO_US(v) (v<<5) 3143 struct ieee80211com *ic = &sc->sc_ic; 3144 struct ath_txq *txq = sc->sc_ac2q[ac]; 3145 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3146 struct ath_hal *ah = sc->sc_ah; 3147 HAL_TXQ_INFO qi; 3148 3149 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3150 qi.tqi_aifs = wmep->wmep_aifsn; 3151 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3152 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3153 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3154 3155 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3156 device_printf(sc->sc_dev, "unable to update hardware queue " 3157 "parameters for %s traffic!\n", 3158 ieee80211_wme_acnames[ac]); 3159 return 0; 3160 } else { 3161 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3162 return 1; 3163 } 3164 #undef ATH_TXOP_TO_US 3165 #undef ATH_EXPONENT_TO_VALUE 3166 } 3167 3168 /* 3169 * Callback from the 802.11 layer to update WME parameters. 3170 */ 3171 static int 3172 ath_wme_update(struct ieee80211com *ic) 3173 { 3174 struct ath_softc *sc = ic->ic_ifp->if_softc; 3175 3176 return !ath_txq_update(sc, WME_AC_BE) || 3177 !ath_txq_update(sc, WME_AC_BK) || 3178 !ath_txq_update(sc, WME_AC_VI) || 3179 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3180 } 3181 3182 /* 3183 * Reclaim resources for a setup queue. 3184 */ 3185 static void 3186 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3187 { 3188 3189 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3190 ATH_TXQ_LOCK_DESTROY(txq); 3191 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3192 } 3193 3194 /* 3195 * Reclaim all tx queue resources. 3196 */ 3197 static void 3198 ath_tx_cleanup(struct ath_softc *sc) 3199 { 3200 int i; 3201 3202 ATH_TXBUF_LOCK_DESTROY(sc); 3203 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3204 if (ATH_TXQ_SETUP(sc, i)) 3205 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3206 } 3207 3208 /* 3209 * Defragment an mbuf chain, returning at most maxfrags separate 3210 * mbufs+clusters. If this is not possible NULL is returned and 3211 * the original mbuf chain is left in it's present (potentially 3212 * modified) state. We use two techniques: collapsing consecutive 3213 * mbufs and replacing consecutive mbufs by a cluster. 3214 */ 3215 static struct mbuf * 3216 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3217 { 3218 struct mbuf *m, *n, *n2, **prev; 3219 u_int curfrags; 3220 3221 /* 3222 * Calculate the current number of frags. 3223 */ 3224 curfrags = 0; 3225 for (m = m0; m != NULL; m = m->m_next) 3226 curfrags++; 3227 /* 3228 * First, try to collapse mbufs. Note that we always collapse 3229 * towards the front so we don't need to deal with moving the 3230 * pkthdr. This may be suboptimal if the first mbuf has much 3231 * less data than the following. 3232 */ 3233 m = m0; 3234 again: 3235 for (;;) { 3236 n = m->m_next; 3237 if (n == NULL) 3238 break; 3239 if ((m->m_flags & M_RDONLY) == 0 && 3240 n->m_len < M_TRAILINGSPACE(m)) { 3241 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 3242 n->m_len); 3243 m->m_len += n->m_len; 3244 m->m_next = n->m_next; 3245 m_free(n); 3246 if (--curfrags <= maxfrags) 3247 return m0; 3248 } else 3249 m = n; 3250 } 3251 KASSERT(maxfrags > 1, 3252 ("maxfrags %u, but normal collapse failed", maxfrags)); 3253 /* 3254 * Collapse consecutive mbufs to a cluster. 3255 */ 3256 prev = &m0->m_next; /* NB: not the first mbuf */ 3257 while ((n = *prev) != NULL) { 3258 if ((n2 = n->m_next) != NULL && 3259 n->m_len + n2->m_len < MCLBYTES) { 3260 m = m_getcl(how, MT_DATA, 0); 3261 if (m == NULL) 3262 goto bad; 3263 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3264 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3265 n2->m_len); 3266 m->m_len = n->m_len + n2->m_len; 3267 m->m_next = n2->m_next; 3268 *prev = m; 3269 m_free(n); 3270 m_free(n2); 3271 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3272 return m0; 3273 /* 3274 * Still not there, try the normal collapse 3275 * again before we allocate another cluster. 3276 */ 3277 goto again; 3278 } 3279 prev = &n->m_next; 3280 } 3281 /* 3282 * No place where we can collapse to a cluster; punt. 3283 * This can occur if, for example, you request 2 frags 3284 * but the packet requires that both be clusters (we 3285 * never reallocate the first mbuf to avoid moving the 3286 * packet header). 3287 */ 3288 bad: 3289 return NULL; 3290 } 3291 3292 static int 3293 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3294 struct mbuf *m0) 3295 { 3296 #define CTS_DURATION \ 3297 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE) 3298 #define updateCTSForBursting(_ah, _ds, _txq) \ 3299 ath_hal_updateCTSForBursting(_ah, _ds, \ 3300 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \ 3301 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \ 3302 txopLimit, CTS_DURATION) 3303 struct ieee80211com *ic = &sc->sc_ic; 3304 struct ath_hal *ah = sc->sc_ah; 3305 struct ifnet *ifp = &sc->sc_if; 3306 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3307 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0; 3308 u_int8_t rix, txrate, ctsrate; 3309 u_int8_t cix = 0xff; /* NB: silence compiler */ 3310 struct ath_desc *ds, *ds0; 3311 struct ath_txq *txq; 3312 struct ieee80211_frame *wh; 3313 u_int subtype, flags, ctsduration; 3314 HAL_PKT_TYPE atype; 3315 const HAL_RATE_TABLE *rt; 3316 HAL_BOOL shortPreamble; 3317 struct ath_node *an; 3318 struct mbuf *m; 3319 u_int pri; 3320 3321 wh = mtod(m0, struct ieee80211_frame *); 3322 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3323 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3324 hdrlen = ieee80211_anyhdrsize(wh); 3325 /* 3326 * Packet length must not include any 3327 * pad bytes; deduct them here. 3328 */ 3329 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 3330 3331 if (iswep) { 3332 const struct ieee80211_cipher *cip; 3333 struct ieee80211_key *k; 3334 3335 /* 3336 * Construct the 802.11 header+trailer for an encrypted 3337 * frame. The only reason this can fail is because of an 3338 * unknown or unsupported cipher/key type. 3339 */ 3340 k = ieee80211_crypto_encap(ic, ni, m0); 3341 if (k == NULL) { 3342 /* 3343 * This can happen when the key is yanked after the 3344 * frame was queued. Just discard the frame; the 3345 * 802.11 layer counts failures and provides 3346 * debugging/diagnostics. 3347 */ 3348 m_freem(m0); 3349 return EIO; 3350 } 3351 /* 3352 * Adjust the packet + header lengths for the crypto 3353 * additions and calculate the h/w key index. When 3354 * a s/w mic is done the frame will have had any mic 3355 * added to it prior to entry so skb->len above will 3356 * account for it. Otherwise we need to add it to the 3357 * packet length. 3358 */ 3359 cip = k->wk_cipher; 3360 hdrlen += cip->ic_header; 3361 pktlen += cip->ic_header + cip->ic_trailer; 3362 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0) 3363 pktlen += cip->ic_miclen; 3364 keyix = k->wk_keyix; 3365 3366 /* packet header may have moved, reset our local pointer */ 3367 wh = mtod(m0, struct ieee80211_frame *); 3368 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3369 /* 3370 * Use station key cache slot, if assigned. 3371 */ 3372 keyix = ni->ni_ucastkey.wk_keyix; 3373 if (keyix == IEEE80211_KEYIX_NONE) 3374 keyix = HAL_TXKEYIX_INVALID; 3375 } else 3376 keyix = HAL_TXKEYIX_INVALID; 3377 3378 pktlen += IEEE80211_CRC_LEN; 3379 3380 /* 3381 * Load the DMA map so any coalescing is done. This 3382 * also calculates the number of descriptors we need. 3383 */ 3384 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3385 BUS_DMA_NOWAIT); 3386 if (error == EFBIG) { 3387 /* XXX packet requires too many descriptors */ 3388 bf->bf_nseg = ATH_TXDESC+1; 3389 } else if (error != 0) { 3390 sc->sc_stats.ast_tx_busdma++; 3391 m_freem(m0); 3392 return error; 3393 } 3394 /* 3395 * Discard null packets and check for packets that 3396 * require too many TX descriptors. We try to convert 3397 * the latter to a cluster. 3398 */ 3399 if (error == EFBIG) { /* too many desc's, linearize */ 3400 sc->sc_stats.ast_tx_linear++; 3401 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3402 if (m == NULL) { 3403 m_freem(m0); 3404 sc->sc_stats.ast_tx_nombuf++; 3405 return ENOMEM; 3406 } 3407 m0 = m; 3408 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3409 BUS_DMA_NOWAIT); 3410 if (error != 0) { 3411 sc->sc_stats.ast_tx_busdma++; 3412 m_freem(m0); 3413 return error; 3414 } 3415 KASSERT(bf->bf_nseg <= ATH_TXDESC, 3416 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 3417 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3418 sc->sc_stats.ast_tx_nodata++; 3419 m_freem(m0); 3420 return EIO; 3421 } 3422 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3423 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3424 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 3425 bf->bf_m = m0; 3426 bf->bf_node = ni; /* NB: held reference */ 3427 3428 /* setup descriptors */ 3429 ds = bf->bf_desc; 3430 rt = sc->sc_currates; 3431 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3432 3433 /* 3434 * NB: the 802.11 layer marks whether or not we should 3435 * use short preamble based on the current mode and 3436 * negotiated parameters. 3437 */ 3438 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3439 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) { 3440 shortPreamble = AH_TRUE; 3441 sc->sc_stats.ast_tx_shortpre++; 3442 } else { 3443 shortPreamble = AH_FALSE; 3444 } 3445 3446 an = ATH_NODE(ni); 3447 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3448 /* 3449 * Calculate Atheros packet type from IEEE80211 packet header, 3450 * setup for rate calculations, and select h/w transmit queue. 3451 */ 3452 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3453 case IEEE80211_FC0_TYPE_MGT: 3454 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3455 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3456 atype = HAL_PKT_TYPE_BEACON; 3457 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3458 atype = HAL_PKT_TYPE_PROBE_RESP; 3459 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3460 atype = HAL_PKT_TYPE_ATIM; 3461 else 3462 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3463 rix = 0; /* XXX lowest rate */ 3464 try0 = ATH_TXMAXTRY; 3465 if (shortPreamble) 3466 txrate = an->an_tx_mgtratesp; 3467 else 3468 txrate = an->an_tx_mgtrate; 3469 /* NB: force all management frames to highest queue */ 3470 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3471 /* NB: force all management frames to highest queue */ 3472 pri = WME_AC_VO; 3473 } else 3474 pri = WME_AC_BE; 3475 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3476 break; 3477 case IEEE80211_FC0_TYPE_CTL: 3478 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3479 rix = 0; /* XXX lowest rate */ 3480 try0 = ATH_TXMAXTRY; 3481 if (shortPreamble) 3482 txrate = an->an_tx_mgtratesp; 3483 else 3484 txrate = an->an_tx_mgtrate; 3485 /* NB: force all ctl frames to highest queue */ 3486 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3487 /* NB: force all ctl frames to highest queue */ 3488 pri = WME_AC_VO; 3489 } else 3490 pri = WME_AC_BE; 3491 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3492 break; 3493 case IEEE80211_FC0_TYPE_DATA: 3494 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3495 /* 3496 * Data frames; consult the rate control module for 3497 * unicast frames. Send multicast frames at the 3498 * lowest rate. 3499 */ 3500 if (!ismcast) { 3501 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3502 &rix, &try0, &txrate); 3503 } else { 3504 rix = 0; 3505 try0 = ATH_TXMAXTRY; 3506 txrate = an->an_tx_mgtrate; 3507 } 3508 sc->sc_txrate = txrate; /* for LED blinking */ 3509 /* 3510 * Default all non-QoS traffic to the background queue. 3511 */ 3512 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { 3513 pri = M_WME_GETAC(m0); 3514 if (cap->cap_wmeParams[pri].wmep_noackPolicy) { 3515 flags |= HAL_TXDESC_NOACK; 3516 sc->sc_stats.ast_tx_noack++; 3517 } 3518 } else 3519 pri = WME_AC_BE; 3520 break; 3521 default: 3522 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3523 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3524 /* XXX statistic */ 3525 m_freem(m0); 3526 return EIO; 3527 } 3528 txq = sc->sc_ac2q[pri]; 3529 3530 /* 3531 * When servicing one or more stations in power-save mode 3532 * multicast frames must be buffered until after the beacon. 3533 * We use the CAB queue for that. 3534 */ 3535 if (ismcast && ic->ic_ps_sta) { 3536 txq = sc->sc_cabq; 3537 /* XXX? more bit in 802.11 frame header */ 3538 } 3539 3540 /* 3541 * Calculate miscellaneous flags. 3542 */ 3543 if (ismcast) { 3544 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3545 sc->sc_stats.ast_tx_noack++; 3546 } else if (pktlen > ic->ic_rtsthreshold) { 3547 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3548 cix = rt->info[rix].controlRate; 3549 sc->sc_stats.ast_tx_rts++; 3550 } 3551 3552 /* 3553 * If 802.11g protection is enabled, determine whether 3554 * to use RTS/CTS or just CTS. Note that this is only 3555 * done for OFDM unicast frames. 3556 */ 3557 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3558 rt->info[rix].phy == IEEE80211_T_OFDM && 3559 (flags & HAL_TXDESC_NOACK) == 0) { 3560 /* XXX fragments must use CCK rates w/ protection */ 3561 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3562 flags |= HAL_TXDESC_RTSENA; 3563 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3564 flags |= HAL_TXDESC_CTSENA; 3565 cix = rt->info[sc->sc_protrix].controlRate; 3566 sc->sc_stats.ast_tx_protect++; 3567 } 3568 3569 /* 3570 * Calculate duration. This logically belongs in the 802.11 3571 * layer but it lacks sufficient information to calculate it. 3572 */ 3573 if ((flags & HAL_TXDESC_NOACK) == 0 && 3574 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3575 u_int16_t dur; 3576 /* 3577 * XXX not right with fragmentation. 3578 */ 3579 if (shortPreamble) 3580 dur = rt->info[rix].spAckDuration; 3581 else 3582 dur = rt->info[rix].lpAckDuration; 3583 *(u_int16_t *)wh->i_dur = htole16(dur); 3584 } 3585 3586 /* 3587 * Calculate RTS/CTS rate and duration if needed. 3588 */ 3589 ctsduration = 0; 3590 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3591 /* 3592 * CTS transmit rate is derived from the transmit rate 3593 * by looking in the h/w rate table. We must also factor 3594 * in whether or not a short preamble is to be used. 3595 */ 3596 /* NB: cix is set above where RTS/CTS is enabled */ 3597 KASSERT(cix != 0xff, ("cix not setup")); 3598 ctsrate = rt->info[cix].rateCode; 3599 /* 3600 * Compute the transmit duration based on the frame 3601 * size and the size of an ACK frame. We call into the 3602 * HAL to do the computation since it depends on the 3603 * characteristics of the actual PHY being used. 3604 * 3605 * NB: CTS is assumed the same size as an ACK so we can 3606 * use the precalculated ACK durations. 3607 */ 3608 if (shortPreamble) { 3609 ctsrate |= rt->info[cix].shortPreamble; 3610 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3611 ctsduration += rt->info[cix].spAckDuration; 3612 ctsduration += ath_hal_computetxtime(ah, 3613 rt, pktlen, rix, AH_TRUE); 3614 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3615 ctsduration += rt->info[cix].spAckDuration; 3616 } else { 3617 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3618 ctsduration += rt->info[cix].lpAckDuration; 3619 ctsduration += ath_hal_computetxtime(ah, 3620 rt, pktlen, rix, AH_FALSE); 3621 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3622 ctsduration += rt->info[cix].lpAckDuration; 3623 } 3624 /* 3625 * Must disable multi-rate retry when using RTS/CTS. 3626 */ 3627 try0 = ATH_TXMAXTRY; 3628 } else 3629 ctsrate = 0; 3630 3631 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3632 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len, 3633 sc->sc_hwmap[txrate].ieeerate, -1); 3634 3635 if (ic->ic_rawbpf) 3636 bpf_mtap(ic->ic_rawbpf, m0); 3637 if (sc->sc_drvbpf) { 3638 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3639 if (iswep) 3640 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3641 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3642 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3643 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3644 3645 bpf_mtap2(sc->sc_drvbpf, 3646 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3647 } 3648 3649 /* 3650 * Determine if a tx interrupt should be generated for 3651 * this descriptor. We take a tx interrupt to reap 3652 * descriptors when the h/w hits an EOL condition or 3653 * when the descriptor is specifically marked to generate 3654 * an interrupt. We periodically mark descriptors in this 3655 * way to insure timely replenishing of the supply needed 3656 * for sending frames. Defering interrupts reduces system 3657 * load and potentially allows more concurrent work to be 3658 * done but if done to aggressively can cause senders to 3659 * backup. 3660 * 3661 * NB: use >= to deal with sc_txintrperiod changing 3662 * dynamically through sysctl. 3663 */ 3664 if (flags & HAL_TXDESC_INTREQ) { 3665 txq->axq_intrcnt = 0; 3666 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3667 flags |= HAL_TXDESC_INTREQ; 3668 txq->axq_intrcnt = 0; 3669 } 3670 3671 /* 3672 * Formulate first tx descriptor with tx controls. 3673 */ 3674 /* XXX check return value? */ 3675 ath_hal_setuptxdesc(ah, ds 3676 , pktlen /* packet length */ 3677 , hdrlen /* header length */ 3678 , atype /* Atheros packet type */ 3679 , ni->ni_txpower /* txpower */ 3680 , txrate, try0 /* series 0 rate/tries */ 3681 , keyix /* key cache index */ 3682 , sc->sc_txantenna /* antenna mode */ 3683 , flags /* flags */ 3684 , ctsrate /* rts/cts rate */ 3685 , ctsduration /* rts/cts duration */ 3686 ); 3687 bf->bf_flags = flags; 3688 /* 3689 * Setup the multi-rate retry state only when we're 3690 * going to use it. This assumes ath_hal_setuptxdesc 3691 * initializes the descriptors (so we don't have to) 3692 * when the hardware supports multi-rate retry and 3693 * we don't use it. 3694 */ 3695 if (try0 != ATH_TXMAXTRY) 3696 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 3697 3698 /* 3699 * Fillin the remainder of the descriptor info. 3700 */ 3701 ds0 = ds; 3702 for (i = 0; i < bf->bf_nseg; i++, ds++) { 3703 ds->ds_data = bf->bf_segs[i].ds_addr; 3704 if (i == bf->bf_nseg - 1) 3705 ds->ds_link = 0; 3706 else 3707 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 3708 ath_hal_filltxdesc(ah, ds 3709 , bf->bf_segs[i].ds_len /* segment length */ 3710 , i == 0 /* first segment */ 3711 , i == bf->bf_nseg - 1 /* last segment */ 3712 , ds0 /* first descriptor */ 3713 ); 3714 DPRINTF(sc, ATH_DEBUG_XMIT, 3715 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 3716 __func__, i, ds->ds_link, ds->ds_data, 3717 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 3718 } 3719 /* 3720 * Insert the frame on the outbound list and 3721 * pass it on to the hardware. 3722 */ 3723 ATH_TXQ_LOCK(txq); 3724 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) { 3725 u_int32_t txopLimit = IEEE80211_TXOP_TO_US( 3726 cap->cap_wmeParams[pri].wmep_txopLimit); 3727 /* 3728 * When bursting, potentially extend the CTS duration 3729 * of a previously queued frame to cover this frame 3730 * and not exceed the txopLimit. If that can be done 3731 * then disable RTS/CTS on this frame since it's now 3732 * covered (burst extension). Otherwise we must terminate 3733 * the burst before this frame goes out so as not to 3734 * violate the WME parameters. All this is complicated 3735 * as we need to update the state of packets on the 3736 * (live) hardware queue. The logic is buried in the hal 3737 * because it's highly chip-specific. 3738 */ 3739 if (txopLimit != 0) { 3740 sc->sc_stats.ast_tx_ctsburst++; 3741 if (updateCTSForBursting(ah, ds0, txq) == 0) { 3742 /* 3743 * This frame was not covered by RTS/CTS from 3744 * the previous frame in the burst; update the 3745 * descriptor pointers so this frame is now 3746 * treated as the last frame for extending a 3747 * burst. 3748 */ 3749 txq->axq_lastdsWithCTS = ds0; 3750 /* set gating Desc to final desc */ 3751 txq->axq_gatingds = 3752 (struct ath_desc *)txq->axq_link; 3753 } else 3754 sc->sc_stats.ast_tx_ctsext++; 3755 } 3756 } 3757 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 3758 if (txq->axq_link == NULL) { 3759 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 3760 DPRINTF(sc, ATH_DEBUG_XMIT, 3761 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__, 3762 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc, 3763 txq->axq_depth); 3764 } else { 3765 *txq->axq_link = bf->bf_daddr; 3766 DPRINTF(sc, ATH_DEBUG_XMIT, 3767 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 3768 txq->axq_qnum, txq->axq_link, 3769 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 3770 } 3771 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 3772 /* 3773 * The CAB queue is started from the SWBA handler since 3774 * frames only go out on DTIM and to avoid possible races. 3775 */ 3776 if (txq != sc->sc_cabq) 3777 ath_hal_txstart(ah, txq->axq_qnum); 3778 ATH_TXQ_UNLOCK(txq); 3779 3780 return 0; 3781 #undef updateCTSForBursting 3782 #undef CTS_DURATION 3783 } 3784 3785 /* 3786 * Process completed xmit descriptors from the specified queue. 3787 */ 3788 static void 3789 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 3790 { 3791 struct ath_hal *ah = sc->sc_ah; 3792 struct ieee80211com *ic = &sc->sc_ic; 3793 struct ath_buf *bf; 3794 struct ath_desc *ds, *ds0; 3795 struct ieee80211_node *ni; 3796 struct ath_node *an; 3797 int sr, lr, pri; 3798 HAL_STATUS status; 3799 3800 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3801 __func__, txq->axq_qnum, 3802 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3803 txq->axq_link); 3804 for (;;) { 3805 ATH_TXQ_LOCK(txq); 3806 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3807 bf = STAILQ_FIRST(&txq->axq_q); 3808 if (bf == NULL) { 3809 txq->axq_link = NULL; 3810 ATH_TXQ_UNLOCK(txq); 3811 break; 3812 } 3813 ds0 = &bf->bf_desc[0]; 3814 ds = &bf->bf_desc[bf->bf_nseg - 1]; 3815 status = ath_hal_txprocdesc(ah, ds); 3816 #ifdef AR_DEBUG 3817 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3818 ath_printtxbuf(bf, status == HAL_OK); 3819 #endif 3820 if (status == HAL_EINPROGRESS) { 3821 ATH_TXQ_UNLOCK(txq); 3822 break; 3823 } 3824 if (ds0 == txq->axq_lastdsWithCTS) 3825 txq->axq_lastdsWithCTS = NULL; 3826 if (ds == txq->axq_gatingds) 3827 txq->axq_gatingds = NULL; 3828 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3829 ATH_TXQ_UNLOCK(txq); 3830 3831 ni = bf->bf_node; 3832 if (ni != NULL) { 3833 an = ATH_NODE(ni); 3834 if (ds->ds_txstat.ts_status == 0) { 3835 u_int8_t txant = ds->ds_txstat.ts_antenna; 3836 sc->sc_stats.ast_ant_tx[txant]++; 3837 sc->sc_ant_tx[txant]++; 3838 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 3839 sc->sc_stats.ast_tx_altrate++; 3840 sc->sc_stats.ast_tx_rssi = 3841 ds->ds_txstat.ts_rssi; 3842 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi, 3843 ds->ds_txstat.ts_rssi); 3844 pri = M_WME_GETAC(bf->bf_m); 3845 if (pri >= WME_AC_VO) 3846 ic->ic_wme.wme_hipri_traffic++; 3847 ni->ni_inact = ni->ni_inact_reload; 3848 } else { 3849 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 3850 sc->sc_stats.ast_tx_xretries++; 3851 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 3852 sc->sc_stats.ast_tx_fifoerr++; 3853 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 3854 sc->sc_stats.ast_tx_filtered++; 3855 } 3856 sr = ds->ds_txstat.ts_shortretry; 3857 lr = ds->ds_txstat.ts_longretry; 3858 sc->sc_stats.ast_tx_shortretry += sr; 3859 sc->sc_stats.ast_tx_longretry += lr; 3860 /* 3861 * Hand the descriptor to the rate control algorithm. 3862 */ 3863 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 3864 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) 3865 ath_rate_tx_complete(sc, an, ds, ds0); 3866 /* 3867 * Reclaim reference to node. 3868 * 3869 * NB: the node may be reclaimed here if, for example 3870 * this is a DEAUTH message that was sent and the 3871 * node was timed out due to inactivity. 3872 */ 3873 ieee80211_free_node(ni); 3874 } 3875 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3876 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 3877 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3878 m_freem(bf->bf_m); 3879 bf->bf_m = NULL; 3880 bf->bf_node = NULL; 3881 3882 ATH_TXBUF_LOCK(sc); 3883 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3884 ATH_TXBUF_UNLOCK(sc); 3885 } 3886 } 3887 3888 /* 3889 * Deferred processing of transmit interrupt; special-cased 3890 * for a single hardware transmit queue (e.g. 5210 and 5211). 3891 */ 3892 static void 3893 ath_tx_proc_q0(void *arg, int npending) 3894 { 3895 struct ath_softc *sc = arg; 3896 struct ifnet *ifp = &sc->sc_if; 3897 3898 ath_tx_processq(sc, &sc->sc_txq[0]); 3899 ath_tx_processq(sc, sc->sc_cabq); 3900 ifp->if_flags &= ~IFF_OACTIVE; 3901 sc->sc_tx_timer = 0; 3902 3903 if (sc->sc_softled) 3904 ath_led_event(sc, ATH_LED_TX); 3905 3906 ath_start(ifp); 3907 } 3908 3909 /* 3910 * Deferred processing of transmit interrupt; special-cased 3911 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3912 */ 3913 static void 3914 ath_tx_proc_q0123(void *arg, int npending) 3915 { 3916 struct ath_softc *sc = arg; 3917 struct ifnet *ifp = &sc->sc_if; 3918 3919 /* 3920 * Process each active queue. 3921 */ 3922 ath_tx_processq(sc, &sc->sc_txq[0]); 3923 ath_tx_processq(sc, &sc->sc_txq[1]); 3924 ath_tx_processq(sc, &sc->sc_txq[2]); 3925 ath_tx_processq(sc, &sc->sc_txq[3]); 3926 ath_tx_processq(sc, sc->sc_cabq); 3927 3928 ifp->if_flags &= ~IFF_OACTIVE; 3929 sc->sc_tx_timer = 0; 3930 3931 if (sc->sc_softled) 3932 ath_led_event(sc, ATH_LED_TX); 3933 3934 ath_start(ifp); 3935 } 3936 3937 /* 3938 * Deferred processing of transmit interrupt. 3939 */ 3940 static void 3941 ath_tx_proc(void *arg, int npending) 3942 { 3943 struct ath_softc *sc = arg; 3944 struct ifnet *ifp = &sc->sc_if; 3945 int i; 3946 3947 /* 3948 * Process each active queue. 3949 */ 3950 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */ 3951 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3952 if (ATH_TXQ_SETUP(sc, i)) 3953 ath_tx_processq(sc, &sc->sc_txq[i]); 3954 3955 ifp->if_flags &= ~IFF_OACTIVE; 3956 sc->sc_tx_timer = 0; 3957 3958 if (sc->sc_softled) 3959 ath_led_event(sc, ATH_LED_TX); 3960 3961 ath_start(ifp); 3962 } 3963 3964 static void 3965 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3966 { 3967 struct ath_hal *ah = sc->sc_ah; 3968 struct ieee80211_node *ni; 3969 struct ath_buf *bf; 3970 3971 /* 3972 * NB: this assumes output has been stopped and 3973 * we do not need to block ath_tx_tasklet 3974 */ 3975 for (;;) { 3976 ATH_TXQ_LOCK(txq); 3977 bf = STAILQ_FIRST(&txq->axq_q); 3978 if (bf == NULL) { 3979 txq->axq_link = NULL; 3980 ATH_TXQ_UNLOCK(txq); 3981 break; 3982 } 3983 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3984 ATH_TXQ_UNLOCK(txq); 3985 #ifdef AR_DEBUG 3986 if (sc->sc_debug & ATH_DEBUG_RESET) 3987 ath_printtxbuf(bf, 3988 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 3989 #endif /* AR_DEBUG */ 3990 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3991 m_freem(bf->bf_m); 3992 bf->bf_m = NULL; 3993 ni = bf->bf_node; 3994 bf->bf_node = NULL; 3995 if (ni != NULL) { 3996 /* 3997 * Reclaim node reference. 3998 */ 3999 ieee80211_free_node(ni); 4000 } 4001 ATH_TXBUF_LOCK(sc); 4002 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4003 ATH_TXBUF_UNLOCK(sc); 4004 } 4005 } 4006 4007 static void 4008 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4009 { 4010 struct ath_hal *ah = sc->sc_ah; 4011 4012 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4013 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4014 __func__, txq->axq_qnum, 4015 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4016 txq->axq_link); 4017 } 4018 4019 /* 4020 * Drain the transmit queues and reclaim resources. 4021 */ 4022 static void 4023 ath_draintxq(struct ath_softc *sc) 4024 { 4025 struct ath_hal *ah = sc->sc_ah; 4026 struct ifnet *ifp = &sc->sc_if; 4027 int i; 4028 4029 /* XXX return value */ 4030 if (!sc->sc_invalid) { 4031 /* don't touch the hardware if marked invalid */ 4032 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4033 DPRINTF(sc, ATH_DEBUG_RESET, 4034 "%s: beacon queue %p\n", __func__, 4035 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 4036 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4037 if (ATH_TXQ_SETUP(sc, i)) 4038 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4039 } 4040 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4041 if (ATH_TXQ_SETUP(sc, i)) 4042 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4043 ifp->if_flags &= ~IFF_OACTIVE; 4044 sc->sc_tx_timer = 0; 4045 } 4046 4047 /* 4048 * Disable the receive h/w in preparation for a reset. 4049 */ 4050 static void 4051 ath_stoprecv(struct ath_softc *sc) 4052 { 4053 #define PA2DESC(_sc, _pa) \ 4054 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 4055 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4056 struct ath_hal *ah = sc->sc_ah; 4057 4058 ath_hal_stoppcurecv(ah); /* disable PCU */ 4059 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4060 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4061 DELAY(3000); /* 3ms is long enough for 1 frame */ 4062 #ifdef AR_DEBUG 4063 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4064 struct ath_buf *bf; 4065 4066 printf("%s: rx queue %p, link %p\n", __func__, 4067 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4068 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4069 struct ath_desc *ds = bf->bf_desc; 4070 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4071 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 4072 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4073 ath_printrxbuf(bf, status == HAL_OK); 4074 } 4075 } 4076 #endif 4077 sc->sc_rxlink = NULL; /* just in case */ 4078 #undef PA2DESC 4079 } 4080 4081 /* 4082 * Enable the receive h/w following a reset. 4083 */ 4084 static int 4085 ath_startrecv(struct ath_softc *sc) 4086 { 4087 struct ath_hal *ah = sc->sc_ah; 4088 struct ath_buf *bf; 4089 4090 sc->sc_rxlink = NULL; 4091 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4092 int error = ath_rxbuf_init(sc, bf); 4093 if (error != 0) { 4094 DPRINTF(sc, ATH_DEBUG_RECV, 4095 "%s: ath_rxbuf_init failed %d\n", 4096 __func__, error); 4097 return error; 4098 } 4099 } 4100 4101 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4102 ath_hal_putrxbuf(ah, bf->bf_daddr); 4103 ath_hal_rxena(ah); /* enable recv descriptors */ 4104 ath_mode_init(sc); /* set filters, etc. */ 4105 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4106 return 0; 4107 } 4108 4109 /* 4110 * Update internal state after a channel change. 4111 */ 4112 static void 4113 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4114 { 4115 struct ieee80211com *ic = &sc->sc_ic; 4116 enum ieee80211_phymode mode; 4117 u_int16_t flags; 4118 4119 /* 4120 * Change channels and update the h/w rate map 4121 * if we're switching; e.g. 11a to 11b/g. 4122 */ 4123 mode = ieee80211_chan2mode(ic, chan); 4124 if (mode != sc->sc_curmode) 4125 ath_setcurmode(sc, mode); 4126 /* 4127 * Update BPF state. NB: ethereal et. al. don't handle 4128 * merged flags well so pick a unique mode for their use. 4129 */ 4130 if (IEEE80211_IS_CHAN_A(chan)) 4131 flags = IEEE80211_CHAN_A; 4132 /* XXX 11g schizophrenia */ 4133 else if (IEEE80211_IS_CHAN_G(chan) || 4134 IEEE80211_IS_CHAN_PUREG(chan)) 4135 flags = IEEE80211_CHAN_G; 4136 else 4137 flags = IEEE80211_CHAN_B; 4138 if (IEEE80211_IS_CHAN_T(chan)) 4139 flags |= IEEE80211_CHAN_TURBO; 4140 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4141 htole16(chan->ic_freq); 4142 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4143 htole16(flags); 4144 } 4145 4146 /* 4147 * Set/change channels. If the channel is really being changed, 4148 * it's done by reseting the chip. To accomplish this we must 4149 * first cleanup any pending DMA, then restart stuff after a la 4150 * ath_init. 4151 */ 4152 static int 4153 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4154 { 4155 struct ath_hal *ah = sc->sc_ah; 4156 struct ieee80211com *ic = &sc->sc_ic; 4157 HAL_CHANNEL hchan; 4158 4159 /* 4160 * Convert to a HAL channel description with 4161 * the flags constrained to reflect the current 4162 * operating mode. 4163 */ 4164 hchan.channel = chan->ic_freq; 4165 hchan.channelFlags = ath_chan2flags(ic, chan); 4166 4167 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n", 4168 __func__, 4169 ath_hal_mhz2ieee(sc->sc_curchan.channel, 4170 sc->sc_curchan.channelFlags), 4171 sc->sc_curchan.channel, 4172 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel); 4173 if (hchan.channel != sc->sc_curchan.channel || 4174 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4175 HAL_STATUS status; 4176 4177 /* 4178 * To switch channels clear any pending DMA operations; 4179 * wait long enough for the RX fifo to drain, reset the 4180 * hardware at the new frequency, and then re-enable 4181 * the relevant bits of the h/w. 4182 */ 4183 ath_hal_intrset(ah, 0); /* disable interrupts */ 4184 ath_draintxq(sc); /* clear pending tx frames */ 4185 ath_stoprecv(sc); /* turn off frame recv */ 4186 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4187 if_printf(&sc->sc_if, "ath_chan_set: unable to reset " 4188 "channel %u (%u Mhz)\n", 4189 ieee80211_chan2ieee(ic, chan), chan->ic_freq); 4190 return EIO; 4191 } 4192 sc->sc_curchan = hchan; 4193 ath_update_txpow(sc); /* update tx power state */ 4194 4195 /* 4196 * Re-enable rx framework. 4197 */ 4198 if (ath_startrecv(sc) != 0) { 4199 if_printf(&sc->sc_if, 4200 "ath_chan_set: unable to restart recv logic\n"); 4201 return EIO; 4202 } 4203 4204 /* 4205 * Change channels and update the h/w rate map 4206 * if we're switching; e.g. 11a to 11b/g. 4207 */ 4208 ic->ic_ibss_chan = chan; 4209 ath_chan_change(sc, chan); 4210 4211 /* 4212 * Re-enable interrupts. 4213 */ 4214 ath_hal_intrset(ah, sc->sc_imask); 4215 } 4216 return 0; 4217 } 4218 4219 static void 4220 ath_next_scan(void *arg) 4221 { 4222 struct ath_softc *sc = arg; 4223 struct ieee80211com *ic = &sc->sc_ic; 4224 int s; 4225 4226 /* don't call ath_start w/o network interrupts blocked */ 4227 s = splnet(); 4228 4229 if (ic->ic_state == IEEE80211_S_SCAN) 4230 ieee80211_next_scan(ic); 4231 splx(s); 4232 } 4233 4234 /* 4235 * Periodically recalibrate the PHY to account 4236 * for temperature/environment changes. 4237 */ 4238 static void 4239 ath_calibrate(void *arg) 4240 { 4241 struct ath_softc *sc = arg; 4242 struct ath_hal *ah = sc->sc_ah; 4243 4244 sc->sc_stats.ast_per_cal++; 4245 4246 ATH_LOCK(sc); 4247 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n", 4248 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags); 4249 4250 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4251 /* 4252 * Rfgain is out of bounds, reset the chip 4253 * to load new gain values. 4254 */ 4255 sc->sc_stats.ast_per_rfgain++; 4256 ath_reset(&sc->sc_if); 4257 } 4258 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) { 4259 DPRINTF(sc, ATH_DEBUG_ANY, 4260 "%s: calibration of channel %u failed\n", 4261 __func__, sc->sc_curchan.channel); 4262 sc->sc_stats.ast_per_calfail++; 4263 } 4264 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc); 4265 ATH_UNLOCK(sc); 4266 } 4267 4268 static int 4269 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4270 { 4271 struct ifnet *ifp = ic->ic_ifp; 4272 struct ath_softc *sc = ifp->if_softc; 4273 struct ath_hal *ah = sc->sc_ah; 4274 struct ieee80211_node *ni; 4275 int i, error; 4276 const u_int8_t *bssid; 4277 u_int32_t rfilt; 4278 static const HAL_LED_STATE leds[] = { 4279 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4280 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4281 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4282 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4283 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4284 }; 4285 4286 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4287 ieee80211_state_name[ic->ic_state], 4288 ieee80211_state_name[nstate]); 4289 4290 callout_stop(&sc->sc_scan_ch); 4291 callout_stop(&sc->sc_cal_ch); 4292 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4293 4294 if (nstate == IEEE80211_S_INIT) { 4295 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4296 /* 4297 * NB: disable interrupts so we don't rx frames. 4298 */ 4299 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4300 /* 4301 * Notify the rate control algorithm. 4302 */ 4303 ath_rate_newstate(sc, nstate); 4304 goto done; 4305 } 4306 ni = ic->ic_bss; 4307 error = ath_chan_set(sc, ni->ni_chan); 4308 if (error != 0) 4309 goto bad; 4310 rfilt = ath_calcrxfilter(sc, nstate); 4311 if (nstate == IEEE80211_S_SCAN) 4312 bssid = ifp->if_broadcastaddr; 4313 else 4314 bssid = ni->ni_bssid; 4315 ath_hal_setrxfilter(ah, rfilt); 4316 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4317 __func__, rfilt, ether_sprintf(bssid)); 4318 4319 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4320 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4321 else 4322 ath_hal_setassocid(ah, bssid, 0); 4323 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4324 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4325 if (ath_hal_keyisvalid(ah, i)) 4326 ath_hal_keysetmac(ah, i, bssid); 4327 } 4328 4329 /* 4330 * Notify the rate control algorithm so rates 4331 * are setup should ath_beacon_alloc be called. 4332 */ 4333 ath_rate_newstate(sc, nstate); 4334 4335 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4336 /* nothing to do */; 4337 } else if (nstate == IEEE80211_S_RUN) { 4338 DPRINTF(sc, ATH_DEBUG_STATE, 4339 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4340 "capinfo=0x%04x chan=%d\n" 4341 , __func__ 4342 , ic->ic_flags 4343 , ni->ni_intval 4344 , ether_sprintf(ni->ni_bssid) 4345 , ni->ni_capinfo 4346 , ieee80211_chan2ieee(ic, ni->ni_chan)); 4347 4348 switch (ic->ic_opmode) { 4349 case IEEE80211_M_HOSTAP: 4350 case IEEE80211_M_IBSS: 4351 /* 4352 * Allocate and setup the beacon frame. 4353 * 4354 * Stop any previous beacon DMA. This may be 4355 * necessary, for example, when an ibss merge 4356 * causes reconfiguration; there will be a state 4357 * transition from RUN->RUN that means we may 4358 * be called with beacon transmission active. 4359 */ 4360 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4361 ath_beacon_free(sc); 4362 error = ath_beacon_alloc(sc, ni); 4363 if (error != 0) 4364 goto bad; 4365 break; 4366 case IEEE80211_M_STA: 4367 /* 4368 * Allocate a key cache slot to the station. 4369 */ 4370 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4371 sc->sc_hasclrkey && 4372 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4373 ath_setup_stationkey(ni); 4374 break; 4375 default: 4376 break; 4377 } 4378 4379 /* 4380 * Configure the beacon and sleep timers. 4381 */ 4382 ath_beacon_config(sc); 4383 } else { 4384 ath_hal_intrset(ah, 4385 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4386 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4387 } 4388 done: 4389 /* 4390 * Invoke the parent method to complete the work. 4391 */ 4392 error = sc->sc_newstate(ic, nstate, arg); 4393 /* 4394 * Finally, start any timers. 4395 */ 4396 if (nstate == IEEE80211_S_RUN) { 4397 /* start periodic recalibration timer */ 4398 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, 4399 ath_calibrate, sc); 4400 } else if (nstate == IEEE80211_S_SCAN) { 4401 /* start ap/neighbor scan timer */ 4402 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4403 ath_next_scan, sc); 4404 } 4405 bad: 4406 return error; 4407 } 4408 4409 /* 4410 * Allocate a key cache slot to the station so we can 4411 * setup a mapping from key index to node. The key cache 4412 * slot is needed for managing antenna state and for 4413 * compression when stations do not use crypto. We do 4414 * it uniliaterally here; if crypto is employed this slot 4415 * will be reassigned. 4416 */ 4417 static void 4418 ath_setup_stationkey(struct ieee80211_node *ni) 4419 { 4420 struct ieee80211com *ic = ni->ni_ic; 4421 struct ath_softc *sc = ic->ic_ifp->if_softc; 4422 u_int16_t keyix; 4423 4424 keyix = ath_key_alloc(ic, &ni->ni_ucastkey); 4425 if (keyix == IEEE80211_KEYIX_NONE) { 4426 /* 4427 * Key cache is full; we'll fall back to doing 4428 * the more expensive lookup in software. Note 4429 * this also means no h/w compression. 4430 */ 4431 /* XXX msg+statistic */ 4432 } else { 4433 ni->ni_ucastkey.wk_keyix = keyix; 4434 /* NB: this will create a pass-thru key entry */ 4435 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4436 } 4437 } 4438 4439 /* 4440 * Setup driver-specific state for a newly associated node. 4441 * Note that we're called also on a re-associate, the isnew 4442 * param tells us if this is the first time or not. 4443 */ 4444 static void 4445 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 4446 { 4447 struct ath_softc *sc = ic->ic_ifp->if_softc; 4448 4449 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4450 if (isnew && 4451 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4452 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4453 ("new assoc with a unicast key already setup (keyix %u)", 4454 ni->ni_ucastkey.wk_keyix)); 4455 ath_setup_stationkey(ni); 4456 } 4457 } 4458 4459 static int 4460 ath_getchannels(struct ath_softc *sc, u_int cc, 4461 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4462 { 4463 struct ieee80211com *ic = &sc->sc_ic; 4464 struct ifnet *ifp = &sc->sc_if; 4465 struct ath_hal *ah = sc->sc_ah; 4466 HAL_CHANNEL *chans; 4467 int i, ix, nchan; 4468 4469 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4470 M_TEMP, M_NOWAIT); 4471 if (chans == NULL) { 4472 if_printf(ifp, "unable to allocate channel table\n"); 4473 return ENOMEM; 4474 } 4475 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4476 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4477 u_int32_t rd; 4478 4479 ath_hal_getregdomain(ah, &rd); 4480 if_printf(ifp, "unable to collect channel list from hal; " 4481 "regdomain likely %u country code %u\n", rd, cc); 4482 free(chans, M_TEMP); 4483 return EINVAL; 4484 } 4485 4486 /* 4487 * Convert HAL channels to ieee80211 ones and insert 4488 * them in the table according to their channel number. 4489 */ 4490 for (i = 0; i < nchan; i++) { 4491 HAL_CHANNEL *c = &chans[i]; 4492 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags); 4493 if (ix > IEEE80211_CHAN_MAX) { 4494 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n", 4495 ix, c->channel, c->channelFlags); 4496 continue; 4497 } 4498 DPRINTF(sc, ATH_DEBUG_ANY, 4499 "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n", 4500 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags, 4501 ix); 4502 /* NB: flags are known to be compatible */ 4503 if (ic->ic_channels[ix].ic_freq == 0) { 4504 ic->ic_channels[ix].ic_freq = c->channel; 4505 ic->ic_channels[ix].ic_flags = c->channelFlags; 4506 } else { 4507 /* channels overlap; e.g. 11g and 11b */ 4508 ic->ic_channels[ix].ic_flags |= c->channelFlags; 4509 } 4510 } 4511 free(chans, M_TEMP); 4512 return 0; 4513 } 4514 4515 static void 4516 ath_led_done(void *arg) 4517 { 4518 struct ath_softc *sc = arg; 4519 4520 sc->sc_blinking = 0; 4521 } 4522 4523 /* 4524 * Turn the LED off: flip the pin and then set a timer so no 4525 * update will happen for the specified duration. 4526 */ 4527 static void 4528 ath_led_off(void *arg) 4529 { 4530 struct ath_softc *sc = arg; 4531 4532 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 4533 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 4534 } 4535 4536 /* 4537 * Blink the LED according to the specified on/off times. 4538 */ 4539 static void 4540 ath_led_blink(struct ath_softc *sc, int on, int off) 4541 { 4542 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 4543 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 4544 sc->sc_blinking = 1; 4545 sc->sc_ledoff = off; 4546 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 4547 } 4548 4549 static void 4550 ath_led_event(struct ath_softc *sc, int event) 4551 { 4552 4553 sc->sc_ledevent = ticks; /* time of last event */ 4554 if (sc->sc_blinking) /* don't interrupt active blink */ 4555 return; 4556 switch (event) { 4557 case ATH_LED_POLL: 4558 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 4559 sc->sc_hwmap[0].ledoff); 4560 break; 4561 case ATH_LED_TX: 4562 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 4563 sc->sc_hwmap[sc->sc_txrate].ledoff); 4564 break; 4565 case ATH_LED_RX: 4566 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 4567 sc->sc_hwmap[sc->sc_rxrate].ledoff); 4568 break; 4569 } 4570 } 4571 4572 static void 4573 ath_update_txpow(struct ath_softc *sc) 4574 { 4575 struct ieee80211com *ic = &sc->sc_ic; 4576 struct ath_hal *ah = sc->sc_ah; 4577 u_int32_t txpow; 4578 4579 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 4580 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 4581 /* read back in case value is clamped */ 4582 ath_hal_gettxpowlimit(ah, &txpow); 4583 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 4584 } 4585 /* 4586 * Fetch max tx power level for status requests. 4587 */ 4588 ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 4589 ic->ic_bss->ni_txpower = txpow; 4590 } 4591 4592 static int 4593 ath_rate_setup(struct ath_softc *sc, u_int mode) 4594 { 4595 struct ath_hal *ah = sc->sc_ah; 4596 struct ieee80211com *ic = &sc->sc_ic; 4597 const HAL_RATE_TABLE *rt; 4598 struct ieee80211_rateset *rs; 4599 int i, maxrates; 4600 4601 switch (mode) { 4602 case IEEE80211_MODE_11A: 4603 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A); 4604 break; 4605 case IEEE80211_MODE_11B: 4606 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B); 4607 break; 4608 case IEEE80211_MODE_11G: 4609 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G); 4610 break; 4611 case IEEE80211_MODE_TURBO_A: 4612 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4613 break; 4614 case IEEE80211_MODE_TURBO_G: 4615 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G); 4616 break; 4617 default: 4618 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4619 __func__, mode); 4620 return 0; 4621 } 4622 rt = sc->sc_rates[mode]; 4623 if (rt == NULL) 4624 return 0; 4625 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 4626 DPRINTF(sc, ATH_DEBUG_ANY, 4627 "%s: rate table too small (%u > %u)\n", 4628 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 4629 maxrates = IEEE80211_RATE_MAXSIZE; 4630 } else 4631 maxrates = rt->rateCount; 4632 rs = &ic->ic_sup_rates[mode]; 4633 for (i = 0; i < maxrates; i++) 4634 rs->rs_rates[i] = rt->info[i].dot11Rate; 4635 rs->rs_nrates = maxrates; 4636 return 1; 4637 } 4638 4639 static void 4640 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4641 { 4642 #define N(a) (sizeof(a)/sizeof(a[0])) 4643 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4644 static const struct { 4645 u_int rate; /* tx/rx 802.11 rate */ 4646 u_int16_t timeOn; /* LED on time (ms) */ 4647 u_int16_t timeOff; /* LED off time (ms) */ 4648 } blinkrates[] = { 4649 { 108, 40, 10 }, 4650 { 96, 44, 11 }, 4651 { 72, 50, 13 }, 4652 { 48, 57, 14 }, 4653 { 36, 67, 16 }, 4654 { 24, 80, 20 }, 4655 { 22, 100, 25 }, 4656 { 18, 133, 34 }, 4657 { 12, 160, 40 }, 4658 { 10, 200, 50 }, 4659 { 6, 240, 58 }, 4660 { 4, 267, 66 }, 4661 { 2, 400, 100 }, 4662 { 0, 500, 130 }, 4663 }; 4664 const HAL_RATE_TABLE *rt; 4665 int i, j; 4666 4667 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4668 rt = sc->sc_rates[mode]; 4669 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4670 for (i = 0; i < rt->rateCount; i++) 4671 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 4672 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4673 for (i = 0; i < 32; i++) { 4674 u_int8_t ix = rt->rateCodeToIndex[i]; 4675 if (ix == 0xff) { 4676 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4677 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4678 continue; 4679 } 4680 sc->sc_hwmap[i].ieeerate = 4681 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 4682 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4683 if (rt->info[ix].shortPreamble || 4684 rt->info[ix].phy == IEEE80211_T_OFDM) 4685 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4686 /* NB: receive frames include FCS */ 4687 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 4688 IEEE80211_RADIOTAP_F_FCS; 4689 /* setup blink rate table to avoid per-packet lookup */ 4690 for (j = 0; j < N(blinkrates)-1; j++) 4691 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4692 break; 4693 /* NB: this uses the last entry if the rate isn't found */ 4694 /* XXX beware of overlow */ 4695 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4696 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4697 } 4698 sc->sc_currates = rt; 4699 sc->sc_curmode = mode; 4700 /* 4701 * All protection frames are transmited at 2Mb/s for 4702 * 11g, otherwise at 1Mb/s. 4703 * XXX select protection rate index from rate table. 4704 */ 4705 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0); 4706 /* NB: caller is responsible for reseting rate control state */ 4707 #undef N 4708 } 4709 4710 #ifdef AR_DEBUG 4711 static void 4712 ath_printrxbuf(struct ath_buf *bf, int done) 4713 { 4714 struct ath_desc *ds; 4715 int i; 4716 4717 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4718 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", 4719 i, ds, (struct ath_desc *)bf->bf_daddr + i, 4720 ds->ds_link, ds->ds_data, 4721 ds->ds_ctl0, ds->ds_ctl1, 4722 ds->ds_hw[0], ds->ds_hw[1], 4723 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 4724 } 4725 } 4726 4727 static void 4728 ath_printtxbuf(struct ath_buf *bf, int done) 4729 { 4730 struct ath_desc *ds; 4731 int i; 4732 4733 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4734 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 4735 i, ds, (struct ath_desc *)bf->bf_daddr + i, 4736 ds->ds_link, ds->ds_data, 4737 ds->ds_ctl0, ds->ds_ctl1, 4738 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 4739 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 4740 } 4741 } 4742 #endif /* AR_DEBUG */ 4743 4744 static void 4745 ath_watchdog(struct ifnet *ifp) 4746 { 4747 struct ath_softc *sc = ifp->if_softc; 4748 struct ieee80211com *ic = &sc->sc_ic; 4749 4750 ifp->if_timer = 0; 4751 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 4752 return; 4753 if (sc->sc_tx_timer) { 4754 if (--sc->sc_tx_timer == 0) { 4755 if_printf(ifp, "device timeout\n"); 4756 ath_reset(ifp); 4757 ifp->if_oerrors++; 4758 sc->sc_stats.ast_watchdog++; 4759 } else 4760 ifp->if_timer = 1; 4761 } 4762 ieee80211_watchdog(ic); 4763 } 4764 4765 /* 4766 * Diagnostic interface to the HAL. This is used by various 4767 * tools to do things like retrieve register contents for 4768 * debugging. The mechanism is intentionally opaque so that 4769 * it can change frequently w/o concern for compatiblity. 4770 */ 4771 static int 4772 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 4773 { 4774 struct ath_hal *ah = sc->sc_ah; 4775 u_int id = ad->ad_id & ATH_DIAG_ID; 4776 void *indata = NULL; 4777 void *outdata = NULL; 4778 u_int32_t insize = ad->ad_in_size; 4779 u_int32_t outsize = ad->ad_out_size; 4780 int error = 0; 4781 4782 if (ad->ad_id & ATH_DIAG_IN) { 4783 /* 4784 * Copy in data. 4785 */ 4786 indata = malloc(insize, M_TEMP, M_NOWAIT); 4787 if (indata == NULL) { 4788 error = ENOMEM; 4789 goto bad; 4790 } 4791 error = copyin(ad->ad_in_data, indata, insize); 4792 if (error) 4793 goto bad; 4794 } 4795 if (ad->ad_id & ATH_DIAG_DYN) { 4796 /* 4797 * Allocate a buffer for the results (otherwise the HAL 4798 * returns a pointer to a buffer where we can read the 4799 * results). Note that we depend on the HAL leaving this 4800 * pointer for us to use below in reclaiming the buffer; 4801 * may want to be more defensive. 4802 */ 4803 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 4804 if (outdata == NULL) { 4805 error = ENOMEM; 4806 goto bad; 4807 } 4808 } 4809 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 4810 if (outsize < ad->ad_out_size) 4811 ad->ad_out_size = outsize; 4812 if (outdata != NULL) 4813 error = copyout(outdata, ad->ad_out_data, 4814 ad->ad_out_size); 4815 } else { 4816 error = EINVAL; 4817 } 4818 bad: 4819 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 4820 free(indata, M_TEMP); 4821 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 4822 free(outdata, M_TEMP); 4823 return error; 4824 } 4825 4826 static int 4827 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 4828 { 4829 #define IS_RUNNING(ifp) \ 4830 ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) 4831 struct ath_softc *sc = ifp->if_softc; 4832 struct ieee80211com *ic = &sc->sc_ic; 4833 struct ifreq *ifr = (struct ifreq *)data; 4834 int error = 0; 4835 4836 ATH_LOCK(sc); 4837 switch (cmd) { 4838 case SIOCSIFFLAGS: 4839 if (IS_RUNNING(ifp)) { 4840 /* 4841 * To avoid rescanning another access point, 4842 * do not call ath_init() here. Instead, 4843 * only reflect promisc mode settings. 4844 */ 4845 ath_mode_init(sc); 4846 } else if (ifp->if_flags & IFF_UP) { 4847 /* 4848 * Beware of being called during attach/detach 4849 * to reset promiscuous mode. In that case we 4850 * will still be marked UP but not RUNNING. 4851 * However trying to re-init the interface 4852 * is the wrong thing to do as we've already 4853 * torn down much of our state. There's 4854 * probably a better way to deal with this. 4855 */ 4856 if (!sc->sc_invalid && ic->ic_bss != NULL) 4857 ath_init(sc); /* XXX lose error */ 4858 } else 4859 ath_stop_locked(ifp, 1); 4860 break; 4861 case SIOCADDMULTI: 4862 case SIOCDELMULTI: 4863 error = (cmd == SIOCADDMULTI) ? 4864 ether_addmulti(ifr, &sc->sc_ec) : 4865 ether_delmulti(ifr, &sc->sc_ec); 4866 if (error == ENETRESET) { 4867 if (ifp->if_flags & IFF_RUNNING) 4868 ath_mode_init(sc); 4869 error = 0; 4870 } 4871 break; 4872 case SIOCGATHSTATS: 4873 /* NB: embed these numbers to get a consistent view */ 4874 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 4875 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 4876 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 4877 ATH_UNLOCK(sc); 4878 /* 4879 * NB: Drop the softc lock in case of a page fault; 4880 * we'll accept any potential inconsisentcy in the 4881 * statistics. The alternative is to copy the data 4882 * to a local structure. 4883 */ 4884 return copyout(&sc->sc_stats, 4885 ifr->ifr_data, sizeof (sc->sc_stats)); 4886 case SIOCGATHDIAG: 4887 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 4888 break; 4889 default: 4890 error = ieee80211_ioctl(ic, cmd, data); 4891 if (error == ENETRESET) { 4892 if (IS_RUNNING(ifp) && 4893 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 4894 ath_init(sc); /* XXX lose error */ 4895 error = 0; 4896 } 4897 if (error == ERESTART) 4898 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0; 4899 break; 4900 } 4901 ATH_UNLOCK(sc); 4902 return error; 4903 #undef IS_RUNNING 4904 } 4905 4906 static void 4907 ath_bpfattach(struct ath_softc *sc) 4908 { 4909 struct ifnet *ifp = &sc->sc_if; 4910 4911 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 4912 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 4913 &sc->sc_drvbpf); 4914 /* 4915 * Initialize constant fields. 4916 * XXX make header lengths a multiple of 32-bits so subsequent 4917 * headers are properly aligned; this is a kludge to keep 4918 * certain applications happy. 4919 * 4920 * NB: the channel is setup each time we transition to the 4921 * RUN state to avoid filling it in for each frame. 4922 */ 4923 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 4924 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 4925 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 4926 4927 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 4928 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 4929 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 4930 } 4931 4932 /* 4933 * Announce various information on device/driver attach. 4934 */ 4935 static void 4936 ath_announce(struct ath_softc *sc) 4937 { 4938 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 4939 struct ifnet *ifp = &sc->sc_if; 4940 struct ath_hal *ah = sc->sc_ah; 4941 u_int modes, cc; 4942 4943 if_printf(ifp, "mac %d.%d phy %d.%d", 4944 ah->ah_macVersion, ah->ah_macRev, 4945 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 4946 /* 4947 * Print radio revision(s). We check the wireless modes 4948 * to avoid falsely printing revs for inoperable parts. 4949 * Dual-band radio revs are returned in the 5Ghz rev number. 4950 */ 4951 ath_hal_getcountrycode(ah, &cc); 4952 modes = ath_hal_getwirelessmodes(ah, cc); 4953 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 4954 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 4955 printf(" 5ghz radio %d.%d 2ghz radio %d.%d", 4956 ah->ah_analog5GhzRev >> 4, 4957 ah->ah_analog5GhzRev & 0xf, 4958 ah->ah_analog2GhzRev >> 4, 4959 ah->ah_analog2GhzRev & 0xf); 4960 else 4961 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 4962 ah->ah_analog5GhzRev & 0xf); 4963 } else 4964 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 4965 ah->ah_analog5GhzRev & 0xf); 4966 printf("\n"); 4967 if (bootverbose) { 4968 int i; 4969 for (i = 0; i <= WME_AC_VO; i++) { 4970 struct ath_txq *txq = sc->sc_ac2q[i]; 4971 if_printf(ifp, "Use hw queue %u for %s traffic\n", 4972 txq->axq_qnum, ieee80211_wme_acnames[i]); 4973 } 4974 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 4975 sc->sc_cabq->axq_qnum); 4976 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 4977 } 4978 #undef HAL_MODE_DUALBAND 4979 } 4980