xref: /netbsd-src/sys/dev/ic/ath.c (revision 466a16a118933bd295a8a104f095714fadf9cf68)
1 /*	$NetBSD: ath.c,v 1.105 2008/12/11 06:04:01 alc Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.105 2008/12/11 06:04:01 alc Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/errno.h>
71 #include <sys/callout.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/if_ether.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_netbsd.h>
84 #include <net80211/ieee80211_var.h>
85 
86 #if NBPFILTER > 0
87 #include <net/bpf.h>
88 #endif
89 
90 #ifdef INET
91 #include <netinet/in.h>
92 #endif
93 
94 #include <sys/device.h>
95 #include <dev/ic/ath_netbsd.h>
96 
97 #define	AR_DEBUG
98 #include <dev/ic/athvar.h>
99 #include "ah_desc.h"
100 #include "ah_devid.h"	/* XXX for softled */
101 #include "opt_ah.h"
102 
103 #ifdef ATH_TX99_DIAG
104 #include <dev/ath/ath_tx99/ath_tx99.h>
105 #endif
106 
107 /* unaligned little endian access */
108 #define LE_READ_2(p)							\
109 	((u_int16_t)							\
110 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
111 #define LE_READ_4(p)							\
112 	((u_int32_t)							\
113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
114 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
115 
116 enum {
117 	ATH_LED_TX,
118 	ATH_LED_RX,
119 	ATH_LED_POLL,
120 };
121 
122 #ifdef	AH_NEED_DESC_SWAP
123 #define	HTOAH32(x)	htole32(x)
124 #else
125 #define	HTOAH32(x)	(x)
126 #endif
127 
128 static int	ath_ifinit(struct ifnet *);
129 static int	ath_init(struct ath_softc *);
130 static void	ath_stop_locked(struct ifnet *, int);
131 static void	ath_stop(struct ifnet *, int);
132 static void	ath_start(struct ifnet *);
133 static int	ath_media_change(struct ifnet *);
134 static void	ath_watchdog(struct ifnet *);
135 static int	ath_ioctl(struct ifnet *, u_long, void *);
136 static void	ath_fatal_proc(void *, int);
137 static void	ath_rxorn_proc(void *, int);
138 static void	ath_bmiss_proc(void *, int);
139 static void	ath_radar_proc(void *, int);
140 static int	ath_key_alloc(struct ieee80211com *,
141 			const struct ieee80211_key *,
142 			ieee80211_keyix *, ieee80211_keyix *);
143 static int	ath_key_delete(struct ieee80211com *,
144 			const struct ieee80211_key *);
145 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
146 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
147 static void	ath_key_update_begin(struct ieee80211com *);
148 static void	ath_key_update_end(struct ieee80211com *);
149 static void	ath_mode_init(struct ath_softc *);
150 static void	ath_setslottime(struct ath_softc *);
151 static void	ath_updateslot(struct ifnet *);
152 static int	ath_beaconq_setup(struct ath_hal *);
153 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
154 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
155 static void	ath_beacon_proc(void *, int);
156 static void	ath_bstuck_proc(void *, int);
157 static void	ath_beacon_free(struct ath_softc *);
158 static void	ath_beacon_config(struct ath_softc *);
159 static void	ath_descdma_cleanup(struct ath_softc *sc,
160 			struct ath_descdma *, ath_bufhead *);
161 static int	ath_desc_alloc(struct ath_softc *);
162 static void	ath_desc_free(struct ath_softc *);
163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
164 static void	ath_node_free(struct ieee80211_node *);
165 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
166 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
167 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
168 			struct ieee80211_node *ni,
169 			int subtype, int rssi, u_int32_t rstamp);
170 static void	ath_setdefantenna(struct ath_softc *, u_int);
171 static void	ath_rx_proc(void *, int);
172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
173 static int	ath_tx_setup(struct ath_softc *, int, int);
174 static int	ath_wme_update(struct ieee80211com *);
175 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
176 static void	ath_tx_cleanup(struct ath_softc *);
177 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
178 			     struct ath_buf *, struct mbuf *);
179 static void	ath_tx_proc_q0(void *, int);
180 static void	ath_tx_proc_q0123(void *, int);
181 static void	ath_tx_proc(void *, int);
182 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
183 static void	ath_draintxq(struct ath_softc *);
184 static void	ath_stoprecv(struct ath_softc *);
185 static int	ath_startrecv(struct ath_softc *);
186 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
187 static void	ath_next_scan(void *);
188 static void	ath_calibrate(void *);
189 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
190 static void	ath_setup_stationkey(struct ieee80211_node *);
191 static void	ath_newassoc(struct ieee80211_node *, int);
192 static int	ath_getchannels(struct ath_softc *, u_int cc,
193 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
194 static void	ath_led_event(struct ath_softc *, int);
195 static void	ath_update_txpow(struct ath_softc *);
196 static void	ath_freetx(struct mbuf *);
197 static void	ath_restore_diversity(struct ath_softc *);
198 
199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201 
202 #if NBPFILTER > 0
203 static void	ath_bpfattach(struct ath_softc *);
204 #endif
205 static void	ath_announce(struct ath_softc *);
206 
207 int ath_dwelltime = 200;		/* 5 channels/second */
208 int ath_calinterval = 30;		/* calibrate every 30 secs */
209 int ath_outdoor = AH_TRUE;		/* outdoor operation */
210 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
211 int ath_countrycode = CTRY_DEFAULT;	/* country code */
212 int ath_regdomain = 0;			/* regulatory domain */
213 int ath_debug = 0;
214 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
215 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
216 
217 #ifdef AR_DEBUG
218 enum {
219 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
220 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
221 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
222 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
223 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
224 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
225 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
226 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
227 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
228 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
229 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
230 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
231 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
232 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
233 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
234 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
235 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
236 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
237 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
238 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
239 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
240 	ATH_DEBUG_ANY		= 0xffffffff
241 };
242 #define	IFF_DUMPPKTS(sc, m) \
243 	((sc->sc_debug & (m)) || \
244 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define	DPRINTF(sc, m, fmt, ...) do {				\
246 	if (sc->sc_debug & (m))					\
247 		printf(fmt, __VA_ARGS__);			\
248 } while (0)
249 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
250 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
251 		ath_keyprint(__func__, ix, hk, mac);		\
252 } while (0)
253 static	void ath_printrxbuf(struct ath_buf *bf, int);
254 static	void ath_printtxbuf(struct ath_buf *bf, int);
255 #else
256 #define        IFF_DUMPPKTS(sc, m) \
257 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
258 #define        DPRINTF(m, fmt, ...)
259 #define        KEYPRINTF(sc, k, ix, mac)
260 #endif
261 
262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
263 
264 int
265 ath_attach(u_int16_t devid, struct ath_softc *sc)
266 {
267 	struct ifnet *ifp = &sc->sc_if;
268 	struct ieee80211com *ic = &sc->sc_ic;
269 	struct ath_hal *ah = NULL;
270 	HAL_STATUS status;
271 	int error = 0, i;
272 
273 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
274 
275 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
276 
277 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
278 	if (ah == NULL) {
279 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
280 			status);
281 		error = ENXIO;
282 		goto bad;
283 	}
284 	if (ah->ah_abi != HAL_ABI_VERSION) {
285 		if_printf(ifp, "HAL ABI mismatch detected "
286 			"(HAL:0x%x != driver:0x%x)\n",
287 			ah->ah_abi, HAL_ABI_VERSION);
288 		error = ENXIO;
289 		goto bad;
290 	}
291 	sc->sc_ah = ah;
292 
293 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
294 	    "pmf-powerdown", false))
295 		goto bad;
296 
297 	/*
298 	 * Check if the MAC has multi-rate retry support.
299 	 * We do this by trying to setup a fake extended
300 	 * descriptor.  MAC's that don't have support will
301 	 * return false w/o doing anything.  MAC's that do
302 	 * support it will return true w/o doing anything.
303 	 */
304 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
305 
306 	/*
307 	 * Check if the device has hardware counters for PHY
308 	 * errors.  If so we need to enable the MIB interrupt
309 	 * so we can act on stat triggers.
310 	 */
311 	if (ath_hal_hwphycounters(ah))
312 		sc->sc_needmib = 1;
313 
314 	/*
315 	 * Get the hardware key cache size.
316 	 */
317 	sc->sc_keymax = ath_hal_keycachesize(ah);
318 	if (sc->sc_keymax > ATH_KEYMAX) {
319 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
320 			ATH_KEYMAX, sc->sc_keymax);
321 		sc->sc_keymax = ATH_KEYMAX;
322 	}
323 	/*
324 	 * Reset the key cache since some parts do not
325 	 * reset the contents on initial power up.
326 	 */
327 	for (i = 0; i < sc->sc_keymax; i++)
328 		ath_hal_keyreset(ah, i);
329 	/*
330 	 * Mark key cache slots associated with global keys
331 	 * as in use.  If we knew TKIP was not to be used we
332 	 * could leave the +32, +64, and +32+64 slots free.
333 	 * XXX only for splitmic.
334 	 */
335 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
336 		setbit(sc->sc_keymap, i);
337 		setbit(sc->sc_keymap, i+32);
338 		setbit(sc->sc_keymap, i+64);
339 		setbit(sc->sc_keymap, i+32+64);
340 	}
341 
342 	/*
343 	 * Collect the channel list using the default country
344 	 * code and including outdoor channels.  The 802.11 layer
345 	 * is resposible for filtering this list based on settings
346 	 * like the phy mode.
347 	 */
348 	error = ath_getchannels(sc, ath_countrycode,
349 			ath_outdoor, ath_xchanmode);
350 	if (error != 0)
351 		goto bad;
352 
353 	/*
354 	 * Setup rate tables for all potential media types.
355 	 */
356 	ath_rate_setup(sc, IEEE80211_MODE_11A);
357 	ath_rate_setup(sc, IEEE80211_MODE_11B);
358 	ath_rate_setup(sc, IEEE80211_MODE_11G);
359 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
360 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
361 	/* NB: setup here so ath_rate_update is happy */
362 	ath_setcurmode(sc, IEEE80211_MODE_11A);
363 
364 	/*
365 	 * Allocate tx+rx descriptors and populate the lists.
366 	 */
367 	error = ath_desc_alloc(sc);
368 	if (error != 0) {
369 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
370 		goto bad;
371 	}
372 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
373 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
374 #if 0
375 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
376 #endif
377 
378 	ATH_TXBUF_LOCK_INIT(sc);
379 
380 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
381 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
382 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
383 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
384 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
385 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
386 
387 	/*
388 	 * Allocate hardware transmit queues: one queue for
389 	 * beacon frames and one data queue for each QoS
390 	 * priority.  Note that the hal handles reseting
391 	 * these queues at the needed time.
392 	 *
393 	 * XXX PS-Poll
394 	 */
395 	sc->sc_bhalq = ath_beaconq_setup(ah);
396 	if (sc->sc_bhalq == (u_int) -1) {
397 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
398 		error = EIO;
399 		goto bad2;
400 	}
401 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
402 	if (sc->sc_cabq == NULL) {
403 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
404 		error = EIO;
405 		goto bad2;
406 	}
407 	/* NB: insure BK queue is the lowest priority h/w queue */
408 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
409 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
410 			ieee80211_wme_acnames[WME_AC_BK]);
411 		error = EIO;
412 		goto bad2;
413 	}
414 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
415 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
416 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
417 		/*
418 		 * Not enough hardware tx queues to properly do WME;
419 		 * just punt and assign them all to the same h/w queue.
420 		 * We could do a better job of this if, for example,
421 		 * we allocate queues when we switch from station to
422 		 * AP mode.
423 		 */
424 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
425 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
426 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
427 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
428 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
429 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
430 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
431 	}
432 
433 	/*
434 	 * Special case certain configurations.  Note the
435 	 * CAB queue is handled by these specially so don't
436 	 * include them when checking the txq setup mask.
437 	 */
438 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
439 	case 0x01:
440 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
441 		break;
442 	case 0x0f:
443 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
444 		break;
445 	default:
446 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
447 		break;
448 	}
449 
450 	/*
451 	 * Setup rate control.  Some rate control modules
452 	 * call back to change the anntena state so expose
453 	 * the necessary entry points.
454 	 * XXX maybe belongs in struct ath_ratectrl?
455 	 */
456 	sc->sc_setdefantenna = ath_setdefantenna;
457 	sc->sc_rc = ath_rate_attach(sc);
458 	if (sc->sc_rc == NULL) {
459 		error = EIO;
460 		goto bad2;
461 	}
462 
463 	sc->sc_blinking = 0;
464 	sc->sc_ledstate = 1;
465 	sc->sc_ledon = 0;			/* low true */
466 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
467 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
468 	/*
469 	 * Auto-enable soft led processing for IBM cards and for
470 	 * 5211 minipci cards.  Users can also manually enable/disable
471 	 * support with a sysctl.
472 	 */
473 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
474 	if (sc->sc_softled) {
475 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
476 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
477 	}
478 
479 	ifp->if_softc = sc;
480 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
481 	ifp->if_start = ath_start;
482 	ifp->if_stop = ath_stop;
483 	ifp->if_watchdog = ath_watchdog;
484 	ifp->if_ioctl = ath_ioctl;
485 	ifp->if_init = ath_ifinit;
486 	IFQ_SET_READY(&ifp->if_snd);
487 
488 	ic->ic_ifp = ifp;
489 	ic->ic_reset = ath_reset;
490 	ic->ic_newassoc = ath_newassoc;
491 	ic->ic_updateslot = ath_updateslot;
492 	ic->ic_wme.wme_update = ath_wme_update;
493 	/* XXX not right but it's not used anywhere important */
494 	ic->ic_phytype = IEEE80211_T_OFDM;
495 	ic->ic_opmode = IEEE80211_M_STA;
496 	ic->ic_caps =
497 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
498 		| IEEE80211_C_HOSTAP		/* hostap mode */
499 		| IEEE80211_C_MONITOR		/* monitor mode */
500 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
501 		| IEEE80211_C_SHSLOT		/* short slot time supported */
502 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
503 		| IEEE80211_C_TXFRAG		/* handle tx frags */
504 		;
505 	/*
506 	 * Query the hal to figure out h/w crypto support.
507 	 */
508 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
509 		ic->ic_caps |= IEEE80211_C_WEP;
510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
511 		ic->ic_caps |= IEEE80211_C_AES;
512 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
513 		ic->ic_caps |= IEEE80211_C_AES_CCM;
514 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
515 		ic->ic_caps |= IEEE80211_C_CKIP;
516 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
517 		ic->ic_caps |= IEEE80211_C_TKIP;
518 		/*
519 		 * Check if h/w does the MIC and/or whether the
520 		 * separate key cache entries are required to
521 		 * handle both tx+rx MIC keys.
522 		 */
523 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) {
524 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
525 			/*
526 			 * Check if h/w does MIC correctly when
527 			 * WMM is turned on.
528 			 */
529 			if (ath_hal_wmetkipmic(ah))
530 				ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
531 		}
532 
533 		/*
534 		 * If the h/w supports storing tx+rx MIC keys
535 		 * in one cache slot automatically enable use.
536 		 */
537 		if (ath_hal_tkipsplit(ah) ||
538 		    !ath_hal_settkipsplit(ah, AH_FALSE))
539 			sc->sc_splitmic = 1;
540 	}
541 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
542 #if 0
543 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
544 #endif
545 	/*
546 	 * TPC support can be done either with a global cap or
547 	 * per-packet support.  The latter is not available on
548 	 * all parts.  We're a bit pedantic here as all parts
549 	 * support a global cap.
550 	 */
551 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
552 		ic->ic_caps |= IEEE80211_C_TXPMGT;
553 
554 	/*
555 	 * Mark WME capability only if we have sufficient
556 	 * hardware queues to do proper priority scheduling.
557 	 */
558 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
559 		ic->ic_caps |= IEEE80211_C_WME;
560 	/*
561 	 * Check for misc other capabilities.
562 	 */
563 	if (ath_hal_hasbursting(ah))
564 		ic->ic_caps |= IEEE80211_C_BURST;
565 
566 	/*
567 	 * Indicate we need the 802.11 header padded to a
568 	 * 32-bit boundary for 4-address and QoS frames.
569 	 */
570 	ic->ic_flags |= IEEE80211_F_DATAPAD;
571 
572 	/*
573 	 * Query the hal about antenna support.
574 	 */
575 	sc->sc_defant = ath_hal_getdefantenna(ah);
576 
577 	/*
578 	 * Not all chips have the VEOL support we want to
579 	 * use with IBSS beacons; check here for it.
580 	 */
581 	sc->sc_hasveol = ath_hal_hasveol(ah);
582 
583 	/* get mac address from hardware */
584 	ath_hal_getmac(ah, ic->ic_myaddr);
585 
586 	if_attach(ifp);
587 	/* call MI attach routine. */
588 	ieee80211_ifattach(ic);
589 	/* override default methods */
590 	ic->ic_node_alloc = ath_node_alloc;
591 	sc->sc_node_free = ic->ic_node_free;
592 	ic->ic_node_free = ath_node_free;
593 	ic->ic_node_getrssi = ath_node_getrssi;
594 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
595 	ic->ic_recv_mgmt = ath_recv_mgmt;
596 	sc->sc_newstate = ic->ic_newstate;
597 	ic->ic_newstate = ath_newstate;
598 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
599 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
600 	ic->ic_crypto.cs_key_delete = ath_key_delete;
601 	ic->ic_crypto.cs_key_set = ath_key_set;
602 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
603 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
604 	/* complete initialization */
605 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
606 
607 #if NBPFILTER > 0
608 	ath_bpfattach(sc);
609 #endif
610 
611 	sc->sc_flags |= ATH_ATTACHED;
612 
613 	/*
614 	 * Setup dynamic sysctl's now that country code and
615 	 * regdomain are available from the hal.
616 	 */
617 	ath_sysctlattach(sc);
618 
619 	ieee80211_announce(ic);
620 	ath_announce(sc);
621 	return 0;
622 bad2:
623 	ath_tx_cleanup(sc);
624 	ath_desc_free(sc);
625 bad:
626 	if (ah)
627 		ath_hal_detach(ah);
628 	/* XXX don't get under the abstraction like this */
629 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
630 	return error;
631 }
632 
633 int
634 ath_detach(struct ath_softc *sc)
635 {
636 	struct ifnet *ifp = &sc->sc_if;
637 	int s;
638 
639 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
640 		return (0);
641 
642 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
643 		__func__, ifp->if_flags);
644 
645 	s = splnet();
646 	ath_stop(ifp, 1);
647 #if NBPFILTER > 0
648 	bpfdetach(ifp);
649 #endif
650 	/*
651 	 * NB: the order of these is important:
652 	 * o call the 802.11 layer before detaching the hal to
653 	 *   insure callbacks into the driver to delete global
654 	 *   key cache entries can be handled
655 	 * o reclaim the tx queue data structures after calling
656 	 *   the 802.11 layer as we'll get called back to reclaim
657 	 *   node state and potentially want to use them
658 	 * o to cleanup the tx queues the hal is called, so detach
659 	 *   it last
660 	 * Other than that, it's straightforward...
661 	 */
662 	ieee80211_ifdetach(&sc->sc_ic);
663 #ifdef ATH_TX99_DIAG
664 	if (sc->sc_tx99 != NULL)
665 		sc->sc_tx99->detach(sc->sc_tx99);
666 #endif
667 	ath_rate_detach(sc->sc_rc);
668 	ath_desc_free(sc);
669 	ath_tx_cleanup(sc);
670 	sysctl_teardown(&sc->sc_sysctllog);
671 	ath_hal_detach(sc->sc_ah);
672 	if_detach(ifp);
673 	splx(s);
674 
675 	return 0;
676 }
677 
678 void
679 ath_suspend(struct ath_softc *sc)
680 {
681 #if notyet
682 	/*
683 	 * Set the chip in full sleep mode.  Note that we are
684 	 * careful to do this only when bringing the interface
685 	 * completely to a stop.  When the chip is in this state
686 	 * it must be carefully woken up or references to
687 	 * registers in the PCI clock domain may freeze the bus
688 	 * (and system).  This varies by chip and is mostly an
689 	 * issue with newer parts that go to sleep more quickly.
690 	 */
691 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
692 #endif
693 }
694 
695 bool
696 ath_resume(struct ath_softc *sc)
697 {
698 	struct ath_hal *ah = sc->sc_ah;
699 	struct ieee80211com *ic = &sc->sc_ic;
700 	HAL_STATUS status;
701 	int i;
702 
703 #if notyet
704 	ath_hal_setpower(ah, HAL_PM_AWAKE);
705 #else
706 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
707 #endif
708 
709 	/*
710 	 * Reset the key cache since some parts do not
711 	 * reset the contents on initial power up.
712 	 */
713 	for (i = 0; i < sc->sc_keymax; i++)
714 		ath_hal_keyreset(ah, i);
715 
716 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
717 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
718 		if (ATH_TXQ_SETUP(sc, i))
719 			ath_hal_resettxqueue(ah, i);
720 
721 	if (sc->sc_softled) {
722 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
723 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
724 	}
725 	return true;
726 }
727 
728 /*
729  * Interrupt handler.  Most of the actual processing is deferred.
730  */
731 int
732 ath_intr(void *arg)
733 {
734 	struct ath_softc *sc = arg;
735 	struct ifnet *ifp = &sc->sc_if;
736 	struct ath_hal *ah = sc->sc_ah;
737 	HAL_INT status;
738 
739 	if (!device_is_active(sc->sc_dev)) {
740 		/*
741 		 * The hardware is not ready/present, don't touch anything.
742 		 * Note this can happen early on if the IRQ is shared.
743 		 */
744 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
745 		return 0;
746 	}
747 
748 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
749 		return 0;
750 
751 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
752 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
753 			__func__, ifp->if_flags);
754 		ath_hal_getisr(ah, &status);	/* clear ISR */
755 		ath_hal_intrset(ah, 0);		/* disable further intr's */
756 		return 1; /* XXX */
757 	}
758 	/*
759 	 * Figure out the reason(s) for the interrupt.  Note
760 	 * that the hal returns a pseudo-ISR that may include
761 	 * bits we haven't explicitly enabled so we mask the
762 	 * value to insure we only process bits we requested.
763 	 */
764 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
765 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
766 	status &= sc->sc_imask;			/* discard unasked for bits */
767 	if (status & HAL_INT_FATAL) {
768 		/*
769 		 * Fatal errors are unrecoverable.  Typically
770 		 * these are caused by DMA errors.  Unfortunately
771 		 * the exact reason is not (presently) returned
772 		 * by the hal.
773 		 */
774 		sc->sc_stats.ast_hardware++;
775 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
776 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
777 	} else if (status & HAL_INT_RXORN) {
778 		sc->sc_stats.ast_rxorn++;
779 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
780 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
781 	} else {
782 		if (status & HAL_INT_SWBA) {
783 			/*
784 			 * Software beacon alert--time to send a beacon.
785 			 * Handle beacon transmission directly; deferring
786 			 * this is too slow to meet timing constraints
787 			 * under load.
788 			 */
789 			ath_beacon_proc(sc, 0);
790 		}
791 		if (status & HAL_INT_RXEOL) {
792 			/*
793 			 * NB: the hardware should re-read the link when
794 			 *     RXE bit is written, but it doesn't work at
795 			 *     least on older hardware revs.
796 			 */
797 			sc->sc_stats.ast_rxeol++;
798 			sc->sc_rxlink = NULL;
799 		}
800 		if (status & HAL_INT_TXURN) {
801 			sc->sc_stats.ast_txurn++;
802 			/* bump tx trigger level */
803 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
804 		}
805 		if (status & HAL_INT_RX)
806 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
807 		if (status & HAL_INT_TX)
808 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
809 		if (status & HAL_INT_BMISS) {
810 			sc->sc_stats.ast_bmiss++;
811 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
812 		}
813 		if (status & HAL_INT_MIB) {
814 			sc->sc_stats.ast_mib++;
815 			/*
816 			 * Disable interrupts until we service the MIB
817 			 * interrupt; otherwise it will continue to fire.
818 			 */
819 			ath_hal_intrset(ah, 0);
820 			/*
821 			 * Let the hal handle the event.  We assume it will
822 			 * clear whatever condition caused the interrupt.
823 			 */
824 			ath_hal_mibevent(ah, &sc->sc_halstats);
825 			ath_hal_intrset(ah, sc->sc_imask);
826 		}
827 	}
828 	return 1;
829 }
830 
831 /* Swap transmit descriptor.
832  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
833  * function.
834  */
835 static inline void
836 ath_desc_swap(struct ath_desc *ds)
837 {
838 #ifdef AH_NEED_DESC_SWAP
839 	ds->ds_link = htole32(ds->ds_link);
840 	ds->ds_data = htole32(ds->ds_data);
841 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
842 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
843 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
844 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
845 #endif
846 }
847 
848 static void
849 ath_fatal_proc(void *arg, int pending)
850 {
851 	struct ath_softc *sc = arg;
852 	struct ifnet *ifp = &sc->sc_if;
853 
854 	if_printf(ifp, "hardware error; resetting\n");
855 	ath_reset(ifp);
856 }
857 
858 static void
859 ath_rxorn_proc(void *arg, int pending)
860 {
861 	struct ath_softc *sc = arg;
862 	struct ifnet *ifp = &sc->sc_if;
863 
864 	if_printf(ifp, "rx FIFO overrun; resetting\n");
865 	ath_reset(ifp);
866 }
867 
868 static void
869 ath_bmiss_proc(void *arg, int pending)
870 {
871 	struct ath_softc *sc = arg;
872 	struct ieee80211com *ic = &sc->sc_ic;
873 
874 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
875 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
876 		("unexpect operating mode %u", ic->ic_opmode));
877 	if (ic->ic_state == IEEE80211_S_RUN) {
878 		u_int64_t lastrx = sc->sc_lastrx;
879 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
880 
881 		DPRINTF(sc, ATH_DEBUG_BEACON,
882 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
883 		    " (%" PRIu64 ") bmiss %u\n",
884 		    __func__, tsf, tsf - lastrx, lastrx,
885 		    ic->ic_bmisstimeout*1024);
886 		/*
887 		 * Workaround phantom bmiss interrupts by sanity-checking
888 		 * the time of our last rx'd frame.  If it is within the
889 		 * beacon miss interval then ignore the interrupt.  If it's
890 		 * truly a bmiss we'll get another interrupt soon and that'll
891 		 * be dispatched up for processing.
892 		 */
893 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
894 			NET_LOCK_GIANT();
895 			ieee80211_beacon_miss(ic);
896 			NET_UNLOCK_GIANT();
897 		} else
898 			sc->sc_stats.ast_bmiss_phantom++;
899 	}
900 }
901 
902 static void
903 ath_radar_proc(void *arg, int pending)
904 {
905 #if 0
906 	struct ath_softc *sc = arg;
907 	struct ifnet *ifp = &sc->sc_if;
908 	struct ath_hal *ah = sc->sc_ah;
909 	HAL_CHANNEL hchan;
910 
911 	if (ath_hal_procdfs(ah, &hchan)) {
912 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
913 			hchan.channel, hchan.channelFlags, hchan.privFlags);
914 		/*
915 		 * Initiate channel change.
916 		 */
917 		/* XXX not yet */
918 	}
919 #endif
920 }
921 
922 static u_int
923 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
924 {
925 #define	N(a)	(sizeof(a) / sizeof(a[0]))
926 	static const u_int modeflags[] = {
927 		0,			/* IEEE80211_MODE_AUTO */
928 		CHANNEL_A,		/* IEEE80211_MODE_11A */
929 		CHANNEL_B,		/* IEEE80211_MODE_11B */
930 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
931 		0,			/* IEEE80211_MODE_FH */
932 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
933 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
934 	};
935 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
936 
937 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
938 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
939 	return modeflags[mode];
940 #undef N
941 }
942 
943 static int
944 ath_ifinit(struct ifnet *ifp)
945 {
946 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
947 
948 	return ath_init(sc);
949 }
950 
951 static int
952 ath_init(struct ath_softc *sc)
953 {
954 	struct ifnet *ifp = &sc->sc_if;
955 	struct ieee80211com *ic = &sc->sc_ic;
956 	struct ath_hal *ah = sc->sc_ah;
957 	HAL_STATUS status;
958 	int error = 0;
959 
960 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
961 		__func__, ifp->if_flags);
962 
963 	if (device_is_active(sc->sc_dev)) {
964 		ATH_LOCK(sc);
965 	} else if (!pmf_device_resume_self(sc->sc_dev))
966 		return ENXIO;
967 	else
968 		ATH_LOCK(sc);
969 
970 	/*
971 	 * Stop anything previously setup.  This is safe
972 	 * whether this is the first time through or not.
973 	 */
974 	ath_stop_locked(ifp, 0);
975 
976 	int dummy;	/* XXX: gcc */
977 	/* Whether we should enable h/w TKIP MIC */
978 	if ((ic->ic_caps & IEEE80211_C_WME) &&
979 	    ((ic->ic_caps & IEEE80211_C_WME_TKIPMIC) ||
980 	    !(ic->ic_flags & IEEE80211_F_WME))) {
981 		dummy = ath_hal_settkipmic(ah, AH_TRUE);
982 	} else {
983 		dummy = ath_hal_settkipmic(ah, AH_FALSE);
984 	}
985 
986 
987 	/*
988 	 * The basic interface to setting the hardware in a good
989 	 * state is ``reset''.  On return the hardware is known to
990 	 * be powered up and with interrupts disabled.  This must
991 	 * be followed by initialization of the appropriate bits
992 	 * and then setup of the interrupt mask.
993 	 */
994 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
995 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
996 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
997 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
998 			status);
999 		error = EIO;
1000 		goto done;
1001 	}
1002 
1003 	/*
1004 	 * This is needed only to setup initial state
1005 	 * but it's best done after a reset.
1006 	 */
1007 	ath_update_txpow(sc);
1008 	/*
1009 	 * Likewise this is set during reset so update
1010 	 * state cached in the driver.
1011 	 */
1012 	ath_restore_diversity(sc);
1013 	sc->sc_calinterval = 1;
1014 	sc->sc_caltries = 0;
1015 
1016 	/*
1017 	 * Setup the hardware after reset: the key cache
1018 	 * is filled as needed and the receive engine is
1019 	 * set going.  Frame transmit is handled entirely
1020 	 * in the frame output path; there's nothing to do
1021 	 * here except setup the interrupt mask.
1022 	 */
1023 	if ((error = ath_startrecv(sc)) != 0) {
1024 		if_printf(ifp, "unable to start recv logic\n");
1025 		goto done;
1026 	}
1027 
1028 	/*
1029 	 * Enable interrupts.
1030 	 */
1031 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1032 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1033 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1034 	/*
1035 	 * Enable MIB interrupts when there are hardware phy counters.
1036 	 * Note we only do this (at the moment) for station mode.
1037 	 */
1038 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1039 		sc->sc_imask |= HAL_INT_MIB;
1040 	ath_hal_intrset(ah, sc->sc_imask);
1041 
1042 	ifp->if_flags |= IFF_RUNNING;
1043 	ic->ic_state = IEEE80211_S_INIT;
1044 
1045 	/*
1046 	 * The hardware should be ready to go now so it's safe
1047 	 * to kick the 802.11 state machine as it's likely to
1048 	 * immediately call back to us to send mgmt frames.
1049 	 */
1050 	ath_chan_change(sc, ic->ic_curchan);
1051 #ifdef ATH_TX99_DIAG
1052 	if (sc->sc_tx99 != NULL)
1053 		sc->sc_tx99->start(sc->sc_tx99);
1054 	else
1055 #endif
1056 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1057 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1058 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1059 	} else
1060 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1061 done:
1062 	ATH_UNLOCK(sc);
1063 	return error;
1064 }
1065 
1066 static void
1067 ath_stop_locked(struct ifnet *ifp, int disable)
1068 {
1069 	struct ath_softc *sc = ifp->if_softc;
1070 	struct ieee80211com *ic = &sc->sc_ic;
1071 	struct ath_hal *ah = sc->sc_ah;
1072 
1073 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1074 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1075 
1076 	ATH_LOCK_ASSERT(sc);
1077 	if (ifp->if_flags & IFF_RUNNING) {
1078 		/*
1079 		 * Shutdown the hardware and driver:
1080 		 *    reset 802.11 state machine
1081 		 *    turn off timers
1082 		 *    disable interrupts
1083 		 *    turn off the radio
1084 		 *    clear transmit machinery
1085 		 *    clear receive machinery
1086 		 *    drain and release tx queues
1087 		 *    reclaim beacon resources
1088 		 *    power down hardware
1089 		 *
1090 		 * Note that some of this work is not possible if the
1091 		 * hardware is gone (invalid).
1092 		 */
1093 #ifdef ATH_TX99_DIAG
1094 		if (sc->sc_tx99 != NULL)
1095 			sc->sc_tx99->stop(sc->sc_tx99);
1096 #endif
1097 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1098 		ifp->if_flags &= ~IFF_RUNNING;
1099 		ifp->if_timer = 0;
1100 		if (device_is_enabled(sc->sc_dev)) {
1101 			if (sc->sc_softled) {
1102 				callout_stop(&sc->sc_ledtimer);
1103 				ath_hal_gpioset(ah, sc->sc_ledpin,
1104 					!sc->sc_ledon);
1105 				sc->sc_blinking = 0;
1106 			}
1107 			ath_hal_intrset(ah, 0);
1108 		}
1109 		ath_draintxq(sc);
1110 		if (device_is_enabled(sc->sc_dev)) {
1111 			ath_stoprecv(sc);
1112 			ath_hal_phydisable(ah);
1113 		} else
1114 			sc->sc_rxlink = NULL;
1115 		IF_PURGE(&ifp->if_snd);
1116 		ath_beacon_free(sc);
1117 		if (disable)
1118 			pmf_device_suspend_self(sc->sc_dev);
1119 	}
1120 }
1121 
1122 static void
1123 ath_stop(struct ifnet *ifp, int disable)
1124 {
1125 	struct ath_softc *sc = ifp->if_softc;
1126 
1127 	ATH_LOCK(sc);
1128 	ath_stop_locked(ifp, disable);
1129 	ATH_UNLOCK(sc);
1130 }
1131 
1132 static void
1133 ath_restore_diversity(struct ath_softc *sc)
1134 {
1135 	struct ifnet *ifp = &sc->sc_if;
1136 	struct ath_hal *ah = sc->sc_ah;
1137 
1138 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1139 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1140 		if_printf(ifp, "could not restore diversity setting %d\n",
1141 		    sc->sc_diversity);
1142 		sc->sc_diversity = ath_hal_getdiversity(ah);
1143 	}
1144 }
1145 
1146 /*
1147  * Reset the hardware w/o losing operational state.  This is
1148  * basically a more efficient way of doing ath_stop, ath_init,
1149  * followed by state transitions to the current 802.11
1150  * operational state.  Used to recover from various errors and
1151  * to reset or reload hardware state.
1152  */
1153 int
1154 ath_reset(struct ifnet *ifp)
1155 {
1156 	struct ath_softc *sc = ifp->if_softc;
1157 	struct ieee80211com *ic = &sc->sc_ic;
1158 	struct ath_hal *ah = sc->sc_ah;
1159 	struct ieee80211_channel *c;
1160 	HAL_STATUS status;
1161 
1162 	/*
1163 	 * Convert to a HAL channel description with the flags
1164 	 * constrained to reflect the current operating mode.
1165 	 */
1166 	c = ic->ic_curchan;
1167 	sc->sc_curchan.channel = c->ic_freq;
1168 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1169 
1170 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1171 	ath_draintxq(sc);		/* stop xmit side */
1172 	ath_stoprecv(sc);		/* stop recv side */
1173 	/* NB: indicate channel change so we do a full reset */
1174 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1175 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1176 			__func__, status);
1177 	ath_update_txpow(sc);		/* update tx power state */
1178 	ath_restore_diversity(sc);
1179 	sc->sc_calinterval = 1;
1180 	sc->sc_caltries = 0;
1181 	if (ath_startrecv(sc) != 0)	/* restart recv */
1182 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1183 	/*
1184 	 * We may be doing a reset in response to an ioctl
1185 	 * that changes the channel so update any state that
1186 	 * might change as a result.
1187 	 */
1188 	ath_chan_change(sc, c);
1189 	if (ic->ic_state == IEEE80211_S_RUN)
1190 		ath_beacon_config(sc);	/* restart beacons */
1191 	ath_hal_intrset(ah, sc->sc_imask);
1192 
1193 	ath_start(ifp);			/* restart xmit */
1194 	return 0;
1195 }
1196 
1197 /*
1198  * Cleanup driver resources when we run out of buffers
1199  * while processing fragments; return the tx buffers
1200  * allocated and drop node references.
1201  */
1202 static void
1203 ath_txfrag_cleanup(struct ath_softc *sc,
1204 	ath_bufhead *frags, struct ieee80211_node *ni)
1205 {
1206 	struct ath_buf *bf;
1207 
1208 	ATH_TXBUF_LOCK_ASSERT(sc);
1209 
1210 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1211 		STAILQ_REMOVE_HEAD(frags, bf_list);
1212 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1213 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1214 		ieee80211_node_decref(ni);
1215 	}
1216 }
1217 
1218 /*
1219  * Setup xmit of a fragmented frame.  Allocate a buffer
1220  * for each frag and bump the node reference count to
1221  * reflect the held reference to be setup by ath_tx_start.
1222  */
1223 static int
1224 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1225 	struct mbuf *m0, struct ieee80211_node *ni)
1226 {
1227 	struct mbuf *m;
1228 	struct ath_buf *bf;
1229 
1230 	ATH_TXBUF_LOCK(sc);
1231 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1232 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1233 		if (bf == NULL) {       /* out of buffers, cleanup */
1234 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1235 				__func__);
1236 			sc->sc_if.if_flags |= IFF_OACTIVE;
1237 			ath_txfrag_cleanup(sc, frags, ni);
1238 			break;
1239 		}
1240 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1241 		ieee80211_node_incref(ni);
1242 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1243 	}
1244 	ATH_TXBUF_UNLOCK(sc);
1245 
1246 	return !STAILQ_EMPTY(frags);
1247 }
1248 
1249 static void
1250 ath_start(struct ifnet *ifp)
1251 {
1252 	struct ath_softc *sc = ifp->if_softc;
1253 	struct ath_hal *ah = sc->sc_ah;
1254 	struct ieee80211com *ic = &sc->sc_ic;
1255 	struct ieee80211_node *ni;
1256 	struct ath_buf *bf;
1257 	struct mbuf *m, *next;
1258 	struct ieee80211_frame *wh;
1259 	struct ether_header *eh;
1260 	ath_bufhead frags;
1261 
1262 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1263 	    !device_is_active(sc->sc_dev))
1264 		return;
1265 	for (;;) {
1266 		/*
1267 		 * Grab a TX buffer and associated resources.
1268 		 */
1269 		ATH_TXBUF_LOCK(sc);
1270 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1271 		if (bf != NULL)
1272 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1273 		ATH_TXBUF_UNLOCK(sc);
1274 		if (bf == NULL) {
1275 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1276 				__func__);
1277 			sc->sc_stats.ast_tx_qstop++;
1278 			ifp->if_flags |= IFF_OACTIVE;
1279 			break;
1280 		}
1281 		/*
1282 		 * Poll the management queue for frames; they
1283 		 * have priority over normal data frames.
1284 		 */
1285 		IF_DEQUEUE(&ic->ic_mgtq, m);
1286 		if (m == NULL) {
1287 			/*
1288 			 * No data frames go out unless we're associated.
1289 			 */
1290 			if (ic->ic_state != IEEE80211_S_RUN) {
1291 				DPRINTF(sc, ATH_DEBUG_XMIT,
1292 				    "%s: discard data packet, state %s\n",
1293 				    __func__,
1294 				    ieee80211_state_name[ic->ic_state]);
1295 				sc->sc_stats.ast_tx_discard++;
1296 				ATH_TXBUF_LOCK(sc);
1297 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1298 				ATH_TXBUF_UNLOCK(sc);
1299 				break;
1300 			}
1301 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1302 			if (m == NULL) {
1303 				ATH_TXBUF_LOCK(sc);
1304 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1305 				ATH_TXBUF_UNLOCK(sc);
1306 				break;
1307 			}
1308 			STAILQ_INIT(&frags);
1309 			/*
1310 			 * Find the node for the destination so we can do
1311 			 * things like power save and fast frames aggregation.
1312 			 */
1313 			if (m->m_len < sizeof(struct ether_header) &&
1314 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1315 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1316 				ni = NULL;
1317 				goto bad;
1318 			}
1319 			eh = mtod(m, struct ether_header *);
1320 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1321 			if (ni == NULL) {
1322 				/* NB: ieee80211_find_txnode does stat+msg */
1323 				m_freem(m);
1324 				goto bad;
1325 			}
1326 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1327 			    (m->m_flags & M_PWR_SAV) == 0) {
1328 				/*
1329 				 * Station in power save mode; pass the frame
1330 				 * to the 802.11 layer and continue.  We'll get
1331 				 * the frame back when the time is right.
1332 				 */
1333 				ieee80211_pwrsave(ic, ni, m);
1334 				goto reclaim;
1335 			}
1336 			/* calculate priority so we can find the tx queue */
1337 			if (ieee80211_classify(ic, m, ni)) {
1338 				DPRINTF(sc, ATH_DEBUG_XMIT,
1339 					"%s: discard, classification failure\n",
1340 					__func__);
1341 				m_freem(m);
1342 				goto bad;
1343 			}
1344 			ifp->if_opackets++;
1345 
1346 #if NBPFILTER > 0
1347 			if (ifp->if_bpf)
1348 				bpf_mtap(ifp->if_bpf, m);
1349 #endif
1350 			/*
1351 			 * Encapsulate the packet in prep for transmission.
1352 			 */
1353 			m = ieee80211_encap(ic, m, ni);
1354 			if (m == NULL) {
1355 				DPRINTF(sc, ATH_DEBUG_XMIT,
1356 					"%s: encapsulation failure\n",
1357 					__func__);
1358 				sc->sc_stats.ast_tx_encap++;
1359 				goto bad;
1360 			}
1361 			/*
1362 			 * Check for fragmentation.  If this has frame
1363 			 * has been broken up verify we have enough
1364 			 * buffers to send all the fragments so all
1365 			 * go out or none...
1366 			 */
1367 			if ((m->m_flags & M_FRAG) &&
1368 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1369 				DPRINTF(sc, ATH_DEBUG_ANY,
1370 				    "%s: out of txfrag buffers\n", __func__);
1371 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1372 				ath_freetx(m);
1373 				goto bad;
1374 			}
1375 		} else {
1376 			/*
1377 			 * Hack!  The referenced node pointer is in the
1378 			 * rcvif field of the packet header.  This is
1379 			 * placed there by ieee80211_mgmt_output because
1380 			 * we need to hold the reference with the frame
1381 			 * and there's no other way (other than packet
1382 			 * tags which we consider too expensive to use)
1383 			 * to pass it along.
1384 			 */
1385 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1386 			m->m_pkthdr.rcvif = NULL;
1387 
1388 			wh = mtod(m, struct ieee80211_frame *);
1389 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1390 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1391 				/* fill time stamp */
1392 				u_int64_t tsf;
1393 				u_int32_t *tstamp;
1394 
1395 				tsf = ath_hal_gettsf64(ah);
1396 				/* XXX: adjust 100us delay to xmit */
1397 				tsf += 100;
1398 				tstamp = (u_int32_t *)&wh[1];
1399 				tstamp[0] = htole32(tsf & 0xffffffff);
1400 				tstamp[1] = htole32(tsf >> 32);
1401 			}
1402 			sc->sc_stats.ast_tx_mgmt++;
1403 		}
1404 
1405 	nextfrag:
1406 		next = m->m_nextpkt;
1407 		if (ath_tx_start(sc, ni, bf, m)) {
1408 	bad:
1409 			ifp->if_oerrors++;
1410 	reclaim:
1411 			ATH_TXBUF_LOCK(sc);
1412 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1413 			ath_txfrag_cleanup(sc, &frags, ni);
1414 			ATH_TXBUF_UNLOCK(sc);
1415 			if (ni != NULL)
1416 				ieee80211_free_node(ni);
1417 			continue;
1418 		}
1419 		if (next != NULL) {
1420 			m = next;
1421 			bf = STAILQ_FIRST(&frags);
1422 			KASSERT(bf != NULL, ("no buf for txfrag"));
1423 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1424 			goto nextfrag;
1425 		}
1426 
1427 		ifp->if_timer = 1;
1428 	}
1429 }
1430 
1431 static int
1432 ath_media_change(struct ifnet *ifp)
1433 {
1434 #define	IS_UP(ifp) \
1435 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1436 	int error;
1437 
1438 	error = ieee80211_media_change(ifp);
1439 	if (error == ENETRESET) {
1440 		if (IS_UP(ifp))
1441 			ath_init(ifp->if_softc);	/* XXX lose error */
1442 		error = 0;
1443 	}
1444 	return error;
1445 #undef IS_UP
1446 }
1447 
1448 #ifdef AR_DEBUG
1449 static void
1450 ath_keyprint(const char *tag, u_int ix,
1451 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1452 {
1453 	static const char *ciphers[] = {
1454 		"WEP",
1455 		"AES-OCB",
1456 		"AES-CCM",
1457 		"CKIP",
1458 		"TKIP",
1459 		"CLR",
1460 	};
1461 	int i, n;
1462 
1463 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1464 	for (i = 0, n = hk->kv_len; i < n; i++)
1465 		printf("%02x", hk->kv_val[i]);
1466 	printf(" mac %s", ether_sprintf(mac));
1467 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1468 		printf(" mic ");
1469 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1470 			printf("%02x", hk->kv_mic[i]);
1471 	}
1472 	printf("\n");
1473 }
1474 #endif
1475 
1476 /*
1477  * Set a TKIP key into the hardware.  This handles the
1478  * potential distribution of key state to multiple key
1479  * cache slots for TKIP.
1480  */
1481 static int
1482 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1483 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1484 {
1485 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1486 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1487 	struct ath_hal *ah = sc->sc_ah;
1488 
1489 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1490 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1491 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1492 		if (sc->sc_splitmic) {
1493 			/*
1494 			 * TX key goes at first index, RX key at the rx index.
1495 			 * The hal handles the MIC keys at index+64.
1496 			 */
1497 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1498 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1499 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1500 						zerobssid))
1501 				return 0;
1502 
1503 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1504 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1505 			/* XXX delete tx key on failure? */
1506 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1507 					hk, mac);
1508 		} else {
1509 			/*
1510 			 * Room for both TX+RX MIC keys in one key cache
1511 			 * slot, just set key at the first index; the HAL
1512 			 * will handle the reset.
1513 			 */
1514 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1515 #if HAL_ABI_VERSION > 0x06052200
1516 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1517 #endif
1518 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1519 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1520 		}
1521 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1522 		/*
1523 		 * TX/RX key goes at first index.
1524 		 * The hal handles the MIC keys are index+64.
1525 		 */
1526 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1527 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1528 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1529 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1530 	}
1531 	return 0;
1532 #undef IEEE80211_KEY_XR
1533 }
1534 
1535 /*
1536  * Set a net80211 key into the hardware.  This handles the
1537  * potential distribution of key state to multiple key
1538  * cache slots for TKIP with hardware MIC support.
1539  */
1540 static int
1541 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1542 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1543 	struct ieee80211_node *bss)
1544 {
1545 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1546 	static const u_int8_t ciphermap[] = {
1547 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1548 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1549 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1550 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1551 		(u_int8_t) -1,		/* 4 is not allocated */
1552 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1553 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1554 	};
1555 	struct ath_hal *ah = sc->sc_ah;
1556 	const struct ieee80211_cipher *cip = k->wk_cipher;
1557 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1558 	const u_int8_t *mac;
1559 	HAL_KEYVAL hk;
1560 
1561 	memset(&hk, 0, sizeof(hk));
1562 	/*
1563 	 * Software crypto uses a "clear key" so non-crypto
1564 	 * state kept in the key cache are maintained and
1565 	 * so that rx frames have an entry to match.
1566 	 */
1567 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1568 		KASSERT(cip->ic_cipher < N(ciphermap),
1569 			("invalid cipher type %u", cip->ic_cipher));
1570 		hk.kv_type = ciphermap[cip->ic_cipher];
1571 		hk.kv_len = k->wk_keylen;
1572 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1573 	} else
1574 		hk.kv_type = HAL_CIPHER_CLR;
1575 
1576 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1577 		/*
1578 		 * Group keys on hardware that supports multicast frame
1579 		 * key search use a mac that is the sender's address with
1580 		 * the high bit set instead of the app-specified address.
1581 		 */
1582 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1583 		gmac[0] |= 0x80;
1584 		mac = gmac;
1585 	} else
1586 		mac = mac0;
1587 
1588 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1589 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) && sc->sc_splitmic) {
1590 		return ath_keyset_tkip(sc, k, &hk, mac);
1591 	} else {
1592 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1593 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1594 	}
1595 #undef N
1596 }
1597 
1598 /*
1599  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1600  * each key, one for decrypt/encrypt and the other for the MIC.
1601  */
1602 static u_int16_t
1603 key_alloc_2pair(struct ath_softc *sc,
1604 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1605 {
1606 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1607 	u_int i, keyix;
1608 
1609 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1610 	/* XXX could optimize */
1611 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1612 		u_int8_t b = sc->sc_keymap[i];
1613 		if (b != 0xff) {
1614 			/*
1615 			 * One or more slots in this byte are free.
1616 			 */
1617 			keyix = i*NBBY;
1618 			while (b & 1) {
1619 		again:
1620 				keyix++;
1621 				b >>= 1;
1622 			}
1623 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1624 			if (isset(sc->sc_keymap, keyix+32) ||
1625 			    isset(sc->sc_keymap, keyix+64) ||
1626 			    isset(sc->sc_keymap, keyix+32+64)) {
1627 				/* full pair unavailable */
1628 				/* XXX statistic */
1629 				if (keyix == (i+1)*NBBY) {
1630 					/* no slots were appropriate, advance */
1631 					continue;
1632 				}
1633 				goto again;
1634 			}
1635 			setbit(sc->sc_keymap, keyix);
1636 			setbit(sc->sc_keymap, keyix+64);
1637 			setbit(sc->sc_keymap, keyix+32);
1638 			setbit(sc->sc_keymap, keyix+32+64);
1639 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1640 				"%s: key pair %u,%u %u,%u\n",
1641 				__func__, keyix, keyix+64,
1642 				keyix+32, keyix+32+64);
1643 			*txkeyix = keyix;
1644 			*rxkeyix = keyix+32;
1645 			return keyix;
1646 		}
1647 	}
1648 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1649 	return IEEE80211_KEYIX_NONE;
1650 #undef N
1651 }
1652 
1653 /*
1654  * Allocate a single key cache slot.
1655  */
1656 static int
1657 key_alloc_single(struct ath_softc *sc,
1658 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1659 {
1660 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1661 	u_int i, keyix;
1662 
1663 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1664 	for (i = 0; i < N(sc->sc_keymap); i++) {
1665 		u_int8_t b = sc->sc_keymap[i];
1666 		if (b != 0xff) {
1667 			/*
1668 			 * One or more slots are free.
1669 			 */
1670 			keyix = i*NBBY;
1671 			while (b & 1)
1672 				keyix++, b >>= 1;
1673 			setbit(sc->sc_keymap, keyix);
1674 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1675 				__func__, keyix);
1676 			*txkeyix = *rxkeyix = keyix;
1677 			return 1;
1678 		}
1679 	}
1680 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1681 	return 0;
1682 #undef N
1683 }
1684 
1685 /*
1686  * Allocate one or more key cache slots for a uniacst key.  The
1687  * key itself is needed only to identify the cipher.  For hardware
1688  * TKIP with split cipher+MIC keys we allocate two key cache slot
1689  * pairs so that we can setup separate TX and RX MIC keys.  Note
1690  * that the MIC key for a TKIP key at slot i is assumed by the
1691  * hardware to be at slot i+64.  This limits TKIP keys to the first
1692  * 64 entries.
1693  */
1694 static int
1695 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1696 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1697 {
1698 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1699 
1700 	/*
1701 	 * Group key allocation must be handled specially for
1702 	 * parts that do not support multicast key cache search
1703 	 * functionality.  For those parts the key id must match
1704 	 * the h/w key index so lookups find the right key.  On
1705 	 * parts w/ the key search facility we install the sender's
1706 	 * mac address (with the high bit set) and let the hardware
1707 	 * find the key w/o using the key id.  This is preferred as
1708 	 * it permits us to support multiple users for adhoc and/or
1709 	 * multi-station operation.
1710 	 */
1711 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1712 		if (!(&ic->ic_nw_keys[0] <= k &&
1713 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1714 			/* should not happen */
1715 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1716 				"%s: bogus group key\n", __func__);
1717 			return 0;
1718 		}
1719 		/*
1720 		 * XXX we pre-allocate the global keys so
1721 		 * have no way to check if they've already been allocated.
1722 		 */
1723 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1724 		return 1;
1725 	}
1726 
1727 	/*
1728 	 * We allocate two pair for TKIP when using the h/w to do
1729 	 * the MIC.  For everything else, including software crypto,
1730 	 * we allocate a single entry.  Note that s/w crypto requires
1731 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1732 	 * not support pass-through cache entries and we map all
1733 	 * those requests to slot 0.
1734 	 */
1735 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1736 		return key_alloc_single(sc, keyix, rxkeyix);
1737 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1738 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1739 		return key_alloc_2pair(sc, keyix, rxkeyix);
1740 	} else {
1741 		return key_alloc_single(sc, keyix, rxkeyix);
1742 	}
1743 }
1744 
1745 /*
1746  * Delete an entry in the key cache allocated by ath_key_alloc.
1747  */
1748 static int
1749 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1750 {
1751 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1752 	struct ath_hal *ah = sc->sc_ah;
1753 	const struct ieee80211_cipher *cip = k->wk_cipher;
1754 	u_int keyix = k->wk_keyix;
1755 
1756 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1757 
1758 	if (!device_has_power(sc->sc_dev)) {
1759 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1760 		    k->wk_keyix);
1761 	}
1762 
1763 	ath_hal_keyreset(ah, keyix);
1764 	/*
1765 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1766 	 */
1767 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1768 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1769 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1770 	if (keyix >= IEEE80211_WEP_NKID) {
1771 		/*
1772 		 * Don't touch keymap entries for global keys so
1773 		 * they are never considered for dynamic allocation.
1774 		 */
1775 		clrbit(sc->sc_keymap, keyix);
1776 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1777 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1778 		    sc->sc_splitmic) {
1779 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1780 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1781 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1782 		}
1783 	}
1784 	return 1;
1785 }
1786 
1787 /*
1788  * Set the key cache contents for the specified key.  Key cache
1789  * slot(s) must already have been allocated by ath_key_alloc.
1790  */
1791 static int
1792 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1793 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1794 {
1795 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1796 
1797 	if (!device_has_power(sc->sc_dev)) {
1798 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1799 		    k->wk_keyix);
1800 	}
1801 	return ath_keyset(sc, k, mac, ic->ic_bss);
1802 }
1803 
1804 /*
1805  * Block/unblock tx+rx processing while a key change is done.
1806  * We assume the caller serializes key management operations
1807  * so we only need to worry about synchronization with other
1808  * uses that originate in the driver.
1809  */
1810 static void
1811 ath_key_update_begin(struct ieee80211com *ic)
1812 {
1813 	struct ifnet *ifp = ic->ic_ifp;
1814 	struct ath_softc *sc = ifp->if_softc;
1815 
1816 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1817 #if 0
1818 	tasklet_disable(&sc->sc_rxtq);
1819 #endif
1820 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1821 }
1822 
1823 static void
1824 ath_key_update_end(struct ieee80211com *ic)
1825 {
1826 	struct ifnet *ifp = ic->ic_ifp;
1827 	struct ath_softc *sc = ifp->if_softc;
1828 
1829 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1830 	IF_UNLOCK(&ifp->if_snd);
1831 #if 0
1832 	tasklet_enable(&sc->sc_rxtq);
1833 #endif
1834 }
1835 
1836 /*
1837  * Calculate the receive filter according to the
1838  * operating mode and state:
1839  *
1840  * o always accept unicast, broadcast, and multicast traffic
1841  * o maintain current state of phy error reception (the hal
1842  *   may enable phy error frames for noise immunity work)
1843  * o probe request frames are accepted only when operating in
1844  *   hostap, adhoc, or monitor modes
1845  * o enable promiscuous mode according to the interface state
1846  * o accept beacons:
1847  *   - when operating in adhoc mode so the 802.11 layer creates
1848  *     node table entries for peers,
1849  *   - when operating in station mode for collecting rssi data when
1850  *     the station is otherwise quiet, or
1851  *   - when scanning
1852  */
1853 static u_int32_t
1854 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1855 {
1856 	struct ieee80211com *ic = &sc->sc_ic;
1857 	struct ath_hal *ah = sc->sc_ah;
1858 	struct ifnet *ifp = &sc->sc_if;
1859 	u_int32_t rfilt;
1860 
1861 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1862 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1863 	if (ic->ic_opmode != IEEE80211_M_STA)
1864 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1865 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1866 	    (ifp->if_flags & IFF_PROMISC))
1867 		rfilt |= HAL_RX_FILTER_PROM;
1868 	if (ifp->if_flags & IFF_PROMISC)
1869 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1870 	if (ic->ic_opmode == IEEE80211_M_STA ||
1871 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1872 	    state == IEEE80211_S_SCAN)
1873 		rfilt |= HAL_RX_FILTER_BEACON;
1874 	return rfilt;
1875 }
1876 
1877 static void
1878 ath_mode_init(struct ath_softc *sc)
1879 {
1880 	struct ifnet *ifp = &sc->sc_if;
1881 	struct ieee80211com *ic = &sc->sc_ic;
1882 	struct ath_hal *ah = sc->sc_ah;
1883 	struct ether_multi *enm;
1884 	struct ether_multistep estep;
1885 	u_int32_t rfilt, mfilt[2], val;
1886 	int i;
1887 	uint8_t pos;
1888 
1889 	/* configure rx filter */
1890 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1891 	ath_hal_setrxfilter(ah, rfilt);
1892 
1893 	/* configure operational mode */
1894 	ath_hal_setopmode(ah);
1895 
1896 	/* Write keys to hardware; it may have been powered down. */
1897 	ath_key_update_begin(ic);
1898 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1899 		ath_key_set(ic,
1900 			    &ic->ic_crypto.cs_nw_keys[i],
1901 			    ic->ic_myaddr);
1902 	}
1903 	ath_key_update_end(ic);
1904 
1905 	/*
1906 	 * Handle any link-level address change.  Note that we only
1907 	 * need to force ic_myaddr; any other addresses are handled
1908 	 * as a byproduct of the ifnet code marking the interface
1909 	 * down then up.
1910 	 *
1911 	 * XXX should get from lladdr instead of arpcom but that's more work
1912 	 */
1913 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1914 	ath_hal_setmac(ah, ic->ic_myaddr);
1915 
1916 	/* calculate and install multicast filter */
1917 	ifp->if_flags &= ~IFF_ALLMULTI;
1918 	mfilt[0] = mfilt[1] = 0;
1919 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1920 	while (enm != NULL) {
1921 		void *dl;
1922 		/* XXX Punt on ranges. */
1923 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1924 			mfilt[0] = mfilt[1] = 0xffffffff;
1925 			ifp->if_flags |= IFF_ALLMULTI;
1926 			break;
1927 		}
1928 		dl = enm->enm_addrlo;
1929 		val = LE_READ_4((char *)dl + 0);
1930 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1931 		val = LE_READ_4((char *)dl + 3);
1932 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1933 		pos &= 0x3f;
1934 		mfilt[pos / 32] |= (1 << (pos % 32));
1935 
1936 		ETHER_NEXT_MULTI(estep, enm);
1937 	}
1938 
1939 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1940 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1941 		__func__, rfilt, mfilt[0], mfilt[1]);
1942 }
1943 
1944 /*
1945  * Set the slot time based on the current setting.
1946  */
1947 static void
1948 ath_setslottime(struct ath_softc *sc)
1949 {
1950 	struct ieee80211com *ic = &sc->sc_ic;
1951 	struct ath_hal *ah = sc->sc_ah;
1952 
1953 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1954 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1955 	else
1956 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1957 	sc->sc_updateslot = OK;
1958 }
1959 
1960 /*
1961  * Callback from the 802.11 layer to update the
1962  * slot time based on the current setting.
1963  */
1964 static void
1965 ath_updateslot(struct ifnet *ifp)
1966 {
1967 	struct ath_softc *sc = ifp->if_softc;
1968 	struct ieee80211com *ic = &sc->sc_ic;
1969 
1970 	/*
1971 	 * When not coordinating the BSS, change the hardware
1972 	 * immediately.  For other operation we defer the change
1973 	 * until beacon updates have propagated to the stations.
1974 	 */
1975 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1976 		sc->sc_updateslot = UPDATE;
1977 	else
1978 		ath_setslottime(sc);
1979 }
1980 
1981 /*
1982  * Setup a h/w transmit queue for beacons.
1983  */
1984 static int
1985 ath_beaconq_setup(struct ath_hal *ah)
1986 {
1987 	HAL_TXQ_INFO qi;
1988 
1989 	memset(&qi, 0, sizeof(qi));
1990 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1991 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1992 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1993 	/* NB: for dynamic turbo, don't enable any other interrupts */
1994 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1995 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1996 }
1997 
1998 /*
1999  * Setup the transmit queue parameters for the beacon queue.
2000  */
2001 static int
2002 ath_beaconq_config(struct ath_softc *sc)
2003 {
2004 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2005 	struct ieee80211com *ic = &sc->sc_ic;
2006 	struct ath_hal *ah = sc->sc_ah;
2007 	HAL_TXQ_INFO qi;
2008 
2009 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2010 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2011 		/*
2012 		 * Always burst out beacon and CAB traffic.
2013 		 */
2014 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2015 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2016 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2017 	} else {
2018 		struct wmeParams *wmep =
2019 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2020 		/*
2021 		 * Adhoc mode; important thing is to use 2x cwmin.
2022 		 */
2023 		qi.tqi_aifs = wmep->wmep_aifsn;
2024 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2025 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2026 	}
2027 
2028 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2029 		device_printf(sc->sc_dev, "unable to update parameters for "
2030 			"beacon hardware queue!\n");
2031 		return 0;
2032 	} else {
2033 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2034 		return 1;
2035 	}
2036 #undef ATH_EXPONENT_TO_VALUE
2037 }
2038 
2039 /*
2040  * Allocate and setup an initial beacon frame.
2041  */
2042 static int
2043 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2044 {
2045 	struct ieee80211com *ic = ni->ni_ic;
2046 	struct ath_buf *bf;
2047 	struct mbuf *m;
2048 	int error;
2049 
2050 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2051 	if (bf == NULL) {
2052 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2053 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2054 		return ENOMEM;			/* XXX */
2055 	}
2056 	/*
2057 	 * NB: the beacon data buffer must be 32-bit aligned;
2058 	 * we assume the mbuf routines will return us something
2059 	 * with this alignment (perhaps should assert).
2060 	 */
2061 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2062 	if (m == NULL) {
2063 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2064 			__func__);
2065 		sc->sc_stats.ast_be_nombuf++;
2066 		return ENOMEM;
2067 	}
2068 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2069 				     BUS_DMA_NOWAIT);
2070 	if (error == 0) {
2071 		bf->bf_m = m;
2072 		bf->bf_node = ieee80211_ref_node(ni);
2073 	} else {
2074 		m_freem(m);
2075 	}
2076 	return error;
2077 }
2078 
2079 /*
2080  * Setup the beacon frame for transmit.
2081  */
2082 static void
2083 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2084 {
2085 #define	USE_SHPREAMBLE(_ic) \
2086 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2087 		== IEEE80211_F_SHPREAMBLE)
2088 	struct ieee80211_node *ni = bf->bf_node;
2089 	struct ieee80211com *ic = ni->ni_ic;
2090 	struct mbuf *m = bf->bf_m;
2091 	struct ath_hal *ah = sc->sc_ah;
2092 	struct ath_desc *ds;
2093 	int flags, antenna;
2094 	const HAL_RATE_TABLE *rt;
2095 	u_int8_t rix, rate;
2096 
2097 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2098 		__func__, m, m->m_len);
2099 
2100 	/* setup descriptors */
2101 	ds = bf->bf_desc;
2102 
2103 	flags = HAL_TXDESC_NOACK;
2104 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2105 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2106 		flags |= HAL_TXDESC_VEOL;
2107 		/*
2108 		 * Let hardware handle antenna switching unless
2109 		 * the user has selected a transmit antenna
2110 		 * (sc_txantenna is not 0).
2111 		 */
2112 		antenna = sc->sc_txantenna;
2113 	} else {
2114 		ds->ds_link = 0;
2115 		/*
2116 		 * Switch antenna every 4 beacons, unless the user
2117 		 * has selected a transmit antenna (sc_txantenna
2118 		 * is not 0).
2119 		 *
2120 		 * XXX assumes two antenna
2121 		 */
2122 		if (sc->sc_txantenna == 0)
2123 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2124 		else
2125 			antenna = sc->sc_txantenna;
2126 	}
2127 
2128 	KASSERT(bf->bf_nseg == 1,
2129 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2130 	ds->ds_data = bf->bf_segs[0].ds_addr;
2131 	/*
2132 	 * Calculate rate code.
2133 	 * XXX everything at min xmit rate
2134 	 */
2135 	rix = sc->sc_minrateix;
2136 	rt = sc->sc_currates;
2137 	rate = rt->info[rix].rateCode;
2138 	if (USE_SHPREAMBLE(ic))
2139 		rate |= rt->info[rix].shortPreamble;
2140 	ath_hal_setuptxdesc(ah, ds
2141 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2142 		, sizeof(struct ieee80211_frame)/* header length */
2143 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2144 		, ni->ni_txpower		/* txpower XXX */
2145 		, rate, 1			/* series 0 rate/tries */
2146 		, HAL_TXKEYIX_INVALID		/* no encryption */
2147 		, antenna			/* antenna mode */
2148 		, flags				/* no ack, veol for beacons */
2149 		, 0				/* rts/cts rate */
2150 		, 0				/* rts/cts duration */
2151 	);
2152 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2153 	ath_hal_filltxdesc(ah, ds
2154 		, roundup(m->m_len, 4)		/* buffer length */
2155 		, AH_TRUE			/* first segment */
2156 		, AH_TRUE			/* last segment */
2157 		, ds				/* first descriptor */
2158 	);
2159 
2160 	/* NB: The desc swap function becomes void, if descriptor swapping
2161 	 * is not enabled
2162 	 */
2163 	ath_desc_swap(ds);
2164 
2165 #undef USE_SHPREAMBLE
2166 }
2167 
2168 /*
2169  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2170  * frame contents are done as needed and the slot time is
2171  * also adjusted based on current state.
2172  */
2173 static void
2174 ath_beacon_proc(void *arg, int pending)
2175 {
2176 	struct ath_softc *sc = arg;
2177 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2178 	struct ieee80211_node *ni = bf->bf_node;
2179 	struct ieee80211com *ic = ni->ni_ic;
2180 	struct ath_hal *ah = sc->sc_ah;
2181 	struct mbuf *m;
2182 	int ncabq, error, otherant;
2183 
2184 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2185 		__func__, pending);
2186 
2187 	if (ic->ic_opmode == IEEE80211_M_STA ||
2188 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2189 	    bf == NULL || bf->bf_m == NULL) {
2190 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2191 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2192 		return;
2193 	}
2194 	/*
2195 	 * Check if the previous beacon has gone out.  If
2196 	 * not don't try to post another, skip this period
2197 	 * and wait for the next.  Missed beacons indicate
2198 	 * a problem and should not occur.  If we miss too
2199 	 * many consecutive beacons reset the device.
2200 	 */
2201 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2202 		sc->sc_bmisscount++;
2203 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2204 			"%s: missed %u consecutive beacons\n",
2205 			__func__, sc->sc_bmisscount);
2206 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2207 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2208 		return;
2209 	}
2210 	if (sc->sc_bmisscount != 0) {
2211 		DPRINTF(sc, ATH_DEBUG_BEACON,
2212 			"%s: resume beacon xmit after %u misses\n",
2213 			__func__, sc->sc_bmisscount);
2214 		sc->sc_bmisscount = 0;
2215 	}
2216 
2217 	/*
2218 	 * Update dynamic beacon contents.  If this returns
2219 	 * non-zero then we need to remap the memory because
2220 	 * the beacon frame changed size (probably because
2221 	 * of the TIM bitmap).
2222 	 */
2223 	m = bf->bf_m;
2224 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2225 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2226 		/* XXX too conservative? */
2227 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2228 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2229 					     BUS_DMA_NOWAIT);
2230 		if (error != 0) {
2231 			if_printf(&sc->sc_if,
2232 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2233 			    __func__, error);
2234 			return;
2235 		}
2236 	}
2237 
2238 	/*
2239 	 * Handle slot time change when a non-ERP station joins/leaves
2240 	 * an 11g network.  The 802.11 layer notifies us via callback,
2241 	 * we mark updateslot, then wait one beacon before effecting
2242 	 * the change.  This gives associated stations at least one
2243 	 * beacon interval to note the state change.
2244 	 */
2245 	/* XXX locking */
2246 	if (sc->sc_updateslot == UPDATE)
2247 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2248 	else if (sc->sc_updateslot == COMMIT)
2249 		ath_setslottime(sc);		/* commit change to h/w */
2250 
2251 	/*
2252 	 * Check recent per-antenna transmit statistics and flip
2253 	 * the default antenna if noticeably more frames went out
2254 	 * on the non-default antenna.
2255 	 * XXX assumes 2 anntenae
2256 	 */
2257 	otherant = sc->sc_defant & 1 ? 2 : 1;
2258 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2259 		ath_setdefantenna(sc, otherant);
2260 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2261 
2262 	/*
2263 	 * Construct tx descriptor.
2264 	 */
2265 	ath_beacon_setup(sc, bf);
2266 
2267 	/*
2268 	 * Stop any current dma and put the new frame on the queue.
2269 	 * This should never fail since we check above that no frames
2270 	 * are still pending on the queue.
2271 	 */
2272 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2273 		DPRINTF(sc, ATH_DEBUG_ANY,
2274 			"%s: beacon queue %u did not stop?\n",
2275 			__func__, sc->sc_bhalq);
2276 	}
2277 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2278 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2279 
2280 	/*
2281 	 * Enable the CAB queue before the beacon queue to
2282 	 * insure cab frames are triggered by this beacon.
2283 	 */
2284 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2285 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2286 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2287 	ath_hal_txstart(ah, sc->sc_bhalq);
2288 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2289 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2290 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2291 
2292 	sc->sc_stats.ast_be_xmit++;
2293 }
2294 
2295 /*
2296  * Reset the hardware after detecting beacons have stopped.
2297  */
2298 static void
2299 ath_bstuck_proc(void *arg, int pending)
2300 {
2301 	struct ath_softc *sc = arg;
2302 	struct ifnet *ifp = &sc->sc_if;
2303 
2304 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2305 		sc->sc_bmisscount);
2306 	ath_reset(ifp);
2307 }
2308 
2309 /*
2310  * Reclaim beacon resources.
2311  */
2312 static void
2313 ath_beacon_free(struct ath_softc *sc)
2314 {
2315 	struct ath_buf *bf;
2316 
2317 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2318 		if (bf->bf_m != NULL) {
2319 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2320 			m_freem(bf->bf_m);
2321 			bf->bf_m = NULL;
2322 		}
2323 		if (bf->bf_node != NULL) {
2324 			ieee80211_free_node(bf->bf_node);
2325 			bf->bf_node = NULL;
2326 		}
2327 	}
2328 }
2329 
2330 /*
2331  * Configure the beacon and sleep timers.
2332  *
2333  * When operating as an AP this resets the TSF and sets
2334  * up the hardware to notify us when we need to issue beacons.
2335  *
2336  * When operating in station mode this sets up the beacon
2337  * timers according to the timestamp of the last received
2338  * beacon and the current TSF, configures PCF and DTIM
2339  * handling, programs the sleep registers so the hardware
2340  * will wakeup in time to receive beacons, and configures
2341  * the beacon miss handling so we'll receive a BMISS
2342  * interrupt when we stop seeing beacons from the AP
2343  * we've associated with.
2344  */
2345 static void
2346 ath_beacon_config(struct ath_softc *sc)
2347 {
2348 #define	TSF_TO_TU(_h,_l) \
2349 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2350 #define	FUDGE	2
2351 	struct ath_hal *ah = sc->sc_ah;
2352 	struct ieee80211com *ic = &sc->sc_ic;
2353 	struct ieee80211_node *ni = ic->ic_bss;
2354 	u_int32_t nexttbtt, intval, tsftu;
2355 	u_int64_t tsf;
2356 
2357 	/* extract tstamp from last beacon and convert to TU */
2358 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2359 			     LE_READ_4(ni->ni_tstamp.data));
2360 	/* NB: the beacon interval is kept internally in TU's */
2361 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2362 	if (nexttbtt == 0)		/* e.g. for ap mode */
2363 		nexttbtt = intval;
2364 	else if (intval)		/* NB: can be 0 for monitor mode */
2365 		nexttbtt = roundup(nexttbtt, intval);
2366 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2367 		__func__, nexttbtt, intval, ni->ni_intval);
2368 	if (ic->ic_opmode == IEEE80211_M_STA) {
2369 		HAL_BEACON_STATE bs;
2370 		int dtimperiod, dtimcount;
2371 		int cfpperiod, cfpcount;
2372 
2373 		/*
2374 		 * Setup dtim and cfp parameters according to
2375 		 * last beacon we received (which may be none).
2376 		 */
2377 		dtimperiod = ni->ni_dtim_period;
2378 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2379 			dtimperiod = 1;
2380 		dtimcount = ni->ni_dtim_count;
2381 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2382 			dtimcount = 0;		/* XXX? */
2383 		cfpperiod = 1;			/* NB: no PCF support yet */
2384 		cfpcount = 0;
2385 		/*
2386 		 * Pull nexttbtt forward to reflect the current
2387 		 * TSF and calculate dtim+cfp state for the result.
2388 		 */
2389 		tsf = ath_hal_gettsf64(ah);
2390 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2391 		do {
2392 			nexttbtt += intval;
2393 			if (--dtimcount < 0) {
2394 				dtimcount = dtimperiod - 1;
2395 				if (--cfpcount < 0)
2396 					cfpcount = cfpperiod - 1;
2397 			}
2398 		} while (nexttbtt < tsftu);
2399 		memset(&bs, 0, sizeof(bs));
2400 		bs.bs_intval = intval;
2401 		bs.bs_nexttbtt = nexttbtt;
2402 		bs.bs_dtimperiod = dtimperiod*intval;
2403 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2404 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2405 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2406 		bs.bs_cfpmaxduration = 0;
2407 #if 0
2408 		/*
2409 		 * The 802.11 layer records the offset to the DTIM
2410 		 * bitmap while receiving beacons; use it here to
2411 		 * enable h/w detection of our AID being marked in
2412 		 * the bitmap vector (to indicate frames for us are
2413 		 * pending at the AP).
2414 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2415 		 * XXX enable based on h/w rev for newer chips
2416 		 */
2417 		bs.bs_timoffset = ni->ni_timoff;
2418 #endif
2419 		/*
2420 		 * Calculate the number of consecutive beacons to miss
2421 		 * before taking a BMISS interrupt.  The configuration
2422 		 * is specified in ms, so we need to convert that to
2423 		 * TU's and then calculate based on the beacon interval.
2424 		 * Note that we clamp the result to at most 10 beacons.
2425 		 */
2426 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2427 		if (bs.bs_bmissthreshold > 10)
2428 			bs.bs_bmissthreshold = 10;
2429 		else if (bs.bs_bmissthreshold <= 0)
2430 			bs.bs_bmissthreshold = 1;
2431 
2432 		/*
2433 		 * Calculate sleep duration.  The configuration is
2434 		 * given in ms.  We insure a multiple of the beacon
2435 		 * period is used.  Also, if the sleep duration is
2436 		 * greater than the DTIM period then it makes senses
2437 		 * to make it a multiple of that.
2438 		 *
2439 		 * XXX fixed at 100ms
2440 		 */
2441 		bs.bs_sleepduration =
2442 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2443 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2444 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2445 
2446 		DPRINTF(sc, ATH_DEBUG_BEACON,
2447 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2448 			, __func__
2449 			, tsf, tsftu
2450 			, bs.bs_intval
2451 			, bs.bs_nexttbtt
2452 			, bs.bs_dtimperiod
2453 			, bs.bs_nextdtim
2454 			, bs.bs_bmissthreshold
2455 			, bs.bs_sleepduration
2456 			, bs.bs_cfpperiod
2457 			, bs.bs_cfpmaxduration
2458 			, bs.bs_cfpnext
2459 			, bs.bs_timoffset
2460 		);
2461 		ath_hal_intrset(ah, 0);
2462 		ath_hal_beacontimers(ah, &bs);
2463 		sc->sc_imask |= HAL_INT_BMISS;
2464 		ath_hal_intrset(ah, sc->sc_imask);
2465 	} else {
2466 		ath_hal_intrset(ah, 0);
2467 		if (nexttbtt == intval)
2468 			intval |= HAL_BEACON_RESET_TSF;
2469 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2470 			/*
2471 			 * In IBSS mode enable the beacon timers but only
2472 			 * enable SWBA interrupts if we need to manually
2473 			 * prepare beacon frames.  Otherwise we use a
2474 			 * self-linked tx descriptor and let the hardware
2475 			 * deal with things.
2476 			 */
2477 			intval |= HAL_BEACON_ENA;
2478 			if (!sc->sc_hasveol)
2479 				sc->sc_imask |= HAL_INT_SWBA;
2480 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2481 				/*
2482 				 * Pull nexttbtt forward to reflect
2483 				 * the current TSF.
2484 				 */
2485 				tsf = ath_hal_gettsf64(ah);
2486 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2487 				do {
2488 					nexttbtt += intval;
2489 				} while (nexttbtt < tsftu);
2490 			}
2491 			ath_beaconq_config(sc);
2492 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2493 			/*
2494 			 * In AP mode we enable the beacon timers and
2495 			 * SWBA interrupts to prepare beacon frames.
2496 			 */
2497 			intval |= HAL_BEACON_ENA;
2498 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2499 			ath_beaconq_config(sc);
2500 		}
2501 		ath_hal_beaconinit(ah, nexttbtt, intval);
2502 		sc->sc_bmisscount = 0;
2503 		ath_hal_intrset(ah, sc->sc_imask);
2504 		/*
2505 		 * When using a self-linked beacon descriptor in
2506 		 * ibss mode load it once here.
2507 		 */
2508 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2509 			ath_beacon_proc(sc, 0);
2510 	}
2511 	sc->sc_syncbeacon = 0;
2512 #undef UNDEF
2513 #undef TSF_TO_TU
2514 }
2515 
2516 static int
2517 ath_descdma_setup(struct ath_softc *sc,
2518 	struct ath_descdma *dd, ath_bufhead *head,
2519 	const char *name, int nbuf, int ndesc)
2520 {
2521 #define	DS2PHYS(_dd, _ds) \
2522 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2523 	struct ifnet *ifp = &sc->sc_if;
2524 	struct ath_desc *ds;
2525 	struct ath_buf *bf;
2526 	int i, bsize, error;
2527 
2528 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2529 	    __func__, name, nbuf, ndesc);
2530 
2531 	dd->dd_name = name;
2532 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2533 
2534 	/*
2535 	 * Setup DMA descriptor area.
2536 	 */
2537 	dd->dd_dmat = sc->sc_dmat;
2538 
2539 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2540 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2541 
2542 	if (error != 0) {
2543 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2544 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2545 		goto fail0;
2546 	}
2547 
2548 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2549 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2550 	if (error != 0) {
2551 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2552 		    nbuf * ndesc, dd->dd_name, error);
2553 		goto fail1;
2554 	}
2555 
2556 	/* allocate descriptors */
2557 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2558 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2559 	if (error != 0) {
2560 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2561 			"error %u\n", dd->dd_name, error);
2562 		goto fail2;
2563 	}
2564 
2565 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2566 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2567 	if (error != 0) {
2568 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2569 			dd->dd_name, error);
2570 		goto fail3;
2571 	}
2572 
2573 	ds = dd->dd_desc;
2574 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2575 	DPRINTF(sc, ATH_DEBUG_RESET,
2576 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2577 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2578 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2579 
2580 	/* allocate rx buffers */
2581 	bsize = sizeof(struct ath_buf) * nbuf;
2582 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2583 	if (bf == NULL) {
2584 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2585 			dd->dd_name, bsize);
2586 		goto fail4;
2587 	}
2588 	dd->dd_bufptr = bf;
2589 
2590 	STAILQ_INIT(head);
2591 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2592 		bf->bf_desc = ds;
2593 		bf->bf_daddr = DS2PHYS(dd, ds);
2594 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2595 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2596 		if (error != 0) {
2597 			if_printf(ifp, "unable to create dmamap for %s "
2598 				"buffer %u, error %u\n", dd->dd_name, i, error);
2599 			ath_descdma_cleanup(sc, dd, head);
2600 			return error;
2601 		}
2602 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2603 	}
2604 	return 0;
2605 fail4:
2606 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2607 fail3:
2608 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2609 fail2:
2610 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2611 fail1:
2612 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2613 fail0:
2614 	memset(dd, 0, sizeof(*dd));
2615 	return error;
2616 #undef DS2PHYS
2617 }
2618 
2619 static void
2620 ath_descdma_cleanup(struct ath_softc *sc,
2621 	struct ath_descdma *dd, ath_bufhead *head)
2622 {
2623 	struct ath_buf *bf;
2624 	struct ieee80211_node *ni;
2625 
2626 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2627 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2628 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2629 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2630 
2631 	STAILQ_FOREACH(bf, head, bf_list) {
2632 		if (bf->bf_m) {
2633 			m_freem(bf->bf_m);
2634 			bf->bf_m = NULL;
2635 		}
2636 		if (bf->bf_dmamap != NULL) {
2637 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2638 			bf->bf_dmamap = NULL;
2639 		}
2640 		ni = bf->bf_node;
2641 		bf->bf_node = NULL;
2642 		if (ni != NULL) {
2643 			/*
2644 			 * Reclaim node reference.
2645 			 */
2646 			ieee80211_free_node(ni);
2647 		}
2648 	}
2649 
2650 	STAILQ_INIT(head);
2651 	free(dd->dd_bufptr, M_ATHDEV);
2652 	memset(dd, 0, sizeof(*dd));
2653 }
2654 
2655 static int
2656 ath_desc_alloc(struct ath_softc *sc)
2657 {
2658 	int error;
2659 
2660 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2661 			"rx", ath_rxbuf, 1);
2662 	if (error != 0)
2663 		return error;
2664 
2665 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2666 			"tx", ath_txbuf, ATH_TXDESC);
2667 	if (error != 0) {
2668 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2669 		return error;
2670 	}
2671 
2672 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2673 			"beacon", 1, 1);
2674 	if (error != 0) {
2675 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2676 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2677 		return error;
2678 	}
2679 	return 0;
2680 }
2681 
2682 static void
2683 ath_desc_free(struct ath_softc *sc)
2684 {
2685 
2686 	if (sc->sc_bdma.dd_desc_len != 0)
2687 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2688 	if (sc->sc_txdma.dd_desc_len != 0)
2689 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2690 	if (sc->sc_rxdma.dd_desc_len != 0)
2691 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2692 }
2693 
2694 static struct ieee80211_node *
2695 ath_node_alloc(struct ieee80211_node_table *nt)
2696 {
2697 	struct ieee80211com *ic = nt->nt_ic;
2698 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2699 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2700 	struct ath_node *an;
2701 
2702 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2703 	if (an == NULL) {
2704 		/* XXX stat+msg */
2705 		return NULL;
2706 	}
2707 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2708 	ath_rate_node_init(sc, an);
2709 
2710 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2711 	return &an->an_node;
2712 }
2713 
2714 static void
2715 ath_node_free(struct ieee80211_node *ni)
2716 {
2717 	struct ieee80211com *ic = ni->ni_ic;
2718         struct ath_softc *sc = ic->ic_ifp->if_softc;
2719 
2720 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2721 
2722 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2723 	sc->sc_node_free(ni);
2724 }
2725 
2726 static u_int8_t
2727 ath_node_getrssi(const struct ieee80211_node *ni)
2728 {
2729 #define	HAL_EP_RND(x, mul) \
2730 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2731 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2732 	int32_t rssi;
2733 
2734 	/*
2735 	 * When only one frame is received there will be no state in
2736 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2737 	 */
2738 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2739 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2740 	else
2741 		rssi = ni->ni_rssi;
2742 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2743 #undef HAL_EP_RND
2744 }
2745 
2746 static int
2747 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2748 {
2749 	struct ath_hal *ah = sc->sc_ah;
2750 	int error;
2751 	struct mbuf *m;
2752 	struct ath_desc *ds;
2753 
2754 	m = bf->bf_m;
2755 	if (m == NULL) {
2756 		/*
2757 		 * NB: by assigning a page to the rx dma buffer we
2758 		 * implicitly satisfy the Atheros requirement that
2759 		 * this buffer be cache-line-aligned and sized to be
2760 		 * multiple of the cache line size.  Not doing this
2761 		 * causes weird stuff to happen (for the 5210 at least).
2762 		 */
2763 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2764 		if (m == NULL) {
2765 			DPRINTF(sc, ATH_DEBUG_ANY,
2766 				"%s: no mbuf/cluster\n", __func__);
2767 			sc->sc_stats.ast_rx_nombuf++;
2768 			return ENOMEM;
2769 		}
2770 		bf->bf_m = m;
2771 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2772 
2773 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2774 					     bf->bf_dmamap, m,
2775 					     BUS_DMA_NOWAIT);
2776 		if (error != 0) {
2777 			DPRINTF(sc, ATH_DEBUG_ANY,
2778 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2779 			    __func__, error);
2780 			sc->sc_stats.ast_rx_busdma++;
2781 			return error;
2782 		}
2783 		KASSERT(bf->bf_nseg == 1,
2784 			("multi-segment packet; nseg %u", bf->bf_nseg));
2785 	}
2786 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2787 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2788 
2789 	/*
2790 	 * Setup descriptors.  For receive we always terminate
2791 	 * the descriptor list with a self-linked entry so we'll
2792 	 * not get overrun under high load (as can happen with a
2793 	 * 5212 when ANI processing enables PHY error frames).
2794 	 *
2795 	 * To insure the last descriptor is self-linked we create
2796 	 * each descriptor as self-linked and add it to the end.  As
2797 	 * each additional descriptor is added the previous self-linked
2798 	 * entry is ``fixed'' naturally.  This should be safe even
2799 	 * if DMA is happening.  When processing RX interrupts we
2800 	 * never remove/process the last, self-linked, entry on the
2801 	 * descriptor list.  This insures the hardware always has
2802 	 * someplace to write a new frame.
2803 	 */
2804 	ds = bf->bf_desc;
2805 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2806 	ds->ds_data = bf->bf_segs[0].ds_addr;
2807 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2808 	ath_hal_setuprxdesc(ah, ds
2809 		, m->m_len		/* buffer size */
2810 		, 0
2811 	);
2812 
2813 	if (sc->sc_rxlink != NULL)
2814 		*sc->sc_rxlink = bf->bf_daddr;
2815 	sc->sc_rxlink = &ds->ds_link;
2816 	return 0;
2817 }
2818 
2819 /*
2820  * Extend 15-bit time stamp from rx descriptor to
2821  * a full 64-bit TSF using the specified TSF.
2822  */
2823 static inline u_int64_t
2824 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2825 {
2826 	if ((tsf & 0x7fff) < rstamp)
2827 		tsf -= 0x8000;
2828 	return ((tsf &~ 0x7fff) | rstamp);
2829 }
2830 
2831 /*
2832  * Intercept management frames to collect beacon rssi data
2833  * and to do ibss merges.
2834  */
2835 static void
2836 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2837 	struct ieee80211_node *ni,
2838 	int subtype, int rssi, u_int32_t rstamp)
2839 {
2840 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2841 
2842 	/*
2843 	 * Call up first so subsequent work can use information
2844 	 * potentially stored in the node (e.g. for ibss merge).
2845 	 */
2846 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2847 	switch (subtype) {
2848 	case IEEE80211_FC0_SUBTYPE_BEACON:
2849 		/* update rssi statistics for use by the hal */
2850 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2851 		if (sc->sc_syncbeacon &&
2852 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2853 			/*
2854 			 * Resync beacon timers using the tsf of the beacon
2855 			 * frame we just received.
2856 			 */
2857 			ath_beacon_config(sc);
2858 		}
2859 		/* fall thru... */
2860 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2861 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2862 		    ic->ic_state == IEEE80211_S_RUN) {
2863 			u_int64_t tsf = ath_extend_tsf(rstamp,
2864 				ath_hal_gettsf64(sc->sc_ah));
2865 
2866 			/*
2867 			 * Handle ibss merge as needed; check the tsf on the
2868 			 * frame before attempting the merge.  The 802.11 spec
2869 			 * says the station should change it's bssid to match
2870 			 * the oldest station with the same ssid, where oldest
2871 			 * is determined by the tsf.  Note that hardware
2872 			 * reconfiguration happens through callback to
2873 			 * ath_newstate as the state machine will go from
2874 			 * RUN -> RUN when this happens.
2875 			 */
2876 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2877 				DPRINTF(sc, ATH_DEBUG_STATE,
2878 				    "ibss merge, rstamp %u tsf %ju "
2879 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2880 				    (uintmax_t)ni->ni_tstamp.tsf);
2881 				(void) ieee80211_ibss_merge(ni);
2882 			}
2883 		}
2884 		break;
2885 	}
2886 }
2887 
2888 /*
2889  * Set the default antenna.
2890  */
2891 static void
2892 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2893 {
2894 	struct ath_hal *ah = sc->sc_ah;
2895 
2896 	/* XXX block beacon interrupts */
2897 	ath_hal_setdefantenna(ah, antenna);
2898 	if (sc->sc_defant != antenna)
2899 		sc->sc_stats.ast_ant_defswitch++;
2900 	sc->sc_defant = antenna;
2901 	sc->sc_rxotherant = 0;
2902 }
2903 
2904 static void
2905 ath_handle_micerror(struct ieee80211com *ic,
2906 	struct ieee80211_frame *wh, int keyix)
2907 {
2908 	struct ieee80211_node *ni;
2909 
2910 	/* XXX recheck MIC to deal w/ chips that lie */
2911 	/* XXX discard MIC errors on !data frames */
2912 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2913 	if (ni != NULL) {
2914 		ieee80211_notify_michael_failure(ic, wh, keyix);
2915 		ieee80211_free_node(ni);
2916 	}
2917 }
2918 
2919 static void
2920 ath_rx_proc(void *arg, int npending)
2921 {
2922 #define	PA2DESC(_sc, _pa) \
2923 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2924 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2925 	struct ath_softc *sc = arg;
2926 	struct ath_buf *bf;
2927 	struct ieee80211com *ic = &sc->sc_ic;
2928 	struct ifnet *ifp = &sc->sc_if;
2929 	struct ath_hal *ah = sc->sc_ah;
2930 	struct ath_desc *ds;
2931 	struct mbuf *m;
2932 	struct ieee80211_node *ni;
2933 	struct ath_node *an;
2934 	int len, ngood, type;
2935 	u_int phyerr;
2936 	HAL_STATUS status;
2937 	int16_t nf;
2938 	u_int64_t tsf;
2939 	uint8_t rxerr_tap, rxerr_mon;
2940 
2941 	NET_LOCK_GIANT();		/* XXX */
2942 
2943 	rxerr_tap =
2944 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
2945 
2946 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
2947 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
2948 	else if (ifp->if_flags & IFF_PROMISC)
2949 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
2950 
2951 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2952 	ngood = 0;
2953 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2954 	tsf = ath_hal_gettsf64(ah);
2955 	do {
2956 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2957 		if (bf == NULL) {		/* NB: shouldn't happen */
2958 			if_printf(ifp, "%s: no buffer!\n", __func__);
2959 			break;
2960 		}
2961 		ds = bf->bf_desc;
2962 		if (ds->ds_link == bf->bf_daddr) {
2963 			/* NB: never process the self-linked entry at the end */
2964 			break;
2965 		}
2966 		m = bf->bf_m;
2967 		if (m == NULL) {		/* NB: shouldn't happen */
2968 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2969 			break;
2970 		}
2971 		/* XXX sync descriptor memory */
2972 		/*
2973 		 * Must provide the virtual address of the current
2974 		 * descriptor, the physical address, and the virtual
2975 		 * address of the next descriptor in the h/w chain.
2976 		 * This allows the HAL to look ahead to see if the
2977 		 * hardware is done with a descriptor by checking the
2978 		 * done bit in the following descriptor and the address
2979 		 * of the current descriptor the DMA engine is working
2980 		 * on.  All this is necessary because of our use of
2981 		 * a self-linked list to avoid rx overruns.
2982 		 */
2983 		status = ath_hal_rxprocdesc(ah, ds,
2984 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
2985 				tsf, &ds->ds_rxstat);
2986 #ifdef AR_DEBUG
2987 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2988 			ath_printrxbuf(bf, status == HAL_OK);
2989 #endif
2990 		if (status == HAL_EINPROGRESS)
2991 			break;
2992 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2993 		if (ds->ds_rxstat.rs_more) {
2994 			/*
2995 			 * Frame spans multiple descriptors; this
2996 			 * cannot happen yet as we don't support
2997 			 * jumbograms.  If not in monitor mode,
2998 			 * discard the frame.
2999 			 */
3000 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3001 				sc->sc_stats.ast_rx_toobig++;
3002 				goto rx_next;
3003 			}
3004 			/* fall thru for monitor mode handling... */
3005 		} else if (ds->ds_rxstat.rs_status != 0) {
3006 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3007 				sc->sc_stats.ast_rx_crcerr++;
3008 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3009 				sc->sc_stats.ast_rx_fifoerr++;
3010 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3011 				sc->sc_stats.ast_rx_phyerr++;
3012 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3013 				sc->sc_stats.ast_rx_phy[phyerr]++;
3014 				goto rx_next;
3015 			}
3016 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3017 				/*
3018 				 * Decrypt error.  If the error occurred
3019 				 * because there was no hardware key, then
3020 				 * let the frame through so the upper layers
3021 				 * can process it.  This is necessary for 5210
3022 				 * parts which have no way to setup a ``clear''
3023 				 * key cache entry.
3024 				 *
3025 				 * XXX do key cache faulting
3026 				 */
3027 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3028 					goto rx_accept;
3029 				sc->sc_stats.ast_rx_badcrypt++;
3030 			}
3031 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3032 				sc->sc_stats.ast_rx_badmic++;
3033 				/*
3034 				 * Do minimal work required to hand off
3035 				 * the 802.11 header for notifcation.
3036 				 */
3037 				/* XXX frag's and qos frames */
3038 				len = ds->ds_rxstat.rs_datalen;
3039 				if (len >= sizeof (struct ieee80211_frame)) {
3040 					bus_dmamap_sync(sc->sc_dmat,
3041 					    bf->bf_dmamap,
3042 					    0, bf->bf_dmamap->dm_mapsize,
3043 					    BUS_DMASYNC_POSTREAD);
3044 					ath_handle_micerror(ic,
3045 					    mtod(m, struct ieee80211_frame *),
3046 					    sc->sc_splitmic ?
3047 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3048 				}
3049 			}
3050 			ifp->if_ierrors++;
3051 			/*
3052 			 * Reject error frames, we normally don't want
3053 			 * to see them in monitor mode (in monitor mode
3054 			 * allow through packets that have crypto problems).
3055 			 */
3056 
3057 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3058 				goto rx_next;
3059 		}
3060 rx_accept:
3061 		/*
3062 		 * Sync and unmap the frame.  At this point we're
3063 		 * committed to passing the mbuf somewhere so clear
3064 		 * bf_m; this means a new sk_buff must be allocated
3065 		 * when the rx descriptor is setup again to receive
3066 		 * another frame.
3067 		 */
3068 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3069 		    0, bf->bf_dmamap->dm_mapsize,
3070 		    BUS_DMASYNC_POSTREAD);
3071 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3072 		bf->bf_m = NULL;
3073 
3074 		m->m_pkthdr.rcvif = ifp;
3075 		len = ds->ds_rxstat.rs_datalen;
3076 		m->m_pkthdr.len = m->m_len = len;
3077 
3078 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3079 
3080 #if NBPFILTER > 0
3081 		if (sc->sc_drvbpf) {
3082 			u_int8_t rix;
3083 
3084 			/*
3085 			 * Discard anything shorter than an ack or cts.
3086 			 */
3087 			if (len < IEEE80211_ACK_LEN) {
3088 				DPRINTF(sc, ATH_DEBUG_RECV,
3089 					"%s: runt packet %d\n",
3090 					__func__, len);
3091 				sc->sc_stats.ast_rx_tooshort++;
3092 				m_freem(m);
3093 				goto rx_next;
3094 			}
3095 			rix = ds->ds_rxstat.rs_rate;
3096 			sc->sc_rx_th.wr_tsf = htole64(
3097 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3098 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3099 			if (ds->ds_rxstat.rs_status &
3100 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3101 				sc->sc_rx_th.wr_flags |=
3102 				    IEEE80211_RADIOTAP_F_BADFCS;
3103 			}
3104 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3105 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3106 			sc->sc_rx_th.wr_antnoise = nf;
3107 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3108 
3109 			bpf_mtap2(sc->sc_drvbpf,
3110 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
3111 		}
3112 #endif
3113 
3114 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3115 			m_freem(m);
3116 			goto rx_next;
3117 		}
3118 		/*
3119 		 * From this point on we assume the frame is at least
3120 		 * as large as ieee80211_frame_min; verify that.
3121 		 */
3122 		if (len < IEEE80211_MIN_LEN) {
3123 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3124 				__func__, len);
3125 			sc->sc_stats.ast_rx_tooshort++;
3126 			m_freem(m);
3127 			goto rx_next;
3128 		}
3129 
3130 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3131 			ieee80211_dump_pkt(mtod(m, void *), len,
3132 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3133 				   ds->ds_rxstat.rs_rssi);
3134 		}
3135 
3136 		m_adj(m, -IEEE80211_CRC_LEN);
3137 
3138 		/*
3139 		 * Locate the node for sender, track state, and then
3140 		 * pass the (referenced) node up to the 802.11 layer
3141 		 * for its use.
3142 		 */
3143 		ni = ieee80211_find_rxnode_withkey(ic,
3144 			mtod(m, const struct ieee80211_frame_min *),
3145 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3146 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3147 		/*
3148 		 * Track rx rssi and do any rx antenna management.
3149 		 */
3150 		an = ATH_NODE(ni);
3151 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3152 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3153 		/*
3154 		 * Send frame up for processing.
3155 		 */
3156 		type = ieee80211_input(ic, m, ni,
3157 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3158 		ieee80211_free_node(ni);
3159 		if (sc->sc_diversity) {
3160 			/*
3161 			 * When using fast diversity, change the default rx
3162 			 * antenna if diversity chooses the other antenna 3
3163 			 * times in a row.
3164 			 */
3165 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3166 				if (++sc->sc_rxotherant >= 3)
3167 					ath_setdefantenna(sc,
3168 						ds->ds_rxstat.rs_antenna);
3169 			} else
3170 				sc->sc_rxotherant = 0;
3171 		}
3172 		if (sc->sc_softled) {
3173 			/*
3174 			 * Blink for any data frame.  Otherwise do a
3175 			 * heartbeat-style blink when idle.  The latter
3176 			 * is mainly for station mode where we depend on
3177 			 * periodic beacon frames to trigger the poll event.
3178 			 */
3179 			if (type == IEEE80211_FC0_TYPE_DATA) {
3180 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3181 				ath_led_event(sc, ATH_LED_RX);
3182 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3183 				ath_led_event(sc, ATH_LED_POLL);
3184 		}
3185 		/*
3186 		 * Arrange to update the last rx timestamp only for
3187 		 * frames from our ap when operating in station mode.
3188 		 * This assumes the rx key is always setup when associated.
3189 		 */
3190 		if (ic->ic_opmode == IEEE80211_M_STA &&
3191 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3192 			ngood++;
3193 rx_next:
3194 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3195 	} while (ath_rxbuf_init(sc, bf) == 0);
3196 
3197 	/* rx signal state monitoring */
3198 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3199 #if 0
3200 	if (ath_hal_radar_event(ah))
3201 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3202 #endif
3203 	if (ngood)
3204 		sc->sc_lastrx = tsf;
3205 
3206 #ifdef __NetBSD__
3207 	/* XXX Why isn't this necessary in FreeBSD? */
3208 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3209 		ath_start(ifp);
3210 #endif /* __NetBSD__ */
3211 
3212 	NET_UNLOCK_GIANT();		/* XXX */
3213 #undef PA2DESC
3214 }
3215 
3216 /*
3217  * Setup a h/w transmit queue.
3218  */
3219 static struct ath_txq *
3220 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3221 {
3222 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3223 	struct ath_hal *ah = sc->sc_ah;
3224 	HAL_TXQ_INFO qi;
3225 	int qnum;
3226 
3227 	memset(&qi, 0, sizeof(qi));
3228 	qi.tqi_subtype = subtype;
3229 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3230 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3231 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3232 	/*
3233 	 * Enable interrupts only for EOL and DESC conditions.
3234 	 * We mark tx descriptors to receive a DESC interrupt
3235 	 * when a tx queue gets deep; otherwise waiting for the
3236 	 * EOL to reap descriptors.  Note that this is done to
3237 	 * reduce interrupt load and this only defers reaping
3238 	 * descriptors, never transmitting frames.  Aside from
3239 	 * reducing interrupts this also permits more concurrency.
3240 	 * The only potential downside is if the tx queue backs
3241 	 * up in which case the top half of the kernel may backup
3242 	 * due to a lack of tx descriptors.
3243 	 */
3244 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3245 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3246 	if (qnum == -1) {
3247 		/*
3248 		 * NB: don't print a message, this happens
3249 		 * normally on parts with too few tx queues
3250 		 */
3251 		return NULL;
3252 	}
3253 	if (qnum >= N(sc->sc_txq)) {
3254 		device_printf(sc->sc_dev,
3255 			"hal qnum %u out of range, max %zu!\n",
3256 			qnum, N(sc->sc_txq));
3257 		ath_hal_releasetxqueue(ah, qnum);
3258 		return NULL;
3259 	}
3260 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3261 		struct ath_txq *txq = &sc->sc_txq[qnum];
3262 
3263 		txq->axq_qnum = qnum;
3264 		txq->axq_depth = 0;
3265 		txq->axq_intrcnt = 0;
3266 		txq->axq_link = NULL;
3267 		STAILQ_INIT(&txq->axq_q);
3268 		ATH_TXQ_LOCK_INIT(sc, txq);
3269 		sc->sc_txqsetup |= 1<<qnum;
3270 	}
3271 	return &sc->sc_txq[qnum];
3272 #undef N
3273 }
3274 
3275 /*
3276  * Setup a hardware data transmit queue for the specified
3277  * access control.  The hal may not support all requested
3278  * queues in which case it will return a reference to a
3279  * previously setup queue.  We record the mapping from ac's
3280  * to h/w queues for use by ath_tx_start and also track
3281  * the set of h/w queues being used to optimize work in the
3282  * transmit interrupt handler and related routines.
3283  */
3284 static int
3285 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3286 {
3287 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3288 	struct ath_txq *txq;
3289 
3290 	if (ac >= N(sc->sc_ac2q)) {
3291 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3292 			ac, N(sc->sc_ac2q));
3293 		return 0;
3294 	}
3295 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3296 	if (txq != NULL) {
3297 		sc->sc_ac2q[ac] = txq;
3298 		return 1;
3299 	} else
3300 		return 0;
3301 #undef N
3302 }
3303 
3304 /*
3305  * Update WME parameters for a transmit queue.
3306  */
3307 static int
3308 ath_txq_update(struct ath_softc *sc, int ac)
3309 {
3310 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3311 #define	ATH_TXOP_TO_US(v)		(v<<5)
3312 	struct ieee80211com *ic = &sc->sc_ic;
3313 	struct ath_txq *txq = sc->sc_ac2q[ac];
3314 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3315 	struct ath_hal *ah = sc->sc_ah;
3316 	HAL_TXQ_INFO qi;
3317 
3318 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3319 	qi.tqi_aifs = wmep->wmep_aifsn;
3320 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3321 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3322 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3323 
3324 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3325 		device_printf(sc->sc_dev, "unable to update hardware queue "
3326 			"parameters for %s traffic!\n",
3327 			ieee80211_wme_acnames[ac]);
3328 		return 0;
3329 	} else {
3330 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3331 		return 1;
3332 	}
3333 #undef ATH_TXOP_TO_US
3334 #undef ATH_EXPONENT_TO_VALUE
3335 }
3336 
3337 /*
3338  * Callback from the 802.11 layer to update WME parameters.
3339  */
3340 static int
3341 ath_wme_update(struct ieee80211com *ic)
3342 {
3343 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3344 
3345 	return !ath_txq_update(sc, WME_AC_BE) ||
3346 	    !ath_txq_update(sc, WME_AC_BK) ||
3347 	    !ath_txq_update(sc, WME_AC_VI) ||
3348 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3349 }
3350 
3351 /*
3352  * Reclaim resources for a setup queue.
3353  */
3354 static void
3355 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3356 {
3357 
3358 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3359 	ATH_TXQ_LOCK_DESTROY(txq);
3360 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3361 }
3362 
3363 /*
3364  * Reclaim all tx queue resources.
3365  */
3366 static void
3367 ath_tx_cleanup(struct ath_softc *sc)
3368 {
3369 	int i;
3370 
3371 	ATH_TXBUF_LOCK_DESTROY(sc);
3372 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3373 		if (ATH_TXQ_SETUP(sc, i))
3374 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3375 }
3376 
3377 /*
3378  * Defragment an mbuf chain, returning at most maxfrags separate
3379  * mbufs+clusters.  If this is not possible NULL is returned and
3380  * the original mbuf chain is left in it's present (potentially
3381  * modified) state.  We use two techniques: collapsing consecutive
3382  * mbufs and replacing consecutive mbufs by a cluster.
3383  */
3384 static struct mbuf *
3385 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3386 {
3387 	struct mbuf *m, *n, *n2, **prev;
3388 	u_int curfrags;
3389 
3390 	/*
3391 	 * Calculate the current number of frags.
3392 	 */
3393 	curfrags = 0;
3394 	for (m = m0; m != NULL; m = m->m_next)
3395 		curfrags++;
3396 	/*
3397 	 * First, try to collapse mbufs.  Note that we always collapse
3398 	 * towards the front so we don't need to deal with moving the
3399 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3400 	 * less data than the following.
3401 	 */
3402 	m = m0;
3403 again:
3404 	for (;;) {
3405 		n = m->m_next;
3406 		if (n == NULL)
3407 			break;
3408 		if (n->m_len < M_TRAILINGSPACE(m)) {
3409 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3410 				n->m_len);
3411 			m->m_len += n->m_len;
3412 			m->m_next = n->m_next;
3413 			m_free(n);
3414 			if (--curfrags <= maxfrags)
3415 				return m0;
3416 		} else
3417 			m = n;
3418 	}
3419 	KASSERT(maxfrags > 1,
3420 		("maxfrags %u, but normal collapse failed", maxfrags));
3421 	/*
3422 	 * Collapse consecutive mbufs to a cluster.
3423 	 */
3424 	prev = &m0->m_next;		/* NB: not the first mbuf */
3425 	while ((n = *prev) != NULL) {
3426 		if ((n2 = n->m_next) != NULL &&
3427 		    n->m_len + n2->m_len < MCLBYTES) {
3428 			m = m_getcl(how, MT_DATA, 0);
3429 			if (m == NULL)
3430 				goto bad;
3431 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3432 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3433 				n2->m_len);
3434 			m->m_len = n->m_len + n2->m_len;
3435 			m->m_next = n2->m_next;
3436 			*prev = m;
3437 			m_free(n);
3438 			m_free(n2);
3439 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3440 				return m0;
3441 			/*
3442 			 * Still not there, try the normal collapse
3443 			 * again before we allocate another cluster.
3444 			 */
3445 			goto again;
3446 		}
3447 		prev = &n->m_next;
3448 	}
3449 	/*
3450 	 * No place where we can collapse to a cluster; punt.
3451 	 * This can occur if, for example, you request 2 frags
3452 	 * but the packet requires that both be clusters (we
3453 	 * never reallocate the first mbuf to avoid moving the
3454 	 * packet header).
3455 	 */
3456 bad:
3457 	return NULL;
3458 }
3459 
3460 /*
3461  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3462  */
3463 static int
3464 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3465 {
3466 	int i;
3467 
3468 	for (i = 0; i < rt->rateCount; i++)
3469 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3470 			return i;
3471 	return 0;		/* NB: lowest rate */
3472 }
3473 
3474 static void
3475 ath_freetx(struct mbuf *m)
3476 {
3477 	struct mbuf *next;
3478 
3479 	do {
3480 		next = m->m_nextpkt;
3481 		m->m_nextpkt = NULL;
3482 		m_freem(m);
3483 	} while ((m = next) != NULL);
3484 }
3485 
3486 static int
3487 deduct_pad_bytes(int len, int hdrlen)
3488 {
3489 	/* XXX I am suspicious that this code, which I extracted
3490 	 * XXX from ath_tx_start() for reuse, does the right thing.
3491 	 */
3492 	return len - (hdrlen & 3);
3493 }
3494 
3495 static int
3496 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3497     struct mbuf *m0)
3498 {
3499 	struct ieee80211com *ic = &sc->sc_ic;
3500 	struct ath_hal *ah = sc->sc_ah;
3501 	struct ifnet *ifp = &sc->sc_if;
3502 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3503 	int i, error, iswep, ismcast, isfrag, ismrr;
3504 	int keyix, hdrlen, pktlen, try0;
3505 	u_int8_t rix, txrate, ctsrate;
3506 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3507 	struct ath_desc *ds, *ds0;
3508 	struct ath_txq *txq;
3509 	struct ieee80211_frame *wh;
3510 	u_int subtype, flags, ctsduration;
3511 	HAL_PKT_TYPE atype;
3512 	const HAL_RATE_TABLE *rt;
3513 	HAL_BOOL shortPreamble;
3514 	struct ath_node *an;
3515 	struct mbuf *m;
3516 	u_int pri;
3517 
3518 	wh = mtod(m0, struct ieee80211_frame *);
3519 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3520 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3521 	isfrag = m0->m_flags & M_FRAG;
3522 	hdrlen = ieee80211_anyhdrsize(wh);
3523 	/*
3524 	 * Packet length must not include any
3525 	 * pad bytes; deduct them here.
3526 	 */
3527 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3528 
3529 	if (iswep) {
3530 		const struct ieee80211_cipher *cip;
3531 		struct ieee80211_key *k;
3532 
3533 		/*
3534 		 * Construct the 802.11 header+trailer for an encrypted
3535 		 * frame. The only reason this can fail is because of an
3536 		 * unknown or unsupported cipher/key type.
3537 		 */
3538 		k = ieee80211_crypto_encap(ic, ni, m0);
3539 		if (k == NULL) {
3540 			/*
3541 			 * This can happen when the key is yanked after the
3542 			 * frame was queued.  Just discard the frame; the
3543 			 * 802.11 layer counts failures and provides
3544 			 * debugging/diagnostics.
3545 			 */
3546 			ath_freetx(m0);
3547 			return EIO;
3548 		}
3549 		/*
3550 		 * Adjust the packet + header lengths for the crypto
3551 		 * additions and calculate the h/w key index.  When
3552 		 * a s/w mic is done the frame will have had any mic
3553 		 * added to it prior to entry so m0->m_pkthdr.len above will
3554 		 * account for it. Otherwise we need to add it to the
3555 		 * packet length.
3556 		 */
3557 		cip = k->wk_cipher;
3558 		hdrlen += cip->ic_header;
3559 		pktlen += cip->ic_header + cip->ic_trailer;
3560 		/* NB: frags always have any TKIP MIC done in s/w */
3561 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3562 			pktlen += cip->ic_miclen;
3563 		keyix = k->wk_keyix;
3564 
3565 		/* packet header may have moved, reset our local pointer */
3566 		wh = mtod(m0, struct ieee80211_frame *);
3567 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3568 		/*
3569 		 * Use station key cache slot, if assigned.
3570 		 */
3571 		keyix = ni->ni_ucastkey.wk_keyix;
3572 		if (keyix == IEEE80211_KEYIX_NONE)
3573 			keyix = HAL_TXKEYIX_INVALID;
3574 	} else
3575 		keyix = HAL_TXKEYIX_INVALID;
3576 
3577 	pktlen += IEEE80211_CRC_LEN;
3578 
3579 	/*
3580 	 * Load the DMA map so any coalescing is done.  This
3581 	 * also calculates the number of descriptors we need.
3582 	 */
3583 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3584 				     BUS_DMA_NOWAIT);
3585 	if (error == EFBIG) {
3586 		/* XXX packet requires too many descriptors */
3587 		bf->bf_nseg = ATH_TXDESC+1;
3588 	} else if (error != 0) {
3589 		sc->sc_stats.ast_tx_busdma++;
3590 		ath_freetx(m0);
3591 		return error;
3592 	}
3593 	/*
3594 	 * Discard null packets and check for packets that
3595 	 * require too many TX descriptors.  We try to convert
3596 	 * the latter to a cluster.
3597 	 */
3598 	if (error == EFBIG) {		/* too many desc's, linearize */
3599 		sc->sc_stats.ast_tx_linear++;
3600 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3601 		if (m == NULL) {
3602 			ath_freetx(m0);
3603 			sc->sc_stats.ast_tx_nombuf++;
3604 			return ENOMEM;
3605 		}
3606 		m0 = m;
3607 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3608 					     BUS_DMA_NOWAIT);
3609 		if (error != 0) {
3610 			sc->sc_stats.ast_tx_busdma++;
3611 			ath_freetx(m0);
3612 			return error;
3613 		}
3614 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3615 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3616 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3617 		sc->sc_stats.ast_tx_nodata++;
3618 		ath_freetx(m0);
3619 		return EIO;
3620 	}
3621 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3622 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3623             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3624 	bf->bf_m = m0;
3625 	bf->bf_node = ni;			/* NB: held reference */
3626 
3627 	/* setup descriptors */
3628 	ds = bf->bf_desc;
3629 	rt = sc->sc_currates;
3630 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3631 
3632 	/*
3633 	 * NB: the 802.11 layer marks whether or not we should
3634 	 * use short preamble based on the current mode and
3635 	 * negotiated parameters.
3636 	 */
3637 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3638 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3639 		shortPreamble = AH_TRUE;
3640 		sc->sc_stats.ast_tx_shortpre++;
3641 	} else {
3642 		shortPreamble = AH_FALSE;
3643 	}
3644 
3645 	an = ATH_NODE(ni);
3646 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3647 	ismrr = 0;				/* default no multi-rate retry*/
3648 	/*
3649 	 * Calculate Atheros packet type from IEEE80211 packet header,
3650 	 * setup for rate calculations, and select h/w transmit queue.
3651 	 */
3652 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3653 	case IEEE80211_FC0_TYPE_MGT:
3654 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3655 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3656 			atype = HAL_PKT_TYPE_BEACON;
3657 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3658 			atype = HAL_PKT_TYPE_PROBE_RESP;
3659 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3660 			atype = HAL_PKT_TYPE_ATIM;
3661 		else
3662 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3663 		rix = sc->sc_minrateix;
3664 		txrate = rt->info[rix].rateCode;
3665 		if (shortPreamble)
3666 			txrate |= rt->info[rix].shortPreamble;
3667 		try0 = ATH_TXMGTTRY;
3668 		/* NB: force all management frames to highest queue */
3669 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3670 			/* NB: force all management frames to highest queue */
3671 			pri = WME_AC_VO;
3672 		} else
3673 			pri = WME_AC_BE;
3674 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3675 		break;
3676 	case IEEE80211_FC0_TYPE_CTL:
3677 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3678 		rix = sc->sc_minrateix;
3679 		txrate = rt->info[rix].rateCode;
3680 		if (shortPreamble)
3681 			txrate |= rt->info[rix].shortPreamble;
3682 		try0 = ATH_TXMGTTRY;
3683 		/* NB: force all ctl frames to highest queue */
3684 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3685 			/* NB: force all ctl frames to highest queue */
3686 			pri = WME_AC_VO;
3687 		} else
3688 			pri = WME_AC_BE;
3689 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3690 		break;
3691 	case IEEE80211_FC0_TYPE_DATA:
3692 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3693 		/*
3694 		 * Data frames: multicast frames go out at a fixed rate,
3695 		 * otherwise consult the rate control module for the
3696 		 * rate to use.
3697 		 */
3698 		if (ismcast) {
3699 			/*
3700 			 * Check mcast rate setting in case it's changed.
3701 			 * XXX move out of fastpath
3702 			 */
3703 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3704 				sc->sc_mcastrix =
3705 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3706 				sc->sc_mcastrate = ic->ic_mcast_rate;
3707 			}
3708 			rix = sc->sc_mcastrix;
3709 			txrate = rt->info[rix].rateCode;
3710 			try0 = 1;
3711 		} else {
3712 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3713 				&rix, &try0, &txrate);
3714 			sc->sc_txrate = txrate;		/* for LED blinking */
3715 			if (try0 != ATH_TXMAXTRY)
3716 				ismrr = 1;
3717 		}
3718 		pri = M_WME_GETAC(m0);
3719 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3720 			flags |= HAL_TXDESC_NOACK;
3721 		break;
3722 	default:
3723 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3724 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3725 		/* XXX statistic */
3726 		ath_freetx(m0);
3727 		return EIO;
3728 	}
3729 	txq = sc->sc_ac2q[pri];
3730 
3731 	/*
3732 	 * When servicing one or more stations in power-save mode
3733 	 * multicast frames must be buffered until after the beacon.
3734 	 * We use the CAB queue for that.
3735 	 */
3736 	if (ismcast && ic->ic_ps_sta) {
3737 		txq = sc->sc_cabq;
3738 		/* XXX? more bit in 802.11 frame header */
3739 	}
3740 
3741 	/*
3742 	 * Calculate miscellaneous flags.
3743 	 */
3744 	if (ismcast) {
3745 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3746 	} else if (pktlen > ic->ic_rtsthreshold) {
3747 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3748 		cix = rt->info[rix].controlRate;
3749 		sc->sc_stats.ast_tx_rts++;
3750 	}
3751 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3752 		sc->sc_stats.ast_tx_noack++;
3753 
3754 	/*
3755 	 * If 802.11g protection is enabled, determine whether
3756 	 * to use RTS/CTS or just CTS.  Note that this is only
3757 	 * done for OFDM unicast frames.
3758 	 */
3759 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3760 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3761 	    (flags & HAL_TXDESC_NOACK) == 0) {
3762 		/* XXX fragments must use CCK rates w/ protection */
3763 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3764 			flags |= HAL_TXDESC_RTSENA;
3765 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3766 			flags |= HAL_TXDESC_CTSENA;
3767 		if (isfrag) {
3768 			/*
3769 			 * For frags it would be desirable to use the
3770 			 * highest CCK rate for RTS/CTS.  But stations
3771 			 * farther away may detect it at a lower CCK rate
3772 			 * so use the configured protection rate instead
3773 			 * (for now).
3774 			 */
3775 			cix = rt->info[sc->sc_protrix].controlRate;
3776 		} else
3777 			cix = rt->info[sc->sc_protrix].controlRate;
3778 		sc->sc_stats.ast_tx_protect++;
3779 	}
3780 
3781 	/*
3782 	 * Calculate duration.  This logically belongs in the 802.11
3783 	 * layer but it lacks sufficient information to calculate it.
3784 	 */
3785 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3786 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3787 		u_int16_t dur;
3788 		/*
3789 		 * XXX not right with fragmentation.
3790 		 */
3791 		if (shortPreamble)
3792 			dur = rt->info[rix].spAckDuration;
3793 		else
3794 			dur = rt->info[rix].lpAckDuration;
3795 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3796 			dur += dur;             /* additional SIFS+ACK */
3797 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3798 			/*
3799 			 * Include the size of next fragment so NAV is
3800 			 * updated properly.  The last fragment uses only
3801 			 * the ACK duration
3802 			 */
3803 			dur += ath_hal_computetxtime(ah, rt,
3804 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3805 			        hdrlen) -
3806 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3807 			    rix, shortPreamble);
3808 		}
3809 		if (isfrag) {
3810 			/*
3811 			 * Force hardware to use computed duration for next
3812 			 * fragment by disabling multi-rate retry which updates
3813 			 * duration based on the multi-rate duration table.
3814 			 */
3815 			try0 = ATH_TXMAXTRY;
3816 		}
3817 		*(u_int16_t *)wh->i_dur = htole16(dur);
3818 	}
3819 
3820 	/*
3821 	 * Calculate RTS/CTS rate and duration if needed.
3822 	 */
3823 	ctsduration = 0;
3824 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3825 		/*
3826 		 * CTS transmit rate is derived from the transmit rate
3827 		 * by looking in the h/w rate table.  We must also factor
3828 		 * in whether or not a short preamble is to be used.
3829 		 */
3830 		/* NB: cix is set above where RTS/CTS is enabled */
3831 		KASSERT(cix != 0xff, ("cix not setup"));
3832 		ctsrate = rt->info[cix].rateCode;
3833 		/*
3834 		 * Compute the transmit duration based on the frame
3835 		 * size and the size of an ACK frame.  We call into the
3836 		 * HAL to do the computation since it depends on the
3837 		 * characteristics of the actual PHY being used.
3838 		 *
3839 		 * NB: CTS is assumed the same size as an ACK so we can
3840 		 *     use the precalculated ACK durations.
3841 		 */
3842 		if (shortPreamble) {
3843 			ctsrate |= rt->info[cix].shortPreamble;
3844 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3845 				ctsduration += rt->info[cix].spAckDuration;
3846 			ctsduration += ath_hal_computetxtime(ah,
3847 				rt, pktlen, rix, AH_TRUE);
3848 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3849 				ctsduration += rt->info[rix].spAckDuration;
3850 		} else {
3851 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3852 				ctsduration += rt->info[cix].lpAckDuration;
3853 			ctsduration += ath_hal_computetxtime(ah,
3854 				rt, pktlen, rix, AH_FALSE);
3855 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3856 				ctsduration += rt->info[rix].lpAckDuration;
3857 		}
3858 		/*
3859 		 * Must disable multi-rate retry when using RTS/CTS.
3860 		 */
3861 		ismrr = 0;
3862 		try0 = ATH_TXMGTTRY;		/* XXX */
3863 	} else
3864 		ctsrate = 0;
3865 
3866 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3867 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3868 			sc->sc_hwmap[txrate].ieeerate, -1);
3869 #if NBPFILTER > 0
3870 	if (ic->ic_rawbpf)
3871 		bpf_mtap(ic->ic_rawbpf, m0);
3872 	if (sc->sc_drvbpf) {
3873 		u_int64_t tsf = ath_hal_gettsf64(ah);
3874 
3875 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3876 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3877 		if (iswep)
3878 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3879 		if (isfrag)
3880 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3881 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3882 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3883 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3884 
3885 		bpf_mtap2(sc->sc_drvbpf,
3886 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3887 	}
3888 #endif
3889 
3890 	/*
3891 	 * Determine if a tx interrupt should be generated for
3892 	 * this descriptor.  We take a tx interrupt to reap
3893 	 * descriptors when the h/w hits an EOL condition or
3894 	 * when the descriptor is specifically marked to generate
3895 	 * an interrupt.  We periodically mark descriptors in this
3896 	 * way to insure timely replenishing of the supply needed
3897 	 * for sending frames.  Defering interrupts reduces system
3898 	 * load and potentially allows more concurrent work to be
3899 	 * done but if done to aggressively can cause senders to
3900 	 * backup.
3901 	 *
3902 	 * NB: use >= to deal with sc_txintrperiod changing
3903 	 *     dynamically through sysctl.
3904 	 */
3905 	if (flags & HAL_TXDESC_INTREQ) {
3906 		txq->axq_intrcnt = 0;
3907 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3908 		flags |= HAL_TXDESC_INTREQ;
3909 		txq->axq_intrcnt = 0;
3910 	}
3911 
3912 	/*
3913 	 * Formulate first tx descriptor with tx controls.
3914 	 */
3915 	/* XXX check return value? */
3916 	ath_hal_setuptxdesc(ah, ds
3917 		, pktlen		/* packet length */
3918 		, hdrlen		/* header length */
3919 		, atype			/* Atheros packet type */
3920 		, ni->ni_txpower	/* txpower */
3921 		, txrate, try0		/* series 0 rate/tries */
3922 		, keyix			/* key cache index */
3923 		, sc->sc_txantenna	/* antenna mode */
3924 		, flags			/* flags */
3925 		, ctsrate		/* rts/cts rate */
3926 		, ctsduration		/* rts/cts duration */
3927 	);
3928 	bf->bf_flags = flags;
3929 	/*
3930 	 * Setup the multi-rate retry state only when we're
3931 	 * going to use it.  This assumes ath_hal_setuptxdesc
3932 	 * initializes the descriptors (so we don't have to)
3933 	 * when the hardware supports multi-rate retry and
3934 	 * we don't use it.
3935 	 */
3936 	if (ismrr)
3937 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3938 
3939 	/*
3940 	 * Fillin the remainder of the descriptor info.
3941 	 */
3942 	ds0 = ds;
3943 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3944 		ds->ds_data = bf->bf_segs[i].ds_addr;
3945 		if (i == bf->bf_nseg - 1)
3946 			ds->ds_link = 0;
3947 		else
3948 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3949 		ath_hal_filltxdesc(ah, ds
3950 			, bf->bf_segs[i].ds_len	/* segment length */
3951 			, i == 0		/* first segment */
3952 			, i == bf->bf_nseg - 1	/* last segment */
3953 			, ds0			/* first descriptor */
3954 		);
3955 
3956 		/* NB: The desc swap function becomes void,
3957 		 * if descriptor swapping is not enabled
3958 		 */
3959 		ath_desc_swap(ds);
3960 
3961 		DPRINTF(sc, ATH_DEBUG_XMIT,
3962 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3963 			__func__, i, ds->ds_link, ds->ds_data,
3964 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3965 	}
3966 	/*
3967 	 * Insert the frame on the outbound list and
3968 	 * pass it on to the hardware.
3969 	 */
3970 	ATH_TXQ_LOCK(txq);
3971 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3972 	if (txq->axq_link == NULL) {
3973 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3974 		DPRINTF(sc, ATH_DEBUG_XMIT,
3975 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3976 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3977 		    txq->axq_depth);
3978 	} else {
3979 		*txq->axq_link = HTOAH32(bf->bf_daddr);
3980 		DPRINTF(sc, ATH_DEBUG_XMIT,
3981 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3982 		    __func__, txq->axq_qnum, txq->axq_link,
3983 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3984 	}
3985 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3986 	/*
3987 	 * The CAB queue is started from the SWBA handler since
3988 	 * frames only go out on DTIM and to avoid possible races.
3989 	 */
3990 	if (txq != sc->sc_cabq)
3991 		ath_hal_txstart(ah, txq->axq_qnum);
3992 	ATH_TXQ_UNLOCK(txq);
3993 
3994 	return 0;
3995 }
3996 
3997 /*
3998  * Process completed xmit descriptors from the specified queue.
3999  */
4000 static int
4001 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4002 {
4003 	struct ath_hal *ah = sc->sc_ah;
4004 	struct ieee80211com *ic = &sc->sc_ic;
4005 	struct ath_buf *bf;
4006 	struct ath_desc *ds, *ds0;
4007 	struct ieee80211_node *ni;
4008 	struct ath_node *an;
4009 	int sr, lr, pri, nacked;
4010 	HAL_STATUS status;
4011 
4012 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4013 		__func__, txq->axq_qnum,
4014 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4015 		txq->axq_link);
4016 	nacked = 0;
4017 	for (;;) {
4018 		ATH_TXQ_LOCK(txq);
4019 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4020 		bf = STAILQ_FIRST(&txq->axq_q);
4021 		if (bf == NULL) {
4022 			txq->axq_link = NULL;
4023 			ATH_TXQ_UNLOCK(txq);
4024 			break;
4025 		}
4026 		ds0 = &bf->bf_desc[0];
4027 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4028 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4029 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4030 			ath_printtxbuf(bf, status == HAL_OK);
4031 		if (status == HAL_EINPROGRESS) {
4032 			ATH_TXQ_UNLOCK(txq);
4033 			break;
4034 		}
4035 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4036 		ATH_TXQ_UNLOCK(txq);
4037 
4038 		ni = bf->bf_node;
4039 		if (ni != NULL) {
4040 			an = ATH_NODE(ni);
4041 			if (ds->ds_txstat.ts_status == 0) {
4042 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4043 				sc->sc_stats.ast_ant_tx[txant]++;
4044 				sc->sc_ant_tx[txant]++;
4045 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4046 					sc->sc_stats.ast_tx_altrate++;
4047 				sc->sc_stats.ast_tx_rssi =
4048 					ds->ds_txstat.ts_rssi;
4049 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4050 					ds->ds_txstat.ts_rssi);
4051 				pri = M_WME_GETAC(bf->bf_m);
4052 				if (pri >= WME_AC_VO)
4053 					ic->ic_wme.wme_hipri_traffic++;
4054 				ni->ni_inact = ni->ni_inact_reload;
4055 			} else {
4056 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4057 					sc->sc_stats.ast_tx_xretries++;
4058 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4059 					sc->sc_stats.ast_tx_fifoerr++;
4060 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4061 					sc->sc_stats.ast_tx_filtered++;
4062 			}
4063 			sr = ds->ds_txstat.ts_shortretry;
4064 			lr = ds->ds_txstat.ts_longretry;
4065 			sc->sc_stats.ast_tx_shortretry += sr;
4066 			sc->sc_stats.ast_tx_longretry += lr;
4067 			/*
4068 			 * Hand the descriptor to the rate control algorithm.
4069 			 */
4070 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4071 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4072 				/*
4073 				 * If frame was ack'd update the last rx time
4074 				 * used to workaround phantom bmiss interrupts.
4075 				 */
4076 				if (ds->ds_txstat.ts_status == 0)
4077 					nacked++;
4078 				ath_rate_tx_complete(sc, an, ds, ds0);
4079 			}
4080 			/*
4081 			 * Reclaim reference to node.
4082 			 *
4083 			 * NB: the node may be reclaimed here if, for example
4084 			 *     this is a DEAUTH message that was sent and the
4085 			 *     node was timed out due to inactivity.
4086 			 */
4087 			ieee80211_free_node(ni);
4088 		}
4089 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4090 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4091 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4092 		m_freem(bf->bf_m);
4093 		bf->bf_m = NULL;
4094 		bf->bf_node = NULL;
4095 
4096 		ATH_TXBUF_LOCK(sc);
4097 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4098 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4099 		ATH_TXBUF_UNLOCK(sc);
4100 	}
4101 	return nacked;
4102 }
4103 
4104 static inline int
4105 txqactive(struct ath_hal *ah, int qnum)
4106 {
4107 	u_int32_t txqs = 1<<qnum;
4108 	ath_hal_gettxintrtxqs(ah, &txqs);
4109 	return (txqs & (1<<qnum));
4110 }
4111 
4112 /*
4113  * Deferred processing of transmit interrupt; special-cased
4114  * for a single hardware transmit queue (e.g. 5210 and 5211).
4115  */
4116 static void
4117 ath_tx_proc_q0(void *arg, int npending)
4118 {
4119 	struct ath_softc *sc = arg;
4120 	struct ifnet *ifp = &sc->sc_if;
4121 
4122 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4123 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4124 	}
4125 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4126 		ath_tx_processq(sc, sc->sc_cabq);
4127 
4128 	if (sc->sc_softled)
4129 		ath_led_event(sc, ATH_LED_TX);
4130 
4131 	ath_start(ifp);
4132 }
4133 
4134 /*
4135  * Deferred processing of transmit interrupt; special-cased
4136  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4137  */
4138 static void
4139 ath_tx_proc_q0123(void *arg, int npending)
4140 {
4141 	struct ath_softc *sc = arg;
4142 	struct ifnet *ifp = &sc->sc_if;
4143 	int nacked;
4144 
4145 	/*
4146 	 * Process each active queue.
4147 	 */
4148 	nacked = 0;
4149 	if (txqactive(sc->sc_ah, 0))
4150 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4151 	if (txqactive(sc->sc_ah, 1))
4152 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4153 	if (txqactive(sc->sc_ah, 2))
4154 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4155 	if (txqactive(sc->sc_ah, 3))
4156 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4157 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4158 		ath_tx_processq(sc, sc->sc_cabq);
4159 	if (nacked) {
4160 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4161 	}
4162 
4163 	if (sc->sc_softled)
4164 		ath_led_event(sc, ATH_LED_TX);
4165 
4166 	ath_start(ifp);
4167 }
4168 
4169 /*
4170  * Deferred processing of transmit interrupt.
4171  */
4172 static void
4173 ath_tx_proc(void *arg, int npending)
4174 {
4175 	struct ath_softc *sc = arg;
4176 	struct ifnet *ifp = &sc->sc_if;
4177 	int i, nacked;
4178 
4179 	/*
4180 	 * Process each active queue.
4181 	 */
4182 	nacked = 0;
4183 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4184 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4185 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4186 	if (nacked) {
4187 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4188 	}
4189 
4190 	if (sc->sc_softled)
4191 		ath_led_event(sc, ATH_LED_TX);
4192 
4193 	ath_start(ifp);
4194 }
4195 
4196 static void
4197 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4198 {
4199 	struct ath_hal *ah = sc->sc_ah;
4200 	struct ieee80211_node *ni;
4201 	struct ath_buf *bf;
4202 	struct ath_desc *ds;
4203 
4204 	/*
4205 	 * NB: this assumes output has been stopped and
4206 	 *     we do not need to block ath_tx_tasklet
4207 	 */
4208 	for (;;) {
4209 		ATH_TXQ_LOCK(txq);
4210 		bf = STAILQ_FIRST(&txq->axq_q);
4211 		if (bf == NULL) {
4212 			txq->axq_link = NULL;
4213 			ATH_TXQ_UNLOCK(txq);
4214 			break;
4215 		}
4216 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4217 		ATH_TXQ_UNLOCK(txq);
4218 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4219 		if (sc->sc_debug & ATH_DEBUG_RESET)
4220 			ath_printtxbuf(bf,
4221 				ath_hal_txprocdesc(ah, bf->bf_desc,
4222 					&ds->ds_txstat) == HAL_OK);
4223 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4224 		m_freem(bf->bf_m);
4225 		bf->bf_m = NULL;
4226 		ni = bf->bf_node;
4227 		bf->bf_node = NULL;
4228 		if (ni != NULL) {
4229 			/*
4230 			 * Reclaim node reference.
4231 			 */
4232 			ieee80211_free_node(ni);
4233 		}
4234 		ATH_TXBUF_LOCK(sc);
4235 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4236 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4237 		ATH_TXBUF_UNLOCK(sc);
4238 	}
4239 }
4240 
4241 static void
4242 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4243 {
4244 	struct ath_hal *ah = sc->sc_ah;
4245 
4246 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4247 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4248 	    __func__, txq->axq_qnum,
4249 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4250 	    txq->axq_link);
4251 }
4252 
4253 /*
4254  * Drain the transmit queues and reclaim resources.
4255  */
4256 static void
4257 ath_draintxq(struct ath_softc *sc)
4258 {
4259 	struct ath_hal *ah = sc->sc_ah;
4260 	int i;
4261 
4262 	/* XXX return value */
4263 	if (device_is_active(sc->sc_dev)) {
4264 		/* don't touch the hardware if marked invalid */
4265 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4266 		DPRINTF(sc, ATH_DEBUG_RESET,
4267 		    "%s: beacon queue %p\n", __func__,
4268 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4269 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4270 			if (ATH_TXQ_SETUP(sc, i))
4271 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4272 	}
4273 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4274 		if (ATH_TXQ_SETUP(sc, i))
4275 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4276 }
4277 
4278 /*
4279  * Disable the receive h/w in preparation for a reset.
4280  */
4281 static void
4282 ath_stoprecv(struct ath_softc *sc)
4283 {
4284 #define	PA2DESC(_sc, _pa) \
4285 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4286 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4287 	struct ath_hal *ah = sc->sc_ah;
4288 	u_int64_t tsf;
4289 
4290 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4291 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4292 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4293 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4294 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4295 		struct ath_buf *bf;
4296 
4297 		printf("%s: rx queue %p, link %p\n", __func__,
4298 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4299 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4300 			struct ath_desc *ds = bf->bf_desc;
4301 			tsf = ath_hal_gettsf64(sc->sc_ah);
4302 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4303 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4304 				tsf, &ds->ds_rxstat);
4305 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4306 				ath_printrxbuf(bf, status == HAL_OK);
4307 		}
4308 	}
4309 	sc->sc_rxlink = NULL;		/* just in case */
4310 #undef PA2DESC
4311 }
4312 
4313 /*
4314  * Enable the receive h/w following a reset.
4315  */
4316 static int
4317 ath_startrecv(struct ath_softc *sc)
4318 {
4319 	struct ath_hal *ah = sc->sc_ah;
4320 	struct ath_buf *bf;
4321 
4322 	sc->sc_rxlink = NULL;
4323 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4324 		int error = ath_rxbuf_init(sc, bf);
4325 		if (error != 0) {
4326 			DPRINTF(sc, ATH_DEBUG_RECV,
4327 				"%s: ath_rxbuf_init failed %d\n",
4328 				__func__, error);
4329 			return error;
4330 		}
4331 	}
4332 
4333 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4334 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4335 	ath_hal_rxena(ah);		/* enable recv descriptors */
4336 	ath_mode_init(sc);		/* set filters, etc. */
4337 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4338 	return 0;
4339 }
4340 
4341 /*
4342  * Update internal state after a channel change.
4343  */
4344 static void
4345 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4346 {
4347 	struct ieee80211com *ic = &sc->sc_ic;
4348 	enum ieee80211_phymode mode;
4349 	u_int16_t flags;
4350 
4351 	/*
4352 	 * Change channels and update the h/w rate map
4353 	 * if we're switching; e.g. 11a to 11b/g.
4354 	 */
4355 	mode = ieee80211_chan2mode(ic, chan);
4356 	if (mode != sc->sc_curmode)
4357 		ath_setcurmode(sc, mode);
4358 	/*
4359 	 * Update BPF state.  NB: ethereal et. al. don't handle
4360 	 * merged flags well so pick a unique mode for their use.
4361 	 */
4362 	if (IEEE80211_IS_CHAN_A(chan))
4363 		flags = IEEE80211_CHAN_A;
4364 	/* XXX 11g schizophrenia */
4365 	else if (IEEE80211_IS_CHAN_G(chan) ||
4366 	    IEEE80211_IS_CHAN_PUREG(chan))
4367 		flags = IEEE80211_CHAN_G;
4368 	else
4369 		flags = IEEE80211_CHAN_B;
4370 	if (IEEE80211_IS_CHAN_T(chan))
4371 		flags |= IEEE80211_CHAN_TURBO;
4372 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4373 		htole16(chan->ic_freq);
4374 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4375 		htole16(flags);
4376 }
4377 
4378 #if 0
4379 /*
4380  * Poll for a channel clear indication; this is required
4381  * for channels requiring DFS and not previously visited
4382  * and/or with a recent radar detection.
4383  */
4384 static void
4385 ath_dfswait(void *arg)
4386 {
4387 	struct ath_softc *sc = arg;
4388 	struct ath_hal *ah = sc->sc_ah;
4389 	HAL_CHANNEL hchan;
4390 
4391 	ath_hal_radar_wait(ah, &hchan);
4392 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4393 		if_printf(&sc->sc_if,
4394 		    "channel %u/0x%x/0x%x has interference\n",
4395 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4396 		return;
4397 	}
4398 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4399 		/* XXX should not happen */
4400 		return;
4401 	}
4402 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4403 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4404 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4405 		if_printf(&sc->sc_if,
4406 		    "channel %u/0x%x/0x%x marked clear\n",
4407 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4408 	} else
4409 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4410 }
4411 #endif
4412 
4413 /*
4414  * Set/change channels.  If the channel is really being changed,
4415  * it's done by reseting the chip.  To accomplish this we must
4416  * first cleanup any pending DMA, then restart stuff after a la
4417  * ath_init.
4418  */
4419 static int
4420 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4421 {
4422 	struct ath_hal *ah = sc->sc_ah;
4423 	struct ieee80211com *ic = &sc->sc_ic;
4424 	HAL_CHANNEL hchan;
4425 
4426 	/*
4427 	 * Convert to a HAL channel description with
4428 	 * the flags constrained to reflect the current
4429 	 * operating mode.
4430 	 */
4431 	hchan.channel = chan->ic_freq;
4432 	hchan.channelFlags = ath_chan2flags(ic, chan);
4433 
4434 	DPRINTF(sc, ATH_DEBUG_RESET,
4435 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4436 	    __func__,
4437 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4438 		sc->sc_curchan.channelFlags),
4439 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4440 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4441 	        hchan.channel, hchan.channelFlags);
4442 	if (hchan.channel != sc->sc_curchan.channel ||
4443 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4444 		HAL_STATUS status;
4445 
4446 		/*
4447 		 * To switch channels clear any pending DMA operations;
4448 		 * wait long enough for the RX fifo to drain, reset the
4449 		 * hardware at the new frequency, and then re-enable
4450 		 * the relevant bits of the h/w.
4451 		 */
4452 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4453 		ath_draintxq(sc);		/* clear pending tx frames */
4454 		ath_stoprecv(sc);		/* turn off frame recv */
4455 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4456 			if_printf(ic->ic_ifp, "%s: unable to reset "
4457 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4458 			    __func__, ieee80211_chan2ieee(ic, chan),
4459 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4460 			return EIO;
4461 		}
4462 		sc->sc_curchan = hchan;
4463 		ath_update_txpow(sc);		/* update tx power state */
4464 		ath_restore_diversity(sc);
4465 		sc->sc_calinterval = 1;
4466 		sc->sc_caltries = 0;
4467 
4468 		/*
4469 		 * Re-enable rx framework.
4470 		 */
4471 		if (ath_startrecv(sc) != 0) {
4472 			if_printf(&sc->sc_if,
4473 				"%s: unable to restart recv logic\n", __func__);
4474 			return EIO;
4475 		}
4476 
4477 		/*
4478 		 * Change channels and update the h/w rate map
4479 		 * if we're switching; e.g. 11a to 11b/g.
4480 		 */
4481 		ic->ic_ibss_chan = chan;
4482 		ath_chan_change(sc, chan);
4483 
4484 #if 0
4485 		/*
4486 		 * Handle DFS required waiting period to determine
4487 		 * if channel is clear of radar traffic.
4488 		 */
4489 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4490 #define	DFS_AND_NOT_CLEAR(_c) \
4491 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4492 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4493 				if_printf(&sc->sc_if,
4494 					"wait for DFS clear channel signal\n");
4495 				/* XXX stop sndq */
4496 				sc->sc_if.if_flags |= IFF_OACTIVE;
4497 				callout_reset(&sc->sc_dfs_ch,
4498 					2 * hz, ath_dfswait, sc);
4499 			} else
4500 				callout_stop(&sc->sc_dfs_ch);
4501 #undef DFS_NOT_CLEAR
4502 		}
4503 #endif
4504 
4505 		/*
4506 		 * Re-enable interrupts.
4507 		 */
4508 		ath_hal_intrset(ah, sc->sc_imask);
4509 	}
4510 	return 0;
4511 }
4512 
4513 static void
4514 ath_next_scan(void *arg)
4515 {
4516 	struct ath_softc *sc = arg;
4517 	struct ieee80211com *ic = &sc->sc_ic;
4518 	int s;
4519 
4520 	/* don't call ath_start w/o network interrupts blocked */
4521 	s = splnet();
4522 
4523 	if (ic->ic_state == IEEE80211_S_SCAN)
4524 		ieee80211_next_scan(ic);
4525 	splx(s);
4526 }
4527 
4528 /*
4529  * Periodically recalibrate the PHY to account
4530  * for temperature/environment changes.
4531  */
4532 static void
4533 ath_calibrate(void *arg)
4534 {
4535 	struct ath_softc *sc = arg;
4536 	struct ath_hal *ah = sc->sc_ah;
4537 	HAL_BOOL iqCalDone;
4538 
4539 	sc->sc_stats.ast_per_cal++;
4540 
4541 	ATH_LOCK(sc);
4542 
4543 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4544 		/*
4545 		 * Rfgain is out of bounds, reset the chip
4546 		 * to load new gain values.
4547 		 */
4548 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4549 			"%s: rfgain change\n", __func__);
4550 		sc->sc_stats.ast_per_rfgain++;
4551 		ath_reset(&sc->sc_if);
4552 	}
4553 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4554 		DPRINTF(sc, ATH_DEBUG_ANY,
4555 			"%s: calibration of channel %u failed\n",
4556 			__func__, sc->sc_curchan.channel);
4557 		sc->sc_stats.ast_per_calfail++;
4558 	}
4559 	/*
4560 	 * Calibrate noise floor data again in case of change.
4561 	 */
4562 	ath_hal_process_noisefloor(ah);
4563 	/*
4564 	 * Poll more frequently when the IQ calibration is in
4565 	 * progress to speedup loading the final settings.
4566 	 * We temper this aggressive polling with an exponential
4567 	 * back off after 4 tries up to ath_calinterval.
4568 	 */
4569 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4570 		sc->sc_caltries = 0;
4571 		sc->sc_calinterval = ath_calinterval;
4572 	} else if (sc->sc_caltries > 4) {
4573 		sc->sc_caltries = 0;
4574 		sc->sc_calinterval <<= 1;
4575 		if (sc->sc_calinterval > ath_calinterval)
4576 			sc->sc_calinterval = ath_calinterval;
4577 	}
4578 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4579 		("bad calibration interval %u", sc->sc_calinterval));
4580 
4581 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4582 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4583 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4584 	sc->sc_caltries++;
4585 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4586 		ath_calibrate, sc);
4587 	ATH_UNLOCK(sc);
4588 }
4589 
4590 static int
4591 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4592 {
4593 	struct ifnet *ifp = ic->ic_ifp;
4594 	struct ath_softc *sc = ifp->if_softc;
4595 	struct ath_hal *ah = sc->sc_ah;
4596 	struct ieee80211_node *ni;
4597 	int i, error;
4598 	const u_int8_t *bssid;
4599 	u_int32_t rfilt;
4600 	static const HAL_LED_STATE leds[] = {
4601 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4602 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4603 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4604 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4605 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4606 	};
4607 
4608 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4609 		ieee80211_state_name[ic->ic_state],
4610 		ieee80211_state_name[nstate]);
4611 
4612 	callout_stop(&sc->sc_scan_ch);
4613 	callout_stop(&sc->sc_cal_ch);
4614 #if 0
4615 	callout_stop(&sc->sc_dfs_ch);
4616 #endif
4617 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4618 
4619 	if (nstate == IEEE80211_S_INIT) {
4620 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4621 		/*
4622 		 * NB: disable interrupts so we don't rx frames.
4623 		 */
4624 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4625 		/*
4626 		 * Notify the rate control algorithm.
4627 		 */
4628 		ath_rate_newstate(sc, nstate);
4629 		goto done;
4630 	}
4631 	ni = ic->ic_bss;
4632 	error = ath_chan_set(sc, ic->ic_curchan);
4633 	if (error != 0)
4634 		goto bad;
4635 	rfilt = ath_calcrxfilter(sc, nstate);
4636 	if (nstate == IEEE80211_S_SCAN)
4637 		bssid = ifp->if_broadcastaddr;
4638 	else
4639 		bssid = ni->ni_bssid;
4640 	ath_hal_setrxfilter(ah, rfilt);
4641 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4642 		 __func__, rfilt, ether_sprintf(bssid));
4643 
4644 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4645 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4646 	else
4647 		ath_hal_setassocid(ah, bssid, 0);
4648 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4649 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4650 			if (ath_hal_keyisvalid(ah, i))
4651 				ath_hal_keysetmac(ah, i, bssid);
4652 	}
4653 
4654 	/*
4655 	 * Notify the rate control algorithm so rates
4656 	 * are setup should ath_beacon_alloc be called.
4657 	 */
4658 	ath_rate_newstate(sc, nstate);
4659 
4660 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4661 		/* nothing to do */;
4662 	} else if (nstate == IEEE80211_S_RUN) {
4663 		DPRINTF(sc, ATH_DEBUG_STATE,
4664 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4665 			"capinfo=0x%04x chan=%d\n"
4666 			 , __func__
4667 			 , ic->ic_flags
4668 			 , ni->ni_intval
4669 			 , ether_sprintf(ni->ni_bssid)
4670 			 , ni->ni_capinfo
4671 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4672 
4673 		switch (ic->ic_opmode) {
4674 		case IEEE80211_M_HOSTAP:
4675 		case IEEE80211_M_IBSS:
4676 			/*
4677 			 * Allocate and setup the beacon frame.
4678 			 *
4679 			 * Stop any previous beacon DMA.  This may be
4680 			 * necessary, for example, when an ibss merge
4681 			 * causes reconfiguration; there will be a state
4682 			 * transition from RUN->RUN that means we may
4683 			 * be called with beacon transmission active.
4684 			 */
4685 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4686 			ath_beacon_free(sc);
4687 			error = ath_beacon_alloc(sc, ni);
4688 			if (error != 0)
4689 				goto bad;
4690 			/*
4691 			 * If joining an adhoc network defer beacon timer
4692 			 * configuration to the next beacon frame so we
4693 			 * have a current TSF to use.  Otherwise we're
4694 			 * starting an ibss/bss so there's no need to delay.
4695 			 */
4696 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4697 			    ic->ic_bss->ni_tstamp.tsf != 0)
4698 				sc->sc_syncbeacon = 1;
4699 			else
4700 				ath_beacon_config(sc);
4701 			break;
4702 		case IEEE80211_M_STA:
4703 			/*
4704 			 * Allocate a key cache slot to the station.
4705 			 */
4706 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4707 			    sc->sc_hasclrkey &&
4708 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4709 				ath_setup_stationkey(ni);
4710 			/*
4711 			 * Defer beacon timer configuration to the next
4712 			 * beacon frame so we have a current TSF to use
4713 			 * (any TSF collected when scanning is likely old).
4714 			 */
4715 			sc->sc_syncbeacon = 1;
4716 			break;
4717 		default:
4718 			break;
4719 		}
4720 		/*
4721 		 * Let the hal process statistics collected during a
4722 		 * scan so it can provide calibrated noise floor data.
4723 		 */
4724 		ath_hal_process_noisefloor(ah);
4725 		/*
4726 		 * Reset rssi stats; maybe not the best place...
4727 		 */
4728 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4729 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4730 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4731 	} else {
4732 		ath_hal_intrset(ah,
4733 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4734 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4735 	}
4736 done:
4737 	/*
4738 	 * Invoke the parent method to complete the work.
4739 	 */
4740 	error = sc->sc_newstate(ic, nstate, arg);
4741 	/*
4742 	 * Finally, start any timers.
4743 	 */
4744 	if (nstate == IEEE80211_S_RUN) {
4745 		/* start periodic recalibration timer */
4746 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4747 			ath_calibrate, sc);
4748 	} else if (nstate == IEEE80211_S_SCAN) {
4749 		/* start ap/neighbor scan timer */
4750 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4751 			ath_next_scan, sc);
4752 	}
4753 bad:
4754 	return error;
4755 }
4756 
4757 /*
4758  * Allocate a key cache slot to the station so we can
4759  * setup a mapping from key index to node. The key cache
4760  * slot is needed for managing antenna state and for
4761  * compression when stations do not use crypto.  We do
4762  * it uniliaterally here; if crypto is employed this slot
4763  * will be reassigned.
4764  */
4765 static void
4766 ath_setup_stationkey(struct ieee80211_node *ni)
4767 {
4768 	struct ieee80211com *ic = ni->ni_ic;
4769 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4770 	ieee80211_keyix keyix, rxkeyix;
4771 
4772 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4773 		/*
4774 		 * Key cache is full; we'll fall back to doing
4775 		 * the more expensive lookup in software.  Note
4776 		 * this also means no h/w compression.
4777 		 */
4778 		/* XXX msg+statistic */
4779 	} else {
4780 		/* XXX locking? */
4781 		ni->ni_ucastkey.wk_keyix = keyix;
4782 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4783 		/* NB: this will create a pass-thru key entry */
4784 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4785 	}
4786 }
4787 
4788 /*
4789  * Setup driver-specific state for a newly associated node.
4790  * Note that we're called also on a re-associate, the isnew
4791  * param tells us if this is the first time or not.
4792  */
4793 static void
4794 ath_newassoc(struct ieee80211_node *ni, int isnew)
4795 {
4796 	struct ieee80211com *ic = ni->ni_ic;
4797 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4798 
4799 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4800 	if (isnew &&
4801 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4802 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4803 		    ("new assoc with a unicast key already setup (keyix %u)",
4804 		    ni->ni_ucastkey.wk_keyix));
4805 		ath_setup_stationkey(ni);
4806 	}
4807 }
4808 
4809 static int
4810 ath_getchannels(struct ath_softc *sc, u_int cc,
4811 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4812 {
4813 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4814 	struct ieee80211com *ic = &sc->sc_ic;
4815 	struct ifnet *ifp = &sc->sc_if;
4816 	struct ath_hal *ah = sc->sc_ah;
4817 	HAL_CHANNEL *chans;
4818 	int i, ix, nchan;
4819 
4820 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4821 			M_TEMP, M_NOWAIT);
4822 	if (chans == NULL) {
4823 		if_printf(ifp, "unable to allocate channel table\n");
4824 		return ENOMEM;
4825 	}
4826 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4827 	    NULL, 0, NULL,
4828 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4829 		u_int32_t rd;
4830 
4831 		(void)ath_hal_getregdomain(ah, &rd);
4832 		if_printf(ifp, "unable to collect channel list from hal; "
4833 			"regdomain likely %u country code %u\n", rd, cc);
4834 		free(chans, M_TEMP);
4835 		return EINVAL;
4836 	}
4837 
4838 	/*
4839 	 * Convert HAL channels to ieee80211 ones and insert
4840 	 * them in the table according to their channel number.
4841 	 */
4842 	for (i = 0; i < nchan; i++) {
4843 		HAL_CHANNEL *c = &chans[i];
4844 		u_int16_t flags;
4845 
4846 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4847 		if (ix > IEEE80211_CHAN_MAX) {
4848 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4849 				ix, c->channel, c->channelFlags);
4850 			continue;
4851 		}
4852 		if (ix < 0) {
4853 			/* XXX can't handle stuff <2400 right now */
4854 			if (bootverbose)
4855 				if_printf(ifp, "hal channel %d (%u/%x) "
4856 				    "cannot be handled; ignored\n",
4857 				    ix, c->channel, c->channelFlags);
4858 			continue;
4859 		}
4860 		/*
4861 		 * Calculate net80211 flags; most are compatible
4862 		 * but some need massaging.  Note the static turbo
4863 		 * conversion can be removed once net80211 is updated
4864 		 * to understand static vs. dynamic turbo.
4865 		 */
4866 		flags = c->channelFlags & COMPAT;
4867 		if (c->channelFlags & CHANNEL_STURBO)
4868 			flags |= IEEE80211_CHAN_TURBO;
4869 		if (ic->ic_channels[ix].ic_freq == 0) {
4870 			ic->ic_channels[ix].ic_freq = c->channel;
4871 			ic->ic_channels[ix].ic_flags = flags;
4872 		} else {
4873 			/* channels overlap; e.g. 11g and 11b */
4874 			ic->ic_channels[ix].ic_flags |= flags;
4875 		}
4876 	}
4877 	free(chans, M_TEMP);
4878 	return 0;
4879 #undef COMPAT
4880 }
4881 
4882 static void
4883 ath_led_done(void *arg)
4884 {
4885 	struct ath_softc *sc = arg;
4886 
4887 	sc->sc_blinking = 0;
4888 }
4889 
4890 /*
4891  * Turn the LED off: flip the pin and then set a timer so no
4892  * update will happen for the specified duration.
4893  */
4894 static void
4895 ath_led_off(void *arg)
4896 {
4897 	struct ath_softc *sc = arg;
4898 
4899 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4900 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4901 }
4902 
4903 /*
4904  * Blink the LED according to the specified on/off times.
4905  */
4906 static void
4907 ath_led_blink(struct ath_softc *sc, int on, int off)
4908 {
4909 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4910 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4911 	sc->sc_blinking = 1;
4912 	sc->sc_ledoff = off;
4913 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4914 }
4915 
4916 static void
4917 ath_led_event(struct ath_softc *sc, int event)
4918 {
4919 
4920 	sc->sc_ledevent = ticks;	/* time of last event */
4921 	if (sc->sc_blinking)		/* don't interrupt active blink */
4922 		return;
4923 	switch (event) {
4924 	case ATH_LED_POLL:
4925 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4926 			sc->sc_hwmap[0].ledoff);
4927 		break;
4928 	case ATH_LED_TX:
4929 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4930 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4931 		break;
4932 	case ATH_LED_RX:
4933 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4934 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4935 		break;
4936 	}
4937 }
4938 
4939 static void
4940 ath_update_txpow(struct ath_softc *sc)
4941 {
4942 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4943 	struct ieee80211com *ic = &sc->sc_ic;
4944 	struct ath_hal *ah = sc->sc_ah;
4945 	u_int32_t txpow;
4946 
4947 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4948 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4949 		/* read back in case value is clamped */
4950 		(void)ath_hal_gettxpowlimit(ah, &txpow);
4951 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4952 	}
4953 	/*
4954 	 * Fetch max tx power level for status requests.
4955 	 */
4956 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4957 	ic->ic_bss->ni_txpower = txpow;
4958 }
4959 
4960 static void
4961 rate_setup(struct ath_softc *sc,
4962 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4963 {
4964 	int i, maxrates;
4965 
4966 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4967 		DPRINTF(sc, ATH_DEBUG_ANY,
4968 			"%s: rate table too small (%u > %u)\n",
4969 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4970 		maxrates = IEEE80211_RATE_MAXSIZE;
4971 	} else
4972 		maxrates = rt->rateCount;
4973 	for (i = 0; i < maxrates; i++)
4974 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4975 	rs->rs_nrates = maxrates;
4976 }
4977 
4978 static int
4979 ath_rate_setup(struct ath_softc *sc, u_int mode)
4980 {
4981 	struct ath_hal *ah = sc->sc_ah;
4982 	struct ieee80211com *ic = &sc->sc_ic;
4983 	const HAL_RATE_TABLE *rt;
4984 
4985 	switch (mode) {
4986 	case IEEE80211_MODE_11A:
4987 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4988 		break;
4989 	case IEEE80211_MODE_11B:
4990 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4991 		break;
4992 	case IEEE80211_MODE_11G:
4993 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4994 		break;
4995 	case IEEE80211_MODE_TURBO_A:
4996 		/* XXX until static/dynamic turbo is fixed */
4997 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4998 		break;
4999 	case IEEE80211_MODE_TURBO_G:
5000 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5001 		break;
5002 	default:
5003 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5004 			__func__, mode);
5005 		return 0;
5006 	}
5007 	sc->sc_rates[mode] = rt;
5008 	if (rt != NULL) {
5009 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5010 		return 1;
5011 	} else
5012 		return 0;
5013 }
5014 
5015 static void
5016 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5017 {
5018 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5019 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5020 	static const struct {
5021 		u_int		rate;		/* tx/rx 802.11 rate */
5022 		u_int16_t	timeOn;		/* LED on time (ms) */
5023 		u_int16_t	timeOff;	/* LED off time (ms) */
5024 	} blinkrates[] = {
5025 		{ 108,  40,  10 },
5026 		{  96,  44,  11 },
5027 		{  72,  50,  13 },
5028 		{  48,  57,  14 },
5029 		{  36,  67,  16 },
5030 		{  24,  80,  20 },
5031 		{  22, 100,  25 },
5032 		{  18, 133,  34 },
5033 		{  12, 160,  40 },
5034 		{  10, 200,  50 },
5035 		{   6, 240,  58 },
5036 		{   4, 267,  66 },
5037 		{   2, 400, 100 },
5038 		{   0, 500, 130 },
5039 	};
5040 	const HAL_RATE_TABLE *rt;
5041 	int i, j;
5042 
5043 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5044 	rt = sc->sc_rates[mode];
5045 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5046 	for (i = 0; i < rt->rateCount; i++)
5047 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5048 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5049 	for (i = 0; i < 32; i++) {
5050 		u_int8_t ix = rt->rateCodeToIndex[i];
5051 		if (ix == 0xff) {
5052 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5053 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5054 			continue;
5055 		}
5056 		sc->sc_hwmap[i].ieeerate =
5057 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5058 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5059 		if (rt->info[ix].shortPreamble ||
5060 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5061 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5062 		/* NB: receive frames include FCS */
5063 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5064 			IEEE80211_RADIOTAP_F_FCS;
5065 		/* setup blink rate table to avoid per-packet lookup */
5066 		for (j = 0; j < N(blinkrates)-1; j++)
5067 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5068 				break;
5069 		/* NB: this uses the last entry if the rate isn't found */
5070 		/* XXX beware of overlow */
5071 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5072 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5073 	}
5074 	sc->sc_currates = rt;
5075 	sc->sc_curmode = mode;
5076 	/*
5077 	 * All protection frames are transmited at 2Mb/s for
5078 	 * 11g, otherwise at 1Mb/s.
5079 	 */
5080 	if (mode == IEEE80211_MODE_11G)
5081 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5082 	else
5083 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5084 	/* rate index used to send management frames */
5085 	sc->sc_minrateix = 0;
5086 	/*
5087 	 * Setup multicast rate state.
5088 	 */
5089 	/* XXX layering violation */
5090 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5091 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5092 	/* NB: caller is responsible for reseting rate control state */
5093 #undef N
5094 }
5095 
5096 #ifdef AR_DEBUG
5097 static void
5098 ath_printrxbuf(struct ath_buf *bf, int done)
5099 {
5100 	struct ath_desc *ds;
5101 	int i;
5102 
5103 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5104 		printf("R%d (%p %" PRIx64
5105 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5106 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5107 		    ds->ds_link, ds->ds_data,
5108 		    ds->ds_ctl0, ds->ds_ctl1,
5109 		    ds->ds_hw[0], ds->ds_hw[1],
5110 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5111 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5112 	}
5113 }
5114 
5115 static void
5116 ath_printtxbuf(struct ath_buf *bf, int done)
5117 {
5118 	struct ath_desc *ds;
5119 	int i;
5120 
5121 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5122 		printf("T%d (%p %" PRIx64
5123 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5124 		    i, ds,
5125 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5126 		    ds->ds_link, ds->ds_data,
5127 		    ds->ds_ctl0, ds->ds_ctl1,
5128 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5129 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5130 	}
5131 }
5132 #endif	/* AR_DEBUG */
5133 
5134 static void
5135 ath_watchdog(struct ifnet *ifp)
5136 {
5137 	struct ath_softc *sc = ifp->if_softc;
5138 	struct ieee80211com *ic = &sc->sc_ic;
5139 	struct ath_txq *axq;
5140 	int i;
5141 
5142 	ifp->if_timer = 0;
5143 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5144 	    !device_is_active(sc->sc_dev))
5145 		return;
5146 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5147 		if (!ATH_TXQ_SETUP(sc, i))
5148 			continue;
5149 		axq = &sc->sc_txq[i];
5150 		ATH_TXQ_LOCK(axq);
5151 		if (axq->axq_timer == 0)
5152 			;
5153 		else if (--axq->axq_timer == 0) {
5154 			ATH_TXQ_UNLOCK(axq);
5155 			if_printf(ifp, "device timeout (txq %d, "
5156 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5157 			if (sc->sc_txintrperiod > 1)
5158 				sc->sc_txintrperiod--;
5159 			ath_reset(ifp);
5160 			ifp->if_oerrors++;
5161 			sc->sc_stats.ast_watchdog++;
5162 			break;
5163 		} else
5164 			ifp->if_timer = 1;
5165 		ATH_TXQ_UNLOCK(axq);
5166 	}
5167 	ieee80211_watchdog(ic);
5168 }
5169 
5170 /*
5171  * Diagnostic interface to the HAL.  This is used by various
5172  * tools to do things like retrieve register contents for
5173  * debugging.  The mechanism is intentionally opaque so that
5174  * it can change frequently w/o concern for compatiblity.
5175  */
5176 static int
5177 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5178 {
5179 	struct ath_hal *ah = sc->sc_ah;
5180 	u_int id = ad->ad_id & ATH_DIAG_ID;
5181 	void *indata = NULL;
5182 	void *outdata = NULL;
5183 	u_int32_t insize = ad->ad_in_size;
5184 	u_int32_t outsize = ad->ad_out_size;
5185 	int error = 0;
5186 
5187 	if (ad->ad_id & ATH_DIAG_IN) {
5188 		/*
5189 		 * Copy in data.
5190 		 */
5191 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5192 		if (indata == NULL) {
5193 			error = ENOMEM;
5194 			goto bad;
5195 		}
5196 		error = copyin(ad->ad_in_data, indata, insize);
5197 		if (error)
5198 			goto bad;
5199 	}
5200 	if (ad->ad_id & ATH_DIAG_DYN) {
5201 		/*
5202 		 * Allocate a buffer for the results (otherwise the HAL
5203 		 * returns a pointer to a buffer where we can read the
5204 		 * results).  Note that we depend on the HAL leaving this
5205 		 * pointer for us to use below in reclaiming the buffer;
5206 		 * may want to be more defensive.
5207 		 */
5208 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5209 		if (outdata == NULL) {
5210 			error = ENOMEM;
5211 			goto bad;
5212 		}
5213 	}
5214 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5215 		if (outsize < ad->ad_out_size)
5216 			ad->ad_out_size = outsize;
5217 		if (outdata != NULL)
5218 			error = copyout(outdata, ad->ad_out_data,
5219 					ad->ad_out_size);
5220 	} else {
5221 		error = EINVAL;
5222 	}
5223 bad:
5224 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5225 		free(indata, M_TEMP);
5226 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5227 		free(outdata, M_TEMP);
5228 	return error;
5229 }
5230 
5231 static int
5232 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5233 {
5234 #define	IS_RUNNING(ifp) \
5235 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5236 	struct ath_softc *sc = ifp->if_softc;
5237 	struct ieee80211com *ic = &sc->sc_ic;
5238 	struct ifreq *ifr = (struct ifreq *)data;
5239 	int error = 0;
5240 
5241 	ATH_LOCK(sc);
5242 	switch (cmd) {
5243 	case SIOCSIFFLAGS:
5244 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5245 			break;
5246 		if (IS_RUNNING(ifp)) {
5247 			/*
5248 			 * To avoid rescanning another access point,
5249 			 * do not call ath_init() here.  Instead,
5250 			 * only reflect promisc mode settings.
5251 			 */
5252 			ath_mode_init(sc);
5253 		} else if (ifp->if_flags & IFF_UP) {
5254 			/*
5255 			 * Beware of being called during attach/detach
5256 			 * to reset promiscuous mode.  In that case we
5257 			 * will still be marked UP but not RUNNING.
5258 			 * However trying to re-init the interface
5259 			 * is the wrong thing to do as we've already
5260 			 * torn down much of our state.  There's
5261 			 * probably a better way to deal with this.
5262 			 */
5263 			error = ath_init(sc);
5264 		} else if (device_is_active(sc->sc_dev))
5265 			ath_stop_locked(ifp, 1);
5266 		break;
5267 	case SIOCADDMULTI:
5268 	case SIOCDELMULTI:
5269 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5270 			if (ifp->if_flags & IFF_RUNNING)
5271 				ath_mode_init(sc);
5272 			error = 0;
5273 		}
5274 		break;
5275 	case SIOCGATHSTATS:
5276 		/* NB: embed these numbers to get a consistent view */
5277 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5278 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5279 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5280 		ATH_UNLOCK(sc);
5281 		/*
5282 		 * NB: Drop the softc lock in case of a page fault;
5283 		 * we'll accept any potential inconsisentcy in the
5284 		 * statistics.  The alternative is to copy the data
5285 		 * to a local structure.
5286 		 */
5287 		return copyout(&sc->sc_stats,
5288 				ifr->ifr_data, sizeof (sc->sc_stats));
5289 	case SIOCGATHDIAG:
5290 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5291 		break;
5292 	default:
5293 		error = ieee80211_ioctl(ic, cmd, data);
5294 		if (error != ENETRESET)
5295 			;
5296 		else if (IS_RUNNING(ifp) &&
5297 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5298 			error = ath_init(sc);
5299 		else
5300 			error = 0;
5301 		break;
5302 	}
5303 	ATH_UNLOCK(sc);
5304 	return error;
5305 #undef IS_RUNNING
5306 }
5307 
5308 #if NBPFILTER > 0
5309 static void
5310 ath_bpfattach(struct ath_softc *sc)
5311 {
5312 	struct ifnet *ifp = &sc->sc_if;
5313 
5314 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5315 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5316 		&sc->sc_drvbpf);
5317 	/*
5318 	 * Initialize constant fields.
5319 	 * XXX make header lengths a multiple of 32-bits so subsequent
5320 	 *     headers are properly aligned; this is a kludge to keep
5321 	 *     certain applications happy.
5322 	 *
5323 	 * NB: the channel is setup each time we transition to the
5324 	 *     RUN state to avoid filling it in for each frame.
5325 	 */
5326 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5327 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5328 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5329 
5330 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5331 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5332 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5333 }
5334 #endif
5335 
5336 /*
5337  * Announce various information on device/driver attach.
5338  */
5339 static void
5340 ath_announce(struct ath_softc *sc)
5341 {
5342 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5343 	struct ifnet *ifp = &sc->sc_if;
5344 	struct ath_hal *ah = sc->sc_ah;
5345 	u_int modes, cc;
5346 
5347 	if_printf(ifp, "mac %d.%d phy %d.%d",
5348 		ah->ah_macVersion, ah->ah_macRev,
5349 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5350 	/*
5351 	 * Print radio revision(s).  We check the wireless modes
5352 	 * to avoid falsely printing revs for inoperable parts.
5353 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5354 	 */
5355 	ath_hal_getcountrycode(ah, &cc);
5356 	modes = ath_hal_getwirelessmodes(ah, cc);
5357 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5358 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5359 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5360 				ah->ah_analog5GhzRev >> 4,
5361 				ah->ah_analog5GhzRev & 0xf,
5362 				ah->ah_analog2GhzRev >> 4,
5363 				ah->ah_analog2GhzRev & 0xf);
5364 		else
5365 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5366 				ah->ah_analog5GhzRev & 0xf);
5367 	} else
5368 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5369 			ah->ah_analog5GhzRev & 0xf);
5370 	printf("\n");
5371 	if (bootverbose) {
5372 		int i;
5373 		for (i = 0; i <= WME_AC_VO; i++) {
5374 			struct ath_txq *txq = sc->sc_ac2q[i];
5375 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5376 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5377 		}
5378 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5379 			sc->sc_cabq->axq_qnum);
5380 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5381 	}
5382 	if (ath_rxbuf != ATH_RXBUF)
5383 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5384 	if (ath_txbuf != ATH_TXBUF)
5385 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5386 #undef HAL_MODE_DUALBAND
5387 }
5388