xref: /netbsd-src/sys/dev/ic/ath.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: ath.c,v 1.107 2009/09/16 16:34:50 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.107 2009/09/16 16:34:50 dyoung Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/errno.h>
71 #include <sys/callout.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/if_ether.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_netbsd.h>
84 #include <net80211/ieee80211_var.h>
85 
86 #if NBPFILTER > 0
87 #include <net/bpf.h>
88 #endif
89 
90 #ifdef INET
91 #include <netinet/in.h>
92 #endif
93 
94 #include <sys/device.h>
95 #include <dev/ic/ath_netbsd.h>
96 
97 #define	AR_DEBUG
98 #include <dev/ic/athvar.h>
99 #include "ah_desc.h"
100 #include "ah_devid.h"	/* XXX for softled */
101 #include "opt_ah.h"
102 
103 #ifdef ATH_TX99_DIAG
104 #include <dev/ath/ath_tx99/ath_tx99.h>
105 #endif
106 
107 /* unaligned little endian access */
108 #define LE_READ_2(p)							\
109 	((u_int16_t)							\
110 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
111 #define LE_READ_4(p)							\
112 	((u_int32_t)							\
113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
114 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
115 
116 enum {
117 	ATH_LED_TX,
118 	ATH_LED_RX,
119 	ATH_LED_POLL,
120 };
121 
122 #ifdef	AH_NEED_DESC_SWAP
123 #define	HTOAH32(x)	htole32(x)
124 #else
125 #define	HTOAH32(x)	(x)
126 #endif
127 
128 static int	ath_ifinit(struct ifnet *);
129 static int	ath_init(struct ath_softc *);
130 static void	ath_stop_locked(struct ifnet *, int);
131 static void	ath_stop(struct ifnet *, int);
132 static void	ath_start(struct ifnet *);
133 static int	ath_media_change(struct ifnet *);
134 static void	ath_watchdog(struct ifnet *);
135 static int	ath_ioctl(struct ifnet *, u_long, void *);
136 static void	ath_fatal_proc(void *, int);
137 static void	ath_rxorn_proc(void *, int);
138 static void	ath_bmiss_proc(void *, int);
139 static void	ath_radar_proc(void *, int);
140 static int	ath_key_alloc(struct ieee80211com *,
141 			const struct ieee80211_key *,
142 			ieee80211_keyix *, ieee80211_keyix *);
143 static int	ath_key_delete(struct ieee80211com *,
144 			const struct ieee80211_key *);
145 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
146 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
147 static void	ath_key_update_begin(struct ieee80211com *);
148 static void	ath_key_update_end(struct ieee80211com *);
149 static void	ath_mode_init(struct ath_softc *);
150 static void	ath_setslottime(struct ath_softc *);
151 static void	ath_updateslot(struct ifnet *);
152 static int	ath_beaconq_setup(struct ath_hal *);
153 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
154 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
155 static void	ath_beacon_proc(void *, int);
156 static void	ath_bstuck_proc(void *, int);
157 static void	ath_beacon_free(struct ath_softc *);
158 static void	ath_beacon_config(struct ath_softc *);
159 static void	ath_descdma_cleanup(struct ath_softc *sc,
160 			struct ath_descdma *, ath_bufhead *);
161 static int	ath_desc_alloc(struct ath_softc *);
162 static void	ath_desc_free(struct ath_softc *);
163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
164 static void	ath_node_free(struct ieee80211_node *);
165 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
166 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
167 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
168 			struct ieee80211_node *ni,
169 			int subtype, int rssi, u_int32_t rstamp);
170 static void	ath_setdefantenna(struct ath_softc *, u_int);
171 static void	ath_rx_proc(void *, int);
172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
173 static int	ath_tx_setup(struct ath_softc *, int, int);
174 static int	ath_wme_update(struct ieee80211com *);
175 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
176 static void	ath_tx_cleanup(struct ath_softc *);
177 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
178 			     struct ath_buf *, struct mbuf *);
179 static void	ath_tx_proc_q0(void *, int);
180 static void	ath_tx_proc_q0123(void *, int);
181 static void	ath_tx_proc(void *, int);
182 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
183 static void	ath_draintxq(struct ath_softc *);
184 static void	ath_stoprecv(struct ath_softc *);
185 static int	ath_startrecv(struct ath_softc *);
186 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
187 static void	ath_next_scan(void *);
188 static void	ath_calibrate(void *);
189 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
190 static void	ath_setup_stationkey(struct ieee80211_node *);
191 static void	ath_newassoc(struct ieee80211_node *, int);
192 static int	ath_getchannels(struct ath_softc *, u_int cc,
193 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
194 static void	ath_led_event(struct ath_softc *, int);
195 static void	ath_update_txpow(struct ath_softc *);
196 static void	ath_freetx(struct mbuf *);
197 static void	ath_restore_diversity(struct ath_softc *);
198 
199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201 
202 #if NBPFILTER > 0
203 static void	ath_bpfattach(struct ath_softc *);
204 #endif
205 static void	ath_announce(struct ath_softc *);
206 
207 int ath_dwelltime = 200;		/* 5 channels/second */
208 int ath_calinterval = 30;		/* calibrate every 30 secs */
209 int ath_outdoor = AH_TRUE;		/* outdoor operation */
210 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
211 int ath_countrycode = CTRY_DEFAULT;	/* country code */
212 int ath_regdomain = 0;			/* regulatory domain */
213 int ath_debug = 0;
214 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
215 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
216 
217 #ifdef AR_DEBUG
218 enum {
219 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
220 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
221 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
222 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
223 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
224 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
225 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
226 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
227 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
228 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
229 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
230 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
231 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
232 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
233 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
234 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
235 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
236 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
237 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
238 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
239 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
240 	ATH_DEBUG_ANY		= 0xffffffff
241 };
242 #define	IFF_DUMPPKTS(sc, m) \
243 	((sc->sc_debug & (m)) || \
244 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define	DPRINTF(sc, m, fmt, ...) do {				\
246 	if (sc->sc_debug & (m))					\
247 		printf(fmt, __VA_ARGS__);			\
248 } while (0)
249 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
250 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
251 		ath_keyprint(__func__, ix, hk, mac);		\
252 } while (0)
253 static	void ath_printrxbuf(struct ath_buf *bf, int);
254 static	void ath_printtxbuf(struct ath_buf *bf, int);
255 #else
256 #define        IFF_DUMPPKTS(sc, m) \
257 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
258 #define        DPRINTF(m, fmt, ...)
259 #define        KEYPRINTF(sc, k, ix, mac)
260 #endif
261 
262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
263 
264 int
265 ath_attach(u_int16_t devid, struct ath_softc *sc)
266 {
267 	struct ifnet *ifp = &sc->sc_if;
268 	struct ieee80211com *ic = &sc->sc_ic;
269 	struct ath_hal *ah = NULL;
270 	HAL_STATUS status;
271 	int error = 0, i;
272 
273 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
274 
275 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
276 
277 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
278 
279 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
280 	if (ah == NULL) {
281 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
282 			status);
283 		error = ENXIO;
284 		goto bad;
285 	}
286 	if (ah->ah_abi != HAL_ABI_VERSION) {
287 		if_printf(ifp, "HAL ABI mismatch detected "
288 			"(HAL:0x%x != driver:0x%x)\n",
289 			ah->ah_abi, HAL_ABI_VERSION);
290 		error = ENXIO;
291 		goto bad;
292 	}
293 	sc->sc_ah = ah;
294 
295 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
296 	    "pmf-powerdown", false))
297 		goto bad;
298 
299 	/*
300 	 * Check if the MAC has multi-rate retry support.
301 	 * We do this by trying to setup a fake extended
302 	 * descriptor.  MAC's that don't have support will
303 	 * return false w/o doing anything.  MAC's that do
304 	 * support it will return true w/o doing anything.
305 	 */
306 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
307 
308 	/*
309 	 * Check if the device has hardware counters for PHY
310 	 * errors.  If so we need to enable the MIB interrupt
311 	 * so we can act on stat triggers.
312 	 */
313 	if (ath_hal_hwphycounters(ah))
314 		sc->sc_needmib = 1;
315 
316 	/*
317 	 * Get the hardware key cache size.
318 	 */
319 	sc->sc_keymax = ath_hal_keycachesize(ah);
320 	if (sc->sc_keymax > ATH_KEYMAX) {
321 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
322 			ATH_KEYMAX, sc->sc_keymax);
323 		sc->sc_keymax = ATH_KEYMAX;
324 	}
325 	/*
326 	 * Reset the key cache since some parts do not
327 	 * reset the contents on initial power up.
328 	 */
329 	for (i = 0; i < sc->sc_keymax; i++)
330 		ath_hal_keyreset(ah, i);
331 	/*
332 	 * Mark key cache slots associated with global keys
333 	 * as in use.  If we knew TKIP was not to be used we
334 	 * could leave the +32, +64, and +32+64 slots free.
335 	 * XXX only for splitmic.
336 	 */
337 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
338 		setbit(sc->sc_keymap, i);
339 		setbit(sc->sc_keymap, i+32);
340 		setbit(sc->sc_keymap, i+64);
341 		setbit(sc->sc_keymap, i+32+64);
342 	}
343 
344 	/*
345 	 * Collect the channel list using the default country
346 	 * code and including outdoor channels.  The 802.11 layer
347 	 * is resposible for filtering this list based on settings
348 	 * like the phy mode.
349 	 */
350 	error = ath_getchannels(sc, ath_countrycode,
351 			ath_outdoor, ath_xchanmode);
352 	if (error != 0)
353 		goto bad;
354 
355 	/*
356 	 * Setup rate tables for all potential media types.
357 	 */
358 	ath_rate_setup(sc, IEEE80211_MODE_11A);
359 	ath_rate_setup(sc, IEEE80211_MODE_11B);
360 	ath_rate_setup(sc, IEEE80211_MODE_11G);
361 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
362 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
363 	/* NB: setup here so ath_rate_update is happy */
364 	ath_setcurmode(sc, IEEE80211_MODE_11A);
365 
366 	/*
367 	 * Allocate tx+rx descriptors and populate the lists.
368 	 */
369 	error = ath_desc_alloc(sc);
370 	if (error != 0) {
371 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
372 		goto bad;
373 	}
374 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
375 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
376 #if 0
377 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
378 #endif
379 
380 	ATH_TXBUF_LOCK_INIT(sc);
381 
382 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
383 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
384 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
385 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
386 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
387 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
388 
389 	/*
390 	 * Allocate hardware transmit queues: one queue for
391 	 * beacon frames and one data queue for each QoS
392 	 * priority.  Note that the hal handles reseting
393 	 * these queues at the needed time.
394 	 *
395 	 * XXX PS-Poll
396 	 */
397 	sc->sc_bhalq = ath_beaconq_setup(ah);
398 	if (sc->sc_bhalq == (u_int) -1) {
399 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
400 		error = EIO;
401 		goto bad2;
402 	}
403 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
404 	if (sc->sc_cabq == NULL) {
405 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
406 		error = EIO;
407 		goto bad2;
408 	}
409 	/* NB: insure BK queue is the lowest priority h/w queue */
410 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
411 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
412 			ieee80211_wme_acnames[WME_AC_BK]);
413 		error = EIO;
414 		goto bad2;
415 	}
416 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
417 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
418 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
419 		/*
420 		 * Not enough hardware tx queues to properly do WME;
421 		 * just punt and assign them all to the same h/w queue.
422 		 * We could do a better job of this if, for example,
423 		 * we allocate queues when we switch from station to
424 		 * AP mode.
425 		 */
426 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
427 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
428 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
429 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
430 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
431 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
432 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
433 	}
434 
435 	/*
436 	 * Special case certain configurations.  Note the
437 	 * CAB queue is handled by these specially so don't
438 	 * include them when checking the txq setup mask.
439 	 */
440 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
441 	case 0x01:
442 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
443 		break;
444 	case 0x0f:
445 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
446 		break;
447 	default:
448 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
449 		break;
450 	}
451 
452 	/*
453 	 * Setup rate control.  Some rate control modules
454 	 * call back to change the anntena state so expose
455 	 * the necessary entry points.
456 	 * XXX maybe belongs in struct ath_ratectrl?
457 	 */
458 	sc->sc_setdefantenna = ath_setdefantenna;
459 	sc->sc_rc = ath_rate_attach(sc);
460 	if (sc->sc_rc == NULL) {
461 		error = EIO;
462 		goto bad2;
463 	}
464 
465 	sc->sc_blinking = 0;
466 	sc->sc_ledstate = 1;
467 	sc->sc_ledon = 0;			/* low true */
468 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
469 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
470 	/*
471 	 * Auto-enable soft led processing for IBM cards and for
472 	 * 5211 minipci cards.  Users can also manually enable/disable
473 	 * support with a sysctl.
474 	 */
475 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
476 	if (sc->sc_softled) {
477 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
478 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
479 	}
480 
481 	ifp->if_softc = sc;
482 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
483 	ifp->if_start = ath_start;
484 	ifp->if_stop = ath_stop;
485 	ifp->if_watchdog = ath_watchdog;
486 	ifp->if_ioctl = ath_ioctl;
487 	ifp->if_init = ath_ifinit;
488 	IFQ_SET_READY(&ifp->if_snd);
489 
490 	ic->ic_ifp = ifp;
491 	ic->ic_reset = ath_reset;
492 	ic->ic_newassoc = ath_newassoc;
493 	ic->ic_updateslot = ath_updateslot;
494 	ic->ic_wme.wme_update = ath_wme_update;
495 	/* XXX not right but it's not used anywhere important */
496 	ic->ic_phytype = IEEE80211_T_OFDM;
497 	ic->ic_opmode = IEEE80211_M_STA;
498 	ic->ic_caps =
499 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
500 		| IEEE80211_C_HOSTAP		/* hostap mode */
501 		| IEEE80211_C_MONITOR		/* monitor mode */
502 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
503 		| IEEE80211_C_SHSLOT		/* short slot time supported */
504 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
505 		| IEEE80211_C_TXFRAG		/* handle tx frags */
506 		;
507 	/*
508 	 * Query the hal to figure out h/w crypto support.
509 	 */
510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
511 		ic->ic_caps |= IEEE80211_C_WEP;
512 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
513 		ic->ic_caps |= IEEE80211_C_AES;
514 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
515 		ic->ic_caps |= IEEE80211_C_AES_CCM;
516 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
517 		ic->ic_caps |= IEEE80211_C_CKIP;
518 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
519 		ic->ic_caps |= IEEE80211_C_TKIP;
520 		/*
521 		 * Check if h/w does the MIC and/or whether the
522 		 * separate key cache entries are required to
523 		 * handle both tx+rx MIC keys.
524 		 */
525 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
526 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
527 
528 		/*
529 		 * If the h/w supports storing tx+rx MIC keys
530 		 * in one cache slot automatically enable use.
531 		 */
532 		if (ath_hal_hastkipsplit(ah) ||
533 		    !ath_hal_settkipsplit(ah, AH_FALSE))
534 			sc->sc_splitmic = 1;
535 
536 		/*
537 		 * If the h/w can do TKIP MIC together with WME then
538 		 * we use it; otherwise we force the MIC to be done
539 		 * in software by the net80211 layer.
540 		 */
541 		if (ath_hal_haswmetkipmic(ah))
542 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
543 	}
544 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
545 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
546 	/*
547 	 * Mark key cache slots associated with global keys
548 	 * as in use.  If we knew TKIP was not to be used we
549 	 * could leave the +32, +64, and +32+64 slots free.
550 	 */
551 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
552 		setbit(sc->sc_keymap, i);
553 		setbit(sc->sc_keymap, i+64);
554 		if (sc->sc_splitmic) {
555 			setbit(sc->sc_keymap, i+32);
556 			setbit(sc->sc_keymap, i+32+64);
557 		}
558 	}
559 	/*
560 	 * TPC support can be done either with a global cap or
561 	 * per-packet support.  The latter is not available on
562 	 * all parts.  We're a bit pedantic here as all parts
563 	 * support a global cap.
564 	 */
565 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
566 		ic->ic_caps |= IEEE80211_C_TXPMGT;
567 
568 	/*
569 	 * Mark WME capability only if we have sufficient
570 	 * hardware queues to do proper priority scheduling.
571 	 */
572 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
573 		ic->ic_caps |= IEEE80211_C_WME;
574 	/*
575 	 * Check for misc other capabilities.
576 	 */
577 	if (ath_hal_hasbursting(ah))
578 		ic->ic_caps |= IEEE80211_C_BURST;
579 
580 	/*
581 	 * Indicate we need the 802.11 header padded to a
582 	 * 32-bit boundary for 4-address and QoS frames.
583 	 */
584 	ic->ic_flags |= IEEE80211_F_DATAPAD;
585 
586 	/*
587 	 * Query the hal about antenna support.
588 	 */
589 	sc->sc_defant = ath_hal_getdefantenna(ah);
590 
591 	/*
592 	 * Not all chips have the VEOL support we want to
593 	 * use with IBSS beacons; check here for it.
594 	 */
595 	sc->sc_hasveol = ath_hal_hasveol(ah);
596 
597 	/* get mac address from hardware */
598 	ath_hal_getmac(ah, ic->ic_myaddr);
599 
600 	if_attach(ifp);
601 	/* call MI attach routine. */
602 	ieee80211_ifattach(ic);
603 	/* override default methods */
604 	ic->ic_node_alloc = ath_node_alloc;
605 	sc->sc_node_free = ic->ic_node_free;
606 	ic->ic_node_free = ath_node_free;
607 	ic->ic_node_getrssi = ath_node_getrssi;
608 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
609 	ic->ic_recv_mgmt = ath_recv_mgmt;
610 	sc->sc_newstate = ic->ic_newstate;
611 	ic->ic_newstate = ath_newstate;
612 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
613 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
614 	ic->ic_crypto.cs_key_delete = ath_key_delete;
615 	ic->ic_crypto.cs_key_set = ath_key_set;
616 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
617 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
618 	/* complete initialization */
619 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
620 
621 #if NBPFILTER > 0
622 	ath_bpfattach(sc);
623 #endif
624 
625 	sc->sc_flags |= ATH_ATTACHED;
626 
627 	/*
628 	 * Setup dynamic sysctl's now that country code and
629 	 * regdomain are available from the hal.
630 	 */
631 	ath_sysctlattach(sc);
632 
633 	ieee80211_announce(ic);
634 	ath_announce(sc);
635 	return 0;
636 bad2:
637 	ath_tx_cleanup(sc);
638 	ath_desc_free(sc);
639 bad:
640 	if (ah)
641 		ath_hal_detach(ah);
642 	/* XXX don't get under the abstraction like this */
643 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
644 	return error;
645 }
646 
647 int
648 ath_detach(struct ath_softc *sc)
649 {
650 	struct ifnet *ifp = &sc->sc_if;
651 	int s;
652 
653 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
654 		return (0);
655 
656 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
657 		__func__, ifp->if_flags);
658 
659 	s = splnet();
660 	ath_stop(ifp, 1);
661 #if NBPFILTER > 0
662 	bpfdetach(ifp);
663 #endif
664 	/*
665 	 * NB: the order of these is important:
666 	 * o call the 802.11 layer before detaching the hal to
667 	 *   insure callbacks into the driver to delete global
668 	 *   key cache entries can be handled
669 	 * o reclaim the tx queue data structures after calling
670 	 *   the 802.11 layer as we'll get called back to reclaim
671 	 *   node state and potentially want to use them
672 	 * o to cleanup the tx queues the hal is called, so detach
673 	 *   it last
674 	 * Other than that, it's straightforward...
675 	 */
676 	ieee80211_ifdetach(&sc->sc_ic);
677 #ifdef ATH_TX99_DIAG
678 	if (sc->sc_tx99 != NULL)
679 		sc->sc_tx99->detach(sc->sc_tx99);
680 #endif
681 	ath_rate_detach(sc->sc_rc);
682 	ath_desc_free(sc);
683 	ath_tx_cleanup(sc);
684 	sysctl_teardown(&sc->sc_sysctllog);
685 	ath_hal_detach(sc->sc_ah);
686 	if_detach(ifp);
687 	splx(s);
688 
689 	return 0;
690 }
691 
692 void
693 ath_suspend(struct ath_softc *sc)
694 {
695 #if notyet
696 	/*
697 	 * Set the chip in full sleep mode.  Note that we are
698 	 * careful to do this only when bringing the interface
699 	 * completely to a stop.  When the chip is in this state
700 	 * it must be carefully woken up or references to
701 	 * registers in the PCI clock domain may freeze the bus
702 	 * (and system).  This varies by chip and is mostly an
703 	 * issue with newer parts that go to sleep more quickly.
704 	 */
705 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
706 #endif
707 }
708 
709 bool
710 ath_resume(struct ath_softc *sc)
711 {
712 	struct ath_hal *ah = sc->sc_ah;
713 	struct ieee80211com *ic = &sc->sc_ic;
714 	HAL_STATUS status;
715 	int i;
716 
717 #if notyet
718 	ath_hal_setpower(ah, HAL_PM_AWAKE);
719 #else
720 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
721 #endif
722 
723 	/*
724 	 * Reset the key cache since some parts do not
725 	 * reset the contents on initial power up.
726 	 */
727 	for (i = 0; i < sc->sc_keymax; i++)
728 		ath_hal_keyreset(ah, i);
729 
730 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
731 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
732 		if (ATH_TXQ_SETUP(sc, i))
733 			ath_hal_resettxqueue(ah, i);
734 
735 	if (sc->sc_softled) {
736 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
737 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
738 	}
739 	return true;
740 }
741 
742 /*
743  * Interrupt handler.  Most of the actual processing is deferred.
744  */
745 int
746 ath_intr(void *arg)
747 {
748 	struct ath_softc *sc = arg;
749 	struct ifnet *ifp = &sc->sc_if;
750 	struct ath_hal *ah = sc->sc_ah;
751 	HAL_INT status;
752 
753 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
754 		/*
755 		 * The hardware is not ready/present, don't touch anything.
756 		 * Note this can happen early on if the IRQ is shared.
757 		 */
758 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
759 		return 0;
760 	}
761 
762 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
763 		return 0;
764 
765 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
766 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
767 			__func__, ifp->if_flags);
768 		ath_hal_getisr(ah, &status);	/* clear ISR */
769 		ath_hal_intrset(ah, 0);		/* disable further intr's */
770 		return 1; /* XXX */
771 	}
772 	/*
773 	 * Figure out the reason(s) for the interrupt.  Note
774 	 * that the hal returns a pseudo-ISR that may include
775 	 * bits we haven't explicitly enabled so we mask the
776 	 * value to insure we only process bits we requested.
777 	 */
778 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
779 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
780 	status &= sc->sc_imask;			/* discard unasked for bits */
781 	if (status & HAL_INT_FATAL) {
782 		/*
783 		 * Fatal errors are unrecoverable.  Typically
784 		 * these are caused by DMA errors.  Unfortunately
785 		 * the exact reason is not (presently) returned
786 		 * by the hal.
787 		 */
788 		sc->sc_stats.ast_hardware++;
789 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
790 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
791 	} else if (status & HAL_INT_RXORN) {
792 		sc->sc_stats.ast_rxorn++;
793 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
794 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
795 	} else {
796 		if (status & HAL_INT_SWBA) {
797 			/*
798 			 * Software beacon alert--time to send a beacon.
799 			 * Handle beacon transmission directly; deferring
800 			 * this is too slow to meet timing constraints
801 			 * under load.
802 			 */
803 			ath_beacon_proc(sc, 0);
804 		}
805 		if (status & HAL_INT_RXEOL) {
806 			/*
807 			 * NB: the hardware should re-read the link when
808 			 *     RXE bit is written, but it doesn't work at
809 			 *     least on older hardware revs.
810 			 */
811 			sc->sc_stats.ast_rxeol++;
812 			sc->sc_rxlink = NULL;
813 		}
814 		if (status & HAL_INT_TXURN) {
815 			sc->sc_stats.ast_txurn++;
816 			/* bump tx trigger level */
817 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
818 		}
819 		if (status & HAL_INT_RX)
820 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
821 		if (status & HAL_INT_TX)
822 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
823 		if (status & HAL_INT_BMISS) {
824 			sc->sc_stats.ast_bmiss++;
825 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
826 		}
827 		if (status & HAL_INT_MIB) {
828 			sc->sc_stats.ast_mib++;
829 			/*
830 			 * Disable interrupts until we service the MIB
831 			 * interrupt; otherwise it will continue to fire.
832 			 */
833 			ath_hal_intrset(ah, 0);
834 			/*
835 			 * Let the hal handle the event.  We assume it will
836 			 * clear whatever condition caused the interrupt.
837 			 */
838 			ath_hal_mibevent(ah, &sc->sc_halstats);
839 			ath_hal_intrset(ah, sc->sc_imask);
840 		}
841 	}
842 	return 1;
843 }
844 
845 /* Swap transmit descriptor.
846  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
847  * function.
848  */
849 static inline void
850 ath_desc_swap(struct ath_desc *ds)
851 {
852 #ifdef AH_NEED_DESC_SWAP
853 	ds->ds_link = htole32(ds->ds_link);
854 	ds->ds_data = htole32(ds->ds_data);
855 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
856 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
857 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
858 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
859 #endif
860 }
861 
862 static void
863 ath_fatal_proc(void *arg, int pending)
864 {
865 	struct ath_softc *sc = arg;
866 	struct ifnet *ifp = &sc->sc_if;
867 
868 	if_printf(ifp, "hardware error; resetting\n");
869 	ath_reset(ifp);
870 }
871 
872 static void
873 ath_rxorn_proc(void *arg, int pending)
874 {
875 	struct ath_softc *sc = arg;
876 	struct ifnet *ifp = &sc->sc_if;
877 
878 	if_printf(ifp, "rx FIFO overrun; resetting\n");
879 	ath_reset(ifp);
880 }
881 
882 static void
883 ath_bmiss_proc(void *arg, int pending)
884 {
885 	struct ath_softc *sc = arg;
886 	struct ieee80211com *ic = &sc->sc_ic;
887 
888 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
889 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
890 		("unexpect operating mode %u", ic->ic_opmode));
891 	if (ic->ic_state == IEEE80211_S_RUN) {
892 		u_int64_t lastrx = sc->sc_lastrx;
893 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
894 
895 		DPRINTF(sc, ATH_DEBUG_BEACON,
896 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
897 		    " (%" PRIu64 ") bmiss %u\n",
898 		    __func__, tsf, tsf - lastrx, lastrx,
899 		    ic->ic_bmisstimeout*1024);
900 		/*
901 		 * Workaround phantom bmiss interrupts by sanity-checking
902 		 * the time of our last rx'd frame.  If it is within the
903 		 * beacon miss interval then ignore the interrupt.  If it's
904 		 * truly a bmiss we'll get another interrupt soon and that'll
905 		 * be dispatched up for processing.
906 		 */
907 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
908 			NET_LOCK_GIANT();
909 			ieee80211_beacon_miss(ic);
910 			NET_UNLOCK_GIANT();
911 		} else
912 			sc->sc_stats.ast_bmiss_phantom++;
913 	}
914 }
915 
916 static void
917 ath_radar_proc(void *arg, int pending)
918 {
919 #if 0
920 	struct ath_softc *sc = arg;
921 	struct ifnet *ifp = &sc->sc_if;
922 	struct ath_hal *ah = sc->sc_ah;
923 	HAL_CHANNEL hchan;
924 
925 	if (ath_hal_procdfs(ah, &hchan)) {
926 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
927 			hchan.channel, hchan.channelFlags, hchan.privFlags);
928 		/*
929 		 * Initiate channel change.
930 		 */
931 		/* XXX not yet */
932 	}
933 #endif
934 }
935 
936 static u_int
937 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
938 {
939 #define	N(a)	(sizeof(a) / sizeof(a[0]))
940 	static const u_int modeflags[] = {
941 		0,			/* IEEE80211_MODE_AUTO */
942 		CHANNEL_A,		/* IEEE80211_MODE_11A */
943 		CHANNEL_B,		/* IEEE80211_MODE_11B */
944 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
945 		0,			/* IEEE80211_MODE_FH */
946 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
947 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
948 	};
949 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
950 
951 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
952 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
953 	return modeflags[mode];
954 #undef N
955 }
956 
957 static int
958 ath_ifinit(struct ifnet *ifp)
959 {
960 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
961 
962 	return ath_init(sc);
963 }
964 
965 static void
966 ath_settkipmic(struct ath_softc *sc)
967 {
968 	struct ieee80211com *ic = &sc->sc_ic;
969 	struct ath_hal *ah = sc->sc_ah;
970 
971 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
972 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
973 		if (ic->ic_flags & IEEE80211_F_WME) {
974 			(void)ath_hal_settkipmic(ah, AH_FALSE);
975 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
976 		} else {
977 			(void)ath_hal_settkipmic(ah, AH_TRUE);
978 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
979 		}
980 	}
981 }
982 
983 static int
984 ath_init(struct ath_softc *sc)
985 {
986 	struct ifnet *ifp = &sc->sc_if;
987 	struct ieee80211com *ic = &sc->sc_ic;
988 	struct ath_hal *ah = sc->sc_ah;
989 	HAL_STATUS status;
990 	int error = 0;
991 
992 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
993 		__func__, ifp->if_flags);
994 
995 	if (device_is_active(sc->sc_dev)) {
996 		ATH_LOCK(sc);
997 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
998 	           !device_is_active(sc->sc_dev))
999 		return 0;
1000 	else
1001 		ATH_LOCK(sc);
1002 
1003 	/*
1004 	 * Stop anything previously setup.  This is safe
1005 	 * whether this is the first time through or not.
1006 	 */
1007 	ath_stop_locked(ifp, 0);
1008 
1009 	/*
1010 	 * The basic interface to setting the hardware in a good
1011 	 * state is ``reset''.  On return the hardware is known to
1012 	 * be powered up and with interrupts disabled.  This must
1013 	 * be followed by initialization of the appropriate bits
1014 	 * and then setup of the interrupt mask.
1015 	 */
1016 	ath_settkipmic(sc);
1017 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1018 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1019 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1020 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1021 			status);
1022 		error = EIO;
1023 		goto done;
1024 	}
1025 
1026 	/*
1027 	 * This is needed only to setup initial state
1028 	 * but it's best done after a reset.
1029 	 */
1030 	ath_update_txpow(sc);
1031 	/*
1032 	 * Likewise this is set during reset so update
1033 	 * state cached in the driver.
1034 	 */
1035 	ath_restore_diversity(sc);
1036 	sc->sc_calinterval = 1;
1037 	sc->sc_caltries = 0;
1038 
1039 	/*
1040 	 * Setup the hardware after reset: the key cache
1041 	 * is filled as needed and the receive engine is
1042 	 * set going.  Frame transmit is handled entirely
1043 	 * in the frame output path; there's nothing to do
1044 	 * here except setup the interrupt mask.
1045 	 */
1046 	if ((error = ath_startrecv(sc)) != 0) {
1047 		if_printf(ifp, "unable to start recv logic\n");
1048 		goto done;
1049 	}
1050 
1051 	/*
1052 	 * Enable interrupts.
1053 	 */
1054 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1055 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1056 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1057 	/*
1058 	 * Enable MIB interrupts when there are hardware phy counters.
1059 	 * Note we only do this (at the moment) for station mode.
1060 	 */
1061 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1062 		sc->sc_imask |= HAL_INT_MIB;
1063 	ath_hal_intrset(ah, sc->sc_imask);
1064 
1065 	ifp->if_flags |= IFF_RUNNING;
1066 	ic->ic_state = IEEE80211_S_INIT;
1067 
1068 	/*
1069 	 * The hardware should be ready to go now so it's safe
1070 	 * to kick the 802.11 state machine as it's likely to
1071 	 * immediately call back to us to send mgmt frames.
1072 	 */
1073 	ath_chan_change(sc, ic->ic_curchan);
1074 #ifdef ATH_TX99_DIAG
1075 	if (sc->sc_tx99 != NULL)
1076 		sc->sc_tx99->start(sc->sc_tx99);
1077 	else
1078 #endif
1079 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1080 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1081 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1082 	} else
1083 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1084 done:
1085 	ATH_UNLOCK(sc);
1086 	return error;
1087 }
1088 
1089 static void
1090 ath_stop_locked(struct ifnet *ifp, int disable)
1091 {
1092 	struct ath_softc *sc = ifp->if_softc;
1093 	struct ieee80211com *ic = &sc->sc_ic;
1094 	struct ath_hal *ah = sc->sc_ah;
1095 
1096 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1097 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1098 
1099 	ATH_LOCK_ASSERT(sc);
1100 	if (ifp->if_flags & IFF_RUNNING) {
1101 		/*
1102 		 * Shutdown the hardware and driver:
1103 		 *    reset 802.11 state machine
1104 		 *    turn off timers
1105 		 *    disable interrupts
1106 		 *    turn off the radio
1107 		 *    clear transmit machinery
1108 		 *    clear receive machinery
1109 		 *    drain and release tx queues
1110 		 *    reclaim beacon resources
1111 		 *    power down hardware
1112 		 *
1113 		 * Note that some of this work is not possible if the
1114 		 * hardware is gone (invalid).
1115 		 */
1116 #ifdef ATH_TX99_DIAG
1117 		if (sc->sc_tx99 != NULL)
1118 			sc->sc_tx99->stop(sc->sc_tx99);
1119 #endif
1120 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1121 		ifp->if_flags &= ~IFF_RUNNING;
1122 		ifp->if_timer = 0;
1123 		if (device_is_enabled(sc->sc_dev)) {
1124 			if (sc->sc_softled) {
1125 				callout_stop(&sc->sc_ledtimer);
1126 				ath_hal_gpioset(ah, sc->sc_ledpin,
1127 					!sc->sc_ledon);
1128 				sc->sc_blinking = 0;
1129 			}
1130 			ath_hal_intrset(ah, 0);
1131 		}
1132 		ath_draintxq(sc);
1133 		if (device_is_enabled(sc->sc_dev)) {
1134 			ath_stoprecv(sc);
1135 			ath_hal_phydisable(ah);
1136 		} else
1137 			sc->sc_rxlink = NULL;
1138 		IF_PURGE(&ifp->if_snd);
1139 		ath_beacon_free(sc);
1140 	}
1141 	if (disable)
1142 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1143 }
1144 
1145 static void
1146 ath_stop(struct ifnet *ifp, int disable)
1147 {
1148 	struct ath_softc *sc = ifp->if_softc;
1149 
1150 	ATH_LOCK(sc);
1151 	ath_stop_locked(ifp, disable);
1152 	ATH_UNLOCK(sc);
1153 }
1154 
1155 static void
1156 ath_restore_diversity(struct ath_softc *sc)
1157 {
1158 	struct ifnet *ifp = &sc->sc_if;
1159 	struct ath_hal *ah = sc->sc_ah;
1160 
1161 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1162 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1163 		if_printf(ifp, "could not restore diversity setting %d\n",
1164 		    sc->sc_diversity);
1165 		sc->sc_diversity = ath_hal_getdiversity(ah);
1166 	}
1167 }
1168 
1169 /*
1170  * Reset the hardware w/o losing operational state.  This is
1171  * basically a more efficient way of doing ath_stop, ath_init,
1172  * followed by state transitions to the current 802.11
1173  * operational state.  Used to recover from various errors and
1174  * to reset or reload hardware state.
1175  */
1176 int
1177 ath_reset(struct ifnet *ifp)
1178 {
1179 	struct ath_softc *sc = ifp->if_softc;
1180 	struct ieee80211com *ic = &sc->sc_ic;
1181 	struct ath_hal *ah = sc->sc_ah;
1182 	struct ieee80211_channel *c;
1183 	HAL_STATUS status;
1184 
1185 	/*
1186 	 * Convert to a HAL channel description with the flags
1187 	 * constrained to reflect the current operating mode.
1188 	 */
1189 	c = ic->ic_curchan;
1190 	sc->sc_curchan.channel = c->ic_freq;
1191 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1192 
1193 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1194 	ath_draintxq(sc);		/* stop xmit side */
1195 	ath_stoprecv(sc);		/* stop recv side */
1196 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1197 	/* NB: indicate channel change so we do a full reset */
1198 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1199 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1200 			__func__, status);
1201 	ath_update_txpow(sc);		/* update tx power state */
1202 	ath_restore_diversity(sc);
1203 	sc->sc_calinterval = 1;
1204 	sc->sc_caltries = 0;
1205 	if (ath_startrecv(sc) != 0)	/* restart recv */
1206 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1207 	/*
1208 	 * We may be doing a reset in response to an ioctl
1209 	 * that changes the channel so update any state that
1210 	 * might change as a result.
1211 	 */
1212 	ath_chan_change(sc, c);
1213 	if (ic->ic_state == IEEE80211_S_RUN)
1214 		ath_beacon_config(sc);	/* restart beacons */
1215 	ath_hal_intrset(ah, sc->sc_imask);
1216 
1217 	ath_start(ifp);			/* restart xmit */
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Cleanup driver resources when we run out of buffers
1223  * while processing fragments; return the tx buffers
1224  * allocated and drop node references.
1225  */
1226 static void
1227 ath_txfrag_cleanup(struct ath_softc *sc,
1228 	ath_bufhead *frags, struct ieee80211_node *ni)
1229 {
1230 	struct ath_buf *bf;
1231 
1232 	ATH_TXBUF_LOCK_ASSERT(sc);
1233 
1234 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1235 		STAILQ_REMOVE_HEAD(frags, bf_list);
1236 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1237 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1238 		ieee80211_node_decref(ni);
1239 	}
1240 }
1241 
1242 /*
1243  * Setup xmit of a fragmented frame.  Allocate a buffer
1244  * for each frag and bump the node reference count to
1245  * reflect the held reference to be setup by ath_tx_start.
1246  */
1247 static int
1248 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1249 	struct mbuf *m0, struct ieee80211_node *ni)
1250 {
1251 	struct mbuf *m;
1252 	struct ath_buf *bf;
1253 
1254 	ATH_TXBUF_LOCK(sc);
1255 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1256 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1257 		if (bf == NULL) {       /* out of buffers, cleanup */
1258 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1259 				__func__);
1260 			sc->sc_if.if_flags |= IFF_OACTIVE;
1261 			ath_txfrag_cleanup(sc, frags, ni);
1262 			break;
1263 		}
1264 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1265 		ieee80211_node_incref(ni);
1266 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1267 	}
1268 	ATH_TXBUF_UNLOCK(sc);
1269 
1270 	return !STAILQ_EMPTY(frags);
1271 }
1272 
1273 static void
1274 ath_start(struct ifnet *ifp)
1275 {
1276 	struct ath_softc *sc = ifp->if_softc;
1277 	struct ath_hal *ah = sc->sc_ah;
1278 	struct ieee80211com *ic = &sc->sc_ic;
1279 	struct ieee80211_node *ni;
1280 	struct ath_buf *bf;
1281 	struct mbuf *m, *next;
1282 	struct ieee80211_frame *wh;
1283 	struct ether_header *eh;
1284 	ath_bufhead frags;
1285 
1286 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1287 	    !device_is_active(sc->sc_dev))
1288 		return;
1289 	for (;;) {
1290 		/*
1291 		 * Grab a TX buffer and associated resources.
1292 		 */
1293 		ATH_TXBUF_LOCK(sc);
1294 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1295 		if (bf != NULL)
1296 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1297 		ATH_TXBUF_UNLOCK(sc);
1298 		if (bf == NULL) {
1299 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1300 				__func__);
1301 			sc->sc_stats.ast_tx_qstop++;
1302 			ifp->if_flags |= IFF_OACTIVE;
1303 			break;
1304 		}
1305 		/*
1306 		 * Poll the management queue for frames; they
1307 		 * have priority over normal data frames.
1308 		 */
1309 		IF_DEQUEUE(&ic->ic_mgtq, m);
1310 		if (m == NULL) {
1311 			/*
1312 			 * No data frames go out unless we're associated.
1313 			 */
1314 			if (ic->ic_state != IEEE80211_S_RUN) {
1315 				DPRINTF(sc, ATH_DEBUG_XMIT,
1316 				    "%s: discard data packet, state %s\n",
1317 				    __func__,
1318 				    ieee80211_state_name[ic->ic_state]);
1319 				sc->sc_stats.ast_tx_discard++;
1320 				ATH_TXBUF_LOCK(sc);
1321 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1322 				ATH_TXBUF_UNLOCK(sc);
1323 				break;
1324 			}
1325 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1326 			if (m == NULL) {
1327 				ATH_TXBUF_LOCK(sc);
1328 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1329 				ATH_TXBUF_UNLOCK(sc);
1330 				break;
1331 			}
1332 			STAILQ_INIT(&frags);
1333 			/*
1334 			 * Find the node for the destination so we can do
1335 			 * things like power save and fast frames aggregation.
1336 			 */
1337 			if (m->m_len < sizeof(struct ether_header) &&
1338 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1339 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1340 				ni = NULL;
1341 				goto bad;
1342 			}
1343 			eh = mtod(m, struct ether_header *);
1344 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1345 			if (ni == NULL) {
1346 				/* NB: ieee80211_find_txnode does stat+msg */
1347 				m_freem(m);
1348 				goto bad;
1349 			}
1350 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1351 			    (m->m_flags & M_PWR_SAV) == 0) {
1352 				/*
1353 				 * Station in power save mode; pass the frame
1354 				 * to the 802.11 layer and continue.  We'll get
1355 				 * the frame back when the time is right.
1356 				 */
1357 				ieee80211_pwrsave(ic, ni, m);
1358 				goto reclaim;
1359 			}
1360 			/* calculate priority so we can find the tx queue */
1361 			if (ieee80211_classify(ic, m, ni)) {
1362 				DPRINTF(sc, ATH_DEBUG_XMIT,
1363 					"%s: discard, classification failure\n",
1364 					__func__);
1365 				m_freem(m);
1366 				goto bad;
1367 			}
1368 			ifp->if_opackets++;
1369 
1370 #if NBPFILTER > 0
1371 			if (ifp->if_bpf)
1372 				bpf_mtap(ifp->if_bpf, m);
1373 #endif
1374 			/*
1375 			 * Encapsulate the packet in prep for transmission.
1376 			 */
1377 			m = ieee80211_encap(ic, m, ni);
1378 			if (m == NULL) {
1379 				DPRINTF(sc, ATH_DEBUG_XMIT,
1380 					"%s: encapsulation failure\n",
1381 					__func__);
1382 				sc->sc_stats.ast_tx_encap++;
1383 				goto bad;
1384 			}
1385 			/*
1386 			 * Check for fragmentation.  If this has frame
1387 			 * has been broken up verify we have enough
1388 			 * buffers to send all the fragments so all
1389 			 * go out or none...
1390 			 */
1391 			if ((m->m_flags & M_FRAG) &&
1392 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1393 				DPRINTF(sc, ATH_DEBUG_ANY,
1394 				    "%s: out of txfrag buffers\n", __func__);
1395 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1396 				ath_freetx(m);
1397 				goto bad;
1398 			}
1399 		} else {
1400 			/*
1401 			 * Hack!  The referenced node pointer is in the
1402 			 * rcvif field of the packet header.  This is
1403 			 * placed there by ieee80211_mgmt_output because
1404 			 * we need to hold the reference with the frame
1405 			 * and there's no other way (other than packet
1406 			 * tags which we consider too expensive to use)
1407 			 * to pass it along.
1408 			 */
1409 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1410 			m->m_pkthdr.rcvif = NULL;
1411 
1412 			wh = mtod(m, struct ieee80211_frame *);
1413 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1414 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1415 				/* fill time stamp */
1416 				u_int64_t tsf;
1417 				u_int32_t *tstamp;
1418 
1419 				tsf = ath_hal_gettsf64(ah);
1420 				/* XXX: adjust 100us delay to xmit */
1421 				tsf += 100;
1422 				tstamp = (u_int32_t *)&wh[1];
1423 				tstamp[0] = htole32(tsf & 0xffffffff);
1424 				tstamp[1] = htole32(tsf >> 32);
1425 			}
1426 			sc->sc_stats.ast_tx_mgmt++;
1427 		}
1428 
1429 	nextfrag:
1430 		next = m->m_nextpkt;
1431 		if (ath_tx_start(sc, ni, bf, m)) {
1432 	bad:
1433 			ifp->if_oerrors++;
1434 	reclaim:
1435 			ATH_TXBUF_LOCK(sc);
1436 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1437 			ath_txfrag_cleanup(sc, &frags, ni);
1438 			ATH_TXBUF_UNLOCK(sc);
1439 			if (ni != NULL)
1440 				ieee80211_free_node(ni);
1441 			continue;
1442 		}
1443 		if (next != NULL) {
1444 			m = next;
1445 			bf = STAILQ_FIRST(&frags);
1446 			KASSERT(bf != NULL, ("no buf for txfrag"));
1447 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1448 			goto nextfrag;
1449 		}
1450 
1451 		ifp->if_timer = 1;
1452 	}
1453 }
1454 
1455 static int
1456 ath_media_change(struct ifnet *ifp)
1457 {
1458 #define	IS_UP(ifp) \
1459 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1460 	int error;
1461 
1462 	error = ieee80211_media_change(ifp);
1463 	if (error == ENETRESET) {
1464 		if (IS_UP(ifp))
1465 			ath_init(ifp->if_softc);	/* XXX lose error */
1466 		error = 0;
1467 	}
1468 	return error;
1469 #undef IS_UP
1470 }
1471 
1472 #ifdef AR_DEBUG
1473 static void
1474 ath_keyprint(const char *tag, u_int ix,
1475 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1476 {
1477 	static const char *ciphers[] = {
1478 		"WEP",
1479 		"AES-OCB",
1480 		"AES-CCM",
1481 		"CKIP",
1482 		"TKIP",
1483 		"CLR",
1484 	};
1485 	int i, n;
1486 
1487 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1488 	for (i = 0, n = hk->kv_len; i < n; i++)
1489 		printf("%02x", hk->kv_val[i]);
1490 	printf(" mac %s", ether_sprintf(mac));
1491 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1492 		printf(" mic ");
1493 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1494 			printf("%02x", hk->kv_mic[i]);
1495 	}
1496 	printf("\n");
1497 }
1498 #endif
1499 
1500 /*
1501  * Set a TKIP key into the hardware.  This handles the
1502  * potential distribution of key state to multiple key
1503  * cache slots for TKIP.
1504  */
1505 static int
1506 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1507 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1508 {
1509 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1510 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1511 	struct ath_hal *ah = sc->sc_ah;
1512 
1513 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1514 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1515 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1516 		if (sc->sc_splitmic) {
1517 			/*
1518 			 * TX key goes at first index, RX key at the rx index.
1519 			 * The hal handles the MIC keys at index+64.
1520 			 */
1521 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1522 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1523 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1524 						zerobssid))
1525 				return 0;
1526 
1527 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1528 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1529 			/* XXX delete tx key on failure? */
1530 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1531 					hk, mac);
1532 		} else {
1533 			/*
1534 			 * Room for both TX+RX MIC keys in one key cache
1535 			 * slot, just set key at the first index; the HAL
1536 			 * will handle the reset.
1537 			 */
1538 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1539 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1540 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1541 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1542 		}
1543 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1544 		if (sc->sc_splitmic) {
1545 			/*
1546 			 * NB: must pass MIC key in expected location when
1547 			 * the keycache only holds one MIC key per entry.
1548 			 */
1549 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1550 		} else
1551 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1552 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1553 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1554 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1555 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1556 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1557 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1558 	}
1559 	return 0;
1560 #undef IEEE80211_KEY_XR
1561 }
1562 
1563 /*
1564  * Set a net80211 key into the hardware.  This handles the
1565  * potential distribution of key state to multiple key
1566  * cache slots for TKIP with hardware MIC support.
1567  */
1568 static int
1569 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1570 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1571 	struct ieee80211_node *bss)
1572 {
1573 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1574 	static const u_int8_t ciphermap[] = {
1575 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1576 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1577 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1578 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1579 		(u_int8_t) -1,		/* 4 is not allocated */
1580 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1581 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1582 	};
1583 	struct ath_hal *ah = sc->sc_ah;
1584 	const struct ieee80211_cipher *cip = k->wk_cipher;
1585 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1586 	const u_int8_t *mac;
1587 	HAL_KEYVAL hk;
1588 
1589 	memset(&hk, 0, sizeof(hk));
1590 	/*
1591 	 * Software crypto uses a "clear key" so non-crypto
1592 	 * state kept in the key cache are maintained and
1593 	 * so that rx frames have an entry to match.
1594 	 */
1595 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1596 		KASSERT(cip->ic_cipher < N(ciphermap),
1597 			("invalid cipher type %u", cip->ic_cipher));
1598 		hk.kv_type = ciphermap[cip->ic_cipher];
1599 		hk.kv_len = k->wk_keylen;
1600 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1601 	} else
1602 		hk.kv_type = HAL_CIPHER_CLR;
1603 
1604 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1605 		/*
1606 		 * Group keys on hardware that supports multicast frame
1607 		 * key search use a mac that is the sender's address with
1608 		 * the high bit set instead of the app-specified address.
1609 		 */
1610 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1611 		gmac[0] |= 0x80;
1612 		mac = gmac;
1613 	} else
1614 		mac = mac0;
1615 
1616 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1617 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1618 		return ath_keyset_tkip(sc, k, &hk, mac);
1619 	} else {
1620 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1621 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1622 	}
1623 #undef N
1624 }
1625 
1626 /*
1627  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1628  * each key, one for decrypt/encrypt and the other for the MIC.
1629  */
1630 static u_int16_t
1631 key_alloc_2pair(struct ath_softc *sc,
1632 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1633 {
1634 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1635 	u_int i, keyix;
1636 
1637 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1638 	/* XXX could optimize */
1639 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1640 		u_int8_t b = sc->sc_keymap[i];
1641 		if (b != 0xff) {
1642 			/*
1643 			 * One or more slots in this byte are free.
1644 			 */
1645 			keyix = i*NBBY;
1646 			while (b & 1) {
1647 		again:
1648 				keyix++;
1649 				b >>= 1;
1650 			}
1651 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1652 			if (isset(sc->sc_keymap, keyix+32) ||
1653 			    isset(sc->sc_keymap, keyix+64) ||
1654 			    isset(sc->sc_keymap, keyix+32+64)) {
1655 				/* full pair unavailable */
1656 				/* XXX statistic */
1657 				if (keyix == (i+1)*NBBY) {
1658 					/* no slots were appropriate, advance */
1659 					continue;
1660 				}
1661 				goto again;
1662 			}
1663 			setbit(sc->sc_keymap, keyix);
1664 			setbit(sc->sc_keymap, keyix+64);
1665 			setbit(sc->sc_keymap, keyix+32);
1666 			setbit(sc->sc_keymap, keyix+32+64);
1667 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1668 				"%s: key pair %u,%u %u,%u\n",
1669 				__func__, keyix, keyix+64,
1670 				keyix+32, keyix+32+64);
1671 			*txkeyix = keyix;
1672 			*rxkeyix = keyix+32;
1673 			return keyix;
1674 		}
1675 	}
1676 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1677 	return IEEE80211_KEYIX_NONE;
1678 #undef N
1679 }
1680 
1681 /*
1682  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1683  * each key, one for decrypt/encrypt and the other for the MIC.
1684  */
1685 static int
1686 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1687     ieee80211_keyix *rxkeyix)
1688 {
1689 #define N(a)	(sizeof(a)/sizeof(a[0]))
1690 	u_int i, keyix;
1691 
1692 	KASSERT(!sc->sc_splitmic, ("key cache split"));
1693 	/* XXX could optimize */
1694 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1695 		uint8_t b = sc->sc_keymap[i];
1696 		if (b != 0xff) {
1697 			/*
1698 			 * One or more slots in this byte are free.
1699 			 */
1700 			keyix = i*NBBY;
1701 			while (b & 1) {
1702 		again:
1703 				keyix++;
1704 				b >>= 1;
1705 			}
1706 			if (isset(sc->sc_keymap, keyix+64)) {
1707 				/* full pair unavailable */
1708 				/* XXX statistic */
1709 				if (keyix == (i+1)*NBBY) {
1710 					/* no slots were appropriate, advance */
1711 					continue;
1712 				}
1713 				goto again;
1714 			}
1715 			setbit(sc->sc_keymap, keyix);
1716 			setbit(sc->sc_keymap, keyix+64);
1717 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1718 				"%s: key pair %u,%u\n",
1719 				__func__, keyix, keyix+64);
1720 			*txkeyix = *rxkeyix = keyix;
1721 			return 1;
1722 		}
1723 	}
1724 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1725 	return 0;
1726 #undef N
1727 }
1728 
1729 /*
1730  * Allocate a single key cache slot.
1731  */
1732 static int
1733 key_alloc_single(struct ath_softc *sc,
1734 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1735 {
1736 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1737 	u_int i, keyix;
1738 
1739 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1740 	for (i = 0; i < N(sc->sc_keymap); i++) {
1741 		u_int8_t b = sc->sc_keymap[i];
1742 		if (b != 0xff) {
1743 			/*
1744 			 * One or more slots are free.
1745 			 */
1746 			keyix = i*NBBY;
1747 			while (b & 1)
1748 				keyix++, b >>= 1;
1749 			setbit(sc->sc_keymap, keyix);
1750 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1751 				__func__, keyix);
1752 			*txkeyix = *rxkeyix = keyix;
1753 			return 1;
1754 		}
1755 	}
1756 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1757 	return 0;
1758 #undef N
1759 }
1760 
1761 /*
1762  * Allocate one or more key cache slots for a uniacst key.  The
1763  * key itself is needed only to identify the cipher.  For hardware
1764  * TKIP with split cipher+MIC keys we allocate two key cache slot
1765  * pairs so that we can setup separate TX and RX MIC keys.  Note
1766  * that the MIC key for a TKIP key at slot i is assumed by the
1767  * hardware to be at slot i+64.  This limits TKIP keys to the first
1768  * 64 entries.
1769  */
1770 static int
1771 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1772 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1773 {
1774 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1775 
1776 	/*
1777 	 * Group key allocation must be handled specially for
1778 	 * parts that do not support multicast key cache search
1779 	 * functionality.  For those parts the key id must match
1780 	 * the h/w key index so lookups find the right key.  On
1781 	 * parts w/ the key search facility we install the sender's
1782 	 * mac address (with the high bit set) and let the hardware
1783 	 * find the key w/o using the key id.  This is preferred as
1784 	 * it permits us to support multiple users for adhoc and/or
1785 	 * multi-station operation.
1786 	 */
1787 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1788 		if (!(&ic->ic_nw_keys[0] <= k &&
1789 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1790 			/* should not happen */
1791 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1792 				"%s: bogus group key\n", __func__);
1793 			return 0;
1794 		}
1795 		/*
1796 		 * XXX we pre-allocate the global keys so
1797 		 * have no way to check if they've already been allocated.
1798 		 */
1799 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1800 		return 1;
1801 	}
1802 
1803 	/*
1804 	 * We allocate two pair for TKIP when using the h/w to do
1805 	 * the MIC.  For everything else, including software crypto,
1806 	 * we allocate a single entry.  Note that s/w crypto requires
1807 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1808 	 * not support pass-through cache entries and we map all
1809 	 * those requests to slot 0.
1810 	 */
1811 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1812 		return key_alloc_single(sc, keyix, rxkeyix);
1813 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1814 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1815 		if (sc->sc_splitmic)
1816 			return key_alloc_2pair(sc, keyix, rxkeyix);
1817 		else
1818 			return key_alloc_pair(sc, keyix, rxkeyix);
1819 	} else {
1820 		return key_alloc_single(sc, keyix, rxkeyix);
1821 	}
1822 }
1823 
1824 /*
1825  * Delete an entry in the key cache allocated by ath_key_alloc.
1826  */
1827 static int
1828 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1829 {
1830 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1831 	struct ath_hal *ah = sc->sc_ah;
1832 	const struct ieee80211_cipher *cip = k->wk_cipher;
1833 	u_int keyix = k->wk_keyix;
1834 
1835 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1836 
1837 	if (!device_has_power(sc->sc_dev)) {
1838 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1839 		    k->wk_keyix);
1840 	}
1841 
1842 	ath_hal_keyreset(ah, keyix);
1843 	/*
1844 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1845 	 */
1846 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1847 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1848 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1849 	if (keyix >= IEEE80211_WEP_NKID) {
1850 		/*
1851 		 * Don't touch keymap entries for global keys so
1852 		 * they are never considered for dynamic allocation.
1853 		 */
1854 		clrbit(sc->sc_keymap, keyix);
1855 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1856 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1857 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1858 			if (sc->sc_splitmic) {
1859 				/* +32 for RX key, +32+64 for RX key MIC */
1860 				clrbit(sc->sc_keymap, keyix+32);
1861 				clrbit(sc->sc_keymap, keyix+32+64);
1862 			}
1863 		}
1864 	}
1865 	return 1;
1866 }
1867 
1868 /*
1869  * Set the key cache contents for the specified key.  Key cache
1870  * slot(s) must already have been allocated by ath_key_alloc.
1871  */
1872 static int
1873 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1874 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1875 {
1876 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1877 
1878 	if (!device_has_power(sc->sc_dev)) {
1879 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1880 		    k->wk_keyix);
1881 	}
1882 	return ath_keyset(sc, k, mac, ic->ic_bss);
1883 }
1884 
1885 /*
1886  * Block/unblock tx+rx processing while a key change is done.
1887  * We assume the caller serializes key management operations
1888  * so we only need to worry about synchronization with other
1889  * uses that originate in the driver.
1890  */
1891 static void
1892 ath_key_update_begin(struct ieee80211com *ic)
1893 {
1894 	struct ifnet *ifp = ic->ic_ifp;
1895 	struct ath_softc *sc = ifp->if_softc;
1896 
1897 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1898 #if 0
1899 	tasklet_disable(&sc->sc_rxtq);
1900 #endif
1901 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1902 }
1903 
1904 static void
1905 ath_key_update_end(struct ieee80211com *ic)
1906 {
1907 	struct ifnet *ifp = ic->ic_ifp;
1908 	struct ath_softc *sc = ifp->if_softc;
1909 
1910 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1911 	IF_UNLOCK(&ifp->if_snd);
1912 #if 0
1913 	tasklet_enable(&sc->sc_rxtq);
1914 #endif
1915 }
1916 
1917 /*
1918  * Calculate the receive filter according to the
1919  * operating mode and state:
1920  *
1921  * o always accept unicast, broadcast, and multicast traffic
1922  * o maintain current state of phy error reception (the hal
1923  *   may enable phy error frames for noise immunity work)
1924  * o probe request frames are accepted only when operating in
1925  *   hostap, adhoc, or monitor modes
1926  * o enable promiscuous mode according to the interface state
1927  * o accept beacons:
1928  *   - when operating in adhoc mode so the 802.11 layer creates
1929  *     node table entries for peers,
1930  *   - when operating in station mode for collecting rssi data when
1931  *     the station is otherwise quiet, or
1932  *   - when scanning
1933  */
1934 static u_int32_t
1935 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1936 {
1937 	struct ieee80211com *ic = &sc->sc_ic;
1938 	struct ath_hal *ah = sc->sc_ah;
1939 	struct ifnet *ifp = &sc->sc_if;
1940 	u_int32_t rfilt;
1941 
1942 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1943 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1944 	if (ic->ic_opmode != IEEE80211_M_STA)
1945 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1946 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1947 	    (ifp->if_flags & IFF_PROMISC))
1948 		rfilt |= HAL_RX_FILTER_PROM;
1949 	if (ifp->if_flags & IFF_PROMISC)
1950 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1951 	if (ic->ic_opmode == IEEE80211_M_STA ||
1952 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1953 	    state == IEEE80211_S_SCAN)
1954 		rfilt |= HAL_RX_FILTER_BEACON;
1955 	return rfilt;
1956 }
1957 
1958 static void
1959 ath_mode_init(struct ath_softc *sc)
1960 {
1961 	struct ifnet *ifp = &sc->sc_if;
1962 	struct ieee80211com *ic = &sc->sc_ic;
1963 	struct ath_hal *ah = sc->sc_ah;
1964 	struct ether_multi *enm;
1965 	struct ether_multistep estep;
1966 	u_int32_t rfilt, mfilt[2], val;
1967 	int i;
1968 	uint8_t pos;
1969 
1970 	/* configure rx filter */
1971 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1972 	ath_hal_setrxfilter(ah, rfilt);
1973 
1974 	/* configure operational mode */
1975 	ath_hal_setopmode(ah);
1976 
1977 	/* Write keys to hardware; it may have been powered down. */
1978 	ath_key_update_begin(ic);
1979 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1980 		ath_key_set(ic,
1981 			    &ic->ic_crypto.cs_nw_keys[i],
1982 			    ic->ic_myaddr);
1983 	}
1984 	ath_key_update_end(ic);
1985 
1986 	/*
1987 	 * Handle any link-level address change.  Note that we only
1988 	 * need to force ic_myaddr; any other addresses are handled
1989 	 * as a byproduct of the ifnet code marking the interface
1990 	 * down then up.
1991 	 *
1992 	 * XXX should get from lladdr instead of arpcom but that's more work
1993 	 */
1994 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1995 	ath_hal_setmac(ah, ic->ic_myaddr);
1996 
1997 	/* calculate and install multicast filter */
1998 	ifp->if_flags &= ~IFF_ALLMULTI;
1999 	mfilt[0] = mfilt[1] = 0;
2000 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
2001 	while (enm != NULL) {
2002 		void *dl;
2003 		/* XXX Punt on ranges. */
2004 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
2005 			mfilt[0] = mfilt[1] = 0xffffffff;
2006 			ifp->if_flags |= IFF_ALLMULTI;
2007 			break;
2008 		}
2009 		dl = enm->enm_addrlo;
2010 		val = LE_READ_4((char *)dl + 0);
2011 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2012 		val = LE_READ_4((char *)dl + 3);
2013 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2014 		pos &= 0x3f;
2015 		mfilt[pos / 32] |= (1 << (pos % 32));
2016 
2017 		ETHER_NEXT_MULTI(estep, enm);
2018 	}
2019 
2020 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2021 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2022 		__func__, rfilt, mfilt[0], mfilt[1]);
2023 }
2024 
2025 /*
2026  * Set the slot time based on the current setting.
2027  */
2028 static void
2029 ath_setslottime(struct ath_softc *sc)
2030 {
2031 	struct ieee80211com *ic = &sc->sc_ic;
2032 	struct ath_hal *ah = sc->sc_ah;
2033 
2034 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2035 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2036 	else
2037 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2038 	sc->sc_updateslot = OK;
2039 }
2040 
2041 /*
2042  * Callback from the 802.11 layer to update the
2043  * slot time based on the current setting.
2044  */
2045 static void
2046 ath_updateslot(struct ifnet *ifp)
2047 {
2048 	struct ath_softc *sc = ifp->if_softc;
2049 	struct ieee80211com *ic = &sc->sc_ic;
2050 
2051 	/*
2052 	 * When not coordinating the BSS, change the hardware
2053 	 * immediately.  For other operation we defer the change
2054 	 * until beacon updates have propagated to the stations.
2055 	 */
2056 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2057 		sc->sc_updateslot = UPDATE;
2058 	else
2059 		ath_setslottime(sc);
2060 }
2061 
2062 /*
2063  * Setup a h/w transmit queue for beacons.
2064  */
2065 static int
2066 ath_beaconq_setup(struct ath_hal *ah)
2067 {
2068 	HAL_TXQ_INFO qi;
2069 
2070 	memset(&qi, 0, sizeof(qi));
2071 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2072 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2073 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2074 	/* NB: for dynamic turbo, don't enable any other interrupts */
2075 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2076 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2077 }
2078 
2079 /*
2080  * Setup the transmit queue parameters for the beacon queue.
2081  */
2082 static int
2083 ath_beaconq_config(struct ath_softc *sc)
2084 {
2085 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2086 	struct ieee80211com *ic = &sc->sc_ic;
2087 	struct ath_hal *ah = sc->sc_ah;
2088 	HAL_TXQ_INFO qi;
2089 
2090 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2091 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2092 		/*
2093 		 * Always burst out beacon and CAB traffic.
2094 		 */
2095 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2096 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2097 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2098 	} else {
2099 		struct wmeParams *wmep =
2100 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2101 		/*
2102 		 * Adhoc mode; important thing is to use 2x cwmin.
2103 		 */
2104 		qi.tqi_aifs = wmep->wmep_aifsn;
2105 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2106 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2107 	}
2108 
2109 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2110 		device_printf(sc->sc_dev, "unable to update parameters for "
2111 			"beacon hardware queue!\n");
2112 		return 0;
2113 	} else {
2114 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2115 		return 1;
2116 	}
2117 #undef ATH_EXPONENT_TO_VALUE
2118 }
2119 
2120 /*
2121  * Allocate and setup an initial beacon frame.
2122  */
2123 static int
2124 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2125 {
2126 	struct ieee80211com *ic = ni->ni_ic;
2127 	struct ath_buf *bf;
2128 	struct mbuf *m;
2129 	int error;
2130 
2131 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2132 	if (bf == NULL) {
2133 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2134 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2135 		return ENOMEM;			/* XXX */
2136 	}
2137 	/*
2138 	 * NB: the beacon data buffer must be 32-bit aligned;
2139 	 * we assume the mbuf routines will return us something
2140 	 * with this alignment (perhaps should assert).
2141 	 */
2142 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2143 	if (m == NULL) {
2144 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2145 			__func__);
2146 		sc->sc_stats.ast_be_nombuf++;
2147 		return ENOMEM;
2148 	}
2149 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2150 				     BUS_DMA_NOWAIT);
2151 	if (error == 0) {
2152 		bf->bf_m = m;
2153 		bf->bf_node = ieee80211_ref_node(ni);
2154 	} else {
2155 		m_freem(m);
2156 	}
2157 	return error;
2158 }
2159 
2160 /*
2161  * Setup the beacon frame for transmit.
2162  */
2163 static void
2164 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2165 {
2166 #define	USE_SHPREAMBLE(_ic) \
2167 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2168 		== IEEE80211_F_SHPREAMBLE)
2169 	struct ieee80211_node *ni = bf->bf_node;
2170 	struct ieee80211com *ic = ni->ni_ic;
2171 	struct mbuf *m = bf->bf_m;
2172 	struct ath_hal *ah = sc->sc_ah;
2173 	struct ath_desc *ds;
2174 	int flags, antenna;
2175 	const HAL_RATE_TABLE *rt;
2176 	u_int8_t rix, rate;
2177 
2178 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2179 		__func__, m, m->m_len);
2180 
2181 	/* setup descriptors */
2182 	ds = bf->bf_desc;
2183 
2184 	flags = HAL_TXDESC_NOACK;
2185 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2186 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2187 		flags |= HAL_TXDESC_VEOL;
2188 		/*
2189 		 * Let hardware handle antenna switching unless
2190 		 * the user has selected a transmit antenna
2191 		 * (sc_txantenna is not 0).
2192 		 */
2193 		antenna = sc->sc_txantenna;
2194 	} else {
2195 		ds->ds_link = 0;
2196 		/*
2197 		 * Switch antenna every 4 beacons, unless the user
2198 		 * has selected a transmit antenna (sc_txantenna
2199 		 * is not 0).
2200 		 *
2201 		 * XXX assumes two antenna
2202 		 */
2203 		if (sc->sc_txantenna == 0)
2204 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2205 		else
2206 			antenna = sc->sc_txantenna;
2207 	}
2208 
2209 	KASSERT(bf->bf_nseg == 1,
2210 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2211 	ds->ds_data = bf->bf_segs[0].ds_addr;
2212 	/*
2213 	 * Calculate rate code.
2214 	 * XXX everything at min xmit rate
2215 	 */
2216 	rix = sc->sc_minrateix;
2217 	rt = sc->sc_currates;
2218 	rate = rt->info[rix].rateCode;
2219 	if (USE_SHPREAMBLE(ic))
2220 		rate |= rt->info[rix].shortPreamble;
2221 	ath_hal_setuptxdesc(ah, ds
2222 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2223 		, sizeof(struct ieee80211_frame)/* header length */
2224 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2225 		, ni->ni_txpower		/* txpower XXX */
2226 		, rate, 1			/* series 0 rate/tries */
2227 		, HAL_TXKEYIX_INVALID		/* no encryption */
2228 		, antenna			/* antenna mode */
2229 		, flags				/* no ack, veol for beacons */
2230 		, 0				/* rts/cts rate */
2231 		, 0				/* rts/cts duration */
2232 	);
2233 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2234 	ath_hal_filltxdesc(ah, ds
2235 		, roundup(m->m_len, 4)		/* buffer length */
2236 		, AH_TRUE			/* first segment */
2237 		, AH_TRUE			/* last segment */
2238 		, ds				/* first descriptor */
2239 	);
2240 
2241 	/* NB: The desc swap function becomes void, if descriptor swapping
2242 	 * is not enabled
2243 	 */
2244 	ath_desc_swap(ds);
2245 
2246 #undef USE_SHPREAMBLE
2247 }
2248 
2249 /*
2250  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2251  * frame contents are done as needed and the slot time is
2252  * also adjusted based on current state.
2253  */
2254 static void
2255 ath_beacon_proc(void *arg, int pending)
2256 {
2257 	struct ath_softc *sc = arg;
2258 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2259 	struct ieee80211_node *ni = bf->bf_node;
2260 	struct ieee80211com *ic = ni->ni_ic;
2261 	struct ath_hal *ah = sc->sc_ah;
2262 	struct mbuf *m;
2263 	int ncabq, error, otherant;
2264 
2265 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2266 		__func__, pending);
2267 
2268 	if (ic->ic_opmode == IEEE80211_M_STA ||
2269 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2270 	    bf == NULL || bf->bf_m == NULL) {
2271 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2272 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2273 		return;
2274 	}
2275 	/*
2276 	 * Check if the previous beacon has gone out.  If
2277 	 * not don't try to post another, skip this period
2278 	 * and wait for the next.  Missed beacons indicate
2279 	 * a problem and should not occur.  If we miss too
2280 	 * many consecutive beacons reset the device.
2281 	 */
2282 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2283 		sc->sc_bmisscount++;
2284 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2285 			"%s: missed %u consecutive beacons\n",
2286 			__func__, sc->sc_bmisscount);
2287 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2288 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2289 		return;
2290 	}
2291 	if (sc->sc_bmisscount != 0) {
2292 		DPRINTF(sc, ATH_DEBUG_BEACON,
2293 			"%s: resume beacon xmit after %u misses\n",
2294 			__func__, sc->sc_bmisscount);
2295 		sc->sc_bmisscount = 0;
2296 	}
2297 
2298 	/*
2299 	 * Update dynamic beacon contents.  If this returns
2300 	 * non-zero then we need to remap the memory because
2301 	 * the beacon frame changed size (probably because
2302 	 * of the TIM bitmap).
2303 	 */
2304 	m = bf->bf_m;
2305 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2306 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2307 		/* XXX too conservative? */
2308 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2309 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2310 					     BUS_DMA_NOWAIT);
2311 		if (error != 0) {
2312 			if_printf(&sc->sc_if,
2313 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2314 			    __func__, error);
2315 			return;
2316 		}
2317 	}
2318 
2319 	/*
2320 	 * Handle slot time change when a non-ERP station joins/leaves
2321 	 * an 11g network.  The 802.11 layer notifies us via callback,
2322 	 * we mark updateslot, then wait one beacon before effecting
2323 	 * the change.  This gives associated stations at least one
2324 	 * beacon interval to note the state change.
2325 	 */
2326 	/* XXX locking */
2327 	if (sc->sc_updateslot == UPDATE)
2328 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2329 	else if (sc->sc_updateslot == COMMIT)
2330 		ath_setslottime(sc);		/* commit change to h/w */
2331 
2332 	/*
2333 	 * Check recent per-antenna transmit statistics and flip
2334 	 * the default antenna if noticeably more frames went out
2335 	 * on the non-default antenna.
2336 	 * XXX assumes 2 anntenae
2337 	 */
2338 	otherant = sc->sc_defant & 1 ? 2 : 1;
2339 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2340 		ath_setdefantenna(sc, otherant);
2341 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2342 
2343 	/*
2344 	 * Construct tx descriptor.
2345 	 */
2346 	ath_beacon_setup(sc, bf);
2347 
2348 	/*
2349 	 * Stop any current dma and put the new frame on the queue.
2350 	 * This should never fail since we check above that no frames
2351 	 * are still pending on the queue.
2352 	 */
2353 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2354 		DPRINTF(sc, ATH_DEBUG_ANY,
2355 			"%s: beacon queue %u did not stop?\n",
2356 			__func__, sc->sc_bhalq);
2357 	}
2358 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2359 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2360 
2361 	/*
2362 	 * Enable the CAB queue before the beacon queue to
2363 	 * insure cab frames are triggered by this beacon.
2364 	 */
2365 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2366 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2367 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2368 	ath_hal_txstart(ah, sc->sc_bhalq);
2369 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2370 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2371 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2372 
2373 	sc->sc_stats.ast_be_xmit++;
2374 }
2375 
2376 /*
2377  * Reset the hardware after detecting beacons have stopped.
2378  */
2379 static void
2380 ath_bstuck_proc(void *arg, int pending)
2381 {
2382 	struct ath_softc *sc = arg;
2383 	struct ifnet *ifp = &sc->sc_if;
2384 
2385 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2386 		sc->sc_bmisscount);
2387 	ath_reset(ifp);
2388 }
2389 
2390 /*
2391  * Reclaim beacon resources.
2392  */
2393 static void
2394 ath_beacon_free(struct ath_softc *sc)
2395 {
2396 	struct ath_buf *bf;
2397 
2398 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2399 		if (bf->bf_m != NULL) {
2400 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2401 			m_freem(bf->bf_m);
2402 			bf->bf_m = NULL;
2403 		}
2404 		if (bf->bf_node != NULL) {
2405 			ieee80211_free_node(bf->bf_node);
2406 			bf->bf_node = NULL;
2407 		}
2408 	}
2409 }
2410 
2411 /*
2412  * Configure the beacon and sleep timers.
2413  *
2414  * When operating as an AP this resets the TSF and sets
2415  * up the hardware to notify us when we need to issue beacons.
2416  *
2417  * When operating in station mode this sets up the beacon
2418  * timers according to the timestamp of the last received
2419  * beacon and the current TSF, configures PCF and DTIM
2420  * handling, programs the sleep registers so the hardware
2421  * will wakeup in time to receive beacons, and configures
2422  * the beacon miss handling so we'll receive a BMISS
2423  * interrupt when we stop seeing beacons from the AP
2424  * we've associated with.
2425  */
2426 static void
2427 ath_beacon_config(struct ath_softc *sc)
2428 {
2429 #define	TSF_TO_TU(_h,_l) \
2430 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2431 #define	FUDGE	2
2432 	struct ath_hal *ah = sc->sc_ah;
2433 	struct ieee80211com *ic = &sc->sc_ic;
2434 	struct ieee80211_node *ni = ic->ic_bss;
2435 	u_int32_t nexttbtt, intval, tsftu;
2436 	u_int64_t tsf;
2437 
2438 	/* extract tstamp from last beacon and convert to TU */
2439 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2440 			     LE_READ_4(ni->ni_tstamp.data));
2441 	/* NB: the beacon interval is kept internally in TU's */
2442 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2443 	if (nexttbtt == 0)		/* e.g. for ap mode */
2444 		nexttbtt = intval;
2445 	else if (intval)		/* NB: can be 0 for monitor mode */
2446 		nexttbtt = roundup(nexttbtt, intval);
2447 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2448 		__func__, nexttbtt, intval, ni->ni_intval);
2449 	if (ic->ic_opmode == IEEE80211_M_STA) {
2450 		HAL_BEACON_STATE bs;
2451 		int dtimperiod, dtimcount;
2452 		int cfpperiod, cfpcount;
2453 
2454 		/*
2455 		 * Setup dtim and cfp parameters according to
2456 		 * last beacon we received (which may be none).
2457 		 */
2458 		dtimperiod = ni->ni_dtim_period;
2459 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2460 			dtimperiod = 1;
2461 		dtimcount = ni->ni_dtim_count;
2462 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2463 			dtimcount = 0;		/* XXX? */
2464 		cfpperiod = 1;			/* NB: no PCF support yet */
2465 		cfpcount = 0;
2466 		/*
2467 		 * Pull nexttbtt forward to reflect the current
2468 		 * TSF and calculate dtim+cfp state for the result.
2469 		 */
2470 		tsf = ath_hal_gettsf64(ah);
2471 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2472 		do {
2473 			nexttbtt += intval;
2474 			if (--dtimcount < 0) {
2475 				dtimcount = dtimperiod - 1;
2476 				if (--cfpcount < 0)
2477 					cfpcount = cfpperiod - 1;
2478 			}
2479 		} while (nexttbtt < tsftu);
2480 		memset(&bs, 0, sizeof(bs));
2481 		bs.bs_intval = intval;
2482 		bs.bs_nexttbtt = nexttbtt;
2483 		bs.bs_dtimperiod = dtimperiod*intval;
2484 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2485 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2486 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2487 		bs.bs_cfpmaxduration = 0;
2488 #if 0
2489 		/*
2490 		 * The 802.11 layer records the offset to the DTIM
2491 		 * bitmap while receiving beacons; use it here to
2492 		 * enable h/w detection of our AID being marked in
2493 		 * the bitmap vector (to indicate frames for us are
2494 		 * pending at the AP).
2495 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2496 		 * XXX enable based on h/w rev for newer chips
2497 		 */
2498 		bs.bs_timoffset = ni->ni_timoff;
2499 #endif
2500 		/*
2501 		 * Calculate the number of consecutive beacons to miss
2502 		 * before taking a BMISS interrupt.  The configuration
2503 		 * is specified in ms, so we need to convert that to
2504 		 * TU's and then calculate based on the beacon interval.
2505 		 * Note that we clamp the result to at most 10 beacons.
2506 		 */
2507 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2508 		if (bs.bs_bmissthreshold > 10)
2509 			bs.bs_bmissthreshold = 10;
2510 		else if (bs.bs_bmissthreshold <= 0)
2511 			bs.bs_bmissthreshold = 1;
2512 
2513 		/*
2514 		 * Calculate sleep duration.  The configuration is
2515 		 * given in ms.  We insure a multiple of the beacon
2516 		 * period is used.  Also, if the sleep duration is
2517 		 * greater than the DTIM period then it makes senses
2518 		 * to make it a multiple of that.
2519 		 *
2520 		 * XXX fixed at 100ms
2521 		 */
2522 		bs.bs_sleepduration =
2523 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2524 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2525 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2526 
2527 		DPRINTF(sc, ATH_DEBUG_BEACON,
2528 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2529 			, __func__
2530 			, tsf, tsftu
2531 			, bs.bs_intval
2532 			, bs.bs_nexttbtt
2533 			, bs.bs_dtimperiod
2534 			, bs.bs_nextdtim
2535 			, bs.bs_bmissthreshold
2536 			, bs.bs_sleepduration
2537 			, bs.bs_cfpperiod
2538 			, bs.bs_cfpmaxduration
2539 			, bs.bs_cfpnext
2540 			, bs.bs_timoffset
2541 		);
2542 		ath_hal_intrset(ah, 0);
2543 		ath_hal_beacontimers(ah, &bs);
2544 		sc->sc_imask |= HAL_INT_BMISS;
2545 		ath_hal_intrset(ah, sc->sc_imask);
2546 	} else {
2547 		ath_hal_intrset(ah, 0);
2548 		if (nexttbtt == intval)
2549 			intval |= HAL_BEACON_RESET_TSF;
2550 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2551 			/*
2552 			 * In IBSS mode enable the beacon timers but only
2553 			 * enable SWBA interrupts if we need to manually
2554 			 * prepare beacon frames.  Otherwise we use a
2555 			 * self-linked tx descriptor and let the hardware
2556 			 * deal with things.
2557 			 */
2558 			intval |= HAL_BEACON_ENA;
2559 			if (!sc->sc_hasveol)
2560 				sc->sc_imask |= HAL_INT_SWBA;
2561 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2562 				/*
2563 				 * Pull nexttbtt forward to reflect
2564 				 * the current TSF.
2565 				 */
2566 				tsf = ath_hal_gettsf64(ah);
2567 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2568 				do {
2569 					nexttbtt += intval;
2570 				} while (nexttbtt < tsftu);
2571 			}
2572 			ath_beaconq_config(sc);
2573 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2574 			/*
2575 			 * In AP mode we enable the beacon timers and
2576 			 * SWBA interrupts to prepare beacon frames.
2577 			 */
2578 			intval |= HAL_BEACON_ENA;
2579 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2580 			ath_beaconq_config(sc);
2581 		}
2582 		ath_hal_beaconinit(ah, nexttbtt, intval);
2583 		sc->sc_bmisscount = 0;
2584 		ath_hal_intrset(ah, sc->sc_imask);
2585 		/*
2586 		 * When using a self-linked beacon descriptor in
2587 		 * ibss mode load it once here.
2588 		 */
2589 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2590 			ath_beacon_proc(sc, 0);
2591 	}
2592 	sc->sc_syncbeacon = 0;
2593 #undef UNDEF
2594 #undef TSF_TO_TU
2595 }
2596 
2597 static int
2598 ath_descdma_setup(struct ath_softc *sc,
2599 	struct ath_descdma *dd, ath_bufhead *head,
2600 	const char *name, int nbuf, int ndesc)
2601 {
2602 #define	DS2PHYS(_dd, _ds) \
2603 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2604 	struct ifnet *ifp = &sc->sc_if;
2605 	struct ath_desc *ds;
2606 	struct ath_buf *bf;
2607 	int i, bsize, error;
2608 
2609 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2610 	    __func__, name, nbuf, ndesc);
2611 
2612 	dd->dd_name = name;
2613 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2614 
2615 	/*
2616 	 * Setup DMA descriptor area.
2617 	 */
2618 	dd->dd_dmat = sc->sc_dmat;
2619 
2620 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2621 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2622 
2623 	if (error != 0) {
2624 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2625 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2626 		goto fail0;
2627 	}
2628 
2629 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2630 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2631 	if (error != 0) {
2632 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2633 		    nbuf * ndesc, dd->dd_name, error);
2634 		goto fail1;
2635 	}
2636 
2637 	/* allocate descriptors */
2638 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2639 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2640 	if (error != 0) {
2641 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2642 			"error %u\n", dd->dd_name, error);
2643 		goto fail2;
2644 	}
2645 
2646 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2647 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2648 	if (error != 0) {
2649 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2650 			dd->dd_name, error);
2651 		goto fail3;
2652 	}
2653 
2654 	ds = dd->dd_desc;
2655 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2656 	DPRINTF(sc, ATH_DEBUG_RESET,
2657 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2658 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2659 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2660 
2661 	/* allocate rx buffers */
2662 	bsize = sizeof(struct ath_buf) * nbuf;
2663 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2664 	if (bf == NULL) {
2665 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2666 			dd->dd_name, bsize);
2667 		goto fail4;
2668 	}
2669 	dd->dd_bufptr = bf;
2670 
2671 	STAILQ_INIT(head);
2672 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2673 		bf->bf_desc = ds;
2674 		bf->bf_daddr = DS2PHYS(dd, ds);
2675 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2676 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2677 		if (error != 0) {
2678 			if_printf(ifp, "unable to create dmamap for %s "
2679 				"buffer %u, error %u\n", dd->dd_name, i, error);
2680 			ath_descdma_cleanup(sc, dd, head);
2681 			return error;
2682 		}
2683 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2684 	}
2685 	return 0;
2686 fail4:
2687 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2688 fail3:
2689 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2690 fail2:
2691 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2692 fail1:
2693 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2694 fail0:
2695 	memset(dd, 0, sizeof(*dd));
2696 	return error;
2697 #undef DS2PHYS
2698 }
2699 
2700 static void
2701 ath_descdma_cleanup(struct ath_softc *sc,
2702 	struct ath_descdma *dd, ath_bufhead *head)
2703 {
2704 	struct ath_buf *bf;
2705 	struct ieee80211_node *ni;
2706 
2707 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2708 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2709 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2710 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2711 
2712 	STAILQ_FOREACH(bf, head, bf_list) {
2713 		if (bf->bf_m) {
2714 			m_freem(bf->bf_m);
2715 			bf->bf_m = NULL;
2716 		}
2717 		if (bf->bf_dmamap != NULL) {
2718 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2719 			bf->bf_dmamap = NULL;
2720 		}
2721 		ni = bf->bf_node;
2722 		bf->bf_node = NULL;
2723 		if (ni != NULL) {
2724 			/*
2725 			 * Reclaim node reference.
2726 			 */
2727 			ieee80211_free_node(ni);
2728 		}
2729 	}
2730 
2731 	STAILQ_INIT(head);
2732 	free(dd->dd_bufptr, M_ATHDEV);
2733 	memset(dd, 0, sizeof(*dd));
2734 }
2735 
2736 static int
2737 ath_desc_alloc(struct ath_softc *sc)
2738 {
2739 	int error;
2740 
2741 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2742 			"rx", ath_rxbuf, 1);
2743 	if (error != 0)
2744 		return error;
2745 
2746 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2747 			"tx", ath_txbuf, ATH_TXDESC);
2748 	if (error != 0) {
2749 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2750 		return error;
2751 	}
2752 
2753 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2754 			"beacon", 1, 1);
2755 	if (error != 0) {
2756 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2757 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2758 		return error;
2759 	}
2760 	return 0;
2761 }
2762 
2763 static void
2764 ath_desc_free(struct ath_softc *sc)
2765 {
2766 
2767 	if (sc->sc_bdma.dd_desc_len != 0)
2768 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2769 	if (sc->sc_txdma.dd_desc_len != 0)
2770 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2771 	if (sc->sc_rxdma.dd_desc_len != 0)
2772 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2773 }
2774 
2775 static struct ieee80211_node *
2776 ath_node_alloc(struct ieee80211_node_table *nt)
2777 {
2778 	struct ieee80211com *ic = nt->nt_ic;
2779 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2780 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2781 	struct ath_node *an;
2782 
2783 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2784 	if (an == NULL) {
2785 		/* XXX stat+msg */
2786 		return NULL;
2787 	}
2788 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2789 	ath_rate_node_init(sc, an);
2790 
2791 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2792 	return &an->an_node;
2793 }
2794 
2795 static void
2796 ath_node_free(struct ieee80211_node *ni)
2797 {
2798 	struct ieee80211com *ic = ni->ni_ic;
2799         struct ath_softc *sc = ic->ic_ifp->if_softc;
2800 
2801 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2802 
2803 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2804 	sc->sc_node_free(ni);
2805 }
2806 
2807 static u_int8_t
2808 ath_node_getrssi(const struct ieee80211_node *ni)
2809 {
2810 #define	HAL_EP_RND(x, mul) \
2811 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2812 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2813 	int32_t rssi;
2814 
2815 	/*
2816 	 * When only one frame is received there will be no state in
2817 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2818 	 */
2819 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2820 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2821 	else
2822 		rssi = ni->ni_rssi;
2823 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2824 #undef HAL_EP_RND
2825 }
2826 
2827 static int
2828 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2829 {
2830 	struct ath_hal *ah = sc->sc_ah;
2831 	int error;
2832 	struct mbuf *m;
2833 	struct ath_desc *ds;
2834 
2835 	m = bf->bf_m;
2836 	if (m == NULL) {
2837 		/*
2838 		 * NB: by assigning a page to the rx dma buffer we
2839 		 * implicitly satisfy the Atheros requirement that
2840 		 * this buffer be cache-line-aligned and sized to be
2841 		 * multiple of the cache line size.  Not doing this
2842 		 * causes weird stuff to happen (for the 5210 at least).
2843 		 */
2844 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2845 		if (m == NULL) {
2846 			DPRINTF(sc, ATH_DEBUG_ANY,
2847 				"%s: no mbuf/cluster\n", __func__);
2848 			sc->sc_stats.ast_rx_nombuf++;
2849 			return ENOMEM;
2850 		}
2851 		bf->bf_m = m;
2852 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2853 
2854 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2855 					     bf->bf_dmamap, m,
2856 					     BUS_DMA_NOWAIT);
2857 		if (error != 0) {
2858 			DPRINTF(sc, ATH_DEBUG_ANY,
2859 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2860 			    __func__, error);
2861 			sc->sc_stats.ast_rx_busdma++;
2862 			return error;
2863 		}
2864 		KASSERT(bf->bf_nseg == 1,
2865 			("multi-segment packet; nseg %u", bf->bf_nseg));
2866 	}
2867 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2868 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2869 
2870 	/*
2871 	 * Setup descriptors.  For receive we always terminate
2872 	 * the descriptor list with a self-linked entry so we'll
2873 	 * not get overrun under high load (as can happen with a
2874 	 * 5212 when ANI processing enables PHY error frames).
2875 	 *
2876 	 * To insure the last descriptor is self-linked we create
2877 	 * each descriptor as self-linked and add it to the end.  As
2878 	 * each additional descriptor is added the previous self-linked
2879 	 * entry is ``fixed'' naturally.  This should be safe even
2880 	 * if DMA is happening.  When processing RX interrupts we
2881 	 * never remove/process the last, self-linked, entry on the
2882 	 * descriptor list.  This insures the hardware always has
2883 	 * someplace to write a new frame.
2884 	 */
2885 	ds = bf->bf_desc;
2886 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2887 	ds->ds_data = bf->bf_segs[0].ds_addr;
2888 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2889 	ath_hal_setuprxdesc(ah, ds
2890 		, m->m_len		/* buffer size */
2891 		, 0
2892 	);
2893 
2894 	if (sc->sc_rxlink != NULL)
2895 		*sc->sc_rxlink = bf->bf_daddr;
2896 	sc->sc_rxlink = &ds->ds_link;
2897 	return 0;
2898 }
2899 
2900 /*
2901  * Extend 15-bit time stamp from rx descriptor to
2902  * a full 64-bit TSF using the specified TSF.
2903  */
2904 static inline u_int64_t
2905 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2906 {
2907 	if ((tsf & 0x7fff) < rstamp)
2908 		tsf -= 0x8000;
2909 	return ((tsf &~ 0x7fff) | rstamp);
2910 }
2911 
2912 /*
2913  * Intercept management frames to collect beacon rssi data
2914  * and to do ibss merges.
2915  */
2916 static void
2917 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2918 	struct ieee80211_node *ni,
2919 	int subtype, int rssi, u_int32_t rstamp)
2920 {
2921 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2922 
2923 	/*
2924 	 * Call up first so subsequent work can use information
2925 	 * potentially stored in the node (e.g. for ibss merge).
2926 	 */
2927 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2928 	switch (subtype) {
2929 	case IEEE80211_FC0_SUBTYPE_BEACON:
2930 		/* update rssi statistics for use by the hal */
2931 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2932 		if (sc->sc_syncbeacon &&
2933 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2934 			/*
2935 			 * Resync beacon timers using the tsf of the beacon
2936 			 * frame we just received.
2937 			 */
2938 			ath_beacon_config(sc);
2939 		}
2940 		/* fall thru... */
2941 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2942 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2943 		    ic->ic_state == IEEE80211_S_RUN) {
2944 			u_int64_t tsf = ath_extend_tsf(rstamp,
2945 				ath_hal_gettsf64(sc->sc_ah));
2946 
2947 			/*
2948 			 * Handle ibss merge as needed; check the tsf on the
2949 			 * frame before attempting the merge.  The 802.11 spec
2950 			 * says the station should change it's bssid to match
2951 			 * the oldest station with the same ssid, where oldest
2952 			 * is determined by the tsf.  Note that hardware
2953 			 * reconfiguration happens through callback to
2954 			 * ath_newstate as the state machine will go from
2955 			 * RUN -> RUN when this happens.
2956 			 */
2957 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2958 				DPRINTF(sc, ATH_DEBUG_STATE,
2959 				    "ibss merge, rstamp %u tsf %ju "
2960 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2961 				    (uintmax_t)ni->ni_tstamp.tsf);
2962 				(void) ieee80211_ibss_merge(ni);
2963 			}
2964 		}
2965 		break;
2966 	}
2967 }
2968 
2969 /*
2970  * Set the default antenna.
2971  */
2972 static void
2973 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2974 {
2975 	struct ath_hal *ah = sc->sc_ah;
2976 
2977 	/* XXX block beacon interrupts */
2978 	ath_hal_setdefantenna(ah, antenna);
2979 	if (sc->sc_defant != antenna)
2980 		sc->sc_stats.ast_ant_defswitch++;
2981 	sc->sc_defant = antenna;
2982 	sc->sc_rxotherant = 0;
2983 }
2984 
2985 static void
2986 ath_handle_micerror(struct ieee80211com *ic,
2987 	struct ieee80211_frame *wh, int keyix)
2988 {
2989 	struct ieee80211_node *ni;
2990 
2991 	/* XXX recheck MIC to deal w/ chips that lie */
2992 	/* XXX discard MIC errors on !data frames */
2993 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2994 	if (ni != NULL) {
2995 		ieee80211_notify_michael_failure(ic, wh, keyix);
2996 		ieee80211_free_node(ni);
2997 	}
2998 }
2999 
3000 static void
3001 ath_rx_proc(void *arg, int npending)
3002 {
3003 #define	PA2DESC(_sc, _pa) \
3004 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
3005 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3006 	struct ath_softc *sc = arg;
3007 	struct ath_buf *bf;
3008 	struct ieee80211com *ic = &sc->sc_ic;
3009 	struct ifnet *ifp = &sc->sc_if;
3010 	struct ath_hal *ah = sc->sc_ah;
3011 	struct ath_desc *ds;
3012 	struct mbuf *m;
3013 	struct ieee80211_node *ni;
3014 	struct ath_node *an;
3015 	int len, ngood, type;
3016 	u_int phyerr;
3017 	HAL_STATUS status;
3018 	int16_t nf;
3019 	u_int64_t tsf;
3020 	uint8_t rxerr_tap, rxerr_mon;
3021 
3022 	NET_LOCK_GIANT();		/* XXX */
3023 
3024 	rxerr_tap =
3025 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3026 
3027 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3028 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3029 	else if (ifp->if_flags & IFF_PROMISC)
3030 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3031 
3032 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3033 	ngood = 0;
3034 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3035 	tsf = ath_hal_gettsf64(ah);
3036 	do {
3037 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3038 		if (bf == NULL) {		/* NB: shouldn't happen */
3039 			if_printf(ifp, "%s: no buffer!\n", __func__);
3040 			break;
3041 		}
3042 		ds = bf->bf_desc;
3043 		if (ds->ds_link == bf->bf_daddr) {
3044 			/* NB: never process the self-linked entry at the end */
3045 			break;
3046 		}
3047 		m = bf->bf_m;
3048 		if (m == NULL) {		/* NB: shouldn't happen */
3049 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3050 			break;
3051 		}
3052 		/* XXX sync descriptor memory */
3053 		/*
3054 		 * Must provide the virtual address of the current
3055 		 * descriptor, the physical address, and the virtual
3056 		 * address of the next descriptor in the h/w chain.
3057 		 * This allows the HAL to look ahead to see if the
3058 		 * hardware is done with a descriptor by checking the
3059 		 * done bit in the following descriptor and the address
3060 		 * of the current descriptor the DMA engine is working
3061 		 * on.  All this is necessary because of our use of
3062 		 * a self-linked list to avoid rx overruns.
3063 		 */
3064 		status = ath_hal_rxprocdesc(ah, ds,
3065 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3066 				&ds->ds_rxstat);
3067 #ifdef AR_DEBUG
3068 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3069 			ath_printrxbuf(bf, status == HAL_OK);
3070 #endif
3071 		if (status == HAL_EINPROGRESS)
3072 			break;
3073 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3074 		if (ds->ds_rxstat.rs_more) {
3075 			/*
3076 			 * Frame spans multiple descriptors; this
3077 			 * cannot happen yet as we don't support
3078 			 * jumbograms.  If not in monitor mode,
3079 			 * discard the frame.
3080 			 */
3081 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3082 				sc->sc_stats.ast_rx_toobig++;
3083 				goto rx_next;
3084 			}
3085 			/* fall thru for monitor mode handling... */
3086 		} else if (ds->ds_rxstat.rs_status != 0) {
3087 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3088 				sc->sc_stats.ast_rx_crcerr++;
3089 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3090 				sc->sc_stats.ast_rx_fifoerr++;
3091 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3092 				sc->sc_stats.ast_rx_phyerr++;
3093 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3094 				sc->sc_stats.ast_rx_phy[phyerr]++;
3095 				goto rx_next;
3096 			}
3097 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3098 				/*
3099 				 * Decrypt error.  If the error occurred
3100 				 * because there was no hardware key, then
3101 				 * let the frame through so the upper layers
3102 				 * can process it.  This is necessary for 5210
3103 				 * parts which have no way to setup a ``clear''
3104 				 * key cache entry.
3105 				 *
3106 				 * XXX do key cache faulting
3107 				 */
3108 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3109 					goto rx_accept;
3110 				sc->sc_stats.ast_rx_badcrypt++;
3111 			}
3112 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3113 				sc->sc_stats.ast_rx_badmic++;
3114 				/*
3115 				 * Do minimal work required to hand off
3116 				 * the 802.11 header for notifcation.
3117 				 */
3118 				/* XXX frag's and qos frames */
3119 				len = ds->ds_rxstat.rs_datalen;
3120 				if (len >= sizeof (struct ieee80211_frame)) {
3121 					bus_dmamap_sync(sc->sc_dmat,
3122 					    bf->bf_dmamap,
3123 					    0, bf->bf_dmamap->dm_mapsize,
3124 					    BUS_DMASYNC_POSTREAD);
3125 					ath_handle_micerror(ic,
3126 					    mtod(m, struct ieee80211_frame *),
3127 					    sc->sc_splitmic ?
3128 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3129 				}
3130 			}
3131 			ifp->if_ierrors++;
3132 			/*
3133 			 * Reject error frames, we normally don't want
3134 			 * to see them in monitor mode (in monitor mode
3135 			 * allow through packets that have crypto problems).
3136 			 */
3137 
3138 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3139 				goto rx_next;
3140 		}
3141 rx_accept:
3142 		/*
3143 		 * Sync and unmap the frame.  At this point we're
3144 		 * committed to passing the mbuf somewhere so clear
3145 		 * bf_m; this means a new sk_buff must be allocated
3146 		 * when the rx descriptor is setup again to receive
3147 		 * another frame.
3148 		 */
3149 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3150 		    0, bf->bf_dmamap->dm_mapsize,
3151 		    BUS_DMASYNC_POSTREAD);
3152 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3153 		bf->bf_m = NULL;
3154 
3155 		m->m_pkthdr.rcvif = ifp;
3156 		len = ds->ds_rxstat.rs_datalen;
3157 		m->m_pkthdr.len = m->m_len = len;
3158 
3159 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3160 
3161 #if NBPFILTER > 0
3162 		if (sc->sc_drvbpf) {
3163 			u_int8_t rix;
3164 
3165 			/*
3166 			 * Discard anything shorter than an ack or cts.
3167 			 */
3168 			if (len < IEEE80211_ACK_LEN) {
3169 				DPRINTF(sc, ATH_DEBUG_RECV,
3170 					"%s: runt packet %d\n",
3171 					__func__, len);
3172 				sc->sc_stats.ast_rx_tooshort++;
3173 				m_freem(m);
3174 				goto rx_next;
3175 			}
3176 			rix = ds->ds_rxstat.rs_rate;
3177 			sc->sc_rx_th.wr_tsf = htole64(
3178 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3179 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3180 			if (ds->ds_rxstat.rs_status &
3181 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3182 				sc->sc_rx_th.wr_flags |=
3183 				    IEEE80211_RADIOTAP_F_BADFCS;
3184 			}
3185 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3186 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3187 			sc->sc_rx_th.wr_antnoise = nf;
3188 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3189 
3190 			bpf_mtap2(sc->sc_drvbpf,
3191 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
3192 		}
3193 #endif
3194 
3195 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3196 			m_freem(m);
3197 			goto rx_next;
3198 		}
3199 		/*
3200 		 * From this point on we assume the frame is at least
3201 		 * as large as ieee80211_frame_min; verify that.
3202 		 */
3203 		if (len < IEEE80211_MIN_LEN) {
3204 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3205 				__func__, len);
3206 			sc->sc_stats.ast_rx_tooshort++;
3207 			m_freem(m);
3208 			goto rx_next;
3209 		}
3210 
3211 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3212 			ieee80211_dump_pkt(mtod(m, void *), len,
3213 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3214 				   ds->ds_rxstat.rs_rssi);
3215 		}
3216 
3217 		m_adj(m, -IEEE80211_CRC_LEN);
3218 
3219 		/*
3220 		 * Locate the node for sender, track state, and then
3221 		 * pass the (referenced) node up to the 802.11 layer
3222 		 * for its use.
3223 		 */
3224 		ni = ieee80211_find_rxnode_withkey(ic,
3225 			mtod(m, const struct ieee80211_frame_min *),
3226 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3227 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3228 		/*
3229 		 * Track rx rssi and do any rx antenna management.
3230 		 */
3231 		an = ATH_NODE(ni);
3232 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3233 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3234 		/*
3235 		 * Send frame up for processing.
3236 		 */
3237 		type = ieee80211_input(ic, m, ni,
3238 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3239 		ieee80211_free_node(ni);
3240 		if (sc->sc_diversity) {
3241 			/*
3242 			 * When using fast diversity, change the default rx
3243 			 * antenna if diversity chooses the other antenna 3
3244 			 * times in a row.
3245 			 */
3246 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3247 				if (++sc->sc_rxotherant >= 3)
3248 					ath_setdefantenna(sc,
3249 						ds->ds_rxstat.rs_antenna);
3250 			} else
3251 				sc->sc_rxotherant = 0;
3252 		}
3253 		if (sc->sc_softled) {
3254 			/*
3255 			 * Blink for any data frame.  Otherwise do a
3256 			 * heartbeat-style blink when idle.  The latter
3257 			 * is mainly for station mode where we depend on
3258 			 * periodic beacon frames to trigger the poll event.
3259 			 */
3260 			if (type == IEEE80211_FC0_TYPE_DATA) {
3261 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3262 				ath_led_event(sc, ATH_LED_RX);
3263 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3264 				ath_led_event(sc, ATH_LED_POLL);
3265 		}
3266 		/*
3267 		 * Arrange to update the last rx timestamp only for
3268 		 * frames from our ap when operating in station mode.
3269 		 * This assumes the rx key is always setup when associated.
3270 		 */
3271 		if (ic->ic_opmode == IEEE80211_M_STA &&
3272 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3273 			ngood++;
3274 rx_next:
3275 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3276 	} while (ath_rxbuf_init(sc, bf) == 0);
3277 
3278 	/* rx signal state monitoring */
3279 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3280 #if 0
3281 	if (ath_hal_radar_event(ah))
3282 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3283 #endif
3284 	if (ngood)
3285 		sc->sc_lastrx = tsf;
3286 
3287 #ifdef __NetBSD__
3288 	/* XXX Why isn't this necessary in FreeBSD? */
3289 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3290 		ath_start(ifp);
3291 #endif /* __NetBSD__ */
3292 
3293 	NET_UNLOCK_GIANT();		/* XXX */
3294 #undef PA2DESC
3295 }
3296 
3297 /*
3298  * Setup a h/w transmit queue.
3299  */
3300 static struct ath_txq *
3301 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3302 {
3303 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3304 	struct ath_hal *ah = sc->sc_ah;
3305 	HAL_TXQ_INFO qi;
3306 	int qnum;
3307 
3308 	memset(&qi, 0, sizeof(qi));
3309 	qi.tqi_subtype = subtype;
3310 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3311 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3312 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3313 	/*
3314 	 * Enable interrupts only for EOL and DESC conditions.
3315 	 * We mark tx descriptors to receive a DESC interrupt
3316 	 * when a tx queue gets deep; otherwise waiting for the
3317 	 * EOL to reap descriptors.  Note that this is done to
3318 	 * reduce interrupt load and this only defers reaping
3319 	 * descriptors, never transmitting frames.  Aside from
3320 	 * reducing interrupts this also permits more concurrency.
3321 	 * The only potential downside is if the tx queue backs
3322 	 * up in which case the top half of the kernel may backup
3323 	 * due to a lack of tx descriptors.
3324 	 */
3325 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3326 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3327 	if (qnum == -1) {
3328 		/*
3329 		 * NB: don't print a message, this happens
3330 		 * normally on parts with too few tx queues
3331 		 */
3332 		return NULL;
3333 	}
3334 	if (qnum >= N(sc->sc_txq)) {
3335 		device_printf(sc->sc_dev,
3336 			"hal qnum %u out of range, max %zu!\n",
3337 			qnum, N(sc->sc_txq));
3338 		ath_hal_releasetxqueue(ah, qnum);
3339 		return NULL;
3340 	}
3341 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3342 		struct ath_txq *txq = &sc->sc_txq[qnum];
3343 
3344 		txq->axq_qnum = qnum;
3345 		txq->axq_depth = 0;
3346 		txq->axq_intrcnt = 0;
3347 		txq->axq_link = NULL;
3348 		STAILQ_INIT(&txq->axq_q);
3349 		ATH_TXQ_LOCK_INIT(sc, txq);
3350 		sc->sc_txqsetup |= 1<<qnum;
3351 	}
3352 	return &sc->sc_txq[qnum];
3353 #undef N
3354 }
3355 
3356 /*
3357  * Setup a hardware data transmit queue for the specified
3358  * access control.  The hal may not support all requested
3359  * queues in which case it will return a reference to a
3360  * previously setup queue.  We record the mapping from ac's
3361  * to h/w queues for use by ath_tx_start and also track
3362  * the set of h/w queues being used to optimize work in the
3363  * transmit interrupt handler and related routines.
3364  */
3365 static int
3366 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3367 {
3368 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3369 	struct ath_txq *txq;
3370 
3371 	if (ac >= N(sc->sc_ac2q)) {
3372 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3373 			ac, N(sc->sc_ac2q));
3374 		return 0;
3375 	}
3376 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3377 	if (txq != NULL) {
3378 		sc->sc_ac2q[ac] = txq;
3379 		return 1;
3380 	} else
3381 		return 0;
3382 #undef N
3383 }
3384 
3385 /*
3386  * Update WME parameters for a transmit queue.
3387  */
3388 static int
3389 ath_txq_update(struct ath_softc *sc, int ac)
3390 {
3391 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3392 #define	ATH_TXOP_TO_US(v)		(v<<5)
3393 	struct ieee80211com *ic = &sc->sc_ic;
3394 	struct ath_txq *txq = sc->sc_ac2q[ac];
3395 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3396 	struct ath_hal *ah = sc->sc_ah;
3397 	HAL_TXQ_INFO qi;
3398 
3399 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3400 	qi.tqi_aifs = wmep->wmep_aifsn;
3401 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3402 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3403 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3404 
3405 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3406 		device_printf(sc->sc_dev, "unable to update hardware queue "
3407 			"parameters for %s traffic!\n",
3408 			ieee80211_wme_acnames[ac]);
3409 		return 0;
3410 	} else {
3411 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3412 		return 1;
3413 	}
3414 #undef ATH_TXOP_TO_US
3415 #undef ATH_EXPONENT_TO_VALUE
3416 }
3417 
3418 /*
3419  * Callback from the 802.11 layer to update WME parameters.
3420  */
3421 static int
3422 ath_wme_update(struct ieee80211com *ic)
3423 {
3424 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3425 
3426 	return !ath_txq_update(sc, WME_AC_BE) ||
3427 	    !ath_txq_update(sc, WME_AC_BK) ||
3428 	    !ath_txq_update(sc, WME_AC_VI) ||
3429 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3430 }
3431 
3432 /*
3433  * Reclaim resources for a setup queue.
3434  */
3435 static void
3436 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3437 {
3438 
3439 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3440 	ATH_TXQ_LOCK_DESTROY(txq);
3441 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3442 }
3443 
3444 /*
3445  * Reclaim all tx queue resources.
3446  */
3447 static void
3448 ath_tx_cleanup(struct ath_softc *sc)
3449 {
3450 	int i;
3451 
3452 	ATH_TXBUF_LOCK_DESTROY(sc);
3453 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3454 		if (ATH_TXQ_SETUP(sc, i))
3455 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3456 }
3457 
3458 /*
3459  * Defragment an mbuf chain, returning at most maxfrags separate
3460  * mbufs+clusters.  If this is not possible NULL is returned and
3461  * the original mbuf chain is left in it's present (potentially
3462  * modified) state.  We use two techniques: collapsing consecutive
3463  * mbufs and replacing consecutive mbufs by a cluster.
3464  */
3465 static struct mbuf *
3466 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3467 {
3468 	struct mbuf *m, *n, *n2, **prev;
3469 	u_int curfrags;
3470 
3471 	/*
3472 	 * Calculate the current number of frags.
3473 	 */
3474 	curfrags = 0;
3475 	for (m = m0; m != NULL; m = m->m_next)
3476 		curfrags++;
3477 	/*
3478 	 * First, try to collapse mbufs.  Note that we always collapse
3479 	 * towards the front so we don't need to deal with moving the
3480 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3481 	 * less data than the following.
3482 	 */
3483 	m = m0;
3484 again:
3485 	for (;;) {
3486 		n = m->m_next;
3487 		if (n == NULL)
3488 			break;
3489 		if (n->m_len < M_TRAILINGSPACE(m)) {
3490 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3491 				n->m_len);
3492 			m->m_len += n->m_len;
3493 			m->m_next = n->m_next;
3494 			m_free(n);
3495 			if (--curfrags <= maxfrags)
3496 				return m0;
3497 		} else
3498 			m = n;
3499 	}
3500 	KASSERT(maxfrags > 1,
3501 		("maxfrags %u, but normal collapse failed", maxfrags));
3502 	/*
3503 	 * Collapse consecutive mbufs to a cluster.
3504 	 */
3505 	prev = &m0->m_next;		/* NB: not the first mbuf */
3506 	while ((n = *prev) != NULL) {
3507 		if ((n2 = n->m_next) != NULL &&
3508 		    n->m_len + n2->m_len < MCLBYTES) {
3509 			m = m_getcl(how, MT_DATA, 0);
3510 			if (m == NULL)
3511 				goto bad;
3512 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3513 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3514 				n2->m_len);
3515 			m->m_len = n->m_len + n2->m_len;
3516 			m->m_next = n2->m_next;
3517 			*prev = m;
3518 			m_free(n);
3519 			m_free(n2);
3520 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3521 				return m0;
3522 			/*
3523 			 * Still not there, try the normal collapse
3524 			 * again before we allocate another cluster.
3525 			 */
3526 			goto again;
3527 		}
3528 		prev = &n->m_next;
3529 	}
3530 	/*
3531 	 * No place where we can collapse to a cluster; punt.
3532 	 * This can occur if, for example, you request 2 frags
3533 	 * but the packet requires that both be clusters (we
3534 	 * never reallocate the first mbuf to avoid moving the
3535 	 * packet header).
3536 	 */
3537 bad:
3538 	return NULL;
3539 }
3540 
3541 /*
3542  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3543  */
3544 static int
3545 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3546 {
3547 	int i;
3548 
3549 	for (i = 0; i < rt->rateCount; i++)
3550 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3551 			return i;
3552 	return 0;		/* NB: lowest rate */
3553 }
3554 
3555 static void
3556 ath_freetx(struct mbuf *m)
3557 {
3558 	struct mbuf *next;
3559 
3560 	do {
3561 		next = m->m_nextpkt;
3562 		m->m_nextpkt = NULL;
3563 		m_freem(m);
3564 	} while ((m = next) != NULL);
3565 }
3566 
3567 static int
3568 deduct_pad_bytes(int len, int hdrlen)
3569 {
3570 	/* XXX I am suspicious that this code, which I extracted
3571 	 * XXX from ath_tx_start() for reuse, does the right thing.
3572 	 */
3573 	return len - (hdrlen & 3);
3574 }
3575 
3576 static int
3577 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3578     struct mbuf *m0)
3579 {
3580 	struct ieee80211com *ic = &sc->sc_ic;
3581 	struct ath_hal *ah = sc->sc_ah;
3582 	struct ifnet *ifp = &sc->sc_if;
3583 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3584 	int i, error, iswep, ismcast, isfrag, ismrr;
3585 	int keyix, hdrlen, pktlen, try0;
3586 	u_int8_t rix, txrate, ctsrate;
3587 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3588 	struct ath_desc *ds, *ds0;
3589 	struct ath_txq *txq;
3590 	struct ieee80211_frame *wh;
3591 	u_int subtype, flags, ctsduration;
3592 	HAL_PKT_TYPE atype;
3593 	const HAL_RATE_TABLE *rt;
3594 	HAL_BOOL shortPreamble;
3595 	struct ath_node *an;
3596 	struct mbuf *m;
3597 	u_int pri;
3598 
3599 	wh = mtod(m0, struct ieee80211_frame *);
3600 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3601 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3602 	isfrag = m0->m_flags & M_FRAG;
3603 	hdrlen = ieee80211_anyhdrsize(wh);
3604 	/*
3605 	 * Packet length must not include any
3606 	 * pad bytes; deduct them here.
3607 	 */
3608 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3609 
3610 	if (iswep) {
3611 		const struct ieee80211_cipher *cip;
3612 		struct ieee80211_key *k;
3613 
3614 		/*
3615 		 * Construct the 802.11 header+trailer for an encrypted
3616 		 * frame. The only reason this can fail is because of an
3617 		 * unknown or unsupported cipher/key type.
3618 		 */
3619 		k = ieee80211_crypto_encap(ic, ni, m0);
3620 		if (k == NULL) {
3621 			/*
3622 			 * This can happen when the key is yanked after the
3623 			 * frame was queued.  Just discard the frame; the
3624 			 * 802.11 layer counts failures and provides
3625 			 * debugging/diagnostics.
3626 			 */
3627 			ath_freetx(m0);
3628 			return EIO;
3629 		}
3630 		/*
3631 		 * Adjust the packet + header lengths for the crypto
3632 		 * additions and calculate the h/w key index.  When
3633 		 * a s/w mic is done the frame will have had any mic
3634 		 * added to it prior to entry so m0->m_pkthdr.len above will
3635 		 * account for it. Otherwise we need to add it to the
3636 		 * packet length.
3637 		 */
3638 		cip = k->wk_cipher;
3639 		hdrlen += cip->ic_header;
3640 		pktlen += cip->ic_header + cip->ic_trailer;
3641 		/* NB: frags always have any TKIP MIC done in s/w */
3642 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3643 			pktlen += cip->ic_miclen;
3644 		keyix = k->wk_keyix;
3645 
3646 		/* packet header may have moved, reset our local pointer */
3647 		wh = mtod(m0, struct ieee80211_frame *);
3648 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3649 		/*
3650 		 * Use station key cache slot, if assigned.
3651 		 */
3652 		keyix = ni->ni_ucastkey.wk_keyix;
3653 		if (keyix == IEEE80211_KEYIX_NONE)
3654 			keyix = HAL_TXKEYIX_INVALID;
3655 	} else
3656 		keyix = HAL_TXKEYIX_INVALID;
3657 
3658 	pktlen += IEEE80211_CRC_LEN;
3659 
3660 	/*
3661 	 * Load the DMA map so any coalescing is done.  This
3662 	 * also calculates the number of descriptors we need.
3663 	 */
3664 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3665 				     BUS_DMA_NOWAIT);
3666 	if (error == EFBIG) {
3667 		/* XXX packet requires too many descriptors */
3668 		bf->bf_nseg = ATH_TXDESC+1;
3669 	} else if (error != 0) {
3670 		sc->sc_stats.ast_tx_busdma++;
3671 		ath_freetx(m0);
3672 		return error;
3673 	}
3674 	/*
3675 	 * Discard null packets and check for packets that
3676 	 * require too many TX descriptors.  We try to convert
3677 	 * the latter to a cluster.
3678 	 */
3679 	if (error == EFBIG) {		/* too many desc's, linearize */
3680 		sc->sc_stats.ast_tx_linear++;
3681 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3682 		if (m == NULL) {
3683 			ath_freetx(m0);
3684 			sc->sc_stats.ast_tx_nombuf++;
3685 			return ENOMEM;
3686 		}
3687 		m0 = m;
3688 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3689 					     BUS_DMA_NOWAIT);
3690 		if (error != 0) {
3691 			sc->sc_stats.ast_tx_busdma++;
3692 			ath_freetx(m0);
3693 			return error;
3694 		}
3695 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3696 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3697 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3698 		sc->sc_stats.ast_tx_nodata++;
3699 		ath_freetx(m0);
3700 		return EIO;
3701 	}
3702 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3703 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3704             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3705 	bf->bf_m = m0;
3706 	bf->bf_node = ni;			/* NB: held reference */
3707 
3708 	/* setup descriptors */
3709 	ds = bf->bf_desc;
3710 	rt = sc->sc_currates;
3711 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3712 
3713 	/*
3714 	 * NB: the 802.11 layer marks whether or not we should
3715 	 * use short preamble based on the current mode and
3716 	 * negotiated parameters.
3717 	 */
3718 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3719 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3720 		shortPreamble = AH_TRUE;
3721 		sc->sc_stats.ast_tx_shortpre++;
3722 	} else {
3723 		shortPreamble = AH_FALSE;
3724 	}
3725 
3726 	an = ATH_NODE(ni);
3727 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3728 	ismrr = 0;				/* default no multi-rate retry*/
3729 	/*
3730 	 * Calculate Atheros packet type from IEEE80211 packet header,
3731 	 * setup for rate calculations, and select h/w transmit queue.
3732 	 */
3733 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3734 	case IEEE80211_FC0_TYPE_MGT:
3735 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3736 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3737 			atype = HAL_PKT_TYPE_BEACON;
3738 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3739 			atype = HAL_PKT_TYPE_PROBE_RESP;
3740 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3741 			atype = HAL_PKT_TYPE_ATIM;
3742 		else
3743 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3744 		rix = sc->sc_minrateix;
3745 		txrate = rt->info[rix].rateCode;
3746 		if (shortPreamble)
3747 			txrate |= rt->info[rix].shortPreamble;
3748 		try0 = ATH_TXMGTTRY;
3749 		/* NB: force all management frames to highest queue */
3750 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3751 			/* NB: force all management frames to highest queue */
3752 			pri = WME_AC_VO;
3753 		} else
3754 			pri = WME_AC_BE;
3755 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3756 		break;
3757 	case IEEE80211_FC0_TYPE_CTL:
3758 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3759 		rix = sc->sc_minrateix;
3760 		txrate = rt->info[rix].rateCode;
3761 		if (shortPreamble)
3762 			txrate |= rt->info[rix].shortPreamble;
3763 		try0 = ATH_TXMGTTRY;
3764 		/* NB: force all ctl frames to highest queue */
3765 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3766 			/* NB: force all ctl frames to highest queue */
3767 			pri = WME_AC_VO;
3768 		} else
3769 			pri = WME_AC_BE;
3770 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3771 		break;
3772 	case IEEE80211_FC0_TYPE_DATA:
3773 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3774 		/*
3775 		 * Data frames: multicast frames go out at a fixed rate,
3776 		 * otherwise consult the rate control module for the
3777 		 * rate to use.
3778 		 */
3779 		if (ismcast) {
3780 			/*
3781 			 * Check mcast rate setting in case it's changed.
3782 			 * XXX move out of fastpath
3783 			 */
3784 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3785 				sc->sc_mcastrix =
3786 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3787 				sc->sc_mcastrate = ic->ic_mcast_rate;
3788 			}
3789 			rix = sc->sc_mcastrix;
3790 			txrate = rt->info[rix].rateCode;
3791 			try0 = 1;
3792 		} else {
3793 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3794 				&rix, &try0, &txrate);
3795 			sc->sc_txrate = txrate;		/* for LED blinking */
3796 			if (try0 != ATH_TXMAXTRY)
3797 				ismrr = 1;
3798 		}
3799 		pri = M_WME_GETAC(m0);
3800 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3801 			flags |= HAL_TXDESC_NOACK;
3802 		break;
3803 	default:
3804 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3805 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3806 		/* XXX statistic */
3807 		ath_freetx(m0);
3808 		return EIO;
3809 	}
3810 	txq = sc->sc_ac2q[pri];
3811 
3812 	/*
3813 	 * When servicing one or more stations in power-save mode
3814 	 * multicast frames must be buffered until after the beacon.
3815 	 * We use the CAB queue for that.
3816 	 */
3817 	if (ismcast && ic->ic_ps_sta) {
3818 		txq = sc->sc_cabq;
3819 		/* XXX? more bit in 802.11 frame header */
3820 	}
3821 
3822 	/*
3823 	 * Calculate miscellaneous flags.
3824 	 */
3825 	if (ismcast) {
3826 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3827 	} else if (pktlen > ic->ic_rtsthreshold) {
3828 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3829 		cix = rt->info[rix].controlRate;
3830 		sc->sc_stats.ast_tx_rts++;
3831 	}
3832 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3833 		sc->sc_stats.ast_tx_noack++;
3834 
3835 	/*
3836 	 * If 802.11g protection is enabled, determine whether
3837 	 * to use RTS/CTS or just CTS.  Note that this is only
3838 	 * done for OFDM unicast frames.
3839 	 */
3840 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3841 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3842 	    (flags & HAL_TXDESC_NOACK) == 0) {
3843 		/* XXX fragments must use CCK rates w/ protection */
3844 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3845 			flags |= HAL_TXDESC_RTSENA;
3846 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3847 			flags |= HAL_TXDESC_CTSENA;
3848 		if (isfrag) {
3849 			/*
3850 			 * For frags it would be desirable to use the
3851 			 * highest CCK rate for RTS/CTS.  But stations
3852 			 * farther away may detect it at a lower CCK rate
3853 			 * so use the configured protection rate instead
3854 			 * (for now).
3855 			 */
3856 			cix = rt->info[sc->sc_protrix].controlRate;
3857 		} else
3858 			cix = rt->info[sc->sc_protrix].controlRate;
3859 		sc->sc_stats.ast_tx_protect++;
3860 	}
3861 
3862 	/*
3863 	 * Calculate duration.  This logically belongs in the 802.11
3864 	 * layer but it lacks sufficient information to calculate it.
3865 	 */
3866 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3867 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3868 		u_int16_t dur;
3869 		/*
3870 		 * XXX not right with fragmentation.
3871 		 */
3872 		if (shortPreamble)
3873 			dur = rt->info[rix].spAckDuration;
3874 		else
3875 			dur = rt->info[rix].lpAckDuration;
3876 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3877 			dur += dur;             /* additional SIFS+ACK */
3878 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3879 			/*
3880 			 * Include the size of next fragment so NAV is
3881 			 * updated properly.  The last fragment uses only
3882 			 * the ACK duration
3883 			 */
3884 			dur += ath_hal_computetxtime(ah, rt,
3885 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3886 			        hdrlen) -
3887 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3888 			    rix, shortPreamble);
3889 		}
3890 		if (isfrag) {
3891 			/*
3892 			 * Force hardware to use computed duration for next
3893 			 * fragment by disabling multi-rate retry which updates
3894 			 * duration based on the multi-rate duration table.
3895 			 */
3896 			try0 = ATH_TXMAXTRY;
3897 		}
3898 		*(u_int16_t *)wh->i_dur = htole16(dur);
3899 	}
3900 
3901 	/*
3902 	 * Calculate RTS/CTS rate and duration if needed.
3903 	 */
3904 	ctsduration = 0;
3905 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3906 		/*
3907 		 * CTS transmit rate is derived from the transmit rate
3908 		 * by looking in the h/w rate table.  We must also factor
3909 		 * in whether or not a short preamble is to be used.
3910 		 */
3911 		/* NB: cix is set above where RTS/CTS is enabled */
3912 		KASSERT(cix != 0xff, ("cix not setup"));
3913 		ctsrate = rt->info[cix].rateCode;
3914 		/*
3915 		 * Compute the transmit duration based on the frame
3916 		 * size and the size of an ACK frame.  We call into the
3917 		 * HAL to do the computation since it depends on the
3918 		 * characteristics of the actual PHY being used.
3919 		 *
3920 		 * NB: CTS is assumed the same size as an ACK so we can
3921 		 *     use the precalculated ACK durations.
3922 		 */
3923 		if (shortPreamble) {
3924 			ctsrate |= rt->info[cix].shortPreamble;
3925 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3926 				ctsduration += rt->info[cix].spAckDuration;
3927 			ctsduration += ath_hal_computetxtime(ah,
3928 				rt, pktlen, rix, AH_TRUE);
3929 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3930 				ctsduration += rt->info[rix].spAckDuration;
3931 		} else {
3932 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3933 				ctsduration += rt->info[cix].lpAckDuration;
3934 			ctsduration += ath_hal_computetxtime(ah,
3935 				rt, pktlen, rix, AH_FALSE);
3936 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3937 				ctsduration += rt->info[rix].lpAckDuration;
3938 		}
3939 		/*
3940 		 * Must disable multi-rate retry when using RTS/CTS.
3941 		 */
3942 		ismrr = 0;
3943 		try0 = ATH_TXMGTTRY;		/* XXX */
3944 	} else
3945 		ctsrate = 0;
3946 
3947 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3948 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3949 			sc->sc_hwmap[txrate].ieeerate, -1);
3950 #if NBPFILTER > 0
3951 	if (ic->ic_rawbpf)
3952 		bpf_mtap(ic->ic_rawbpf, m0);
3953 	if (sc->sc_drvbpf) {
3954 		u_int64_t tsf = ath_hal_gettsf64(ah);
3955 
3956 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3957 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3958 		if (iswep)
3959 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3960 		if (isfrag)
3961 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3962 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3963 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3964 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3965 
3966 		bpf_mtap2(sc->sc_drvbpf,
3967 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3968 	}
3969 #endif
3970 
3971 	/*
3972 	 * Determine if a tx interrupt should be generated for
3973 	 * this descriptor.  We take a tx interrupt to reap
3974 	 * descriptors when the h/w hits an EOL condition or
3975 	 * when the descriptor is specifically marked to generate
3976 	 * an interrupt.  We periodically mark descriptors in this
3977 	 * way to insure timely replenishing of the supply needed
3978 	 * for sending frames.  Defering interrupts reduces system
3979 	 * load and potentially allows more concurrent work to be
3980 	 * done but if done to aggressively can cause senders to
3981 	 * backup.
3982 	 *
3983 	 * NB: use >= to deal with sc_txintrperiod changing
3984 	 *     dynamically through sysctl.
3985 	 */
3986 	if (flags & HAL_TXDESC_INTREQ) {
3987 		txq->axq_intrcnt = 0;
3988 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3989 		flags |= HAL_TXDESC_INTREQ;
3990 		txq->axq_intrcnt = 0;
3991 	}
3992 
3993 	/*
3994 	 * Formulate first tx descriptor with tx controls.
3995 	 */
3996 	/* XXX check return value? */
3997 	ath_hal_setuptxdesc(ah, ds
3998 		, pktlen		/* packet length */
3999 		, hdrlen		/* header length */
4000 		, atype			/* Atheros packet type */
4001 		, ni->ni_txpower	/* txpower */
4002 		, txrate, try0		/* series 0 rate/tries */
4003 		, keyix			/* key cache index */
4004 		, sc->sc_txantenna	/* antenna mode */
4005 		, flags			/* flags */
4006 		, ctsrate		/* rts/cts rate */
4007 		, ctsduration		/* rts/cts duration */
4008 	);
4009 	bf->bf_flags = flags;
4010 	/*
4011 	 * Setup the multi-rate retry state only when we're
4012 	 * going to use it.  This assumes ath_hal_setuptxdesc
4013 	 * initializes the descriptors (so we don't have to)
4014 	 * when the hardware supports multi-rate retry and
4015 	 * we don't use it.
4016 	 */
4017 	if (ismrr)
4018 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4019 
4020 	/*
4021 	 * Fillin the remainder of the descriptor info.
4022 	 */
4023 	ds0 = ds;
4024 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4025 		ds->ds_data = bf->bf_segs[i].ds_addr;
4026 		if (i == bf->bf_nseg - 1)
4027 			ds->ds_link = 0;
4028 		else
4029 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4030 		ath_hal_filltxdesc(ah, ds
4031 			, bf->bf_segs[i].ds_len	/* segment length */
4032 			, i == 0		/* first segment */
4033 			, i == bf->bf_nseg - 1	/* last segment */
4034 			, ds0			/* first descriptor */
4035 		);
4036 
4037 		/* NB: The desc swap function becomes void,
4038 		 * if descriptor swapping is not enabled
4039 		 */
4040 		ath_desc_swap(ds);
4041 
4042 		DPRINTF(sc, ATH_DEBUG_XMIT,
4043 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4044 			__func__, i, ds->ds_link, ds->ds_data,
4045 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4046 	}
4047 	/*
4048 	 * Insert the frame on the outbound list and
4049 	 * pass it on to the hardware.
4050 	 */
4051 	ATH_TXQ_LOCK(txq);
4052 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4053 	if (txq->axq_link == NULL) {
4054 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4055 		DPRINTF(sc, ATH_DEBUG_XMIT,
4056 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4057 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4058 		    txq->axq_depth);
4059 	} else {
4060 		*txq->axq_link = HTOAH32(bf->bf_daddr);
4061 		DPRINTF(sc, ATH_DEBUG_XMIT,
4062 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4063 		    __func__, txq->axq_qnum, txq->axq_link,
4064 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4065 	}
4066 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4067 	/*
4068 	 * The CAB queue is started from the SWBA handler since
4069 	 * frames only go out on DTIM and to avoid possible races.
4070 	 */
4071 	if (txq != sc->sc_cabq)
4072 		ath_hal_txstart(ah, txq->axq_qnum);
4073 	ATH_TXQ_UNLOCK(txq);
4074 
4075 	return 0;
4076 }
4077 
4078 /*
4079  * Process completed xmit descriptors from the specified queue.
4080  */
4081 static int
4082 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4083 {
4084 	struct ath_hal *ah = sc->sc_ah;
4085 	struct ieee80211com *ic = &sc->sc_ic;
4086 	struct ath_buf *bf;
4087 	struct ath_desc *ds, *ds0;
4088 	struct ieee80211_node *ni;
4089 	struct ath_node *an;
4090 	int sr, lr, pri, nacked;
4091 	HAL_STATUS status;
4092 
4093 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4094 		__func__, txq->axq_qnum,
4095 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4096 		txq->axq_link);
4097 	nacked = 0;
4098 	for (;;) {
4099 		ATH_TXQ_LOCK(txq);
4100 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4101 		bf = STAILQ_FIRST(&txq->axq_q);
4102 		if (bf == NULL) {
4103 			txq->axq_link = NULL;
4104 			ATH_TXQ_UNLOCK(txq);
4105 			break;
4106 		}
4107 		ds0 = &bf->bf_desc[0];
4108 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4109 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4110 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4111 			ath_printtxbuf(bf, status == HAL_OK);
4112 		if (status == HAL_EINPROGRESS) {
4113 			ATH_TXQ_UNLOCK(txq);
4114 			break;
4115 		}
4116 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4117 		ATH_TXQ_UNLOCK(txq);
4118 
4119 		ni = bf->bf_node;
4120 		if (ni != NULL) {
4121 			an = ATH_NODE(ni);
4122 			if (ds->ds_txstat.ts_status == 0) {
4123 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4124 				sc->sc_stats.ast_ant_tx[txant]++;
4125 				sc->sc_ant_tx[txant]++;
4126 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4127 					sc->sc_stats.ast_tx_altrate++;
4128 				sc->sc_stats.ast_tx_rssi =
4129 					ds->ds_txstat.ts_rssi;
4130 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4131 					ds->ds_txstat.ts_rssi);
4132 				pri = M_WME_GETAC(bf->bf_m);
4133 				if (pri >= WME_AC_VO)
4134 					ic->ic_wme.wme_hipri_traffic++;
4135 				ni->ni_inact = ni->ni_inact_reload;
4136 			} else {
4137 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4138 					sc->sc_stats.ast_tx_xretries++;
4139 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4140 					sc->sc_stats.ast_tx_fifoerr++;
4141 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4142 					sc->sc_stats.ast_tx_filtered++;
4143 			}
4144 			sr = ds->ds_txstat.ts_shortretry;
4145 			lr = ds->ds_txstat.ts_longretry;
4146 			sc->sc_stats.ast_tx_shortretry += sr;
4147 			sc->sc_stats.ast_tx_longretry += lr;
4148 			/*
4149 			 * Hand the descriptor to the rate control algorithm.
4150 			 */
4151 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4152 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4153 				/*
4154 				 * If frame was ack'd update the last rx time
4155 				 * used to workaround phantom bmiss interrupts.
4156 				 */
4157 				if (ds->ds_txstat.ts_status == 0)
4158 					nacked++;
4159 				ath_rate_tx_complete(sc, an, ds, ds0);
4160 			}
4161 			/*
4162 			 * Reclaim reference to node.
4163 			 *
4164 			 * NB: the node may be reclaimed here if, for example
4165 			 *     this is a DEAUTH message that was sent and the
4166 			 *     node was timed out due to inactivity.
4167 			 */
4168 			ieee80211_free_node(ni);
4169 		}
4170 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4171 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4172 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4173 		m_freem(bf->bf_m);
4174 		bf->bf_m = NULL;
4175 		bf->bf_node = NULL;
4176 
4177 		ATH_TXBUF_LOCK(sc);
4178 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4179 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4180 		ATH_TXBUF_UNLOCK(sc);
4181 	}
4182 	return nacked;
4183 }
4184 
4185 static inline int
4186 txqactive(struct ath_hal *ah, int qnum)
4187 {
4188 	u_int32_t txqs = 1<<qnum;
4189 	ath_hal_gettxintrtxqs(ah, &txqs);
4190 	return (txqs & (1<<qnum));
4191 }
4192 
4193 /*
4194  * Deferred processing of transmit interrupt; special-cased
4195  * for a single hardware transmit queue (e.g. 5210 and 5211).
4196  */
4197 static void
4198 ath_tx_proc_q0(void *arg, int npending)
4199 {
4200 	struct ath_softc *sc = arg;
4201 	struct ifnet *ifp = &sc->sc_if;
4202 
4203 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4204 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4205 	}
4206 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4207 		ath_tx_processq(sc, sc->sc_cabq);
4208 
4209 	if (sc->sc_softled)
4210 		ath_led_event(sc, ATH_LED_TX);
4211 
4212 	ath_start(ifp);
4213 }
4214 
4215 /*
4216  * Deferred processing of transmit interrupt; special-cased
4217  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4218  */
4219 static void
4220 ath_tx_proc_q0123(void *arg, int npending)
4221 {
4222 	struct ath_softc *sc = arg;
4223 	struct ifnet *ifp = &sc->sc_if;
4224 	int nacked;
4225 
4226 	/*
4227 	 * Process each active queue.
4228 	 */
4229 	nacked = 0;
4230 	if (txqactive(sc->sc_ah, 0))
4231 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4232 	if (txqactive(sc->sc_ah, 1))
4233 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4234 	if (txqactive(sc->sc_ah, 2))
4235 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4236 	if (txqactive(sc->sc_ah, 3))
4237 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4238 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4239 		ath_tx_processq(sc, sc->sc_cabq);
4240 	if (nacked) {
4241 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4242 	}
4243 
4244 	if (sc->sc_softled)
4245 		ath_led_event(sc, ATH_LED_TX);
4246 
4247 	ath_start(ifp);
4248 }
4249 
4250 /*
4251  * Deferred processing of transmit interrupt.
4252  */
4253 static void
4254 ath_tx_proc(void *arg, int npending)
4255 {
4256 	struct ath_softc *sc = arg;
4257 	struct ifnet *ifp = &sc->sc_if;
4258 	int i, nacked;
4259 
4260 	/*
4261 	 * Process each active queue.
4262 	 */
4263 	nacked = 0;
4264 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4265 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4266 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4267 	if (nacked) {
4268 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4269 	}
4270 
4271 	if (sc->sc_softled)
4272 		ath_led_event(sc, ATH_LED_TX);
4273 
4274 	ath_start(ifp);
4275 }
4276 
4277 static void
4278 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4279 {
4280 	struct ath_hal *ah = sc->sc_ah;
4281 	struct ieee80211_node *ni;
4282 	struct ath_buf *bf;
4283 	struct ath_desc *ds;
4284 
4285 	/*
4286 	 * NB: this assumes output has been stopped and
4287 	 *     we do not need to block ath_tx_tasklet
4288 	 */
4289 	for (;;) {
4290 		ATH_TXQ_LOCK(txq);
4291 		bf = STAILQ_FIRST(&txq->axq_q);
4292 		if (bf == NULL) {
4293 			txq->axq_link = NULL;
4294 			ATH_TXQ_UNLOCK(txq);
4295 			break;
4296 		}
4297 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4298 		ATH_TXQ_UNLOCK(txq);
4299 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4300 		if (sc->sc_debug & ATH_DEBUG_RESET)
4301 			ath_printtxbuf(bf,
4302 				ath_hal_txprocdesc(ah, bf->bf_desc,
4303 					&ds->ds_txstat) == HAL_OK);
4304 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4305 		m_freem(bf->bf_m);
4306 		bf->bf_m = NULL;
4307 		ni = bf->bf_node;
4308 		bf->bf_node = NULL;
4309 		if (ni != NULL) {
4310 			/*
4311 			 * Reclaim node reference.
4312 			 */
4313 			ieee80211_free_node(ni);
4314 		}
4315 		ATH_TXBUF_LOCK(sc);
4316 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4317 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4318 		ATH_TXBUF_UNLOCK(sc);
4319 	}
4320 }
4321 
4322 static void
4323 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4324 {
4325 	struct ath_hal *ah = sc->sc_ah;
4326 
4327 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4328 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4329 	    __func__, txq->axq_qnum,
4330 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4331 	    txq->axq_link);
4332 }
4333 
4334 /*
4335  * Drain the transmit queues and reclaim resources.
4336  */
4337 static void
4338 ath_draintxq(struct ath_softc *sc)
4339 {
4340 	struct ath_hal *ah = sc->sc_ah;
4341 	int i;
4342 
4343 	/* XXX return value */
4344 	if (device_is_active(sc->sc_dev)) {
4345 		/* don't touch the hardware if marked invalid */
4346 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4347 		DPRINTF(sc, ATH_DEBUG_RESET,
4348 		    "%s: beacon queue %p\n", __func__,
4349 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4350 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4351 			if (ATH_TXQ_SETUP(sc, i))
4352 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4353 	}
4354 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4355 		if (ATH_TXQ_SETUP(sc, i))
4356 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4357 }
4358 
4359 /*
4360  * Disable the receive h/w in preparation for a reset.
4361  */
4362 static void
4363 ath_stoprecv(struct ath_softc *sc)
4364 {
4365 #define	PA2DESC(_sc, _pa) \
4366 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4367 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4368 	struct ath_hal *ah = sc->sc_ah;
4369 	u_int64_t tsf;
4370 
4371 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4372 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4373 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4374 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4375 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4376 		struct ath_buf *bf;
4377 
4378 		printf("%s: rx queue %p, link %p\n", __func__,
4379 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4380 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4381 			struct ath_desc *ds = bf->bf_desc;
4382 			tsf = ath_hal_gettsf64(sc->sc_ah);
4383 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4384 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4385 				&ds->ds_rxstat);
4386 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4387 				ath_printrxbuf(bf, status == HAL_OK);
4388 		}
4389 	}
4390 	sc->sc_rxlink = NULL;		/* just in case */
4391 #undef PA2DESC
4392 }
4393 
4394 /*
4395  * Enable the receive h/w following a reset.
4396  */
4397 static int
4398 ath_startrecv(struct ath_softc *sc)
4399 {
4400 	struct ath_hal *ah = sc->sc_ah;
4401 	struct ath_buf *bf;
4402 
4403 	sc->sc_rxlink = NULL;
4404 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4405 		int error = ath_rxbuf_init(sc, bf);
4406 		if (error != 0) {
4407 			DPRINTF(sc, ATH_DEBUG_RECV,
4408 				"%s: ath_rxbuf_init failed %d\n",
4409 				__func__, error);
4410 			return error;
4411 		}
4412 	}
4413 
4414 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4415 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4416 	ath_hal_rxena(ah);		/* enable recv descriptors */
4417 	ath_mode_init(sc);		/* set filters, etc. */
4418 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4419 	return 0;
4420 }
4421 
4422 /*
4423  * Update internal state after a channel change.
4424  */
4425 static void
4426 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4427 {
4428 	struct ieee80211com *ic = &sc->sc_ic;
4429 	enum ieee80211_phymode mode;
4430 	u_int16_t flags;
4431 
4432 	/*
4433 	 * Change channels and update the h/w rate map
4434 	 * if we're switching; e.g. 11a to 11b/g.
4435 	 */
4436 	mode = ieee80211_chan2mode(ic, chan);
4437 	if (mode != sc->sc_curmode)
4438 		ath_setcurmode(sc, mode);
4439 	/*
4440 	 * Update BPF state.  NB: ethereal et. al. don't handle
4441 	 * merged flags well so pick a unique mode for their use.
4442 	 */
4443 	if (IEEE80211_IS_CHAN_A(chan))
4444 		flags = IEEE80211_CHAN_A;
4445 	/* XXX 11g schizophrenia */
4446 	else if (IEEE80211_IS_CHAN_G(chan) ||
4447 	    IEEE80211_IS_CHAN_PUREG(chan))
4448 		flags = IEEE80211_CHAN_G;
4449 	else
4450 		flags = IEEE80211_CHAN_B;
4451 	if (IEEE80211_IS_CHAN_T(chan))
4452 		flags |= IEEE80211_CHAN_TURBO;
4453 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4454 		htole16(chan->ic_freq);
4455 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4456 		htole16(flags);
4457 }
4458 
4459 #if 0
4460 /*
4461  * Poll for a channel clear indication; this is required
4462  * for channels requiring DFS and not previously visited
4463  * and/or with a recent radar detection.
4464  */
4465 static void
4466 ath_dfswait(void *arg)
4467 {
4468 	struct ath_softc *sc = arg;
4469 	struct ath_hal *ah = sc->sc_ah;
4470 	HAL_CHANNEL hchan;
4471 
4472 	ath_hal_radar_wait(ah, &hchan);
4473 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4474 		if_printf(&sc->sc_if,
4475 		    "channel %u/0x%x/0x%x has interference\n",
4476 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4477 		return;
4478 	}
4479 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4480 		/* XXX should not happen */
4481 		return;
4482 	}
4483 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4484 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4485 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4486 		if_printf(&sc->sc_if,
4487 		    "channel %u/0x%x/0x%x marked clear\n",
4488 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4489 	} else
4490 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4491 }
4492 #endif
4493 
4494 /*
4495  * Set/change channels.  If the channel is really being changed,
4496  * it's done by reseting the chip.  To accomplish this we must
4497  * first cleanup any pending DMA, then restart stuff after a la
4498  * ath_init.
4499  */
4500 static int
4501 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4502 {
4503 	struct ath_hal *ah = sc->sc_ah;
4504 	struct ieee80211com *ic = &sc->sc_ic;
4505 	HAL_CHANNEL hchan;
4506 
4507 	/*
4508 	 * Convert to a HAL channel description with
4509 	 * the flags constrained to reflect the current
4510 	 * operating mode.
4511 	 */
4512 	hchan.channel = chan->ic_freq;
4513 	hchan.channelFlags = ath_chan2flags(ic, chan);
4514 
4515 	DPRINTF(sc, ATH_DEBUG_RESET,
4516 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4517 	    __func__,
4518 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4519 		sc->sc_curchan.channelFlags),
4520 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4521 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4522 	        hchan.channel, hchan.channelFlags);
4523 	if (hchan.channel != sc->sc_curchan.channel ||
4524 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4525 		HAL_STATUS status;
4526 
4527 		/*
4528 		 * To switch channels clear any pending DMA operations;
4529 		 * wait long enough for the RX fifo to drain, reset the
4530 		 * hardware at the new frequency, and then re-enable
4531 		 * the relevant bits of the h/w.
4532 		 */
4533 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4534 		ath_draintxq(sc);		/* clear pending tx frames */
4535 		ath_stoprecv(sc);		/* turn off frame recv */
4536 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4537 			if_printf(ic->ic_ifp, "%s: unable to reset "
4538 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4539 			    __func__, ieee80211_chan2ieee(ic, chan),
4540 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4541 			return EIO;
4542 		}
4543 		sc->sc_curchan = hchan;
4544 		ath_update_txpow(sc);		/* update tx power state */
4545 		ath_restore_diversity(sc);
4546 		sc->sc_calinterval = 1;
4547 		sc->sc_caltries = 0;
4548 
4549 		/*
4550 		 * Re-enable rx framework.
4551 		 */
4552 		if (ath_startrecv(sc) != 0) {
4553 			if_printf(&sc->sc_if,
4554 				"%s: unable to restart recv logic\n", __func__);
4555 			return EIO;
4556 		}
4557 
4558 		/*
4559 		 * Change channels and update the h/w rate map
4560 		 * if we're switching; e.g. 11a to 11b/g.
4561 		 */
4562 		ic->ic_ibss_chan = chan;
4563 		ath_chan_change(sc, chan);
4564 
4565 #if 0
4566 		/*
4567 		 * Handle DFS required waiting period to determine
4568 		 * if channel is clear of radar traffic.
4569 		 */
4570 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4571 #define	DFS_AND_NOT_CLEAR(_c) \
4572 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4573 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4574 				if_printf(&sc->sc_if,
4575 					"wait for DFS clear channel signal\n");
4576 				/* XXX stop sndq */
4577 				sc->sc_if.if_flags |= IFF_OACTIVE;
4578 				callout_reset(&sc->sc_dfs_ch,
4579 					2 * hz, ath_dfswait, sc);
4580 			} else
4581 				callout_stop(&sc->sc_dfs_ch);
4582 #undef DFS_NOT_CLEAR
4583 		}
4584 #endif
4585 
4586 		/*
4587 		 * Re-enable interrupts.
4588 		 */
4589 		ath_hal_intrset(ah, sc->sc_imask);
4590 	}
4591 	return 0;
4592 }
4593 
4594 static void
4595 ath_next_scan(void *arg)
4596 {
4597 	struct ath_softc *sc = arg;
4598 	struct ieee80211com *ic = &sc->sc_ic;
4599 	int s;
4600 
4601 	/* don't call ath_start w/o network interrupts blocked */
4602 	s = splnet();
4603 
4604 	if (ic->ic_state == IEEE80211_S_SCAN)
4605 		ieee80211_next_scan(ic);
4606 	splx(s);
4607 }
4608 
4609 /*
4610  * Periodically recalibrate the PHY to account
4611  * for temperature/environment changes.
4612  */
4613 static void
4614 ath_calibrate(void *arg)
4615 {
4616 	struct ath_softc *sc = arg;
4617 	struct ath_hal *ah = sc->sc_ah;
4618 	HAL_BOOL iqCalDone;
4619 
4620 	sc->sc_stats.ast_per_cal++;
4621 
4622 	ATH_LOCK(sc);
4623 
4624 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4625 		/*
4626 		 * Rfgain is out of bounds, reset the chip
4627 		 * to load new gain values.
4628 		 */
4629 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4630 			"%s: rfgain change\n", __func__);
4631 		sc->sc_stats.ast_per_rfgain++;
4632 		ath_reset(&sc->sc_if);
4633 	}
4634 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4635 		DPRINTF(sc, ATH_DEBUG_ANY,
4636 			"%s: calibration of channel %u failed\n",
4637 			__func__, sc->sc_curchan.channel);
4638 		sc->sc_stats.ast_per_calfail++;
4639 	}
4640 	/*
4641 	 * Calibrate noise floor data again in case of change.
4642 	 */
4643 	ath_hal_process_noisefloor(ah);
4644 	/*
4645 	 * Poll more frequently when the IQ calibration is in
4646 	 * progress to speedup loading the final settings.
4647 	 * We temper this aggressive polling with an exponential
4648 	 * back off after 4 tries up to ath_calinterval.
4649 	 */
4650 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4651 		sc->sc_caltries = 0;
4652 		sc->sc_calinterval = ath_calinterval;
4653 	} else if (sc->sc_caltries > 4) {
4654 		sc->sc_caltries = 0;
4655 		sc->sc_calinterval <<= 1;
4656 		if (sc->sc_calinterval > ath_calinterval)
4657 			sc->sc_calinterval = ath_calinterval;
4658 	}
4659 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4660 		("bad calibration interval %u", sc->sc_calinterval));
4661 
4662 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4663 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4664 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4665 	sc->sc_caltries++;
4666 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4667 		ath_calibrate, sc);
4668 	ATH_UNLOCK(sc);
4669 }
4670 
4671 static int
4672 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4673 {
4674 	struct ifnet *ifp = ic->ic_ifp;
4675 	struct ath_softc *sc = ifp->if_softc;
4676 	struct ath_hal *ah = sc->sc_ah;
4677 	struct ieee80211_node *ni;
4678 	int i, error;
4679 	const u_int8_t *bssid;
4680 	u_int32_t rfilt;
4681 	static const HAL_LED_STATE leds[] = {
4682 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4683 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4684 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4685 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4686 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4687 	};
4688 
4689 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4690 		ieee80211_state_name[ic->ic_state],
4691 		ieee80211_state_name[nstate]);
4692 
4693 	callout_stop(&sc->sc_scan_ch);
4694 	callout_stop(&sc->sc_cal_ch);
4695 #if 0
4696 	callout_stop(&sc->sc_dfs_ch);
4697 #endif
4698 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4699 
4700 	if (nstate == IEEE80211_S_INIT) {
4701 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4702 		/*
4703 		 * NB: disable interrupts so we don't rx frames.
4704 		 */
4705 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4706 		/*
4707 		 * Notify the rate control algorithm.
4708 		 */
4709 		ath_rate_newstate(sc, nstate);
4710 		goto done;
4711 	}
4712 	ni = ic->ic_bss;
4713 	error = ath_chan_set(sc, ic->ic_curchan);
4714 	if (error != 0)
4715 		goto bad;
4716 	rfilt = ath_calcrxfilter(sc, nstate);
4717 	if (nstate == IEEE80211_S_SCAN)
4718 		bssid = ifp->if_broadcastaddr;
4719 	else
4720 		bssid = ni->ni_bssid;
4721 	ath_hal_setrxfilter(ah, rfilt);
4722 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4723 		 __func__, rfilt, ether_sprintf(bssid));
4724 
4725 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4726 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4727 	else
4728 		ath_hal_setassocid(ah, bssid, 0);
4729 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4730 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4731 			if (ath_hal_keyisvalid(ah, i))
4732 				ath_hal_keysetmac(ah, i, bssid);
4733 	}
4734 
4735 	/*
4736 	 * Notify the rate control algorithm so rates
4737 	 * are setup should ath_beacon_alloc be called.
4738 	 */
4739 	ath_rate_newstate(sc, nstate);
4740 
4741 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4742 		/* nothing to do */;
4743 	} else if (nstate == IEEE80211_S_RUN) {
4744 		DPRINTF(sc, ATH_DEBUG_STATE,
4745 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4746 			"capinfo=0x%04x chan=%d\n"
4747 			 , __func__
4748 			 , ic->ic_flags
4749 			 , ni->ni_intval
4750 			 , ether_sprintf(ni->ni_bssid)
4751 			 , ni->ni_capinfo
4752 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4753 
4754 		switch (ic->ic_opmode) {
4755 		case IEEE80211_M_HOSTAP:
4756 		case IEEE80211_M_IBSS:
4757 			/*
4758 			 * Allocate and setup the beacon frame.
4759 			 *
4760 			 * Stop any previous beacon DMA.  This may be
4761 			 * necessary, for example, when an ibss merge
4762 			 * causes reconfiguration; there will be a state
4763 			 * transition from RUN->RUN that means we may
4764 			 * be called with beacon transmission active.
4765 			 */
4766 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4767 			ath_beacon_free(sc);
4768 			error = ath_beacon_alloc(sc, ni);
4769 			if (error != 0)
4770 				goto bad;
4771 			/*
4772 			 * If joining an adhoc network defer beacon timer
4773 			 * configuration to the next beacon frame so we
4774 			 * have a current TSF to use.  Otherwise we're
4775 			 * starting an ibss/bss so there's no need to delay.
4776 			 */
4777 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4778 			    ic->ic_bss->ni_tstamp.tsf != 0)
4779 				sc->sc_syncbeacon = 1;
4780 			else
4781 				ath_beacon_config(sc);
4782 			break;
4783 		case IEEE80211_M_STA:
4784 			/*
4785 			 * Allocate a key cache slot to the station.
4786 			 */
4787 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4788 			    sc->sc_hasclrkey &&
4789 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4790 				ath_setup_stationkey(ni);
4791 			/*
4792 			 * Defer beacon timer configuration to the next
4793 			 * beacon frame so we have a current TSF to use
4794 			 * (any TSF collected when scanning is likely old).
4795 			 */
4796 			sc->sc_syncbeacon = 1;
4797 			break;
4798 		default:
4799 			break;
4800 		}
4801 		/*
4802 		 * Let the hal process statistics collected during a
4803 		 * scan so it can provide calibrated noise floor data.
4804 		 */
4805 		ath_hal_process_noisefloor(ah);
4806 		/*
4807 		 * Reset rssi stats; maybe not the best place...
4808 		 */
4809 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4810 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4811 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4812 	} else {
4813 		ath_hal_intrset(ah,
4814 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4815 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4816 	}
4817 done:
4818 	/*
4819 	 * Invoke the parent method to complete the work.
4820 	 */
4821 	error = sc->sc_newstate(ic, nstate, arg);
4822 	/*
4823 	 * Finally, start any timers.
4824 	 */
4825 	if (nstate == IEEE80211_S_RUN) {
4826 		/* start periodic recalibration timer */
4827 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4828 			ath_calibrate, sc);
4829 	} else if (nstate == IEEE80211_S_SCAN) {
4830 		/* start ap/neighbor scan timer */
4831 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4832 			ath_next_scan, sc);
4833 	}
4834 bad:
4835 	return error;
4836 }
4837 
4838 /*
4839  * Allocate a key cache slot to the station so we can
4840  * setup a mapping from key index to node. The key cache
4841  * slot is needed for managing antenna state and for
4842  * compression when stations do not use crypto.  We do
4843  * it uniliaterally here; if crypto is employed this slot
4844  * will be reassigned.
4845  */
4846 static void
4847 ath_setup_stationkey(struct ieee80211_node *ni)
4848 {
4849 	struct ieee80211com *ic = ni->ni_ic;
4850 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4851 	ieee80211_keyix keyix, rxkeyix;
4852 
4853 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4854 		/*
4855 		 * Key cache is full; we'll fall back to doing
4856 		 * the more expensive lookup in software.  Note
4857 		 * this also means no h/w compression.
4858 		 */
4859 		/* XXX msg+statistic */
4860 	} else {
4861 		/* XXX locking? */
4862 		ni->ni_ucastkey.wk_keyix = keyix;
4863 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4864 		/* NB: this will create a pass-thru key entry */
4865 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4866 	}
4867 }
4868 
4869 /*
4870  * Setup driver-specific state for a newly associated node.
4871  * Note that we're called also on a re-associate, the isnew
4872  * param tells us if this is the first time or not.
4873  */
4874 static void
4875 ath_newassoc(struct ieee80211_node *ni, int isnew)
4876 {
4877 	struct ieee80211com *ic = ni->ni_ic;
4878 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4879 
4880 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4881 	if (isnew &&
4882 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4883 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4884 		    ("new assoc with a unicast key already setup (keyix %u)",
4885 		    ni->ni_ucastkey.wk_keyix));
4886 		ath_setup_stationkey(ni);
4887 	}
4888 }
4889 
4890 static int
4891 ath_getchannels(struct ath_softc *sc, u_int cc,
4892 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4893 {
4894 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4895 	struct ieee80211com *ic = &sc->sc_ic;
4896 	struct ifnet *ifp = &sc->sc_if;
4897 	struct ath_hal *ah = sc->sc_ah;
4898 	HAL_CHANNEL *chans;
4899 	int i, ix, nchan;
4900 
4901 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4902 			M_TEMP, M_NOWAIT);
4903 	if (chans == NULL) {
4904 		if_printf(ifp, "unable to allocate channel table\n");
4905 		return ENOMEM;
4906 	}
4907 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4908 	    NULL, 0, NULL,
4909 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4910 		u_int32_t rd;
4911 
4912 		(void)ath_hal_getregdomain(ah, &rd);
4913 		if_printf(ifp, "unable to collect channel list from hal; "
4914 			"regdomain likely %u country code %u\n", rd, cc);
4915 		free(chans, M_TEMP);
4916 		return EINVAL;
4917 	}
4918 
4919 	/*
4920 	 * Convert HAL channels to ieee80211 ones and insert
4921 	 * them in the table according to their channel number.
4922 	 */
4923 	for (i = 0; i < nchan; i++) {
4924 		HAL_CHANNEL *c = &chans[i];
4925 		u_int16_t flags;
4926 
4927 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4928 		if (ix > IEEE80211_CHAN_MAX) {
4929 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4930 				ix, c->channel, c->channelFlags);
4931 			continue;
4932 		}
4933 		if (ix < 0) {
4934 			/* XXX can't handle stuff <2400 right now */
4935 			if (bootverbose)
4936 				if_printf(ifp, "hal channel %d (%u/%x) "
4937 				    "cannot be handled; ignored\n",
4938 				    ix, c->channel, c->channelFlags);
4939 			continue;
4940 		}
4941 		/*
4942 		 * Calculate net80211 flags; most are compatible
4943 		 * but some need massaging.  Note the static turbo
4944 		 * conversion can be removed once net80211 is updated
4945 		 * to understand static vs. dynamic turbo.
4946 		 */
4947 		flags = c->channelFlags & COMPAT;
4948 		if (c->channelFlags & CHANNEL_STURBO)
4949 			flags |= IEEE80211_CHAN_TURBO;
4950 		if (ic->ic_channels[ix].ic_freq == 0) {
4951 			ic->ic_channels[ix].ic_freq = c->channel;
4952 			ic->ic_channels[ix].ic_flags = flags;
4953 		} else {
4954 			/* channels overlap; e.g. 11g and 11b */
4955 			ic->ic_channels[ix].ic_flags |= flags;
4956 		}
4957 	}
4958 	free(chans, M_TEMP);
4959 	return 0;
4960 #undef COMPAT
4961 }
4962 
4963 static void
4964 ath_led_done(void *arg)
4965 {
4966 	struct ath_softc *sc = arg;
4967 
4968 	sc->sc_blinking = 0;
4969 }
4970 
4971 /*
4972  * Turn the LED off: flip the pin and then set a timer so no
4973  * update will happen for the specified duration.
4974  */
4975 static void
4976 ath_led_off(void *arg)
4977 {
4978 	struct ath_softc *sc = arg;
4979 
4980 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4981 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4982 }
4983 
4984 /*
4985  * Blink the LED according to the specified on/off times.
4986  */
4987 static void
4988 ath_led_blink(struct ath_softc *sc, int on, int off)
4989 {
4990 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4991 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4992 	sc->sc_blinking = 1;
4993 	sc->sc_ledoff = off;
4994 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4995 }
4996 
4997 static void
4998 ath_led_event(struct ath_softc *sc, int event)
4999 {
5000 
5001 	sc->sc_ledevent = ticks;	/* time of last event */
5002 	if (sc->sc_blinking)		/* don't interrupt active blink */
5003 		return;
5004 	switch (event) {
5005 	case ATH_LED_POLL:
5006 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
5007 			sc->sc_hwmap[0].ledoff);
5008 		break;
5009 	case ATH_LED_TX:
5010 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
5011 			sc->sc_hwmap[sc->sc_txrate].ledoff);
5012 		break;
5013 	case ATH_LED_RX:
5014 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
5015 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
5016 		break;
5017 	}
5018 }
5019 
5020 static void
5021 ath_update_txpow(struct ath_softc *sc)
5022 {
5023 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5024 	struct ieee80211com *ic = &sc->sc_ic;
5025 	struct ath_hal *ah = sc->sc_ah;
5026 	u_int32_t txpow;
5027 
5028 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5029 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5030 		/* read back in case value is clamped */
5031 		(void)ath_hal_gettxpowlimit(ah, &txpow);
5032 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5033 	}
5034 	/*
5035 	 * Fetch max tx power level for status requests.
5036 	 */
5037 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5038 	ic->ic_bss->ni_txpower = txpow;
5039 }
5040 
5041 static void
5042 rate_setup(struct ath_softc *sc,
5043 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5044 {
5045 	int i, maxrates;
5046 
5047 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5048 		DPRINTF(sc, ATH_DEBUG_ANY,
5049 			"%s: rate table too small (%u > %u)\n",
5050 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5051 		maxrates = IEEE80211_RATE_MAXSIZE;
5052 	} else
5053 		maxrates = rt->rateCount;
5054 	for (i = 0; i < maxrates; i++)
5055 		rs->rs_rates[i] = rt->info[i].dot11Rate;
5056 	rs->rs_nrates = maxrates;
5057 }
5058 
5059 static int
5060 ath_rate_setup(struct ath_softc *sc, u_int mode)
5061 {
5062 	struct ath_hal *ah = sc->sc_ah;
5063 	struct ieee80211com *ic = &sc->sc_ic;
5064 	const HAL_RATE_TABLE *rt;
5065 
5066 	switch (mode) {
5067 	case IEEE80211_MODE_11A:
5068 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5069 		break;
5070 	case IEEE80211_MODE_11B:
5071 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5072 		break;
5073 	case IEEE80211_MODE_11G:
5074 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5075 		break;
5076 	case IEEE80211_MODE_TURBO_A:
5077 		/* XXX until static/dynamic turbo is fixed */
5078 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5079 		break;
5080 	case IEEE80211_MODE_TURBO_G:
5081 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5082 		break;
5083 	default:
5084 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5085 			__func__, mode);
5086 		return 0;
5087 	}
5088 	sc->sc_rates[mode] = rt;
5089 	if (rt != NULL) {
5090 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5091 		return 1;
5092 	} else
5093 		return 0;
5094 }
5095 
5096 static void
5097 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5098 {
5099 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5100 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5101 	static const struct {
5102 		u_int		rate;		/* tx/rx 802.11 rate */
5103 		u_int16_t	timeOn;		/* LED on time (ms) */
5104 		u_int16_t	timeOff;	/* LED off time (ms) */
5105 	} blinkrates[] = {
5106 		{ 108,  40,  10 },
5107 		{  96,  44,  11 },
5108 		{  72,  50,  13 },
5109 		{  48,  57,  14 },
5110 		{  36,  67,  16 },
5111 		{  24,  80,  20 },
5112 		{  22, 100,  25 },
5113 		{  18, 133,  34 },
5114 		{  12, 160,  40 },
5115 		{  10, 200,  50 },
5116 		{   6, 240,  58 },
5117 		{   4, 267,  66 },
5118 		{   2, 400, 100 },
5119 		{   0, 500, 130 },
5120 	};
5121 	const HAL_RATE_TABLE *rt;
5122 	int i, j;
5123 
5124 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5125 	rt = sc->sc_rates[mode];
5126 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5127 	for (i = 0; i < rt->rateCount; i++)
5128 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5129 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5130 	for (i = 0; i < 32; i++) {
5131 		u_int8_t ix = rt->rateCodeToIndex[i];
5132 		if (ix == 0xff) {
5133 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5134 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5135 			continue;
5136 		}
5137 		sc->sc_hwmap[i].ieeerate =
5138 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5139 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5140 		if (rt->info[ix].shortPreamble ||
5141 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5142 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5143 		/* NB: receive frames include FCS */
5144 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5145 			IEEE80211_RADIOTAP_F_FCS;
5146 		/* setup blink rate table to avoid per-packet lookup */
5147 		for (j = 0; j < N(blinkrates)-1; j++)
5148 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5149 				break;
5150 		/* NB: this uses the last entry if the rate isn't found */
5151 		/* XXX beware of overlow */
5152 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5153 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5154 	}
5155 	sc->sc_currates = rt;
5156 	sc->sc_curmode = mode;
5157 	/*
5158 	 * All protection frames are transmited at 2Mb/s for
5159 	 * 11g, otherwise at 1Mb/s.
5160 	 */
5161 	if (mode == IEEE80211_MODE_11G)
5162 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5163 	else
5164 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5165 	/* rate index used to send management frames */
5166 	sc->sc_minrateix = 0;
5167 	/*
5168 	 * Setup multicast rate state.
5169 	 */
5170 	/* XXX layering violation */
5171 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5172 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5173 	/* NB: caller is responsible for reseting rate control state */
5174 #undef N
5175 }
5176 
5177 #ifdef AR_DEBUG
5178 static void
5179 ath_printrxbuf(struct ath_buf *bf, int done)
5180 {
5181 	struct ath_desc *ds;
5182 	int i;
5183 
5184 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5185 		printf("R%d (%p %" PRIx64
5186 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5187 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5188 		    ds->ds_link, ds->ds_data,
5189 		    ds->ds_ctl0, ds->ds_ctl1,
5190 		    ds->ds_hw[0], ds->ds_hw[1],
5191 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5192 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5193 	}
5194 }
5195 
5196 static void
5197 ath_printtxbuf(struct ath_buf *bf, int done)
5198 {
5199 	struct ath_desc *ds;
5200 	int i;
5201 
5202 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5203 		printf("T%d (%p %" PRIx64
5204 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5205 		    i, ds,
5206 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5207 		    ds->ds_link, ds->ds_data,
5208 		    ds->ds_ctl0, ds->ds_ctl1,
5209 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5210 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5211 	}
5212 }
5213 #endif	/* AR_DEBUG */
5214 
5215 static void
5216 ath_watchdog(struct ifnet *ifp)
5217 {
5218 	struct ath_softc *sc = ifp->if_softc;
5219 	struct ieee80211com *ic = &sc->sc_ic;
5220 	struct ath_txq *axq;
5221 	int i;
5222 
5223 	ifp->if_timer = 0;
5224 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5225 	    !device_is_active(sc->sc_dev))
5226 		return;
5227 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5228 		if (!ATH_TXQ_SETUP(sc, i))
5229 			continue;
5230 		axq = &sc->sc_txq[i];
5231 		ATH_TXQ_LOCK(axq);
5232 		if (axq->axq_timer == 0)
5233 			;
5234 		else if (--axq->axq_timer == 0) {
5235 			ATH_TXQ_UNLOCK(axq);
5236 			if_printf(ifp, "device timeout (txq %d, "
5237 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5238 			if (sc->sc_txintrperiod > 1)
5239 				sc->sc_txintrperiod--;
5240 			ath_reset(ifp);
5241 			ifp->if_oerrors++;
5242 			sc->sc_stats.ast_watchdog++;
5243 			break;
5244 		} else
5245 			ifp->if_timer = 1;
5246 		ATH_TXQ_UNLOCK(axq);
5247 	}
5248 	ieee80211_watchdog(ic);
5249 }
5250 
5251 /*
5252  * Diagnostic interface to the HAL.  This is used by various
5253  * tools to do things like retrieve register contents for
5254  * debugging.  The mechanism is intentionally opaque so that
5255  * it can change frequently w/o concern for compatiblity.
5256  */
5257 static int
5258 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5259 {
5260 	struct ath_hal *ah = sc->sc_ah;
5261 	u_int id = ad->ad_id & ATH_DIAG_ID;
5262 	void *indata = NULL;
5263 	void *outdata = NULL;
5264 	u_int32_t insize = ad->ad_in_size;
5265 	u_int32_t outsize = ad->ad_out_size;
5266 	int error = 0;
5267 
5268 	if (ad->ad_id & ATH_DIAG_IN) {
5269 		/*
5270 		 * Copy in data.
5271 		 */
5272 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5273 		if (indata == NULL) {
5274 			error = ENOMEM;
5275 			goto bad;
5276 		}
5277 		error = copyin(ad->ad_in_data, indata, insize);
5278 		if (error)
5279 			goto bad;
5280 	}
5281 	if (ad->ad_id & ATH_DIAG_DYN) {
5282 		/*
5283 		 * Allocate a buffer for the results (otherwise the HAL
5284 		 * returns a pointer to a buffer where we can read the
5285 		 * results).  Note that we depend on the HAL leaving this
5286 		 * pointer for us to use below in reclaiming the buffer;
5287 		 * may want to be more defensive.
5288 		 */
5289 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5290 		if (outdata == NULL) {
5291 			error = ENOMEM;
5292 			goto bad;
5293 		}
5294 	}
5295 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5296 		if (outsize < ad->ad_out_size)
5297 			ad->ad_out_size = outsize;
5298 		if (outdata != NULL)
5299 			error = copyout(outdata, ad->ad_out_data,
5300 					ad->ad_out_size);
5301 	} else {
5302 		error = EINVAL;
5303 	}
5304 bad:
5305 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5306 		free(indata, M_TEMP);
5307 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5308 		free(outdata, M_TEMP);
5309 	return error;
5310 }
5311 
5312 static int
5313 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5314 {
5315 #define	IS_RUNNING(ifp) \
5316 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5317 	struct ath_softc *sc = ifp->if_softc;
5318 	struct ieee80211com *ic = &sc->sc_ic;
5319 	struct ifreq *ifr = (struct ifreq *)data;
5320 	int error = 0;
5321 
5322 	ATH_LOCK(sc);
5323 	switch (cmd) {
5324 	case SIOCSIFFLAGS:
5325 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5326 			break;
5327 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5328 		case IFF_UP|IFF_RUNNING:
5329 			/*
5330 			 * To avoid rescanning another access point,
5331 			 * do not call ath_init() here.  Instead,
5332 			 * only reflect promisc mode settings.
5333 			 */
5334 			ath_mode_init(sc);
5335 			break;
5336 		case IFF_UP:
5337 			/*
5338 			 * Beware of being called during attach/detach
5339 			 * to reset promiscuous mode.  In that case we
5340 			 * will still be marked UP but not RUNNING.
5341 			 * However trying to re-init the interface
5342 			 * is the wrong thing to do as we've already
5343 			 * torn down much of our state.  There's
5344 			 * probably a better way to deal with this.
5345 			 */
5346 			error = ath_init(sc);
5347 			break;
5348 		case IFF_RUNNING:
5349 			ath_stop_locked(ifp, 1);
5350 			break;
5351 		case 0:
5352 			break;
5353 		}
5354 		break;
5355 	case SIOCADDMULTI:
5356 	case SIOCDELMULTI:
5357 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5358 			if (ifp->if_flags & IFF_RUNNING)
5359 				ath_mode_init(sc);
5360 			error = 0;
5361 		}
5362 		break;
5363 	case SIOCGATHSTATS:
5364 		/* NB: embed these numbers to get a consistent view */
5365 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5366 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5367 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5368 		ATH_UNLOCK(sc);
5369 		/*
5370 		 * NB: Drop the softc lock in case of a page fault;
5371 		 * we'll accept any potential inconsisentcy in the
5372 		 * statistics.  The alternative is to copy the data
5373 		 * to a local structure.
5374 		 */
5375 		return copyout(&sc->sc_stats,
5376 				ifr->ifr_data, sizeof (sc->sc_stats));
5377 	case SIOCGATHDIAG:
5378 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5379 		break;
5380 	default:
5381 		error = ieee80211_ioctl(ic, cmd, data);
5382 		if (error != ENETRESET)
5383 			;
5384 		else if (IS_RUNNING(ifp) &&
5385 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5386 			error = ath_init(sc);
5387 		else
5388 			error = 0;
5389 		break;
5390 	}
5391 	ATH_UNLOCK(sc);
5392 	return error;
5393 #undef IS_RUNNING
5394 }
5395 
5396 #if NBPFILTER > 0
5397 static void
5398 ath_bpfattach(struct ath_softc *sc)
5399 {
5400 	struct ifnet *ifp = &sc->sc_if;
5401 
5402 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5403 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5404 		&sc->sc_drvbpf);
5405 	/*
5406 	 * Initialize constant fields.
5407 	 * XXX make header lengths a multiple of 32-bits so subsequent
5408 	 *     headers are properly aligned; this is a kludge to keep
5409 	 *     certain applications happy.
5410 	 *
5411 	 * NB: the channel is setup each time we transition to the
5412 	 *     RUN state to avoid filling it in for each frame.
5413 	 */
5414 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5415 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5416 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5417 
5418 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5419 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5420 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5421 }
5422 #endif
5423 
5424 /*
5425  * Announce various information on device/driver attach.
5426  */
5427 static void
5428 ath_announce(struct ath_softc *sc)
5429 {
5430 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5431 	struct ifnet *ifp = &sc->sc_if;
5432 	struct ath_hal *ah = sc->sc_ah;
5433 	u_int modes, cc;
5434 
5435 	if_printf(ifp, "mac %d.%d phy %d.%d",
5436 		ah->ah_macVersion, ah->ah_macRev,
5437 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5438 	/*
5439 	 * Print radio revision(s).  We check the wireless modes
5440 	 * to avoid falsely printing revs for inoperable parts.
5441 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5442 	 */
5443 	ath_hal_getcountrycode(ah, &cc);
5444 	modes = ath_hal_getwirelessmodes(ah, cc);
5445 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5446 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5447 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5448 				ah->ah_analog5GhzRev >> 4,
5449 				ah->ah_analog5GhzRev & 0xf,
5450 				ah->ah_analog2GhzRev >> 4,
5451 				ah->ah_analog2GhzRev & 0xf);
5452 		else
5453 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5454 				ah->ah_analog5GhzRev & 0xf);
5455 	} else
5456 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5457 			ah->ah_analog5GhzRev & 0xf);
5458 	printf("\n");
5459 	if (bootverbose) {
5460 		int i;
5461 		for (i = 0; i <= WME_AC_VO; i++) {
5462 			struct ath_txq *txq = sc->sc_ac2q[i];
5463 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5464 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5465 		}
5466 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5467 			sc->sc_cabq->axq_qnum);
5468 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5469 	}
5470 	if (ath_rxbuf != ATH_RXBUF)
5471 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5472 	if (ath_txbuf != ATH_TXBUF)
5473 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5474 #undef HAL_MODE_DUALBAND
5475 }
5476