1 /* $NetBSD: ath.c,v 1.39 2004/09/28 11:34:37 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.54 2004/04/05 04:42:42 sam Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.39 2004/09/28 11:34:37 yamt Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #include "opt_inet.h" 55 56 #ifdef __NetBSD__ 57 #include "bpfilter.h" 58 #endif /* __NetBSD__ */ 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/types.h> 63 #include <sys/sysctl.h> 64 #include <sys/mbuf.h> 65 #include <sys/malloc.h> 66 #include <sys/lock.h> 67 #ifdef __FreeBSD__ 68 #include <sys/mutex.h> 69 #endif 70 #include <sys/kernel.h> 71 #include <sys/socket.h> 72 #include <sys/sockio.h> 73 #include <sys/errno.h> 74 #include <sys/callout.h> 75 #ifdef __FreeBSD__ 76 #include <sys/bus.h> 77 #else 78 #include <machine/bus.h> 79 #endif 80 #include <sys/endian.h> 81 82 #include <machine/bus.h> 83 84 #include <net/if.h> 85 #include <net/if_dl.h> 86 #include <net/if_media.h> 87 #include <net/if_arp.h> 88 #ifdef __FreeBSD__ 89 #include <net/ethernet.h> 90 #else 91 #include <net/if_ether.h> 92 #endif 93 #include <net/if_llc.h> 94 95 #include <net80211/ieee80211_var.h> 96 #include <net80211/ieee80211_compat.h> 97 98 #if NBPFILTER > 0 99 #include <net/bpf.h> 100 #endif 101 102 #ifdef INET 103 #include <netinet/in.h> 104 #endif 105 106 #include <dev/ic/athcompat.h> 107 108 #define AR_DEBUG 109 #ifdef __FreeBSD__ 110 #include <dev/ath/if_athvar.h> 111 #include <contrib/dev/ath/ah_desc.h> 112 #else 113 #include <dev/ic/athvar.h> 114 #include <../contrib/sys/dev/ic/athhal_desc.h> 115 #endif 116 117 /* unaligned little endian access */ 118 #define LE_READ_2(p) \ 119 ((u_int16_t) \ 120 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 121 #define LE_READ_4(p) \ 122 ((u_int32_t) \ 123 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 124 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 125 126 #ifdef __FreeBSD__ 127 static void ath_init(void *); 128 #else 129 static int ath_init(struct ifnet *); 130 #endif 131 static int ath_init1(struct ath_softc *); 132 static int ath_intr1(struct ath_softc *); 133 static void ath_stop(struct ifnet *); 134 static void ath_start(struct ifnet *); 135 static void ath_reset(struct ath_softc *); 136 static int ath_media_change(struct ifnet *); 137 static void ath_watchdog(struct ifnet *); 138 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 139 static void ath_fatal_proc(void *, int); 140 static void ath_rxorn_proc(void *, int); 141 static void ath_bmiss_proc(void *, int); 142 static void ath_initkeytable(struct ath_softc *); 143 static void ath_mode_init(struct ath_softc *); 144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 145 static void ath_beacon_proc(struct ath_softc *, int); 146 static void ath_beacon_free(struct ath_softc *); 147 static void ath_beacon_config(struct ath_softc *); 148 static int ath_desc_alloc(struct ath_softc *); 149 static void ath_desc_free(struct ath_softc *); 150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *); 151 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *); 152 static void ath_node_copy(struct ieee80211com *, 153 struct ieee80211_node *, const struct ieee80211_node *); 154 static u_int8_t ath_node_getrssi(struct ieee80211com *, 155 struct ieee80211_node *); 156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 157 static void ath_rx_proc(void *, int); 158 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 159 struct ath_buf *, struct mbuf *); 160 static void ath_tx_proc(void *, int); 161 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 162 static void ath_draintxq(struct ath_softc *); 163 static void ath_stoprecv(struct ath_softc *); 164 static int ath_startrecv(struct ath_softc *); 165 static void ath_next_scan(void *); 166 static void ath_calibrate(void *); 167 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 168 static void ath_newassoc(struct ieee80211com *, 169 struct ieee80211_node *, int); 170 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor, 171 HAL_BOOL xchanmode); 172 173 static int ath_rate_setup(struct ath_softc *sc, u_int mode); 174 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 175 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state); 176 static void ath_rate_ctl(void *, struct ieee80211_node *); 177 static void ath_recv_mgmt(struct ieee80211com *, struct mbuf *, 178 struct ieee80211_node *, int, int, u_int32_t); 179 180 #ifdef __NetBSD__ 181 int ath_enable(struct ath_softc *); 182 void ath_disable(struct ath_softc *); 183 void ath_power(int, void *); 184 #endif 185 186 #ifdef __FreeBSD__ 187 SYSCTL_DECL(_hw_ath); 188 /* XXX validate sysctl values */ 189 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime, 190 0, "channel dwell time (ms) for AP/station scanning"); 191 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval, 192 0, "chip calibration interval (secs)"); 193 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor, 194 0, "enable/disable outdoor operation"); 195 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor); 196 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode, 197 0, "country code"); 198 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode); 199 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain, 200 0, "regulatory domain"); 201 #endif /* __FreeBSD__ */ 202 203 #ifdef __NetBSD__ 204 static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum, 205 ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum; 206 #endif /* __NetBSD__ */ 207 208 static int ath_dwelltime = 200; /* 5 channels/second */ 209 static int ath_calinterval = 30; /* calibrate every 30 secs */ 210 static int ath_outdoor = AH_TRUE; /* outdoor operation */ 211 static int ath_xchanmode = AH_TRUE; /* enable extended channels */ 212 static int ath_countrycode = CTRY_DEFAULT; /* country code */ 213 static int ath_regdomain = 0; /* regulatory domain */ 214 215 #ifdef AR_DEBUG 216 int ath_debug = 0; 217 #ifdef __FreeBSD__ 218 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug, 219 0, "control debugging printfs"); 220 TUNABLE_INT("hw.ath.debug", &ath_debug); 221 #endif /* __FreeBSD__ */ 222 #define IFF_DUMPPKTS(_ifp, _m) \ 223 ((ath_debug & _m) || \ 224 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 225 static void ath_printrxbuf(struct ath_buf *bf, int); 226 static void ath_printtxbuf(struct ath_buf *bf, int); 227 enum { 228 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 229 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 230 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 231 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 232 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 233 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 234 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 235 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 236 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 237 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 238 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 239 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 240 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 241 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 242 ATH_DEBUG_ANY = 0xffffffff 243 }; 244 #define DPRINTF(_m,X) if (ath_debug & (_m)) printf X 245 #else 246 #define IFF_DUMPPKTS(_ifp, _m) \ 247 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 248 #define DPRINTF(_m, X) 249 #endif 250 251 #ifdef __NetBSD__ 252 int 253 ath_activate(struct device *self, enum devact act) 254 { 255 struct ath_softc *sc = (struct ath_softc *)self; 256 int rv = 0, s; 257 258 s = splnet(); 259 switch (act) { 260 case DVACT_ACTIVATE: 261 rv = EOPNOTSUPP; 262 break; 263 case DVACT_DEACTIVATE: 264 if_deactivate(&sc->sc_ic.ic_if); 265 break; 266 } 267 splx(s); 268 return rv; 269 } 270 271 int 272 ath_enable(struct ath_softc *sc) 273 { 274 if (ATH_IS_ENABLED(sc) == 0) { 275 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { 276 printf("%s: device enable failed\n", 277 sc->sc_dev.dv_xname); 278 return (EIO); 279 } 280 sc->sc_flags |= ATH_ENABLED; 281 } 282 return (0); 283 } 284 285 void 286 ath_disable(struct ath_softc *sc) 287 { 288 if (!ATH_IS_ENABLED(sc)) 289 return; 290 if (sc->sc_disable != NULL) 291 (*sc->sc_disable)(sc); 292 sc->sc_flags &= ~ATH_ENABLED; 293 } 294 295 static int 296 sysctl_ath_verify(SYSCTLFN_ARGS) 297 { 298 int error, t; 299 struct sysctlnode node; 300 301 node = *rnode; 302 t = *(int*)rnode->sysctl_data; 303 node.sysctl_data = &t; 304 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 305 if (error || newp == NULL) 306 return (error); 307 308 DPRINTF(ATH_DEBUG_ANY, ("%s: t = %d, nodenum = %d, rnodenum = %d\n", 309 __func__, t, node.sysctl_num, rnode->sysctl_num)); 310 311 if (node.sysctl_num == ath_dwelltime_nodenum) { 312 if (t <= 0) 313 return (EINVAL); 314 } else if (node.sysctl_num == ath_calibrate_nodenum) { 315 if (t <= 0) 316 return (EINVAL); 317 #ifdef AR_DEBUG 318 } else if (node.sysctl_num == ath_debug_nodenum) { 319 ; /* Accept any vaule */ 320 #endif /* AR_DEBUG */ 321 } else 322 return (EINVAL); 323 324 *(int*)rnode->sysctl_data = t; 325 326 return (0); 327 } 328 329 /* 330 * Setup sysctl(3) MIB, ath.*. 331 * 332 * TBD condition CTLFLAG_PERMANENT on being an LKM or not 333 */ 334 SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup") 335 { 336 int rc, ath_node_num; 337 struct sysctlnode *node; 338 339 if ((rc = sysctl_createv(clog, 0, NULL, NULL, 340 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, 341 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) 342 goto err; 343 344 if ((rc = sysctl_createv(clog, 0, NULL, &node, 345 CTLFLAG_PERMANENT, CTLTYPE_NODE, "ath", 346 SYSCTL_DESCR("ath information and options"), 347 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) 348 goto err; 349 350 ath_node_num = node->sysctl_num; 351 352 /* channel dwell time (ms) for AP/station scanning */ 353 if ((rc = sysctl_createv(clog, 0, NULL, &node, 354 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 355 CTLTYPE_INT, "dwell", 356 SYSCTL_DESCR("Channel dwell time (ms) for AP/station scanning"), 357 sysctl_ath_verify, 0, &ath_dwelltime, 358 0, CTL_HW, ath_node_num, CTL_CREATE, 359 CTL_EOL)) != 0) 360 goto err; 361 362 ath_dwelltime_nodenum = node->sysctl_num; 363 364 /* chip calibration interval (secs) */ 365 if ((rc = sysctl_createv(clog, 0, NULL, &node, 366 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 367 CTLTYPE_INT, "calibrate", 368 SYSCTL_DESCR("Chip calibration interval (secs)"), sysctl_ath_verify, 369 0, &ath_calinterval, 0, CTL_HW, 370 ath_node_num, CTL_CREATE, CTL_EOL)) != 0) 371 goto err; 372 373 ath_calibrate_nodenum = node->sysctl_num; 374 375 /* enable/disable outdoor operation */ 376 if ((rc = sysctl_createv(clog, 0, NULL, &node, 377 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 378 "outdoor", SYSCTL_DESCR("Enable/disable outdoor operation"), 379 NULL, 0, &ath_outdoor, 0, 380 CTL_HW, ath_node_num, CTL_CREATE, 381 CTL_EOL)) != 0) 382 goto err; 383 384 ath_outdoor_nodenum = node->sysctl_num; 385 386 /* country code */ 387 if ((rc = sysctl_createv(clog, 0, NULL, &node, 388 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 389 "countrycode", SYSCTL_DESCR("Country code"), 390 NULL, 0, &ath_countrycode, 0, 391 CTL_HW, ath_node_num, CTL_CREATE, 392 CTL_EOL)) != 0) 393 goto err; 394 395 ath_countrycode_nodenum = node->sysctl_num; 396 397 /* regulatory domain */ 398 if ((rc = sysctl_createv(clog, 0, NULL, &node, 399 CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, 400 "regdomain", SYSCTL_DESCR("Regulatory domain"), 401 NULL, 0, &ath_regdomain, 0, 402 CTL_HW, ath_node_num, CTL_CREATE, 403 CTL_EOL)) != 0) 404 goto err; 405 406 ath_regdomain_nodenum = node->sysctl_num; 407 408 #ifdef AR_DEBUG 409 410 /* control debugging printfs */ 411 if ((rc = sysctl_createv(clog, 0, NULL, &node, 412 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 413 "debug", SYSCTL_DESCR("Enable/disable ath debugging output"), 414 sysctl_ath_verify, 0, &ath_debug, 0, 415 CTL_HW, ath_node_num, CTL_CREATE, 416 CTL_EOL)) != 0) 417 goto err; 418 419 ath_debug_nodenum = node->sysctl_num; 420 421 #endif /* AR_DEBUG */ 422 return; 423 err: 424 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 425 } 426 #endif /* __NetBSD__ */ 427 428 int 429 ath_attach(u_int16_t devid, struct ath_softc *sc) 430 { 431 struct ieee80211com *ic = &sc->sc_ic; 432 struct ifnet *ifp = &ic->ic_if; 433 struct ath_hal *ah; 434 HAL_STATUS status; 435 HAL_TXQ_INFO qinfo; 436 int error = 0; 437 438 DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid)); 439 440 #ifdef __FreeBSD__ 441 /* set these up early for if_printf use */ 442 if_initname(ifp, device_get_name(sc->sc_dev), 443 device_get_unit(sc->sc_dev)); 444 #else 445 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 446 #endif 447 448 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 449 if (ah == NULL) { 450 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 451 status); 452 error = ENXIO; 453 goto bad; 454 } 455 if (ah->ah_abi != HAL_ABI_VERSION) { 456 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n", 457 ah->ah_abi, HAL_ABI_VERSION); 458 error = ENXIO; 459 goto bad; 460 } 461 if_printf(ifp, "mac %d.%d phy %d.%d", 462 ah->ah_macVersion, ah->ah_macRev, 463 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 464 if (ah->ah_analog5GhzRev) 465 printf(" 5ghz radio %d.%d", 466 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf); 467 if (ah->ah_analog2GhzRev) 468 printf(" 2ghz radio %d.%d", 469 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf); 470 printf("\n"); 471 sc->sc_ah = ah; 472 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 473 474 /* 475 * Collect the channel list using the default country 476 * code and including outdoor channels. The 802.11 layer 477 * is resposible for filtering this list based on settings 478 * like the phy mode. 479 */ 480 error = ath_getchannels(sc, ath_countrycode, ath_outdoor, 481 ath_xchanmode); 482 if (error != 0) 483 goto bad; 484 /* 485 * Copy these back; they are set as a side effect 486 * of constructing the channel list. 487 */ 488 ath_hal_getregdomain(ah, &ath_regdomain); 489 ath_hal_getcountrycode(ah, &ath_countrycode); 490 491 /* 492 * Setup rate tables for all potential media types. 493 */ 494 ath_rate_setup(sc, IEEE80211_MODE_11A); 495 ath_rate_setup(sc, IEEE80211_MODE_11B); 496 ath_rate_setup(sc, IEEE80211_MODE_11G); 497 ath_rate_setup(sc, IEEE80211_MODE_TURBO); 498 499 error = ath_desc_alloc(sc); 500 if (error != 0) { 501 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 502 goto bad; 503 } 504 ATH_CALLOUT_INIT(&sc->sc_scan_ch); 505 ATH_CALLOUT_INIT(&sc->sc_cal_ch); 506 507 #ifdef __FreeBSD__ 508 ATH_TXBUF_LOCK_INIT(sc); 509 ATH_TXQ_LOCK_INIT(sc); 510 #endif 511 512 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc); 513 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc); 514 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc); 515 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc); 516 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc); 517 518 /* 519 * For now just pre-allocate one data queue and one 520 * beacon queue. Note that the HAL handles resetting 521 * them at the needed time. Eventually we'll want to 522 * allocate more tx queues for splitting management 523 * frames and for QOS support. 524 */ 525 sc->sc_bhalq = ath_hal_setuptxqueue(ah,HAL_TX_QUEUE_BEACON,NULL); 526 if (sc->sc_bhalq == (u_int) -1) { 527 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 528 goto bad2; 529 } 530 531 memset(&qinfo, 0, sizeof(qinfo)); 532 qinfo.tqi_subtype = HAL_WME_AC_BE; 533 sc->sc_txhalq = ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_DATA, &qinfo); 534 if (sc->sc_txhalq == (u_int) -1) { 535 if_printf(ifp, "unable to setup a data xmit queue!\n"); 536 goto bad2; 537 } 538 539 ifp->if_softc = sc; 540 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 541 ifp->if_start = ath_start; 542 ifp->if_watchdog = ath_watchdog; 543 ifp->if_ioctl = ath_ioctl; 544 ifp->if_init = ath_init; 545 #ifdef __FreeBSD__ 546 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; 547 #else 548 #if 0 549 ifp->if_stop = ath_stop; /* XXX */ 550 #endif 551 IFQ_SET_READY(&ifp->if_snd); 552 #endif 553 554 ic->ic_softc = sc; 555 ic->ic_newassoc = ath_newassoc; 556 /* XXX not right but it's not used anywhere important */ 557 ic->ic_phytype = IEEE80211_T_OFDM; 558 ic->ic_opmode = IEEE80211_M_STA; 559 ic->ic_caps = IEEE80211_C_WEP /* wep supported */ 560 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 561 | IEEE80211_C_HOSTAP /* hostap mode */ 562 | IEEE80211_C_MONITOR /* monitor mode */ 563 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 564 ; 565 566 /* get mac address from hardware */ 567 ath_hal_getmac(ah, ic->ic_myaddr); 568 569 #ifdef __NetBSD__ 570 if_attach(ifp); 571 #endif 572 /* call MI attach routine. */ 573 ieee80211_ifattach(ifp); 574 /* override default methods */ 575 ic->ic_node_alloc = ath_node_alloc; 576 sc->sc_node_free = ic->ic_node_free; 577 ic->ic_node_free = ath_node_free; 578 sc->sc_node_copy = ic->ic_node_copy; 579 ic->ic_node_copy = ath_node_copy; 580 ic->ic_node_getrssi = ath_node_getrssi; 581 sc->sc_newstate = ic->ic_newstate; 582 ic->ic_newstate = ath_newstate; 583 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 584 ic->ic_recv_mgmt = ath_recv_mgmt; 585 586 /* complete initialization */ 587 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status); 588 589 #if NBPFILTER > 0 590 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 591 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 592 &sc->sc_drvbpf); 593 #endif 594 /* 595 * Initialize constant fields. 596 * XXX make header lengths a multiple of 32-bits so subsequent 597 * headers are properly aligned; this is a kludge to keep 598 * certain applications happy. 599 * 600 * NB: the channel is setup each time we transition to the 601 * RUN state to avoid filling it in for each frame. 602 */ 603 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 604 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 605 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 606 607 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 608 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 609 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 610 611 #ifdef __NetBSD__ 612 sc->sc_flags |= ATH_ATTACHED; 613 /* 614 * Make sure the interface is shutdown during reboot. 615 */ 616 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc); 617 if (sc->sc_sdhook == NULL) 618 printf("%s: WARNING: unable to establish shutdown hook\n", 619 sc->sc_dev.dv_xname); 620 sc->sc_powerhook = powerhook_establish(ath_power, sc); 621 if (sc->sc_powerhook == NULL) 622 printf("%s: WARNING: unable to establish power hook\n", 623 sc->sc_dev.dv_xname); 624 #endif 625 return 0; 626 bad2: 627 ath_desc_free(sc); 628 bad: 629 if (ah) 630 ath_hal_detach(ah); 631 sc->sc_invalid = 1; 632 return error; 633 } 634 635 int 636 ath_detach(struct ath_softc *sc) 637 { 638 struct ifnet *ifp = &sc->sc_ic.ic_if; 639 ath_softc_critsect_decl(s); 640 641 if ((sc->sc_flags & ATH_ATTACHED) == 0) 642 return (0); 643 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 644 645 ath_softc_critsect_begin(sc, s); 646 ath_stop(ifp); 647 #if NBPFILTER > 0 648 bpfdetach(ifp); 649 #endif 650 ath_desc_free(sc); 651 ath_hal_detach(sc->sc_ah); 652 ieee80211_ifdetach(ifp); 653 #ifdef __NetBSD__ 654 if_detach(ifp); 655 #endif /* __NetBSD__ */ 656 ath_softc_critsect_end(sc, s); 657 #ifdef __NetBSD__ 658 powerhook_disestablish(sc->sc_powerhook); 659 shutdownhook_disestablish(sc->sc_sdhook); 660 #endif /* __NetBSD__ */ 661 #ifdef __FreeBSD__ 662 663 ATH_TXBUF_LOCK_DESTROY(sc); 664 ATH_TXQ_LOCK_DESTROY(sc); 665 666 #endif /* __FreeBSD__ */ 667 return 0; 668 } 669 670 #ifdef __NetBSD__ 671 void 672 ath_power(int why, void *arg) 673 { 674 struct ath_softc *sc = arg; 675 int s; 676 677 DPRINTF(ATH_DEBUG_ANY, ("ath_power(%d)\n", why)); 678 679 s = splnet(); 680 switch (why) { 681 case PWR_SUSPEND: 682 case PWR_STANDBY: 683 ath_suspend(sc, why); 684 break; 685 case PWR_RESUME: 686 ath_resume(sc, why); 687 break; 688 case PWR_SOFTSUSPEND: 689 case PWR_SOFTSTANDBY: 690 case PWR_SOFTRESUME: 691 break; 692 } 693 splx(s); 694 } 695 #endif 696 697 void 698 ath_suspend(struct ath_softc *sc, int why) 699 { 700 struct ifnet *ifp = &sc->sc_ic.ic_if; 701 702 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 703 704 ath_stop(ifp); 705 if (sc->sc_power != NULL) 706 (*sc->sc_power)(sc, why); 707 } 708 709 void 710 ath_resume(struct ath_softc *sc, int why) 711 { 712 struct ifnet *ifp = &sc->sc_ic.ic_if; 713 714 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 715 716 if (ifp->if_flags & IFF_UP) { 717 ath_init(ifp); 718 #if 0 719 (void)ath_intr(sc); 720 #endif 721 if (sc->sc_power != NULL) 722 (*sc->sc_power)(sc, why); 723 if (ifp->if_flags & IFF_RUNNING) 724 ath_start(ifp); 725 } 726 } 727 728 #ifdef __NetBSD__ 729 void 730 ath_shutdown(void *arg) 731 { 732 struct ath_softc *sc = arg; 733 734 ath_stop(&sc->sc_ic.ic_if); 735 } 736 #else 737 void 738 ath_shutdown(struct ath_softc *sc) 739 { 740 #if 1 741 return; 742 #else 743 struct ifnet *ifp = &sc->sc_ic.ic_if; 744 745 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 746 747 ath_stop(ifp); 748 #endif 749 } 750 #endif 751 752 #ifdef __NetBSD__ 753 int 754 ath_intr(void *arg) 755 { 756 return ath_intr1((struct ath_softc *)arg); 757 } 758 #else 759 void 760 ath_intr(void *arg) 761 { 762 (void)ath_intr1((struct ath_softc *)arg); 763 } 764 #endif 765 766 static int 767 ath_intr1(struct ath_softc *sc) 768 { 769 struct ieee80211com *ic = &sc->sc_ic; 770 struct ifnet *ifp = &ic->ic_if; 771 struct ath_hal *ah = sc->sc_ah; 772 HAL_INT status; 773 774 if (sc->sc_invalid) { 775 /* 776 * The hardware is not ready/present, don't touch anything. 777 * Note this can happen early on if the IRQ is shared. 778 */ 779 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__)); 780 return 0; 781 } 782 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 783 return 0; 784 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 785 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", 786 __func__, ifp->if_flags)); 787 ath_hal_getisr(ah, &status); /* clear ISR */ 788 ath_hal_intrset(ah, 0); /* disable further intr's */ 789 return 1; /* XXX */ 790 } 791 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 792 DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status)); 793 status &= sc->sc_imask; /* discard unasked for bits */ 794 if (status & HAL_INT_FATAL) { 795 sc->sc_stats.ast_hardware++; 796 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 797 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 798 } else if (status & HAL_INT_RXORN) { 799 sc->sc_stats.ast_rxorn++; 800 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 801 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 802 } else { 803 if (status & HAL_INT_RXEOL) { 804 /* 805 * NB: the hardware should re-read the link when 806 * RXE bit is written, but it doesn't work at 807 * least on older hardware revs. 808 */ 809 sc->sc_stats.ast_rxeol++; 810 sc->sc_rxlink = NULL; 811 } 812 if (status & HAL_INT_TXURN) { 813 sc->sc_stats.ast_txurn++; 814 /* bump tx trigger level */ 815 ath_hal_updatetxtriglevel(ah, AH_TRUE); 816 } 817 if (status & HAL_INT_RX) 818 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 819 if (status & HAL_INT_TX) 820 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 821 if (status & HAL_INT_SWBA) { 822 /* 823 * Handle beacon transmission directly; deferring 824 * this is too slow to meet timing constraints 825 * under load. 826 */ 827 ath_beacon_proc(sc, 0); 828 } 829 if (status & HAL_INT_BMISS) { 830 sc->sc_stats.ast_bmiss++; 831 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 832 } 833 } 834 return 1; 835 } 836 837 static void 838 ath_fatal_proc(void *arg, int pending) 839 { 840 struct ath_softc *sc = arg; 841 842 device_printf(sc->sc_dev, "hardware error; resetting\n"); 843 ath_reset(sc); 844 } 845 846 static void 847 ath_rxorn_proc(void *arg, int pending) 848 { 849 struct ath_softc *sc = arg; 850 851 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n"); 852 ath_reset(sc); 853 } 854 855 static void 856 ath_bmiss_proc(void *arg, int pending) 857 { 858 struct ath_softc *sc = arg; 859 struct ieee80211com *ic = &sc->sc_ic; 860 861 DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending)); 862 if (ic->ic_opmode != IEEE80211_M_STA) 863 return; 864 if (ic->ic_state == IEEE80211_S_RUN) { 865 /* 866 * Rather than go directly to scan state, try to 867 * reassociate first. If that fails then the state 868 * machine will drop us into scanning after timing 869 * out waiting for a probe response. 870 */ 871 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 872 } 873 } 874 875 static u_int 876 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 877 { 878 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 879 880 switch (mode) { 881 case IEEE80211_MODE_AUTO: 882 return 0; 883 case IEEE80211_MODE_11A: 884 return CHANNEL_A; 885 case IEEE80211_MODE_11B: 886 return CHANNEL_B; 887 case IEEE80211_MODE_11G: 888 return CHANNEL_PUREG; 889 case IEEE80211_MODE_TURBO: 890 return CHANNEL_T; 891 default: 892 panic("%s: unsupported mode %d\n", __func__, mode); 893 return 0; 894 } 895 } 896 897 #ifdef __NetBSD__ 898 static int 899 ath_init(struct ifnet *ifp) 900 { 901 return ath_init1((struct ath_softc *)ifp->if_softc); 902 } 903 #else 904 static void 905 ath_init(void *arg) 906 { 907 (void)ath_init1((struct ath_softc *)arg); 908 } 909 #endif 910 911 static int 912 ath_init1(struct ath_softc *sc) 913 { 914 struct ieee80211com *ic = &sc->sc_ic; 915 struct ifnet *ifp = &ic->ic_if; 916 struct ieee80211_node *ni; 917 enum ieee80211_phymode mode; 918 struct ath_hal *ah = sc->sc_ah; 919 HAL_STATUS status; 920 HAL_CHANNEL hchan; 921 int error = 0; 922 ath_softc_critsect_decl(s); 923 924 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", 925 __func__, ifp->if_flags)); 926 927 #ifdef __NetBSD__ 928 if ((error = ath_enable(sc)) != 0) 929 return error; 930 #endif 931 932 ath_softc_critsect_begin(sc, s); 933 /* 934 * Stop anything previously setup. This is safe 935 * whether this is the first time through or not. 936 */ 937 ath_stop(ifp); 938 939 /* 940 * The basic interface to setting the hardware in a good 941 * state is ``reset''. On return the hardware is known to 942 * be powered up and with interrupts disabled. This must 943 * be followed by initialization of the appropriate bits 944 * and then setup of the interrupt mask. 945 */ 946 hchan.channel = ic->ic_ibss_chan->ic_freq; 947 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan); 948 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) { 949 if_printf(ifp, "unable to reset hardware; hal status %u\n", 950 status); 951 error = EIO; 952 goto done; 953 } 954 955 /* 956 * Setup the hardware after reset: the key cache 957 * is filled as needed and the receive engine is 958 * set going. Frame transmit is handled entirely 959 * in the frame output path; there's nothing to do 960 * here except setup the interrupt mask. 961 */ 962 if (ic->ic_flags & IEEE80211_F_PRIVACY) 963 ath_initkeytable(sc); 964 if ((error = ath_startrecv(sc)) != 0) { 965 if_printf(ifp, "unable to start recv logic\n"); 966 goto done; 967 } 968 969 /* 970 * Enable interrupts. 971 */ 972 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 973 | HAL_INT_RXEOL | HAL_INT_RXORN 974 | HAL_INT_FATAL | HAL_INT_GLOBAL; 975 ath_hal_intrset(ah, sc->sc_imask); 976 977 ifp->if_flags |= IFF_RUNNING; 978 ic->ic_state = IEEE80211_S_INIT; 979 980 /* 981 * The hardware should be ready to go now so it's safe 982 * to kick the 802.11 state machine as it's likely to 983 * immediately call back to us to send mgmt frames. 984 */ 985 ni = ic->ic_bss; 986 ni->ni_chan = ic->ic_ibss_chan; 987 mode = ieee80211_chan2mode(ic, ni->ni_chan); 988 if (mode != sc->sc_curmode) 989 ath_setcurmode(sc, mode); 990 if (ic->ic_opmode != IEEE80211_M_MONITOR) 991 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 992 else 993 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 994 done: 995 ath_softc_critsect_end(sc, s); 996 return error; 997 } 998 999 static void 1000 ath_stop(struct ifnet *ifp) 1001 { 1002 struct ieee80211com *ic = (struct ieee80211com *) ifp; 1003 struct ath_softc *sc = ifp->if_softc; 1004 struct ath_hal *ah = sc->sc_ah; 1005 ath_softc_critsect_decl(s); 1006 1007 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n", 1008 __func__, sc->sc_invalid, ifp->if_flags)); 1009 1010 ath_softc_critsect_begin(sc, s); 1011 if (ifp->if_flags & IFF_RUNNING) { 1012 /* 1013 * Shutdown the hardware and driver: 1014 * disable interrupts 1015 * turn off timers 1016 * clear transmit machinery 1017 * clear receive machinery 1018 * drain and release tx queues 1019 * reclaim beacon resources 1020 * reset 802.11 state machine 1021 * power down hardware 1022 * 1023 * Note that some of this work is not possible if the 1024 * hardware is gone (invalid). 1025 */ 1026 ifp->if_flags &= ~IFF_RUNNING; 1027 ifp->if_timer = 0; 1028 if (!sc->sc_invalid) 1029 ath_hal_intrset(ah, 0); 1030 ath_draintxq(sc); 1031 if (!sc->sc_invalid) 1032 ath_stoprecv(sc); 1033 else 1034 sc->sc_rxlink = NULL; 1035 #ifdef __FreeBSD__ 1036 IF_DRAIN(&ifp->if_snd); 1037 #else 1038 IF_PURGE(&ifp->if_snd); 1039 #endif 1040 ath_beacon_free(sc); 1041 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1042 if (!sc->sc_invalid) { 1043 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0); 1044 } 1045 #ifdef __NetBSD__ 1046 ath_disable(sc); 1047 #endif 1048 } 1049 ath_softc_critsect_end(sc, s); 1050 } 1051 1052 /* 1053 * Reset the hardware w/o losing operational state. This is 1054 * basically a more efficient way of doing ath_stop, ath_init, 1055 * followed by state transitions to the current 802.11 1056 * operational state. Used to recover from errors rx overrun 1057 * and to reset the hardware when rf gain settings must be reset. 1058 */ 1059 static void 1060 ath_reset(struct ath_softc *sc) 1061 { 1062 struct ieee80211com *ic = &sc->sc_ic; 1063 struct ifnet *ifp = &ic->ic_if; 1064 struct ath_hal *ah = sc->sc_ah; 1065 struct ieee80211_channel *c; 1066 HAL_STATUS status; 1067 HAL_CHANNEL hchan; 1068 1069 /* 1070 * Convert to a HAL channel description with the flags 1071 * constrained to reflect the current operating mode. 1072 */ 1073 c = ic->ic_ibss_chan; 1074 hchan.channel = c->ic_freq; 1075 hchan.channelFlags = ath_chan2flags(ic, c); 1076 1077 ath_hal_intrset(ah, 0); /* disable interrupts */ 1078 ath_draintxq(sc); /* stop xmit side */ 1079 ath_stoprecv(sc); /* stop recv side */ 1080 /* NB: indicate channel change so we do a full reset */ 1081 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) 1082 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1083 __func__, status); 1084 ath_hal_intrset(ah, sc->sc_imask); 1085 if (ath_startrecv(sc) != 0) /* restart recv */ 1086 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1087 ath_start(ifp); /* restart xmit */ 1088 if (ic->ic_state == IEEE80211_S_RUN) 1089 ath_beacon_config(sc); /* restart beacons */ 1090 } 1091 1092 static void 1093 ath_start(struct ifnet *ifp) 1094 { 1095 struct ath_softc *sc = ifp->if_softc; 1096 struct ath_hal *ah = sc->sc_ah; 1097 struct ieee80211com *ic = &sc->sc_ic; 1098 struct ieee80211_node *ni; 1099 struct ath_buf *bf; 1100 struct mbuf *m; 1101 struct ieee80211_frame *wh; 1102 ath_txbuf_critsect_decl(s); 1103 1104 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 1105 return; 1106 for (;;) { 1107 /* 1108 * Grab a TX buffer and associated resources. 1109 */ 1110 ath_txbuf_critsect_begin(sc, s); 1111 bf = TAILQ_FIRST(&sc->sc_txbuf); 1112 if (bf != NULL) 1113 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 1114 ath_txbuf_critsect_end(sc, s); 1115 if (bf == NULL) { 1116 DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n", 1117 __func__)); 1118 sc->sc_stats.ast_tx_qstop++; 1119 ifp->if_flags |= IFF_OACTIVE; 1120 break; 1121 } 1122 /* 1123 * Poll the management queue for frames; they 1124 * have priority over normal data frames. 1125 */ 1126 IF_DEQUEUE(&ic->ic_mgtq, m); 1127 if (m == NULL) { 1128 /* 1129 * No data frames go out unless we're associated. 1130 */ 1131 if (ic->ic_state != IEEE80211_S_RUN) { 1132 DPRINTF(ATH_DEBUG_ANY, 1133 ("%s: ignore data packet, state %u\n", 1134 __func__, ic->ic_state)); 1135 sc->sc_stats.ast_tx_discard++; 1136 ath_txbuf_critsect_begin(sc, s); 1137 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1138 ath_txbuf_critsect_end(sc, s); 1139 break; 1140 } 1141 IF_DEQUEUE(&ifp->if_snd, m); 1142 if (m == NULL) { 1143 ath_txbuf_critsect_begin(sc, s); 1144 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1145 ath_txbuf_critsect_end(sc, s); 1146 break; 1147 } 1148 ifp->if_opackets++; 1149 1150 #ifdef __NetBSD__ 1151 #if NBPFILTER > 0 1152 if (ifp->if_bpf) 1153 bpf_mtap(ifp->if_bpf, m); 1154 #endif 1155 #endif 1156 #ifdef __FreeBSD__ 1157 BPF_MTAP(ifp, m); 1158 #endif 1159 /* 1160 * Encapsulate the packet in prep for transmission. 1161 */ 1162 m = ieee80211_encap(ifp, m, &ni); 1163 if (m == NULL) { 1164 DPRINTF(ATH_DEBUG_ANY, 1165 ("%s: encapsulation failure\n", 1166 __func__)); 1167 sc->sc_stats.ast_tx_encap++; 1168 goto bad; 1169 } 1170 wh = mtod(m, struct ieee80211_frame *); 1171 } else { 1172 /* 1173 * Hack! The referenced node pointer is in the 1174 * rcvif field of the packet header. This is 1175 * placed there by ieee80211_mgmt_output because 1176 * we need to hold the reference with the frame 1177 * and there's no other way (other than packet 1178 * tags which we consider too expensive to use) 1179 * to pass it along. 1180 */ 1181 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1182 m->m_pkthdr.rcvif = NULL; 1183 1184 wh = mtod(m, struct ieee80211_frame *); 1185 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1186 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1187 /* fill time stamp */ 1188 u_int64_t tsf; 1189 u_int32_t *tstamp; 1190 1191 tsf = ath_hal_gettsf64(ah); 1192 /* XXX: adjust 100us delay to xmit */ 1193 tsf += 100; 1194 tstamp = (u_int32_t *)&wh[1]; 1195 tstamp[0] = htole32(tsf & 0xffffffff); 1196 tstamp[1] = htole32(tsf >> 32); 1197 } 1198 sc->sc_stats.ast_tx_mgmt++; 1199 } 1200 1201 if (ath_tx_start(sc, ni, bf, m)) { 1202 bad: 1203 ath_txbuf_critsect_begin(sc, s); 1204 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1205 ath_txbuf_critsect_end(sc, s); 1206 ifp->if_oerrors++; 1207 if (ni != NULL) 1208 ieee80211_release_node(ic, ni); 1209 continue; 1210 } 1211 1212 sc->sc_tx_timer = 5; 1213 ifp->if_timer = 1; 1214 } 1215 } 1216 1217 static int 1218 ath_media_change(struct ifnet *ifp) 1219 { 1220 int error; 1221 1222 error = ieee80211_media_change(ifp); 1223 if (error == ENETRESET) { 1224 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == 1225 (IFF_RUNNING|IFF_UP)) 1226 ath_init(ifp); /* XXX lose error */ 1227 error = 0; 1228 } 1229 return error; 1230 } 1231 1232 static void 1233 ath_watchdog(struct ifnet *ifp) 1234 { 1235 struct ath_softc *sc = ifp->if_softc; 1236 struct ieee80211com *ic = &sc->sc_ic; 1237 1238 ifp->if_timer = 0; 1239 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 1240 return; 1241 if (sc->sc_tx_timer) { 1242 if (--sc->sc_tx_timer == 0) { 1243 if_printf(ifp, "device timeout\n"); 1244 ath_reset(sc); 1245 ifp->if_oerrors++; 1246 sc->sc_stats.ast_watchdog++; 1247 return; 1248 } 1249 ifp->if_timer = 1; 1250 } 1251 if (ic->ic_fixed_rate == -1) { 1252 /* 1253 * Run the rate control algorithm if we're not 1254 * locked at a fixed rate. 1255 */ 1256 if (ic->ic_opmode == IEEE80211_M_STA) 1257 ath_rate_ctl(sc, ic->ic_bss); 1258 else 1259 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc); 1260 } 1261 ieee80211_watchdog(ifp); 1262 } 1263 1264 static int 1265 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1266 { 1267 struct ath_softc *sc = ifp->if_softc; 1268 struct ifreq *ifr = (struct ifreq *)data; 1269 int error = 0; 1270 ath_softc_critsect_decl(s); 1271 1272 ath_softc_critsect_begin(sc, s); 1273 switch (cmd) { 1274 case SIOCSIFFLAGS: 1275 if (ifp->if_flags & IFF_UP) { 1276 if (ifp->if_flags & IFF_RUNNING) { 1277 /* 1278 * To avoid rescanning another access point, 1279 * do not call ath_init() here. Instead, 1280 * only reflect promisc mode settings. 1281 */ 1282 ath_mode_init(sc); 1283 } else { 1284 /* 1285 * Beware of being called during detach to 1286 * reset promiscuous mode. In that case we 1287 * will still be marked UP but not RUNNING. 1288 * However trying to re-init the interface 1289 * is the wrong thing to do as we've already 1290 * torn down much of our state. There's 1291 * probably a better way to deal with this. 1292 */ 1293 if (!sc->sc_invalid) 1294 ath_init(ifp); /* XXX lose error */ 1295 } 1296 } else 1297 ath_stop(ifp); 1298 break; 1299 case SIOCADDMULTI: 1300 case SIOCDELMULTI: 1301 #ifdef __FreeBSD__ 1302 /* 1303 * The upper layer has already installed/removed 1304 * the multicast address(es), just recalculate the 1305 * multicast filter for the card. 1306 */ 1307 if (ifp->if_flags & IFF_RUNNING) 1308 ath_mode_init(sc); 1309 #endif 1310 #ifdef __NetBSD__ 1311 error = (cmd == SIOCADDMULTI) ? 1312 ether_addmulti(ifr, &sc->sc_ic.ic_ec) : 1313 ether_delmulti(ifr, &sc->sc_ic.ic_ec); 1314 if (error == ENETRESET) { 1315 if (ifp->if_flags & IFF_RUNNING) 1316 ath_mode_init(sc); 1317 error = 0; 1318 } 1319 #endif 1320 break; 1321 case SIOCGATHSTATS: 1322 error = copyout(&sc->sc_stats, 1323 ifr->ifr_data, sizeof (sc->sc_stats)); 1324 break; 1325 case SIOCGATHDIAG: { 1326 #if 0 /* XXX punt */ 1327 struct ath_diag *ad = (struct ath_diag *)data; 1328 struct ath_hal *ah = sc->sc_ah; 1329 void *data; 1330 u_int size; 1331 1332 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) { 1333 if (size < ad->ad_size) 1334 ad->ad_size = size; 1335 if (data) 1336 error = copyout(data, ad->ad_data, ad->ad_size); 1337 } else 1338 error = EINVAL; 1339 #else 1340 error = EINVAL; 1341 #endif 1342 break; 1343 } 1344 default: 1345 error = ieee80211_ioctl(ifp, cmd, data); 1346 if (error == ENETRESET) { 1347 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == 1348 (IFF_RUNNING|IFF_UP)) 1349 ath_init(ifp); /* XXX lose error */ 1350 error = 0; 1351 } 1352 break; 1353 } 1354 ath_softc_critsect_end(sc, s); 1355 return error; 1356 } 1357 1358 /* 1359 * Fill the hardware key cache with key entries. 1360 */ 1361 static void 1362 ath_initkeytable(struct ath_softc *sc) 1363 { 1364 struct ieee80211com *ic = &sc->sc_ic; 1365 struct ath_hal *ah = sc->sc_ah; 1366 int i; 1367 1368 /* XXX maybe should reset all keys when !WEPON */ 1369 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1370 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i]; 1371 if (k->wk_len == 0) 1372 ath_hal_keyreset(ah, i); 1373 else { 1374 HAL_KEYVAL hk; 1375 1376 memset(&hk, 0, sizeof(hk)); 1377 hk.kv_type = HAL_CIPHER_WEP; 1378 hk.kv_len = k->wk_len; 1379 memcpy(hk.kv_val, k->wk_key, k->wk_len); 1380 /* XXX return value */ 1381 ath_hal_keyset(ah, i, &hk); 1382 } 1383 } 1384 } 1385 1386 static void 1387 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2]) 1388 { 1389 u_int32_t val; 1390 u_int8_t pos; 1391 1392 val = LE_READ_4(dl + 0); 1393 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1394 val = LE_READ_4(dl + 3); 1395 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1396 pos &= 0x3f; 1397 (*mfilt)[pos / 32] |= (1 << (pos % 32)); 1398 } 1399 1400 #ifdef __FreeBSD__ 1401 static void 1402 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2]) 1403 { 1404 struct ieee80211com *ic = &sc->sc_ic; 1405 struct ifnet *ifp = &ic->ic_if; 1406 struct ifmultiaddr *ifma; 1407 1408 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1409 caddr_t dl; 1410 1411 /* calculate XOR of eight 6bit values */ 1412 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 1413 ath_mcastfilter_accum(dl, &mfilt); 1414 } 1415 } 1416 #else 1417 static void 1418 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2]) 1419 { 1420 struct ifnet *ifp = &sc->sc_ic.ic_if; 1421 struct ether_multi *enm; 1422 struct ether_multistep estep; 1423 1424 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm); 1425 while (enm != NULL) { 1426 /* XXX Punt on ranges. */ 1427 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 1428 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0); 1429 ifp->if_flags |= IFF_ALLMULTI; 1430 return; 1431 } 1432 ath_mcastfilter_accum(enm->enm_addrlo, mfilt); 1433 ETHER_NEXT_MULTI(estep, enm); 1434 } 1435 ifp->if_flags &= ~IFF_ALLMULTI; 1436 } 1437 #endif 1438 1439 /* 1440 * Calculate the receive filter according to the 1441 * operating mode and state: 1442 * 1443 * o always accept unicast, broadcast, and multicast traffic 1444 * o maintain current state of phy error reception 1445 * o probe request frames are accepted only when operating in 1446 * hostap, adhoc, or monitor modes 1447 * o enable promiscuous mode according to the interface state 1448 * o accept beacons: 1449 * - when operating in adhoc mode so the 802.11 layer creates 1450 * node table entries for peers, 1451 * - when operating in station mode for collecting rssi data when 1452 * the station is otherwise quiet, or 1453 * - when scanning 1454 */ 1455 static u_int32_t 1456 ath_calcrxfilter(struct ath_softc *sc) 1457 { 1458 struct ieee80211com *ic = &sc->sc_ic; 1459 struct ath_hal *ah = sc->sc_ah; 1460 struct ifnet *ifp = &ic->ic_if; 1461 u_int32_t rfilt; 1462 1463 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1464 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1465 if (ic->ic_opmode != IEEE80211_M_STA) 1466 rfilt |= HAL_RX_FILTER_PROBEREQ; 1467 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 1468 rfilt |= HAL_RX_FILTER_BEACON; 1469 if (ifp->if_flags & IFF_PROMISC) 1470 rfilt |= HAL_RX_FILTER_PROM; 1471 return rfilt; 1472 } 1473 1474 static void 1475 ath_mode_init(struct ath_softc *sc) 1476 { 1477 #ifdef __FreeBSD__ 1478 struct ieee80211com *ic = &sc->sc_ic; 1479 #endif 1480 struct ath_hal *ah = sc->sc_ah; 1481 u_int32_t rfilt, mfilt[2]; 1482 1483 /* configure rx filter */ 1484 rfilt = ath_calcrxfilter(sc); 1485 ath_hal_setrxfilter(ah, rfilt); 1486 1487 /* configure operational mode */ 1488 ath_hal_setopmode(ah); 1489 1490 /* calculate and install multicast filter */ 1491 #ifdef __FreeBSD__ 1492 if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) { 1493 mfilt[0] = mfilt[1] = 0; 1494 ath_mcastfilter_compute(sc, &mfilt); 1495 } else { 1496 mfilt[0] = mfilt[1] = ~0; 1497 } 1498 #endif 1499 #ifdef __NetBSD__ 1500 mfilt[0] = mfilt[1] = 0; 1501 ath_mcastfilter_compute(sc, &mfilt); 1502 #endif 1503 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1504 DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n", 1505 __func__, rfilt, mfilt[0], mfilt[1])); 1506 } 1507 1508 #ifdef __FreeBSD__ 1509 static void 1510 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error) 1511 { 1512 struct ath_buf *bf = arg; 1513 1514 KASSERT(nseg <= ATH_MAX_SCATTER, 1515 ("ath_mbuf_load_cb: too many DMA segments %u", nseg)); 1516 bf->bf_mapsize = mapsize; 1517 bf->bf_nseg = nseg; 1518 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0])); 1519 } 1520 #endif /* __FreeBSD__ */ 1521 1522 static struct mbuf * 1523 ath_getmbuf(int flags, int type, u_int pktlen) 1524 { 1525 struct mbuf *m; 1526 1527 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen)); 1528 #ifdef __FreeBSD__ 1529 if (pktlen <= MHLEN) 1530 MGETHDR(m, flags, type); 1531 else 1532 m = m_getcl(flags, type, M_PKTHDR); 1533 #else 1534 MGETHDR(m, flags, type); 1535 if (m != NULL && pktlen > MHLEN) { 1536 MCLGET(m, flags); 1537 if ((m->m_flags & M_EXT) == 0) { 1538 m_free(m); 1539 m = NULL; 1540 } 1541 } 1542 #endif 1543 return m; 1544 } 1545 1546 static int 1547 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1548 { 1549 struct ieee80211com *ic = &sc->sc_ic; 1550 struct ifnet *ifp = &ic->ic_if; 1551 struct ath_hal *ah = sc->sc_ah; 1552 struct ieee80211_frame *wh; 1553 struct ath_buf *bf; 1554 struct ath_desc *ds; 1555 struct mbuf *m; 1556 int error, pktlen; 1557 u_int8_t *frm, rate; 1558 u_int16_t capinfo; 1559 struct ieee80211_rateset *rs; 1560 const HAL_RATE_TABLE *rt; 1561 u_int flags; 1562 1563 bf = sc->sc_bcbuf; 1564 if (bf->bf_m != NULL) { 1565 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1566 m_freem(bf->bf_m); 1567 bf->bf_m = NULL; 1568 bf->bf_node = NULL; 1569 } 1570 /* 1571 * NB: the beacon data buffer must be 32-bit aligned; 1572 * we assume the mbuf routines will return us something 1573 * with this alignment (perhaps should assert). 1574 */ 1575 rs = &ni->ni_rates; 1576 pktlen = sizeof (struct ieee80211_frame) 1577 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6; 1578 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 1579 pktlen += 2; 1580 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen); 1581 if (m == NULL) { 1582 DPRINTF(ATH_DEBUG_BEACON, 1583 ("%s: cannot get mbuf/cluster; size %u\n", 1584 __func__, pktlen)); 1585 sc->sc_stats.ast_be_nombuf++; 1586 return ENOMEM; 1587 } 1588 1589 wh = mtod(m, struct ieee80211_frame *); 1590 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1591 IEEE80211_FC0_SUBTYPE_BEACON; 1592 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1593 *(u_int16_t *)wh->i_dur = 0; 1594 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN); 1595 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN); 1596 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN); 1597 *(u_int16_t *)wh->i_seq = 0; 1598 1599 /* 1600 * beacon frame format 1601 * [8] time stamp 1602 * [2] beacon interval 1603 * [2] cabability information 1604 * [tlv] ssid 1605 * [tlv] supported rates 1606 * [tlv] parameter set (IBSS) 1607 * [tlv] extended supported rates 1608 */ 1609 frm = (u_int8_t *)&wh[1]; 1610 memset(frm, 0, 8); /* timestamp is set by hardware */ 1611 frm += 8; 1612 *(u_int16_t *)frm = htole16(ni->ni_intval); 1613 frm += 2; 1614 if (ic->ic_opmode == IEEE80211_M_IBSS) 1615 capinfo = IEEE80211_CAPINFO_IBSS; 1616 else 1617 capinfo = IEEE80211_CAPINFO_ESS; 1618 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1619 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1620 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1621 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1622 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1623 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1624 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1625 *(u_int16_t *)frm = htole16(capinfo); 1626 frm += 2; 1627 *frm++ = IEEE80211_ELEMID_SSID; 1628 *frm++ = ni->ni_esslen; 1629 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1630 frm += ni->ni_esslen; 1631 frm = ieee80211_add_rates(frm, rs); 1632 *frm++ = IEEE80211_ELEMID_DSPARMS; 1633 *frm++ = 1; 1634 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1635 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1636 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1637 *frm++ = 2; 1638 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1639 } else { 1640 /* TODO: TIM */ 1641 *frm++ = IEEE80211_ELEMID_TIM; 1642 *frm++ = 4; /* length */ 1643 *frm++ = 0; /* DTIM count */ 1644 *frm++ = 1; /* DTIM period */ 1645 *frm++ = 0; /* bitmap control */ 1646 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */ 1647 } 1648 frm = ieee80211_add_xrates(frm, rs); 1649 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1650 KASSERT(m->m_pkthdr.len <= pktlen, 1651 ("beacon bigger than expected, len %u calculated %u", 1652 m->m_pkthdr.len, pktlen)); 1653 1654 DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len)); 1655 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT); 1656 if (error != 0) { 1657 m_freem(m); 1658 return error; 1659 } 1660 KASSERT(bf->bf_nseg == 1, 1661 ("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg)); 1662 bf->bf_m = m; 1663 1664 /* setup descriptors */ 1665 ds = bf->bf_desc; 1666 1667 if (ic->ic_opmode == IEEE80211_M_IBSS) 1668 ds->ds_link = bf->bf_daddr; /* link to self */ 1669 else 1670 ds->ds_link = 0; 1671 ds->ds_data = bf->bf_segs[0].ds_addr; 1672 1673 DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__, 1674 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len)); 1675 1676 /* 1677 * Calculate rate code. 1678 * XXX everything at min xmit rate 1679 */ 1680 rt = sc->sc_currates; 1681 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1682 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1683 rate = rt->info[0].rateCode | rt->info[0].shortPreamble; 1684 else 1685 rate = rt->info[0].rateCode; 1686 1687 flags = HAL_TXDESC_NOACK; 1688 if (ic->ic_opmode == IEEE80211_M_IBSS) 1689 flags |= HAL_TXDESC_VEOL; 1690 1691 if (!ath_hal_setuptxdesc(ah, ds 1692 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */ 1693 , sizeof(struct ieee80211_frame) /* header length */ 1694 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 1695 , 0x20 /* txpower XXX */ 1696 , rate, 1 /* series 0 rate/tries */ 1697 , HAL_TXKEYIX_INVALID /* no encryption */ 1698 , 0 /* antenna mode */ 1699 , flags /* no ack for beacons */ 1700 , 0 /* rts/cts rate */ 1701 , 0 /* rts/cts duration */ 1702 )) { 1703 printf("%s: ath_hal_setuptxdesc failed\n", __func__); 1704 return -1; 1705 } 1706 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 1707 /* XXX verify mbuf data area covers this roundup */ 1708 if (!ath_hal_filltxdesc(ah, ds 1709 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */ 1710 , AH_TRUE /* first segment */ 1711 , AH_TRUE /* last segment */ 1712 )) { 1713 printf("%s: ath_hal_filltxdesc failed\n", __func__); 1714 return -1; 1715 } 1716 1717 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */ 1718 1719 return 0; 1720 } 1721 1722 static void 1723 ath_beacon_proc(struct ath_softc *sc, int pending) 1724 { 1725 struct ieee80211com *ic = &sc->sc_ic; 1726 struct ath_buf *bf = sc->sc_bcbuf; 1727 struct ath_hal *ah = sc->sc_ah; 1728 1729 DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending)); 1730 if (ic->ic_opmode == IEEE80211_M_STA || 1731 bf == NULL || bf->bf_m == NULL) { 1732 DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n", 1733 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL)); 1734 return; 1735 } 1736 /* TODO: update beacon to reflect PS poll state */ 1737 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 1738 DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n", 1739 __func__, sc->sc_bhalq)); 1740 /* NB: the HAL still stops DMA, so proceed */ 1741 } 1742 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE); 1743 1744 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 1745 ath_hal_txstart(ah, sc->sc_bhalq); 1746 DPRINTF(ATH_DEBUG_BEACON_PROC, 1747 ("%s: TXDP%u = %p (%p)\n", __func__, 1748 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc)); 1749 } 1750 1751 static void 1752 ath_beacon_free(struct ath_softc *sc) 1753 { 1754 struct ath_buf *bf = sc->sc_bcbuf; 1755 1756 if (bf->bf_m != NULL) { 1757 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1758 m_freem(bf->bf_m); 1759 bf->bf_m = NULL; 1760 bf->bf_node = NULL; 1761 } 1762 } 1763 1764 /* 1765 * Configure the beacon and sleep timers. 1766 * 1767 * When operating as an AP this resets the TSF and sets 1768 * up the hardware to notify us when we need to issue beacons. 1769 * 1770 * When operating in station mode this sets up the beacon 1771 * timers according to the timestamp of the last received 1772 * beacon and the current TSF, configures PCF and DTIM 1773 * handling, programs the sleep registers so the hardware 1774 * will wakeup in time to receive beacons, and configures 1775 * the beacon miss handling so we'll receive a BMISS 1776 * interrupt when we stop seeing beacons from the AP 1777 * we've associated with. 1778 */ 1779 static void 1780 ath_beacon_config(struct ath_softc *sc) 1781 { 1782 struct ath_hal *ah = sc->sc_ah; 1783 struct ieee80211com *ic = &sc->sc_ic; 1784 struct ieee80211_node *ni = ic->ic_bss; 1785 u_int32_t nexttbtt, intval; 1786 1787 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) | 1788 (LE_READ_4(ni->ni_tstamp) >> 10); 1789 DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt)); 1790 nexttbtt += ni->ni_intval; 1791 intval = ni->ni_intval & HAL_BEACON_PERIOD; 1792 if (ic->ic_opmode == IEEE80211_M_STA) { 1793 HAL_BEACON_STATE bs; 1794 u_int32_t bmisstime; 1795 1796 /* NB: no PCF support right now */ 1797 memset(&bs, 0, sizeof(bs)); 1798 /* 1799 * Reset our tsf so the hardware will update the 1800 * tsf register to reflect timestamps found in 1801 * received beacons. 1802 */ 1803 bs.bs_intval = intval | HAL_BEACON_RESET_TSF; 1804 bs.bs_nexttbtt = nexttbtt; 1805 bs.bs_dtimperiod = bs.bs_intval; 1806 bs.bs_nextdtim = nexttbtt; 1807 /* 1808 * Calculate the number of consecutive beacons to miss 1809 * before taking a BMISS interrupt. The configuration 1810 * is specified in ms, so we need to convert that to 1811 * TU's and then calculate based on the beacon interval. 1812 * Note that we clamp the result to at most 10 beacons. 1813 */ 1814 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024; 1815 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval); 1816 if (bs.bs_bmissthreshold > 10) 1817 bs.bs_bmissthreshold = 10; 1818 else if (bs.bs_bmissthreshold <= 0) 1819 bs.bs_bmissthreshold = 1; 1820 1821 /* 1822 * Calculate sleep duration. The configuration is 1823 * given in ms. We insure a multiple of the beacon 1824 * period is used. Also, if the sleep duration is 1825 * greater than the DTIM period then it makes senses 1826 * to make it a multiple of that. 1827 * 1828 * XXX fixed at 100ms 1829 */ 1830 bs.bs_sleepduration = 1831 roundup((100 * 1000) / 1024, bs.bs_intval); 1832 if (bs.bs_sleepduration > bs.bs_dtimperiod) 1833 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 1834 1835 DPRINTF(ATH_DEBUG_BEACON, 1836 ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n" 1837 , __func__ 1838 , bs.bs_intval 1839 , bs.bs_nexttbtt 1840 , bs.bs_dtimperiod 1841 , bs.bs_nextdtim 1842 , bs.bs_bmissthreshold 1843 , bs.bs_sleepduration 1844 )); 1845 ath_hal_intrset(ah, 0); 1846 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0); 1847 sc->sc_imask |= HAL_INT_BMISS; 1848 ath_hal_intrset(ah, sc->sc_imask); 1849 } else { 1850 ath_hal_intrset(ah, 0); 1851 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 1852 intval |= HAL_BEACON_ENA; 1853 switch (ic->ic_opmode) { 1854 /* No beacons in monitor, ad hoc-demo modes. */ 1855 case IEEE80211_M_MONITOR: 1856 case IEEE80211_M_AHDEMO: 1857 intval &= ~HAL_BEACON_ENA; 1858 /*FALLTHROUGH*/ 1859 /* In IBSS mode, I am uncertain how SWBA interrupts 1860 * work, so I just turn them off and use a self-linked 1861 * descriptor. 1862 */ 1863 case IEEE80211_M_IBSS: 1864 sc->sc_imask &= ~HAL_INT_SWBA; 1865 nexttbtt = ni->ni_intval; 1866 /*FALLTHROUGH*/ 1867 case IEEE80211_M_HOSTAP: 1868 default: 1869 if (nexttbtt == ni->ni_intval) 1870 intval |= HAL_BEACON_RESET_TSF; 1871 break; 1872 } 1873 DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n", 1874 __func__, ni->ni_intval, nexttbtt)); 1875 ath_hal_beaconinit(ah, nexttbtt, intval); 1876 ath_hal_intrset(ah, sc->sc_imask); 1877 if (ic->ic_opmode == IEEE80211_M_IBSS) 1878 ath_beacon_proc(sc, 0); 1879 } 1880 } 1881 1882 #ifdef __FreeBSD__ 1883 static void 1884 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1885 { 1886 bus_addr_t *paddr = (bus_addr_t*) arg; 1887 *paddr = segs->ds_addr; 1888 } 1889 #endif 1890 1891 #ifdef __FreeBSD__ 1892 static int 1893 ath_desc_alloc(struct ath_softc *sc) 1894 { 1895 int i, bsize, error; 1896 struct ath_desc *ds; 1897 struct ath_buf *bf; 1898 1899 /* allocate descriptors */ 1900 sc->sc_desc_len = sizeof(struct ath_desc) * 1901 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1); 1902 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap); 1903 if (error != 0) 1904 return error; 1905 1906 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc, 1907 BUS_DMA_NOWAIT, &sc->sc_ddmamap); 1908 1909 if (error != 0) 1910 goto fail0; 1911 1912 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, 1913 sc->sc_desc, sc->sc_desc_len, 1914 ath_load_cb, &sc->sc_desc_paddr, 1915 BUS_DMA_NOWAIT); 1916 if (error != 0) 1917 goto fail1; 1918 1919 ds = sc->sc_desc; 1920 DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n", 1921 __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr, 1922 /*XXX*/ (u_long) sc->sc_desc_len)); 1923 1924 /* allocate buffers */ 1925 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1); 1926 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO); 1927 if (bf == NULL) { 1928 printf("%s: unable to allocate Tx/Rx buffers\n", 1929 sc->sc_dev.dv_xname); 1930 error = -1; 1931 goto fail2; 1932 } 1933 sc->sc_bufptr = bf; 1934 1935 TAILQ_INIT(&sc->sc_rxbuf); 1936 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) { 1937 bf->bf_desc = ds; 1938 bf->bf_daddr = sc->sc_desc_paddr + 1939 ((caddr_t)ds - (caddr_t)sc->sc_desc); 1940 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 1941 &bf->bf_dmamap); 1942 if (error != 0) 1943 break; 1944 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 1945 } 1946 1947 TAILQ_INIT(&sc->sc_txbuf); 1948 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) { 1949 bf->bf_desc = ds; 1950 bf->bf_daddr = sc->sc_desc_paddr + 1951 ((caddr_t)ds - (caddr_t)sc->sc_desc); 1952 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 1953 &bf->bf_dmamap); 1954 if (error != 0) 1955 break; 1956 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1957 } 1958 TAILQ_INIT(&sc->sc_txq); 1959 1960 /* beacon buffer */ 1961 bf->bf_desc = ds; 1962 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); 1963 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap); 1964 if (error != 0) 1965 return error; 1966 sc->sc_bcbuf = bf; 1967 return 0; 1968 1969 fail2: 1970 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 1971 fail1: 1972 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap); 1973 fail0: 1974 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 1975 sc->sc_ddmamap = NULL; 1976 return error; 1977 } 1978 #else 1979 static int 1980 ath_desc_alloc(struct ath_softc *sc) 1981 { 1982 int i, bsize, error = -1; 1983 struct ath_desc *ds; 1984 struct ath_buf *bf; 1985 1986 /* allocate descriptors */ 1987 sc->sc_desc_len = sizeof(struct ath_desc) * 1988 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1); 1989 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE, 1990 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) { 1991 printf("%s: unable to allocate control data, error = %d\n", 1992 sc->sc_dev.dv_xname, error); 1993 goto fail0; 1994 } 1995 1996 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg, 1997 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) { 1998 printf("%s: unable to map control data, error = %d\n", 1999 sc->sc_dev.dv_xname, error); 2000 goto fail1; 2001 } 2002 2003 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1, 2004 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) { 2005 printf("%s: unable to create control data DMA map, " 2006 "error = %d\n", sc->sc_dev.dv_xname, error); 2007 goto fail2; 2008 } 2009 2010 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc, 2011 sc->sc_desc_len, NULL, 0)) != 0) { 2012 printf("%s: unable to load control data DMA map, error = %d\n", 2013 sc->sc_dev.dv_xname, error); 2014 goto fail3; 2015 } 2016 2017 ds = sc->sc_desc; 2018 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr; 2019 2020 DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC, 2021 ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n", 2022 ds, (u_long)sc->sc_desc_len, 2023 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len)); 2024 2025 /* allocate buffers */ 2026 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1); 2027 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO); 2028 if (bf == NULL) { 2029 printf("%s: unable to allocate Tx/Rx buffers\n", 2030 sc->sc_dev.dv_xname); 2031 error = ENOMEM; 2032 goto fail3; 2033 } 2034 sc->sc_bufptr = bf; 2035 2036 TAILQ_INIT(&sc->sc_rxbuf); 2037 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) { 2038 bf->bf_desc = ds; 2039 bf->bf_daddr = sc->sc_desc_paddr + 2040 ((caddr_t)ds - (caddr_t)sc->sc_desc); 2041 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 2042 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) { 2043 printf("%s: unable to create Rx dmamap, error = %d\n", 2044 sc->sc_dev.dv_xname, error); 2045 goto fail4; 2046 } 2047 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 2048 } 2049 2050 TAILQ_INIT(&sc->sc_txbuf); 2051 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) { 2052 bf->bf_desc = ds; 2053 bf->bf_daddr = sc->sc_desc_paddr + 2054 ((caddr_t)ds - (caddr_t)sc->sc_desc); 2055 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 2056 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) { 2057 printf("%s: unable to create Tx dmamap, error = %d\n", 2058 sc->sc_dev.dv_xname, error); 2059 goto fail5; 2060 } 2061 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2062 } 2063 TAILQ_INIT(&sc->sc_txq); 2064 2065 /* beacon buffer */ 2066 bf->bf_desc = ds; 2067 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); 2068 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 2069 &bf->bf_dmamap)) != 0) { 2070 printf("%s: unable to create beacon dmamap, error = %d\n", 2071 sc->sc_dev.dv_xname, error); 2072 goto fail5; 2073 } 2074 sc->sc_bcbuf = bf; 2075 return 0; 2076 2077 fail5: 2078 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) { 2079 if (sc->sc_bufptr[i].bf_dmamap == NULL) 2080 continue; 2081 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap); 2082 } 2083 fail4: 2084 for (i = 0; i < ATH_RXBUF; i++) { 2085 if (sc->sc_bufptr[i].bf_dmamap == NULL) 2086 continue; 2087 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap); 2088 } 2089 fail3: 2090 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 2091 fail2: 2092 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 2093 sc->sc_ddmamap = NULL; 2094 fail1: 2095 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len); 2096 fail0: 2097 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg); 2098 return error; 2099 } 2100 #endif 2101 2102 static void 2103 ath_desc_free(struct ath_softc *sc) 2104 { 2105 struct ath_buf *bf; 2106 2107 #ifdef __FreeBSD__ 2108 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 2109 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap); 2110 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 2111 #else 2112 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 2113 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 2114 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg); 2115 #endif 2116 2117 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { 2118 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2119 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2120 m_freem(bf->bf_m); 2121 } 2122 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list) 2123 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2124 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 2125 if (bf->bf_m) { 2126 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2127 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2128 m_freem(bf->bf_m); 2129 bf->bf_m = NULL; 2130 } 2131 } 2132 if (sc->sc_bcbuf != NULL) { 2133 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); 2134 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); 2135 sc->sc_bcbuf = NULL; 2136 } 2137 2138 TAILQ_INIT(&sc->sc_rxbuf); 2139 TAILQ_INIT(&sc->sc_txbuf); 2140 TAILQ_INIT(&sc->sc_txq); 2141 free(sc->sc_bufptr, M_DEVBUF); 2142 sc->sc_bufptr = NULL; 2143 } 2144 2145 static struct ieee80211_node * 2146 ath_node_alloc(struct ieee80211com *ic) 2147 { 2148 struct ath_node *an = 2149 malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO); 2150 if (an) { 2151 int i; 2152 for (i = 0; i < ATH_RHIST_SIZE; i++) 2153 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME; 2154 an->an_rx_hist_next = ATH_RHIST_SIZE-1; 2155 return &an->an_node; 2156 } else 2157 return NULL; 2158 } 2159 2160 static void 2161 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni) 2162 { 2163 struct ath_softc *sc = ic->ic_if.if_softc; 2164 struct ath_buf *bf; 2165 2166 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { 2167 if (bf->bf_node == ni) 2168 bf->bf_node = NULL; 2169 } 2170 (*sc->sc_node_free)(ic, ni); 2171 } 2172 2173 static void 2174 ath_node_copy(struct ieee80211com *ic, 2175 struct ieee80211_node *dst, const struct ieee80211_node *src) 2176 { 2177 struct ath_softc *sc = ic->ic_if.if_softc; 2178 2179 memcpy(&dst[1], &src[1], 2180 sizeof(struct ath_node) - sizeof(struct ieee80211_node)); 2181 (*sc->sc_node_copy)(ic, dst, src); 2182 } 2183 2184 static u_int8_t 2185 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni) 2186 { 2187 struct ath_node *an = ATH_NODE(ni); 2188 int i, now, nsamples, rssi; 2189 2190 /* 2191 * Calculate the average over the last second of sampled data. 2192 */ 2193 now = ATH_TICKS(); 2194 nsamples = 0; 2195 rssi = 0; 2196 i = an->an_rx_hist_next; 2197 do { 2198 struct ath_recv_hist *rh = &an->an_rx_hist[i]; 2199 if (rh->arh_ticks == ATH_RHIST_NOTIME) 2200 goto done; 2201 if (now - rh->arh_ticks > hz) 2202 goto done; 2203 rssi += rh->arh_rssi; 2204 nsamples++; 2205 if (i == 0) 2206 i = ATH_RHIST_SIZE-1; 2207 else 2208 i--; 2209 } while (i != an->an_rx_hist_next); 2210 done: 2211 /* 2212 * Return either the average or the last known 2213 * value if there is no recent data. 2214 */ 2215 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi); 2216 } 2217 2218 static int 2219 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2220 { 2221 struct ath_hal *ah = sc->sc_ah; 2222 int error; 2223 struct mbuf *m; 2224 struct ath_desc *ds; 2225 2226 m = bf->bf_m; 2227 if (m == NULL) { 2228 /* 2229 * NB: by assigning a page to the rx dma buffer we 2230 * implicitly satisfy the Atheros requirement that 2231 * this buffer be cache-line-aligned and sized to be 2232 * multiple of the cache line size. Not doing this 2233 * causes weird stuff to happen (for the 5210 at least). 2234 */ 2235 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES); 2236 if (m == NULL) { 2237 DPRINTF(ATH_DEBUG_ANY, 2238 ("%s: no mbuf/cluster\n", __func__)); 2239 sc->sc_stats.ast_rx_nombuf++; 2240 return ENOMEM; 2241 } 2242 bf->bf_m = m; 2243 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2244 2245 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, 2246 BUS_DMA_NOWAIT); 2247 if (error != 0) { 2248 DPRINTF(ATH_DEBUG_ANY, 2249 ("%s: ath_buf_dmamap_load_mbuf failed;" 2250 " error %d\n", __func__, error)); 2251 sc->sc_stats.ast_rx_busdma++; 2252 return error; 2253 } 2254 KASSERT(bf->bf_nseg == 1, 2255 ("ath_rxbuf_init: multi-segment packet; nseg %u", 2256 bf->bf_nseg)); 2257 } 2258 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD); 2259 2260 /* 2261 * Setup descriptors. For receive we always terminate 2262 * the descriptor list with a self-linked entry so we'll 2263 * not get overrun under high load (as can happen with a 2264 * 5212 when ANI processing enables PHY errors). 2265 * 2266 * To insure the last descriptor is self-linked we create 2267 * each descriptor as self-linked and add it to the end. As 2268 * each additional descriptor is added the previous self-linked 2269 * entry is ``fixed'' naturally. This should be safe even 2270 * if DMA is happening. When processing RX interrupts we 2271 * never remove/process the last, self-linked, entry on the 2272 * descriptor list. This insures the hardware always has 2273 * someplace to write a new frame. 2274 */ 2275 ds = bf->bf_desc; 2276 ds->ds_link = bf->bf_daddr; /* link to self */ 2277 ds->ds_data = bf->bf_segs[0].ds_addr; 2278 ath_hal_setuprxdesc(ah, ds 2279 , m->m_len /* buffer size */ 2280 , 0 2281 ); 2282 2283 if (sc->sc_rxlink != NULL) 2284 *sc->sc_rxlink = bf->bf_daddr; 2285 sc->sc_rxlink = &ds->ds_link; 2286 return 0; 2287 } 2288 2289 static void 2290 ath_rx_proc(void *arg, int npending) 2291 { 2292 #define PA2DESC(_sc, _pa) \ 2293 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ 2294 ((_pa) - (_sc)->sc_desc_paddr))) 2295 struct ath_softc *sc = arg; 2296 struct ath_buf *bf; 2297 struct ieee80211com *ic = &sc->sc_ic; 2298 struct ifnet *ifp = &ic->ic_if; 2299 struct ath_hal *ah = sc->sc_ah; 2300 struct ath_desc *ds; 2301 struct mbuf *m; 2302 struct ieee80211_frame *wh, whbuf; 2303 struct ieee80211_node *ni; 2304 struct ath_node *an; 2305 struct ath_recv_hist *rh; 2306 int len; 2307 u_int phyerr; 2308 HAL_STATUS status; 2309 2310 DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending)); 2311 do { 2312 bf = TAILQ_FIRST(&sc->sc_rxbuf); 2313 if (bf == NULL) { /* NB: shouldn't happen */ 2314 if_printf(ifp, "ath_rx_proc: no buffer!\n"); 2315 break; 2316 } 2317 ds = bf->bf_desc; 2318 if (ds->ds_link == bf->bf_daddr) { 2319 /* NB: never process the self-linked entry at the end */ 2320 break; 2321 } 2322 m = bf->bf_m; 2323 if (m == NULL) { /* NB: shouldn't happen */ 2324 if_printf(ifp, "ath_rx_proc: no mbuf!\n"); 2325 continue; 2326 } 2327 /* XXX sync descriptor memory */ 2328 /* 2329 * Must provide the virtual address of the current 2330 * descriptor, the physical address, and the virtual 2331 * address of the next descriptor in the h/w chain. 2332 * This allows the HAL to look ahead to see if the 2333 * hardware is done with a descriptor by checking the 2334 * done bit in the following descriptor and the address 2335 * of the current descriptor the DMA engine is working 2336 * on. All this is necessary because of our use of 2337 * a self-linked list to avoid rx overruns. 2338 */ 2339 status = ath_hal_rxprocdesc(ah, ds, 2340 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 2341 #ifdef AR_DEBUG 2342 if (ath_debug & ATH_DEBUG_RECV_DESC) 2343 ath_printrxbuf(bf, status == HAL_OK); 2344 #endif 2345 if (status == HAL_EINPROGRESS) 2346 break; 2347 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 2348 2349 if (ds->ds_rxstat.rs_more) { 2350 /* 2351 * Frame spans multiple descriptors; this 2352 * cannot happen yet as we don't support 2353 * jumbograms. If not in monitor mode, 2354 * discard the frame. 2355 */ 2356 2357 /* enable this if you want to see error frames in Monitor mode */ 2358 #ifdef ERROR_FRAMES 2359 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2360 /* XXX statistic */ 2361 goto rx_next; 2362 } 2363 #endif 2364 /* fall thru for monitor mode handling... */ 2365 2366 } else if (ds->ds_rxstat.rs_status != 0) { 2367 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 2368 sc->sc_stats.ast_rx_crcerr++; 2369 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 2370 sc->sc_stats.ast_rx_fifoerr++; 2371 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) 2372 sc->sc_stats.ast_rx_badcrypt++; 2373 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 2374 sc->sc_stats.ast_rx_phyerr++; 2375 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 2376 sc->sc_stats.ast_rx_phy[phyerr]++; 2377 } 2378 2379 /* 2380 * reject error frames, we normally don't want 2381 * to see them in monitor mode. 2382 */ 2383 if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) || 2384 (ds->ds_rxstat.rs_status & HAL_RXERR_PHY)) 2385 goto rx_next; 2386 2387 /* 2388 * In monitor mode, allow through packets that 2389 * cannot be decrypted 2390 */ 2391 if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) || 2392 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) 2393 goto rx_next; 2394 } 2395 2396 len = ds->ds_rxstat.rs_datalen; 2397 if (len < IEEE80211_MIN_LEN) { 2398 DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n", 2399 __func__, len)); 2400 sc->sc_stats.ast_rx_tooshort++; 2401 goto rx_next; 2402 } 2403 2404 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD); 2405 2406 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2407 bf->bf_m = NULL; 2408 m->m_pkthdr.rcvif = ifp; 2409 m->m_pkthdr.len = m->m_len = len; 2410 2411 #if NBPFILTER > 0 2412 if (sc->sc_drvbpf) { 2413 sc->sc_rx_th.wr_rate = 2414 sc->sc_hwmap[ds->ds_rxstat.rs_rate]; 2415 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi; 2416 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 2417 /* XXX TSF */ 2418 bpf_mtap2(sc->sc_drvbpf, 2419 &sc->sc_rx_th, sc->sc_rx_th_len, m); 2420 } 2421 #endif 2422 2423 m_adj(m, -IEEE80211_CRC_LEN); 2424 wh = mtod(m, struct ieee80211_frame *); 2425 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2426 /* 2427 * WEP is decrypted by hardware. Clear WEP bit 2428 * and trim WEP header for ieee80211_input(). 2429 */ 2430 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 2431 memcpy(&whbuf, wh, sizeof(whbuf)); 2432 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN); 2433 wh = mtod(m, struct ieee80211_frame *); 2434 memcpy(wh, &whbuf, sizeof(whbuf)); 2435 /* 2436 * Also trim WEP ICV from the tail. 2437 */ 2438 m_adj(m, -IEEE80211_WEP_CRCLEN); 2439 /* 2440 * The header has probably moved. 2441 */ 2442 wh = mtod(m, struct ieee80211_frame *); 2443 } 2444 2445 /* 2446 * Locate the node for sender, track state, and 2447 * then pass this node (referenced) up to the 802.11 2448 * layer for its use. 2449 */ 2450 ni = ieee80211_find_rxnode(ic, wh); 2451 2452 /* 2453 * Record driver-specific state. 2454 */ 2455 an = ATH_NODE(ni); 2456 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE) 2457 an->an_rx_hist_next = 0; 2458 rh = &an->an_rx_hist[an->an_rx_hist_next]; 2459 rh->arh_ticks = ATH_TICKS(); 2460 rh->arh_rssi = ds->ds_rxstat.rs_rssi; 2461 rh->arh_antenna = ds->ds_rxstat.rs_antenna; 2462 2463 /* 2464 * Send frame up for processing. 2465 */ 2466 ieee80211_input(ifp, m, ni, 2467 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 2468 2469 /* 2470 * The frame may have caused the node to be marked for 2471 * reclamation (e.g. in response to a DEAUTH message) 2472 * so use release_node here instead of unref_node. 2473 */ 2474 ieee80211_release_node(ic, ni); 2475 rx_next: 2476 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 2477 } while (ath_rxbuf_init(sc, bf) == 0); 2478 2479 ath_hal_rxmonitor(ah); /* rx signal state monitoring */ 2480 ath_hal_rxena(ah); /* in case of RXEOL */ 2481 2482 #ifdef __NetBSD__ 2483 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 2484 ath_start(ifp); 2485 #endif /* __NetBSD__ */ 2486 #undef PA2DESC 2487 } 2488 2489 /* 2490 * XXX Size of an ACK control frame in bytes. 2491 */ 2492 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4) 2493 2494 static int 2495 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 2496 struct mbuf *m0) 2497 { 2498 struct ieee80211com *ic = &sc->sc_ic; 2499 struct ath_hal *ah = sc->sc_ah; 2500 struct ifnet *ifp = &sc->sc_ic.ic_if; 2501 int i, error, iswep, hdrlen, pktlen; 2502 u_int8_t rix, cix, txrate, ctsrate; 2503 struct ath_desc *ds; 2504 struct mbuf *m; 2505 struct ieee80211_frame *wh; 2506 u_int32_t iv; 2507 u_int8_t *ivp; 2508 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) + 2509 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN]; 2510 u_int subtype, flags, ctsduration, antenna; 2511 HAL_PKT_TYPE atype; 2512 const HAL_RATE_TABLE *rt; 2513 HAL_BOOL shortPreamble; 2514 struct ath_node *an; 2515 ath_txq_critsect_decl(s); 2516 2517 wh = mtod(m0, struct ieee80211_frame *); 2518 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 2519 hdrlen = sizeof(struct ieee80211_frame); 2520 pktlen = m0->m_pkthdr.len; 2521 2522 if (iswep) { 2523 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen); 2524 m_adj(m0, hdrlen); 2525 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT); 2526 if (m0 == NULL) { 2527 sc->sc_stats.ast_tx_nombuf++; 2528 return ENOMEM; 2529 } 2530 ivp = hdrbuf + hdrlen; 2531 wh = mtod(m0, struct ieee80211_frame *); 2532 /* 2533 * XXX 2534 * IV must not duplicate during the lifetime of the key. 2535 * But no mechanism to renew keys is defined in IEEE 802.11 2536 * for WEP. And the IV may be duplicated at other stations 2537 * because the session key itself is shared. So we use a 2538 * pseudo random IV for now, though it is not the right way. 2539 * 2540 * NB: Rather than use a strictly random IV we select a 2541 * random one to start and then increment the value for 2542 * each frame. This is an explicit tradeoff between 2543 * overhead and security. Given the basic insecurity of 2544 * WEP this seems worthwhile. 2545 */ 2546 2547 /* 2548 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir: 2549 * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255 2550 */ 2551 iv = ic->ic_iv; 2552 if ((iv & 0xff00) == 0xff00) { 2553 int B = (iv & 0xff0000) >> 16; 2554 if (3 <= B && B < 16) 2555 iv = (B+1) << 16; 2556 } 2557 ic->ic_iv = iv + 1; 2558 2559 /* 2560 * NB: Preserve byte order of IV for packet 2561 * sniffers; it doesn't matter otherwise. 2562 */ 2563 #if AH_BYTE_ORDER == AH_BIG_ENDIAN 2564 ivp[0] = iv >> 0; 2565 ivp[1] = iv >> 8; 2566 ivp[2] = iv >> 16; 2567 #else 2568 ivp[2] = iv >> 0; 2569 ivp[1] = iv >> 8; 2570 ivp[0] = iv >> 16; 2571 #endif 2572 ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */ 2573 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf)); 2574 /* 2575 * The ICV length must be included into hdrlen and pktlen. 2576 */ 2577 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN; 2578 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN; 2579 } 2580 pktlen += IEEE80211_CRC_LEN; 2581 2582 /* 2583 * Load the DMA map so any coalescing is done. This 2584 * also calculates the number of descriptors we need. 2585 */ 2586 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT); 2587 /* 2588 * Discard null packets and check for packets that 2589 * require too many TX descriptors. We try to convert 2590 * the latter to a cluster. 2591 */ 2592 if (error == EFBIG) { /* too many desc's, linearize */ 2593 sc->sc_stats.ast_tx_linear++; 2594 MGETHDR(m, M_DONTWAIT, MT_DATA); 2595 if (m == NULL) { 2596 sc->sc_stats.ast_tx_nombuf++; 2597 m_freem(m0); 2598 return ENOMEM; 2599 } 2600 #ifdef __FreeBSD__ 2601 M_MOVE_PKTHDR(m, m0); 2602 #else 2603 M_COPY_PKTHDR(m, m0); 2604 #endif 2605 MCLGET(m, M_DONTWAIT); 2606 if ((m->m_flags & M_EXT) == 0) { 2607 sc->sc_stats.ast_tx_nomcl++; 2608 m_freem(m0); 2609 m_free(m); 2610 return ENOMEM; 2611 } 2612 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); 2613 m_freem(m0); 2614 m->m_len = m->m_pkthdr.len; 2615 m0 = m; 2616 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, 2617 BUS_DMA_NOWAIT); 2618 if (error != 0) { 2619 sc->sc_stats.ast_tx_busdma++; 2620 m_freem(m0); 2621 return error; 2622 } 2623 KASSERT(bf->bf_nseg == 1, 2624 ("ath_tx_start: packet not one segment; nseg %u", 2625 bf->bf_nseg)); 2626 } else if (error != 0) { 2627 sc->sc_stats.ast_tx_busdma++; 2628 m_freem(m0); 2629 return error; 2630 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 2631 sc->sc_stats.ast_tx_nodata++; 2632 m_freem(m0); 2633 return EIO; 2634 } 2635 DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen)); 2636 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE); 2637 bf->bf_m = m0; 2638 bf->bf_node = ni; /* NB: held reference */ 2639 2640 /* setup descriptors */ 2641 ds = bf->bf_desc; 2642 rt = sc->sc_currates; 2643 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 2644 2645 /* 2646 * Calculate Atheros packet type from IEEE80211 packet header 2647 * and setup for rate calculations. 2648 */ 2649 atype = HAL_PKT_TYPE_NORMAL; /* default */ 2650 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 2651 case IEEE80211_FC0_TYPE_MGT: 2652 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2653 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 2654 atype = HAL_PKT_TYPE_BEACON; 2655 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2656 atype = HAL_PKT_TYPE_PROBE_RESP; 2657 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 2658 atype = HAL_PKT_TYPE_ATIM; 2659 rix = 0; /* XXX lowest rate */ 2660 break; 2661 case IEEE80211_FC0_TYPE_CTL: 2662 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2663 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL) 2664 atype = HAL_PKT_TYPE_PSPOLL; 2665 rix = 0; /* XXX lowest rate */ 2666 break; 2667 default: 2668 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] & 2669 IEEE80211_RATE_VAL]; 2670 if (rix == 0xff) { 2671 if_printf(ifp, "bogus xmit rate 0x%x\n", 2672 ni->ni_rates.rs_rates[ni->ni_txrate]); 2673 sc->sc_stats.ast_tx_badrate++; 2674 m_freem(m0); 2675 return EIO; 2676 } 2677 break; 2678 } 2679 /* 2680 * NB: the 802.11 layer marks whether or not we should 2681 * use short preamble based on the current mode and 2682 * negotiated parameters. 2683 */ 2684 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2685 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 2686 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble; 2687 shortPreamble = AH_TRUE; 2688 sc->sc_stats.ast_tx_shortpre++; 2689 } else { 2690 txrate = rt->info[rix].rateCode; 2691 shortPreamble = AH_FALSE; 2692 } 2693 2694 /* 2695 * Calculate miscellaneous flags. 2696 */ 2697 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */ 2698 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2699 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 2700 sc->sc_stats.ast_tx_noack++; 2701 } else if (pktlen > ic->ic_rtsthreshold) { 2702 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 2703 sc->sc_stats.ast_tx_rts++; 2704 } 2705 2706 /* 2707 * Calculate duration. This logically belongs in the 802.11 2708 * layer but it lacks sufficient information to calculate it. 2709 */ 2710 if ((flags & HAL_TXDESC_NOACK) == 0 && 2711 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 2712 u_int16_t dur; 2713 /* 2714 * XXX not right with fragmentation. 2715 */ 2716 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE, 2717 rix, shortPreamble); 2718 *((u_int16_t*) wh->i_dur) = htole16(dur); 2719 } 2720 2721 /* 2722 * Calculate RTS/CTS rate and duration if needed. 2723 */ 2724 ctsduration = 0; 2725 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 2726 /* 2727 * CTS transmit rate is derived from the transmit rate 2728 * by looking in the h/w rate table. We must also factor 2729 * in whether or not a short preamble is to be used. 2730 */ 2731 cix = rt->info[rix].controlRate; 2732 ctsrate = rt->info[cix].rateCode; 2733 if (shortPreamble) 2734 ctsrate |= rt->info[cix].shortPreamble; 2735 /* 2736 * Compute the transmit duration based on the size 2737 * of an ACK frame. We call into the HAL to do the 2738 * computation since it depends on the characteristics 2739 * of the actual PHY being used. 2740 */ 2741 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */ 2742 ctsduration += ath_hal_computetxtime(ah, 2743 rt, IEEE80211_ACK_SIZE, cix, shortPreamble); 2744 } 2745 /* SIFS + data */ 2746 ctsduration += ath_hal_computetxtime(ah, 2747 rt, pktlen, rix, shortPreamble); 2748 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */ 2749 ctsduration += ath_hal_computetxtime(ah, 2750 rt, IEEE80211_ACK_SIZE, cix, shortPreamble); 2751 } 2752 } else 2753 ctsrate = 0; 2754 2755 /* 2756 * For now use the antenna on which the last good 2757 * frame was received on. We assume this field is 2758 * initialized to 0 which gives us ``auto'' or the 2759 * ``default'' antenna. 2760 */ 2761 an = (struct ath_node *) ni; 2762 if (an->an_tx_antenna) 2763 antenna = an->an_tx_antenna; 2764 else 2765 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna; 2766 2767 if (ic->ic_rawbpf) 2768 bpf_mtap(ic->ic_rawbpf, m0); 2769 if (sc->sc_drvbpf) { 2770 sc->sc_tx_th.wt_flags = 0; 2771 if (shortPreamble) 2772 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2773 if (iswep) 2774 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2775 sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2776 sc->sc_tx_th.wt_txpower = 60/2; /* XXX */ 2777 sc->sc_tx_th.wt_antenna = antenna; 2778 2779 bpf_mtap2(sc->sc_drvbpf, 2780 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 2781 } 2782 2783 /* 2784 * Formulate first tx descriptor with tx controls. 2785 */ 2786 /* XXX check return value? */ 2787 ath_hal_setuptxdesc(ah, ds 2788 , pktlen /* packet length */ 2789 , hdrlen /* header length */ 2790 , atype /* Atheros packet type */ 2791 , 60 /* txpower XXX */ 2792 , txrate, 1+10 /* series 0 rate/tries */ 2793 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID 2794 , antenna /* antenna mode */ 2795 , flags /* flags */ 2796 , ctsrate /* rts/cts rate */ 2797 , ctsduration /* rts/cts duration */ 2798 ); 2799 #ifdef notyet 2800 ath_hal_setupxtxdesc(ah, ds 2801 , AH_FALSE /* short preamble */ 2802 , 0, 0 /* series 1 rate/tries */ 2803 , 0, 0 /* series 2 rate/tries */ 2804 , 0, 0 /* series 3 rate/tries */ 2805 ); 2806 #endif 2807 /* 2808 * Fillin the remainder of the descriptor info. 2809 */ 2810 for (i = 0; i < bf->bf_nseg; i++, ds++) { 2811 ds->ds_data = bf->bf_segs[i].ds_addr; 2812 if (i == bf->bf_nseg - 1) 2813 ds->ds_link = 0; 2814 else 2815 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 2816 ath_hal_filltxdesc(ah, ds 2817 , bf->bf_segs[i].ds_len /* segment length */ 2818 , i == 0 /* first segment */ 2819 , i == bf->bf_nseg - 1 /* last segment */ 2820 ); 2821 DPRINTF(ATH_DEBUG_XMIT, 2822 ("%s: %d: %08x %08x %08x %08x %08x %08x\n", 2823 __func__, i, ds->ds_link, ds->ds_data, 2824 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1])); 2825 } 2826 2827 /* 2828 * Insert the frame on the outbound list and 2829 * pass it on to the hardware. 2830 */ 2831 ath_txq_critsect_begin(sc, s); 2832 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list); 2833 if (sc->sc_txlink == NULL) { 2834 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr); 2835 DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__, 2836 (caddr_t)bf->bf_daddr, bf->bf_desc)); 2837 } else { 2838 *sc->sc_txlink = bf->bf_daddr; 2839 DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__, 2840 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc)); 2841 } 2842 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 2843 ath_txq_critsect_end(sc, s); 2844 2845 ath_hal_txstart(ah, sc->sc_txhalq); 2846 return 0; 2847 } 2848 2849 static void 2850 ath_tx_proc(void *arg, int npending) 2851 { 2852 struct ath_softc *sc = arg; 2853 struct ath_hal *ah = sc->sc_ah; 2854 struct ath_buf *bf; 2855 struct ieee80211com *ic = &sc->sc_ic; 2856 struct ifnet *ifp = &ic->ic_if; 2857 struct ath_desc *ds; 2858 struct ieee80211_node *ni; 2859 struct ath_node *an; 2860 int sr, lr; 2861 HAL_STATUS status; 2862 ath_txq_critsect_decl(s); 2863 ath_txbuf_critsect_decl(s2); 2864 2865 DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n", 2866 __func__, npending, 2867 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq), 2868 sc->sc_txlink)); 2869 for (;;) { 2870 ath_txq_critsect_begin(sc, s); 2871 bf = TAILQ_FIRST(&sc->sc_txq); 2872 if (bf == NULL) { 2873 sc->sc_txlink = NULL; 2874 ath_txq_critsect_end(sc, s); 2875 break; 2876 } 2877 /* only the last descriptor is needed */ 2878 ds = &bf->bf_desc[bf->bf_nseg - 1]; 2879 status = ath_hal_txprocdesc(ah, ds); 2880 #ifdef AR_DEBUG 2881 if (ath_debug & ATH_DEBUG_XMIT_DESC) 2882 ath_printtxbuf(bf, status == HAL_OK); 2883 #endif 2884 if (status == HAL_EINPROGRESS) { 2885 ath_txq_critsect_end(sc, s); 2886 break; 2887 } 2888 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); 2889 ath_txq_critsect_end(sc, s); 2890 2891 ni = bf->bf_node; 2892 if (ni != NULL) { 2893 an = (struct ath_node *) ni; 2894 if (ds->ds_txstat.ts_status == 0) { 2895 an->an_tx_ok++; 2896 an->an_tx_antenna = ds->ds_txstat.ts_antenna; 2897 } else { 2898 an->an_tx_err++; 2899 ifp->if_oerrors++; 2900 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 2901 sc->sc_stats.ast_tx_xretries++; 2902 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 2903 sc->sc_stats.ast_tx_fifoerr++; 2904 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 2905 sc->sc_stats.ast_tx_filtered++; 2906 an->an_tx_antenna = 0; /* invalidate */ 2907 } 2908 sr = ds->ds_txstat.ts_shortretry; 2909 lr = ds->ds_txstat.ts_longretry; 2910 sc->sc_stats.ast_tx_shortretry += sr; 2911 sc->sc_stats.ast_tx_longretry += lr; 2912 if (sr + lr) 2913 an->an_tx_retr++; 2914 /* 2915 * Reclaim reference to node. 2916 * 2917 * NB: the node may be reclaimed here if, for example 2918 * this is a DEAUTH message that was sent and the 2919 * node was timed out due to inactivity. 2920 */ 2921 ieee80211_release_node(ic, ni); 2922 } 2923 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE); 2924 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2925 m_freem(bf->bf_m); 2926 bf->bf_m = NULL; 2927 bf->bf_node = NULL; 2928 2929 ath_txbuf_critsect_begin(sc, s2); 2930 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2931 ath_txbuf_critsect_end(sc, s2); 2932 } 2933 ifp->if_flags &= ~IFF_OACTIVE; 2934 sc->sc_tx_timer = 0; 2935 2936 ath_start(ifp); 2937 } 2938 2939 /* 2940 * Drain the transmit queue and reclaim resources. 2941 */ 2942 static void 2943 ath_draintxq(struct ath_softc *sc) 2944 { 2945 struct ath_hal *ah = sc->sc_ah; 2946 struct ieee80211com *ic = &sc->sc_ic; 2947 struct ifnet *ifp = &ic->ic_if; 2948 struct ieee80211_node *ni; 2949 struct ath_buf *bf; 2950 ath_txq_critsect_decl(s); 2951 ath_txbuf_critsect_decl(s2); 2952 2953 /* XXX return value */ 2954 if (!sc->sc_invalid) { 2955 /* don't touch the hardware if marked invalid */ 2956 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq); 2957 DPRINTF(ATH_DEBUG_RESET, 2958 ("%s: tx queue %p, link %p\n", __func__, 2959 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq), 2960 sc->sc_txlink)); 2961 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 2962 DPRINTF(ATH_DEBUG_RESET, 2963 ("%s: beacon queue %p\n", __func__, 2964 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq))); 2965 } 2966 for (;;) { 2967 ath_txq_critsect_begin(sc, s); 2968 bf = TAILQ_FIRST(&sc->sc_txq); 2969 if (bf == NULL) { 2970 sc->sc_txlink = NULL; 2971 ath_txq_critsect_end(sc, s); 2972 break; 2973 } 2974 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); 2975 ath_txq_critsect_end(sc, s); 2976 #ifdef AR_DEBUG 2977 if (ath_debug & ATH_DEBUG_RESET) 2978 ath_printtxbuf(bf, 2979 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 2980 #endif /* AR_DEBUG */ 2981 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2982 m_freem(bf->bf_m); 2983 bf->bf_m = NULL; 2984 ni = bf->bf_node; 2985 bf->bf_node = NULL; 2986 ath_txbuf_critsect_begin(sc, s2); 2987 if (ni != NULL) { 2988 /* 2989 * Reclaim node reference. 2990 */ 2991 ieee80211_release_node(ic, ni); 2992 } 2993 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2994 ath_txbuf_critsect_end(sc, s2); 2995 } 2996 ifp->if_flags &= ~IFF_OACTIVE; 2997 sc->sc_tx_timer = 0; 2998 } 2999 3000 /* 3001 * Disable the receive h/w in preparation for a reset. 3002 */ 3003 static void 3004 ath_stoprecv(struct ath_softc *sc) 3005 { 3006 #define PA2DESC(_sc, _pa) \ 3007 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ 3008 ((_pa) - (_sc)->sc_desc_paddr))) 3009 struct ath_hal *ah = sc->sc_ah; 3010 3011 ath_hal_stoppcurecv(ah); /* disable PCU */ 3012 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 3013 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 3014 DELAY(3000); /* long enough for 1 frame */ 3015 #ifdef AR_DEBUG 3016 if (ath_debug & ATH_DEBUG_RESET) { 3017 struct ath_buf *bf; 3018 3019 printf("%s: rx queue %p, link %p\n", __func__, 3020 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 3021 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3022 struct ath_desc *ds = bf->bf_desc; 3023 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr, 3024 PA2DESC(sc, ds->ds_link)) == HAL_OK) 3025 ath_printrxbuf(bf, 1); 3026 } 3027 } 3028 #endif 3029 sc->sc_rxlink = NULL; /* just in case */ 3030 #undef PA2DESC 3031 } 3032 3033 /* 3034 * Enable the receive h/w following a reset. 3035 */ 3036 static int 3037 ath_startrecv(struct ath_softc *sc) 3038 { 3039 struct ath_hal *ah = sc->sc_ah; 3040 struct ath_buf *bf; 3041 3042 sc->sc_rxlink = NULL; 3043 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3044 int error = ath_rxbuf_init(sc, bf); 3045 if (error != 0) { 3046 DPRINTF(ATH_DEBUG_RECV, 3047 ("%s: ath_rxbuf_init failed %d\n", 3048 __func__, error)); 3049 return error; 3050 } 3051 } 3052 3053 bf = TAILQ_FIRST(&sc->sc_rxbuf); 3054 ath_hal_putrxbuf(ah, bf->bf_daddr); 3055 ath_hal_rxena(ah); /* enable recv descriptors */ 3056 ath_mode_init(sc); /* set filters, etc. */ 3057 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 3058 return 0; 3059 } 3060 3061 /* 3062 * Set/change channels. If the channel is really being changed, 3063 * it's done by resetting the chip. To accomplish this we must 3064 * first cleanup any pending DMA, then restart stuff after a la 3065 * ath_init. 3066 */ 3067 static int 3068 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 3069 { 3070 struct ath_hal *ah = sc->sc_ah; 3071 struct ieee80211com *ic = &sc->sc_ic; 3072 3073 DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__, 3074 ieee80211_chan2ieee(ic, ic->ic_ibss_chan), 3075 ic->ic_ibss_chan->ic_freq, 3076 ieee80211_chan2ieee(ic, chan), chan->ic_freq)); 3077 if (chan != ic->ic_ibss_chan) { 3078 HAL_STATUS status; 3079 HAL_CHANNEL hchan; 3080 enum ieee80211_phymode mode; 3081 3082 /* 3083 * To switch channels clear any pending DMA operations; 3084 * wait long enough for the RX fifo to drain, reset the 3085 * hardware at the new frequency, and then re-enable 3086 * the relevant bits of the h/w. 3087 */ 3088 ath_hal_intrset(ah, 0); /* disable interrupts */ 3089 ath_draintxq(sc); /* clear pending tx frames */ 3090 ath_stoprecv(sc); /* turn off frame recv */ 3091 /* 3092 * Convert to a HAL channel description with 3093 * the flags constrained to reflect the current 3094 * operating mode. 3095 */ 3096 hchan.channel = chan->ic_freq; 3097 hchan.channelFlags = ath_chan2flags(ic, chan); 3098 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 3099 if_printf(&ic->ic_if, "ath_chan_set: unable to reset " 3100 "channel %u (%u Mhz)\n", 3101 ieee80211_chan2ieee(ic, chan), chan->ic_freq); 3102 return EIO; 3103 } 3104 /* 3105 * Re-enable rx framework. 3106 */ 3107 if (ath_startrecv(sc) != 0) { 3108 if_printf(&ic->ic_if, 3109 "ath_chan_set: unable to restart recv logic\n"); 3110 return EIO; 3111 } 3112 3113 /* 3114 * Update BPF state. 3115 */ 3116 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 3117 htole16(chan->ic_freq); 3118 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 3119 htole16(chan->ic_flags); 3120 3121 /* 3122 * Change channels and update the h/w rate map 3123 * if we're switching; e.g. 11a to 11b/g. 3124 */ 3125 ic->ic_ibss_chan = chan; 3126 mode = ieee80211_chan2mode(ic, chan); 3127 if (mode != sc->sc_curmode) 3128 ath_setcurmode(sc, mode); 3129 3130 /* 3131 * Re-enable interrupts. 3132 */ 3133 ath_hal_intrset(ah, sc->sc_imask); 3134 } 3135 return 0; 3136 } 3137 3138 static void 3139 ath_next_scan(void *arg) 3140 { 3141 struct ath_softc *sc = arg; 3142 struct ieee80211com *ic = &sc->sc_ic; 3143 int s; 3144 3145 /* don't call ath_start w/o network interrupts blocked */ 3146 s = splnet(); 3147 3148 if (ic->ic_state == IEEE80211_S_SCAN) 3149 ieee80211_next_scan(ic); 3150 splx(s); 3151 } 3152 3153 /* 3154 * Periodically recalibrate the PHY to account 3155 * for temperature/environment changes. 3156 */ 3157 static void 3158 ath_calibrate(void *arg) 3159 { 3160 struct ath_softc *sc = arg; 3161 struct ath_hal *ah = sc->sc_ah; 3162 struct ieee80211com *ic = &sc->sc_ic; 3163 struct ieee80211_channel *c; 3164 HAL_CHANNEL hchan; 3165 3166 sc->sc_stats.ast_per_cal++; 3167 3168 /* 3169 * Convert to a HAL channel description with the flags 3170 * constrained to reflect the current operating mode. 3171 */ 3172 c = ic->ic_ibss_chan; 3173 hchan.channel = c->ic_freq; 3174 hchan.channelFlags = ath_chan2flags(ic, c); 3175 3176 DPRINTF(ATH_DEBUG_CALIBRATE, 3177 ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags)); 3178 3179 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 3180 /* 3181 * Rfgain is out of bounds, reset the chip 3182 * to load new gain values. 3183 */ 3184 sc->sc_stats.ast_per_rfgain++; 3185 ath_reset(sc); 3186 } 3187 if (!ath_hal_calibrate(ah, &hchan)) { 3188 DPRINTF(ATH_DEBUG_ANY, 3189 ("%s: calibration of channel %u failed\n", 3190 __func__, c->ic_freq)); 3191 sc->sc_stats.ast_per_calfail++; 3192 } 3193 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc); 3194 } 3195 3196 static HAL_LED_STATE 3197 ath_state_to_led(enum ieee80211_state state) 3198 { 3199 switch (state) { 3200 case IEEE80211_S_INIT: 3201 return HAL_LED_INIT; 3202 case IEEE80211_S_SCAN: 3203 return HAL_LED_SCAN; 3204 case IEEE80211_S_AUTH: 3205 return HAL_LED_AUTH; 3206 case IEEE80211_S_ASSOC: 3207 return HAL_LED_ASSOC; 3208 case IEEE80211_S_RUN: 3209 return HAL_LED_RUN; 3210 default: 3211 panic("%s: unknown 802.11 state %d\n", __func__, state); 3212 return HAL_LED_INIT; 3213 } 3214 } 3215 3216 static int 3217 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 3218 { 3219 struct ifnet *ifp = &ic->ic_if; 3220 struct ath_softc *sc = ifp->if_softc; 3221 struct ath_hal *ah = sc->sc_ah; 3222 struct ieee80211_node *ni; 3223 int i, error; 3224 const u_int8_t *bssid; 3225 u_int32_t rfilt; 3226 3227 DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__, 3228 ieee80211_state_name[ic->ic_state], 3229 ieee80211_state_name[nstate])); 3230 3231 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */ 3232 3233 if (nstate == IEEE80211_S_INIT) { 3234 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 3235 ath_hal_intrset(ah, sc->sc_imask); 3236 callout_stop(&sc->sc_scan_ch); 3237 callout_stop(&sc->sc_cal_ch); 3238 return (*sc->sc_newstate)(ic, nstate, arg); 3239 } 3240 ni = ic->ic_bss; 3241 error = ath_chan_set(sc, ni->ni_chan); 3242 if (error != 0) 3243 goto bad; 3244 rfilt = ath_calcrxfilter(sc); 3245 if (nstate == IEEE80211_S_SCAN) { 3246 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000, 3247 ath_next_scan, sc); 3248 bssid = ifp->if_broadcastaddr; 3249 } else { 3250 callout_stop(&sc->sc_scan_ch); 3251 bssid = ni->ni_bssid; 3252 } 3253 ath_hal_setrxfilter(ah, rfilt); 3254 DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n", 3255 __func__, rfilt, ether_sprintf(bssid))); 3256 3257 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 3258 ath_hal_setassocid(ah, bssid, ni->ni_associd); 3259 else 3260 ath_hal_setassocid(ah, bssid, 0); 3261 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 3262 for (i = 0; i < IEEE80211_WEP_NKID; i++) 3263 if (ath_hal_keyisvalid(ah, i)) 3264 ath_hal_keysetmac(ah, i, bssid); 3265 } 3266 3267 if (nstate == IEEE80211_S_RUN) { 3268 DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 3269 "capinfo=0x%04x chan=%d\n" 3270 , __func__ 3271 , ic->ic_flags 3272 , ni->ni_intval 3273 , ether_sprintf(ni->ni_bssid) 3274 , ni->ni_capinfo 3275 , ieee80211_chan2ieee(ic, ni->ni_chan))); 3276 3277 /* 3278 * Allocate and setup the beacon frame for AP or adhoc mode. 3279 */ 3280 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3281 ic->ic_opmode == IEEE80211_M_IBSS) { 3282 error = ath_beacon_alloc(sc, ni); 3283 if (error != 0) 3284 goto bad; 3285 } 3286 3287 /* 3288 * Configure the beacon and sleep timers. 3289 */ 3290 ath_beacon_config(sc); 3291 3292 /* start periodic recalibration timer */ 3293 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, 3294 ath_calibrate, sc); 3295 } else { 3296 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 3297 ath_hal_intrset(ah, sc->sc_imask); 3298 callout_stop(&sc->sc_cal_ch); /* no calibration */ 3299 } 3300 /* 3301 * Reset the rate control state. 3302 */ 3303 ath_rate_ctl_reset(sc, nstate); 3304 /* 3305 * Invoke the parent method to complete the work. 3306 */ 3307 return (*sc->sc_newstate)(ic, nstate, arg); 3308 bad: 3309 callout_stop(&sc->sc_scan_ch); 3310 callout_stop(&sc->sc_cal_ch); 3311 /* NB: do not invoke the parent */ 3312 return error; 3313 } 3314 3315 static void 3316 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 3317 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp) 3318 { 3319 struct ath_softc *sc = (struct ath_softc*)ic->ic_softc; 3320 struct ath_hal *ah = sc->sc_ah; 3321 3322 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp); 3323 3324 switch (subtype) { 3325 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3326 case IEEE80211_FC0_SUBTYPE_BEACON: 3327 if (ic->ic_opmode != IEEE80211_M_IBSS || 3328 ic->ic_state != IEEE80211_S_RUN) 3329 break; 3330 if (ieee80211_ibss_merge(ic, ni, ath_hal_gettsf64(ah)) == 3331 ENETRESET) 3332 ath_hal_setassocid(ah, ic->ic_bss->ni_bssid, 0); 3333 break; 3334 default: 3335 break; 3336 } 3337 return; 3338 } 3339 3340 /* 3341 * Setup driver-specific state for a newly associated node. 3342 * Note that we're called also on a re-associate, the isnew 3343 * param tells us if this is the first time or not. 3344 */ 3345 static void 3346 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 3347 { 3348 if (isnew) { 3349 struct ath_node *an = (struct ath_node *) ni; 3350 3351 an->an_tx_ok = an->an_tx_err = 3352 an->an_tx_retr = an->an_tx_upper = 0; 3353 /* start with highest negotiated rate */ 3354 /* 3355 * XXX should do otherwise but only when 3356 * the rate control algorithm is better. 3357 */ 3358 KASSERT(ni->ni_rates.rs_nrates > 0, 3359 ("new association w/ no rates!")); 3360 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 3361 } 3362 } 3363 3364 static int 3365 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor, 3366 HAL_BOOL xchanmode) 3367 { 3368 struct ieee80211com *ic = &sc->sc_ic; 3369 struct ifnet *ifp = &ic->ic_if; 3370 struct ath_hal *ah = sc->sc_ah; 3371 HAL_CHANNEL *chans; 3372 int i, ix, nchan; 3373 3374 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 3375 M_TEMP, M_NOWAIT); 3376 if (chans == NULL) { 3377 if_printf(ifp, "unable to allocate channel table\n"); 3378 return ENOMEM; 3379 } 3380 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 3381 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 3382 if_printf(ifp, "unable to collect channel list from hal\n"); 3383 free(chans, M_TEMP); 3384 return EINVAL; 3385 } 3386 3387 /* 3388 * Convert HAL channels to ieee80211 ones and insert 3389 * them in the table according to their channel number. 3390 */ 3391 for (i = 0; i < nchan; i++) { 3392 HAL_CHANNEL *c = &chans[i]; 3393 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags); 3394 if (ix > IEEE80211_CHAN_MAX) { 3395 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n", 3396 ix, c->channel, c->channelFlags); 3397 continue; 3398 } 3399 DPRINTF(ATH_DEBUG_ANY, 3400 ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n", 3401 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags, 3402 ix)); 3403 /* NB: flags are known to be compatible */ 3404 if (ic->ic_channels[ix].ic_freq == 0) { 3405 ic->ic_channels[ix].ic_freq = c->channel; 3406 ic->ic_channels[ix].ic_flags = c->channelFlags; 3407 } else { 3408 /* channels overlap; e.g. 11g and 11b */ 3409 ic->ic_channels[ix].ic_flags |= c->channelFlags; 3410 } 3411 } 3412 free(chans, M_TEMP); 3413 return 0; 3414 } 3415 3416 static int 3417 ath_rate_setup(struct ath_softc *sc, u_int mode) 3418 { 3419 struct ath_hal *ah = sc->sc_ah; 3420 struct ieee80211com *ic = &sc->sc_ic; 3421 const HAL_RATE_TABLE *rt; 3422 struct ieee80211_rateset *rs; 3423 int i, maxrates; 3424 3425 switch (mode) { 3426 case IEEE80211_MODE_11A: 3427 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A); 3428 break; 3429 case IEEE80211_MODE_11B: 3430 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B); 3431 break; 3432 case IEEE80211_MODE_11G: 3433 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G); 3434 break; 3435 case IEEE80211_MODE_TURBO: 3436 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO); 3437 break; 3438 default: 3439 DPRINTF(ATH_DEBUG_ANY, 3440 ("%s: invalid mode %u\n", __func__, mode)); 3441 return 0; 3442 } 3443 rt = sc->sc_rates[mode]; 3444 if (rt == NULL) 3445 return 0; 3446 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 3447 DPRINTF(ATH_DEBUG_ANY, 3448 ("%s: rate table too small (%u > %u)\n", 3449 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE)); 3450 maxrates = IEEE80211_RATE_MAXSIZE; 3451 } else 3452 maxrates = rt->rateCount; 3453 rs = &ic->ic_sup_rates[mode]; 3454 for (i = 0; i < maxrates; i++) 3455 rs->rs_rates[i] = rt->info[i].dot11Rate; 3456 rs->rs_nrates = maxrates; 3457 return 1; 3458 } 3459 3460 static void 3461 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 3462 { 3463 const HAL_RATE_TABLE *rt; 3464 int i; 3465 3466 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 3467 rt = sc->sc_rates[mode]; 3468 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 3469 for (i = 0; i < rt->rateCount; i++) 3470 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 3471 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 3472 for (i = 0; i < 32; i++) 3473 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate; 3474 sc->sc_currates = rt; 3475 sc->sc_curmode = mode; 3476 } 3477 3478 /* 3479 * Reset the rate control state for each 802.11 state transition. 3480 */ 3481 static void 3482 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state) 3483 { 3484 struct ieee80211com *ic = &sc->sc_ic; 3485 struct ieee80211_node *ni; 3486 struct ath_node *an; 3487 3488 if (ic->ic_opmode != IEEE80211_M_STA) { 3489 /* 3490 * When operating as a station the node table holds 3491 * the AP's that were discovered during scanning. 3492 * For any other operating mode we want to reset the 3493 * tx rate state of each node. 3494 */ 3495 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) { 3496 ni->ni_txrate = 0; /* use lowest rate */ 3497 an = (struct ath_node *) ni; 3498 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 3499 an->an_tx_upper = 0; 3500 } 3501 } 3502 /* 3503 * Reset local xmit state; this is really only meaningful 3504 * when operating in station or adhoc mode. 3505 */ 3506 ni = ic->ic_bss; 3507 an = (struct ath_node *) ni; 3508 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0; 3509 if (state == IEEE80211_S_RUN) { 3510 /* start with highest negotiated rate */ 3511 KASSERT(ni->ni_rates.rs_nrates > 0, 3512 ("transition to RUN state w/ no rates!")); 3513 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 3514 } else { 3515 /* use lowest rate */ 3516 ni->ni_txrate = 0; 3517 } 3518 } 3519 3520 /* 3521 * Examine and potentially adjust the transmit rate. 3522 */ 3523 static void 3524 ath_rate_ctl(void *arg, struct ieee80211_node *ni) 3525 { 3526 struct ath_softc *sc = arg; 3527 struct ath_node *an = (struct ath_node *) ni; 3528 struct ieee80211_rateset *rs = &ni->ni_rates; 3529 int mod = 0, orate, enough; 3530 3531 /* 3532 * Rate control 3533 * XXX: very primitive version. 3534 */ 3535 sc->sc_stats.ast_rate_calls++; 3536 3537 enough = (an->an_tx_ok + an->an_tx_err >= 10); 3538 3539 /* no packet reached -> down */ 3540 if (an->an_tx_err > 0 && an->an_tx_ok == 0) 3541 mod = -1; 3542 3543 /* all packets needs retry in average -> down */ 3544 if (enough && an->an_tx_ok < an->an_tx_retr) 3545 mod = -1; 3546 3547 /* no error and less than 10% of packets needs retry -> up */ 3548 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10) 3549 mod = 1; 3550 3551 orate = ni->ni_txrate; 3552 switch (mod) { 3553 case 0: 3554 if (enough && an->an_tx_upper > 0) 3555 an->an_tx_upper--; 3556 break; 3557 case -1: 3558 if (ni->ni_txrate > 0) { 3559 ni->ni_txrate--; 3560 sc->sc_stats.ast_rate_drop++; 3561 } 3562 an->an_tx_upper = 0; 3563 break; 3564 case 1: 3565 if (++an->an_tx_upper < 2) 3566 break; 3567 an->an_tx_upper = 0; 3568 if (ni->ni_txrate + 1 < rs->rs_nrates) { 3569 ni->ni_txrate++; 3570 sc->sc_stats.ast_rate_raise++; 3571 } 3572 break; 3573 } 3574 3575 if (ni->ni_txrate != orate) { 3576 DPRINTF(ATH_DEBUG_RATE, 3577 ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n", 3578 __func__, 3579 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2, 3580 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2, 3581 an->an_tx_ok, an->an_tx_err, an->an_tx_retr)); 3582 } 3583 if (ni->ni_txrate != orate || enough) 3584 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0; 3585 } 3586 3587 #ifdef AR_DEBUG 3588 #ifdef __FreeBSD__ 3589 static int 3590 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS) 3591 { 3592 char dmode[64]; 3593 int error; 3594 3595 strncpy(dmode, "", sizeof(dmode) - 1); 3596 dmode[sizeof(dmode) - 1] = '\0'; 3597 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req); 3598 3599 if (error == 0 && req->newptr != NULL) { 3600 struct ifnet *ifp; 3601 struct ath_softc *sc; 3602 3603 ifp = ifunit("ath0"); /* XXX */ 3604 if (!ifp) 3605 return EINVAL; 3606 sc = ifp->if_softc; 3607 if (strcmp(dmode, "hal") == 0) 3608 ath_hal_dumpstate(sc->sc_ah); 3609 else 3610 return EINVAL; 3611 } 3612 return error; 3613 } 3614 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW, 3615 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state"); 3616 #endif /* __FreeBSD__ */ 3617 3618 #if 0 /* #ifdef __NetBSD__ */ 3619 static int 3620 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS) 3621 { 3622 char dmode[64]; 3623 int error; 3624 3625 strncpy(dmode, "", sizeof(dmode) - 1); 3626 dmode[sizeof(dmode) - 1] = '\0'; 3627 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req); 3628 3629 if (error == 0 && req->newptr != NULL) { 3630 struct ifnet *ifp; 3631 struct ath_softc *sc; 3632 3633 ifp = ifunit("ath0"); /* XXX */ 3634 if (!ifp) 3635 return EINVAL; 3636 sc = ifp->if_softc; 3637 if (strcmp(dmode, "hal") == 0) 3638 ath_hal_dumpstate(sc->sc_ah); 3639 else 3640 return EINVAL; 3641 } 3642 return error; 3643 } 3644 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW, 3645 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state"); 3646 #endif /* __NetBSD__ */ 3647 3648 static void 3649 ath_printrxbuf(struct ath_buf *bf, int done) 3650 { 3651 struct ath_desc *ds; 3652 int i; 3653 3654 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 3655 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", 3656 i, ds, (struct ath_desc *)bf->bf_daddr + i, 3657 ds->ds_link, ds->ds_data, 3658 ds->ds_ctl0, ds->ds_ctl1, 3659 ds->ds_hw[0], ds->ds_hw[1], 3660 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 3661 } 3662 } 3663 3664 static void 3665 ath_printtxbuf(struct ath_buf *bf, int done) 3666 { 3667 struct ath_desc *ds; 3668 int i; 3669 3670 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 3671 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 3672 i, ds, (struct ath_desc *)bf->bf_daddr + i, 3673 ds->ds_link, ds->ds_data, 3674 ds->ds_ctl0, ds->ds_ctl1, 3675 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 3676 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 3677 } 3678 } 3679 #endif /* AR_DEBUG */ 3680