xref: /netbsd-src/sys/dev/ic/ath.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: ath.c,v 1.39 2004/09/28 11:34:37 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.54 2004/04/05 04:42:42 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.39 2004/09/28 11:34:37 yamt Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81 
82 #include <machine/bus.h>
83 
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94 
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97 
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105 
106 #include <dev/ic/athcompat.h>
107 
108 #define	AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116 
117 /* unaligned little endian access */
118 #define LE_READ_2(p)							\
119 	((u_int16_t)							\
120 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
121 #define LE_READ_4(p)							\
122 	((u_int32_t)							\
123 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
124 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125 
126 #ifdef __FreeBSD__
127 static void	ath_init(void *);
128 #else
129 static int	ath_init(struct ifnet *);
130 #endif
131 static int	ath_init1(struct ath_softc *);
132 static int	ath_intr1(struct ath_softc *);
133 static void	ath_stop(struct ifnet *);
134 static void	ath_start(struct ifnet *);
135 static void	ath_reset(struct ath_softc *);
136 static int	ath_media_change(struct ifnet *);
137 static void	ath_watchdog(struct ifnet *);
138 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void	ath_fatal_proc(void *, int);
140 static void	ath_rxorn_proc(void *, int);
141 static void	ath_bmiss_proc(void *, int);
142 static void	ath_initkeytable(struct ath_softc *);
143 static void	ath_mode_init(struct ath_softc *);
144 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void	ath_beacon_proc(struct ath_softc *, int);
146 static void	ath_beacon_free(struct ath_softc *);
147 static void	ath_beacon_config(struct ath_softc *);
148 static int	ath_desc_alloc(struct ath_softc *);
149 static void	ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void	ath_node_copy(struct ieee80211com *,
153 			struct ieee80211_node *, const struct ieee80211_node *);
154 static u_int8_t	ath_node_getrssi(struct ieee80211com *,
155 			struct ieee80211_node *);
156 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void	ath_rx_proc(void *, int);
158 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 			     struct ath_buf *, struct mbuf *);
160 static void	ath_tx_proc(void *, int);
161 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
162 static void	ath_draintxq(struct ath_softc *);
163 static void	ath_stoprecv(struct ath_softc *);
164 static int	ath_startrecv(struct ath_softc *);
165 static void	ath_next_scan(void *);
166 static void	ath_calibrate(void *);
167 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 static void	ath_newassoc(struct ieee80211com *,
169 			struct ieee80211_node *, int);
170 static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor,
171 			HAL_BOOL xchanmode);
172 
173 static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
174 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
175 static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
176 static void	ath_rate_ctl(void *, struct ieee80211_node *);
177 static void	ath_recv_mgmt(struct ieee80211com *, struct mbuf *,
178 			struct ieee80211_node *, int, int, u_int32_t);
179 
180 #ifdef __NetBSD__
181 int	ath_enable(struct ath_softc *);
182 void	ath_disable(struct ath_softc *);
183 void	ath_power(int, void *);
184 #endif
185 
186 #ifdef __FreeBSD__
187 SYSCTL_DECL(_hw_ath);
188 /* XXX validate sysctl values */
189 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
190 	    0, "channel dwell time (ms) for AP/station scanning");
191 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
192 	    0, "chip calibration interval (secs)");
193 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
194 	    0, "enable/disable outdoor operation");
195 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
196 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
197 	    0, "country code");
198 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
199 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200 	    0, "regulatory domain");
201 #endif /* __FreeBSD__ */
202 
203 #ifdef __NetBSD__
204 static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum,
205            ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum;
206 #endif /* __NetBSD__ */
207 
208 static	int ath_dwelltime = 200;		/* 5 channels/second */
209 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
210 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
211 static	int ath_xchanmode = AH_TRUE;		/* enable extended channels */
212 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
213 static	int ath_regdomain = 0;			/* regulatory domain */
214 
215 #ifdef AR_DEBUG
216 int	ath_debug = 0;
217 #ifdef __FreeBSD__
218 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
219 	    0, "control debugging printfs");
220 TUNABLE_INT("hw.ath.debug", &ath_debug);
221 #endif /* __FreeBSD__ */
222 #define	IFF_DUMPPKTS(_ifp, _m) \
223 	((ath_debug & _m) || \
224 	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
225 static	void ath_printrxbuf(struct ath_buf *bf, int);
226 static	void ath_printtxbuf(struct ath_buf *bf, int);
227 enum {
228 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
229 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
230 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
231 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
232 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
233 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
234 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
235 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
236 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
237 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
238 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
239 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
240 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
241 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
242 	ATH_DEBUG_ANY		= 0xffffffff
243 };
244 #define	DPRINTF(_m,X)	if (ath_debug & (_m)) printf X
245 #else
246 #define	IFF_DUMPPKTS(_ifp, _m) \
247 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
248 #define	DPRINTF(_m, X)
249 #endif
250 
251 #ifdef __NetBSD__
252 int
253 ath_activate(struct device *self, enum devact act)
254 {
255 	struct ath_softc *sc = (struct ath_softc *)self;
256 	int rv = 0, s;
257 
258 	s = splnet();
259 	switch (act) {
260 	case DVACT_ACTIVATE:
261 		rv = EOPNOTSUPP;
262 		break;
263 	case DVACT_DEACTIVATE:
264 		if_deactivate(&sc->sc_ic.ic_if);
265 		break;
266 	}
267 	splx(s);
268 	return rv;
269 }
270 
271 int
272 ath_enable(struct ath_softc *sc)
273 {
274 	if (ATH_IS_ENABLED(sc) == 0) {
275 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
276 			printf("%s: device enable failed\n",
277 				sc->sc_dev.dv_xname);
278 			return (EIO);
279 		}
280 		sc->sc_flags |= ATH_ENABLED;
281 	}
282 	return (0);
283 }
284 
285 void
286 ath_disable(struct ath_softc *sc)
287 {
288 	if (!ATH_IS_ENABLED(sc))
289 		return;
290 	if (sc->sc_disable != NULL)
291 		(*sc->sc_disable)(sc);
292 	sc->sc_flags &= ~ATH_ENABLED;
293 }
294 
295 static int
296 sysctl_ath_verify(SYSCTLFN_ARGS)
297 {
298 	int error, t;
299 	struct sysctlnode node;
300 
301 	node = *rnode;
302 	t = *(int*)rnode->sysctl_data;
303 	node.sysctl_data = &t;
304 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
305 	if (error || newp == NULL)
306 		return (error);
307 
308 	DPRINTF(ATH_DEBUG_ANY, ("%s: t = %d, nodenum = %d, rnodenum = %d\n",
309 	    __func__, t, node.sysctl_num, rnode->sysctl_num));
310 
311 	if (node.sysctl_num == ath_dwelltime_nodenum) {
312 		if (t <= 0)
313 			return (EINVAL);
314 	} else if (node.sysctl_num == ath_calibrate_nodenum) {
315 		if (t <= 0)
316 			return (EINVAL);
317 #ifdef AR_DEBUG
318 	} else if (node.sysctl_num == ath_debug_nodenum) {
319 		;		/* Accept any vaule */
320 #endif /* AR_DEBUG */
321 	} else
322 		return (EINVAL);
323 
324 	*(int*)rnode->sysctl_data = t;
325 
326 	return (0);
327 }
328 
329 /*
330  * Setup sysctl(3) MIB, ath.*.
331  *
332  * TBD condition CTLFLAG_PERMANENT on being an LKM or not
333  */
334 SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup")
335 {
336 	int rc, ath_node_num;
337 	struct sysctlnode *node;
338 
339 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
340 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
341 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
342 		goto err;
343 
344 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
345 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "ath",
346 	    SYSCTL_DESCR("ath information and options"),
347 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
348 		goto err;
349 
350 	ath_node_num = node->sysctl_num;
351 
352 	/* channel dwell time (ms) for AP/station scanning */
353 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
354 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
355 	    CTLTYPE_INT, "dwell",
356 	    SYSCTL_DESCR("Channel dwell time (ms) for AP/station scanning"),
357 	    sysctl_ath_verify, 0, &ath_dwelltime,
358 	    0, CTL_HW, ath_node_num, CTL_CREATE,
359 	    CTL_EOL)) != 0)
360 		goto err;
361 
362 	ath_dwelltime_nodenum = node->sysctl_num;
363 
364 	/* chip calibration interval (secs) */
365 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
366 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
367 	    CTLTYPE_INT, "calibrate",
368 	    SYSCTL_DESCR("Chip calibration interval (secs)"), sysctl_ath_verify,
369 	    0, &ath_calinterval, 0, CTL_HW,
370 	    ath_node_num, CTL_CREATE, CTL_EOL)) != 0)
371 		goto err;
372 
373 	ath_calibrate_nodenum = node->sysctl_num;
374 
375 	/* enable/disable outdoor operation */
376 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
377 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
378 	    "outdoor", SYSCTL_DESCR("Enable/disable outdoor operation"),
379 	    NULL, 0, &ath_outdoor, 0,
380 	    CTL_HW, ath_node_num, CTL_CREATE,
381 	    CTL_EOL)) != 0)
382 		goto err;
383 
384 	ath_outdoor_nodenum = node->sysctl_num;
385 
386 	/* country code */
387 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
388 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
389 	    "countrycode", SYSCTL_DESCR("Country code"),
390 	    NULL, 0, &ath_countrycode, 0,
391 	    CTL_HW, ath_node_num, CTL_CREATE,
392 	    CTL_EOL)) != 0)
393 		goto err;
394 
395 	ath_countrycode_nodenum = node->sysctl_num;
396 
397 	/* regulatory domain */
398 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
399 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
400 	    "regdomain", SYSCTL_DESCR("Regulatory domain"),
401 	    NULL, 0, &ath_regdomain, 0,
402 	    CTL_HW, ath_node_num, CTL_CREATE,
403 	    CTL_EOL)) != 0)
404 		goto err;
405 
406 	ath_regdomain_nodenum = node->sysctl_num;
407 
408 #ifdef AR_DEBUG
409 
410 	/* control debugging printfs */
411 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
412 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
413 	    "debug", SYSCTL_DESCR("Enable/disable ath debugging output"),
414 	    sysctl_ath_verify, 0, &ath_debug, 0,
415 	    CTL_HW, ath_node_num, CTL_CREATE,
416 	    CTL_EOL)) != 0)
417 		goto err;
418 
419 	ath_debug_nodenum = node->sysctl_num;
420 
421 #endif /* AR_DEBUG */
422 	return;
423 err:
424 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
425 }
426 #endif /* __NetBSD__ */
427 
428 int
429 ath_attach(u_int16_t devid, struct ath_softc *sc)
430 {
431 	struct ieee80211com *ic = &sc->sc_ic;
432 	struct ifnet *ifp = &ic->ic_if;
433 	struct ath_hal *ah;
434 	HAL_STATUS status;
435 	HAL_TXQ_INFO qinfo;
436 	int error = 0;
437 
438 	DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
439 
440 #ifdef __FreeBSD__
441 	/* set these up early for if_printf use */
442 	if_initname(ifp, device_get_name(sc->sc_dev),
443 	    device_get_unit(sc->sc_dev));
444 #else
445 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
446 #endif
447 
448 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
449 	if (ah == NULL) {
450 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
451 			status);
452 		error = ENXIO;
453 		goto bad;
454 	}
455 	if (ah->ah_abi != HAL_ABI_VERSION) {
456 		if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
457 			ah->ah_abi, HAL_ABI_VERSION);
458 		error = ENXIO;
459 		goto bad;
460 	}
461 	if_printf(ifp, "mac %d.%d phy %d.%d",
462 		ah->ah_macVersion, ah->ah_macRev,
463 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
464 	if (ah->ah_analog5GhzRev)
465 		printf(" 5ghz radio %d.%d",
466 			ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
467 	if (ah->ah_analog2GhzRev)
468 		printf(" 2ghz radio %d.%d",
469 			ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
470 	printf("\n");
471 	sc->sc_ah = ah;
472 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
473 
474 	/*
475 	 * Collect the channel list using the default country
476 	 * code and including outdoor channels.  The 802.11 layer
477 	 * is resposible for filtering this list based on settings
478 	 * like the phy mode.
479 	 */
480 	error = ath_getchannels(sc, ath_countrycode, ath_outdoor,
481 	    ath_xchanmode);
482 	if (error != 0)
483 		goto bad;
484 	/*
485 	 * Copy these back; they are set as a side effect
486 	 * of constructing the channel list.
487 	 */
488 	ath_hal_getregdomain(ah, &ath_regdomain);
489 	ath_hal_getcountrycode(ah, &ath_countrycode);
490 
491 	/*
492 	 * Setup rate tables for all potential media types.
493 	 */
494 	ath_rate_setup(sc, IEEE80211_MODE_11A);
495 	ath_rate_setup(sc, IEEE80211_MODE_11B);
496 	ath_rate_setup(sc, IEEE80211_MODE_11G);
497 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
498 
499 	error = ath_desc_alloc(sc);
500 	if (error != 0) {
501 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
502 		goto bad;
503 	}
504 	ATH_CALLOUT_INIT(&sc->sc_scan_ch);
505 	ATH_CALLOUT_INIT(&sc->sc_cal_ch);
506 
507 #ifdef __FreeBSD__
508 	ATH_TXBUF_LOCK_INIT(sc);
509 	ATH_TXQ_LOCK_INIT(sc);
510 #endif
511 
512 	ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
513 	ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
514 	ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
515 	ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
516 	ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
517 
518 	/*
519 	 * For now just pre-allocate one data queue and one
520 	 * beacon queue.  Note that the HAL handles resetting
521 	 * them at the needed time.  Eventually we'll want to
522 	 * allocate more tx queues for splitting management
523 	 * frames and for QOS support.
524 	 */
525 	sc->sc_bhalq = ath_hal_setuptxqueue(ah,HAL_TX_QUEUE_BEACON,NULL);
526 	if (sc->sc_bhalq == (u_int) -1) {
527 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
528 		goto bad2;
529 	}
530 
531 	memset(&qinfo, 0, sizeof(qinfo));
532 	qinfo.tqi_subtype = HAL_WME_AC_BE;
533 	sc->sc_txhalq = ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_DATA, &qinfo);
534 	if (sc->sc_txhalq == (u_int) -1) {
535 		if_printf(ifp, "unable to setup a data xmit queue!\n");
536 		goto bad2;
537 	}
538 
539 	ifp->if_softc = sc;
540 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
541 	ifp->if_start = ath_start;
542 	ifp->if_watchdog = ath_watchdog;
543 	ifp->if_ioctl = ath_ioctl;
544 	ifp->if_init = ath_init;
545 #ifdef __FreeBSD__
546 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
547 #else
548 #if 0
549 	ifp->if_stop = ath_stop;		/* XXX */
550 #endif
551 	IFQ_SET_READY(&ifp->if_snd);
552 #endif
553 
554 	ic->ic_softc = sc;
555 	ic->ic_newassoc = ath_newassoc;
556 	/* XXX not right but it's not used anywhere important */
557 	ic->ic_phytype = IEEE80211_T_OFDM;
558 	ic->ic_opmode = IEEE80211_M_STA;
559 	ic->ic_caps = IEEE80211_C_WEP		/* wep supported */
560 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
561 		| IEEE80211_C_HOSTAP		/* hostap mode */
562 		| IEEE80211_C_MONITOR		/* monitor mode */
563 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
564 		;
565 
566 	/* get mac address from hardware */
567 	ath_hal_getmac(ah, ic->ic_myaddr);
568 
569 #ifdef __NetBSD__
570 	if_attach(ifp);
571 #endif
572 	/* call MI attach routine. */
573 	ieee80211_ifattach(ifp);
574 	/* override default methods */
575 	ic->ic_node_alloc = ath_node_alloc;
576 	sc->sc_node_free = ic->ic_node_free;
577 	ic->ic_node_free = ath_node_free;
578 	sc->sc_node_copy = ic->ic_node_copy;
579 	ic->ic_node_copy = ath_node_copy;
580 	ic->ic_node_getrssi = ath_node_getrssi;
581 	sc->sc_newstate = ic->ic_newstate;
582 	ic->ic_newstate = ath_newstate;
583 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
584 	ic->ic_recv_mgmt = ath_recv_mgmt;
585 
586 	/* complete initialization */
587 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
588 
589 #if NBPFILTER > 0
590 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
591 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
592 		&sc->sc_drvbpf);
593 #endif
594 	/*
595 	 * Initialize constant fields.
596 	 * XXX make header lengths a multiple of 32-bits so subsequent
597 	 *     headers are properly aligned; this is a kludge to keep
598 	 *     certain applications happy.
599 	 *
600 	 * NB: the channel is setup each time we transition to the
601 	 *     RUN state to avoid filling it in for each frame.
602 	 */
603 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
604 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
605 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
606 
607 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
608 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
609 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
610 
611 #ifdef __NetBSD__
612 	sc->sc_flags |= ATH_ATTACHED;
613 	/*
614 	 * Make sure the interface is shutdown during reboot.
615 	 */
616 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
617 	if (sc->sc_sdhook == NULL)
618 		printf("%s: WARNING: unable to establish shutdown hook\n",
619 			sc->sc_dev.dv_xname);
620 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
621 	if (sc->sc_powerhook == NULL)
622 		printf("%s: WARNING: unable to establish power hook\n",
623 			sc->sc_dev.dv_xname);
624 #endif
625 	return 0;
626 bad2:
627 	ath_desc_free(sc);
628 bad:
629 	if (ah)
630 		ath_hal_detach(ah);
631 	sc->sc_invalid = 1;
632 	return error;
633 }
634 
635 int
636 ath_detach(struct ath_softc *sc)
637 {
638 	struct ifnet *ifp = &sc->sc_ic.ic_if;
639 	ath_softc_critsect_decl(s);
640 
641 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
642 		return (0);
643 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
644 
645 	ath_softc_critsect_begin(sc, s);
646 	ath_stop(ifp);
647 #if NBPFILTER > 0
648 	bpfdetach(ifp);
649 #endif
650 	ath_desc_free(sc);
651 	ath_hal_detach(sc->sc_ah);
652 	ieee80211_ifdetach(ifp);
653 #ifdef __NetBSD__
654 	if_detach(ifp);
655 #endif /* __NetBSD__ */
656 	ath_softc_critsect_end(sc, s);
657 #ifdef __NetBSD__
658 	powerhook_disestablish(sc->sc_powerhook);
659 	shutdownhook_disestablish(sc->sc_sdhook);
660 #endif /* __NetBSD__ */
661 #ifdef __FreeBSD__
662 
663 	ATH_TXBUF_LOCK_DESTROY(sc);
664 	ATH_TXQ_LOCK_DESTROY(sc);
665 
666 #endif /* __FreeBSD__ */
667 	return 0;
668 }
669 
670 #ifdef __NetBSD__
671 void
672 ath_power(int why, void *arg)
673 {
674 	struct ath_softc *sc = arg;
675 	int s;
676 
677 	DPRINTF(ATH_DEBUG_ANY, ("ath_power(%d)\n", why));
678 
679 	s = splnet();
680 	switch (why) {
681 	case PWR_SUSPEND:
682 	case PWR_STANDBY:
683 		ath_suspend(sc, why);
684 		break;
685 	case PWR_RESUME:
686 		ath_resume(sc, why);
687 		break;
688 	case PWR_SOFTSUSPEND:
689 	case PWR_SOFTSTANDBY:
690 	case PWR_SOFTRESUME:
691 		break;
692 	}
693 	splx(s);
694 }
695 #endif
696 
697 void
698 ath_suspend(struct ath_softc *sc, int why)
699 {
700 	struct ifnet *ifp = &sc->sc_ic.ic_if;
701 
702 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
703 
704 	ath_stop(ifp);
705 	if (sc->sc_power != NULL)
706 		(*sc->sc_power)(sc, why);
707 }
708 
709 void
710 ath_resume(struct ath_softc *sc, int why)
711 {
712 	struct ifnet *ifp = &sc->sc_ic.ic_if;
713 
714 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
715 
716 	if (ifp->if_flags & IFF_UP) {
717 		ath_init(ifp);
718 #if 0
719 		(void)ath_intr(sc);
720 #endif
721 		if (sc->sc_power != NULL)
722 			(*sc->sc_power)(sc, why);
723 		if (ifp->if_flags & IFF_RUNNING)
724 			ath_start(ifp);
725 	}
726 }
727 
728 #ifdef __NetBSD__
729 void
730 ath_shutdown(void *arg)
731 {
732 	struct ath_softc *sc = arg;
733 
734 	ath_stop(&sc->sc_ic.ic_if);
735 }
736 #else
737 void
738 ath_shutdown(struct ath_softc *sc)
739 {
740 #if 1
741 	return;
742 #else
743 	struct ifnet *ifp = &sc->sc_ic.ic_if;
744 
745 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
746 
747 	ath_stop(ifp);
748 #endif
749 }
750 #endif
751 
752 #ifdef __NetBSD__
753 int
754 ath_intr(void *arg)
755 {
756 	return ath_intr1((struct ath_softc *)arg);
757 }
758 #else
759 void
760 ath_intr(void *arg)
761 {
762 	(void)ath_intr1((struct ath_softc *)arg);
763 }
764 #endif
765 
766 static int
767 ath_intr1(struct ath_softc *sc)
768 {
769 	struct ieee80211com *ic = &sc->sc_ic;
770 	struct ifnet *ifp = &ic->ic_if;
771 	struct ath_hal *ah = sc->sc_ah;
772 	HAL_INT status;
773 
774 	if (sc->sc_invalid) {
775 		/*
776 		 * The hardware is not ready/present, don't touch anything.
777 		 * Note this can happen early on if the IRQ is shared.
778 		 */
779 		DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
780 		return 0;
781 	}
782 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
783 		return 0;
784 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
785 		DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
786 			__func__, ifp->if_flags));
787 		ath_hal_getisr(ah, &status);	/* clear ISR */
788 		ath_hal_intrset(ah, 0);		/* disable further intr's */
789 		return 1; /* XXX */
790 	}
791 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
792 	DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
793 	status &= sc->sc_imask;			/* discard unasked for bits */
794 	if (status & HAL_INT_FATAL) {
795 		sc->sc_stats.ast_hardware++;
796 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
797 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
798 	} else if (status & HAL_INT_RXORN) {
799 		sc->sc_stats.ast_rxorn++;
800 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
801 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
802 	} else {
803 		if (status & HAL_INT_RXEOL) {
804 			/*
805 			 * NB: the hardware should re-read the link when
806 			 *     RXE bit is written, but it doesn't work at
807 			 *     least on older hardware revs.
808 			 */
809 			sc->sc_stats.ast_rxeol++;
810 			sc->sc_rxlink = NULL;
811 		}
812 		if (status & HAL_INT_TXURN) {
813 			sc->sc_stats.ast_txurn++;
814 			/* bump tx trigger level */
815 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
816 		}
817 		if (status & HAL_INT_RX)
818 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
819 		if (status & HAL_INT_TX)
820 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
821 		if (status & HAL_INT_SWBA) {
822 			/*
823 			 * Handle beacon transmission directly; deferring
824 			 * this is too slow to meet timing constraints
825 			 * under load.
826 			 */
827 			ath_beacon_proc(sc, 0);
828 		}
829 		if (status & HAL_INT_BMISS) {
830 			sc->sc_stats.ast_bmiss++;
831 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
832 		}
833 	}
834 	return 1;
835 }
836 
837 static void
838 ath_fatal_proc(void *arg, int pending)
839 {
840 	struct ath_softc *sc = arg;
841 
842 	device_printf(sc->sc_dev, "hardware error; resetting\n");
843 	ath_reset(sc);
844 }
845 
846 static void
847 ath_rxorn_proc(void *arg, int pending)
848 {
849 	struct ath_softc *sc = arg;
850 
851 	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
852 	ath_reset(sc);
853 }
854 
855 static void
856 ath_bmiss_proc(void *arg, int pending)
857 {
858 	struct ath_softc *sc = arg;
859 	struct ieee80211com *ic = &sc->sc_ic;
860 
861 	DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
862 	if (ic->ic_opmode != IEEE80211_M_STA)
863 		return;
864 	if (ic->ic_state == IEEE80211_S_RUN) {
865 		/*
866 		 * Rather than go directly to scan state, try to
867 		 * reassociate first.  If that fails then the state
868 		 * machine will drop us into scanning after timing
869 		 * out waiting for a probe response.
870 		 */
871 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
872 	}
873 }
874 
875 static u_int
876 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
877 {
878 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
879 
880 	switch (mode) {
881 	case IEEE80211_MODE_AUTO:
882 		return 0;
883 	case IEEE80211_MODE_11A:
884 		return CHANNEL_A;
885 	case IEEE80211_MODE_11B:
886 		return CHANNEL_B;
887 	case IEEE80211_MODE_11G:
888 		return CHANNEL_PUREG;
889 	case IEEE80211_MODE_TURBO:
890 		return CHANNEL_T;
891 	default:
892 		panic("%s: unsupported mode %d\n", __func__, mode);
893 		return 0;
894 	}
895 }
896 
897 #ifdef __NetBSD__
898 static int
899 ath_init(struct ifnet *ifp)
900 {
901 	return ath_init1((struct ath_softc *)ifp->if_softc);
902 }
903 #else
904 static void
905 ath_init(void *arg)
906 {
907 	(void)ath_init1((struct ath_softc *)arg);
908 }
909 #endif
910 
911 static int
912 ath_init1(struct ath_softc *sc)
913 {
914 	struct ieee80211com *ic = &sc->sc_ic;
915 	struct ifnet *ifp = &ic->ic_if;
916 	struct ieee80211_node *ni;
917 	enum ieee80211_phymode mode;
918 	struct ath_hal *ah = sc->sc_ah;
919 	HAL_STATUS status;
920 	HAL_CHANNEL hchan;
921 	int error = 0;
922 	ath_softc_critsect_decl(s);
923 
924 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
925 		__func__, ifp->if_flags));
926 
927 #ifdef __NetBSD__
928 	if ((error = ath_enable(sc)) != 0)
929 		return error;
930 #endif
931 
932 	ath_softc_critsect_begin(sc, s);
933 	/*
934 	 * Stop anything previously setup.  This is safe
935 	 * whether this is the first time through or not.
936 	 */
937 	ath_stop(ifp);
938 
939 	/*
940 	 * The basic interface to setting the hardware in a good
941 	 * state is ``reset''.  On return the hardware is known to
942 	 * be powered up and with interrupts disabled.  This must
943 	 * be followed by initialization of the appropriate bits
944 	 * and then setup of the interrupt mask.
945 	 */
946 	hchan.channel = ic->ic_ibss_chan->ic_freq;
947 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
948 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
949 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
950 			status);
951 		error = EIO;
952 		goto done;
953 	}
954 
955 	/*
956 	 * Setup the hardware after reset: the key cache
957 	 * is filled as needed and the receive engine is
958 	 * set going.  Frame transmit is handled entirely
959 	 * in the frame output path; there's nothing to do
960 	 * here except setup the interrupt mask.
961 	 */
962 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
963 		ath_initkeytable(sc);
964 	if ((error = ath_startrecv(sc)) != 0) {
965 		if_printf(ifp, "unable to start recv logic\n");
966 		goto done;
967 	}
968 
969 	/*
970 	 * Enable interrupts.
971 	 */
972 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
973 		  | HAL_INT_RXEOL | HAL_INT_RXORN
974 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
975 	ath_hal_intrset(ah, sc->sc_imask);
976 
977 	ifp->if_flags |= IFF_RUNNING;
978 	ic->ic_state = IEEE80211_S_INIT;
979 
980 	/*
981 	 * The hardware should be ready to go now so it's safe
982 	 * to kick the 802.11 state machine as it's likely to
983 	 * immediately call back to us to send mgmt frames.
984 	 */
985 	ni = ic->ic_bss;
986 	ni->ni_chan = ic->ic_ibss_chan;
987 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
988 	if (mode != sc->sc_curmode)
989 		ath_setcurmode(sc, mode);
990 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
991 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
992 	else
993 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
994 done:
995 	ath_softc_critsect_end(sc, s);
996 	return error;
997 }
998 
999 static void
1000 ath_stop(struct ifnet *ifp)
1001 {
1002 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
1003 	struct ath_softc *sc = ifp->if_softc;
1004 	struct ath_hal *ah = sc->sc_ah;
1005 	ath_softc_critsect_decl(s);
1006 
1007 	DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
1008 		__func__, sc->sc_invalid, ifp->if_flags));
1009 
1010 	ath_softc_critsect_begin(sc, s);
1011 	if (ifp->if_flags & IFF_RUNNING) {
1012 		/*
1013 		 * Shutdown the hardware and driver:
1014 		 *    disable interrupts
1015 		 *    turn off timers
1016 		 *    clear transmit machinery
1017 		 *    clear receive machinery
1018 		 *    drain and release tx queues
1019 		 *    reclaim beacon resources
1020 		 *    reset 802.11 state machine
1021 		 *    power down hardware
1022 		 *
1023 		 * Note that some of this work is not possible if the
1024 		 * hardware is gone (invalid).
1025 		 */
1026 		ifp->if_flags &= ~IFF_RUNNING;
1027 		ifp->if_timer = 0;
1028 		if (!sc->sc_invalid)
1029 			ath_hal_intrset(ah, 0);
1030 		ath_draintxq(sc);
1031 		if (!sc->sc_invalid)
1032 			ath_stoprecv(sc);
1033 		else
1034 			sc->sc_rxlink = NULL;
1035 #ifdef __FreeBSD__
1036 		IF_DRAIN(&ifp->if_snd);
1037 #else
1038 		IF_PURGE(&ifp->if_snd);
1039 #endif
1040 		ath_beacon_free(sc);
1041 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1042 		if (!sc->sc_invalid) {
1043 			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
1044 		}
1045 #ifdef __NetBSD__
1046 		ath_disable(sc);
1047 #endif
1048 	}
1049 	ath_softc_critsect_end(sc, s);
1050 }
1051 
1052 /*
1053  * Reset the hardware w/o losing operational state.  This is
1054  * basically a more efficient way of doing ath_stop, ath_init,
1055  * followed by state transitions to the current 802.11
1056  * operational state.  Used to recover from errors rx overrun
1057  * and to reset the hardware when rf gain settings must be reset.
1058  */
1059 static void
1060 ath_reset(struct ath_softc *sc)
1061 {
1062 	struct ieee80211com *ic = &sc->sc_ic;
1063 	struct ifnet *ifp = &ic->ic_if;
1064 	struct ath_hal *ah = sc->sc_ah;
1065 	struct ieee80211_channel *c;
1066 	HAL_STATUS status;
1067 	HAL_CHANNEL hchan;
1068 
1069 	/*
1070 	 * Convert to a HAL channel description with the flags
1071 	 * constrained to reflect the current operating mode.
1072 	 */
1073 	c = ic->ic_ibss_chan;
1074 	hchan.channel = c->ic_freq;
1075 	hchan.channelFlags = ath_chan2flags(ic, c);
1076 
1077 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1078 	ath_draintxq(sc);		/* stop xmit side */
1079 	ath_stoprecv(sc);		/* stop recv side */
1080 	/* NB: indicate channel change so we do a full reset */
1081 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
1082 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1083 			__func__, status);
1084 	ath_hal_intrset(ah, sc->sc_imask);
1085 	if (ath_startrecv(sc) != 0)	/* restart recv */
1086 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1087 	ath_start(ifp);			/* restart xmit */
1088 	if (ic->ic_state == IEEE80211_S_RUN)
1089 		ath_beacon_config(sc);	/* restart beacons */
1090 }
1091 
1092 static void
1093 ath_start(struct ifnet *ifp)
1094 {
1095 	struct ath_softc *sc = ifp->if_softc;
1096 	struct ath_hal *ah = sc->sc_ah;
1097 	struct ieee80211com *ic = &sc->sc_ic;
1098 	struct ieee80211_node *ni;
1099 	struct ath_buf *bf;
1100 	struct mbuf *m;
1101 	struct ieee80211_frame *wh;
1102 	ath_txbuf_critsect_decl(s);
1103 
1104 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1105 		return;
1106 	for (;;) {
1107 		/*
1108 		 * Grab a TX buffer and associated resources.
1109 		 */
1110 		ath_txbuf_critsect_begin(sc, s);
1111 		bf = TAILQ_FIRST(&sc->sc_txbuf);
1112 		if (bf != NULL)
1113 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
1114 		ath_txbuf_critsect_end(sc, s);
1115 		if (bf == NULL) {
1116 			DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
1117 				__func__));
1118 			sc->sc_stats.ast_tx_qstop++;
1119 			ifp->if_flags |= IFF_OACTIVE;
1120 			break;
1121 		}
1122 		/*
1123 		 * Poll the management queue for frames; they
1124 		 * have priority over normal data frames.
1125 		 */
1126 		IF_DEQUEUE(&ic->ic_mgtq, m);
1127 		if (m == NULL) {
1128 			/*
1129 			 * No data frames go out unless we're associated.
1130 			 */
1131 			if (ic->ic_state != IEEE80211_S_RUN) {
1132 				DPRINTF(ATH_DEBUG_ANY,
1133 					("%s: ignore data packet, state %u\n",
1134 					__func__, ic->ic_state));
1135 				sc->sc_stats.ast_tx_discard++;
1136 				ath_txbuf_critsect_begin(sc, s);
1137 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1138 				ath_txbuf_critsect_end(sc, s);
1139 				break;
1140 			}
1141 			IF_DEQUEUE(&ifp->if_snd, m);
1142 			if (m == NULL) {
1143 				ath_txbuf_critsect_begin(sc, s);
1144 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1145 				ath_txbuf_critsect_end(sc, s);
1146 				break;
1147 			}
1148 			ifp->if_opackets++;
1149 
1150 #ifdef __NetBSD__
1151 #if NBPFILTER > 0
1152 			if (ifp->if_bpf)
1153 				bpf_mtap(ifp->if_bpf, m);
1154 #endif
1155 #endif
1156 #ifdef __FreeBSD__
1157 			BPF_MTAP(ifp, m);
1158 #endif
1159 			/*
1160 			 * Encapsulate the packet in prep for transmission.
1161 			 */
1162 			m = ieee80211_encap(ifp, m, &ni);
1163 			if (m == NULL) {
1164 				DPRINTF(ATH_DEBUG_ANY,
1165 					("%s: encapsulation failure\n",
1166 					__func__));
1167 				sc->sc_stats.ast_tx_encap++;
1168 				goto bad;
1169 			}
1170 			wh = mtod(m, struct ieee80211_frame *);
1171 		} else {
1172 			/*
1173 			 * Hack!  The referenced node pointer is in the
1174 			 * rcvif field of the packet header.  This is
1175 			 * placed there by ieee80211_mgmt_output because
1176 			 * we need to hold the reference with the frame
1177 			 * and there's no other way (other than packet
1178 			 * tags which we consider too expensive to use)
1179 			 * to pass it along.
1180 			 */
1181 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1182 			m->m_pkthdr.rcvif = NULL;
1183 
1184 			wh = mtod(m, struct ieee80211_frame *);
1185 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1186 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1187 				/* fill time stamp */
1188 				u_int64_t tsf;
1189 				u_int32_t *tstamp;
1190 
1191 				tsf = ath_hal_gettsf64(ah);
1192 				/* XXX: adjust 100us delay to xmit */
1193 				tsf += 100;
1194 				tstamp = (u_int32_t *)&wh[1];
1195 				tstamp[0] = htole32(tsf & 0xffffffff);
1196 				tstamp[1] = htole32(tsf >> 32);
1197 			}
1198 			sc->sc_stats.ast_tx_mgmt++;
1199 		}
1200 
1201 		if (ath_tx_start(sc, ni, bf, m)) {
1202 	bad:
1203 			ath_txbuf_critsect_begin(sc, s);
1204 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1205 			ath_txbuf_critsect_end(sc, s);
1206 			ifp->if_oerrors++;
1207 			if (ni != NULL)
1208 				ieee80211_release_node(ic, ni);
1209 			continue;
1210 		}
1211 
1212 		sc->sc_tx_timer = 5;
1213 		ifp->if_timer = 1;
1214 	}
1215 }
1216 
1217 static int
1218 ath_media_change(struct ifnet *ifp)
1219 {
1220 	int error;
1221 
1222 	error = ieee80211_media_change(ifp);
1223 	if (error == ENETRESET) {
1224 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1225 		    (IFF_RUNNING|IFF_UP))
1226 			ath_init(ifp);		/* XXX lose error */
1227 		error = 0;
1228 	}
1229 	return error;
1230 }
1231 
1232 static void
1233 ath_watchdog(struct ifnet *ifp)
1234 {
1235 	struct ath_softc *sc = ifp->if_softc;
1236 	struct ieee80211com *ic = &sc->sc_ic;
1237 
1238 	ifp->if_timer = 0;
1239 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1240 		return;
1241 	if (sc->sc_tx_timer) {
1242 		if (--sc->sc_tx_timer == 0) {
1243 			if_printf(ifp, "device timeout\n");
1244 			ath_reset(sc);
1245 			ifp->if_oerrors++;
1246 			sc->sc_stats.ast_watchdog++;
1247 			return;
1248 		}
1249 		ifp->if_timer = 1;
1250 	}
1251 	if (ic->ic_fixed_rate == -1) {
1252 		/*
1253 		 * Run the rate control algorithm if we're not
1254 		 * locked at a fixed rate.
1255 		 */
1256 		if (ic->ic_opmode == IEEE80211_M_STA)
1257 			ath_rate_ctl(sc, ic->ic_bss);
1258 		else
1259 			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1260 	}
1261 	ieee80211_watchdog(ifp);
1262 }
1263 
1264 static int
1265 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1266 {
1267 	struct ath_softc *sc = ifp->if_softc;
1268 	struct ifreq *ifr = (struct ifreq *)data;
1269 	int error = 0;
1270 	ath_softc_critsect_decl(s);
1271 
1272 	ath_softc_critsect_begin(sc, s);
1273 	switch (cmd) {
1274 	case SIOCSIFFLAGS:
1275 		if (ifp->if_flags & IFF_UP) {
1276 			if (ifp->if_flags & IFF_RUNNING) {
1277 				/*
1278 				 * To avoid rescanning another access point,
1279 				 * do not call ath_init() here.  Instead,
1280 				 * only reflect promisc mode settings.
1281 				 */
1282 				ath_mode_init(sc);
1283 			} else {
1284 				/*
1285 				 * Beware of being called during detach to
1286 				 * reset promiscuous mode.  In that case we
1287 				 * will still be marked UP but not RUNNING.
1288 				 * However trying to re-init the interface
1289 				 * is the wrong thing to do as we've already
1290 				 * torn down much of our state.  There's
1291 				 * probably a better way to deal with this.
1292 				 */
1293 				if (!sc->sc_invalid)
1294 					ath_init(ifp);	/* XXX lose error */
1295 			}
1296 		} else
1297 			ath_stop(ifp);
1298 		break;
1299 	case SIOCADDMULTI:
1300 	case SIOCDELMULTI:
1301 #ifdef __FreeBSD__
1302 		/*
1303 		 * The upper layer has already installed/removed
1304 		 * the multicast address(es), just recalculate the
1305 		 * multicast filter for the card.
1306 		 */
1307 		if (ifp->if_flags & IFF_RUNNING)
1308 			ath_mode_init(sc);
1309 #endif
1310 #ifdef __NetBSD__
1311 		error = (cmd == SIOCADDMULTI) ?
1312 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1313 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1314 		if (error == ENETRESET) {
1315 			if (ifp->if_flags & IFF_RUNNING)
1316 				ath_mode_init(sc);
1317 			error = 0;
1318 		}
1319 #endif
1320 		break;
1321 	case SIOCGATHSTATS:
1322 		error = copyout(&sc->sc_stats,
1323 				ifr->ifr_data, sizeof (sc->sc_stats));
1324 		break;
1325 	case SIOCGATHDIAG: {
1326 #if 0	/* XXX punt */
1327 		struct ath_diag *ad = (struct ath_diag *)data;
1328 		struct ath_hal *ah = sc->sc_ah;
1329 		void *data;
1330 		u_int size;
1331 
1332 		if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
1333 			if (size < ad->ad_size)
1334 				ad->ad_size = size;
1335 			if (data)
1336 				error = copyout(data, ad->ad_data, ad->ad_size);
1337 		} else
1338 			error = EINVAL;
1339 #else
1340 		error = EINVAL;
1341 #endif
1342 		break;
1343 	}
1344 	default:
1345 		error = ieee80211_ioctl(ifp, cmd, data);
1346 		if (error == ENETRESET) {
1347 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1348 			    (IFF_RUNNING|IFF_UP))
1349 				ath_init(ifp);		/* XXX lose error */
1350 			error = 0;
1351 		}
1352 		break;
1353 	}
1354 	ath_softc_critsect_end(sc, s);
1355 	return error;
1356 }
1357 
1358 /*
1359  * Fill the hardware key cache with key entries.
1360  */
1361 static void
1362 ath_initkeytable(struct ath_softc *sc)
1363 {
1364 	struct ieee80211com *ic = &sc->sc_ic;
1365 	struct ath_hal *ah = sc->sc_ah;
1366 	int i;
1367 
1368 	/* XXX maybe should reset all keys when !WEPON */
1369 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1370 		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1371 		if (k->wk_len == 0)
1372 			ath_hal_keyreset(ah, i);
1373 		else {
1374 			HAL_KEYVAL hk;
1375 
1376 			memset(&hk, 0, sizeof(hk));
1377 			hk.kv_type = HAL_CIPHER_WEP;
1378 			hk.kv_len = k->wk_len;
1379 			memcpy(hk.kv_val, k->wk_key, k->wk_len);
1380 			/* XXX return value */
1381 			ath_hal_keyset(ah, i, &hk);
1382 		}
1383 	}
1384 }
1385 
1386 static void
1387 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1388 {
1389 	u_int32_t val;
1390 	u_int8_t pos;
1391 
1392 	val = LE_READ_4(dl + 0);
1393 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1394 	val = LE_READ_4(dl + 3);
1395 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1396 	pos &= 0x3f;
1397 	(*mfilt)[pos / 32] |= (1 << (pos % 32));
1398 }
1399 
1400 #ifdef __FreeBSD__
1401 static void
1402 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1403 {
1404 	struct ieee80211com *ic = &sc->sc_ic;
1405 	struct ifnet *ifp = &ic->ic_if;
1406 	struct ifmultiaddr *ifma;
1407 
1408 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1409 		caddr_t dl;
1410 
1411 		/* calculate XOR of eight 6bit values */
1412 		dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1413 		ath_mcastfilter_accum(dl, &mfilt);
1414 	}
1415 }
1416 #else
1417 static void
1418 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1419 {
1420 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1421 	struct ether_multi *enm;
1422 	struct ether_multistep estep;
1423 
1424 	ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1425 	while (enm != NULL) {
1426 		/* XXX Punt on ranges. */
1427 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1428 			(*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1429 			ifp->if_flags |= IFF_ALLMULTI;
1430 			return;
1431 		}
1432 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1433 		ETHER_NEXT_MULTI(estep, enm);
1434 	}
1435 	ifp->if_flags &= ~IFF_ALLMULTI;
1436 }
1437 #endif
1438 
1439 /*
1440  * Calculate the receive filter according to the
1441  * operating mode and state:
1442  *
1443  * o always accept unicast, broadcast, and multicast traffic
1444  * o maintain current state of phy error reception
1445  * o probe request frames are accepted only when operating in
1446  *   hostap, adhoc, or monitor modes
1447  * o enable promiscuous mode according to the interface state
1448  * o accept beacons:
1449  *   - when operating in adhoc mode so the 802.11 layer creates
1450  *     node table entries for peers,
1451  *   - when operating in station mode for collecting rssi data when
1452  *     the station is otherwise quiet, or
1453  *   - when scanning
1454  */
1455 static u_int32_t
1456 ath_calcrxfilter(struct ath_softc *sc)
1457 {
1458 	struct ieee80211com *ic = &sc->sc_ic;
1459 	struct ath_hal *ah = sc->sc_ah;
1460 	struct ifnet *ifp = &ic->ic_if;
1461 	u_int32_t rfilt;
1462 
1463 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1464 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1465 	if (ic->ic_opmode != IEEE80211_M_STA)
1466 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1467 	if (ic->ic_opmode != IEEE80211_M_AHDEMO)
1468 		rfilt |= HAL_RX_FILTER_BEACON;
1469 	if (ifp->if_flags & IFF_PROMISC)
1470 		rfilt |= HAL_RX_FILTER_PROM;
1471 	return rfilt;
1472 }
1473 
1474 static void
1475 ath_mode_init(struct ath_softc *sc)
1476 {
1477 #ifdef __FreeBSD__
1478 	struct ieee80211com *ic = &sc->sc_ic;
1479 #endif
1480 	struct ath_hal *ah = sc->sc_ah;
1481 	u_int32_t rfilt, mfilt[2];
1482 
1483 	/* configure rx filter */
1484 	rfilt = ath_calcrxfilter(sc);
1485 	ath_hal_setrxfilter(ah, rfilt);
1486 
1487 	/* configure operational mode */
1488 	ath_hal_setopmode(ah);
1489 
1490 	/* calculate and install multicast filter */
1491 #ifdef __FreeBSD__
1492 	if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
1493 		mfilt[0] = mfilt[1] = 0;
1494 		ath_mcastfilter_compute(sc, &mfilt);
1495 	} else {
1496 		mfilt[0] = mfilt[1] = ~0;
1497 	}
1498 #endif
1499 #ifdef __NetBSD__
1500 	mfilt[0] = mfilt[1] = 0;
1501 	ath_mcastfilter_compute(sc, &mfilt);
1502 #endif
1503 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1504 	DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
1505 		__func__, rfilt, mfilt[0], mfilt[1]));
1506 }
1507 
1508 #ifdef __FreeBSD__
1509 static void
1510 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1511 {
1512 	struct ath_buf *bf = arg;
1513 
1514 	KASSERT(nseg <= ATH_MAX_SCATTER,
1515 		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1516 	bf->bf_mapsize = mapsize;
1517 	bf->bf_nseg = nseg;
1518 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1519 }
1520 #endif /* __FreeBSD__ */
1521 
1522 static struct mbuf *
1523 ath_getmbuf(int flags, int type, u_int pktlen)
1524 {
1525 	struct mbuf *m;
1526 
1527 	KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1528 #ifdef __FreeBSD__
1529 	if (pktlen <= MHLEN)
1530 		MGETHDR(m, flags, type);
1531 	else
1532 		m = m_getcl(flags, type, M_PKTHDR);
1533 #else
1534 	MGETHDR(m, flags, type);
1535 	if (m != NULL && pktlen > MHLEN) {
1536 		MCLGET(m, flags);
1537 		if ((m->m_flags & M_EXT) == 0) {
1538 			m_free(m);
1539 			m = NULL;
1540 		}
1541 	}
1542 #endif
1543 	return m;
1544 }
1545 
1546 static int
1547 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1548 {
1549 	struct ieee80211com *ic = &sc->sc_ic;
1550 	struct ifnet *ifp = &ic->ic_if;
1551 	struct ath_hal *ah = sc->sc_ah;
1552 	struct ieee80211_frame *wh;
1553 	struct ath_buf *bf;
1554 	struct ath_desc *ds;
1555 	struct mbuf *m;
1556 	int error, pktlen;
1557 	u_int8_t *frm, rate;
1558 	u_int16_t capinfo;
1559 	struct ieee80211_rateset *rs;
1560 	const HAL_RATE_TABLE *rt;
1561 	u_int flags;
1562 
1563 	bf = sc->sc_bcbuf;
1564 	if (bf->bf_m != NULL) {
1565 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1566 		m_freem(bf->bf_m);
1567 		bf->bf_m = NULL;
1568 		bf->bf_node = NULL;
1569 	}
1570 	/*
1571 	 * NB: the beacon data buffer must be 32-bit aligned;
1572 	 * we assume the mbuf routines will return us something
1573 	 * with this alignment (perhaps should assert).
1574 	 */
1575 	rs = &ni->ni_rates;
1576 	pktlen = sizeof (struct ieee80211_frame)
1577 	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1578 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1579 		pktlen += 2;
1580 	m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1581 	if (m == NULL) {
1582 		DPRINTF(ATH_DEBUG_BEACON,
1583 			("%s: cannot get mbuf/cluster; size %u\n",
1584 			__func__, pktlen));
1585 		sc->sc_stats.ast_be_nombuf++;
1586 		return ENOMEM;
1587 	}
1588 
1589 	wh = mtod(m, struct ieee80211_frame *);
1590 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1591 	    IEEE80211_FC0_SUBTYPE_BEACON;
1592 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1593 	*(u_int16_t *)wh->i_dur = 0;
1594 	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1595 	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1596 	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1597 	*(u_int16_t *)wh->i_seq = 0;
1598 
1599 	/*
1600 	 * beacon frame format
1601 	 *	[8] time stamp
1602 	 *	[2] beacon interval
1603 	 *	[2] cabability information
1604 	 *	[tlv] ssid
1605 	 *	[tlv] supported rates
1606 	 *	[tlv] parameter set (IBSS)
1607 	 *	[tlv] extended supported rates
1608 	 */
1609 	frm = (u_int8_t *)&wh[1];
1610 	memset(frm, 0, 8);	/* timestamp is set by hardware */
1611 	frm += 8;
1612 	*(u_int16_t *)frm = htole16(ni->ni_intval);
1613 	frm += 2;
1614 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1615 		capinfo = IEEE80211_CAPINFO_IBSS;
1616 	else
1617 		capinfo = IEEE80211_CAPINFO_ESS;
1618 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1619 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1620 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1621 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1622 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1623 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1624 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1625 	*(u_int16_t *)frm = htole16(capinfo);
1626 	frm += 2;
1627 	*frm++ = IEEE80211_ELEMID_SSID;
1628 	*frm++ = ni->ni_esslen;
1629 	memcpy(frm, ni->ni_essid, ni->ni_esslen);
1630 	frm += ni->ni_esslen;
1631 	frm = ieee80211_add_rates(frm, rs);
1632 	*frm++ = IEEE80211_ELEMID_DSPARMS;
1633 	*frm++ = 1;
1634 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1635 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1636 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1637 		*frm++ = 2;
1638 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1639 	} else {
1640 		/* TODO: TIM */
1641 		*frm++ = IEEE80211_ELEMID_TIM;
1642 		*frm++ = 4;	/* length */
1643 		*frm++ = 0;	/* DTIM count */
1644 		*frm++ = 1;	/* DTIM period */
1645 		*frm++ = 0;	/* bitmap control */
1646 		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
1647 	}
1648 	frm = ieee80211_add_xrates(frm, rs);
1649 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1650 	KASSERT(m->m_pkthdr.len <= pktlen,
1651 		("beacon bigger than expected, len %u calculated %u",
1652 		m->m_pkthdr.len, pktlen));
1653 
1654 	DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
1655 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1656 	if (error != 0) {
1657 		m_freem(m);
1658 		return error;
1659 	}
1660 	KASSERT(bf->bf_nseg == 1,
1661 		("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
1662 	bf->bf_m = m;
1663 
1664 	/* setup descriptors */
1665 	ds = bf->bf_desc;
1666 
1667 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1668 		ds->ds_link = bf->bf_daddr;	/* link to self */
1669 	else
1670 		ds->ds_link = 0;
1671 	ds->ds_data = bf->bf_segs[0].ds_addr;
1672 
1673 	DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__,
1674 	    (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1675 
1676 	/*
1677 	 * Calculate rate code.
1678 	 * XXX everything at min xmit rate
1679 	 */
1680 	rt = sc->sc_currates;
1681 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1682 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1683 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1684 	else
1685 		rate = rt->info[0].rateCode;
1686 
1687 	flags = HAL_TXDESC_NOACK;
1688 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1689 		flags |= HAL_TXDESC_VEOL;
1690 
1691 	if (!ath_hal_setuptxdesc(ah, ds
1692 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
1693 		, sizeof(struct ieee80211_frame)	/* header length */
1694 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1695 		, 0x20				/* txpower XXX */
1696 		, rate, 1			/* series 0 rate/tries */
1697 		, HAL_TXKEYIX_INVALID		/* no encryption */
1698 		, 0				/* antenna mode */
1699 		, flags				/* no ack for beacons */
1700 		, 0				/* rts/cts rate */
1701 		, 0				/* rts/cts duration */
1702 	)) {
1703 		printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1704 		return -1;
1705 	}
1706 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1707 	/* XXX verify mbuf data area covers this roundup */
1708 	if (!ath_hal_filltxdesc(ah, ds
1709 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
1710 		, AH_TRUE				/* first segment */
1711 		, AH_TRUE				/* last segment */
1712 	)) {
1713 		printf("%s: ath_hal_filltxdesc failed\n", __func__);
1714 		return -1;
1715 	}
1716 
1717 	/* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1718 
1719 	return 0;
1720 }
1721 
1722 static void
1723 ath_beacon_proc(struct ath_softc *sc, int pending)
1724 {
1725 	struct ieee80211com *ic = &sc->sc_ic;
1726 	struct ath_buf *bf = sc->sc_bcbuf;
1727 	struct ath_hal *ah = sc->sc_ah;
1728 
1729 	DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
1730 	if (ic->ic_opmode == IEEE80211_M_STA ||
1731 	    bf == NULL || bf->bf_m == NULL) {
1732 		DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
1733 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1734 		return;
1735 	}
1736 	/* TODO: update beacon to reflect PS poll state */
1737 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1738 		DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
1739 			__func__, sc->sc_bhalq));
1740 		/* NB: the HAL still stops DMA, so proceed */
1741 	}
1742 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1743 
1744 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1745 	ath_hal_txstart(ah, sc->sc_bhalq);
1746 	DPRINTF(ATH_DEBUG_BEACON_PROC,
1747 		("%s: TXDP%u = %p (%p)\n", __func__,
1748 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1749 }
1750 
1751 static void
1752 ath_beacon_free(struct ath_softc *sc)
1753 {
1754 	struct ath_buf *bf = sc->sc_bcbuf;
1755 
1756 	if (bf->bf_m != NULL) {
1757 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1758 		m_freem(bf->bf_m);
1759 		bf->bf_m = NULL;
1760 		bf->bf_node = NULL;
1761 	}
1762 }
1763 
1764 /*
1765  * Configure the beacon and sleep timers.
1766  *
1767  * When operating as an AP this resets the TSF and sets
1768  * up the hardware to notify us when we need to issue beacons.
1769  *
1770  * When operating in station mode this sets up the beacon
1771  * timers according to the timestamp of the last received
1772  * beacon and the current TSF, configures PCF and DTIM
1773  * handling, programs the sleep registers so the hardware
1774  * will wakeup in time to receive beacons, and configures
1775  * the beacon miss handling so we'll receive a BMISS
1776  * interrupt when we stop seeing beacons from the AP
1777  * we've associated with.
1778  */
1779 static void
1780 ath_beacon_config(struct ath_softc *sc)
1781 {
1782 	struct ath_hal *ah = sc->sc_ah;
1783 	struct ieee80211com *ic = &sc->sc_ic;
1784 	struct ieee80211_node *ni = ic->ic_bss;
1785 	u_int32_t nexttbtt, intval;
1786 
1787 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1788 	    (LE_READ_4(ni->ni_tstamp) >> 10);
1789 	DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt));
1790 	nexttbtt += ni->ni_intval;
1791 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
1792 	if (ic->ic_opmode == IEEE80211_M_STA) {
1793 		HAL_BEACON_STATE bs;
1794 		u_int32_t bmisstime;
1795 
1796 		/* NB: no PCF support right now */
1797 		memset(&bs, 0, sizeof(bs));
1798 		/*
1799 		 * Reset our tsf so the hardware will update the
1800 		 * tsf register to reflect timestamps found in
1801 		 * received beacons.
1802 		 */
1803 		bs.bs_intval = intval | HAL_BEACON_RESET_TSF;
1804 		bs.bs_nexttbtt = nexttbtt;
1805 		bs.bs_dtimperiod = bs.bs_intval;
1806 		bs.bs_nextdtim = nexttbtt;
1807 		/*
1808 		 * Calculate the number of consecutive beacons to miss
1809 		 * before taking a BMISS interrupt.  The configuration
1810 		 * is specified in ms, so we need to convert that to
1811 		 * TU's and then calculate based on the beacon interval.
1812 		 * Note that we clamp the result to at most 10 beacons.
1813 		 */
1814 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1815 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1816 		if (bs.bs_bmissthreshold > 10)
1817 			bs.bs_bmissthreshold = 10;
1818 		else if (bs.bs_bmissthreshold <= 0)
1819 			bs.bs_bmissthreshold = 1;
1820 
1821 		/*
1822 		 * Calculate sleep duration.  The configuration is
1823 		 * given in ms.  We insure a multiple of the beacon
1824 		 * period is used.  Also, if the sleep duration is
1825 		 * greater than the DTIM period then it makes senses
1826 		 * to make it a multiple of that.
1827 		 *
1828 		 * XXX fixed at 100ms
1829 		 */
1830 		bs.bs_sleepduration =
1831 			roundup((100 * 1000) / 1024, bs.bs_intval);
1832 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
1833 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1834 
1835 		DPRINTF(ATH_DEBUG_BEACON,
1836 			("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1837 			, __func__
1838 			, bs.bs_intval
1839 			, bs.bs_nexttbtt
1840 			, bs.bs_dtimperiod
1841 			, bs.bs_nextdtim
1842 			, bs.bs_bmissthreshold
1843 			, bs.bs_sleepduration
1844 		));
1845 		ath_hal_intrset(ah, 0);
1846 		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1847 		sc->sc_imask |= HAL_INT_BMISS;
1848 		ath_hal_intrset(ah, sc->sc_imask);
1849 	} else {
1850 		ath_hal_intrset(ah, 0);
1851 		sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
1852 		intval |= HAL_BEACON_ENA;
1853 		switch (ic->ic_opmode) {
1854 		/* No beacons in monitor, ad hoc-demo modes. */
1855 		case IEEE80211_M_MONITOR:
1856 		case IEEE80211_M_AHDEMO:
1857 			intval &= ~HAL_BEACON_ENA;
1858 			/*FALLTHROUGH*/
1859 		/* In IBSS mode, I am uncertain how SWBA interrupts
1860 		 * work, so I just turn them off and use a self-linked
1861 		 * descriptor.
1862 		 */
1863 		case IEEE80211_M_IBSS:
1864 			sc->sc_imask &= ~HAL_INT_SWBA;
1865 			nexttbtt = ni->ni_intval;
1866 			/*FALLTHROUGH*/
1867 		case IEEE80211_M_HOSTAP:
1868 		default:
1869 			if (nexttbtt == ni->ni_intval)
1870 				intval |= HAL_BEACON_RESET_TSF;
1871 			break;
1872 		}
1873 		DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
1874 			__func__, ni->ni_intval, nexttbtt));
1875 		ath_hal_beaconinit(ah, nexttbtt, intval);
1876 		ath_hal_intrset(ah, sc->sc_imask);
1877 		if (ic->ic_opmode == IEEE80211_M_IBSS)
1878 			ath_beacon_proc(sc, 0);
1879 	}
1880 }
1881 
1882 #ifdef __FreeBSD__
1883 static void
1884 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1885 {
1886 	bus_addr_t *paddr = (bus_addr_t*) arg;
1887 	*paddr = segs->ds_addr;
1888 }
1889 #endif
1890 
1891 #ifdef __FreeBSD__
1892 static int
1893 ath_desc_alloc(struct ath_softc *sc)
1894 {
1895 	int i, bsize, error;
1896 	struct ath_desc *ds;
1897 	struct ath_buf *bf;
1898 
1899 	/* allocate descriptors */
1900 	sc->sc_desc_len = sizeof(struct ath_desc) *
1901 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1902 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1903 	if (error != 0)
1904 		return error;
1905 
1906 	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1907 				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1908 
1909 	if (error != 0)
1910 		goto fail0;
1911 
1912 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1913 				sc->sc_desc, sc->sc_desc_len,
1914 				ath_load_cb, &sc->sc_desc_paddr,
1915 				BUS_DMA_NOWAIT);
1916 	if (error != 0)
1917 		goto fail1;
1918 
1919 	ds = sc->sc_desc;
1920 	DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n",
1921 	    __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr,
1922 	    /*XXX*/ (u_long) sc->sc_desc_len));
1923 
1924 	/* allocate buffers */
1925 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1926 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1927 	if (bf == NULL) {
1928 		printf("%s: unable to allocate Tx/Rx buffers\n",
1929 		    sc->sc_dev.dv_xname);
1930 		error = -1;
1931 		goto fail2;
1932 	}
1933 	sc->sc_bufptr = bf;
1934 
1935 	TAILQ_INIT(&sc->sc_rxbuf);
1936 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1937 		bf->bf_desc = ds;
1938 		bf->bf_daddr = sc->sc_desc_paddr +
1939 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1940 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1941 					  &bf->bf_dmamap);
1942 		if (error != 0)
1943 			break;
1944 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1945 	}
1946 
1947 	TAILQ_INIT(&sc->sc_txbuf);
1948 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1949 		bf->bf_desc = ds;
1950 		bf->bf_daddr = sc->sc_desc_paddr +
1951 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1952 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1953 					  &bf->bf_dmamap);
1954 		if (error != 0)
1955 			break;
1956 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1957 	}
1958 	TAILQ_INIT(&sc->sc_txq);
1959 
1960 	/* beacon buffer */
1961 	bf->bf_desc = ds;
1962 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1963 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1964 	if (error != 0)
1965 		return error;
1966 	sc->sc_bcbuf = bf;
1967 	return 0;
1968 
1969 fail2:
1970 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1971 fail1:
1972 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1973 fail0:
1974 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1975 	sc->sc_ddmamap = NULL;
1976 	return error;
1977 }
1978 #else
1979 static int
1980 ath_desc_alloc(struct ath_softc *sc)
1981 {
1982 	int i, bsize, error = -1;
1983 	struct ath_desc *ds;
1984 	struct ath_buf *bf;
1985 
1986 	/* allocate descriptors */
1987 	sc->sc_desc_len = sizeof(struct ath_desc) *
1988 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1989 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1990 	    0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1991 		printf("%s: unable to allocate control data, error = %d\n",
1992 		    sc->sc_dev.dv_xname, error);
1993 		goto fail0;
1994 	}
1995 
1996 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1997 	    sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1998 		printf("%s: unable to map control data, error = %d\n",
1999 		    sc->sc_dev.dv_xname, error);
2000 		goto fail1;
2001 	}
2002 
2003 	if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
2004 	    sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
2005 		printf("%s: unable to create control data DMA map, "
2006 		    "error = %d\n", sc->sc_dev.dv_xname, error);
2007 		goto fail2;
2008 	}
2009 
2010 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
2011 	    sc->sc_desc_len, NULL, 0)) != 0) {
2012 		printf("%s: unable to load control data DMA map, error = %d\n",
2013 		    sc->sc_dev.dv_xname, error);
2014 		goto fail3;
2015 	}
2016 
2017 	ds = sc->sc_desc;
2018 	sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
2019 
2020 	DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC,
2021 	    ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
2022 	    ds, (u_long)sc->sc_desc_len,
2023 	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
2024 
2025 	/* allocate buffers */
2026 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
2027 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
2028 	if (bf == NULL) {
2029 		printf("%s: unable to allocate Tx/Rx buffers\n",
2030 		    sc->sc_dev.dv_xname);
2031 		error = ENOMEM;
2032 		goto fail3;
2033 	}
2034 	sc->sc_bufptr = bf;
2035 
2036 	TAILQ_INIT(&sc->sc_rxbuf);
2037 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
2038 		bf->bf_desc = ds;
2039 		bf->bf_daddr = sc->sc_desc_paddr +
2040 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
2041 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
2042 		    MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2043 			printf("%s: unable to create Rx dmamap, error = %d\n",
2044 			    sc->sc_dev.dv_xname, error);
2045 			goto fail4;
2046 		}
2047 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2048 	}
2049 
2050 	TAILQ_INIT(&sc->sc_txbuf);
2051 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
2052 		bf->bf_desc = ds;
2053 		bf->bf_daddr = sc->sc_desc_paddr +
2054 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
2055 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
2056 		    ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2057 			printf("%s: unable to create Tx dmamap, error = %d\n",
2058 			    sc->sc_dev.dv_xname, error);
2059 			goto fail5;
2060 		}
2061 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2062 	}
2063 	TAILQ_INIT(&sc->sc_txq);
2064 
2065 	/* beacon buffer */
2066 	bf->bf_desc = ds;
2067 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
2068 	if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
2069 	    &bf->bf_dmamap)) != 0) {
2070 		printf("%s: unable to create beacon dmamap, error = %d\n",
2071 		    sc->sc_dev.dv_xname, error);
2072 		goto fail5;
2073 	}
2074 	sc->sc_bcbuf = bf;
2075 	return 0;
2076 
2077 fail5:
2078 	for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
2079 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
2080 			continue;
2081 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2082 	}
2083 fail4:
2084 	for (i = 0; i < ATH_RXBUF; i++) {
2085 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
2086 			continue;
2087 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2088 	}
2089 fail3:
2090 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2091 fail2:
2092 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2093 	sc->sc_ddmamap = NULL;
2094 fail1:
2095 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
2096 fail0:
2097 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2098 	return error;
2099 }
2100 #endif
2101 
2102 static void
2103 ath_desc_free(struct ath_softc *sc)
2104 {
2105 	struct ath_buf *bf;
2106 
2107 #ifdef __FreeBSD__
2108 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2109 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
2110 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2111 #else
2112 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2113 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2114 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2115 #endif
2116 
2117 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2118 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2119 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2120 		m_freem(bf->bf_m);
2121 	}
2122 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
2123 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2124 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2125 		if (bf->bf_m) {
2126 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2127 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2128 			m_freem(bf->bf_m);
2129 			bf->bf_m = NULL;
2130 		}
2131 	}
2132 	if (sc->sc_bcbuf != NULL) {
2133 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2134 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2135 		sc->sc_bcbuf = NULL;
2136 	}
2137 
2138 	TAILQ_INIT(&sc->sc_rxbuf);
2139 	TAILQ_INIT(&sc->sc_txbuf);
2140 	TAILQ_INIT(&sc->sc_txq);
2141 	free(sc->sc_bufptr, M_DEVBUF);
2142 	sc->sc_bufptr = NULL;
2143 }
2144 
2145 static struct ieee80211_node *
2146 ath_node_alloc(struct ieee80211com *ic)
2147 {
2148 	struct ath_node *an =
2149 		malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO);
2150 	if (an) {
2151 		int i;
2152 		for (i = 0; i < ATH_RHIST_SIZE; i++)
2153 			an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
2154 		an->an_rx_hist_next = ATH_RHIST_SIZE-1;
2155 		return &an->an_node;
2156 	} else
2157 		return NULL;
2158 }
2159 
2160 static void
2161 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2162 {
2163 	struct ath_softc *sc = ic->ic_if.if_softc;
2164 	struct ath_buf *bf;
2165 
2166 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2167 		if (bf->bf_node == ni)
2168 			bf->bf_node = NULL;
2169 	}
2170 	(*sc->sc_node_free)(ic, ni);
2171 }
2172 
2173 static void
2174 ath_node_copy(struct ieee80211com *ic,
2175 	struct ieee80211_node *dst, const struct ieee80211_node *src)
2176 {
2177         struct ath_softc *sc = ic->ic_if.if_softc;
2178 
2179 	memcpy(&dst[1], &src[1],
2180 		sizeof(struct ath_node) - sizeof(struct ieee80211_node));
2181 	(*sc->sc_node_copy)(ic, dst, src);
2182 }
2183 
2184 static u_int8_t
2185 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
2186 {
2187 	struct ath_node *an = ATH_NODE(ni);
2188 	int i, now, nsamples, rssi;
2189 
2190 	/*
2191 	 * Calculate the average over the last second of sampled data.
2192 	 */
2193 	now = ATH_TICKS();
2194 	nsamples = 0;
2195 	rssi = 0;
2196 	i = an->an_rx_hist_next;
2197 	do {
2198 		struct ath_recv_hist *rh = &an->an_rx_hist[i];
2199 		if (rh->arh_ticks == ATH_RHIST_NOTIME)
2200 			goto done;
2201 		if (now - rh->arh_ticks > hz)
2202 			goto done;
2203 		rssi += rh->arh_rssi;
2204 		nsamples++;
2205 		if (i == 0)
2206 			i = ATH_RHIST_SIZE-1;
2207 		else
2208 			i--;
2209 	} while (i != an->an_rx_hist_next);
2210 done:
2211 	/*
2212 	 * Return either the average or the last known
2213 	 * value if there is no recent data.
2214 	 */
2215 	return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
2216 }
2217 
2218 static int
2219 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2220 {
2221 	struct ath_hal *ah = sc->sc_ah;
2222 	int error;
2223 	struct mbuf *m;
2224 	struct ath_desc *ds;
2225 
2226 	m = bf->bf_m;
2227 	if (m == NULL) {
2228 		/*
2229 		 * NB: by assigning a page to the rx dma buffer we
2230 		 * implicitly satisfy the Atheros requirement that
2231 		 * this buffer be cache-line-aligned and sized to be
2232 		 * multiple of the cache line size.  Not doing this
2233 		 * causes weird stuff to happen (for the 5210 at least).
2234 		 */
2235 		m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
2236 		if (m == NULL) {
2237 			DPRINTF(ATH_DEBUG_ANY,
2238 				("%s: no mbuf/cluster\n", __func__));
2239 			sc->sc_stats.ast_rx_nombuf++;
2240 			return ENOMEM;
2241 		}
2242 		bf->bf_m = m;
2243 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2244 
2245 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
2246 		                                 BUS_DMA_NOWAIT);
2247 		if (error != 0) {
2248 			DPRINTF(ATH_DEBUG_ANY,
2249 				("%s: ath_buf_dmamap_load_mbuf failed;"
2250 				" error %d\n", __func__, error));
2251 			sc->sc_stats.ast_rx_busdma++;
2252 			return error;
2253 		}
2254 		KASSERT(bf->bf_nseg == 1,
2255 			("ath_rxbuf_init: multi-segment packet; nseg %u",
2256 			bf->bf_nseg));
2257 	}
2258 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
2259 
2260 	/*
2261 	 * Setup descriptors.  For receive we always terminate
2262 	 * the descriptor list with a self-linked entry so we'll
2263 	 * not get overrun under high load (as can happen with a
2264 	 * 5212 when ANI processing enables PHY errors).
2265 	 *
2266 	 * To insure the last descriptor is self-linked we create
2267 	 * each descriptor as self-linked and add it to the end.  As
2268 	 * each additional descriptor is added the previous self-linked
2269 	 * entry is ``fixed'' naturally.  This should be safe even
2270 	 * if DMA is happening.  When processing RX interrupts we
2271 	 * never remove/process the last, self-linked, entry on the
2272 	 * descriptor list.  This insures the hardware always has
2273 	 * someplace to write a new frame.
2274 	 */
2275 	ds = bf->bf_desc;
2276 	ds->ds_link = bf->bf_daddr;	/* link to self */
2277 	ds->ds_data = bf->bf_segs[0].ds_addr;
2278 	ath_hal_setuprxdesc(ah, ds
2279 		, m->m_len		/* buffer size */
2280 		, 0
2281 	);
2282 
2283 	if (sc->sc_rxlink != NULL)
2284 		*sc->sc_rxlink = bf->bf_daddr;
2285 	sc->sc_rxlink = &ds->ds_link;
2286 	return 0;
2287 }
2288 
2289 static void
2290 ath_rx_proc(void *arg, int npending)
2291 {
2292 #define	PA2DESC(_sc, _pa) \
2293 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2294 		((_pa) - (_sc)->sc_desc_paddr)))
2295 	struct ath_softc *sc = arg;
2296 	struct ath_buf *bf;
2297 	struct ieee80211com *ic = &sc->sc_ic;
2298 	struct ifnet *ifp = &ic->ic_if;
2299 	struct ath_hal *ah = sc->sc_ah;
2300 	struct ath_desc *ds;
2301 	struct mbuf *m;
2302 	struct ieee80211_frame *wh, whbuf;
2303 	struct ieee80211_node *ni;
2304 	struct ath_node *an;
2305 	struct ath_recv_hist *rh;
2306 	int len;
2307 	u_int phyerr;
2308 	HAL_STATUS status;
2309 
2310 	DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
2311 	do {
2312 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
2313 		if (bf == NULL) {		/* NB: shouldn't happen */
2314 			if_printf(ifp, "ath_rx_proc: no buffer!\n");
2315 			break;
2316 		}
2317 		ds = bf->bf_desc;
2318 		if (ds->ds_link == bf->bf_daddr) {
2319 			/* NB: never process the self-linked entry at the end */
2320 			break;
2321 		}
2322 		m = bf->bf_m;
2323 		if (m == NULL) {		/* NB: shouldn't happen */
2324 			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
2325 			continue;
2326 		}
2327 		/* XXX sync descriptor memory */
2328 		/*
2329 		 * Must provide the virtual address of the current
2330 		 * descriptor, the physical address, and the virtual
2331 		 * address of the next descriptor in the h/w chain.
2332 		 * This allows the HAL to look ahead to see if the
2333 		 * hardware is done with a descriptor by checking the
2334 		 * done bit in the following descriptor and the address
2335 		 * of the current descriptor the DMA engine is working
2336 		 * on.  All this is necessary because of our use of
2337 		 * a self-linked list to avoid rx overruns.
2338 		 */
2339 		status = ath_hal_rxprocdesc(ah, ds,
2340 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2341 #ifdef AR_DEBUG
2342 		if (ath_debug & ATH_DEBUG_RECV_DESC)
2343 			ath_printrxbuf(bf, status == HAL_OK);
2344 #endif
2345 		if (status == HAL_EINPROGRESS)
2346 			break;
2347 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
2348 
2349 		if (ds->ds_rxstat.rs_more) {
2350 			/*
2351 			 * Frame spans multiple descriptors; this
2352 			 * cannot happen yet as we don't support
2353 			 * jumbograms.  If not in monitor mode,
2354 			 * discard the frame.
2355 			 */
2356 
2357 			/* enable this if you want to see error frames in Monitor mode */
2358 #ifdef ERROR_FRAMES
2359 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2360 				/* XXX statistic */
2361 				goto rx_next;
2362 			}
2363 #endif
2364 			/* fall thru for monitor mode handling... */
2365 
2366 		} else if (ds->ds_rxstat.rs_status != 0) {
2367 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2368 				sc->sc_stats.ast_rx_crcerr++;
2369 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2370 				sc->sc_stats.ast_rx_fifoerr++;
2371 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2372 				sc->sc_stats.ast_rx_badcrypt++;
2373 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2374 				sc->sc_stats.ast_rx_phyerr++;
2375 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2376 				sc->sc_stats.ast_rx_phy[phyerr]++;
2377 			}
2378 
2379 			/*
2380 			 * reject error frames, we normally don't want
2381 			 * to see them in monitor mode.
2382 			 */
2383 			if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) ||
2384 			    (ds->ds_rxstat.rs_status & HAL_RXERR_PHY))
2385 			    goto rx_next;
2386 
2387 			/*
2388 			 * In monitor mode, allow through packets that
2389 			 * cannot be decrypted
2390 			 */
2391 			if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) ||
2392 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2393 				goto rx_next;
2394 		}
2395 
2396 		len = ds->ds_rxstat.rs_datalen;
2397 		if (len < IEEE80211_MIN_LEN) {
2398 			DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
2399 				__func__, len));
2400 			sc->sc_stats.ast_rx_tooshort++;
2401 			goto rx_next;
2402 		}
2403 
2404 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2405 
2406 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2407 		bf->bf_m = NULL;
2408 		m->m_pkthdr.rcvif = ifp;
2409 		m->m_pkthdr.len = m->m_len = len;
2410 
2411 #if NBPFILTER > 0
2412 		if (sc->sc_drvbpf) {
2413 			sc->sc_rx_th.wr_rate =
2414 				sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2415 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2416 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2417 			/* XXX TSF */
2418 			bpf_mtap2(sc->sc_drvbpf,
2419 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2420 		}
2421 #endif
2422 
2423 		m_adj(m, -IEEE80211_CRC_LEN);
2424 		wh = mtod(m, struct ieee80211_frame *);
2425 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2426 			/*
2427 			 * WEP is decrypted by hardware. Clear WEP bit
2428 			 * and trim WEP header for ieee80211_input().
2429 			 */
2430 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2431 			memcpy(&whbuf, wh, sizeof(whbuf));
2432 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2433 			wh = mtod(m, struct ieee80211_frame *);
2434 			memcpy(wh, &whbuf, sizeof(whbuf));
2435 			/*
2436 			 * Also trim WEP ICV from the tail.
2437 			 */
2438 			m_adj(m, -IEEE80211_WEP_CRCLEN);
2439 			/*
2440 			 * The header has probably moved.
2441 			 */
2442 			wh = mtod(m, struct ieee80211_frame *);
2443 		}
2444 
2445 		/*
2446 		 * Locate the node for sender, track state, and
2447 		 * then pass this node (referenced) up to the 802.11
2448 		 * layer for its use.
2449 		 */
2450 		ni = ieee80211_find_rxnode(ic, wh);
2451 
2452 		/*
2453 		 * Record driver-specific state.
2454 		 */
2455 		an = ATH_NODE(ni);
2456 		if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2457 			an->an_rx_hist_next = 0;
2458 		rh = &an->an_rx_hist[an->an_rx_hist_next];
2459 		rh->arh_ticks = ATH_TICKS();
2460 		rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2461 		rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2462 
2463 		/*
2464 		 * Send frame up for processing.
2465 		 */
2466 		ieee80211_input(ifp, m, ni,
2467 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2468 
2469 		/*
2470 		 * The frame may have caused the node to be marked for
2471 		 * reclamation (e.g. in response to a DEAUTH message)
2472 		 * so use release_node here instead of unref_node.
2473 		 */
2474 		ieee80211_release_node(ic, ni);
2475   rx_next:
2476 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2477 	} while (ath_rxbuf_init(sc, bf) == 0);
2478 
2479 	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
2480 	ath_hal_rxena(ah);			/* in case of RXEOL */
2481 
2482 #ifdef __NetBSD__
2483 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2484 		ath_start(ifp);
2485 #endif /* __NetBSD__ */
2486 #undef PA2DESC
2487 }
2488 
2489 /*
2490  * XXX Size of an ACK control frame in bytes.
2491  */
2492 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
2493 
2494 static int
2495 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2496     struct mbuf *m0)
2497 {
2498 	struct ieee80211com *ic = &sc->sc_ic;
2499 	struct ath_hal *ah = sc->sc_ah;
2500 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2501 	int i, error, iswep, hdrlen, pktlen;
2502 	u_int8_t rix, cix, txrate, ctsrate;
2503 	struct ath_desc *ds;
2504 	struct mbuf *m;
2505 	struct ieee80211_frame *wh;
2506 	u_int32_t iv;
2507 	u_int8_t *ivp;
2508 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2509 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2510 	u_int subtype, flags, ctsduration, antenna;
2511 	HAL_PKT_TYPE atype;
2512 	const HAL_RATE_TABLE *rt;
2513 	HAL_BOOL shortPreamble;
2514 	struct ath_node *an;
2515 	ath_txq_critsect_decl(s);
2516 
2517 	wh = mtod(m0, struct ieee80211_frame *);
2518 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2519 	hdrlen = sizeof(struct ieee80211_frame);
2520 	pktlen = m0->m_pkthdr.len;
2521 
2522 	if (iswep) {
2523 		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2524 		m_adj(m0, hdrlen);
2525 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2526 		if (m0 == NULL) {
2527 			sc->sc_stats.ast_tx_nombuf++;
2528 			return ENOMEM;
2529 		}
2530 		ivp = hdrbuf + hdrlen;
2531 		wh = mtod(m0, struct ieee80211_frame *);
2532 		/*
2533 		 * XXX
2534 		 * IV must not duplicate during the lifetime of the key.
2535 		 * But no mechanism to renew keys is defined in IEEE 802.11
2536 		 * for WEP.  And the IV may be duplicated at other stations
2537 		 * because the session key itself is shared.  So we use a
2538 		 * pseudo random IV for now, though it is not the right way.
2539 		 *
2540 		 * NB: Rather than use a strictly random IV we select a
2541 		 * random one to start and then increment the value for
2542 		 * each frame.  This is an explicit tradeoff between
2543 		 * overhead and security.  Given the basic insecurity of
2544 		 * WEP this seems worthwhile.
2545 		 */
2546 
2547 		/*
2548 		 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2549 		 * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
2550 		 */
2551 		iv = ic->ic_iv;
2552 		if ((iv & 0xff00) == 0xff00) {
2553 			int B = (iv & 0xff0000) >> 16;
2554 			if (3 <= B && B < 16)
2555 				iv = (B+1) << 16;
2556 		}
2557 		ic->ic_iv = iv + 1;
2558 
2559 		/*
2560 		 * NB: Preserve byte order of IV for packet
2561 		 *     sniffers; it doesn't matter otherwise.
2562 		 */
2563 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
2564 		ivp[0] = iv >> 0;
2565 		ivp[1] = iv >> 8;
2566 		ivp[2] = iv >> 16;
2567 #else
2568 		ivp[2] = iv >> 0;
2569 		ivp[1] = iv >> 8;
2570 		ivp[0] = iv >> 16;
2571 #endif
2572 		ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */
2573 		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2574 		/*
2575 		 * The ICV length must be included into hdrlen and pktlen.
2576 		 */
2577 		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2578 		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2579 	}
2580 	pktlen += IEEE80211_CRC_LEN;
2581 
2582 	/*
2583 	 * Load the DMA map so any coalescing is done.  This
2584 	 * also calculates the number of descriptors we need.
2585 	 */
2586 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2587 	/*
2588 	 * Discard null packets and check for packets that
2589 	 * require too many TX descriptors.  We try to convert
2590 	 * the latter to a cluster.
2591 	 */
2592 	if (error == EFBIG) {		/* too many desc's, linearize */
2593 		sc->sc_stats.ast_tx_linear++;
2594 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2595 		if (m == NULL) {
2596 			sc->sc_stats.ast_tx_nombuf++;
2597 			m_freem(m0);
2598 			return ENOMEM;
2599 		}
2600 #ifdef __FreeBSD__
2601 		M_MOVE_PKTHDR(m, m0);
2602 #else
2603 		M_COPY_PKTHDR(m, m0);
2604 #endif
2605 		MCLGET(m, M_DONTWAIT);
2606 		if ((m->m_flags & M_EXT) == 0) {
2607 			sc->sc_stats.ast_tx_nomcl++;
2608 			m_freem(m0);
2609 			m_free(m);
2610 			return ENOMEM;
2611 		}
2612 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2613 		m_freem(m0);
2614 		m->m_len = m->m_pkthdr.len;
2615 		m0 = m;
2616 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2617 					         BUS_DMA_NOWAIT);
2618 		if (error != 0) {
2619 			sc->sc_stats.ast_tx_busdma++;
2620 			m_freem(m0);
2621 			return error;
2622 		}
2623 		KASSERT(bf->bf_nseg == 1,
2624 			("ath_tx_start: packet not one segment; nseg %u",
2625 			bf->bf_nseg));
2626 	} else if (error != 0) {
2627 		sc->sc_stats.ast_tx_busdma++;
2628 		m_freem(m0);
2629 		return error;
2630 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
2631 		sc->sc_stats.ast_tx_nodata++;
2632 		m_freem(m0);
2633 		return EIO;
2634 	}
2635 	DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
2636 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2637 	bf->bf_m = m0;
2638 	bf->bf_node = ni;			/* NB: held reference */
2639 
2640 	/* setup descriptors */
2641 	ds = bf->bf_desc;
2642 	rt = sc->sc_currates;
2643 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2644 
2645 	/*
2646 	 * Calculate Atheros packet type from IEEE80211 packet header
2647 	 * and setup for rate calculations.
2648 	 */
2649 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
2650 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2651 	case IEEE80211_FC0_TYPE_MGT:
2652 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2653 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2654 			atype = HAL_PKT_TYPE_BEACON;
2655 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2656 			atype = HAL_PKT_TYPE_PROBE_RESP;
2657 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2658 			atype = HAL_PKT_TYPE_ATIM;
2659 		rix = 0;			/* XXX lowest rate */
2660 		break;
2661 	case IEEE80211_FC0_TYPE_CTL:
2662 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2663 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2664 			atype = HAL_PKT_TYPE_PSPOLL;
2665 		rix = 0;			/* XXX lowest rate */
2666 		break;
2667 	default:
2668 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2669 				IEEE80211_RATE_VAL];
2670 		if (rix == 0xff) {
2671 			if_printf(ifp, "bogus xmit rate 0x%x\n",
2672 				ni->ni_rates.rs_rates[ni->ni_txrate]);
2673 			sc->sc_stats.ast_tx_badrate++;
2674 			m_freem(m0);
2675 			return EIO;
2676 		}
2677 		break;
2678 	}
2679 	/*
2680 	 * NB: the 802.11 layer marks whether or not we should
2681 	 * use short preamble based on the current mode and
2682 	 * negotiated parameters.
2683 	 */
2684 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2685 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2686 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2687 		shortPreamble = AH_TRUE;
2688 		sc->sc_stats.ast_tx_shortpre++;
2689 	} else {
2690 		txrate = rt->info[rix].rateCode;
2691 		shortPreamble = AH_FALSE;
2692 	}
2693 
2694 	/*
2695 	 * Calculate miscellaneous flags.
2696 	 */
2697 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
2698 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2699 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
2700 		sc->sc_stats.ast_tx_noack++;
2701 	} else if (pktlen > ic->ic_rtsthreshold) {
2702 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
2703 		sc->sc_stats.ast_tx_rts++;
2704 	}
2705 
2706 	/*
2707 	 * Calculate duration.  This logically belongs in the 802.11
2708 	 * layer but it lacks sufficient information to calculate it.
2709 	 */
2710 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
2711 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2712 		u_int16_t dur;
2713 		/*
2714 		 * XXX not right with fragmentation.
2715 		 */
2716 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2717 				rix, shortPreamble);
2718 		*((u_int16_t*) wh->i_dur) = htole16(dur);
2719 	}
2720 
2721 	/*
2722 	 * Calculate RTS/CTS rate and duration if needed.
2723 	 */
2724 	ctsduration = 0;
2725 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2726 		/*
2727 		 * CTS transmit rate is derived from the transmit rate
2728 		 * by looking in the h/w rate table.  We must also factor
2729 		 * in whether or not a short preamble is to be used.
2730 		 */
2731 		cix = rt->info[rix].controlRate;
2732 		ctsrate = rt->info[cix].rateCode;
2733 		if (shortPreamble)
2734 			ctsrate |= rt->info[cix].shortPreamble;
2735 		/*
2736 		 * Compute the transmit duration based on the size
2737 		 * of an ACK frame.  We call into the HAL to do the
2738 		 * computation since it depends on the characteristics
2739 		 * of the actual PHY being used.
2740 		 */
2741 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
2742 			ctsduration += ath_hal_computetxtime(ah,
2743 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2744 		}
2745 		/* SIFS + data */
2746 		ctsduration += ath_hal_computetxtime(ah,
2747 			rt, pktlen, rix, shortPreamble);
2748 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
2749 			ctsduration += ath_hal_computetxtime(ah,
2750 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2751 		}
2752 	} else
2753 		ctsrate = 0;
2754 
2755 	/*
2756 	 * For now use the antenna on which the last good
2757 	 * frame was received on.  We assume this field is
2758 	 * initialized to 0 which gives us ``auto'' or the
2759 	 * ``default'' antenna.
2760 	 */
2761 	an = (struct ath_node *) ni;
2762 	if (an->an_tx_antenna)
2763 		antenna = an->an_tx_antenna;
2764 	else
2765 		antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2766 
2767 	if (ic->ic_rawbpf)
2768 		bpf_mtap(ic->ic_rawbpf, m0);
2769 	if (sc->sc_drvbpf) {
2770 		sc->sc_tx_th.wt_flags = 0;
2771 		if (shortPreamble)
2772 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2773 		if (iswep)
2774 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2775 		sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2776 		sc->sc_tx_th.wt_txpower = 60/2;		/* XXX */
2777 		sc->sc_tx_th.wt_antenna = antenna;
2778 
2779 		bpf_mtap2(sc->sc_drvbpf,
2780 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
2781 	}
2782 
2783 	/*
2784 	 * Formulate first tx descriptor with tx controls.
2785 	 */
2786 	/* XXX check return value? */
2787 	ath_hal_setuptxdesc(ah, ds
2788 		, pktlen		/* packet length */
2789 		, hdrlen		/* header length */
2790 		, atype			/* Atheros packet type */
2791 		, 60			/* txpower XXX */
2792 		, txrate, 1+10		/* series 0 rate/tries */
2793 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2794 		, antenna		/* antenna mode */
2795 		, flags			/* flags */
2796 		, ctsrate		/* rts/cts rate */
2797 		, ctsduration		/* rts/cts duration */
2798 	);
2799 #ifdef notyet
2800 	ath_hal_setupxtxdesc(ah, ds
2801 		, AH_FALSE		/* short preamble */
2802 		, 0, 0			/* series 1 rate/tries */
2803 		, 0, 0			/* series 2 rate/tries */
2804 		, 0, 0			/* series 3 rate/tries */
2805 	);
2806 #endif
2807 	/*
2808 	 * Fillin the remainder of the descriptor info.
2809 	 */
2810 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
2811 		ds->ds_data = bf->bf_segs[i].ds_addr;
2812 		if (i == bf->bf_nseg - 1)
2813 			ds->ds_link = 0;
2814 		else
2815 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2816 		ath_hal_filltxdesc(ah, ds
2817 			, bf->bf_segs[i].ds_len	/* segment length */
2818 			, i == 0		/* first segment */
2819 			, i == bf->bf_nseg - 1	/* last segment */
2820 		);
2821 		DPRINTF(ATH_DEBUG_XMIT,
2822 			("%s: %d: %08x %08x %08x %08x %08x %08x\n",
2823 			__func__, i, ds->ds_link, ds->ds_data,
2824 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
2825 	}
2826 
2827 	/*
2828 	 * Insert the frame on the outbound list and
2829 	 * pass it on to the hardware.
2830 	 */
2831 	ath_txq_critsect_begin(sc, s);
2832 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2833 	if (sc->sc_txlink == NULL) {
2834 		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2835 		DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
2836 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
2837 	} else {
2838 		*sc->sc_txlink = bf->bf_daddr;
2839 		DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
2840 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2841 	}
2842 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2843 	ath_txq_critsect_end(sc, s);
2844 
2845 	ath_hal_txstart(ah, sc->sc_txhalq);
2846 	return 0;
2847 }
2848 
2849 static void
2850 ath_tx_proc(void *arg, int npending)
2851 {
2852 	struct ath_softc *sc = arg;
2853 	struct ath_hal *ah = sc->sc_ah;
2854 	struct ath_buf *bf;
2855 	struct ieee80211com *ic = &sc->sc_ic;
2856 	struct ifnet *ifp = &ic->ic_if;
2857 	struct ath_desc *ds;
2858 	struct ieee80211_node *ni;
2859 	struct ath_node *an;
2860 	int sr, lr;
2861 	HAL_STATUS status;
2862 	ath_txq_critsect_decl(s);
2863 	ath_txbuf_critsect_decl(s2);
2864 
2865 	DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n",
2866 		__func__, npending,
2867 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2868 		sc->sc_txlink));
2869 	for (;;) {
2870 		ath_txq_critsect_begin(sc, s);
2871 		bf = TAILQ_FIRST(&sc->sc_txq);
2872 		if (bf == NULL) {
2873 			sc->sc_txlink = NULL;
2874 			ath_txq_critsect_end(sc, s);
2875 			break;
2876 		}
2877 		/* only the last descriptor is needed */
2878 		ds = &bf->bf_desc[bf->bf_nseg - 1];
2879 		status = ath_hal_txprocdesc(ah, ds);
2880 #ifdef AR_DEBUG
2881 		if (ath_debug & ATH_DEBUG_XMIT_DESC)
2882 			ath_printtxbuf(bf, status == HAL_OK);
2883 #endif
2884 		if (status == HAL_EINPROGRESS) {
2885 			ath_txq_critsect_end(sc, s);
2886 			break;
2887 		}
2888 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2889 		ath_txq_critsect_end(sc, s);
2890 
2891 		ni = bf->bf_node;
2892 		if (ni != NULL) {
2893 			an = (struct ath_node *) ni;
2894 			if (ds->ds_txstat.ts_status == 0) {
2895 				an->an_tx_ok++;
2896 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2897 			} else {
2898 				an->an_tx_err++;
2899 				ifp->if_oerrors++;
2900 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2901 					sc->sc_stats.ast_tx_xretries++;
2902 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2903 					sc->sc_stats.ast_tx_fifoerr++;
2904 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2905 					sc->sc_stats.ast_tx_filtered++;
2906 				an->an_tx_antenna = 0;	/* invalidate */
2907 			}
2908 			sr = ds->ds_txstat.ts_shortretry;
2909 			lr = ds->ds_txstat.ts_longretry;
2910 			sc->sc_stats.ast_tx_shortretry += sr;
2911 			sc->sc_stats.ast_tx_longretry += lr;
2912 			if (sr + lr)
2913 				an->an_tx_retr++;
2914 			/*
2915 			 * Reclaim reference to node.
2916 			 *
2917 			 * NB: the node may be reclaimed here if, for example
2918 			 *     this is a DEAUTH message that was sent and the
2919 			 *     node was timed out due to inactivity.
2920 			 */
2921 			ieee80211_release_node(ic, ni);
2922 		}
2923 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2924 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2925 		m_freem(bf->bf_m);
2926 		bf->bf_m = NULL;
2927 		bf->bf_node = NULL;
2928 
2929 		ath_txbuf_critsect_begin(sc, s2);
2930 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2931 		ath_txbuf_critsect_end(sc, s2);
2932 	}
2933 	ifp->if_flags &= ~IFF_OACTIVE;
2934 	sc->sc_tx_timer = 0;
2935 
2936 	ath_start(ifp);
2937 }
2938 
2939 /*
2940  * Drain the transmit queue and reclaim resources.
2941  */
2942 static void
2943 ath_draintxq(struct ath_softc *sc)
2944 {
2945 	struct ath_hal *ah = sc->sc_ah;
2946 	struct ieee80211com *ic = &sc->sc_ic;
2947 	struct ifnet *ifp = &ic->ic_if;
2948 	struct ieee80211_node *ni;
2949 	struct ath_buf *bf;
2950 	ath_txq_critsect_decl(s);
2951 	ath_txbuf_critsect_decl(s2);
2952 
2953 	/* XXX return value */
2954 	if (!sc->sc_invalid) {
2955 		/* don't touch the hardware if marked invalid */
2956 		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2957 		DPRINTF(ATH_DEBUG_RESET,
2958 		    ("%s: tx queue %p, link %p\n", __func__,
2959 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2960 		    sc->sc_txlink));
2961 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2962 		DPRINTF(ATH_DEBUG_RESET,
2963 		    ("%s: beacon queue %p\n", __func__,
2964 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2965 	}
2966 	for (;;) {
2967 		ath_txq_critsect_begin(sc, s);
2968 		bf = TAILQ_FIRST(&sc->sc_txq);
2969 		if (bf == NULL) {
2970 			sc->sc_txlink = NULL;
2971 			ath_txq_critsect_end(sc, s);
2972 			break;
2973 		}
2974 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2975 		ath_txq_critsect_end(sc, s);
2976 #ifdef AR_DEBUG
2977 		if (ath_debug & ATH_DEBUG_RESET)
2978 			ath_printtxbuf(bf,
2979 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2980 #endif /* AR_DEBUG */
2981 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2982 		m_freem(bf->bf_m);
2983 		bf->bf_m = NULL;
2984 		ni = bf->bf_node;
2985 		bf->bf_node = NULL;
2986 		ath_txbuf_critsect_begin(sc, s2);
2987 		if (ni != NULL) {
2988 			/*
2989 			 * Reclaim node reference.
2990 			 */
2991 			ieee80211_release_node(ic, ni);
2992 		}
2993 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2994 		ath_txbuf_critsect_end(sc, s2);
2995 	}
2996 	ifp->if_flags &= ~IFF_OACTIVE;
2997 	sc->sc_tx_timer = 0;
2998 }
2999 
3000 /*
3001  * Disable the receive h/w in preparation for a reset.
3002  */
3003 static void
3004 ath_stoprecv(struct ath_softc *sc)
3005 {
3006 #define	PA2DESC(_sc, _pa) \
3007 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
3008 		((_pa) - (_sc)->sc_desc_paddr)))
3009 	struct ath_hal *ah = sc->sc_ah;
3010 
3011 	ath_hal_stoppcurecv(ah);	/* disable PCU */
3012 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3013 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3014 	DELAY(3000);			/* long enough for 1 frame */
3015 #ifdef AR_DEBUG
3016 	if (ath_debug & ATH_DEBUG_RESET) {
3017 		struct ath_buf *bf;
3018 
3019 		printf("%s: rx queue %p, link %p\n", __func__,
3020 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3021 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3022 			struct ath_desc *ds = bf->bf_desc;
3023 			if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
3024 			    PA2DESC(sc, ds->ds_link)) == HAL_OK)
3025 				ath_printrxbuf(bf, 1);
3026 		}
3027 	}
3028 #endif
3029 	sc->sc_rxlink = NULL;		/* just in case */
3030 #undef PA2DESC
3031 }
3032 
3033 /*
3034  * Enable the receive h/w following a reset.
3035  */
3036 static int
3037 ath_startrecv(struct ath_softc *sc)
3038 {
3039 	struct ath_hal *ah = sc->sc_ah;
3040 	struct ath_buf *bf;
3041 
3042 	sc->sc_rxlink = NULL;
3043 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3044 		int error = ath_rxbuf_init(sc, bf);
3045 		if (error != 0) {
3046 			DPRINTF(ATH_DEBUG_RECV,
3047 				("%s: ath_rxbuf_init failed %d\n",
3048 				__func__, error));
3049 			return error;
3050 		}
3051 	}
3052 
3053 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
3054 	ath_hal_putrxbuf(ah, bf->bf_daddr);
3055 	ath_hal_rxena(ah);		/* enable recv descriptors */
3056 	ath_mode_init(sc);		/* set filters, etc. */
3057 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3058 	return 0;
3059 }
3060 
3061 /*
3062  * Set/change channels.  If the channel is really being changed,
3063  * it's done by resetting the chip.  To accomplish this we must
3064  * first cleanup any pending DMA, then restart stuff after a la
3065  * ath_init.
3066  */
3067 static int
3068 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3069 {
3070 	struct ath_hal *ah = sc->sc_ah;
3071 	struct ieee80211com *ic = &sc->sc_ic;
3072 
3073 	DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
3074 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
3075 		ic->ic_ibss_chan->ic_freq,
3076 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
3077 	if (chan != ic->ic_ibss_chan) {
3078 		HAL_STATUS status;
3079 		HAL_CHANNEL hchan;
3080 		enum ieee80211_phymode mode;
3081 
3082 		/*
3083 		 * To switch channels clear any pending DMA operations;
3084 		 * wait long enough for the RX fifo to drain, reset the
3085 		 * hardware at the new frequency, and then re-enable
3086 		 * the relevant bits of the h/w.
3087 		 */
3088 		ath_hal_intrset(ah, 0);		/* disable interrupts */
3089 		ath_draintxq(sc);		/* clear pending tx frames */
3090 		ath_stoprecv(sc);		/* turn off frame recv */
3091 		/*
3092 		 * Convert to a HAL channel description with
3093 		 * the flags constrained to reflect the current
3094 		 * operating mode.
3095 		 */
3096 		hchan.channel = chan->ic_freq;
3097 		hchan.channelFlags = ath_chan2flags(ic, chan);
3098 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3099 			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
3100 				"channel %u (%u Mhz)\n",
3101 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3102 			return EIO;
3103 		}
3104 		/*
3105 		 * Re-enable rx framework.
3106 		 */
3107 		if (ath_startrecv(sc) != 0) {
3108 			if_printf(&ic->ic_if,
3109 				"ath_chan_set: unable to restart recv logic\n");
3110 			return EIO;
3111 		}
3112 
3113 		/*
3114 		 * Update BPF state.
3115 		 */
3116 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3117 			htole16(chan->ic_freq);
3118 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3119 			htole16(chan->ic_flags);
3120 
3121 		/*
3122 		 * Change channels and update the h/w rate map
3123 		 * if we're switching; e.g. 11a to 11b/g.
3124 		 */
3125 		ic->ic_ibss_chan = chan;
3126 		mode = ieee80211_chan2mode(ic, chan);
3127 		if (mode != sc->sc_curmode)
3128 			ath_setcurmode(sc, mode);
3129 
3130 		/*
3131 		 * Re-enable interrupts.
3132 		 */
3133 		ath_hal_intrset(ah, sc->sc_imask);
3134 	}
3135 	return 0;
3136 }
3137 
3138 static void
3139 ath_next_scan(void *arg)
3140 {
3141 	struct ath_softc *sc = arg;
3142 	struct ieee80211com *ic = &sc->sc_ic;
3143 	int s;
3144 
3145 	/* don't call ath_start w/o network interrupts blocked */
3146 	s = splnet();
3147 
3148 	if (ic->ic_state == IEEE80211_S_SCAN)
3149 		ieee80211_next_scan(ic);
3150 	splx(s);
3151 }
3152 
3153 /*
3154  * Periodically recalibrate the PHY to account
3155  * for temperature/environment changes.
3156  */
3157 static void
3158 ath_calibrate(void *arg)
3159 {
3160 	struct ath_softc *sc = arg;
3161 	struct ath_hal *ah = sc->sc_ah;
3162 	struct ieee80211com *ic = &sc->sc_ic;
3163 	struct ieee80211_channel *c;
3164 	HAL_CHANNEL hchan;
3165 
3166 	sc->sc_stats.ast_per_cal++;
3167 
3168 	/*
3169 	 * Convert to a HAL channel description with the flags
3170 	 * constrained to reflect the current operating mode.
3171 	 */
3172 	c = ic->ic_ibss_chan;
3173 	hchan.channel = c->ic_freq;
3174 	hchan.channelFlags = ath_chan2flags(ic, c);
3175 
3176 	DPRINTF(ATH_DEBUG_CALIBRATE,
3177 		("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
3178 
3179 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3180 		/*
3181 		 * Rfgain is out of bounds, reset the chip
3182 		 * to load new gain values.
3183 		 */
3184 		sc->sc_stats.ast_per_rfgain++;
3185 		ath_reset(sc);
3186 	}
3187 	if (!ath_hal_calibrate(ah, &hchan)) {
3188 		DPRINTF(ATH_DEBUG_ANY,
3189 			("%s: calibration of channel %u failed\n",
3190 			__func__, c->ic_freq));
3191 		sc->sc_stats.ast_per_calfail++;
3192 	}
3193 	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
3194 }
3195 
3196 static HAL_LED_STATE
3197 ath_state_to_led(enum ieee80211_state state)
3198 {
3199 	switch (state) {
3200 	case IEEE80211_S_INIT:
3201 		return HAL_LED_INIT;
3202 	case IEEE80211_S_SCAN:
3203 		return HAL_LED_SCAN;
3204 	case IEEE80211_S_AUTH:
3205 		return HAL_LED_AUTH;
3206 	case IEEE80211_S_ASSOC:
3207 		return HAL_LED_ASSOC;
3208 	case IEEE80211_S_RUN:
3209 		return HAL_LED_RUN;
3210 	default:
3211 		panic("%s: unknown 802.11 state %d\n", __func__, state);
3212 		return HAL_LED_INIT;
3213 	}
3214 }
3215 
3216 static int
3217 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3218 {
3219 	struct ifnet *ifp = &ic->ic_if;
3220 	struct ath_softc *sc = ifp->if_softc;
3221 	struct ath_hal *ah = sc->sc_ah;
3222 	struct ieee80211_node *ni;
3223 	int i, error;
3224 	const u_int8_t *bssid;
3225 	u_int32_t rfilt;
3226 
3227 	DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
3228 		ieee80211_state_name[ic->ic_state],
3229 		ieee80211_state_name[nstate]));
3230 
3231 	ath_hal_setledstate(ah, ath_state_to_led(nstate));	/* set LED */
3232 
3233 	if (nstate == IEEE80211_S_INIT) {
3234 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3235 		ath_hal_intrset(ah, sc->sc_imask);
3236 		callout_stop(&sc->sc_scan_ch);
3237 		callout_stop(&sc->sc_cal_ch);
3238 		return (*sc->sc_newstate)(ic, nstate, arg);
3239 	}
3240 	ni = ic->ic_bss;
3241 	error = ath_chan_set(sc, ni->ni_chan);
3242 	if (error != 0)
3243 		goto bad;
3244 	rfilt = ath_calcrxfilter(sc);
3245 	if (nstate == IEEE80211_S_SCAN) {
3246 		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
3247 			ath_next_scan, sc);
3248 		bssid = ifp->if_broadcastaddr;
3249 	} else {
3250 		callout_stop(&sc->sc_scan_ch);
3251 		bssid = ni->ni_bssid;
3252 	}
3253 	ath_hal_setrxfilter(ah, rfilt);
3254 	DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
3255 		 __func__, rfilt, ether_sprintf(bssid)));
3256 
3257 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3258 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
3259 	else
3260 		ath_hal_setassocid(ah, bssid, 0);
3261 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3262 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
3263 			if (ath_hal_keyisvalid(ah, i))
3264 				ath_hal_keysetmac(ah, i, bssid);
3265 	}
3266 
3267 	if (nstate == IEEE80211_S_RUN) {
3268 		DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3269 			"capinfo=0x%04x chan=%d\n"
3270 			 , __func__
3271 			 , ic->ic_flags
3272 			 , ni->ni_intval
3273 			 , ether_sprintf(ni->ni_bssid)
3274 			 , ni->ni_capinfo
3275 			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
3276 
3277 		/*
3278 		 * Allocate and setup the beacon frame for AP or adhoc mode.
3279 		 */
3280 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3281 		    ic->ic_opmode == IEEE80211_M_IBSS) {
3282 			error = ath_beacon_alloc(sc, ni);
3283 			if (error != 0)
3284 				goto bad;
3285 		}
3286 
3287 		/*
3288 		 * Configure the beacon and sleep timers.
3289 		 */
3290 		ath_beacon_config(sc);
3291 
3292 		/* start periodic recalibration timer */
3293 		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
3294 			ath_calibrate, sc);
3295 	} else {
3296 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3297 		ath_hal_intrset(ah, sc->sc_imask);
3298 		callout_stop(&sc->sc_cal_ch);		/* no calibration */
3299 	}
3300 	/*
3301 	 * Reset the rate control state.
3302 	 */
3303 	ath_rate_ctl_reset(sc, nstate);
3304 	/*
3305 	 * Invoke the parent method to complete the work.
3306 	 */
3307 	return (*sc->sc_newstate)(ic, nstate, arg);
3308 bad:
3309 	callout_stop(&sc->sc_scan_ch);
3310 	callout_stop(&sc->sc_cal_ch);
3311 	/* NB: do not invoke the parent */
3312 	return error;
3313 }
3314 
3315 static void
3316 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3317     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
3318 {
3319 	struct ath_softc *sc = (struct ath_softc*)ic->ic_softc;
3320 	struct ath_hal *ah = sc->sc_ah;
3321 
3322 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3323 
3324 	switch (subtype) {
3325 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3326 	case IEEE80211_FC0_SUBTYPE_BEACON:
3327 		if (ic->ic_opmode != IEEE80211_M_IBSS ||
3328 		    ic->ic_state != IEEE80211_S_RUN)
3329 			break;
3330 		if (ieee80211_ibss_merge(ic, ni, ath_hal_gettsf64(ah)) ==
3331 		    ENETRESET)
3332 			ath_hal_setassocid(ah, ic->ic_bss->ni_bssid, 0);
3333 		break;
3334 	default:
3335 		break;
3336 	}
3337 	return;
3338 }
3339 
3340 /*
3341  * Setup driver-specific state for a newly associated node.
3342  * Note that we're called also on a re-associate, the isnew
3343  * param tells us if this is the first time or not.
3344  */
3345 static void
3346 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3347 {
3348 	if (isnew) {
3349 		struct ath_node *an = (struct ath_node *) ni;
3350 
3351 		an->an_tx_ok = an->an_tx_err =
3352 			an->an_tx_retr = an->an_tx_upper = 0;
3353 		/* start with highest negotiated rate */
3354 		/*
3355 		 * XXX should do otherwise but only when
3356 		 * the rate control algorithm is better.
3357 		 */
3358 		KASSERT(ni->ni_rates.rs_nrates > 0,
3359 			("new association w/ no rates!"));
3360 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3361 	}
3362 }
3363 
3364 static int
3365 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor,
3366     HAL_BOOL xchanmode)
3367 {
3368 	struct ieee80211com *ic = &sc->sc_ic;
3369 	struct ifnet *ifp = &ic->ic_if;
3370 	struct ath_hal *ah = sc->sc_ah;
3371 	HAL_CHANNEL *chans;
3372 	int i, ix, nchan;
3373 
3374 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3375 			M_TEMP, M_NOWAIT);
3376 	if (chans == NULL) {
3377 		if_printf(ifp, "unable to allocate channel table\n");
3378 		return ENOMEM;
3379 	}
3380 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3381 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
3382 		if_printf(ifp, "unable to collect channel list from hal\n");
3383 		free(chans, M_TEMP);
3384 		return EINVAL;
3385 	}
3386 
3387 	/*
3388 	 * Convert HAL channels to ieee80211 ones and insert
3389 	 * them in the table according to their channel number.
3390 	 */
3391 	for (i = 0; i < nchan; i++) {
3392 		HAL_CHANNEL *c = &chans[i];
3393 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3394 		if (ix > IEEE80211_CHAN_MAX) {
3395 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3396 				ix, c->channel, c->channelFlags);
3397 			continue;
3398 		}
3399 		DPRINTF(ATH_DEBUG_ANY,
3400 		    ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
3401 		    sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
3402 		    ix));
3403 		/* NB: flags are known to be compatible */
3404 		if (ic->ic_channels[ix].ic_freq == 0) {
3405 			ic->ic_channels[ix].ic_freq = c->channel;
3406 			ic->ic_channels[ix].ic_flags = c->channelFlags;
3407 		} else {
3408 			/* channels overlap; e.g. 11g and 11b */
3409 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
3410 		}
3411 	}
3412 	free(chans, M_TEMP);
3413 	return 0;
3414 }
3415 
3416 static int
3417 ath_rate_setup(struct ath_softc *sc, u_int mode)
3418 {
3419 	struct ath_hal *ah = sc->sc_ah;
3420 	struct ieee80211com *ic = &sc->sc_ic;
3421 	const HAL_RATE_TABLE *rt;
3422 	struct ieee80211_rateset *rs;
3423 	int i, maxrates;
3424 
3425 	switch (mode) {
3426 	case IEEE80211_MODE_11A:
3427 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
3428 		break;
3429 	case IEEE80211_MODE_11B:
3430 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
3431 		break;
3432 	case IEEE80211_MODE_11G:
3433 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
3434 		break;
3435 	case IEEE80211_MODE_TURBO:
3436 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
3437 		break;
3438 	default:
3439 		DPRINTF(ATH_DEBUG_ANY,
3440 			("%s: invalid mode %u\n", __func__, mode));
3441 		return 0;
3442 	}
3443 	rt = sc->sc_rates[mode];
3444 	if (rt == NULL)
3445 		return 0;
3446 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3447 		DPRINTF(ATH_DEBUG_ANY,
3448 			("%s: rate table too small (%u > %u)\n",
3449 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3450 		maxrates = IEEE80211_RATE_MAXSIZE;
3451 	} else
3452 		maxrates = rt->rateCount;
3453 	rs = &ic->ic_sup_rates[mode];
3454 	for (i = 0; i < maxrates; i++)
3455 		rs->rs_rates[i] = rt->info[i].dot11Rate;
3456 	rs->rs_nrates = maxrates;
3457 	return 1;
3458 }
3459 
3460 static void
3461 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3462 {
3463 	const HAL_RATE_TABLE *rt;
3464 	int i;
3465 
3466 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3467 	rt = sc->sc_rates[mode];
3468 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3469 	for (i = 0; i < rt->rateCount; i++)
3470 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3471 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3472 	for (i = 0; i < 32; i++)
3473 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3474 	sc->sc_currates = rt;
3475 	sc->sc_curmode = mode;
3476 }
3477 
3478 /*
3479  * Reset the rate control state for each 802.11 state transition.
3480  */
3481 static void
3482 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3483 {
3484 	struct ieee80211com *ic = &sc->sc_ic;
3485 	struct ieee80211_node *ni;
3486 	struct ath_node *an;
3487 
3488 	if (ic->ic_opmode != IEEE80211_M_STA) {
3489 		/*
3490 		 * When operating as a station the node table holds
3491 		 * the AP's that were discovered during scanning.
3492 		 * For any other operating mode we want to reset the
3493 		 * tx rate state of each node.
3494 		 */
3495 		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3496 			ni->ni_txrate = 0;		/* use lowest rate */
3497 			an = (struct ath_node *) ni;
3498 			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3499 			    an->an_tx_upper = 0;
3500 		}
3501 	}
3502 	/*
3503 	 * Reset local xmit state; this is really only meaningful
3504 	 * when operating in station or adhoc mode.
3505 	 */
3506 	ni = ic->ic_bss;
3507 	an = (struct ath_node *) ni;
3508 	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3509 	if (state == IEEE80211_S_RUN) {
3510 		/* start with highest negotiated rate */
3511 		KASSERT(ni->ni_rates.rs_nrates > 0,
3512 			("transition to RUN state w/ no rates!"));
3513 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3514 	} else {
3515 		/* use lowest rate */
3516 		ni->ni_txrate = 0;
3517 	}
3518 }
3519 
3520 /*
3521  * Examine and potentially adjust the transmit rate.
3522  */
3523 static void
3524 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3525 {
3526 	struct ath_softc *sc = arg;
3527 	struct ath_node *an = (struct ath_node *) ni;
3528 	struct ieee80211_rateset *rs = &ni->ni_rates;
3529 	int mod = 0, orate, enough;
3530 
3531 	/*
3532 	 * Rate control
3533 	 * XXX: very primitive version.
3534 	 */
3535 	sc->sc_stats.ast_rate_calls++;
3536 
3537 	enough = (an->an_tx_ok + an->an_tx_err >= 10);
3538 
3539 	/* no packet reached -> down */
3540 	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3541 		mod = -1;
3542 
3543 	/* all packets needs retry in average -> down */
3544 	if (enough && an->an_tx_ok < an->an_tx_retr)
3545 		mod = -1;
3546 
3547 	/* no error and less than 10% of packets needs retry -> up */
3548 	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3549 		mod = 1;
3550 
3551 	orate = ni->ni_txrate;
3552 	switch (mod) {
3553 	case 0:
3554 		if (enough && an->an_tx_upper > 0)
3555 			an->an_tx_upper--;
3556 		break;
3557 	case -1:
3558 		if (ni->ni_txrate > 0) {
3559 			ni->ni_txrate--;
3560 			sc->sc_stats.ast_rate_drop++;
3561 		}
3562 		an->an_tx_upper = 0;
3563 		break;
3564 	case 1:
3565 		if (++an->an_tx_upper < 2)
3566 			break;
3567 		an->an_tx_upper = 0;
3568 		if (ni->ni_txrate + 1 < rs->rs_nrates) {
3569 			ni->ni_txrate++;
3570 			sc->sc_stats.ast_rate_raise++;
3571 		}
3572 		break;
3573 	}
3574 
3575 	if (ni->ni_txrate != orate) {
3576 		DPRINTF(ATH_DEBUG_RATE,
3577 		    ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3578 		    __func__,
3579 		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3580 		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3581 		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3582 	}
3583 	if (ni->ni_txrate != orate || enough)
3584 		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3585 }
3586 
3587 #ifdef AR_DEBUG
3588 #ifdef __FreeBSD__
3589 static int
3590 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3591 {
3592 	char dmode[64];
3593 	int error;
3594 
3595 	strncpy(dmode, "", sizeof(dmode) - 1);
3596 	dmode[sizeof(dmode) - 1] = '\0';
3597 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3598 
3599 	if (error == 0 && req->newptr != NULL) {
3600 		struct ifnet *ifp;
3601 		struct ath_softc *sc;
3602 
3603 		ifp = ifunit("ath0");		/* XXX */
3604 		if (!ifp)
3605 			return EINVAL;
3606 		sc = ifp->if_softc;
3607 		if (strcmp(dmode, "hal") == 0)
3608 			ath_hal_dumpstate(sc->sc_ah);
3609 		else
3610 			return EINVAL;
3611 	}
3612 	return error;
3613 }
3614 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3615 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3616 #endif /* __FreeBSD__ */
3617 
3618 #if 0 /* #ifdef __NetBSD__ */
3619 static int
3620 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3621 {
3622 	char dmode[64];
3623 	int error;
3624 
3625 	strncpy(dmode, "", sizeof(dmode) - 1);
3626 	dmode[sizeof(dmode) - 1] = '\0';
3627 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3628 
3629 	if (error == 0 && req->newptr != NULL) {
3630 		struct ifnet *ifp;
3631 		struct ath_softc *sc;
3632 
3633 		ifp = ifunit("ath0");		/* XXX */
3634 		if (!ifp)
3635 			return EINVAL;
3636 		sc = ifp->if_softc;
3637 		if (strcmp(dmode, "hal") == 0)
3638 			ath_hal_dumpstate(sc->sc_ah);
3639 		else
3640 			return EINVAL;
3641 	}
3642 	return error;
3643 }
3644 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3645 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3646 #endif /* __NetBSD__ */
3647 
3648 static void
3649 ath_printrxbuf(struct ath_buf *bf, int done)
3650 {
3651 	struct ath_desc *ds;
3652 	int i;
3653 
3654 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3655 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3656 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
3657 		    ds->ds_link, ds->ds_data,
3658 		    ds->ds_ctl0, ds->ds_ctl1,
3659 		    ds->ds_hw[0], ds->ds_hw[1],
3660 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3661 	}
3662 }
3663 
3664 static void
3665 ath_printtxbuf(struct ath_buf *bf, int done)
3666 {
3667 	struct ath_desc *ds;
3668 	int i;
3669 
3670 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3671 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3672 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
3673 		    ds->ds_link, ds->ds_data,
3674 		    ds->ds_ctl0, ds->ds_ctl1,
3675 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3676 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3677 	}
3678 }
3679 #endif /* AR_DEBUG */
3680