1 /* $NetBSD: ath.c,v 1.110 2011/02/20 03:55:56 jmcneill Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.110 2011/02/20 03:55:56 jmcneill Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #ifdef _KERNEL_OPT 55 #include "opt_inet.h" 56 #endif 57 58 #include <sys/param.h> 59 #include <sys/reboot.h> 60 #include <sys/systm.h> 61 #include <sys/types.h> 62 #include <sys/sysctl.h> 63 #include <sys/mbuf.h> 64 #include <sys/malloc.h> 65 #include <sys/kernel.h> 66 #include <sys/socket.h> 67 #include <sys/sockio.h> 68 #include <sys/errno.h> 69 #include <sys/callout.h> 70 #include <sys/bus.h> 71 #include <sys/endian.h> 72 73 #include <net/if.h> 74 #include <net/if_dl.h> 75 #include <net/if_media.h> 76 #include <net/if_types.h> 77 #include <net/if_arp.h> 78 #include <net/if_ether.h> 79 #include <net/if_llc.h> 80 81 #include <net80211/ieee80211_netbsd.h> 82 #include <net80211/ieee80211_var.h> 83 84 #include <net/bpf.h> 85 86 #ifdef INET 87 #include <netinet/in.h> 88 #endif 89 90 #include <sys/device.h> 91 #include <dev/ic/ath_netbsd.h> 92 93 #define AR_DEBUG 94 #include <dev/ic/athvar.h> 95 #include "ah_desc.h" 96 #include "ah_devid.h" /* XXX for softled */ 97 #include "opt_ah.h" 98 99 #ifdef ATH_TX99_DIAG 100 #include <dev/ath/ath_tx99/ath_tx99.h> 101 #endif 102 103 /* unaligned little endian access */ 104 #define LE_READ_2(p) \ 105 ((u_int16_t) \ 106 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 107 #define LE_READ_4(p) \ 108 ((u_int32_t) \ 109 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 110 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 111 112 enum { 113 ATH_LED_TX, 114 ATH_LED_RX, 115 ATH_LED_POLL, 116 }; 117 118 #ifdef AH_NEED_DESC_SWAP 119 #define HTOAH32(x) htole32(x) 120 #else 121 #define HTOAH32(x) (x) 122 #endif 123 124 static int ath_ifinit(struct ifnet *); 125 static int ath_init(struct ath_softc *); 126 static void ath_stop_locked(struct ifnet *, int); 127 static void ath_stop(struct ifnet *, int); 128 static void ath_start(struct ifnet *); 129 static int ath_media_change(struct ifnet *); 130 static void ath_watchdog(struct ifnet *); 131 static int ath_ioctl(struct ifnet *, u_long, void *); 132 static void ath_fatal_proc(void *, int); 133 static void ath_rxorn_proc(void *, int); 134 static void ath_bmiss_proc(void *, int); 135 static void ath_radar_proc(void *, int); 136 static int ath_key_alloc(struct ieee80211com *, 137 const struct ieee80211_key *, 138 ieee80211_keyix *, ieee80211_keyix *); 139 static int ath_key_delete(struct ieee80211com *, 140 const struct ieee80211_key *); 141 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 142 const u_int8_t mac[IEEE80211_ADDR_LEN]); 143 static void ath_key_update_begin(struct ieee80211com *); 144 static void ath_key_update_end(struct ieee80211com *); 145 static void ath_mode_init(struct ath_softc *); 146 static void ath_setslottime(struct ath_softc *); 147 static void ath_updateslot(struct ifnet *); 148 static int ath_beaconq_setup(struct ath_hal *); 149 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 150 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 151 static void ath_beacon_proc(void *, int); 152 static void ath_bstuck_proc(void *, int); 153 static void ath_beacon_free(struct ath_softc *); 154 static void ath_beacon_config(struct ath_softc *); 155 static void ath_descdma_cleanup(struct ath_softc *sc, 156 struct ath_descdma *, ath_bufhead *); 157 static int ath_desc_alloc(struct ath_softc *); 158 static void ath_desc_free(struct ath_softc *); 159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 160 static void ath_node_free(struct ieee80211_node *); 161 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 162 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 163 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 164 struct ieee80211_node *ni, 165 int subtype, int rssi, u_int32_t rstamp); 166 static void ath_setdefantenna(struct ath_softc *, u_int); 167 static void ath_rx_proc(void *, int); 168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 169 static int ath_tx_setup(struct ath_softc *, int, int); 170 static int ath_wme_update(struct ieee80211com *); 171 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 172 static void ath_tx_cleanup(struct ath_softc *); 173 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 174 struct ath_buf *, struct mbuf *); 175 static void ath_tx_proc_q0(void *, int); 176 static void ath_tx_proc_q0123(void *, int); 177 static void ath_tx_proc(void *, int); 178 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 179 static void ath_draintxq(struct ath_softc *); 180 static void ath_stoprecv(struct ath_softc *); 181 static int ath_startrecv(struct ath_softc *); 182 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 183 static void ath_next_scan(void *); 184 static void ath_calibrate(void *); 185 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 186 static void ath_setup_stationkey(struct ieee80211_node *); 187 static void ath_newassoc(struct ieee80211_node *, int); 188 static int ath_getchannels(struct ath_softc *, u_int cc, 189 HAL_BOOL outdoor, HAL_BOOL xchanmode); 190 static void ath_led_event(struct ath_softc *, int); 191 static void ath_update_txpow(struct ath_softc *); 192 static void ath_freetx(struct mbuf *); 193 static void ath_restore_diversity(struct ath_softc *); 194 195 static int ath_rate_setup(struct ath_softc *, u_int mode); 196 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 197 198 static void ath_bpfattach(struct ath_softc *); 199 static void ath_announce(struct ath_softc *); 200 201 int ath_dwelltime = 200; /* 5 channels/second */ 202 int ath_calinterval = 30; /* calibrate every 30 secs */ 203 int ath_outdoor = AH_TRUE; /* outdoor operation */ 204 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 205 int ath_countrycode = CTRY_DEFAULT; /* country code */ 206 int ath_regdomain = 0; /* regulatory domain */ 207 int ath_debug = 0; 208 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 209 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 210 211 #ifdef AR_DEBUG 212 enum { 213 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 214 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 215 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 216 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 217 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 218 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 219 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 220 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 221 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 222 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 223 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 224 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 225 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 226 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 227 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 228 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 229 ATH_DEBUG_NODE = 0x00080000, /* node management */ 230 ATH_DEBUG_LED = 0x00100000, /* led management */ 231 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 232 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 233 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 234 ATH_DEBUG_ANY = 0xffffffff 235 }; 236 #define IFF_DUMPPKTS(sc, m) \ 237 ((sc->sc_debug & (m)) || \ 238 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 239 #define DPRINTF(sc, m, fmt, ...) do { \ 240 if (sc->sc_debug & (m)) \ 241 printf(fmt, __VA_ARGS__); \ 242 } while (0) 243 #define KEYPRINTF(sc, ix, hk, mac) do { \ 244 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 245 ath_keyprint(__func__, ix, hk, mac); \ 246 } while (0) 247 static void ath_printrxbuf(struct ath_buf *bf, int); 248 static void ath_printtxbuf(struct ath_buf *bf, int); 249 #else 250 #define IFF_DUMPPKTS(sc, m) \ 251 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 252 #define DPRINTF(m, fmt, ...) 253 #define KEYPRINTF(sc, k, ix, mac) 254 #endif 255 256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 257 258 int 259 ath_attach(u_int16_t devid, struct ath_softc *sc) 260 { 261 struct ifnet *ifp = &sc->sc_if; 262 struct ieee80211com *ic = &sc->sc_ic; 263 struct ath_hal *ah = NULL; 264 HAL_STATUS status; 265 int error = 0, i; 266 267 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 268 269 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual); 270 271 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 272 273 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 274 if (ah == NULL) { 275 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 276 status); 277 error = ENXIO; 278 goto bad; 279 } 280 if (ah->ah_abi != HAL_ABI_VERSION) { 281 if_printf(ifp, "HAL ABI mismatch detected " 282 "(HAL:0x%x != driver:0x%x)\n", 283 ah->ah_abi, HAL_ABI_VERSION); 284 error = ENXIO; 285 goto bad; 286 } 287 sc->sc_ah = ah; 288 289 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev), 290 "pmf-powerdown", false)) 291 goto bad; 292 293 /* 294 * Check if the MAC has multi-rate retry support. 295 * We do this by trying to setup a fake extended 296 * descriptor. MAC's that don't have support will 297 * return false w/o doing anything. MAC's that do 298 * support it will return true w/o doing anything. 299 */ 300 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 301 302 /* 303 * Check if the device has hardware counters for PHY 304 * errors. If so we need to enable the MIB interrupt 305 * so we can act on stat triggers. 306 */ 307 if (ath_hal_hwphycounters(ah)) 308 sc->sc_needmib = 1; 309 310 /* 311 * Get the hardware key cache size. 312 */ 313 sc->sc_keymax = ath_hal_keycachesize(ah); 314 if (sc->sc_keymax > ATH_KEYMAX) { 315 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 316 ATH_KEYMAX, sc->sc_keymax); 317 sc->sc_keymax = ATH_KEYMAX; 318 } 319 /* 320 * Reset the key cache since some parts do not 321 * reset the contents on initial power up. 322 */ 323 for (i = 0; i < sc->sc_keymax; i++) 324 ath_hal_keyreset(ah, i); 325 /* 326 * Mark key cache slots associated with global keys 327 * as in use. If we knew TKIP was not to be used we 328 * could leave the +32, +64, and +32+64 slots free. 329 * XXX only for splitmic. 330 */ 331 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 332 setbit(sc->sc_keymap, i); 333 setbit(sc->sc_keymap, i+32); 334 setbit(sc->sc_keymap, i+64); 335 setbit(sc->sc_keymap, i+32+64); 336 } 337 338 /* 339 * Collect the channel list using the default country 340 * code and including outdoor channels. The 802.11 layer 341 * is resposible for filtering this list based on settings 342 * like the phy mode. 343 */ 344 error = ath_getchannels(sc, ath_countrycode, 345 ath_outdoor, ath_xchanmode); 346 if (error != 0) 347 goto bad; 348 349 /* 350 * Setup rate tables for all potential media types. 351 */ 352 ath_rate_setup(sc, IEEE80211_MODE_11A); 353 ath_rate_setup(sc, IEEE80211_MODE_11B); 354 ath_rate_setup(sc, IEEE80211_MODE_11G); 355 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 356 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 357 /* NB: setup here so ath_rate_update is happy */ 358 ath_setcurmode(sc, IEEE80211_MODE_11A); 359 360 /* 361 * Allocate tx+rx descriptors and populate the lists. 362 */ 363 error = ath_desc_alloc(sc); 364 if (error != 0) { 365 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 366 goto bad; 367 } 368 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 369 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE); 370 #if 0 371 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE); 372 #endif 373 374 ATH_TXBUF_LOCK_INIT(sc); 375 376 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 377 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 378 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 379 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 380 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 381 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc); 382 383 /* 384 * Allocate hardware transmit queues: one queue for 385 * beacon frames and one data queue for each QoS 386 * priority. Note that the hal handles reseting 387 * these queues at the needed time. 388 * 389 * XXX PS-Poll 390 */ 391 sc->sc_bhalq = ath_beaconq_setup(ah); 392 if (sc->sc_bhalq == (u_int) -1) { 393 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 394 error = EIO; 395 goto bad2; 396 } 397 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 398 if (sc->sc_cabq == NULL) { 399 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 400 error = EIO; 401 goto bad2; 402 } 403 /* NB: insure BK queue is the lowest priority h/w queue */ 404 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 405 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 406 ieee80211_wme_acnames[WME_AC_BK]); 407 error = EIO; 408 goto bad2; 409 } 410 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 411 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 412 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 413 /* 414 * Not enough hardware tx queues to properly do WME; 415 * just punt and assign them all to the same h/w queue. 416 * We could do a better job of this if, for example, 417 * we allocate queues when we switch from station to 418 * AP mode. 419 */ 420 if (sc->sc_ac2q[WME_AC_VI] != NULL) 421 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 422 if (sc->sc_ac2q[WME_AC_BE] != NULL) 423 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 424 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 425 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 426 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 427 } 428 429 /* 430 * Special case certain configurations. Note the 431 * CAB queue is handled by these specially so don't 432 * include them when checking the txq setup mask. 433 */ 434 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 435 case 0x01: 436 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 437 break; 438 case 0x0f: 439 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 440 break; 441 default: 442 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 443 break; 444 } 445 446 /* 447 * Setup rate control. Some rate control modules 448 * call back to change the anntena state so expose 449 * the necessary entry points. 450 * XXX maybe belongs in struct ath_ratectrl? 451 */ 452 sc->sc_setdefantenna = ath_setdefantenna; 453 sc->sc_rc = ath_rate_attach(sc); 454 if (sc->sc_rc == NULL) { 455 error = EIO; 456 goto bad2; 457 } 458 459 sc->sc_blinking = 0; 460 sc->sc_ledstate = 1; 461 sc->sc_ledon = 0; /* low true */ 462 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 463 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE); 464 /* 465 * Auto-enable soft led processing for IBM cards and for 466 * 5211 minipci cards. Users can also manually enable/disable 467 * support with a sysctl. 468 */ 469 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 470 if (sc->sc_softled) { 471 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 472 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 473 } 474 475 ifp->if_softc = sc; 476 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 477 ifp->if_start = ath_start; 478 ifp->if_stop = ath_stop; 479 ifp->if_watchdog = ath_watchdog; 480 ifp->if_ioctl = ath_ioctl; 481 ifp->if_init = ath_ifinit; 482 IFQ_SET_READY(&ifp->if_snd); 483 484 ic->ic_ifp = ifp; 485 ic->ic_reset = ath_reset; 486 ic->ic_newassoc = ath_newassoc; 487 ic->ic_updateslot = ath_updateslot; 488 ic->ic_wme.wme_update = ath_wme_update; 489 /* XXX not right but it's not used anywhere important */ 490 ic->ic_phytype = IEEE80211_T_OFDM; 491 ic->ic_opmode = IEEE80211_M_STA; 492 ic->ic_caps = 493 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 494 | IEEE80211_C_HOSTAP /* hostap mode */ 495 | IEEE80211_C_MONITOR /* monitor mode */ 496 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 497 | IEEE80211_C_SHSLOT /* short slot time supported */ 498 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 499 | IEEE80211_C_TXFRAG /* handle tx frags */ 500 ; 501 /* 502 * Query the hal to figure out h/w crypto support. 503 */ 504 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 505 ic->ic_caps |= IEEE80211_C_WEP; 506 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 507 ic->ic_caps |= IEEE80211_C_AES; 508 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 509 ic->ic_caps |= IEEE80211_C_AES_CCM; 510 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 511 ic->ic_caps |= IEEE80211_C_CKIP; 512 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 513 ic->ic_caps |= IEEE80211_C_TKIP; 514 /* 515 * Check if h/w does the MIC and/or whether the 516 * separate key cache entries are required to 517 * handle both tx+rx MIC keys. 518 */ 519 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 520 ic->ic_caps |= IEEE80211_C_TKIPMIC; 521 522 /* 523 * If the h/w supports storing tx+rx MIC keys 524 * in one cache slot automatically enable use. 525 */ 526 if (ath_hal_hastkipsplit(ah) || 527 !ath_hal_settkipsplit(ah, AH_FALSE)) 528 sc->sc_splitmic = 1; 529 530 /* 531 * If the h/w can do TKIP MIC together with WME then 532 * we use it; otherwise we force the MIC to be done 533 * in software by the net80211 layer. 534 */ 535 if (ath_hal_haswmetkipmic(ah)) 536 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC; 537 } 538 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 539 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 540 /* 541 * Mark key cache slots associated with global keys 542 * as in use. If we knew TKIP was not to be used we 543 * could leave the +32, +64, and +32+64 slots free. 544 */ 545 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 546 setbit(sc->sc_keymap, i); 547 setbit(sc->sc_keymap, i+64); 548 if (sc->sc_splitmic) { 549 setbit(sc->sc_keymap, i+32); 550 setbit(sc->sc_keymap, i+32+64); 551 } 552 } 553 /* 554 * TPC support can be done either with a global cap or 555 * per-packet support. The latter is not available on 556 * all parts. We're a bit pedantic here as all parts 557 * support a global cap. 558 */ 559 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 560 ic->ic_caps |= IEEE80211_C_TXPMGT; 561 562 /* 563 * Mark WME capability only if we have sufficient 564 * hardware queues to do proper priority scheduling. 565 */ 566 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 567 ic->ic_caps |= IEEE80211_C_WME; 568 /* 569 * Check for misc other capabilities. 570 */ 571 if (ath_hal_hasbursting(ah)) 572 ic->ic_caps |= IEEE80211_C_BURST; 573 574 /* 575 * Indicate we need the 802.11 header padded to a 576 * 32-bit boundary for 4-address and QoS frames. 577 */ 578 ic->ic_flags |= IEEE80211_F_DATAPAD; 579 580 /* 581 * Query the hal about antenna support. 582 */ 583 sc->sc_defant = ath_hal_getdefantenna(ah); 584 585 /* 586 * Not all chips have the VEOL support we want to 587 * use with IBSS beacons; check here for it. 588 */ 589 sc->sc_hasveol = ath_hal_hasveol(ah); 590 591 /* get mac address from hardware */ 592 ath_hal_getmac(ah, ic->ic_myaddr); 593 594 if_attach(ifp); 595 /* call MI attach routine. */ 596 ieee80211_ifattach(ic); 597 /* override default methods */ 598 ic->ic_node_alloc = ath_node_alloc; 599 sc->sc_node_free = ic->ic_node_free; 600 ic->ic_node_free = ath_node_free; 601 ic->ic_node_getrssi = ath_node_getrssi; 602 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 603 ic->ic_recv_mgmt = ath_recv_mgmt; 604 sc->sc_newstate = ic->ic_newstate; 605 ic->ic_newstate = ath_newstate; 606 ic->ic_crypto.cs_max_keyix = sc->sc_keymax; 607 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 608 ic->ic_crypto.cs_key_delete = ath_key_delete; 609 ic->ic_crypto.cs_key_set = ath_key_set; 610 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 611 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 612 /* complete initialization */ 613 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 614 615 ath_bpfattach(sc); 616 617 sc->sc_flags |= ATH_ATTACHED; 618 619 /* 620 * Setup dynamic sysctl's now that country code and 621 * regdomain are available from the hal. 622 */ 623 ath_sysctlattach(sc); 624 625 ieee80211_announce(ic); 626 ath_announce(sc); 627 return 0; 628 bad2: 629 ath_tx_cleanup(sc); 630 ath_desc_free(sc); 631 bad: 632 if (ah) 633 ath_hal_detach(ah); 634 /* XXX don't get under the abstraction like this */ 635 sc->sc_dev->dv_flags &= ~DVF_ACTIVE; 636 return error; 637 } 638 639 int 640 ath_detach(struct ath_softc *sc) 641 { 642 struct ifnet *ifp = &sc->sc_if; 643 int s; 644 645 if ((sc->sc_flags & ATH_ATTACHED) == 0) 646 return (0); 647 648 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 649 __func__, ifp->if_flags); 650 651 s = splnet(); 652 ath_stop(ifp, 1); 653 bpf_detach(ifp); 654 /* 655 * NB: the order of these is important: 656 * o call the 802.11 layer before detaching the hal to 657 * insure callbacks into the driver to delete global 658 * key cache entries can be handled 659 * o reclaim the tx queue data structures after calling 660 * the 802.11 layer as we'll get called back to reclaim 661 * node state and potentially want to use them 662 * o to cleanup the tx queues the hal is called, so detach 663 * it last 664 * Other than that, it's straightforward... 665 */ 666 ieee80211_ifdetach(&sc->sc_ic); 667 #ifdef ATH_TX99_DIAG 668 if (sc->sc_tx99 != NULL) 669 sc->sc_tx99->detach(sc->sc_tx99); 670 #endif 671 ath_rate_detach(sc->sc_rc); 672 ath_desc_free(sc); 673 ath_tx_cleanup(sc); 674 sysctl_teardown(&sc->sc_sysctllog); 675 ath_hal_detach(sc->sc_ah); 676 if_detach(ifp); 677 splx(s); 678 679 return 0; 680 } 681 682 void 683 ath_suspend(struct ath_softc *sc) 684 { 685 #if notyet 686 /* 687 * Set the chip in full sleep mode. Note that we are 688 * careful to do this only when bringing the interface 689 * completely to a stop. When the chip is in this state 690 * it must be carefully woken up or references to 691 * registers in the PCI clock domain may freeze the bus 692 * (and system). This varies by chip and is mostly an 693 * issue with newer parts that go to sleep more quickly. 694 */ 695 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 696 #endif 697 } 698 699 bool 700 ath_resume(struct ath_softc *sc) 701 { 702 struct ath_hal *ah = sc->sc_ah; 703 struct ieee80211com *ic = &sc->sc_ic; 704 HAL_STATUS status; 705 int i; 706 707 #if notyet 708 ath_hal_setpower(ah, HAL_PM_AWAKE); 709 #else 710 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status); 711 #endif 712 713 /* 714 * Reset the key cache since some parts do not 715 * reset the contents on initial power up. 716 */ 717 for (i = 0; i < sc->sc_keymax; i++) 718 ath_hal_keyreset(ah, i); 719 720 ath_hal_resettxqueue(ah, sc->sc_bhalq); 721 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 722 if (ATH_TXQ_SETUP(sc, i)) 723 ath_hal_resettxqueue(ah, i); 724 725 if (sc->sc_softled) { 726 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 727 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 728 } 729 return true; 730 } 731 732 /* 733 * Interrupt handler. Most of the actual processing is deferred. 734 */ 735 int 736 ath_intr(void *arg) 737 { 738 struct ath_softc *sc = arg; 739 struct ifnet *ifp = &sc->sc_if; 740 struct ath_hal *ah = sc->sc_ah; 741 HAL_INT status; 742 743 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) { 744 /* 745 * The hardware is not ready/present, don't touch anything. 746 * Note this can happen early on if the IRQ is shared. 747 */ 748 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 749 return 0; 750 } 751 752 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 753 return 0; 754 755 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 756 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 757 __func__, ifp->if_flags); 758 ath_hal_getisr(ah, &status); /* clear ISR */ 759 ath_hal_intrset(ah, 0); /* disable further intr's */ 760 return 1; /* XXX */ 761 } 762 /* 763 * Figure out the reason(s) for the interrupt. Note 764 * that the hal returns a pseudo-ISR that may include 765 * bits we haven't explicitly enabled so we mask the 766 * value to insure we only process bits we requested. 767 */ 768 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 769 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 770 status &= sc->sc_imask; /* discard unasked for bits */ 771 if (status & HAL_INT_FATAL) { 772 /* 773 * Fatal errors are unrecoverable. Typically 774 * these are caused by DMA errors. Unfortunately 775 * the exact reason is not (presently) returned 776 * by the hal. 777 */ 778 sc->sc_stats.ast_hardware++; 779 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 780 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 781 } else if (status & HAL_INT_RXORN) { 782 sc->sc_stats.ast_rxorn++; 783 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 784 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 785 } else { 786 if (status & HAL_INT_SWBA) { 787 /* 788 * Software beacon alert--time to send a beacon. 789 * Handle beacon transmission directly; deferring 790 * this is too slow to meet timing constraints 791 * under load. 792 */ 793 ath_beacon_proc(sc, 0); 794 } 795 if (status & HAL_INT_RXEOL) { 796 /* 797 * NB: the hardware should re-read the link when 798 * RXE bit is written, but it doesn't work at 799 * least on older hardware revs. 800 */ 801 sc->sc_stats.ast_rxeol++; 802 sc->sc_rxlink = NULL; 803 } 804 if (status & HAL_INT_TXURN) { 805 sc->sc_stats.ast_txurn++; 806 /* bump tx trigger level */ 807 ath_hal_updatetxtriglevel(ah, AH_TRUE); 808 } 809 if (status & HAL_INT_RX) 810 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 811 if (status & HAL_INT_TX) 812 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 813 if (status & HAL_INT_BMISS) { 814 sc->sc_stats.ast_bmiss++; 815 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 816 } 817 if (status & HAL_INT_MIB) { 818 sc->sc_stats.ast_mib++; 819 /* 820 * Disable interrupts until we service the MIB 821 * interrupt; otherwise it will continue to fire. 822 */ 823 ath_hal_intrset(ah, 0); 824 /* 825 * Let the hal handle the event. We assume it will 826 * clear whatever condition caused the interrupt. 827 */ 828 ath_hal_mibevent(ah, &sc->sc_halstats); 829 ath_hal_intrset(ah, sc->sc_imask); 830 } 831 } 832 return 1; 833 } 834 835 /* Swap transmit descriptor. 836 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null" 837 * function. 838 */ 839 static inline void 840 ath_desc_swap(struct ath_desc *ds) 841 { 842 #ifdef AH_NEED_DESC_SWAP 843 ds->ds_link = htole32(ds->ds_link); 844 ds->ds_data = htole32(ds->ds_data); 845 ds->ds_ctl0 = htole32(ds->ds_ctl0); 846 ds->ds_ctl1 = htole32(ds->ds_ctl1); 847 ds->ds_hw[0] = htole32(ds->ds_hw[0]); 848 ds->ds_hw[1] = htole32(ds->ds_hw[1]); 849 #endif 850 } 851 852 static void 853 ath_fatal_proc(void *arg, int pending) 854 { 855 struct ath_softc *sc = arg; 856 struct ifnet *ifp = &sc->sc_if; 857 858 if_printf(ifp, "hardware error; resetting\n"); 859 ath_reset(ifp); 860 } 861 862 static void 863 ath_rxorn_proc(void *arg, int pending) 864 { 865 struct ath_softc *sc = arg; 866 struct ifnet *ifp = &sc->sc_if; 867 868 if_printf(ifp, "rx FIFO overrun; resetting\n"); 869 ath_reset(ifp); 870 } 871 872 static void 873 ath_bmiss_proc(void *arg, int pending) 874 { 875 struct ath_softc *sc = arg; 876 struct ieee80211com *ic = &sc->sc_ic; 877 878 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 879 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 880 ("unexpect operating mode %u", ic->ic_opmode)); 881 if (ic->ic_state == IEEE80211_S_RUN) { 882 u_int64_t lastrx = sc->sc_lastrx; 883 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 884 885 DPRINTF(sc, ATH_DEBUG_BEACON, 886 "%s: tsf %" PRIu64 " lastrx %" PRId64 887 " (%" PRIu64 ") bmiss %u\n", 888 __func__, tsf, tsf - lastrx, lastrx, 889 ic->ic_bmisstimeout*1024); 890 /* 891 * Workaround phantom bmiss interrupts by sanity-checking 892 * the time of our last rx'd frame. If it is within the 893 * beacon miss interval then ignore the interrupt. If it's 894 * truly a bmiss we'll get another interrupt soon and that'll 895 * be dispatched up for processing. 896 */ 897 if (tsf - lastrx > ic->ic_bmisstimeout*1024) { 898 NET_LOCK_GIANT(); 899 ieee80211_beacon_miss(ic); 900 NET_UNLOCK_GIANT(); 901 } else 902 sc->sc_stats.ast_bmiss_phantom++; 903 } 904 } 905 906 static void 907 ath_radar_proc(void *arg, int pending) 908 { 909 #if 0 910 struct ath_softc *sc = arg; 911 struct ifnet *ifp = &sc->sc_if; 912 struct ath_hal *ah = sc->sc_ah; 913 HAL_CHANNEL hchan; 914 915 if (ath_hal_procdfs(ah, &hchan)) { 916 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n", 917 hchan.channel, hchan.channelFlags, hchan.privFlags); 918 /* 919 * Initiate channel change. 920 */ 921 /* XXX not yet */ 922 } 923 #endif 924 } 925 926 static u_int 927 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 928 { 929 #define N(a) (sizeof(a) / sizeof(a[0])) 930 static const u_int modeflags[] = { 931 0, /* IEEE80211_MODE_AUTO */ 932 CHANNEL_A, /* IEEE80211_MODE_11A */ 933 CHANNEL_B, /* IEEE80211_MODE_11B */ 934 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 935 0, /* IEEE80211_MODE_FH */ 936 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */ 937 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 938 }; 939 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 940 941 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 942 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 943 return modeflags[mode]; 944 #undef N 945 } 946 947 static int 948 ath_ifinit(struct ifnet *ifp) 949 { 950 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc; 951 952 return ath_init(sc); 953 } 954 955 static void 956 ath_settkipmic(struct ath_softc *sc) 957 { 958 struct ieee80211com *ic = &sc->sc_ic; 959 struct ath_hal *ah = sc->sc_ah; 960 961 if ((ic->ic_caps & IEEE80211_C_TKIP) && 962 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) { 963 if (ic->ic_flags & IEEE80211_F_WME) { 964 (void)ath_hal_settkipmic(ah, AH_FALSE); 965 ic->ic_caps &= ~IEEE80211_C_TKIPMIC; 966 } else { 967 (void)ath_hal_settkipmic(ah, AH_TRUE); 968 ic->ic_caps |= IEEE80211_C_TKIPMIC; 969 } 970 } 971 } 972 973 static int 974 ath_init(struct ath_softc *sc) 975 { 976 struct ifnet *ifp = &sc->sc_if; 977 struct ieee80211com *ic = &sc->sc_ic; 978 struct ath_hal *ah = sc->sc_ah; 979 HAL_STATUS status; 980 int error = 0; 981 982 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 983 __func__, ifp->if_flags); 984 985 if (device_is_active(sc->sc_dev)) { 986 ATH_LOCK(sc); 987 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || 988 !device_is_active(sc->sc_dev)) 989 return 0; 990 else 991 ATH_LOCK(sc); 992 993 /* 994 * Stop anything previously setup. This is safe 995 * whether this is the first time through or not. 996 */ 997 ath_stop_locked(ifp, 0); 998 999 /* 1000 * The basic interface to setting the hardware in a good 1001 * state is ``reset''. On return the hardware is known to 1002 * be powered up and with interrupts disabled. This must 1003 * be followed by initialization of the appropriate bits 1004 * and then setup of the interrupt mask. 1005 */ 1006 ath_settkipmic(sc); 1007 sc->sc_curchan.channel = ic->ic_curchan->ic_freq; 1008 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan); 1009 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 1010 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1011 status); 1012 error = EIO; 1013 goto done; 1014 } 1015 1016 /* 1017 * This is needed only to setup initial state 1018 * but it's best done after a reset. 1019 */ 1020 ath_update_txpow(sc); 1021 /* 1022 * Likewise this is set during reset so update 1023 * state cached in the driver. 1024 */ 1025 ath_restore_diversity(sc); 1026 sc->sc_calinterval = 1; 1027 sc->sc_caltries = 0; 1028 1029 /* 1030 * Setup the hardware after reset: the key cache 1031 * is filled as needed and the receive engine is 1032 * set going. Frame transmit is handled entirely 1033 * in the frame output path; there's nothing to do 1034 * here except setup the interrupt mask. 1035 */ 1036 if ((error = ath_startrecv(sc)) != 0) { 1037 if_printf(ifp, "unable to start recv logic\n"); 1038 goto done; 1039 } 1040 1041 /* 1042 * Enable interrupts. 1043 */ 1044 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1045 | HAL_INT_RXEOL | HAL_INT_RXORN 1046 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1047 /* 1048 * Enable MIB interrupts when there are hardware phy counters. 1049 * Note we only do this (at the moment) for station mode. 1050 */ 1051 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1052 sc->sc_imask |= HAL_INT_MIB; 1053 ath_hal_intrset(ah, sc->sc_imask); 1054 1055 ifp->if_flags |= IFF_RUNNING; 1056 ic->ic_state = IEEE80211_S_INIT; 1057 1058 /* 1059 * The hardware should be ready to go now so it's safe 1060 * to kick the 802.11 state machine as it's likely to 1061 * immediately call back to us to send mgmt frames. 1062 */ 1063 ath_chan_change(sc, ic->ic_curchan); 1064 #ifdef ATH_TX99_DIAG 1065 if (sc->sc_tx99 != NULL) 1066 sc->sc_tx99->start(sc->sc_tx99); 1067 else 1068 #endif 1069 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1070 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1071 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1072 } else 1073 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1074 done: 1075 ATH_UNLOCK(sc); 1076 return error; 1077 } 1078 1079 static void 1080 ath_stop_locked(struct ifnet *ifp, int disable) 1081 { 1082 struct ath_softc *sc = ifp->if_softc; 1083 struct ieee80211com *ic = &sc->sc_ic; 1084 struct ath_hal *ah = sc->sc_ah; 1085 1086 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n", 1087 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags); 1088 1089 ATH_LOCK_ASSERT(sc); 1090 if (ifp->if_flags & IFF_RUNNING) { 1091 /* 1092 * Shutdown the hardware and driver: 1093 * reset 802.11 state machine 1094 * turn off timers 1095 * disable interrupts 1096 * turn off the radio 1097 * clear transmit machinery 1098 * clear receive machinery 1099 * drain and release tx queues 1100 * reclaim beacon resources 1101 * power down hardware 1102 * 1103 * Note that some of this work is not possible if the 1104 * hardware is gone (invalid). 1105 */ 1106 #ifdef ATH_TX99_DIAG 1107 if (sc->sc_tx99 != NULL) 1108 sc->sc_tx99->stop(sc->sc_tx99); 1109 #endif 1110 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1111 ifp->if_flags &= ~IFF_RUNNING; 1112 ifp->if_timer = 0; 1113 if (device_is_enabled(sc->sc_dev)) { 1114 if (sc->sc_softled) { 1115 callout_stop(&sc->sc_ledtimer); 1116 ath_hal_gpioset(ah, sc->sc_ledpin, 1117 !sc->sc_ledon); 1118 sc->sc_blinking = 0; 1119 } 1120 ath_hal_intrset(ah, 0); 1121 } 1122 ath_draintxq(sc); 1123 if (device_is_enabled(sc->sc_dev)) { 1124 ath_stoprecv(sc); 1125 ath_hal_phydisable(ah); 1126 } else 1127 sc->sc_rxlink = NULL; 1128 IF_PURGE(&ifp->if_snd); 1129 ath_beacon_free(sc); 1130 } 1131 if (disable) 1132 pmf_device_suspend(sc->sc_dev, &sc->sc_qual); 1133 } 1134 1135 static void 1136 ath_stop(struct ifnet *ifp, int disable) 1137 { 1138 struct ath_softc *sc = ifp->if_softc; 1139 1140 ATH_LOCK(sc); 1141 ath_stop_locked(ifp, disable); 1142 ATH_UNLOCK(sc); 1143 } 1144 1145 static void 1146 ath_restore_diversity(struct ath_softc *sc) 1147 { 1148 struct ifnet *ifp = &sc->sc_if; 1149 struct ath_hal *ah = sc->sc_ah; 1150 1151 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) || 1152 sc->sc_diversity != ath_hal_getdiversity(ah)) { 1153 if_printf(ifp, "could not restore diversity setting %d\n", 1154 sc->sc_diversity); 1155 sc->sc_diversity = ath_hal_getdiversity(ah); 1156 } 1157 } 1158 1159 /* 1160 * Reset the hardware w/o losing operational state. This is 1161 * basically a more efficient way of doing ath_stop, ath_init, 1162 * followed by state transitions to the current 802.11 1163 * operational state. Used to recover from various errors and 1164 * to reset or reload hardware state. 1165 */ 1166 int 1167 ath_reset(struct ifnet *ifp) 1168 { 1169 struct ath_softc *sc = ifp->if_softc; 1170 struct ieee80211com *ic = &sc->sc_ic; 1171 struct ath_hal *ah = sc->sc_ah; 1172 struct ieee80211_channel *c; 1173 HAL_STATUS status; 1174 1175 /* 1176 * Convert to a HAL channel description with the flags 1177 * constrained to reflect the current operating mode. 1178 */ 1179 c = ic->ic_curchan; 1180 sc->sc_curchan.channel = c->ic_freq; 1181 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1182 1183 ath_hal_intrset(ah, 0); /* disable interrupts */ 1184 ath_draintxq(sc); /* stop xmit side */ 1185 ath_stoprecv(sc); /* stop recv side */ 1186 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1187 /* NB: indicate channel change so we do a full reset */ 1188 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1189 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1190 __func__, status); 1191 ath_update_txpow(sc); /* update tx power state */ 1192 ath_restore_diversity(sc); 1193 sc->sc_calinterval = 1; 1194 sc->sc_caltries = 0; 1195 if (ath_startrecv(sc) != 0) /* restart recv */ 1196 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1197 /* 1198 * We may be doing a reset in response to an ioctl 1199 * that changes the channel so update any state that 1200 * might change as a result. 1201 */ 1202 ath_chan_change(sc, c); 1203 if (ic->ic_state == IEEE80211_S_RUN) 1204 ath_beacon_config(sc); /* restart beacons */ 1205 ath_hal_intrset(ah, sc->sc_imask); 1206 1207 ath_start(ifp); /* restart xmit */ 1208 return 0; 1209 } 1210 1211 /* 1212 * Cleanup driver resources when we run out of buffers 1213 * while processing fragments; return the tx buffers 1214 * allocated and drop node references. 1215 */ 1216 static void 1217 ath_txfrag_cleanup(struct ath_softc *sc, 1218 ath_bufhead *frags, struct ieee80211_node *ni) 1219 { 1220 struct ath_buf *bf; 1221 1222 ATH_TXBUF_LOCK_ASSERT(sc); 1223 1224 while ((bf = STAILQ_FIRST(frags)) != NULL) { 1225 STAILQ_REMOVE_HEAD(frags, bf_list); 1226 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1227 sc->sc_if.if_flags &= ~IFF_OACTIVE; 1228 ieee80211_node_decref(ni); 1229 } 1230 } 1231 1232 /* 1233 * Setup xmit of a fragmented frame. Allocate a buffer 1234 * for each frag and bump the node reference count to 1235 * reflect the held reference to be setup by ath_tx_start. 1236 */ 1237 static int 1238 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 1239 struct mbuf *m0, struct ieee80211_node *ni) 1240 { 1241 struct mbuf *m; 1242 struct ath_buf *bf; 1243 1244 ATH_TXBUF_LOCK(sc); 1245 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1246 bf = STAILQ_FIRST(&sc->sc_txbuf); 1247 if (bf == NULL) { /* out of buffers, cleanup */ 1248 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1249 __func__); 1250 sc->sc_if.if_flags |= IFF_OACTIVE; 1251 ath_txfrag_cleanup(sc, frags, ni); 1252 break; 1253 } 1254 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1255 ieee80211_node_incref(ni); 1256 STAILQ_INSERT_TAIL(frags, bf, bf_list); 1257 } 1258 ATH_TXBUF_UNLOCK(sc); 1259 1260 return !STAILQ_EMPTY(frags); 1261 } 1262 1263 static void 1264 ath_start(struct ifnet *ifp) 1265 { 1266 struct ath_softc *sc = ifp->if_softc; 1267 struct ath_hal *ah = sc->sc_ah; 1268 struct ieee80211com *ic = &sc->sc_ic; 1269 struct ieee80211_node *ni; 1270 struct ath_buf *bf; 1271 struct mbuf *m, *next; 1272 struct ieee80211_frame *wh; 1273 struct ether_header *eh; 1274 ath_bufhead frags; 1275 1276 if ((ifp->if_flags & IFF_RUNNING) == 0 || 1277 !device_is_active(sc->sc_dev)) 1278 return; 1279 for (;;) { 1280 /* 1281 * Grab a TX buffer and associated resources. 1282 */ 1283 ATH_TXBUF_LOCK(sc); 1284 bf = STAILQ_FIRST(&sc->sc_txbuf); 1285 if (bf != NULL) 1286 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1287 ATH_TXBUF_UNLOCK(sc); 1288 if (bf == NULL) { 1289 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1290 __func__); 1291 sc->sc_stats.ast_tx_qstop++; 1292 ifp->if_flags |= IFF_OACTIVE; 1293 break; 1294 } 1295 /* 1296 * Poll the management queue for frames; they 1297 * have priority over normal data frames. 1298 */ 1299 IF_DEQUEUE(&ic->ic_mgtq, m); 1300 if (m == NULL) { 1301 /* 1302 * No data frames go out unless we're associated. 1303 */ 1304 if (ic->ic_state != IEEE80211_S_RUN) { 1305 DPRINTF(sc, ATH_DEBUG_XMIT, 1306 "%s: discard data packet, state %s\n", 1307 __func__, 1308 ieee80211_state_name[ic->ic_state]); 1309 sc->sc_stats.ast_tx_discard++; 1310 ATH_TXBUF_LOCK(sc); 1311 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1312 ATH_TXBUF_UNLOCK(sc); 1313 break; 1314 } 1315 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1316 if (m == NULL) { 1317 ATH_TXBUF_LOCK(sc); 1318 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1319 ATH_TXBUF_UNLOCK(sc); 1320 break; 1321 } 1322 STAILQ_INIT(&frags); 1323 /* 1324 * Find the node for the destination so we can do 1325 * things like power save and fast frames aggregation. 1326 */ 1327 if (m->m_len < sizeof(struct ether_header) && 1328 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1329 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1330 ni = NULL; 1331 goto bad; 1332 } 1333 eh = mtod(m, struct ether_header *); 1334 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1335 if (ni == NULL) { 1336 /* NB: ieee80211_find_txnode does stat+msg */ 1337 m_freem(m); 1338 goto bad; 1339 } 1340 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1341 (m->m_flags & M_PWR_SAV) == 0) { 1342 /* 1343 * Station in power save mode; pass the frame 1344 * to the 802.11 layer and continue. We'll get 1345 * the frame back when the time is right. 1346 */ 1347 ieee80211_pwrsave(ic, ni, m); 1348 goto reclaim; 1349 } 1350 /* calculate priority so we can find the tx queue */ 1351 if (ieee80211_classify(ic, m, ni)) { 1352 DPRINTF(sc, ATH_DEBUG_XMIT, 1353 "%s: discard, classification failure\n", 1354 __func__); 1355 m_freem(m); 1356 goto bad; 1357 } 1358 ifp->if_opackets++; 1359 1360 bpf_mtap(ifp, m); 1361 /* 1362 * Encapsulate the packet in prep for transmission. 1363 */ 1364 m = ieee80211_encap(ic, m, ni); 1365 if (m == NULL) { 1366 DPRINTF(sc, ATH_DEBUG_XMIT, 1367 "%s: encapsulation failure\n", 1368 __func__); 1369 sc->sc_stats.ast_tx_encap++; 1370 goto bad; 1371 } 1372 /* 1373 * Check for fragmentation. If this has frame 1374 * has been broken up verify we have enough 1375 * buffers to send all the fragments so all 1376 * go out or none... 1377 */ 1378 if ((m->m_flags & M_FRAG) && 1379 !ath_txfrag_setup(sc, &frags, m, ni)) { 1380 DPRINTF(sc, ATH_DEBUG_ANY, 1381 "%s: out of txfrag buffers\n", __func__); 1382 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1383 ath_freetx(m); 1384 goto bad; 1385 } 1386 } else { 1387 /* 1388 * Hack! The referenced node pointer is in the 1389 * rcvif field of the packet header. This is 1390 * placed there by ieee80211_mgmt_output because 1391 * we need to hold the reference with the frame 1392 * and there's no other way (other than packet 1393 * tags which we consider too expensive to use) 1394 * to pass it along. 1395 */ 1396 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1397 m->m_pkthdr.rcvif = NULL; 1398 1399 wh = mtod(m, struct ieee80211_frame *); 1400 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1401 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1402 /* fill time stamp */ 1403 u_int64_t tsf; 1404 u_int32_t *tstamp; 1405 1406 tsf = ath_hal_gettsf64(ah); 1407 /* XXX: adjust 100us delay to xmit */ 1408 tsf += 100; 1409 tstamp = (u_int32_t *)&wh[1]; 1410 tstamp[0] = htole32(tsf & 0xffffffff); 1411 tstamp[1] = htole32(tsf >> 32); 1412 } 1413 sc->sc_stats.ast_tx_mgmt++; 1414 } 1415 1416 nextfrag: 1417 next = m->m_nextpkt; 1418 if (ath_tx_start(sc, ni, bf, m)) { 1419 bad: 1420 ifp->if_oerrors++; 1421 reclaim: 1422 ATH_TXBUF_LOCK(sc); 1423 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1424 ath_txfrag_cleanup(sc, &frags, ni); 1425 ATH_TXBUF_UNLOCK(sc); 1426 if (ni != NULL) 1427 ieee80211_free_node(ni); 1428 continue; 1429 } 1430 if (next != NULL) { 1431 m = next; 1432 bf = STAILQ_FIRST(&frags); 1433 KASSERT(bf != NULL, ("no buf for txfrag")); 1434 STAILQ_REMOVE_HEAD(&frags, bf_list); 1435 goto nextfrag; 1436 } 1437 1438 ifp->if_timer = 1; 1439 } 1440 } 1441 1442 static int 1443 ath_media_change(struct ifnet *ifp) 1444 { 1445 #define IS_UP(ifp) \ 1446 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1447 int error; 1448 1449 error = ieee80211_media_change(ifp); 1450 if (error == ENETRESET) { 1451 if (IS_UP(ifp)) 1452 ath_init(ifp->if_softc); /* XXX lose error */ 1453 error = 0; 1454 } 1455 return error; 1456 #undef IS_UP 1457 } 1458 1459 #ifdef AR_DEBUG 1460 static void 1461 ath_keyprint(const char *tag, u_int ix, 1462 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1463 { 1464 static const char *ciphers[] = { 1465 "WEP", 1466 "AES-OCB", 1467 "AES-CCM", 1468 "CKIP", 1469 "TKIP", 1470 "CLR", 1471 }; 1472 int i, n; 1473 1474 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1475 for (i = 0, n = hk->kv_len; i < n; i++) 1476 printf("%02x", hk->kv_val[i]); 1477 printf(" mac %s", ether_sprintf(mac)); 1478 if (hk->kv_type == HAL_CIPHER_TKIP) { 1479 printf(" mic "); 1480 for (i = 0; i < sizeof(hk->kv_mic); i++) 1481 printf("%02x", hk->kv_mic[i]); 1482 } 1483 printf("\n"); 1484 } 1485 #endif 1486 1487 /* 1488 * Set a TKIP key into the hardware. This handles the 1489 * potential distribution of key state to multiple key 1490 * cache slots for TKIP. 1491 */ 1492 static int 1493 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1494 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1495 { 1496 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1497 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1498 struct ath_hal *ah = sc->sc_ah; 1499 1500 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1501 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1502 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1503 if (sc->sc_splitmic) { 1504 /* 1505 * TX key goes at first index, RX key at the rx index. 1506 * The hal handles the MIC keys at index+64. 1507 */ 1508 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1509 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1510 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, 1511 zerobssid)) 1512 return 0; 1513 1514 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1515 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1516 /* XXX delete tx key on failure? */ 1517 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32), 1518 hk, mac); 1519 } else { 1520 /* 1521 * Room for both TX+RX MIC keys in one key cache 1522 * slot, just set key at the first index; the HAL 1523 * will handle the reset. 1524 */ 1525 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1526 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1527 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1528 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1529 } 1530 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 1531 if (sc->sc_splitmic) { 1532 /* 1533 * NB: must pass MIC key in expected location when 1534 * the keycache only holds one MIC key per entry. 1535 */ 1536 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 1537 } else 1538 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1539 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1540 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1541 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 1542 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1543 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1544 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1545 } 1546 return 0; 1547 #undef IEEE80211_KEY_XR 1548 } 1549 1550 /* 1551 * Set a net80211 key into the hardware. This handles the 1552 * potential distribution of key state to multiple key 1553 * cache slots for TKIP with hardware MIC support. 1554 */ 1555 static int 1556 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1557 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1558 struct ieee80211_node *bss) 1559 { 1560 #define N(a) (sizeof(a)/sizeof(a[0])) 1561 static const u_int8_t ciphermap[] = { 1562 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1563 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1564 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1565 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1566 (u_int8_t) -1, /* 4 is not allocated */ 1567 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1568 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1569 }; 1570 struct ath_hal *ah = sc->sc_ah; 1571 const struct ieee80211_cipher *cip = k->wk_cipher; 1572 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1573 const u_int8_t *mac; 1574 HAL_KEYVAL hk; 1575 1576 memset(&hk, 0, sizeof(hk)); 1577 /* 1578 * Software crypto uses a "clear key" so non-crypto 1579 * state kept in the key cache are maintained and 1580 * so that rx frames have an entry to match. 1581 */ 1582 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1583 KASSERT(cip->ic_cipher < N(ciphermap), 1584 ("invalid cipher type %u", cip->ic_cipher)); 1585 hk.kv_type = ciphermap[cip->ic_cipher]; 1586 hk.kv_len = k->wk_keylen; 1587 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1588 } else 1589 hk.kv_type = HAL_CIPHER_CLR; 1590 1591 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1592 /* 1593 * Group keys on hardware that supports multicast frame 1594 * key search use a mac that is the sender's address with 1595 * the high bit set instead of the app-specified address. 1596 */ 1597 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1598 gmac[0] |= 0x80; 1599 mac = gmac; 1600 } else 1601 mac = mac0; 1602 1603 if ((hk.kv_type == HAL_CIPHER_TKIP && 1604 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) { 1605 return ath_keyset_tkip(sc, k, &hk, mac); 1606 } else { 1607 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1608 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac); 1609 } 1610 #undef N 1611 } 1612 1613 /* 1614 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1615 * each key, one for decrypt/encrypt and the other for the MIC. 1616 */ 1617 static u_int16_t 1618 key_alloc_2pair(struct ath_softc *sc, 1619 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1620 { 1621 #define N(a) (sizeof(a)/sizeof(a[0])) 1622 u_int i, keyix; 1623 1624 KASSERT(sc->sc_splitmic, ("key cache !split")); 1625 /* XXX could optimize */ 1626 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1627 u_int8_t b = sc->sc_keymap[i]; 1628 if (b != 0xff) { 1629 /* 1630 * One or more slots in this byte are free. 1631 */ 1632 keyix = i*NBBY; 1633 while (b & 1) { 1634 again: 1635 keyix++; 1636 b >>= 1; 1637 } 1638 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1639 if (isset(sc->sc_keymap, keyix+32) || 1640 isset(sc->sc_keymap, keyix+64) || 1641 isset(sc->sc_keymap, keyix+32+64)) { 1642 /* full pair unavailable */ 1643 /* XXX statistic */ 1644 if (keyix == (i+1)*NBBY) { 1645 /* no slots were appropriate, advance */ 1646 continue; 1647 } 1648 goto again; 1649 } 1650 setbit(sc->sc_keymap, keyix); 1651 setbit(sc->sc_keymap, keyix+64); 1652 setbit(sc->sc_keymap, keyix+32); 1653 setbit(sc->sc_keymap, keyix+32+64); 1654 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1655 "%s: key pair %u,%u %u,%u\n", 1656 __func__, keyix, keyix+64, 1657 keyix+32, keyix+32+64); 1658 *txkeyix = keyix; 1659 *rxkeyix = keyix+32; 1660 return keyix; 1661 } 1662 } 1663 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1664 return IEEE80211_KEYIX_NONE; 1665 #undef N 1666 } 1667 1668 /* 1669 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1670 * each key, one for decrypt/encrypt and the other for the MIC. 1671 */ 1672 static int 1673 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix, 1674 ieee80211_keyix *rxkeyix) 1675 { 1676 #define N(a) (sizeof(a)/sizeof(a[0])) 1677 u_int i, keyix; 1678 1679 KASSERT(!sc->sc_splitmic, ("key cache split")); 1680 /* XXX could optimize */ 1681 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1682 uint8_t b = sc->sc_keymap[i]; 1683 if (b != 0xff) { 1684 /* 1685 * One or more slots in this byte are free. 1686 */ 1687 keyix = i*NBBY; 1688 while (b & 1) { 1689 again: 1690 keyix++; 1691 b >>= 1; 1692 } 1693 if (isset(sc->sc_keymap, keyix+64)) { 1694 /* full pair unavailable */ 1695 /* XXX statistic */ 1696 if (keyix == (i+1)*NBBY) { 1697 /* no slots were appropriate, advance */ 1698 continue; 1699 } 1700 goto again; 1701 } 1702 setbit(sc->sc_keymap, keyix); 1703 setbit(sc->sc_keymap, keyix+64); 1704 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1705 "%s: key pair %u,%u\n", 1706 __func__, keyix, keyix+64); 1707 *txkeyix = *rxkeyix = keyix; 1708 return 1; 1709 } 1710 } 1711 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1712 return 0; 1713 #undef N 1714 } 1715 1716 /* 1717 * Allocate a single key cache slot. 1718 */ 1719 static int 1720 key_alloc_single(struct ath_softc *sc, 1721 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1722 { 1723 #define N(a) (sizeof(a)/sizeof(a[0])) 1724 u_int i, keyix; 1725 1726 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1727 for (i = 0; i < N(sc->sc_keymap); i++) { 1728 u_int8_t b = sc->sc_keymap[i]; 1729 if (b != 0xff) { 1730 /* 1731 * One or more slots are free. 1732 */ 1733 keyix = i*NBBY; 1734 while (b & 1) 1735 keyix++, b >>= 1; 1736 setbit(sc->sc_keymap, keyix); 1737 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1738 __func__, keyix); 1739 *txkeyix = *rxkeyix = keyix; 1740 return 1; 1741 } 1742 } 1743 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1744 return 0; 1745 #undef N 1746 } 1747 1748 /* 1749 * Allocate one or more key cache slots for a uniacst key. The 1750 * key itself is needed only to identify the cipher. For hardware 1751 * TKIP with split cipher+MIC keys we allocate two key cache slot 1752 * pairs so that we can setup separate TX and RX MIC keys. Note 1753 * that the MIC key for a TKIP key at slot i is assumed by the 1754 * hardware to be at slot i+64. This limits TKIP keys to the first 1755 * 64 entries. 1756 */ 1757 static int 1758 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, 1759 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1760 { 1761 struct ath_softc *sc = ic->ic_ifp->if_softc; 1762 1763 /* 1764 * Group key allocation must be handled specially for 1765 * parts that do not support multicast key cache search 1766 * functionality. For those parts the key id must match 1767 * the h/w key index so lookups find the right key. On 1768 * parts w/ the key search facility we install the sender's 1769 * mac address (with the high bit set) and let the hardware 1770 * find the key w/o using the key id. This is preferred as 1771 * it permits us to support multiple users for adhoc and/or 1772 * multi-station operation. 1773 */ 1774 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1775 if (!(&ic->ic_nw_keys[0] <= k && 1776 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1777 /* should not happen */ 1778 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1779 "%s: bogus group key\n", __func__); 1780 return 0; 1781 } 1782 /* 1783 * XXX we pre-allocate the global keys so 1784 * have no way to check if they've already been allocated. 1785 */ 1786 *keyix = *rxkeyix = k - ic->ic_nw_keys; 1787 return 1; 1788 } 1789 1790 /* 1791 * We allocate two pair for TKIP when using the h/w to do 1792 * the MIC. For everything else, including software crypto, 1793 * we allocate a single entry. Note that s/w crypto requires 1794 * a pass-through slot on the 5211 and 5212. The 5210 does 1795 * not support pass-through cache entries and we map all 1796 * those requests to slot 0. 1797 */ 1798 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1799 return key_alloc_single(sc, keyix, rxkeyix); 1800 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1801 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1802 if (sc->sc_splitmic) 1803 return key_alloc_2pair(sc, keyix, rxkeyix); 1804 else 1805 return key_alloc_pair(sc, keyix, rxkeyix); 1806 } else { 1807 return key_alloc_single(sc, keyix, rxkeyix); 1808 } 1809 } 1810 1811 /* 1812 * Delete an entry in the key cache allocated by ath_key_alloc. 1813 */ 1814 static int 1815 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1816 { 1817 struct ath_softc *sc = ic->ic_ifp->if_softc; 1818 struct ath_hal *ah = sc->sc_ah; 1819 const struct ieee80211_cipher *cip = k->wk_cipher; 1820 u_int keyix = k->wk_keyix; 1821 1822 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1823 1824 if (!device_has_power(sc->sc_dev)) { 1825 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n", 1826 k->wk_keyix); 1827 } 1828 1829 ath_hal_keyreset(ah, keyix); 1830 /* 1831 * Handle split tx/rx keying required for TKIP with h/w MIC. 1832 */ 1833 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1834 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1835 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1836 if (keyix >= IEEE80211_WEP_NKID) { 1837 /* 1838 * Don't touch keymap entries for global keys so 1839 * they are never considered for dynamic allocation. 1840 */ 1841 clrbit(sc->sc_keymap, keyix); 1842 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1843 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1844 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1845 if (sc->sc_splitmic) { 1846 /* +32 for RX key, +32+64 for RX key MIC */ 1847 clrbit(sc->sc_keymap, keyix+32); 1848 clrbit(sc->sc_keymap, keyix+32+64); 1849 } 1850 } 1851 } 1852 return 1; 1853 } 1854 1855 /* 1856 * Set the key cache contents for the specified key. Key cache 1857 * slot(s) must already have been allocated by ath_key_alloc. 1858 */ 1859 static int 1860 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1861 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1862 { 1863 struct ath_softc *sc = ic->ic_ifp->if_softc; 1864 1865 if (!device_has_power(sc->sc_dev)) { 1866 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n", 1867 k->wk_keyix); 1868 } 1869 return ath_keyset(sc, k, mac, ic->ic_bss); 1870 } 1871 1872 /* 1873 * Block/unblock tx+rx processing while a key change is done. 1874 * We assume the caller serializes key management operations 1875 * so we only need to worry about synchronization with other 1876 * uses that originate in the driver. 1877 */ 1878 static void 1879 ath_key_update_begin(struct ieee80211com *ic) 1880 { 1881 struct ifnet *ifp = ic->ic_ifp; 1882 struct ath_softc *sc = ifp->if_softc; 1883 1884 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1885 #if 0 1886 tasklet_disable(&sc->sc_rxtq); 1887 #endif 1888 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 1889 } 1890 1891 static void 1892 ath_key_update_end(struct ieee80211com *ic) 1893 { 1894 struct ifnet *ifp = ic->ic_ifp; 1895 struct ath_softc *sc = ifp->if_softc; 1896 1897 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1898 IF_UNLOCK(&ifp->if_snd); 1899 #if 0 1900 tasklet_enable(&sc->sc_rxtq); 1901 #endif 1902 } 1903 1904 /* 1905 * Calculate the receive filter according to the 1906 * operating mode and state: 1907 * 1908 * o always accept unicast, broadcast, and multicast traffic 1909 * o maintain current state of phy error reception (the hal 1910 * may enable phy error frames for noise immunity work) 1911 * o probe request frames are accepted only when operating in 1912 * hostap, adhoc, or monitor modes 1913 * o enable promiscuous mode according to the interface state 1914 * o accept beacons: 1915 * - when operating in adhoc mode so the 802.11 layer creates 1916 * node table entries for peers, 1917 * - when operating in station mode for collecting rssi data when 1918 * the station is otherwise quiet, or 1919 * - when scanning 1920 */ 1921 static u_int32_t 1922 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1923 { 1924 struct ieee80211com *ic = &sc->sc_ic; 1925 struct ath_hal *ah = sc->sc_ah; 1926 struct ifnet *ifp = &sc->sc_if; 1927 u_int32_t rfilt; 1928 1929 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1930 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1931 if (ic->ic_opmode != IEEE80211_M_STA) 1932 rfilt |= HAL_RX_FILTER_PROBEREQ; 1933 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1934 (ifp->if_flags & IFF_PROMISC)) 1935 rfilt |= HAL_RX_FILTER_PROM; 1936 if (ifp->if_flags & IFF_PROMISC) 1937 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ; 1938 if (ic->ic_opmode == IEEE80211_M_STA || 1939 ic->ic_opmode == IEEE80211_M_IBSS || 1940 state == IEEE80211_S_SCAN) 1941 rfilt |= HAL_RX_FILTER_BEACON; 1942 return rfilt; 1943 } 1944 1945 static void 1946 ath_mode_init(struct ath_softc *sc) 1947 { 1948 struct ifnet *ifp = &sc->sc_if; 1949 struct ieee80211com *ic = &sc->sc_ic; 1950 struct ath_hal *ah = sc->sc_ah; 1951 struct ether_multi *enm; 1952 struct ether_multistep estep; 1953 u_int32_t rfilt, mfilt[2], val; 1954 int i; 1955 uint8_t pos; 1956 1957 /* configure rx filter */ 1958 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1959 ath_hal_setrxfilter(ah, rfilt); 1960 1961 /* configure operational mode */ 1962 ath_hal_setopmode(ah); 1963 1964 /* Write keys to hardware; it may have been powered down. */ 1965 ath_key_update_begin(ic); 1966 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1967 ath_key_set(ic, 1968 &ic->ic_crypto.cs_nw_keys[i], 1969 ic->ic_myaddr); 1970 } 1971 ath_key_update_end(ic); 1972 1973 /* 1974 * Handle any link-level address change. Note that we only 1975 * need to force ic_myaddr; any other addresses are handled 1976 * as a byproduct of the ifnet code marking the interface 1977 * down then up. 1978 * 1979 * XXX should get from lladdr instead of arpcom but that's more work 1980 */ 1981 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl)); 1982 ath_hal_setmac(ah, ic->ic_myaddr); 1983 1984 /* calculate and install multicast filter */ 1985 ifp->if_flags &= ~IFF_ALLMULTI; 1986 mfilt[0] = mfilt[1] = 0; 1987 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1988 while (enm != NULL) { 1989 void *dl; 1990 /* XXX Punt on ranges. */ 1991 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 1992 mfilt[0] = mfilt[1] = 0xffffffff; 1993 ifp->if_flags |= IFF_ALLMULTI; 1994 break; 1995 } 1996 dl = enm->enm_addrlo; 1997 val = LE_READ_4((char *)dl + 0); 1998 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1999 val = LE_READ_4((char *)dl + 3); 2000 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2001 pos &= 0x3f; 2002 mfilt[pos / 32] |= (1 << (pos % 32)); 2003 2004 ETHER_NEXT_MULTI(estep, enm); 2005 } 2006 2007 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 2008 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 2009 __func__, rfilt, mfilt[0], mfilt[1]); 2010 } 2011 2012 /* 2013 * Set the slot time based on the current setting. 2014 */ 2015 static void 2016 ath_setslottime(struct ath_softc *sc) 2017 { 2018 struct ieee80211com *ic = &sc->sc_ic; 2019 struct ath_hal *ah = sc->sc_ah; 2020 2021 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2022 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 2023 else 2024 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 2025 sc->sc_updateslot = OK; 2026 } 2027 2028 /* 2029 * Callback from the 802.11 layer to update the 2030 * slot time based on the current setting. 2031 */ 2032 static void 2033 ath_updateslot(struct ifnet *ifp) 2034 { 2035 struct ath_softc *sc = ifp->if_softc; 2036 struct ieee80211com *ic = &sc->sc_ic; 2037 2038 /* 2039 * When not coordinating the BSS, change the hardware 2040 * immediately. For other operation we defer the change 2041 * until beacon updates have propagated to the stations. 2042 */ 2043 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2044 sc->sc_updateslot = UPDATE; 2045 else 2046 ath_setslottime(sc); 2047 } 2048 2049 /* 2050 * Setup a h/w transmit queue for beacons. 2051 */ 2052 static int 2053 ath_beaconq_setup(struct ath_hal *ah) 2054 { 2055 HAL_TXQ_INFO qi; 2056 2057 memset(&qi, 0, sizeof(qi)); 2058 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2059 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2060 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2061 /* NB: for dynamic turbo, don't enable any other interrupts */ 2062 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2063 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2064 } 2065 2066 /* 2067 * Setup the transmit queue parameters for the beacon queue. 2068 */ 2069 static int 2070 ath_beaconq_config(struct ath_softc *sc) 2071 { 2072 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2073 struct ieee80211com *ic = &sc->sc_ic; 2074 struct ath_hal *ah = sc->sc_ah; 2075 HAL_TXQ_INFO qi; 2076 2077 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2078 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2079 /* 2080 * Always burst out beacon and CAB traffic. 2081 */ 2082 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2083 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2084 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2085 } else { 2086 struct wmeParams *wmep = 2087 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2088 /* 2089 * Adhoc mode; important thing is to use 2x cwmin. 2090 */ 2091 qi.tqi_aifs = wmep->wmep_aifsn; 2092 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2093 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2094 } 2095 2096 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2097 device_printf(sc->sc_dev, "unable to update parameters for " 2098 "beacon hardware queue!\n"); 2099 return 0; 2100 } else { 2101 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2102 return 1; 2103 } 2104 #undef ATH_EXPONENT_TO_VALUE 2105 } 2106 2107 /* 2108 * Allocate and setup an initial beacon frame. 2109 */ 2110 static int 2111 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2112 { 2113 struct ieee80211com *ic = ni->ni_ic; 2114 struct ath_buf *bf; 2115 struct mbuf *m; 2116 int error; 2117 2118 bf = STAILQ_FIRST(&sc->sc_bbuf); 2119 if (bf == NULL) { 2120 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 2121 sc->sc_stats.ast_be_nombuf++; /* XXX */ 2122 return ENOMEM; /* XXX */ 2123 } 2124 /* 2125 * NB: the beacon data buffer must be 32-bit aligned; 2126 * we assume the mbuf routines will return us something 2127 * with this alignment (perhaps should assert). 2128 */ 2129 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 2130 if (m == NULL) { 2131 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 2132 __func__); 2133 sc->sc_stats.ast_be_nombuf++; 2134 return ENOMEM; 2135 } 2136 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2137 BUS_DMA_NOWAIT); 2138 if (error == 0) { 2139 bf->bf_m = m; 2140 bf->bf_node = ieee80211_ref_node(ni); 2141 } else { 2142 m_freem(m); 2143 } 2144 return error; 2145 } 2146 2147 /* 2148 * Setup the beacon frame for transmit. 2149 */ 2150 static void 2151 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2152 { 2153 #define USE_SHPREAMBLE(_ic) \ 2154 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2155 == IEEE80211_F_SHPREAMBLE) 2156 struct ieee80211_node *ni = bf->bf_node; 2157 struct ieee80211com *ic = ni->ni_ic; 2158 struct mbuf *m = bf->bf_m; 2159 struct ath_hal *ah = sc->sc_ah; 2160 struct ath_desc *ds; 2161 int flags, antenna; 2162 const HAL_RATE_TABLE *rt; 2163 u_int8_t rix, rate; 2164 2165 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 2166 __func__, m, m->m_len); 2167 2168 /* setup descriptors */ 2169 ds = bf->bf_desc; 2170 2171 flags = HAL_TXDESC_NOACK; 2172 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2173 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */ 2174 flags |= HAL_TXDESC_VEOL; 2175 /* 2176 * Let hardware handle antenna switching unless 2177 * the user has selected a transmit antenna 2178 * (sc_txantenna is not 0). 2179 */ 2180 antenna = sc->sc_txantenna; 2181 } else { 2182 ds->ds_link = 0; 2183 /* 2184 * Switch antenna every 4 beacons, unless the user 2185 * has selected a transmit antenna (sc_txantenna 2186 * is not 0). 2187 * 2188 * XXX assumes two antenna 2189 */ 2190 if (sc->sc_txantenna == 0) 2191 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2192 else 2193 antenna = sc->sc_txantenna; 2194 } 2195 2196 KASSERT(bf->bf_nseg == 1, 2197 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2198 ds->ds_data = bf->bf_segs[0].ds_addr; 2199 /* 2200 * Calculate rate code. 2201 * XXX everything at min xmit rate 2202 */ 2203 rix = sc->sc_minrateix; 2204 rt = sc->sc_currates; 2205 rate = rt->info[rix].rateCode; 2206 if (USE_SHPREAMBLE(ic)) 2207 rate |= rt->info[rix].shortPreamble; 2208 ath_hal_setuptxdesc(ah, ds 2209 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2210 , sizeof(struct ieee80211_frame)/* header length */ 2211 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2212 , ni->ni_txpower /* txpower XXX */ 2213 , rate, 1 /* series 0 rate/tries */ 2214 , HAL_TXKEYIX_INVALID /* no encryption */ 2215 , antenna /* antenna mode */ 2216 , flags /* no ack, veol for beacons */ 2217 , 0 /* rts/cts rate */ 2218 , 0 /* rts/cts duration */ 2219 ); 2220 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2221 ath_hal_filltxdesc(ah, ds 2222 , roundup(m->m_len, 4) /* buffer length */ 2223 , AH_TRUE /* first segment */ 2224 , AH_TRUE /* last segment */ 2225 , ds /* first descriptor */ 2226 ); 2227 2228 /* NB: The desc swap function becomes void, if descriptor swapping 2229 * is not enabled 2230 */ 2231 ath_desc_swap(ds); 2232 2233 #undef USE_SHPREAMBLE 2234 } 2235 2236 /* 2237 * Transmit a beacon frame at SWBA. Dynamic updates to the 2238 * frame contents are done as needed and the slot time is 2239 * also adjusted based on current state. 2240 */ 2241 static void 2242 ath_beacon_proc(void *arg, int pending) 2243 { 2244 struct ath_softc *sc = arg; 2245 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2246 struct ieee80211_node *ni = bf->bf_node; 2247 struct ieee80211com *ic = ni->ni_ic; 2248 struct ath_hal *ah = sc->sc_ah; 2249 struct mbuf *m; 2250 int ncabq, error, otherant; 2251 2252 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2253 __func__, pending); 2254 2255 if (ic->ic_opmode == IEEE80211_M_STA || 2256 ic->ic_opmode == IEEE80211_M_MONITOR || 2257 bf == NULL || bf->bf_m == NULL) { 2258 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2259 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2260 return; 2261 } 2262 /* 2263 * Check if the previous beacon has gone out. If 2264 * not don't try to post another, skip this period 2265 * and wait for the next. Missed beacons indicate 2266 * a problem and should not occur. If we miss too 2267 * many consecutive beacons reset the device. 2268 */ 2269 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2270 sc->sc_bmisscount++; 2271 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2272 "%s: missed %u consecutive beacons\n", 2273 __func__, sc->sc_bmisscount); 2274 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2275 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask); 2276 return; 2277 } 2278 if (sc->sc_bmisscount != 0) { 2279 DPRINTF(sc, ATH_DEBUG_BEACON, 2280 "%s: resume beacon xmit after %u misses\n", 2281 __func__, sc->sc_bmisscount); 2282 sc->sc_bmisscount = 0; 2283 } 2284 2285 /* 2286 * Update dynamic beacon contents. If this returns 2287 * non-zero then we need to remap the memory because 2288 * the beacon frame changed size (probably because 2289 * of the TIM bitmap). 2290 */ 2291 m = bf->bf_m; 2292 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 2293 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 2294 /* XXX too conservative? */ 2295 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2296 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2297 BUS_DMA_NOWAIT); 2298 if (error != 0) { 2299 if_printf(&sc->sc_if, 2300 "%s: bus_dmamap_load_mbuf failed, error %u\n", 2301 __func__, error); 2302 return; 2303 } 2304 } 2305 2306 /* 2307 * Handle slot time change when a non-ERP station joins/leaves 2308 * an 11g network. The 802.11 layer notifies us via callback, 2309 * we mark updateslot, then wait one beacon before effecting 2310 * the change. This gives associated stations at least one 2311 * beacon interval to note the state change. 2312 */ 2313 /* XXX locking */ 2314 if (sc->sc_updateslot == UPDATE) 2315 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2316 else if (sc->sc_updateslot == COMMIT) 2317 ath_setslottime(sc); /* commit change to h/w */ 2318 2319 /* 2320 * Check recent per-antenna transmit statistics and flip 2321 * the default antenna if noticeably more frames went out 2322 * on the non-default antenna. 2323 * XXX assumes 2 anntenae 2324 */ 2325 otherant = sc->sc_defant & 1 ? 2 : 1; 2326 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2327 ath_setdefantenna(sc, otherant); 2328 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2329 2330 /* 2331 * Construct tx descriptor. 2332 */ 2333 ath_beacon_setup(sc, bf); 2334 2335 /* 2336 * Stop any current dma and put the new frame on the queue. 2337 * This should never fail since we check above that no frames 2338 * are still pending on the queue. 2339 */ 2340 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2341 DPRINTF(sc, ATH_DEBUG_ANY, 2342 "%s: beacon queue %u did not stop?\n", 2343 __func__, sc->sc_bhalq); 2344 } 2345 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2346 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2347 2348 /* 2349 * Enable the CAB queue before the beacon queue to 2350 * insure cab frames are triggered by this beacon. 2351 */ 2352 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */ 2353 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2354 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2355 ath_hal_txstart(ah, sc->sc_bhalq); 2356 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2357 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__, 2358 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc); 2359 2360 sc->sc_stats.ast_be_xmit++; 2361 } 2362 2363 /* 2364 * Reset the hardware after detecting beacons have stopped. 2365 */ 2366 static void 2367 ath_bstuck_proc(void *arg, int pending) 2368 { 2369 struct ath_softc *sc = arg; 2370 struct ifnet *ifp = &sc->sc_if; 2371 2372 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2373 sc->sc_bmisscount); 2374 ath_reset(ifp); 2375 } 2376 2377 /* 2378 * Reclaim beacon resources. 2379 */ 2380 static void 2381 ath_beacon_free(struct ath_softc *sc) 2382 { 2383 struct ath_buf *bf; 2384 2385 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2386 if (bf->bf_m != NULL) { 2387 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2388 m_freem(bf->bf_m); 2389 bf->bf_m = NULL; 2390 } 2391 if (bf->bf_node != NULL) { 2392 ieee80211_free_node(bf->bf_node); 2393 bf->bf_node = NULL; 2394 } 2395 } 2396 } 2397 2398 /* 2399 * Configure the beacon and sleep timers. 2400 * 2401 * When operating as an AP this resets the TSF and sets 2402 * up the hardware to notify us when we need to issue beacons. 2403 * 2404 * When operating in station mode this sets up the beacon 2405 * timers according to the timestamp of the last received 2406 * beacon and the current TSF, configures PCF and DTIM 2407 * handling, programs the sleep registers so the hardware 2408 * will wakeup in time to receive beacons, and configures 2409 * the beacon miss handling so we'll receive a BMISS 2410 * interrupt when we stop seeing beacons from the AP 2411 * we've associated with. 2412 */ 2413 static void 2414 ath_beacon_config(struct ath_softc *sc) 2415 { 2416 #define TSF_TO_TU(_h,_l) \ 2417 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 2418 #define FUDGE 2 2419 struct ath_hal *ah = sc->sc_ah; 2420 struct ieee80211com *ic = &sc->sc_ic; 2421 struct ieee80211_node *ni = ic->ic_bss; 2422 u_int32_t nexttbtt, intval, tsftu; 2423 u_int64_t tsf; 2424 2425 /* extract tstamp from last beacon and convert to TU */ 2426 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2427 LE_READ_4(ni->ni_tstamp.data)); 2428 /* NB: the beacon interval is kept internally in TU's */ 2429 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2430 if (nexttbtt == 0) /* e.g. for ap mode */ 2431 nexttbtt = intval; 2432 else if (intval) /* NB: can be 0 for monitor mode */ 2433 nexttbtt = roundup(nexttbtt, intval); 2434 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2435 __func__, nexttbtt, intval, ni->ni_intval); 2436 if (ic->ic_opmode == IEEE80211_M_STA) { 2437 HAL_BEACON_STATE bs; 2438 int dtimperiod, dtimcount; 2439 int cfpperiod, cfpcount; 2440 2441 /* 2442 * Setup dtim and cfp parameters according to 2443 * last beacon we received (which may be none). 2444 */ 2445 dtimperiod = ni->ni_dtim_period; 2446 if (dtimperiod <= 0) /* NB: 0 if not known */ 2447 dtimperiod = 1; 2448 dtimcount = ni->ni_dtim_count; 2449 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2450 dtimcount = 0; /* XXX? */ 2451 cfpperiod = 1; /* NB: no PCF support yet */ 2452 cfpcount = 0; 2453 /* 2454 * Pull nexttbtt forward to reflect the current 2455 * TSF and calculate dtim+cfp state for the result. 2456 */ 2457 tsf = ath_hal_gettsf64(ah); 2458 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2459 do { 2460 nexttbtt += intval; 2461 if (--dtimcount < 0) { 2462 dtimcount = dtimperiod - 1; 2463 if (--cfpcount < 0) 2464 cfpcount = cfpperiod - 1; 2465 } 2466 } while (nexttbtt < tsftu); 2467 memset(&bs, 0, sizeof(bs)); 2468 bs.bs_intval = intval; 2469 bs.bs_nexttbtt = nexttbtt; 2470 bs.bs_dtimperiod = dtimperiod*intval; 2471 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2472 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2473 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2474 bs.bs_cfpmaxduration = 0; 2475 #if 0 2476 /* 2477 * The 802.11 layer records the offset to the DTIM 2478 * bitmap while receiving beacons; use it here to 2479 * enable h/w detection of our AID being marked in 2480 * the bitmap vector (to indicate frames for us are 2481 * pending at the AP). 2482 * XXX do DTIM handling in s/w to WAR old h/w bugs 2483 * XXX enable based on h/w rev for newer chips 2484 */ 2485 bs.bs_timoffset = ni->ni_timoff; 2486 #endif 2487 /* 2488 * Calculate the number of consecutive beacons to miss 2489 * before taking a BMISS interrupt. The configuration 2490 * is specified in ms, so we need to convert that to 2491 * TU's and then calculate based on the beacon interval. 2492 * Note that we clamp the result to at most 10 beacons. 2493 */ 2494 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2495 if (bs.bs_bmissthreshold > 10) 2496 bs.bs_bmissthreshold = 10; 2497 else if (bs.bs_bmissthreshold <= 0) 2498 bs.bs_bmissthreshold = 1; 2499 2500 /* 2501 * Calculate sleep duration. The configuration is 2502 * given in ms. We insure a multiple of the beacon 2503 * period is used. Also, if the sleep duration is 2504 * greater than the DTIM period then it makes senses 2505 * to make it a multiple of that. 2506 * 2507 * XXX fixed at 100ms 2508 */ 2509 bs.bs_sleepduration = 2510 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2511 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2512 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2513 2514 DPRINTF(sc, ATH_DEBUG_BEACON, 2515 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2516 , __func__ 2517 , tsf, tsftu 2518 , bs.bs_intval 2519 , bs.bs_nexttbtt 2520 , bs.bs_dtimperiod 2521 , bs.bs_nextdtim 2522 , bs.bs_bmissthreshold 2523 , bs.bs_sleepduration 2524 , bs.bs_cfpperiod 2525 , bs.bs_cfpmaxduration 2526 , bs.bs_cfpnext 2527 , bs.bs_timoffset 2528 ); 2529 ath_hal_intrset(ah, 0); 2530 ath_hal_beacontimers(ah, &bs); 2531 sc->sc_imask |= HAL_INT_BMISS; 2532 ath_hal_intrset(ah, sc->sc_imask); 2533 } else { 2534 ath_hal_intrset(ah, 0); 2535 if (nexttbtt == intval) 2536 intval |= HAL_BEACON_RESET_TSF; 2537 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2538 /* 2539 * In IBSS mode enable the beacon timers but only 2540 * enable SWBA interrupts if we need to manually 2541 * prepare beacon frames. Otherwise we use a 2542 * self-linked tx descriptor and let the hardware 2543 * deal with things. 2544 */ 2545 intval |= HAL_BEACON_ENA; 2546 if (!sc->sc_hasveol) 2547 sc->sc_imask |= HAL_INT_SWBA; 2548 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 2549 /* 2550 * Pull nexttbtt forward to reflect 2551 * the current TSF. 2552 */ 2553 tsf = ath_hal_gettsf64(ah); 2554 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2555 do { 2556 nexttbtt += intval; 2557 } while (nexttbtt < tsftu); 2558 } 2559 ath_beaconq_config(sc); 2560 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2561 /* 2562 * In AP mode we enable the beacon timers and 2563 * SWBA interrupts to prepare beacon frames. 2564 */ 2565 intval |= HAL_BEACON_ENA; 2566 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2567 ath_beaconq_config(sc); 2568 } 2569 ath_hal_beaconinit(ah, nexttbtt, intval); 2570 sc->sc_bmisscount = 0; 2571 ath_hal_intrset(ah, sc->sc_imask); 2572 /* 2573 * When using a self-linked beacon descriptor in 2574 * ibss mode load it once here. 2575 */ 2576 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2577 ath_beacon_proc(sc, 0); 2578 } 2579 sc->sc_syncbeacon = 0; 2580 #undef UNDEF 2581 #undef TSF_TO_TU 2582 } 2583 2584 static int 2585 ath_descdma_setup(struct ath_softc *sc, 2586 struct ath_descdma *dd, ath_bufhead *head, 2587 const char *name, int nbuf, int ndesc) 2588 { 2589 #define DS2PHYS(_dd, _ds) \ 2590 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc)) 2591 struct ifnet *ifp = &sc->sc_if; 2592 struct ath_desc *ds; 2593 struct ath_buf *bf; 2594 int i, bsize, error; 2595 2596 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2597 __func__, name, nbuf, ndesc); 2598 2599 dd->dd_name = name; 2600 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2601 2602 /* 2603 * Setup DMA descriptor area. 2604 */ 2605 dd->dd_dmat = sc->sc_dmat; 2606 2607 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE, 2608 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0); 2609 2610 if (error != 0) { 2611 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2612 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2613 goto fail0; 2614 } 2615 2616 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg, 2617 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT); 2618 if (error != 0) { 2619 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n", 2620 nbuf * ndesc, dd->dd_name, error); 2621 goto fail1; 2622 } 2623 2624 /* allocate descriptors */ 2625 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1, 2626 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2627 if (error != 0) { 2628 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2629 "error %u\n", dd->dd_name, error); 2630 goto fail2; 2631 } 2632 2633 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, 2634 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT); 2635 if (error != 0) { 2636 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2637 dd->dd_name, error); 2638 goto fail3; 2639 } 2640 2641 ds = dd->dd_desc; 2642 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr; 2643 DPRINTF(sc, ATH_DEBUG_RESET, 2644 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n", 2645 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2646 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2647 2648 /* allocate rx buffers */ 2649 bsize = sizeof(struct ath_buf) * nbuf; 2650 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2651 if (bf == NULL) { 2652 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2653 dd->dd_name, bsize); 2654 goto fail4; 2655 } 2656 dd->dd_bufptr = bf; 2657 2658 STAILQ_INIT(head); 2659 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2660 bf->bf_desc = ds; 2661 bf->bf_daddr = DS2PHYS(dd, ds); 2662 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc, 2663 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap); 2664 if (error != 0) { 2665 if_printf(ifp, "unable to create dmamap for %s " 2666 "buffer %u, error %u\n", dd->dd_name, i, error); 2667 ath_descdma_cleanup(sc, dd, head); 2668 return error; 2669 } 2670 STAILQ_INSERT_TAIL(head, bf, bf_list); 2671 } 2672 return 0; 2673 fail4: 2674 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2675 fail3: 2676 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2677 fail2: 2678 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2679 fail1: 2680 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2681 fail0: 2682 memset(dd, 0, sizeof(*dd)); 2683 return error; 2684 #undef DS2PHYS 2685 } 2686 2687 static void 2688 ath_descdma_cleanup(struct ath_softc *sc, 2689 struct ath_descdma *dd, ath_bufhead *head) 2690 { 2691 struct ath_buf *bf; 2692 struct ieee80211_node *ni; 2693 2694 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2695 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2696 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2697 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2698 2699 STAILQ_FOREACH(bf, head, bf_list) { 2700 if (bf->bf_m) { 2701 m_freem(bf->bf_m); 2702 bf->bf_m = NULL; 2703 } 2704 if (bf->bf_dmamap != NULL) { 2705 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2706 bf->bf_dmamap = NULL; 2707 } 2708 ni = bf->bf_node; 2709 bf->bf_node = NULL; 2710 if (ni != NULL) { 2711 /* 2712 * Reclaim node reference. 2713 */ 2714 ieee80211_free_node(ni); 2715 } 2716 } 2717 2718 STAILQ_INIT(head); 2719 free(dd->dd_bufptr, M_ATHDEV); 2720 memset(dd, 0, sizeof(*dd)); 2721 } 2722 2723 static int 2724 ath_desc_alloc(struct ath_softc *sc) 2725 { 2726 int error; 2727 2728 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2729 "rx", ath_rxbuf, 1); 2730 if (error != 0) 2731 return error; 2732 2733 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2734 "tx", ath_txbuf, ATH_TXDESC); 2735 if (error != 0) { 2736 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2737 return error; 2738 } 2739 2740 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2741 "beacon", 1, 1); 2742 if (error != 0) { 2743 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2744 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2745 return error; 2746 } 2747 return 0; 2748 } 2749 2750 static void 2751 ath_desc_free(struct ath_softc *sc) 2752 { 2753 2754 if (sc->sc_bdma.dd_desc_len != 0) 2755 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2756 if (sc->sc_txdma.dd_desc_len != 0) 2757 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2758 if (sc->sc_rxdma.dd_desc_len != 0) 2759 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2760 } 2761 2762 static struct ieee80211_node * 2763 ath_node_alloc(struct ieee80211_node_table *nt) 2764 { 2765 struct ieee80211com *ic = nt->nt_ic; 2766 struct ath_softc *sc = ic->ic_ifp->if_softc; 2767 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2768 struct ath_node *an; 2769 2770 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2771 if (an == NULL) { 2772 /* XXX stat+msg */ 2773 return NULL; 2774 } 2775 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2776 ath_rate_node_init(sc, an); 2777 2778 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2779 return &an->an_node; 2780 } 2781 2782 static void 2783 ath_node_free(struct ieee80211_node *ni) 2784 { 2785 struct ieee80211com *ic = ni->ni_ic; 2786 struct ath_softc *sc = ic->ic_ifp->if_softc; 2787 2788 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2789 2790 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2791 sc->sc_node_free(ni); 2792 } 2793 2794 static u_int8_t 2795 ath_node_getrssi(const struct ieee80211_node *ni) 2796 { 2797 #define HAL_EP_RND(x, mul) \ 2798 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2799 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2800 int32_t rssi; 2801 2802 /* 2803 * When only one frame is received there will be no state in 2804 * avgrssi so fallback on the value recorded by the 802.11 layer. 2805 */ 2806 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2807 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2808 else 2809 rssi = ni->ni_rssi; 2810 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2811 #undef HAL_EP_RND 2812 } 2813 2814 static int 2815 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2816 { 2817 struct ath_hal *ah = sc->sc_ah; 2818 int error; 2819 struct mbuf *m; 2820 struct ath_desc *ds; 2821 2822 m = bf->bf_m; 2823 if (m == NULL) { 2824 /* 2825 * NB: by assigning a page to the rx dma buffer we 2826 * implicitly satisfy the Atheros requirement that 2827 * this buffer be cache-line-aligned and sized to be 2828 * multiple of the cache line size. Not doing this 2829 * causes weird stuff to happen (for the 5210 at least). 2830 */ 2831 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2832 if (m == NULL) { 2833 DPRINTF(sc, ATH_DEBUG_ANY, 2834 "%s: no mbuf/cluster\n", __func__); 2835 sc->sc_stats.ast_rx_nombuf++; 2836 return ENOMEM; 2837 } 2838 bf->bf_m = m; 2839 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2840 2841 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2842 bf->bf_dmamap, m, 2843 BUS_DMA_NOWAIT); 2844 if (error != 0) { 2845 DPRINTF(sc, ATH_DEBUG_ANY, 2846 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2847 __func__, error); 2848 sc->sc_stats.ast_rx_busdma++; 2849 return error; 2850 } 2851 KASSERT(bf->bf_nseg == 1, 2852 ("multi-segment packet; nseg %u", bf->bf_nseg)); 2853 } 2854 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2855 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2856 2857 /* 2858 * Setup descriptors. For receive we always terminate 2859 * the descriptor list with a self-linked entry so we'll 2860 * not get overrun under high load (as can happen with a 2861 * 5212 when ANI processing enables PHY error frames). 2862 * 2863 * To insure the last descriptor is self-linked we create 2864 * each descriptor as self-linked and add it to the end. As 2865 * each additional descriptor is added the previous self-linked 2866 * entry is ``fixed'' naturally. This should be safe even 2867 * if DMA is happening. When processing RX interrupts we 2868 * never remove/process the last, self-linked, entry on the 2869 * descriptor list. This insures the hardware always has 2870 * someplace to write a new frame. 2871 */ 2872 ds = bf->bf_desc; 2873 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */ 2874 ds->ds_data = bf->bf_segs[0].ds_addr; 2875 /* ds->ds_vdata = mtod(m, void *); for radar */ 2876 ath_hal_setuprxdesc(ah, ds 2877 , m->m_len /* buffer size */ 2878 , 0 2879 ); 2880 2881 if (sc->sc_rxlink != NULL) 2882 *sc->sc_rxlink = bf->bf_daddr; 2883 sc->sc_rxlink = &ds->ds_link; 2884 return 0; 2885 } 2886 2887 /* 2888 * Extend 15-bit time stamp from rx descriptor to 2889 * a full 64-bit TSF using the specified TSF. 2890 */ 2891 static inline u_int64_t 2892 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 2893 { 2894 if ((tsf & 0x7fff) < rstamp) 2895 tsf -= 0x8000; 2896 return ((tsf &~ 0x7fff) | rstamp); 2897 } 2898 2899 /* 2900 * Intercept management frames to collect beacon rssi data 2901 * and to do ibss merges. 2902 */ 2903 static void 2904 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2905 struct ieee80211_node *ni, 2906 int subtype, int rssi, u_int32_t rstamp) 2907 { 2908 struct ath_softc *sc = ic->ic_ifp->if_softc; 2909 2910 /* 2911 * Call up first so subsequent work can use information 2912 * potentially stored in the node (e.g. for ibss merge). 2913 */ 2914 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2915 switch (subtype) { 2916 case IEEE80211_FC0_SUBTYPE_BEACON: 2917 /* update rssi statistics for use by the hal */ 2918 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 2919 if (sc->sc_syncbeacon && 2920 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) { 2921 /* 2922 * Resync beacon timers using the tsf of the beacon 2923 * frame we just received. 2924 */ 2925 ath_beacon_config(sc); 2926 } 2927 /* fall thru... */ 2928 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2929 if (ic->ic_opmode == IEEE80211_M_IBSS && 2930 ic->ic_state == IEEE80211_S_RUN) { 2931 u_int64_t tsf = ath_extend_tsf(rstamp, 2932 ath_hal_gettsf64(sc->sc_ah)); 2933 2934 /* 2935 * Handle ibss merge as needed; check the tsf on the 2936 * frame before attempting the merge. The 802.11 spec 2937 * says the station should change it's bssid to match 2938 * the oldest station with the same ssid, where oldest 2939 * is determined by the tsf. Note that hardware 2940 * reconfiguration happens through callback to 2941 * ath_newstate as the state machine will go from 2942 * RUN -> RUN when this happens. 2943 */ 2944 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2945 DPRINTF(sc, ATH_DEBUG_STATE, 2946 "ibss merge, rstamp %u tsf %ju " 2947 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2948 (uintmax_t)ni->ni_tstamp.tsf); 2949 (void) ieee80211_ibss_merge(ni); 2950 } 2951 } 2952 break; 2953 } 2954 } 2955 2956 /* 2957 * Set the default antenna. 2958 */ 2959 static void 2960 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2961 { 2962 struct ath_hal *ah = sc->sc_ah; 2963 2964 /* XXX block beacon interrupts */ 2965 ath_hal_setdefantenna(ah, antenna); 2966 if (sc->sc_defant != antenna) 2967 sc->sc_stats.ast_ant_defswitch++; 2968 sc->sc_defant = antenna; 2969 sc->sc_rxotherant = 0; 2970 } 2971 2972 static void 2973 ath_handle_micerror(struct ieee80211com *ic, 2974 struct ieee80211_frame *wh, int keyix) 2975 { 2976 struct ieee80211_node *ni; 2977 2978 /* XXX recheck MIC to deal w/ chips that lie */ 2979 /* XXX discard MIC errors on !data frames */ 2980 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix); 2981 if (ni != NULL) { 2982 ieee80211_notify_michael_failure(ic, wh, keyix); 2983 ieee80211_free_node(ni); 2984 } 2985 } 2986 2987 static void 2988 ath_rx_proc(void *arg, int npending) 2989 { 2990 #define PA2DESC(_sc, _pa) \ 2991 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 2992 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 2993 struct ath_softc *sc = arg; 2994 struct ath_buf *bf; 2995 struct ieee80211com *ic = &sc->sc_ic; 2996 struct ifnet *ifp = &sc->sc_if; 2997 struct ath_hal *ah = sc->sc_ah; 2998 struct ath_desc *ds; 2999 struct mbuf *m; 3000 struct ieee80211_node *ni; 3001 struct ath_node *an; 3002 int len, ngood, type; 3003 u_int phyerr; 3004 HAL_STATUS status; 3005 int16_t nf; 3006 u_int64_t tsf; 3007 uint8_t rxerr_tap, rxerr_mon; 3008 3009 NET_LOCK_GIANT(); /* XXX */ 3010 3011 rxerr_tap = 3012 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0; 3013 3014 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR) 3015 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3016 else if (ifp->if_flags & IFF_PROMISC) 3017 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3018 3019 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3020 ngood = 0; 3021 nf = ath_hal_getchannoise(ah, &sc->sc_curchan); 3022 tsf = ath_hal_gettsf64(ah); 3023 do { 3024 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3025 if (bf == NULL) { /* NB: shouldn't happen */ 3026 if_printf(ifp, "%s: no buffer!\n", __func__); 3027 break; 3028 } 3029 ds = bf->bf_desc; 3030 if (ds->ds_link == bf->bf_daddr) { 3031 /* NB: never process the self-linked entry at the end */ 3032 break; 3033 } 3034 m = bf->bf_m; 3035 if (m == NULL) { /* NB: shouldn't happen */ 3036 if_printf(ifp, "%s: no mbuf!\n", __func__); 3037 break; 3038 } 3039 /* XXX sync descriptor memory */ 3040 /* 3041 * Must provide the virtual address of the current 3042 * descriptor, the physical address, and the virtual 3043 * address of the next descriptor in the h/w chain. 3044 * This allows the HAL to look ahead to see if the 3045 * hardware is done with a descriptor by checking the 3046 * done bit in the following descriptor and the address 3047 * of the current descriptor the DMA engine is working 3048 * on. All this is necessary because of our use of 3049 * a self-linked list to avoid rx overruns. 3050 */ 3051 status = ath_hal_rxprocdesc(ah, ds, 3052 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 3053 &ds->ds_rxstat); 3054 #ifdef AR_DEBUG 3055 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3056 ath_printrxbuf(bf, status == HAL_OK); 3057 #endif 3058 if (status == HAL_EINPROGRESS) 3059 break; 3060 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3061 if (ds->ds_rxstat.rs_more) { 3062 /* 3063 * Frame spans multiple descriptors; this 3064 * cannot happen yet as we don't support 3065 * jumbograms. If not in monitor mode, 3066 * discard the frame. 3067 */ 3068 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3069 sc->sc_stats.ast_rx_toobig++; 3070 goto rx_next; 3071 } 3072 /* fall thru for monitor mode handling... */ 3073 } else if (ds->ds_rxstat.rs_status != 0) { 3074 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 3075 sc->sc_stats.ast_rx_crcerr++; 3076 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 3077 sc->sc_stats.ast_rx_fifoerr++; 3078 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 3079 sc->sc_stats.ast_rx_phyerr++; 3080 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 3081 sc->sc_stats.ast_rx_phy[phyerr]++; 3082 goto rx_next; 3083 } 3084 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 3085 /* 3086 * Decrypt error. If the error occurred 3087 * because there was no hardware key, then 3088 * let the frame through so the upper layers 3089 * can process it. This is necessary for 5210 3090 * parts which have no way to setup a ``clear'' 3091 * key cache entry. 3092 * 3093 * XXX do key cache faulting 3094 */ 3095 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 3096 goto rx_accept; 3097 sc->sc_stats.ast_rx_badcrypt++; 3098 } 3099 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 3100 sc->sc_stats.ast_rx_badmic++; 3101 /* 3102 * Do minimal work required to hand off 3103 * the 802.11 header for notifcation. 3104 */ 3105 /* XXX frag's and qos frames */ 3106 len = ds->ds_rxstat.rs_datalen; 3107 if (len >= sizeof (struct ieee80211_frame)) { 3108 bus_dmamap_sync(sc->sc_dmat, 3109 bf->bf_dmamap, 3110 0, bf->bf_dmamap->dm_mapsize, 3111 BUS_DMASYNC_POSTREAD); 3112 ath_handle_micerror(ic, 3113 mtod(m, struct ieee80211_frame *), 3114 sc->sc_splitmic ? 3115 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix); 3116 } 3117 } 3118 ifp->if_ierrors++; 3119 /* 3120 * Reject error frames, we normally don't want 3121 * to see them in monitor mode (in monitor mode 3122 * allow through packets that have crypto problems). 3123 */ 3124 3125 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon)) 3126 goto rx_next; 3127 } 3128 rx_accept: 3129 /* 3130 * Sync and unmap the frame. At this point we're 3131 * committed to passing the mbuf somewhere so clear 3132 * bf_m; this means a new sk_buff must be allocated 3133 * when the rx descriptor is setup again to receive 3134 * another frame. 3135 */ 3136 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3137 0, bf->bf_dmamap->dm_mapsize, 3138 BUS_DMASYNC_POSTREAD); 3139 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3140 bf->bf_m = NULL; 3141 3142 m->m_pkthdr.rcvif = ifp; 3143 len = ds->ds_rxstat.rs_datalen; 3144 m->m_pkthdr.len = m->m_len = len; 3145 3146 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 3147 3148 if (sc->sc_drvbpf) { 3149 u_int8_t rix; 3150 3151 /* 3152 * Discard anything shorter than an ack or cts. 3153 */ 3154 if (len < IEEE80211_ACK_LEN) { 3155 DPRINTF(sc, ATH_DEBUG_RECV, 3156 "%s: runt packet %d\n", 3157 __func__, len); 3158 sc->sc_stats.ast_rx_tooshort++; 3159 m_freem(m); 3160 goto rx_next; 3161 } 3162 rix = ds->ds_rxstat.rs_rate; 3163 sc->sc_rx_th.wr_tsf = htole64( 3164 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf)); 3165 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3166 if (ds->ds_rxstat.rs_status & 3167 (HAL_RXERR_CRC|HAL_RXERR_PHY)) { 3168 sc->sc_rx_th.wr_flags |= 3169 IEEE80211_RADIOTAP_F_BADFCS; 3170 } 3171 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3172 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf; 3173 sc->sc_rx_th.wr_antnoise = nf; 3174 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 3175 3176 bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, 3177 sc->sc_rx_th_len, m); 3178 } 3179 3180 if (ds->ds_rxstat.rs_status & rxerr_tap) { 3181 m_freem(m); 3182 goto rx_next; 3183 } 3184 /* 3185 * From this point on we assume the frame is at least 3186 * as large as ieee80211_frame_min; verify that. 3187 */ 3188 if (len < IEEE80211_MIN_LEN) { 3189 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 3190 __func__, len); 3191 sc->sc_stats.ast_rx_tooshort++; 3192 m_freem(m); 3193 goto rx_next; 3194 } 3195 3196 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 3197 ieee80211_dump_pkt(mtod(m, void *), len, 3198 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 3199 ds->ds_rxstat.rs_rssi); 3200 } 3201 3202 m_adj(m, -IEEE80211_CRC_LEN); 3203 3204 /* 3205 * Locate the node for sender, track state, and then 3206 * pass the (referenced) node up to the 802.11 layer 3207 * for its use. 3208 */ 3209 ni = ieee80211_find_rxnode_withkey(ic, 3210 mtod(m, const struct ieee80211_frame_min *), 3211 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ? 3212 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix); 3213 /* 3214 * Track rx rssi and do any rx antenna management. 3215 */ 3216 an = ATH_NODE(ni); 3217 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 3218 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi); 3219 /* 3220 * Send frame up for processing. 3221 */ 3222 type = ieee80211_input(ic, m, ni, 3223 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 3224 ieee80211_free_node(ni); 3225 if (sc->sc_diversity) { 3226 /* 3227 * When using fast diversity, change the default rx 3228 * antenna if diversity chooses the other antenna 3 3229 * times in a row. 3230 */ 3231 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3232 if (++sc->sc_rxotherant >= 3) 3233 ath_setdefantenna(sc, 3234 ds->ds_rxstat.rs_antenna); 3235 } else 3236 sc->sc_rxotherant = 0; 3237 } 3238 if (sc->sc_softled) { 3239 /* 3240 * Blink for any data frame. Otherwise do a 3241 * heartbeat-style blink when idle. The latter 3242 * is mainly for station mode where we depend on 3243 * periodic beacon frames to trigger the poll event. 3244 */ 3245 if (type == IEEE80211_FC0_TYPE_DATA) { 3246 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3247 ath_led_event(sc, ATH_LED_RX); 3248 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3249 ath_led_event(sc, ATH_LED_POLL); 3250 } 3251 /* 3252 * Arrange to update the last rx timestamp only for 3253 * frames from our ap when operating in station mode. 3254 * This assumes the rx key is always setup when associated. 3255 */ 3256 if (ic->ic_opmode == IEEE80211_M_STA && 3257 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID) 3258 ngood++; 3259 rx_next: 3260 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3261 } while (ath_rxbuf_init(sc, bf) == 0); 3262 3263 /* rx signal state monitoring */ 3264 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan); 3265 #if 0 3266 if (ath_hal_radar_event(ah)) 3267 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask); 3268 #endif 3269 if (ngood) 3270 sc->sc_lastrx = tsf; 3271 3272 #ifdef __NetBSD__ 3273 /* XXX Why isn't this necessary in FreeBSD? */ 3274 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 3275 ath_start(ifp); 3276 #endif /* __NetBSD__ */ 3277 3278 NET_UNLOCK_GIANT(); /* XXX */ 3279 #undef PA2DESC 3280 } 3281 3282 /* 3283 * Setup a h/w transmit queue. 3284 */ 3285 static struct ath_txq * 3286 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3287 { 3288 #define N(a) (sizeof(a)/sizeof(a[0])) 3289 struct ath_hal *ah = sc->sc_ah; 3290 HAL_TXQ_INFO qi; 3291 int qnum; 3292 3293 memset(&qi, 0, sizeof(qi)); 3294 qi.tqi_subtype = subtype; 3295 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3296 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3297 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3298 /* 3299 * Enable interrupts only for EOL and DESC conditions. 3300 * We mark tx descriptors to receive a DESC interrupt 3301 * when a tx queue gets deep; otherwise waiting for the 3302 * EOL to reap descriptors. Note that this is done to 3303 * reduce interrupt load and this only defers reaping 3304 * descriptors, never transmitting frames. Aside from 3305 * reducing interrupts this also permits more concurrency. 3306 * The only potential downside is if the tx queue backs 3307 * up in which case the top half of the kernel may backup 3308 * due to a lack of tx descriptors. 3309 */ 3310 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3311 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3312 if (qnum == -1) { 3313 /* 3314 * NB: don't print a message, this happens 3315 * normally on parts with too few tx queues 3316 */ 3317 return NULL; 3318 } 3319 if (qnum >= N(sc->sc_txq)) { 3320 device_printf(sc->sc_dev, 3321 "hal qnum %u out of range, max %zu!\n", 3322 qnum, N(sc->sc_txq)); 3323 ath_hal_releasetxqueue(ah, qnum); 3324 return NULL; 3325 } 3326 if (!ATH_TXQ_SETUP(sc, qnum)) { 3327 struct ath_txq *txq = &sc->sc_txq[qnum]; 3328 3329 txq->axq_qnum = qnum; 3330 txq->axq_depth = 0; 3331 txq->axq_intrcnt = 0; 3332 txq->axq_link = NULL; 3333 STAILQ_INIT(&txq->axq_q); 3334 ATH_TXQ_LOCK_INIT(sc, txq); 3335 sc->sc_txqsetup |= 1<<qnum; 3336 } 3337 return &sc->sc_txq[qnum]; 3338 #undef N 3339 } 3340 3341 /* 3342 * Setup a hardware data transmit queue for the specified 3343 * access control. The hal may not support all requested 3344 * queues in which case it will return a reference to a 3345 * previously setup queue. We record the mapping from ac's 3346 * to h/w queues for use by ath_tx_start and also track 3347 * the set of h/w queues being used to optimize work in the 3348 * transmit interrupt handler and related routines. 3349 */ 3350 static int 3351 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3352 { 3353 #define N(a) (sizeof(a)/sizeof(a[0])) 3354 struct ath_txq *txq; 3355 3356 if (ac >= N(sc->sc_ac2q)) { 3357 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3358 ac, N(sc->sc_ac2q)); 3359 return 0; 3360 } 3361 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3362 if (txq != NULL) { 3363 sc->sc_ac2q[ac] = txq; 3364 return 1; 3365 } else 3366 return 0; 3367 #undef N 3368 } 3369 3370 /* 3371 * Update WME parameters for a transmit queue. 3372 */ 3373 static int 3374 ath_txq_update(struct ath_softc *sc, int ac) 3375 { 3376 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3377 #define ATH_TXOP_TO_US(v) (v<<5) 3378 struct ieee80211com *ic = &sc->sc_ic; 3379 struct ath_txq *txq = sc->sc_ac2q[ac]; 3380 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3381 struct ath_hal *ah = sc->sc_ah; 3382 HAL_TXQ_INFO qi; 3383 3384 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3385 qi.tqi_aifs = wmep->wmep_aifsn; 3386 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3387 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3388 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3389 3390 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3391 device_printf(sc->sc_dev, "unable to update hardware queue " 3392 "parameters for %s traffic!\n", 3393 ieee80211_wme_acnames[ac]); 3394 return 0; 3395 } else { 3396 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3397 return 1; 3398 } 3399 #undef ATH_TXOP_TO_US 3400 #undef ATH_EXPONENT_TO_VALUE 3401 } 3402 3403 /* 3404 * Callback from the 802.11 layer to update WME parameters. 3405 */ 3406 static int 3407 ath_wme_update(struct ieee80211com *ic) 3408 { 3409 struct ath_softc *sc = ic->ic_ifp->if_softc; 3410 3411 return !ath_txq_update(sc, WME_AC_BE) || 3412 !ath_txq_update(sc, WME_AC_BK) || 3413 !ath_txq_update(sc, WME_AC_VI) || 3414 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3415 } 3416 3417 /* 3418 * Reclaim resources for a setup queue. 3419 */ 3420 static void 3421 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3422 { 3423 3424 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3425 ATH_TXQ_LOCK_DESTROY(txq); 3426 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3427 } 3428 3429 /* 3430 * Reclaim all tx queue resources. 3431 */ 3432 static void 3433 ath_tx_cleanup(struct ath_softc *sc) 3434 { 3435 int i; 3436 3437 ATH_TXBUF_LOCK_DESTROY(sc); 3438 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3439 if (ATH_TXQ_SETUP(sc, i)) 3440 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3441 } 3442 3443 /* 3444 * Defragment an mbuf chain, returning at most maxfrags separate 3445 * mbufs+clusters. If this is not possible NULL is returned and 3446 * the original mbuf chain is left in it's present (potentially 3447 * modified) state. We use two techniques: collapsing consecutive 3448 * mbufs and replacing consecutive mbufs by a cluster. 3449 */ 3450 static struct mbuf * 3451 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3452 { 3453 struct mbuf *m, *n, *n2, **prev; 3454 u_int curfrags; 3455 3456 /* 3457 * Calculate the current number of frags. 3458 */ 3459 curfrags = 0; 3460 for (m = m0; m != NULL; m = m->m_next) 3461 curfrags++; 3462 /* 3463 * First, try to collapse mbufs. Note that we always collapse 3464 * towards the front so we don't need to deal with moving the 3465 * pkthdr. This may be suboptimal if the first mbuf has much 3466 * less data than the following. 3467 */ 3468 m = m0; 3469 again: 3470 for (;;) { 3471 n = m->m_next; 3472 if (n == NULL) 3473 break; 3474 if (n->m_len < M_TRAILINGSPACE(m)) { 3475 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *), 3476 n->m_len); 3477 m->m_len += n->m_len; 3478 m->m_next = n->m_next; 3479 m_free(n); 3480 if (--curfrags <= maxfrags) 3481 return m0; 3482 } else 3483 m = n; 3484 } 3485 KASSERT(maxfrags > 1, 3486 ("maxfrags %u, but normal collapse failed", maxfrags)); 3487 /* 3488 * Collapse consecutive mbufs to a cluster. 3489 */ 3490 prev = &m0->m_next; /* NB: not the first mbuf */ 3491 while ((n = *prev) != NULL) { 3492 if ((n2 = n->m_next) != NULL && 3493 n->m_len + n2->m_len < MCLBYTES) { 3494 m = m_getcl(how, MT_DATA, 0); 3495 if (m == NULL) 3496 goto bad; 3497 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3498 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3499 n2->m_len); 3500 m->m_len = n->m_len + n2->m_len; 3501 m->m_next = n2->m_next; 3502 *prev = m; 3503 m_free(n); 3504 m_free(n2); 3505 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3506 return m0; 3507 /* 3508 * Still not there, try the normal collapse 3509 * again before we allocate another cluster. 3510 */ 3511 goto again; 3512 } 3513 prev = &n->m_next; 3514 } 3515 /* 3516 * No place where we can collapse to a cluster; punt. 3517 * This can occur if, for example, you request 2 frags 3518 * but the packet requires that both be clusters (we 3519 * never reallocate the first mbuf to avoid moving the 3520 * packet header). 3521 */ 3522 bad: 3523 return NULL; 3524 } 3525 3526 /* 3527 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 3528 */ 3529 static int 3530 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 3531 { 3532 int i; 3533 3534 for (i = 0; i < rt->rateCount; i++) 3535 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 3536 return i; 3537 return 0; /* NB: lowest rate */ 3538 } 3539 3540 static void 3541 ath_freetx(struct mbuf *m) 3542 { 3543 struct mbuf *next; 3544 3545 do { 3546 next = m->m_nextpkt; 3547 m->m_nextpkt = NULL; 3548 m_freem(m); 3549 } while ((m = next) != NULL); 3550 } 3551 3552 static int 3553 deduct_pad_bytes(int len, int hdrlen) 3554 { 3555 /* XXX I am suspicious that this code, which I extracted 3556 * XXX from ath_tx_start() for reuse, does the right thing. 3557 */ 3558 return len - (hdrlen & 3); 3559 } 3560 3561 static int 3562 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3563 struct mbuf *m0) 3564 { 3565 struct ieee80211com *ic = &sc->sc_ic; 3566 struct ath_hal *ah = sc->sc_ah; 3567 struct ifnet *ifp = &sc->sc_if; 3568 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3569 int i, error, iswep, ismcast, isfrag, ismrr; 3570 int keyix, hdrlen, pktlen, try0; 3571 u_int8_t rix, txrate, ctsrate; 3572 u_int8_t cix = 0xff; /* NB: silence compiler */ 3573 struct ath_desc *ds, *ds0; 3574 struct ath_txq *txq; 3575 struct ieee80211_frame *wh; 3576 u_int subtype, flags, ctsduration; 3577 HAL_PKT_TYPE atype; 3578 const HAL_RATE_TABLE *rt; 3579 HAL_BOOL shortPreamble; 3580 struct ath_node *an; 3581 struct mbuf *m; 3582 u_int pri; 3583 3584 wh = mtod(m0, struct ieee80211_frame *); 3585 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3586 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3587 isfrag = m0->m_flags & M_FRAG; 3588 hdrlen = ieee80211_anyhdrsize(wh); 3589 /* 3590 * Packet length must not include any 3591 * pad bytes; deduct them here. 3592 */ 3593 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen); 3594 3595 if (iswep) { 3596 const struct ieee80211_cipher *cip; 3597 struct ieee80211_key *k; 3598 3599 /* 3600 * Construct the 802.11 header+trailer for an encrypted 3601 * frame. The only reason this can fail is because of an 3602 * unknown or unsupported cipher/key type. 3603 */ 3604 k = ieee80211_crypto_encap(ic, ni, m0); 3605 if (k == NULL) { 3606 /* 3607 * This can happen when the key is yanked after the 3608 * frame was queued. Just discard the frame; the 3609 * 802.11 layer counts failures and provides 3610 * debugging/diagnostics. 3611 */ 3612 ath_freetx(m0); 3613 return EIO; 3614 } 3615 /* 3616 * Adjust the packet + header lengths for the crypto 3617 * additions and calculate the h/w key index. When 3618 * a s/w mic is done the frame will have had any mic 3619 * added to it prior to entry so m0->m_pkthdr.len above will 3620 * account for it. Otherwise we need to add it to the 3621 * packet length. 3622 */ 3623 cip = k->wk_cipher; 3624 hdrlen += cip->ic_header; 3625 pktlen += cip->ic_header + cip->ic_trailer; 3626 /* NB: frags always have any TKIP MIC done in s/w */ 3627 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 3628 pktlen += cip->ic_miclen; 3629 keyix = k->wk_keyix; 3630 3631 /* packet header may have moved, reset our local pointer */ 3632 wh = mtod(m0, struct ieee80211_frame *); 3633 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3634 /* 3635 * Use station key cache slot, if assigned. 3636 */ 3637 keyix = ni->ni_ucastkey.wk_keyix; 3638 if (keyix == IEEE80211_KEYIX_NONE) 3639 keyix = HAL_TXKEYIX_INVALID; 3640 } else 3641 keyix = HAL_TXKEYIX_INVALID; 3642 3643 pktlen += IEEE80211_CRC_LEN; 3644 3645 /* 3646 * Load the DMA map so any coalescing is done. This 3647 * also calculates the number of descriptors we need. 3648 */ 3649 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3650 BUS_DMA_NOWAIT); 3651 if (error == EFBIG) { 3652 /* XXX packet requires too many descriptors */ 3653 bf->bf_nseg = ATH_TXDESC+1; 3654 } else if (error != 0) { 3655 sc->sc_stats.ast_tx_busdma++; 3656 ath_freetx(m0); 3657 return error; 3658 } 3659 /* 3660 * Discard null packets and check for packets that 3661 * require too many TX descriptors. We try to convert 3662 * the latter to a cluster. 3663 */ 3664 if (error == EFBIG) { /* too many desc's, linearize */ 3665 sc->sc_stats.ast_tx_linear++; 3666 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3667 if (m == NULL) { 3668 ath_freetx(m0); 3669 sc->sc_stats.ast_tx_nombuf++; 3670 return ENOMEM; 3671 } 3672 m0 = m; 3673 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3674 BUS_DMA_NOWAIT); 3675 if (error != 0) { 3676 sc->sc_stats.ast_tx_busdma++; 3677 ath_freetx(m0); 3678 return error; 3679 } 3680 KASSERT(bf->bf_nseg <= ATH_TXDESC, 3681 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 3682 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3683 sc->sc_stats.ast_tx_nodata++; 3684 ath_freetx(m0); 3685 return EIO; 3686 } 3687 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3688 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3689 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 3690 bf->bf_m = m0; 3691 bf->bf_node = ni; /* NB: held reference */ 3692 3693 /* setup descriptors */ 3694 ds = bf->bf_desc; 3695 rt = sc->sc_currates; 3696 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3697 3698 /* 3699 * NB: the 802.11 layer marks whether or not we should 3700 * use short preamble based on the current mode and 3701 * negotiated parameters. 3702 */ 3703 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3704 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) { 3705 shortPreamble = AH_TRUE; 3706 sc->sc_stats.ast_tx_shortpre++; 3707 } else { 3708 shortPreamble = AH_FALSE; 3709 } 3710 3711 an = ATH_NODE(ni); 3712 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3713 ismrr = 0; /* default no multi-rate retry*/ 3714 /* 3715 * Calculate Atheros packet type from IEEE80211 packet header, 3716 * setup for rate calculations, and select h/w transmit queue. 3717 */ 3718 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3719 case IEEE80211_FC0_TYPE_MGT: 3720 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3721 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3722 atype = HAL_PKT_TYPE_BEACON; 3723 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3724 atype = HAL_PKT_TYPE_PROBE_RESP; 3725 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3726 atype = HAL_PKT_TYPE_ATIM; 3727 else 3728 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3729 rix = sc->sc_minrateix; 3730 txrate = rt->info[rix].rateCode; 3731 if (shortPreamble) 3732 txrate |= rt->info[rix].shortPreamble; 3733 try0 = ATH_TXMGTTRY; 3734 /* NB: force all management frames to highest queue */ 3735 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3736 /* NB: force all management frames to highest queue */ 3737 pri = WME_AC_VO; 3738 } else 3739 pri = WME_AC_BE; 3740 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3741 break; 3742 case IEEE80211_FC0_TYPE_CTL: 3743 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3744 rix = sc->sc_minrateix; 3745 txrate = rt->info[rix].rateCode; 3746 if (shortPreamble) 3747 txrate |= rt->info[rix].shortPreamble; 3748 try0 = ATH_TXMGTTRY; 3749 /* NB: force all ctl frames to highest queue */ 3750 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3751 /* NB: force all ctl frames to highest queue */ 3752 pri = WME_AC_VO; 3753 } else 3754 pri = WME_AC_BE; 3755 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3756 break; 3757 case IEEE80211_FC0_TYPE_DATA: 3758 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3759 /* 3760 * Data frames: multicast frames go out at a fixed rate, 3761 * otherwise consult the rate control module for the 3762 * rate to use. 3763 */ 3764 if (ismcast) { 3765 /* 3766 * Check mcast rate setting in case it's changed. 3767 * XXX move out of fastpath 3768 */ 3769 if (ic->ic_mcast_rate != sc->sc_mcastrate) { 3770 sc->sc_mcastrix = 3771 ath_tx_findrix(rt, ic->ic_mcast_rate); 3772 sc->sc_mcastrate = ic->ic_mcast_rate; 3773 } 3774 rix = sc->sc_mcastrix; 3775 txrate = rt->info[rix].rateCode; 3776 try0 = 1; 3777 } else { 3778 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3779 &rix, &try0, &txrate); 3780 sc->sc_txrate = txrate; /* for LED blinking */ 3781 if (try0 != ATH_TXMAXTRY) 3782 ismrr = 1; 3783 } 3784 pri = M_WME_GETAC(m0); 3785 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 3786 flags |= HAL_TXDESC_NOACK; 3787 break; 3788 default: 3789 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3790 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3791 /* XXX statistic */ 3792 ath_freetx(m0); 3793 return EIO; 3794 } 3795 txq = sc->sc_ac2q[pri]; 3796 3797 /* 3798 * When servicing one or more stations in power-save mode 3799 * multicast frames must be buffered until after the beacon. 3800 * We use the CAB queue for that. 3801 */ 3802 if (ismcast && ic->ic_ps_sta) { 3803 txq = sc->sc_cabq; 3804 /* XXX? more bit in 802.11 frame header */ 3805 } 3806 3807 /* 3808 * Calculate miscellaneous flags. 3809 */ 3810 if (ismcast) { 3811 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3812 } else if (pktlen > ic->ic_rtsthreshold) { 3813 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3814 cix = rt->info[rix].controlRate; 3815 sc->sc_stats.ast_tx_rts++; 3816 } 3817 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 3818 sc->sc_stats.ast_tx_noack++; 3819 3820 /* 3821 * If 802.11g protection is enabled, determine whether 3822 * to use RTS/CTS or just CTS. Note that this is only 3823 * done for OFDM unicast frames. 3824 */ 3825 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3826 rt->info[rix].phy == IEEE80211_T_OFDM && 3827 (flags & HAL_TXDESC_NOACK) == 0) { 3828 /* XXX fragments must use CCK rates w/ protection */ 3829 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3830 flags |= HAL_TXDESC_RTSENA; 3831 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3832 flags |= HAL_TXDESC_CTSENA; 3833 if (isfrag) { 3834 /* 3835 * For frags it would be desirable to use the 3836 * highest CCK rate for RTS/CTS. But stations 3837 * farther away may detect it at a lower CCK rate 3838 * so use the configured protection rate instead 3839 * (for now). 3840 */ 3841 cix = rt->info[sc->sc_protrix].controlRate; 3842 } else 3843 cix = rt->info[sc->sc_protrix].controlRate; 3844 sc->sc_stats.ast_tx_protect++; 3845 } 3846 3847 /* 3848 * Calculate duration. This logically belongs in the 802.11 3849 * layer but it lacks sufficient information to calculate it. 3850 */ 3851 if ((flags & HAL_TXDESC_NOACK) == 0 && 3852 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3853 u_int16_t dur; 3854 /* 3855 * XXX not right with fragmentation. 3856 */ 3857 if (shortPreamble) 3858 dur = rt->info[rix].spAckDuration; 3859 else 3860 dur = rt->info[rix].lpAckDuration; 3861 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 3862 dur += dur; /* additional SIFS+ACK */ 3863 KASSERT(m0->m_nextpkt != NULL, ("no fragment")); 3864 /* 3865 * Include the size of next fragment so NAV is 3866 * updated properly. The last fragment uses only 3867 * the ACK duration 3868 */ 3869 dur += ath_hal_computetxtime(ah, rt, 3870 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len, 3871 hdrlen) - 3872 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen, 3873 rix, shortPreamble); 3874 } 3875 if (isfrag) { 3876 /* 3877 * Force hardware to use computed duration for next 3878 * fragment by disabling multi-rate retry which updates 3879 * duration based on the multi-rate duration table. 3880 */ 3881 try0 = ATH_TXMAXTRY; 3882 } 3883 *(u_int16_t *)wh->i_dur = htole16(dur); 3884 } 3885 3886 /* 3887 * Calculate RTS/CTS rate and duration if needed. 3888 */ 3889 ctsduration = 0; 3890 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3891 /* 3892 * CTS transmit rate is derived from the transmit rate 3893 * by looking in the h/w rate table. We must also factor 3894 * in whether or not a short preamble is to be used. 3895 */ 3896 /* NB: cix is set above where RTS/CTS is enabled */ 3897 KASSERT(cix != 0xff, ("cix not setup")); 3898 ctsrate = rt->info[cix].rateCode; 3899 /* 3900 * Compute the transmit duration based on the frame 3901 * size and the size of an ACK frame. We call into the 3902 * HAL to do the computation since it depends on the 3903 * characteristics of the actual PHY being used. 3904 * 3905 * NB: CTS is assumed the same size as an ACK so we can 3906 * use the precalculated ACK durations. 3907 */ 3908 if (shortPreamble) { 3909 ctsrate |= rt->info[cix].shortPreamble; 3910 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3911 ctsduration += rt->info[cix].spAckDuration; 3912 ctsduration += ath_hal_computetxtime(ah, 3913 rt, pktlen, rix, AH_TRUE); 3914 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3915 ctsduration += rt->info[rix].spAckDuration; 3916 } else { 3917 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3918 ctsduration += rt->info[cix].lpAckDuration; 3919 ctsduration += ath_hal_computetxtime(ah, 3920 rt, pktlen, rix, AH_FALSE); 3921 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3922 ctsduration += rt->info[rix].lpAckDuration; 3923 } 3924 /* 3925 * Must disable multi-rate retry when using RTS/CTS. 3926 */ 3927 ismrr = 0; 3928 try0 = ATH_TXMGTTRY; /* XXX */ 3929 } else 3930 ctsrate = 0; 3931 3932 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3933 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len, 3934 sc->sc_hwmap[txrate].ieeerate, -1); 3935 bpf_mtap3(ic->ic_rawbpf, m0); 3936 if (sc->sc_drvbpf) { 3937 u_int64_t tsf = ath_hal_gettsf64(ah); 3938 3939 sc->sc_tx_th.wt_tsf = htole64(tsf); 3940 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3941 if (iswep) 3942 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3943 if (isfrag) 3944 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 3945 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3946 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3947 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3948 3949 bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3950 } 3951 3952 /* 3953 * Determine if a tx interrupt should be generated for 3954 * this descriptor. We take a tx interrupt to reap 3955 * descriptors when the h/w hits an EOL condition or 3956 * when the descriptor is specifically marked to generate 3957 * an interrupt. We periodically mark descriptors in this 3958 * way to insure timely replenishing of the supply needed 3959 * for sending frames. Defering interrupts reduces system 3960 * load and potentially allows more concurrent work to be 3961 * done but if done to aggressively can cause senders to 3962 * backup. 3963 * 3964 * NB: use >= to deal with sc_txintrperiod changing 3965 * dynamically through sysctl. 3966 */ 3967 if (flags & HAL_TXDESC_INTREQ) { 3968 txq->axq_intrcnt = 0; 3969 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3970 flags |= HAL_TXDESC_INTREQ; 3971 txq->axq_intrcnt = 0; 3972 } 3973 3974 /* 3975 * Formulate first tx descriptor with tx controls. 3976 */ 3977 /* XXX check return value? */ 3978 ath_hal_setuptxdesc(ah, ds 3979 , pktlen /* packet length */ 3980 , hdrlen /* header length */ 3981 , atype /* Atheros packet type */ 3982 , ni->ni_txpower /* txpower */ 3983 , txrate, try0 /* series 0 rate/tries */ 3984 , keyix /* key cache index */ 3985 , sc->sc_txantenna /* antenna mode */ 3986 , flags /* flags */ 3987 , ctsrate /* rts/cts rate */ 3988 , ctsduration /* rts/cts duration */ 3989 ); 3990 bf->bf_flags = flags; 3991 /* 3992 * Setup the multi-rate retry state only when we're 3993 * going to use it. This assumes ath_hal_setuptxdesc 3994 * initializes the descriptors (so we don't have to) 3995 * when the hardware supports multi-rate retry and 3996 * we don't use it. 3997 */ 3998 if (ismrr) 3999 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 4000 4001 /* 4002 * Fillin the remainder of the descriptor info. 4003 */ 4004 ds0 = ds; 4005 for (i = 0; i < bf->bf_nseg; i++, ds++) { 4006 ds->ds_data = bf->bf_segs[i].ds_addr; 4007 if (i == bf->bf_nseg - 1) 4008 ds->ds_link = 0; 4009 else 4010 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 4011 ath_hal_filltxdesc(ah, ds 4012 , bf->bf_segs[i].ds_len /* segment length */ 4013 , i == 0 /* first segment */ 4014 , i == bf->bf_nseg - 1 /* last segment */ 4015 , ds0 /* first descriptor */ 4016 ); 4017 4018 /* NB: The desc swap function becomes void, 4019 * if descriptor swapping is not enabled 4020 */ 4021 ath_desc_swap(ds); 4022 4023 DPRINTF(sc, ATH_DEBUG_XMIT, 4024 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 4025 __func__, i, ds->ds_link, ds->ds_data, 4026 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 4027 } 4028 /* 4029 * Insert the frame on the outbound list and 4030 * pass it on to the hardware. 4031 */ 4032 ATH_TXQ_LOCK(txq); 4033 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4034 if (txq->axq_link == NULL) { 4035 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 4036 DPRINTF(sc, ATH_DEBUG_XMIT, 4037 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__, 4038 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc, 4039 txq->axq_depth); 4040 } else { 4041 *txq->axq_link = HTOAH32(bf->bf_daddr); 4042 DPRINTF(sc, ATH_DEBUG_XMIT, 4043 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n", 4044 __func__, txq->axq_qnum, txq->axq_link, 4045 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 4046 } 4047 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4048 /* 4049 * The CAB queue is started from the SWBA handler since 4050 * frames only go out on DTIM and to avoid possible races. 4051 */ 4052 if (txq != sc->sc_cabq) 4053 ath_hal_txstart(ah, txq->axq_qnum); 4054 ATH_TXQ_UNLOCK(txq); 4055 4056 return 0; 4057 } 4058 4059 /* 4060 * Process completed xmit descriptors from the specified queue. 4061 */ 4062 static int 4063 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 4064 { 4065 struct ath_hal *ah = sc->sc_ah; 4066 struct ieee80211com *ic = &sc->sc_ic; 4067 struct ath_buf *bf; 4068 struct ath_desc *ds, *ds0; 4069 struct ieee80211_node *ni; 4070 struct ath_node *an; 4071 int sr, lr, pri, nacked; 4072 HAL_STATUS status; 4073 4074 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4075 __func__, txq->axq_qnum, 4076 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4077 txq->axq_link); 4078 nacked = 0; 4079 for (;;) { 4080 ATH_TXQ_LOCK(txq); 4081 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4082 bf = STAILQ_FIRST(&txq->axq_q); 4083 if (bf == NULL) { 4084 txq->axq_link = NULL; 4085 ATH_TXQ_UNLOCK(txq); 4086 break; 4087 } 4088 ds0 = &bf->bf_desc[0]; 4089 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4090 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat); 4091 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4092 ath_printtxbuf(bf, status == HAL_OK); 4093 if (status == HAL_EINPROGRESS) { 4094 ATH_TXQ_UNLOCK(txq); 4095 break; 4096 } 4097 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4098 ATH_TXQ_UNLOCK(txq); 4099 4100 ni = bf->bf_node; 4101 if (ni != NULL) { 4102 an = ATH_NODE(ni); 4103 if (ds->ds_txstat.ts_status == 0) { 4104 u_int8_t txant = ds->ds_txstat.ts_antenna; 4105 sc->sc_stats.ast_ant_tx[txant]++; 4106 sc->sc_ant_tx[txant]++; 4107 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 4108 sc->sc_stats.ast_tx_altrate++; 4109 sc->sc_stats.ast_tx_rssi = 4110 ds->ds_txstat.ts_rssi; 4111 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4112 ds->ds_txstat.ts_rssi); 4113 pri = M_WME_GETAC(bf->bf_m); 4114 if (pri >= WME_AC_VO) 4115 ic->ic_wme.wme_hipri_traffic++; 4116 ni->ni_inact = ni->ni_inact_reload; 4117 } else { 4118 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 4119 sc->sc_stats.ast_tx_xretries++; 4120 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 4121 sc->sc_stats.ast_tx_fifoerr++; 4122 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 4123 sc->sc_stats.ast_tx_filtered++; 4124 } 4125 sr = ds->ds_txstat.ts_shortretry; 4126 lr = ds->ds_txstat.ts_longretry; 4127 sc->sc_stats.ast_tx_shortretry += sr; 4128 sc->sc_stats.ast_tx_longretry += lr; 4129 /* 4130 * Hand the descriptor to the rate control algorithm. 4131 */ 4132 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 4133 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) { 4134 /* 4135 * If frame was ack'd update the last rx time 4136 * used to workaround phantom bmiss interrupts. 4137 */ 4138 if (ds->ds_txstat.ts_status == 0) 4139 nacked++; 4140 ath_rate_tx_complete(sc, an, ds, ds0); 4141 } 4142 /* 4143 * Reclaim reference to node. 4144 * 4145 * NB: the node may be reclaimed here if, for example 4146 * this is a DEAUTH message that was sent and the 4147 * node was timed out due to inactivity. 4148 */ 4149 ieee80211_free_node(ni); 4150 } 4151 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 4152 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4153 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4154 m_freem(bf->bf_m); 4155 bf->bf_m = NULL; 4156 bf->bf_node = NULL; 4157 4158 ATH_TXBUF_LOCK(sc); 4159 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4160 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4161 ATH_TXBUF_UNLOCK(sc); 4162 } 4163 return nacked; 4164 } 4165 4166 static inline int 4167 txqactive(struct ath_hal *ah, int qnum) 4168 { 4169 u_int32_t txqs = 1<<qnum; 4170 ath_hal_gettxintrtxqs(ah, &txqs); 4171 return (txqs & (1<<qnum)); 4172 } 4173 4174 /* 4175 * Deferred processing of transmit interrupt; special-cased 4176 * for a single hardware transmit queue (e.g. 5210 and 5211). 4177 */ 4178 static void 4179 ath_tx_proc_q0(void *arg, int npending) 4180 { 4181 struct ath_softc *sc = arg; 4182 struct ifnet *ifp = &sc->sc_if; 4183 4184 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){ 4185 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4186 } 4187 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4188 ath_tx_processq(sc, sc->sc_cabq); 4189 4190 if (sc->sc_softled) 4191 ath_led_event(sc, ATH_LED_TX); 4192 4193 ath_start(ifp); 4194 } 4195 4196 /* 4197 * Deferred processing of transmit interrupt; special-cased 4198 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4199 */ 4200 static void 4201 ath_tx_proc_q0123(void *arg, int npending) 4202 { 4203 struct ath_softc *sc = arg; 4204 struct ifnet *ifp = &sc->sc_if; 4205 int nacked; 4206 4207 /* 4208 * Process each active queue. 4209 */ 4210 nacked = 0; 4211 if (txqactive(sc->sc_ah, 0)) 4212 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 4213 if (txqactive(sc->sc_ah, 1)) 4214 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 4215 if (txqactive(sc->sc_ah, 2)) 4216 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 4217 if (txqactive(sc->sc_ah, 3)) 4218 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 4219 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4220 ath_tx_processq(sc, sc->sc_cabq); 4221 if (nacked) { 4222 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4223 } 4224 4225 if (sc->sc_softled) 4226 ath_led_event(sc, ATH_LED_TX); 4227 4228 ath_start(ifp); 4229 } 4230 4231 /* 4232 * Deferred processing of transmit interrupt. 4233 */ 4234 static void 4235 ath_tx_proc(void *arg, int npending) 4236 { 4237 struct ath_softc *sc = arg; 4238 struct ifnet *ifp = &sc->sc_if; 4239 int i, nacked; 4240 4241 /* 4242 * Process each active queue. 4243 */ 4244 nacked = 0; 4245 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4246 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 4247 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 4248 if (nacked) { 4249 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4250 } 4251 4252 if (sc->sc_softled) 4253 ath_led_event(sc, ATH_LED_TX); 4254 4255 ath_start(ifp); 4256 } 4257 4258 static void 4259 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4260 { 4261 struct ath_hal *ah = sc->sc_ah; 4262 struct ieee80211_node *ni; 4263 struct ath_buf *bf; 4264 struct ath_desc *ds; 4265 4266 /* 4267 * NB: this assumes output has been stopped and 4268 * we do not need to block ath_tx_tasklet 4269 */ 4270 for (;;) { 4271 ATH_TXQ_LOCK(txq); 4272 bf = STAILQ_FIRST(&txq->axq_q); 4273 if (bf == NULL) { 4274 txq->axq_link = NULL; 4275 ATH_TXQ_UNLOCK(txq); 4276 break; 4277 } 4278 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4279 ATH_TXQ_UNLOCK(txq); 4280 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4281 if (sc->sc_debug & ATH_DEBUG_RESET) 4282 ath_printtxbuf(bf, 4283 ath_hal_txprocdesc(ah, bf->bf_desc, 4284 &ds->ds_txstat) == HAL_OK); 4285 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4286 m_freem(bf->bf_m); 4287 bf->bf_m = NULL; 4288 ni = bf->bf_node; 4289 bf->bf_node = NULL; 4290 if (ni != NULL) { 4291 /* 4292 * Reclaim node reference. 4293 */ 4294 ieee80211_free_node(ni); 4295 } 4296 ATH_TXBUF_LOCK(sc); 4297 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4298 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4299 ATH_TXBUF_UNLOCK(sc); 4300 } 4301 } 4302 4303 static void 4304 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4305 { 4306 struct ath_hal *ah = sc->sc_ah; 4307 4308 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4309 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4310 __func__, txq->axq_qnum, 4311 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4312 txq->axq_link); 4313 } 4314 4315 /* 4316 * Drain the transmit queues and reclaim resources. 4317 */ 4318 static void 4319 ath_draintxq(struct ath_softc *sc) 4320 { 4321 struct ath_hal *ah = sc->sc_ah; 4322 int i; 4323 4324 /* XXX return value */ 4325 if (device_is_active(sc->sc_dev)) { 4326 /* don't touch the hardware if marked invalid */ 4327 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4328 DPRINTF(sc, ATH_DEBUG_RESET, 4329 "%s: beacon queue %p\n", __func__, 4330 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 4331 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4332 if (ATH_TXQ_SETUP(sc, i)) 4333 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4334 } 4335 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4336 if (ATH_TXQ_SETUP(sc, i)) 4337 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4338 } 4339 4340 /* 4341 * Disable the receive h/w in preparation for a reset. 4342 */ 4343 static void 4344 ath_stoprecv(struct ath_softc *sc) 4345 { 4346 #define PA2DESC(_sc, _pa) \ 4347 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 4348 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4349 struct ath_hal *ah = sc->sc_ah; 4350 u_int64_t tsf; 4351 4352 ath_hal_stoppcurecv(ah); /* disable PCU */ 4353 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4354 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4355 DELAY(3000); /* 3ms is long enough for 1 frame */ 4356 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4357 struct ath_buf *bf; 4358 4359 printf("%s: rx queue %p, link %p\n", __func__, 4360 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4361 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4362 struct ath_desc *ds = bf->bf_desc; 4363 tsf = ath_hal_gettsf64(sc->sc_ah); 4364 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4365 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 4366 &ds->ds_rxstat); 4367 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4368 ath_printrxbuf(bf, status == HAL_OK); 4369 } 4370 } 4371 sc->sc_rxlink = NULL; /* just in case */ 4372 #undef PA2DESC 4373 } 4374 4375 /* 4376 * Enable the receive h/w following a reset. 4377 */ 4378 static int 4379 ath_startrecv(struct ath_softc *sc) 4380 { 4381 struct ath_hal *ah = sc->sc_ah; 4382 struct ath_buf *bf; 4383 4384 sc->sc_rxlink = NULL; 4385 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4386 int error = ath_rxbuf_init(sc, bf); 4387 if (error != 0) { 4388 DPRINTF(sc, ATH_DEBUG_RECV, 4389 "%s: ath_rxbuf_init failed %d\n", 4390 __func__, error); 4391 return error; 4392 } 4393 } 4394 4395 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4396 ath_hal_putrxbuf(ah, bf->bf_daddr); 4397 ath_hal_rxena(ah); /* enable recv descriptors */ 4398 ath_mode_init(sc); /* set filters, etc. */ 4399 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4400 return 0; 4401 } 4402 4403 /* 4404 * Update internal state after a channel change. 4405 */ 4406 static void 4407 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4408 { 4409 struct ieee80211com *ic = &sc->sc_ic; 4410 enum ieee80211_phymode mode; 4411 u_int16_t flags; 4412 4413 /* 4414 * Change channels and update the h/w rate map 4415 * if we're switching; e.g. 11a to 11b/g. 4416 */ 4417 mode = ieee80211_chan2mode(ic, chan); 4418 if (mode != sc->sc_curmode) 4419 ath_setcurmode(sc, mode); 4420 /* 4421 * Update BPF state. NB: ethereal et. al. don't handle 4422 * merged flags well so pick a unique mode for their use. 4423 */ 4424 if (IEEE80211_IS_CHAN_A(chan)) 4425 flags = IEEE80211_CHAN_A; 4426 /* XXX 11g schizophrenia */ 4427 else if (IEEE80211_IS_CHAN_G(chan) || 4428 IEEE80211_IS_CHAN_PUREG(chan)) 4429 flags = IEEE80211_CHAN_G; 4430 else 4431 flags = IEEE80211_CHAN_B; 4432 if (IEEE80211_IS_CHAN_T(chan)) 4433 flags |= IEEE80211_CHAN_TURBO; 4434 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4435 htole16(chan->ic_freq); 4436 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4437 htole16(flags); 4438 } 4439 4440 #if 0 4441 /* 4442 * Poll for a channel clear indication; this is required 4443 * for channels requiring DFS and not previously visited 4444 * and/or with a recent radar detection. 4445 */ 4446 static void 4447 ath_dfswait(void *arg) 4448 { 4449 struct ath_softc *sc = arg; 4450 struct ath_hal *ah = sc->sc_ah; 4451 HAL_CHANNEL hchan; 4452 4453 ath_hal_radar_wait(ah, &hchan); 4454 if (hchan.privFlags & CHANNEL_INTERFERENCE) { 4455 if_printf(&sc->sc_if, 4456 "channel %u/0x%x/0x%x has interference\n", 4457 hchan.channel, hchan.channelFlags, hchan.privFlags); 4458 return; 4459 } 4460 if ((hchan.privFlags & CHANNEL_DFS) == 0) { 4461 /* XXX should not happen */ 4462 return; 4463 } 4464 if (hchan.privFlags & CHANNEL_DFS_CLEAR) { 4465 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR; 4466 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4467 if_printf(&sc->sc_if, 4468 "channel %u/0x%x/0x%x marked clear\n", 4469 hchan.channel, hchan.channelFlags, hchan.privFlags); 4470 } else 4471 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc); 4472 } 4473 #endif 4474 4475 /* 4476 * Set/change channels. If the channel is really being changed, 4477 * it's done by reseting the chip. To accomplish this we must 4478 * first cleanup any pending DMA, then restart stuff after a la 4479 * ath_init. 4480 */ 4481 static int 4482 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4483 { 4484 struct ath_hal *ah = sc->sc_ah; 4485 struct ieee80211com *ic = &sc->sc_ic; 4486 HAL_CHANNEL hchan; 4487 4488 /* 4489 * Convert to a HAL channel description with 4490 * the flags constrained to reflect the current 4491 * operating mode. 4492 */ 4493 hchan.channel = chan->ic_freq; 4494 hchan.channelFlags = ath_chan2flags(ic, chan); 4495 4496 DPRINTF(sc, ATH_DEBUG_RESET, 4497 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n", 4498 __func__, 4499 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel, 4500 sc->sc_curchan.channelFlags), 4501 sc->sc_curchan.channel, sc->sc_curchan.channelFlags, 4502 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags), 4503 hchan.channel, hchan.channelFlags); 4504 if (hchan.channel != sc->sc_curchan.channel || 4505 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4506 HAL_STATUS status; 4507 4508 /* 4509 * To switch channels clear any pending DMA operations; 4510 * wait long enough for the RX fifo to drain, reset the 4511 * hardware at the new frequency, and then re-enable 4512 * the relevant bits of the h/w. 4513 */ 4514 ath_hal_intrset(ah, 0); /* disable interrupts */ 4515 ath_draintxq(sc); /* clear pending tx frames */ 4516 ath_stoprecv(sc); /* turn off frame recv */ 4517 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4518 if_printf(ic->ic_ifp, "%s: unable to reset " 4519 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n", 4520 __func__, ieee80211_chan2ieee(ic, chan), 4521 chan->ic_freq, chan->ic_flags, hchan.channelFlags); 4522 return EIO; 4523 } 4524 sc->sc_curchan = hchan; 4525 ath_update_txpow(sc); /* update tx power state */ 4526 ath_restore_diversity(sc); 4527 sc->sc_calinterval = 1; 4528 sc->sc_caltries = 0; 4529 4530 /* 4531 * Re-enable rx framework. 4532 */ 4533 if (ath_startrecv(sc) != 0) { 4534 if_printf(&sc->sc_if, 4535 "%s: unable to restart recv logic\n", __func__); 4536 return EIO; 4537 } 4538 4539 /* 4540 * Change channels and update the h/w rate map 4541 * if we're switching; e.g. 11a to 11b/g. 4542 */ 4543 ic->ic_ibss_chan = chan; 4544 ath_chan_change(sc, chan); 4545 4546 #if 0 4547 /* 4548 * Handle DFS required waiting period to determine 4549 * if channel is clear of radar traffic. 4550 */ 4551 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 4552 #define DFS_AND_NOT_CLEAR(_c) \ 4553 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS) 4554 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) { 4555 if_printf(&sc->sc_if, 4556 "wait for DFS clear channel signal\n"); 4557 /* XXX stop sndq */ 4558 sc->sc_if.if_flags |= IFF_OACTIVE; 4559 callout_reset(&sc->sc_dfs_ch, 4560 2 * hz, ath_dfswait, sc); 4561 } else 4562 callout_stop(&sc->sc_dfs_ch); 4563 #undef DFS_NOT_CLEAR 4564 } 4565 #endif 4566 4567 /* 4568 * Re-enable interrupts. 4569 */ 4570 ath_hal_intrset(ah, sc->sc_imask); 4571 } 4572 return 0; 4573 } 4574 4575 static void 4576 ath_next_scan(void *arg) 4577 { 4578 struct ath_softc *sc = arg; 4579 struct ieee80211com *ic = &sc->sc_ic; 4580 int s; 4581 4582 /* don't call ath_start w/o network interrupts blocked */ 4583 s = splnet(); 4584 4585 if (ic->ic_state == IEEE80211_S_SCAN) 4586 ieee80211_next_scan(ic); 4587 splx(s); 4588 } 4589 4590 /* 4591 * Periodically recalibrate the PHY to account 4592 * for temperature/environment changes. 4593 */ 4594 static void 4595 ath_calibrate(void *arg) 4596 { 4597 struct ath_softc *sc = arg; 4598 struct ath_hal *ah = sc->sc_ah; 4599 HAL_BOOL iqCalDone; 4600 4601 sc->sc_stats.ast_per_cal++; 4602 4603 ATH_LOCK(sc); 4604 4605 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4606 /* 4607 * Rfgain is out of bounds, reset the chip 4608 * to load new gain values. 4609 */ 4610 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4611 "%s: rfgain change\n", __func__); 4612 sc->sc_stats.ast_per_rfgain++; 4613 ath_reset(&sc->sc_if); 4614 } 4615 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) { 4616 DPRINTF(sc, ATH_DEBUG_ANY, 4617 "%s: calibration of channel %u failed\n", 4618 __func__, sc->sc_curchan.channel); 4619 sc->sc_stats.ast_per_calfail++; 4620 } 4621 /* 4622 * Calibrate noise floor data again in case of change. 4623 */ 4624 ath_hal_process_noisefloor(ah); 4625 /* 4626 * Poll more frequently when the IQ calibration is in 4627 * progress to speedup loading the final settings. 4628 * We temper this aggressive polling with an exponential 4629 * back off after 4 tries up to ath_calinterval. 4630 */ 4631 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) { 4632 sc->sc_caltries = 0; 4633 sc->sc_calinterval = ath_calinterval; 4634 } else if (sc->sc_caltries > 4) { 4635 sc->sc_caltries = 0; 4636 sc->sc_calinterval <<= 1; 4637 if (sc->sc_calinterval > ath_calinterval) 4638 sc->sc_calinterval = ath_calinterval; 4639 } 4640 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval, 4641 ("bad calibration interval %u", sc->sc_calinterval)); 4642 4643 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4644 "%s: next +%u (%siqCalDone tries %u)\n", __func__, 4645 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries); 4646 sc->sc_caltries++; 4647 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4648 ath_calibrate, sc); 4649 ATH_UNLOCK(sc); 4650 } 4651 4652 static int 4653 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4654 { 4655 struct ifnet *ifp = ic->ic_ifp; 4656 struct ath_softc *sc = ifp->if_softc; 4657 struct ath_hal *ah = sc->sc_ah; 4658 struct ieee80211_node *ni; 4659 int i, error; 4660 const u_int8_t *bssid; 4661 u_int32_t rfilt; 4662 static const HAL_LED_STATE leds[] = { 4663 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4664 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4665 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4666 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4667 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4668 }; 4669 4670 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4671 ieee80211_state_name[ic->ic_state], 4672 ieee80211_state_name[nstate]); 4673 4674 callout_stop(&sc->sc_scan_ch); 4675 callout_stop(&sc->sc_cal_ch); 4676 #if 0 4677 callout_stop(&sc->sc_dfs_ch); 4678 #endif 4679 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4680 4681 if (nstate == IEEE80211_S_INIT) { 4682 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4683 /* 4684 * NB: disable interrupts so we don't rx frames. 4685 */ 4686 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4687 /* 4688 * Notify the rate control algorithm. 4689 */ 4690 ath_rate_newstate(sc, nstate); 4691 goto done; 4692 } 4693 ni = ic->ic_bss; 4694 error = ath_chan_set(sc, ic->ic_curchan); 4695 if (error != 0) 4696 goto bad; 4697 rfilt = ath_calcrxfilter(sc, nstate); 4698 if (nstate == IEEE80211_S_SCAN) 4699 bssid = ifp->if_broadcastaddr; 4700 else 4701 bssid = ni->ni_bssid; 4702 ath_hal_setrxfilter(ah, rfilt); 4703 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4704 __func__, rfilt, ether_sprintf(bssid)); 4705 4706 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4707 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4708 else 4709 ath_hal_setassocid(ah, bssid, 0); 4710 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4711 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4712 if (ath_hal_keyisvalid(ah, i)) 4713 ath_hal_keysetmac(ah, i, bssid); 4714 } 4715 4716 /* 4717 * Notify the rate control algorithm so rates 4718 * are setup should ath_beacon_alloc be called. 4719 */ 4720 ath_rate_newstate(sc, nstate); 4721 4722 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4723 /* nothing to do */; 4724 } else if (nstate == IEEE80211_S_RUN) { 4725 DPRINTF(sc, ATH_DEBUG_STATE, 4726 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4727 "capinfo=0x%04x chan=%d\n" 4728 , __func__ 4729 , ic->ic_flags 4730 , ni->ni_intval 4731 , ether_sprintf(ni->ni_bssid) 4732 , ni->ni_capinfo 4733 , ieee80211_chan2ieee(ic, ic->ic_curchan)); 4734 4735 switch (ic->ic_opmode) { 4736 case IEEE80211_M_HOSTAP: 4737 case IEEE80211_M_IBSS: 4738 /* 4739 * Allocate and setup the beacon frame. 4740 * 4741 * Stop any previous beacon DMA. This may be 4742 * necessary, for example, when an ibss merge 4743 * causes reconfiguration; there will be a state 4744 * transition from RUN->RUN that means we may 4745 * be called with beacon transmission active. 4746 */ 4747 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4748 ath_beacon_free(sc); 4749 error = ath_beacon_alloc(sc, ni); 4750 if (error != 0) 4751 goto bad; 4752 /* 4753 * If joining an adhoc network defer beacon timer 4754 * configuration to the next beacon frame so we 4755 * have a current TSF to use. Otherwise we're 4756 * starting an ibss/bss so there's no need to delay. 4757 */ 4758 if (ic->ic_opmode == IEEE80211_M_IBSS && 4759 ic->ic_bss->ni_tstamp.tsf != 0) 4760 sc->sc_syncbeacon = 1; 4761 else 4762 ath_beacon_config(sc); 4763 break; 4764 case IEEE80211_M_STA: 4765 /* 4766 * Allocate a key cache slot to the station. 4767 */ 4768 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4769 sc->sc_hasclrkey && 4770 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4771 ath_setup_stationkey(ni); 4772 /* 4773 * Defer beacon timer configuration to the next 4774 * beacon frame so we have a current TSF to use 4775 * (any TSF collected when scanning is likely old). 4776 */ 4777 sc->sc_syncbeacon = 1; 4778 break; 4779 default: 4780 break; 4781 } 4782 /* 4783 * Let the hal process statistics collected during a 4784 * scan so it can provide calibrated noise floor data. 4785 */ 4786 ath_hal_process_noisefloor(ah); 4787 /* 4788 * Reset rssi stats; maybe not the best place... 4789 */ 4790 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4791 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4792 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4793 } else { 4794 ath_hal_intrset(ah, 4795 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4796 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4797 } 4798 done: 4799 /* 4800 * Invoke the parent method to complete the work. 4801 */ 4802 error = sc->sc_newstate(ic, nstate, arg); 4803 /* 4804 * Finally, start any timers. 4805 */ 4806 if (nstate == IEEE80211_S_RUN) { 4807 /* start periodic recalibration timer */ 4808 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4809 ath_calibrate, sc); 4810 } else if (nstate == IEEE80211_S_SCAN) { 4811 /* start ap/neighbor scan timer */ 4812 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4813 ath_next_scan, sc); 4814 } 4815 bad: 4816 return error; 4817 } 4818 4819 /* 4820 * Allocate a key cache slot to the station so we can 4821 * setup a mapping from key index to node. The key cache 4822 * slot is needed for managing antenna state and for 4823 * compression when stations do not use crypto. We do 4824 * it uniliaterally here; if crypto is employed this slot 4825 * will be reassigned. 4826 */ 4827 static void 4828 ath_setup_stationkey(struct ieee80211_node *ni) 4829 { 4830 struct ieee80211com *ic = ni->ni_ic; 4831 struct ath_softc *sc = ic->ic_ifp->if_softc; 4832 ieee80211_keyix keyix, rxkeyix; 4833 4834 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4835 /* 4836 * Key cache is full; we'll fall back to doing 4837 * the more expensive lookup in software. Note 4838 * this also means no h/w compression. 4839 */ 4840 /* XXX msg+statistic */ 4841 } else { 4842 /* XXX locking? */ 4843 ni->ni_ucastkey.wk_keyix = keyix; 4844 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4845 /* NB: this will create a pass-thru key entry */ 4846 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4847 } 4848 } 4849 4850 /* 4851 * Setup driver-specific state for a newly associated node. 4852 * Note that we're called also on a re-associate, the isnew 4853 * param tells us if this is the first time or not. 4854 */ 4855 static void 4856 ath_newassoc(struct ieee80211_node *ni, int isnew) 4857 { 4858 struct ieee80211com *ic = ni->ni_ic; 4859 struct ath_softc *sc = ic->ic_ifp->if_softc; 4860 4861 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4862 if (isnew && 4863 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4864 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4865 ("new assoc with a unicast key already setup (keyix %u)", 4866 ni->ni_ucastkey.wk_keyix)); 4867 ath_setup_stationkey(ni); 4868 } 4869 } 4870 4871 static int 4872 ath_getchannels(struct ath_softc *sc, u_int cc, 4873 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4874 { 4875 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 4876 struct ieee80211com *ic = &sc->sc_ic; 4877 struct ifnet *ifp = &sc->sc_if; 4878 struct ath_hal *ah = sc->sc_ah; 4879 HAL_CHANNEL *chans; 4880 int i, ix, nchan; 4881 4882 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4883 M_TEMP, M_NOWAIT); 4884 if (chans == NULL) { 4885 if_printf(ifp, "unable to allocate channel table\n"); 4886 return ENOMEM; 4887 } 4888 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4889 NULL, 0, NULL, 4890 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4891 u_int32_t rd; 4892 4893 (void)ath_hal_getregdomain(ah, &rd); 4894 if_printf(ifp, "unable to collect channel list from hal; " 4895 "regdomain likely %u country code %u\n", rd, cc); 4896 free(chans, M_TEMP); 4897 return EINVAL; 4898 } 4899 4900 /* 4901 * Convert HAL channels to ieee80211 ones and insert 4902 * them in the table according to their channel number. 4903 */ 4904 for (i = 0; i < nchan; i++) { 4905 HAL_CHANNEL *c = &chans[i]; 4906 u_int16_t flags; 4907 4908 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags); 4909 if (ix > IEEE80211_CHAN_MAX) { 4910 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n", 4911 ix, c->channel, c->channelFlags); 4912 continue; 4913 } 4914 if (ix < 0) { 4915 /* XXX can't handle stuff <2400 right now */ 4916 if (bootverbose) 4917 if_printf(ifp, "hal channel %d (%u/%x) " 4918 "cannot be handled; ignored\n", 4919 ix, c->channel, c->channelFlags); 4920 continue; 4921 } 4922 /* 4923 * Calculate net80211 flags; most are compatible 4924 * but some need massaging. Note the static turbo 4925 * conversion can be removed once net80211 is updated 4926 * to understand static vs. dynamic turbo. 4927 */ 4928 flags = c->channelFlags & COMPAT; 4929 if (c->channelFlags & CHANNEL_STURBO) 4930 flags |= IEEE80211_CHAN_TURBO; 4931 if (ic->ic_channels[ix].ic_freq == 0) { 4932 ic->ic_channels[ix].ic_freq = c->channel; 4933 ic->ic_channels[ix].ic_flags = flags; 4934 } else { 4935 /* channels overlap; e.g. 11g and 11b */ 4936 ic->ic_channels[ix].ic_flags |= flags; 4937 } 4938 } 4939 free(chans, M_TEMP); 4940 return 0; 4941 #undef COMPAT 4942 } 4943 4944 static void 4945 ath_led_done(void *arg) 4946 { 4947 struct ath_softc *sc = arg; 4948 4949 sc->sc_blinking = 0; 4950 } 4951 4952 /* 4953 * Turn the LED off: flip the pin and then set a timer so no 4954 * update will happen for the specified duration. 4955 */ 4956 static void 4957 ath_led_off(void *arg) 4958 { 4959 struct ath_softc *sc = arg; 4960 4961 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 4962 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 4963 } 4964 4965 /* 4966 * Blink the LED according to the specified on/off times. 4967 */ 4968 static void 4969 ath_led_blink(struct ath_softc *sc, int on, int off) 4970 { 4971 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 4972 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 4973 sc->sc_blinking = 1; 4974 sc->sc_ledoff = off; 4975 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 4976 } 4977 4978 static void 4979 ath_led_event(struct ath_softc *sc, int event) 4980 { 4981 4982 sc->sc_ledevent = ticks; /* time of last event */ 4983 if (sc->sc_blinking) /* don't interrupt active blink */ 4984 return; 4985 switch (event) { 4986 case ATH_LED_POLL: 4987 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 4988 sc->sc_hwmap[0].ledoff); 4989 break; 4990 case ATH_LED_TX: 4991 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 4992 sc->sc_hwmap[sc->sc_txrate].ledoff); 4993 break; 4994 case ATH_LED_RX: 4995 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 4996 sc->sc_hwmap[sc->sc_rxrate].ledoff); 4997 break; 4998 } 4999 } 5000 5001 static void 5002 ath_update_txpow(struct ath_softc *sc) 5003 { 5004 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 5005 struct ieee80211com *ic = &sc->sc_ic; 5006 struct ath_hal *ah = sc->sc_ah; 5007 u_int32_t txpow; 5008 5009 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 5010 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 5011 /* read back in case value is clamped */ 5012 (void)ath_hal_gettxpowlimit(ah, &txpow); 5013 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 5014 } 5015 /* 5016 * Fetch max tx power level for status requests. 5017 */ 5018 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 5019 ic->ic_bss->ni_txpower = txpow; 5020 } 5021 5022 static void 5023 rate_setup(struct ath_softc *sc, 5024 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs) 5025 { 5026 int i, maxrates; 5027 5028 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 5029 DPRINTF(sc, ATH_DEBUG_ANY, 5030 "%s: rate table too small (%u > %u)\n", 5031 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 5032 maxrates = IEEE80211_RATE_MAXSIZE; 5033 } else 5034 maxrates = rt->rateCount; 5035 for (i = 0; i < maxrates; i++) 5036 rs->rs_rates[i] = rt->info[i].dot11Rate; 5037 rs->rs_nrates = maxrates; 5038 } 5039 5040 static int 5041 ath_rate_setup(struct ath_softc *sc, u_int mode) 5042 { 5043 struct ath_hal *ah = sc->sc_ah; 5044 struct ieee80211com *ic = &sc->sc_ic; 5045 const HAL_RATE_TABLE *rt; 5046 5047 switch (mode) { 5048 case IEEE80211_MODE_11A: 5049 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5050 break; 5051 case IEEE80211_MODE_11B: 5052 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5053 break; 5054 case IEEE80211_MODE_11G: 5055 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5056 break; 5057 case IEEE80211_MODE_TURBO_A: 5058 /* XXX until static/dynamic turbo is fixed */ 5059 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5060 break; 5061 case IEEE80211_MODE_TURBO_G: 5062 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5063 break; 5064 default: 5065 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5066 __func__, mode); 5067 return 0; 5068 } 5069 sc->sc_rates[mode] = rt; 5070 if (rt != NULL) { 5071 rate_setup(sc, rt, &ic->ic_sup_rates[mode]); 5072 return 1; 5073 } else 5074 return 0; 5075 } 5076 5077 static void 5078 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5079 { 5080 #define N(a) (sizeof(a)/sizeof(a[0])) 5081 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5082 static const struct { 5083 u_int rate; /* tx/rx 802.11 rate */ 5084 u_int16_t timeOn; /* LED on time (ms) */ 5085 u_int16_t timeOff; /* LED off time (ms) */ 5086 } blinkrates[] = { 5087 { 108, 40, 10 }, 5088 { 96, 44, 11 }, 5089 { 72, 50, 13 }, 5090 { 48, 57, 14 }, 5091 { 36, 67, 16 }, 5092 { 24, 80, 20 }, 5093 { 22, 100, 25 }, 5094 { 18, 133, 34 }, 5095 { 12, 160, 40 }, 5096 { 10, 200, 50 }, 5097 { 6, 240, 58 }, 5098 { 4, 267, 66 }, 5099 { 2, 400, 100 }, 5100 { 0, 500, 130 }, 5101 }; 5102 const HAL_RATE_TABLE *rt; 5103 int i, j; 5104 5105 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5106 rt = sc->sc_rates[mode]; 5107 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5108 for (i = 0; i < rt->rateCount; i++) 5109 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 5110 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5111 for (i = 0; i < 32; i++) { 5112 u_int8_t ix = rt->rateCodeToIndex[i]; 5113 if (ix == 0xff) { 5114 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5115 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5116 continue; 5117 } 5118 sc->sc_hwmap[i].ieeerate = 5119 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 5120 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5121 if (rt->info[ix].shortPreamble || 5122 rt->info[ix].phy == IEEE80211_T_OFDM) 5123 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5124 /* NB: receive frames include FCS */ 5125 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 5126 IEEE80211_RADIOTAP_F_FCS; 5127 /* setup blink rate table to avoid per-packet lookup */ 5128 for (j = 0; j < N(blinkrates)-1; j++) 5129 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5130 break; 5131 /* NB: this uses the last entry if the rate isn't found */ 5132 /* XXX beware of overlow */ 5133 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5134 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5135 } 5136 sc->sc_currates = rt; 5137 sc->sc_curmode = mode; 5138 /* 5139 * All protection frames are transmited at 2Mb/s for 5140 * 11g, otherwise at 1Mb/s. 5141 */ 5142 if (mode == IEEE80211_MODE_11G) 5143 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 5144 else 5145 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 5146 /* rate index used to send management frames */ 5147 sc->sc_minrateix = 0; 5148 /* 5149 * Setup multicast rate state. 5150 */ 5151 /* XXX layering violation */ 5152 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate); 5153 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate; 5154 /* NB: caller is responsible for reseting rate control state */ 5155 #undef N 5156 } 5157 5158 #ifdef AR_DEBUG 5159 static void 5160 ath_printrxbuf(struct ath_buf *bf, int done) 5161 { 5162 struct ath_desc *ds; 5163 int i; 5164 5165 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5166 printf("R%d (%p %" PRIx64 5167 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds, 5168 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5169 ds->ds_link, ds->ds_data, 5170 ds->ds_ctl0, ds->ds_ctl1, 5171 ds->ds_hw[0], ds->ds_hw[1], 5172 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix, 5173 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 5174 } 5175 } 5176 5177 static void 5178 ath_printtxbuf(struct ath_buf *bf, int done) 5179 { 5180 struct ath_desc *ds; 5181 int i; 5182 5183 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5184 printf("T%d (%p %" PRIx64 5185 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 5186 i, ds, 5187 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5188 ds->ds_link, ds->ds_data, 5189 ds->ds_ctl0, ds->ds_ctl1, 5190 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 5191 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 5192 } 5193 } 5194 #endif /* AR_DEBUG */ 5195 5196 static void 5197 ath_watchdog(struct ifnet *ifp) 5198 { 5199 struct ath_softc *sc = ifp->if_softc; 5200 struct ieee80211com *ic = &sc->sc_ic; 5201 struct ath_txq *axq; 5202 int i; 5203 5204 ifp->if_timer = 0; 5205 if ((ifp->if_flags & IFF_RUNNING) == 0 || 5206 !device_is_active(sc->sc_dev)) 5207 return; 5208 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5209 if (!ATH_TXQ_SETUP(sc, i)) 5210 continue; 5211 axq = &sc->sc_txq[i]; 5212 ATH_TXQ_LOCK(axq); 5213 if (axq->axq_timer == 0) 5214 ; 5215 else if (--axq->axq_timer == 0) { 5216 ATH_TXQ_UNLOCK(axq); 5217 if_printf(ifp, "device timeout (txq %d, " 5218 "txintrperiod %d)\n", i, sc->sc_txintrperiod); 5219 if (sc->sc_txintrperiod > 1) 5220 sc->sc_txintrperiod--; 5221 ath_reset(ifp); 5222 ifp->if_oerrors++; 5223 sc->sc_stats.ast_watchdog++; 5224 break; 5225 } else 5226 ifp->if_timer = 1; 5227 ATH_TXQ_UNLOCK(axq); 5228 } 5229 ieee80211_watchdog(ic); 5230 } 5231 5232 /* 5233 * Diagnostic interface to the HAL. This is used by various 5234 * tools to do things like retrieve register contents for 5235 * debugging. The mechanism is intentionally opaque so that 5236 * it can change frequently w/o concern for compatiblity. 5237 */ 5238 static int 5239 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5240 { 5241 struct ath_hal *ah = sc->sc_ah; 5242 u_int id = ad->ad_id & ATH_DIAG_ID; 5243 void *indata = NULL; 5244 void *outdata = NULL; 5245 u_int32_t insize = ad->ad_in_size; 5246 u_int32_t outsize = ad->ad_out_size; 5247 int error = 0; 5248 5249 if (ad->ad_id & ATH_DIAG_IN) { 5250 /* 5251 * Copy in data. 5252 */ 5253 indata = malloc(insize, M_TEMP, M_NOWAIT); 5254 if (indata == NULL) { 5255 error = ENOMEM; 5256 goto bad; 5257 } 5258 error = copyin(ad->ad_in_data, indata, insize); 5259 if (error) 5260 goto bad; 5261 } 5262 if (ad->ad_id & ATH_DIAG_DYN) { 5263 /* 5264 * Allocate a buffer for the results (otherwise the HAL 5265 * returns a pointer to a buffer where we can read the 5266 * results). Note that we depend on the HAL leaving this 5267 * pointer for us to use below in reclaiming the buffer; 5268 * may want to be more defensive. 5269 */ 5270 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5271 if (outdata == NULL) { 5272 error = ENOMEM; 5273 goto bad; 5274 } 5275 } 5276 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5277 if (outsize < ad->ad_out_size) 5278 ad->ad_out_size = outsize; 5279 if (outdata != NULL) 5280 error = copyout(outdata, ad->ad_out_data, 5281 ad->ad_out_size); 5282 } else { 5283 error = EINVAL; 5284 } 5285 bad: 5286 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5287 free(indata, M_TEMP); 5288 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5289 free(outdata, M_TEMP); 5290 return error; 5291 } 5292 5293 static int 5294 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data) 5295 { 5296 #define IS_RUNNING(ifp) \ 5297 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 5298 struct ath_softc *sc = ifp->if_softc; 5299 struct ieee80211com *ic = &sc->sc_ic; 5300 struct ifreq *ifr = (struct ifreq *)data; 5301 int error = 0; 5302 5303 ATH_LOCK(sc); 5304 switch (cmd) { 5305 case SIOCSIFFLAGS: 5306 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 5307 break; 5308 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 5309 case IFF_UP|IFF_RUNNING: 5310 /* 5311 * To avoid rescanning another access point, 5312 * do not call ath_init() here. Instead, 5313 * only reflect promisc mode settings. 5314 */ 5315 ath_mode_init(sc); 5316 break; 5317 case IFF_UP: 5318 /* 5319 * Beware of being called during attach/detach 5320 * to reset promiscuous mode. In that case we 5321 * will still be marked UP but not RUNNING. 5322 * However trying to re-init the interface 5323 * is the wrong thing to do as we've already 5324 * torn down much of our state. There's 5325 * probably a better way to deal with this. 5326 */ 5327 error = ath_init(sc); 5328 break; 5329 case IFF_RUNNING: 5330 ath_stop_locked(ifp, 1); 5331 break; 5332 case 0: 5333 break; 5334 } 5335 break; 5336 case SIOCADDMULTI: 5337 case SIOCDELMULTI: 5338 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 5339 if (ifp->if_flags & IFF_RUNNING) 5340 ath_mode_init(sc); 5341 error = 0; 5342 } 5343 break; 5344 case SIOCGATHSTATS: 5345 /* NB: embed these numbers to get a consistent view */ 5346 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5347 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5348 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 5349 ATH_UNLOCK(sc); 5350 /* 5351 * NB: Drop the softc lock in case of a page fault; 5352 * we'll accept any potential inconsisentcy in the 5353 * statistics. The alternative is to copy the data 5354 * to a local structure. 5355 */ 5356 return copyout(&sc->sc_stats, 5357 ifr->ifr_data, sizeof (sc->sc_stats)); 5358 case SIOCGATHDIAG: 5359 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5360 break; 5361 default: 5362 error = ieee80211_ioctl(ic, cmd, data); 5363 if (error != ENETRESET) 5364 ; 5365 else if (IS_RUNNING(ifp) && 5366 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 5367 error = ath_init(sc); 5368 else 5369 error = 0; 5370 break; 5371 } 5372 ATH_UNLOCK(sc); 5373 return error; 5374 #undef IS_RUNNING 5375 } 5376 5377 static void 5378 ath_bpfattach(struct ath_softc *sc) 5379 { 5380 struct ifnet *ifp = &sc->sc_if; 5381 5382 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 5383 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 5384 &sc->sc_drvbpf); 5385 5386 /* 5387 * Initialize constant fields. 5388 * XXX make header lengths a multiple of 32-bits so subsequent 5389 * headers are properly aligned; this is a kludge to keep 5390 * certain applications happy. 5391 * 5392 * NB: the channel is setup each time we transition to the 5393 * RUN state to avoid filling it in for each frame. 5394 */ 5395 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 5396 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 5397 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 5398 5399 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 5400 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 5401 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 5402 } 5403 5404 /* 5405 * Announce various information on device/driver attach. 5406 */ 5407 static void 5408 ath_announce(struct ath_softc *sc) 5409 { 5410 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 5411 struct ifnet *ifp = &sc->sc_if; 5412 struct ath_hal *ah = sc->sc_ah; 5413 u_int modes, cc; 5414 5415 if_printf(ifp, "mac %d.%d phy %d.%d", 5416 ah->ah_macVersion, ah->ah_macRev, 5417 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5418 /* 5419 * Print radio revision(s). We check the wireless modes 5420 * to avoid falsely printing revs for inoperable parts. 5421 * Dual-band radio revs are returned in the 5 GHz rev number. 5422 */ 5423 ath_hal_getcountrycode(ah, &cc); 5424 modes = ath_hal_getwirelessmodes(ah, cc); 5425 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 5426 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 5427 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d", 5428 ah->ah_analog5GhzRev >> 4, 5429 ah->ah_analog5GhzRev & 0xf, 5430 ah->ah_analog2GhzRev >> 4, 5431 ah->ah_analog2GhzRev & 0xf); 5432 else 5433 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5434 ah->ah_analog5GhzRev & 0xf); 5435 } else 5436 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5437 ah->ah_analog5GhzRev & 0xf); 5438 printf("\n"); 5439 if (bootverbose) { 5440 int i; 5441 for (i = 0; i <= WME_AC_VO; i++) { 5442 struct ath_txq *txq = sc->sc_ac2q[i]; 5443 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5444 txq->axq_qnum, ieee80211_wme_acnames[i]); 5445 } 5446 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5447 sc->sc_cabq->axq_qnum); 5448 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5449 } 5450 if (ath_rxbuf != ATH_RXBUF) 5451 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5452 if (ath_txbuf != ATH_TXBUF) 5453 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5454 #undef HAL_MODE_DUALBAND 5455 } 5456