xref: /netbsd-src/sys/dev/ic/ath.c (revision 213144e1de7024d4193d04aa51005ba3a5ad95e7)
1 /*	$NetBSD: ath.c,v 1.110 2011/02/20 03:55:56 jmcneill Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.110 2011/02/20 03:55:56 jmcneill Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #ifdef _KERNEL_OPT
55 #include "opt_inet.h"
56 #endif
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/errno.h>
69 #include <sys/callout.h>
70 #include <sys/bus.h>
71 #include <sys/endian.h>
72 
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_types.h>
77 #include <net/if_arp.h>
78 #include <net/if_ether.h>
79 #include <net/if_llc.h>
80 
81 #include <net80211/ieee80211_netbsd.h>
82 #include <net80211/ieee80211_var.h>
83 
84 #include <net/bpf.h>
85 
86 #ifdef INET
87 #include <netinet/in.h>
88 #endif
89 
90 #include <sys/device.h>
91 #include <dev/ic/ath_netbsd.h>
92 
93 #define	AR_DEBUG
94 #include <dev/ic/athvar.h>
95 #include "ah_desc.h"
96 #include "ah_devid.h"	/* XXX for softled */
97 #include "opt_ah.h"
98 
99 #ifdef ATH_TX99_DIAG
100 #include <dev/ath/ath_tx99/ath_tx99.h>
101 #endif
102 
103 /* unaligned little endian access */
104 #define LE_READ_2(p)							\
105 	((u_int16_t)							\
106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
107 #define LE_READ_4(p)							\
108 	((u_int32_t)							\
109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
111 
112 enum {
113 	ATH_LED_TX,
114 	ATH_LED_RX,
115 	ATH_LED_POLL,
116 };
117 
118 #ifdef	AH_NEED_DESC_SWAP
119 #define	HTOAH32(x)	htole32(x)
120 #else
121 #define	HTOAH32(x)	(x)
122 #endif
123 
124 static int	ath_ifinit(struct ifnet *);
125 static int	ath_init(struct ath_softc *);
126 static void	ath_stop_locked(struct ifnet *, int);
127 static void	ath_stop(struct ifnet *, int);
128 static void	ath_start(struct ifnet *);
129 static int	ath_media_change(struct ifnet *);
130 static void	ath_watchdog(struct ifnet *);
131 static int	ath_ioctl(struct ifnet *, u_long, void *);
132 static void	ath_fatal_proc(void *, int);
133 static void	ath_rxorn_proc(void *, int);
134 static void	ath_bmiss_proc(void *, int);
135 static void	ath_radar_proc(void *, int);
136 static int	ath_key_alloc(struct ieee80211com *,
137 			const struct ieee80211_key *,
138 			ieee80211_keyix *, ieee80211_keyix *);
139 static int	ath_key_delete(struct ieee80211com *,
140 			const struct ieee80211_key *);
141 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void	ath_key_update_begin(struct ieee80211com *);
144 static void	ath_key_update_end(struct ieee80211com *);
145 static void	ath_mode_init(struct ath_softc *);
146 static void	ath_setslottime(struct ath_softc *);
147 static void	ath_updateslot(struct ifnet *);
148 static int	ath_beaconq_setup(struct ath_hal *);
149 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
150 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
151 static void	ath_beacon_proc(void *, int);
152 static void	ath_bstuck_proc(void *, int);
153 static void	ath_beacon_free(struct ath_softc *);
154 static void	ath_beacon_config(struct ath_softc *);
155 static void	ath_descdma_cleanup(struct ath_softc *sc,
156 			struct ath_descdma *, ath_bufhead *);
157 static int	ath_desc_alloc(struct ath_softc *);
158 static void	ath_desc_free(struct ath_softc *);
159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
160 static void	ath_node_free(struct ieee80211_node *);
161 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
162 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
163 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
164 			struct ieee80211_node *ni,
165 			int subtype, int rssi, u_int32_t rstamp);
166 static void	ath_setdefantenna(struct ath_softc *, u_int);
167 static void	ath_rx_proc(void *, int);
168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
169 static int	ath_tx_setup(struct ath_softc *, int, int);
170 static int	ath_wme_update(struct ieee80211com *);
171 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
172 static void	ath_tx_cleanup(struct ath_softc *);
173 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
174 			     struct ath_buf *, struct mbuf *);
175 static void	ath_tx_proc_q0(void *, int);
176 static void	ath_tx_proc_q0123(void *, int);
177 static void	ath_tx_proc(void *, int);
178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179 static void	ath_draintxq(struct ath_softc *);
180 static void	ath_stoprecv(struct ath_softc *);
181 static int	ath_startrecv(struct ath_softc *);
182 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
183 static void	ath_next_scan(void *);
184 static void	ath_calibrate(void *);
185 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
186 static void	ath_setup_stationkey(struct ieee80211_node *);
187 static void	ath_newassoc(struct ieee80211_node *, int);
188 static int	ath_getchannels(struct ath_softc *, u_int cc,
189 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
190 static void	ath_led_event(struct ath_softc *, int);
191 static void	ath_update_txpow(struct ath_softc *);
192 static void	ath_freetx(struct mbuf *);
193 static void	ath_restore_diversity(struct ath_softc *);
194 
195 static int	ath_rate_setup(struct ath_softc *, u_int mode);
196 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
197 
198 static void	ath_bpfattach(struct ath_softc *);
199 static void	ath_announce(struct ath_softc *);
200 
201 int ath_dwelltime = 200;		/* 5 channels/second */
202 int ath_calinterval = 30;		/* calibrate every 30 secs */
203 int ath_outdoor = AH_TRUE;		/* outdoor operation */
204 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
205 int ath_countrycode = CTRY_DEFAULT;	/* country code */
206 int ath_regdomain = 0;			/* regulatory domain */
207 int ath_debug = 0;
208 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
209 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
210 
211 #ifdef AR_DEBUG
212 enum {
213 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
214 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
215 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
216 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
217 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
218 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
219 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
220 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
221 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
222 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
223 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
224 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
225 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
226 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
227 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
228 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
229 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
230 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
231 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
232 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
233 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
234 	ATH_DEBUG_ANY		= 0xffffffff
235 };
236 #define	IFF_DUMPPKTS(sc, m) \
237 	((sc->sc_debug & (m)) || \
238 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
239 #define	DPRINTF(sc, m, fmt, ...) do {				\
240 	if (sc->sc_debug & (m))					\
241 		printf(fmt, __VA_ARGS__);			\
242 } while (0)
243 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
244 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
245 		ath_keyprint(__func__, ix, hk, mac);		\
246 } while (0)
247 static	void ath_printrxbuf(struct ath_buf *bf, int);
248 static	void ath_printtxbuf(struct ath_buf *bf, int);
249 #else
250 #define        IFF_DUMPPKTS(sc, m) \
251 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
252 #define        DPRINTF(m, fmt, ...)
253 #define        KEYPRINTF(sc, k, ix, mac)
254 #endif
255 
256 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
257 
258 int
259 ath_attach(u_int16_t devid, struct ath_softc *sc)
260 {
261 	struct ifnet *ifp = &sc->sc_if;
262 	struct ieee80211com *ic = &sc->sc_ic;
263 	struct ath_hal *ah = NULL;
264 	HAL_STATUS status;
265 	int error = 0, i;
266 
267 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
268 
269 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
270 
271 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
272 
273 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
274 	if (ah == NULL) {
275 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
276 			status);
277 		error = ENXIO;
278 		goto bad;
279 	}
280 	if (ah->ah_abi != HAL_ABI_VERSION) {
281 		if_printf(ifp, "HAL ABI mismatch detected "
282 			"(HAL:0x%x != driver:0x%x)\n",
283 			ah->ah_abi, HAL_ABI_VERSION);
284 		error = ENXIO;
285 		goto bad;
286 	}
287 	sc->sc_ah = ah;
288 
289 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
290 	    "pmf-powerdown", false))
291 		goto bad;
292 
293 	/*
294 	 * Check if the MAC has multi-rate retry support.
295 	 * We do this by trying to setup a fake extended
296 	 * descriptor.  MAC's that don't have support will
297 	 * return false w/o doing anything.  MAC's that do
298 	 * support it will return true w/o doing anything.
299 	 */
300 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
301 
302 	/*
303 	 * Check if the device has hardware counters for PHY
304 	 * errors.  If so we need to enable the MIB interrupt
305 	 * so we can act on stat triggers.
306 	 */
307 	if (ath_hal_hwphycounters(ah))
308 		sc->sc_needmib = 1;
309 
310 	/*
311 	 * Get the hardware key cache size.
312 	 */
313 	sc->sc_keymax = ath_hal_keycachesize(ah);
314 	if (sc->sc_keymax > ATH_KEYMAX) {
315 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
316 			ATH_KEYMAX, sc->sc_keymax);
317 		sc->sc_keymax = ATH_KEYMAX;
318 	}
319 	/*
320 	 * Reset the key cache since some parts do not
321 	 * reset the contents on initial power up.
322 	 */
323 	for (i = 0; i < sc->sc_keymax; i++)
324 		ath_hal_keyreset(ah, i);
325 	/*
326 	 * Mark key cache slots associated with global keys
327 	 * as in use.  If we knew TKIP was not to be used we
328 	 * could leave the +32, +64, and +32+64 slots free.
329 	 * XXX only for splitmic.
330 	 */
331 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
332 		setbit(sc->sc_keymap, i);
333 		setbit(sc->sc_keymap, i+32);
334 		setbit(sc->sc_keymap, i+64);
335 		setbit(sc->sc_keymap, i+32+64);
336 	}
337 
338 	/*
339 	 * Collect the channel list using the default country
340 	 * code and including outdoor channels.  The 802.11 layer
341 	 * is resposible for filtering this list based on settings
342 	 * like the phy mode.
343 	 */
344 	error = ath_getchannels(sc, ath_countrycode,
345 			ath_outdoor, ath_xchanmode);
346 	if (error != 0)
347 		goto bad;
348 
349 	/*
350 	 * Setup rate tables for all potential media types.
351 	 */
352 	ath_rate_setup(sc, IEEE80211_MODE_11A);
353 	ath_rate_setup(sc, IEEE80211_MODE_11B);
354 	ath_rate_setup(sc, IEEE80211_MODE_11G);
355 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
356 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
357 	/* NB: setup here so ath_rate_update is happy */
358 	ath_setcurmode(sc, IEEE80211_MODE_11A);
359 
360 	/*
361 	 * Allocate tx+rx descriptors and populate the lists.
362 	 */
363 	error = ath_desc_alloc(sc);
364 	if (error != 0) {
365 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
366 		goto bad;
367 	}
368 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
369 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
370 #if 0
371 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
372 #endif
373 
374 	ATH_TXBUF_LOCK_INIT(sc);
375 
376 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
377 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
378 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
379 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
380 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
381 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
382 
383 	/*
384 	 * Allocate hardware transmit queues: one queue for
385 	 * beacon frames and one data queue for each QoS
386 	 * priority.  Note that the hal handles reseting
387 	 * these queues at the needed time.
388 	 *
389 	 * XXX PS-Poll
390 	 */
391 	sc->sc_bhalq = ath_beaconq_setup(ah);
392 	if (sc->sc_bhalq == (u_int) -1) {
393 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
394 		error = EIO;
395 		goto bad2;
396 	}
397 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
398 	if (sc->sc_cabq == NULL) {
399 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
400 		error = EIO;
401 		goto bad2;
402 	}
403 	/* NB: insure BK queue is the lowest priority h/w queue */
404 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
405 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
406 			ieee80211_wme_acnames[WME_AC_BK]);
407 		error = EIO;
408 		goto bad2;
409 	}
410 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
411 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
412 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
413 		/*
414 		 * Not enough hardware tx queues to properly do WME;
415 		 * just punt and assign them all to the same h/w queue.
416 		 * We could do a better job of this if, for example,
417 		 * we allocate queues when we switch from station to
418 		 * AP mode.
419 		 */
420 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
421 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
422 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
423 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
424 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
425 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
426 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
427 	}
428 
429 	/*
430 	 * Special case certain configurations.  Note the
431 	 * CAB queue is handled by these specially so don't
432 	 * include them when checking the txq setup mask.
433 	 */
434 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
435 	case 0x01:
436 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
437 		break;
438 	case 0x0f:
439 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
440 		break;
441 	default:
442 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
443 		break;
444 	}
445 
446 	/*
447 	 * Setup rate control.  Some rate control modules
448 	 * call back to change the anntena state so expose
449 	 * the necessary entry points.
450 	 * XXX maybe belongs in struct ath_ratectrl?
451 	 */
452 	sc->sc_setdefantenna = ath_setdefantenna;
453 	sc->sc_rc = ath_rate_attach(sc);
454 	if (sc->sc_rc == NULL) {
455 		error = EIO;
456 		goto bad2;
457 	}
458 
459 	sc->sc_blinking = 0;
460 	sc->sc_ledstate = 1;
461 	sc->sc_ledon = 0;			/* low true */
462 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
463 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
464 	/*
465 	 * Auto-enable soft led processing for IBM cards and for
466 	 * 5211 minipci cards.  Users can also manually enable/disable
467 	 * support with a sysctl.
468 	 */
469 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
470 	if (sc->sc_softled) {
471 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
472 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
473 	}
474 
475 	ifp->if_softc = sc;
476 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
477 	ifp->if_start = ath_start;
478 	ifp->if_stop = ath_stop;
479 	ifp->if_watchdog = ath_watchdog;
480 	ifp->if_ioctl = ath_ioctl;
481 	ifp->if_init = ath_ifinit;
482 	IFQ_SET_READY(&ifp->if_snd);
483 
484 	ic->ic_ifp = ifp;
485 	ic->ic_reset = ath_reset;
486 	ic->ic_newassoc = ath_newassoc;
487 	ic->ic_updateslot = ath_updateslot;
488 	ic->ic_wme.wme_update = ath_wme_update;
489 	/* XXX not right but it's not used anywhere important */
490 	ic->ic_phytype = IEEE80211_T_OFDM;
491 	ic->ic_opmode = IEEE80211_M_STA;
492 	ic->ic_caps =
493 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
494 		| IEEE80211_C_HOSTAP		/* hostap mode */
495 		| IEEE80211_C_MONITOR		/* monitor mode */
496 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
497 		| IEEE80211_C_SHSLOT		/* short slot time supported */
498 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
499 		| IEEE80211_C_TXFRAG		/* handle tx frags */
500 		;
501 	/*
502 	 * Query the hal to figure out h/w crypto support.
503 	 */
504 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
505 		ic->ic_caps |= IEEE80211_C_WEP;
506 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
507 		ic->ic_caps |= IEEE80211_C_AES;
508 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
509 		ic->ic_caps |= IEEE80211_C_AES_CCM;
510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
511 		ic->ic_caps |= IEEE80211_C_CKIP;
512 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
513 		ic->ic_caps |= IEEE80211_C_TKIP;
514 		/*
515 		 * Check if h/w does the MIC and/or whether the
516 		 * separate key cache entries are required to
517 		 * handle both tx+rx MIC keys.
518 		 */
519 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
520 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
521 
522 		/*
523 		 * If the h/w supports storing tx+rx MIC keys
524 		 * in one cache slot automatically enable use.
525 		 */
526 		if (ath_hal_hastkipsplit(ah) ||
527 		    !ath_hal_settkipsplit(ah, AH_FALSE))
528 			sc->sc_splitmic = 1;
529 
530 		/*
531 		 * If the h/w can do TKIP MIC together with WME then
532 		 * we use it; otherwise we force the MIC to be done
533 		 * in software by the net80211 layer.
534 		 */
535 		if (ath_hal_haswmetkipmic(ah))
536 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
537 	}
538 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
539 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
540 	/*
541 	 * Mark key cache slots associated with global keys
542 	 * as in use.  If we knew TKIP was not to be used we
543 	 * could leave the +32, +64, and +32+64 slots free.
544 	 */
545 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
546 		setbit(sc->sc_keymap, i);
547 		setbit(sc->sc_keymap, i+64);
548 		if (sc->sc_splitmic) {
549 			setbit(sc->sc_keymap, i+32);
550 			setbit(sc->sc_keymap, i+32+64);
551 		}
552 	}
553 	/*
554 	 * TPC support can be done either with a global cap or
555 	 * per-packet support.  The latter is not available on
556 	 * all parts.  We're a bit pedantic here as all parts
557 	 * support a global cap.
558 	 */
559 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
560 		ic->ic_caps |= IEEE80211_C_TXPMGT;
561 
562 	/*
563 	 * Mark WME capability only if we have sufficient
564 	 * hardware queues to do proper priority scheduling.
565 	 */
566 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
567 		ic->ic_caps |= IEEE80211_C_WME;
568 	/*
569 	 * Check for misc other capabilities.
570 	 */
571 	if (ath_hal_hasbursting(ah))
572 		ic->ic_caps |= IEEE80211_C_BURST;
573 
574 	/*
575 	 * Indicate we need the 802.11 header padded to a
576 	 * 32-bit boundary for 4-address and QoS frames.
577 	 */
578 	ic->ic_flags |= IEEE80211_F_DATAPAD;
579 
580 	/*
581 	 * Query the hal about antenna support.
582 	 */
583 	sc->sc_defant = ath_hal_getdefantenna(ah);
584 
585 	/*
586 	 * Not all chips have the VEOL support we want to
587 	 * use with IBSS beacons; check here for it.
588 	 */
589 	sc->sc_hasveol = ath_hal_hasveol(ah);
590 
591 	/* get mac address from hardware */
592 	ath_hal_getmac(ah, ic->ic_myaddr);
593 
594 	if_attach(ifp);
595 	/* call MI attach routine. */
596 	ieee80211_ifattach(ic);
597 	/* override default methods */
598 	ic->ic_node_alloc = ath_node_alloc;
599 	sc->sc_node_free = ic->ic_node_free;
600 	ic->ic_node_free = ath_node_free;
601 	ic->ic_node_getrssi = ath_node_getrssi;
602 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
603 	ic->ic_recv_mgmt = ath_recv_mgmt;
604 	sc->sc_newstate = ic->ic_newstate;
605 	ic->ic_newstate = ath_newstate;
606 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
607 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
608 	ic->ic_crypto.cs_key_delete = ath_key_delete;
609 	ic->ic_crypto.cs_key_set = ath_key_set;
610 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
611 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
612 	/* complete initialization */
613 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
614 
615 	ath_bpfattach(sc);
616 
617 	sc->sc_flags |= ATH_ATTACHED;
618 
619 	/*
620 	 * Setup dynamic sysctl's now that country code and
621 	 * regdomain are available from the hal.
622 	 */
623 	ath_sysctlattach(sc);
624 
625 	ieee80211_announce(ic);
626 	ath_announce(sc);
627 	return 0;
628 bad2:
629 	ath_tx_cleanup(sc);
630 	ath_desc_free(sc);
631 bad:
632 	if (ah)
633 		ath_hal_detach(ah);
634 	/* XXX don't get under the abstraction like this */
635 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
636 	return error;
637 }
638 
639 int
640 ath_detach(struct ath_softc *sc)
641 {
642 	struct ifnet *ifp = &sc->sc_if;
643 	int s;
644 
645 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
646 		return (0);
647 
648 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
649 		__func__, ifp->if_flags);
650 
651 	s = splnet();
652 	ath_stop(ifp, 1);
653 	bpf_detach(ifp);
654 	/*
655 	 * NB: the order of these is important:
656 	 * o call the 802.11 layer before detaching the hal to
657 	 *   insure callbacks into the driver to delete global
658 	 *   key cache entries can be handled
659 	 * o reclaim the tx queue data structures after calling
660 	 *   the 802.11 layer as we'll get called back to reclaim
661 	 *   node state and potentially want to use them
662 	 * o to cleanup the tx queues the hal is called, so detach
663 	 *   it last
664 	 * Other than that, it's straightforward...
665 	 */
666 	ieee80211_ifdetach(&sc->sc_ic);
667 #ifdef ATH_TX99_DIAG
668 	if (sc->sc_tx99 != NULL)
669 		sc->sc_tx99->detach(sc->sc_tx99);
670 #endif
671 	ath_rate_detach(sc->sc_rc);
672 	ath_desc_free(sc);
673 	ath_tx_cleanup(sc);
674 	sysctl_teardown(&sc->sc_sysctllog);
675 	ath_hal_detach(sc->sc_ah);
676 	if_detach(ifp);
677 	splx(s);
678 
679 	return 0;
680 }
681 
682 void
683 ath_suspend(struct ath_softc *sc)
684 {
685 #if notyet
686 	/*
687 	 * Set the chip in full sleep mode.  Note that we are
688 	 * careful to do this only when bringing the interface
689 	 * completely to a stop.  When the chip is in this state
690 	 * it must be carefully woken up or references to
691 	 * registers in the PCI clock domain may freeze the bus
692 	 * (and system).  This varies by chip and is mostly an
693 	 * issue with newer parts that go to sleep more quickly.
694 	 */
695 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
696 #endif
697 }
698 
699 bool
700 ath_resume(struct ath_softc *sc)
701 {
702 	struct ath_hal *ah = sc->sc_ah;
703 	struct ieee80211com *ic = &sc->sc_ic;
704 	HAL_STATUS status;
705 	int i;
706 
707 #if notyet
708 	ath_hal_setpower(ah, HAL_PM_AWAKE);
709 #else
710 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
711 #endif
712 
713 	/*
714 	 * Reset the key cache since some parts do not
715 	 * reset the contents on initial power up.
716 	 */
717 	for (i = 0; i < sc->sc_keymax; i++)
718 		ath_hal_keyreset(ah, i);
719 
720 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
721 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
722 		if (ATH_TXQ_SETUP(sc, i))
723 			ath_hal_resettxqueue(ah, i);
724 
725 	if (sc->sc_softled) {
726 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
727 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
728 	}
729 	return true;
730 }
731 
732 /*
733  * Interrupt handler.  Most of the actual processing is deferred.
734  */
735 int
736 ath_intr(void *arg)
737 {
738 	struct ath_softc *sc = arg;
739 	struct ifnet *ifp = &sc->sc_if;
740 	struct ath_hal *ah = sc->sc_ah;
741 	HAL_INT status;
742 
743 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
744 		/*
745 		 * The hardware is not ready/present, don't touch anything.
746 		 * Note this can happen early on if the IRQ is shared.
747 		 */
748 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
749 		return 0;
750 	}
751 
752 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
753 		return 0;
754 
755 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
756 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
757 			__func__, ifp->if_flags);
758 		ath_hal_getisr(ah, &status);	/* clear ISR */
759 		ath_hal_intrset(ah, 0);		/* disable further intr's */
760 		return 1; /* XXX */
761 	}
762 	/*
763 	 * Figure out the reason(s) for the interrupt.  Note
764 	 * that the hal returns a pseudo-ISR that may include
765 	 * bits we haven't explicitly enabled so we mask the
766 	 * value to insure we only process bits we requested.
767 	 */
768 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
769 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
770 	status &= sc->sc_imask;			/* discard unasked for bits */
771 	if (status & HAL_INT_FATAL) {
772 		/*
773 		 * Fatal errors are unrecoverable.  Typically
774 		 * these are caused by DMA errors.  Unfortunately
775 		 * the exact reason is not (presently) returned
776 		 * by the hal.
777 		 */
778 		sc->sc_stats.ast_hardware++;
779 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
780 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
781 	} else if (status & HAL_INT_RXORN) {
782 		sc->sc_stats.ast_rxorn++;
783 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
784 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
785 	} else {
786 		if (status & HAL_INT_SWBA) {
787 			/*
788 			 * Software beacon alert--time to send a beacon.
789 			 * Handle beacon transmission directly; deferring
790 			 * this is too slow to meet timing constraints
791 			 * under load.
792 			 */
793 			ath_beacon_proc(sc, 0);
794 		}
795 		if (status & HAL_INT_RXEOL) {
796 			/*
797 			 * NB: the hardware should re-read the link when
798 			 *     RXE bit is written, but it doesn't work at
799 			 *     least on older hardware revs.
800 			 */
801 			sc->sc_stats.ast_rxeol++;
802 			sc->sc_rxlink = NULL;
803 		}
804 		if (status & HAL_INT_TXURN) {
805 			sc->sc_stats.ast_txurn++;
806 			/* bump tx trigger level */
807 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
808 		}
809 		if (status & HAL_INT_RX)
810 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
811 		if (status & HAL_INT_TX)
812 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
813 		if (status & HAL_INT_BMISS) {
814 			sc->sc_stats.ast_bmiss++;
815 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
816 		}
817 		if (status & HAL_INT_MIB) {
818 			sc->sc_stats.ast_mib++;
819 			/*
820 			 * Disable interrupts until we service the MIB
821 			 * interrupt; otherwise it will continue to fire.
822 			 */
823 			ath_hal_intrset(ah, 0);
824 			/*
825 			 * Let the hal handle the event.  We assume it will
826 			 * clear whatever condition caused the interrupt.
827 			 */
828 			ath_hal_mibevent(ah, &sc->sc_halstats);
829 			ath_hal_intrset(ah, sc->sc_imask);
830 		}
831 	}
832 	return 1;
833 }
834 
835 /* Swap transmit descriptor.
836  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
837  * function.
838  */
839 static inline void
840 ath_desc_swap(struct ath_desc *ds)
841 {
842 #ifdef AH_NEED_DESC_SWAP
843 	ds->ds_link = htole32(ds->ds_link);
844 	ds->ds_data = htole32(ds->ds_data);
845 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
846 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
847 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
848 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
849 #endif
850 }
851 
852 static void
853 ath_fatal_proc(void *arg, int pending)
854 {
855 	struct ath_softc *sc = arg;
856 	struct ifnet *ifp = &sc->sc_if;
857 
858 	if_printf(ifp, "hardware error; resetting\n");
859 	ath_reset(ifp);
860 }
861 
862 static void
863 ath_rxorn_proc(void *arg, int pending)
864 {
865 	struct ath_softc *sc = arg;
866 	struct ifnet *ifp = &sc->sc_if;
867 
868 	if_printf(ifp, "rx FIFO overrun; resetting\n");
869 	ath_reset(ifp);
870 }
871 
872 static void
873 ath_bmiss_proc(void *arg, int pending)
874 {
875 	struct ath_softc *sc = arg;
876 	struct ieee80211com *ic = &sc->sc_ic;
877 
878 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
879 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
880 		("unexpect operating mode %u", ic->ic_opmode));
881 	if (ic->ic_state == IEEE80211_S_RUN) {
882 		u_int64_t lastrx = sc->sc_lastrx;
883 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
884 
885 		DPRINTF(sc, ATH_DEBUG_BEACON,
886 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
887 		    " (%" PRIu64 ") bmiss %u\n",
888 		    __func__, tsf, tsf - lastrx, lastrx,
889 		    ic->ic_bmisstimeout*1024);
890 		/*
891 		 * Workaround phantom bmiss interrupts by sanity-checking
892 		 * the time of our last rx'd frame.  If it is within the
893 		 * beacon miss interval then ignore the interrupt.  If it's
894 		 * truly a bmiss we'll get another interrupt soon and that'll
895 		 * be dispatched up for processing.
896 		 */
897 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
898 			NET_LOCK_GIANT();
899 			ieee80211_beacon_miss(ic);
900 			NET_UNLOCK_GIANT();
901 		} else
902 			sc->sc_stats.ast_bmiss_phantom++;
903 	}
904 }
905 
906 static void
907 ath_radar_proc(void *arg, int pending)
908 {
909 #if 0
910 	struct ath_softc *sc = arg;
911 	struct ifnet *ifp = &sc->sc_if;
912 	struct ath_hal *ah = sc->sc_ah;
913 	HAL_CHANNEL hchan;
914 
915 	if (ath_hal_procdfs(ah, &hchan)) {
916 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
917 			hchan.channel, hchan.channelFlags, hchan.privFlags);
918 		/*
919 		 * Initiate channel change.
920 		 */
921 		/* XXX not yet */
922 	}
923 #endif
924 }
925 
926 static u_int
927 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
928 {
929 #define	N(a)	(sizeof(a) / sizeof(a[0]))
930 	static const u_int modeflags[] = {
931 		0,			/* IEEE80211_MODE_AUTO */
932 		CHANNEL_A,		/* IEEE80211_MODE_11A */
933 		CHANNEL_B,		/* IEEE80211_MODE_11B */
934 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
935 		0,			/* IEEE80211_MODE_FH */
936 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
937 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
938 	};
939 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
940 
941 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
942 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
943 	return modeflags[mode];
944 #undef N
945 }
946 
947 static int
948 ath_ifinit(struct ifnet *ifp)
949 {
950 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
951 
952 	return ath_init(sc);
953 }
954 
955 static void
956 ath_settkipmic(struct ath_softc *sc)
957 {
958 	struct ieee80211com *ic = &sc->sc_ic;
959 	struct ath_hal *ah = sc->sc_ah;
960 
961 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
962 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
963 		if (ic->ic_flags & IEEE80211_F_WME) {
964 			(void)ath_hal_settkipmic(ah, AH_FALSE);
965 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
966 		} else {
967 			(void)ath_hal_settkipmic(ah, AH_TRUE);
968 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
969 		}
970 	}
971 }
972 
973 static int
974 ath_init(struct ath_softc *sc)
975 {
976 	struct ifnet *ifp = &sc->sc_if;
977 	struct ieee80211com *ic = &sc->sc_ic;
978 	struct ath_hal *ah = sc->sc_ah;
979 	HAL_STATUS status;
980 	int error = 0;
981 
982 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
983 		__func__, ifp->if_flags);
984 
985 	if (device_is_active(sc->sc_dev)) {
986 		ATH_LOCK(sc);
987 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
988 	           !device_is_active(sc->sc_dev))
989 		return 0;
990 	else
991 		ATH_LOCK(sc);
992 
993 	/*
994 	 * Stop anything previously setup.  This is safe
995 	 * whether this is the first time through or not.
996 	 */
997 	ath_stop_locked(ifp, 0);
998 
999 	/*
1000 	 * The basic interface to setting the hardware in a good
1001 	 * state is ``reset''.  On return the hardware is known to
1002 	 * be powered up and with interrupts disabled.  This must
1003 	 * be followed by initialization of the appropriate bits
1004 	 * and then setup of the interrupt mask.
1005 	 */
1006 	ath_settkipmic(sc);
1007 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1008 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1009 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1010 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1011 			status);
1012 		error = EIO;
1013 		goto done;
1014 	}
1015 
1016 	/*
1017 	 * This is needed only to setup initial state
1018 	 * but it's best done after a reset.
1019 	 */
1020 	ath_update_txpow(sc);
1021 	/*
1022 	 * Likewise this is set during reset so update
1023 	 * state cached in the driver.
1024 	 */
1025 	ath_restore_diversity(sc);
1026 	sc->sc_calinterval = 1;
1027 	sc->sc_caltries = 0;
1028 
1029 	/*
1030 	 * Setup the hardware after reset: the key cache
1031 	 * is filled as needed and the receive engine is
1032 	 * set going.  Frame transmit is handled entirely
1033 	 * in the frame output path; there's nothing to do
1034 	 * here except setup the interrupt mask.
1035 	 */
1036 	if ((error = ath_startrecv(sc)) != 0) {
1037 		if_printf(ifp, "unable to start recv logic\n");
1038 		goto done;
1039 	}
1040 
1041 	/*
1042 	 * Enable interrupts.
1043 	 */
1044 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1045 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1046 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1047 	/*
1048 	 * Enable MIB interrupts when there are hardware phy counters.
1049 	 * Note we only do this (at the moment) for station mode.
1050 	 */
1051 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1052 		sc->sc_imask |= HAL_INT_MIB;
1053 	ath_hal_intrset(ah, sc->sc_imask);
1054 
1055 	ifp->if_flags |= IFF_RUNNING;
1056 	ic->ic_state = IEEE80211_S_INIT;
1057 
1058 	/*
1059 	 * The hardware should be ready to go now so it's safe
1060 	 * to kick the 802.11 state machine as it's likely to
1061 	 * immediately call back to us to send mgmt frames.
1062 	 */
1063 	ath_chan_change(sc, ic->ic_curchan);
1064 #ifdef ATH_TX99_DIAG
1065 	if (sc->sc_tx99 != NULL)
1066 		sc->sc_tx99->start(sc->sc_tx99);
1067 	else
1068 #endif
1069 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1070 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1071 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1072 	} else
1073 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1074 done:
1075 	ATH_UNLOCK(sc);
1076 	return error;
1077 }
1078 
1079 static void
1080 ath_stop_locked(struct ifnet *ifp, int disable)
1081 {
1082 	struct ath_softc *sc = ifp->if_softc;
1083 	struct ieee80211com *ic = &sc->sc_ic;
1084 	struct ath_hal *ah = sc->sc_ah;
1085 
1086 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1087 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1088 
1089 	ATH_LOCK_ASSERT(sc);
1090 	if (ifp->if_flags & IFF_RUNNING) {
1091 		/*
1092 		 * Shutdown the hardware and driver:
1093 		 *    reset 802.11 state machine
1094 		 *    turn off timers
1095 		 *    disable interrupts
1096 		 *    turn off the radio
1097 		 *    clear transmit machinery
1098 		 *    clear receive machinery
1099 		 *    drain and release tx queues
1100 		 *    reclaim beacon resources
1101 		 *    power down hardware
1102 		 *
1103 		 * Note that some of this work is not possible if the
1104 		 * hardware is gone (invalid).
1105 		 */
1106 #ifdef ATH_TX99_DIAG
1107 		if (sc->sc_tx99 != NULL)
1108 			sc->sc_tx99->stop(sc->sc_tx99);
1109 #endif
1110 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1111 		ifp->if_flags &= ~IFF_RUNNING;
1112 		ifp->if_timer = 0;
1113 		if (device_is_enabled(sc->sc_dev)) {
1114 			if (sc->sc_softled) {
1115 				callout_stop(&sc->sc_ledtimer);
1116 				ath_hal_gpioset(ah, sc->sc_ledpin,
1117 					!sc->sc_ledon);
1118 				sc->sc_blinking = 0;
1119 			}
1120 			ath_hal_intrset(ah, 0);
1121 		}
1122 		ath_draintxq(sc);
1123 		if (device_is_enabled(sc->sc_dev)) {
1124 			ath_stoprecv(sc);
1125 			ath_hal_phydisable(ah);
1126 		} else
1127 			sc->sc_rxlink = NULL;
1128 		IF_PURGE(&ifp->if_snd);
1129 		ath_beacon_free(sc);
1130 	}
1131 	if (disable)
1132 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1133 }
1134 
1135 static void
1136 ath_stop(struct ifnet *ifp, int disable)
1137 {
1138 	struct ath_softc *sc = ifp->if_softc;
1139 
1140 	ATH_LOCK(sc);
1141 	ath_stop_locked(ifp, disable);
1142 	ATH_UNLOCK(sc);
1143 }
1144 
1145 static void
1146 ath_restore_diversity(struct ath_softc *sc)
1147 {
1148 	struct ifnet *ifp = &sc->sc_if;
1149 	struct ath_hal *ah = sc->sc_ah;
1150 
1151 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1152 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1153 		if_printf(ifp, "could not restore diversity setting %d\n",
1154 		    sc->sc_diversity);
1155 		sc->sc_diversity = ath_hal_getdiversity(ah);
1156 	}
1157 }
1158 
1159 /*
1160  * Reset the hardware w/o losing operational state.  This is
1161  * basically a more efficient way of doing ath_stop, ath_init,
1162  * followed by state transitions to the current 802.11
1163  * operational state.  Used to recover from various errors and
1164  * to reset or reload hardware state.
1165  */
1166 int
1167 ath_reset(struct ifnet *ifp)
1168 {
1169 	struct ath_softc *sc = ifp->if_softc;
1170 	struct ieee80211com *ic = &sc->sc_ic;
1171 	struct ath_hal *ah = sc->sc_ah;
1172 	struct ieee80211_channel *c;
1173 	HAL_STATUS status;
1174 
1175 	/*
1176 	 * Convert to a HAL channel description with the flags
1177 	 * constrained to reflect the current operating mode.
1178 	 */
1179 	c = ic->ic_curchan;
1180 	sc->sc_curchan.channel = c->ic_freq;
1181 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1182 
1183 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1184 	ath_draintxq(sc);		/* stop xmit side */
1185 	ath_stoprecv(sc);		/* stop recv side */
1186 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1187 	/* NB: indicate channel change so we do a full reset */
1188 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1189 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1190 			__func__, status);
1191 	ath_update_txpow(sc);		/* update tx power state */
1192 	ath_restore_diversity(sc);
1193 	sc->sc_calinterval = 1;
1194 	sc->sc_caltries = 0;
1195 	if (ath_startrecv(sc) != 0)	/* restart recv */
1196 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1197 	/*
1198 	 * We may be doing a reset in response to an ioctl
1199 	 * that changes the channel so update any state that
1200 	 * might change as a result.
1201 	 */
1202 	ath_chan_change(sc, c);
1203 	if (ic->ic_state == IEEE80211_S_RUN)
1204 		ath_beacon_config(sc);	/* restart beacons */
1205 	ath_hal_intrset(ah, sc->sc_imask);
1206 
1207 	ath_start(ifp);			/* restart xmit */
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Cleanup driver resources when we run out of buffers
1213  * while processing fragments; return the tx buffers
1214  * allocated and drop node references.
1215  */
1216 static void
1217 ath_txfrag_cleanup(struct ath_softc *sc,
1218 	ath_bufhead *frags, struct ieee80211_node *ni)
1219 {
1220 	struct ath_buf *bf;
1221 
1222 	ATH_TXBUF_LOCK_ASSERT(sc);
1223 
1224 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1225 		STAILQ_REMOVE_HEAD(frags, bf_list);
1226 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1227 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1228 		ieee80211_node_decref(ni);
1229 	}
1230 }
1231 
1232 /*
1233  * Setup xmit of a fragmented frame.  Allocate a buffer
1234  * for each frag and bump the node reference count to
1235  * reflect the held reference to be setup by ath_tx_start.
1236  */
1237 static int
1238 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1239 	struct mbuf *m0, struct ieee80211_node *ni)
1240 {
1241 	struct mbuf *m;
1242 	struct ath_buf *bf;
1243 
1244 	ATH_TXBUF_LOCK(sc);
1245 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1246 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1247 		if (bf == NULL) {       /* out of buffers, cleanup */
1248 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1249 				__func__);
1250 			sc->sc_if.if_flags |= IFF_OACTIVE;
1251 			ath_txfrag_cleanup(sc, frags, ni);
1252 			break;
1253 		}
1254 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1255 		ieee80211_node_incref(ni);
1256 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1257 	}
1258 	ATH_TXBUF_UNLOCK(sc);
1259 
1260 	return !STAILQ_EMPTY(frags);
1261 }
1262 
1263 static void
1264 ath_start(struct ifnet *ifp)
1265 {
1266 	struct ath_softc *sc = ifp->if_softc;
1267 	struct ath_hal *ah = sc->sc_ah;
1268 	struct ieee80211com *ic = &sc->sc_ic;
1269 	struct ieee80211_node *ni;
1270 	struct ath_buf *bf;
1271 	struct mbuf *m, *next;
1272 	struct ieee80211_frame *wh;
1273 	struct ether_header *eh;
1274 	ath_bufhead frags;
1275 
1276 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1277 	    !device_is_active(sc->sc_dev))
1278 		return;
1279 	for (;;) {
1280 		/*
1281 		 * Grab a TX buffer and associated resources.
1282 		 */
1283 		ATH_TXBUF_LOCK(sc);
1284 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1285 		if (bf != NULL)
1286 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1287 		ATH_TXBUF_UNLOCK(sc);
1288 		if (bf == NULL) {
1289 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1290 				__func__);
1291 			sc->sc_stats.ast_tx_qstop++;
1292 			ifp->if_flags |= IFF_OACTIVE;
1293 			break;
1294 		}
1295 		/*
1296 		 * Poll the management queue for frames; they
1297 		 * have priority over normal data frames.
1298 		 */
1299 		IF_DEQUEUE(&ic->ic_mgtq, m);
1300 		if (m == NULL) {
1301 			/*
1302 			 * No data frames go out unless we're associated.
1303 			 */
1304 			if (ic->ic_state != IEEE80211_S_RUN) {
1305 				DPRINTF(sc, ATH_DEBUG_XMIT,
1306 				    "%s: discard data packet, state %s\n",
1307 				    __func__,
1308 				    ieee80211_state_name[ic->ic_state]);
1309 				sc->sc_stats.ast_tx_discard++;
1310 				ATH_TXBUF_LOCK(sc);
1311 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1312 				ATH_TXBUF_UNLOCK(sc);
1313 				break;
1314 			}
1315 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1316 			if (m == NULL) {
1317 				ATH_TXBUF_LOCK(sc);
1318 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1319 				ATH_TXBUF_UNLOCK(sc);
1320 				break;
1321 			}
1322 			STAILQ_INIT(&frags);
1323 			/*
1324 			 * Find the node for the destination so we can do
1325 			 * things like power save and fast frames aggregation.
1326 			 */
1327 			if (m->m_len < sizeof(struct ether_header) &&
1328 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1329 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1330 				ni = NULL;
1331 				goto bad;
1332 			}
1333 			eh = mtod(m, struct ether_header *);
1334 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1335 			if (ni == NULL) {
1336 				/* NB: ieee80211_find_txnode does stat+msg */
1337 				m_freem(m);
1338 				goto bad;
1339 			}
1340 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1341 			    (m->m_flags & M_PWR_SAV) == 0) {
1342 				/*
1343 				 * Station in power save mode; pass the frame
1344 				 * to the 802.11 layer and continue.  We'll get
1345 				 * the frame back when the time is right.
1346 				 */
1347 				ieee80211_pwrsave(ic, ni, m);
1348 				goto reclaim;
1349 			}
1350 			/* calculate priority so we can find the tx queue */
1351 			if (ieee80211_classify(ic, m, ni)) {
1352 				DPRINTF(sc, ATH_DEBUG_XMIT,
1353 					"%s: discard, classification failure\n",
1354 					__func__);
1355 				m_freem(m);
1356 				goto bad;
1357 			}
1358 			ifp->if_opackets++;
1359 
1360 			bpf_mtap(ifp, m);
1361 			/*
1362 			 * Encapsulate the packet in prep for transmission.
1363 			 */
1364 			m = ieee80211_encap(ic, m, ni);
1365 			if (m == NULL) {
1366 				DPRINTF(sc, ATH_DEBUG_XMIT,
1367 					"%s: encapsulation failure\n",
1368 					__func__);
1369 				sc->sc_stats.ast_tx_encap++;
1370 				goto bad;
1371 			}
1372 			/*
1373 			 * Check for fragmentation.  If this has frame
1374 			 * has been broken up verify we have enough
1375 			 * buffers to send all the fragments so all
1376 			 * go out or none...
1377 			 */
1378 			if ((m->m_flags & M_FRAG) &&
1379 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1380 				DPRINTF(sc, ATH_DEBUG_ANY,
1381 				    "%s: out of txfrag buffers\n", __func__);
1382 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1383 				ath_freetx(m);
1384 				goto bad;
1385 			}
1386 		} else {
1387 			/*
1388 			 * Hack!  The referenced node pointer is in the
1389 			 * rcvif field of the packet header.  This is
1390 			 * placed there by ieee80211_mgmt_output because
1391 			 * we need to hold the reference with the frame
1392 			 * and there's no other way (other than packet
1393 			 * tags which we consider too expensive to use)
1394 			 * to pass it along.
1395 			 */
1396 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1397 			m->m_pkthdr.rcvif = NULL;
1398 
1399 			wh = mtod(m, struct ieee80211_frame *);
1400 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1401 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1402 				/* fill time stamp */
1403 				u_int64_t tsf;
1404 				u_int32_t *tstamp;
1405 
1406 				tsf = ath_hal_gettsf64(ah);
1407 				/* XXX: adjust 100us delay to xmit */
1408 				tsf += 100;
1409 				tstamp = (u_int32_t *)&wh[1];
1410 				tstamp[0] = htole32(tsf & 0xffffffff);
1411 				tstamp[1] = htole32(tsf >> 32);
1412 			}
1413 			sc->sc_stats.ast_tx_mgmt++;
1414 		}
1415 
1416 	nextfrag:
1417 		next = m->m_nextpkt;
1418 		if (ath_tx_start(sc, ni, bf, m)) {
1419 	bad:
1420 			ifp->if_oerrors++;
1421 	reclaim:
1422 			ATH_TXBUF_LOCK(sc);
1423 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1424 			ath_txfrag_cleanup(sc, &frags, ni);
1425 			ATH_TXBUF_UNLOCK(sc);
1426 			if (ni != NULL)
1427 				ieee80211_free_node(ni);
1428 			continue;
1429 		}
1430 		if (next != NULL) {
1431 			m = next;
1432 			bf = STAILQ_FIRST(&frags);
1433 			KASSERT(bf != NULL, ("no buf for txfrag"));
1434 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1435 			goto nextfrag;
1436 		}
1437 
1438 		ifp->if_timer = 1;
1439 	}
1440 }
1441 
1442 static int
1443 ath_media_change(struct ifnet *ifp)
1444 {
1445 #define	IS_UP(ifp) \
1446 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1447 	int error;
1448 
1449 	error = ieee80211_media_change(ifp);
1450 	if (error == ENETRESET) {
1451 		if (IS_UP(ifp))
1452 			ath_init(ifp->if_softc);	/* XXX lose error */
1453 		error = 0;
1454 	}
1455 	return error;
1456 #undef IS_UP
1457 }
1458 
1459 #ifdef AR_DEBUG
1460 static void
1461 ath_keyprint(const char *tag, u_int ix,
1462 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1463 {
1464 	static const char *ciphers[] = {
1465 		"WEP",
1466 		"AES-OCB",
1467 		"AES-CCM",
1468 		"CKIP",
1469 		"TKIP",
1470 		"CLR",
1471 	};
1472 	int i, n;
1473 
1474 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1475 	for (i = 0, n = hk->kv_len; i < n; i++)
1476 		printf("%02x", hk->kv_val[i]);
1477 	printf(" mac %s", ether_sprintf(mac));
1478 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1479 		printf(" mic ");
1480 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1481 			printf("%02x", hk->kv_mic[i]);
1482 	}
1483 	printf("\n");
1484 }
1485 #endif
1486 
1487 /*
1488  * Set a TKIP key into the hardware.  This handles the
1489  * potential distribution of key state to multiple key
1490  * cache slots for TKIP.
1491  */
1492 static int
1493 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1494 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1495 {
1496 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1497 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1498 	struct ath_hal *ah = sc->sc_ah;
1499 
1500 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1501 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1502 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1503 		if (sc->sc_splitmic) {
1504 			/*
1505 			 * TX key goes at first index, RX key at the rx index.
1506 			 * The hal handles the MIC keys at index+64.
1507 			 */
1508 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1509 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1510 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1511 						zerobssid))
1512 				return 0;
1513 
1514 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1515 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1516 			/* XXX delete tx key on failure? */
1517 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1518 					hk, mac);
1519 		} else {
1520 			/*
1521 			 * Room for both TX+RX MIC keys in one key cache
1522 			 * slot, just set key at the first index; the HAL
1523 			 * will handle the reset.
1524 			 */
1525 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1526 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1527 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1528 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1529 		}
1530 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1531 		if (sc->sc_splitmic) {
1532 			/*
1533 			 * NB: must pass MIC key in expected location when
1534 			 * the keycache only holds one MIC key per entry.
1535 			 */
1536 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1537 		} else
1538 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1539 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1540 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1541 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1542 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1543 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1544 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1545 	}
1546 	return 0;
1547 #undef IEEE80211_KEY_XR
1548 }
1549 
1550 /*
1551  * Set a net80211 key into the hardware.  This handles the
1552  * potential distribution of key state to multiple key
1553  * cache slots for TKIP with hardware MIC support.
1554  */
1555 static int
1556 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1557 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1558 	struct ieee80211_node *bss)
1559 {
1560 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1561 	static const u_int8_t ciphermap[] = {
1562 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1563 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1564 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1565 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1566 		(u_int8_t) -1,		/* 4 is not allocated */
1567 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1568 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1569 	};
1570 	struct ath_hal *ah = sc->sc_ah;
1571 	const struct ieee80211_cipher *cip = k->wk_cipher;
1572 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1573 	const u_int8_t *mac;
1574 	HAL_KEYVAL hk;
1575 
1576 	memset(&hk, 0, sizeof(hk));
1577 	/*
1578 	 * Software crypto uses a "clear key" so non-crypto
1579 	 * state kept in the key cache are maintained and
1580 	 * so that rx frames have an entry to match.
1581 	 */
1582 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1583 		KASSERT(cip->ic_cipher < N(ciphermap),
1584 			("invalid cipher type %u", cip->ic_cipher));
1585 		hk.kv_type = ciphermap[cip->ic_cipher];
1586 		hk.kv_len = k->wk_keylen;
1587 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1588 	} else
1589 		hk.kv_type = HAL_CIPHER_CLR;
1590 
1591 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1592 		/*
1593 		 * Group keys on hardware that supports multicast frame
1594 		 * key search use a mac that is the sender's address with
1595 		 * the high bit set instead of the app-specified address.
1596 		 */
1597 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1598 		gmac[0] |= 0x80;
1599 		mac = gmac;
1600 	} else
1601 		mac = mac0;
1602 
1603 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1604 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1605 		return ath_keyset_tkip(sc, k, &hk, mac);
1606 	} else {
1607 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1608 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1609 	}
1610 #undef N
1611 }
1612 
1613 /*
1614  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1615  * each key, one for decrypt/encrypt and the other for the MIC.
1616  */
1617 static u_int16_t
1618 key_alloc_2pair(struct ath_softc *sc,
1619 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1620 {
1621 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1622 	u_int i, keyix;
1623 
1624 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1625 	/* XXX could optimize */
1626 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1627 		u_int8_t b = sc->sc_keymap[i];
1628 		if (b != 0xff) {
1629 			/*
1630 			 * One or more slots in this byte are free.
1631 			 */
1632 			keyix = i*NBBY;
1633 			while (b & 1) {
1634 		again:
1635 				keyix++;
1636 				b >>= 1;
1637 			}
1638 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1639 			if (isset(sc->sc_keymap, keyix+32) ||
1640 			    isset(sc->sc_keymap, keyix+64) ||
1641 			    isset(sc->sc_keymap, keyix+32+64)) {
1642 				/* full pair unavailable */
1643 				/* XXX statistic */
1644 				if (keyix == (i+1)*NBBY) {
1645 					/* no slots were appropriate, advance */
1646 					continue;
1647 				}
1648 				goto again;
1649 			}
1650 			setbit(sc->sc_keymap, keyix);
1651 			setbit(sc->sc_keymap, keyix+64);
1652 			setbit(sc->sc_keymap, keyix+32);
1653 			setbit(sc->sc_keymap, keyix+32+64);
1654 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1655 				"%s: key pair %u,%u %u,%u\n",
1656 				__func__, keyix, keyix+64,
1657 				keyix+32, keyix+32+64);
1658 			*txkeyix = keyix;
1659 			*rxkeyix = keyix+32;
1660 			return keyix;
1661 		}
1662 	}
1663 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1664 	return IEEE80211_KEYIX_NONE;
1665 #undef N
1666 }
1667 
1668 /*
1669  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1670  * each key, one for decrypt/encrypt and the other for the MIC.
1671  */
1672 static int
1673 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1674     ieee80211_keyix *rxkeyix)
1675 {
1676 #define N(a)	(sizeof(a)/sizeof(a[0]))
1677 	u_int i, keyix;
1678 
1679 	KASSERT(!sc->sc_splitmic, ("key cache split"));
1680 	/* XXX could optimize */
1681 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1682 		uint8_t b = sc->sc_keymap[i];
1683 		if (b != 0xff) {
1684 			/*
1685 			 * One or more slots in this byte are free.
1686 			 */
1687 			keyix = i*NBBY;
1688 			while (b & 1) {
1689 		again:
1690 				keyix++;
1691 				b >>= 1;
1692 			}
1693 			if (isset(sc->sc_keymap, keyix+64)) {
1694 				/* full pair unavailable */
1695 				/* XXX statistic */
1696 				if (keyix == (i+1)*NBBY) {
1697 					/* no slots were appropriate, advance */
1698 					continue;
1699 				}
1700 				goto again;
1701 			}
1702 			setbit(sc->sc_keymap, keyix);
1703 			setbit(sc->sc_keymap, keyix+64);
1704 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1705 				"%s: key pair %u,%u\n",
1706 				__func__, keyix, keyix+64);
1707 			*txkeyix = *rxkeyix = keyix;
1708 			return 1;
1709 		}
1710 	}
1711 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1712 	return 0;
1713 #undef N
1714 }
1715 
1716 /*
1717  * Allocate a single key cache slot.
1718  */
1719 static int
1720 key_alloc_single(struct ath_softc *sc,
1721 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1722 {
1723 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1724 	u_int i, keyix;
1725 
1726 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1727 	for (i = 0; i < N(sc->sc_keymap); i++) {
1728 		u_int8_t b = sc->sc_keymap[i];
1729 		if (b != 0xff) {
1730 			/*
1731 			 * One or more slots are free.
1732 			 */
1733 			keyix = i*NBBY;
1734 			while (b & 1)
1735 				keyix++, b >>= 1;
1736 			setbit(sc->sc_keymap, keyix);
1737 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1738 				__func__, keyix);
1739 			*txkeyix = *rxkeyix = keyix;
1740 			return 1;
1741 		}
1742 	}
1743 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1744 	return 0;
1745 #undef N
1746 }
1747 
1748 /*
1749  * Allocate one or more key cache slots for a uniacst key.  The
1750  * key itself is needed only to identify the cipher.  For hardware
1751  * TKIP with split cipher+MIC keys we allocate two key cache slot
1752  * pairs so that we can setup separate TX and RX MIC keys.  Note
1753  * that the MIC key for a TKIP key at slot i is assumed by the
1754  * hardware to be at slot i+64.  This limits TKIP keys to the first
1755  * 64 entries.
1756  */
1757 static int
1758 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1759 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1760 {
1761 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1762 
1763 	/*
1764 	 * Group key allocation must be handled specially for
1765 	 * parts that do not support multicast key cache search
1766 	 * functionality.  For those parts the key id must match
1767 	 * the h/w key index so lookups find the right key.  On
1768 	 * parts w/ the key search facility we install the sender's
1769 	 * mac address (with the high bit set) and let the hardware
1770 	 * find the key w/o using the key id.  This is preferred as
1771 	 * it permits us to support multiple users for adhoc and/or
1772 	 * multi-station operation.
1773 	 */
1774 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1775 		if (!(&ic->ic_nw_keys[0] <= k &&
1776 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1777 			/* should not happen */
1778 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1779 				"%s: bogus group key\n", __func__);
1780 			return 0;
1781 		}
1782 		/*
1783 		 * XXX we pre-allocate the global keys so
1784 		 * have no way to check if they've already been allocated.
1785 		 */
1786 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1787 		return 1;
1788 	}
1789 
1790 	/*
1791 	 * We allocate two pair for TKIP when using the h/w to do
1792 	 * the MIC.  For everything else, including software crypto,
1793 	 * we allocate a single entry.  Note that s/w crypto requires
1794 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1795 	 * not support pass-through cache entries and we map all
1796 	 * those requests to slot 0.
1797 	 */
1798 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1799 		return key_alloc_single(sc, keyix, rxkeyix);
1800 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1801 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1802 		if (sc->sc_splitmic)
1803 			return key_alloc_2pair(sc, keyix, rxkeyix);
1804 		else
1805 			return key_alloc_pair(sc, keyix, rxkeyix);
1806 	} else {
1807 		return key_alloc_single(sc, keyix, rxkeyix);
1808 	}
1809 }
1810 
1811 /*
1812  * Delete an entry in the key cache allocated by ath_key_alloc.
1813  */
1814 static int
1815 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1816 {
1817 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1818 	struct ath_hal *ah = sc->sc_ah;
1819 	const struct ieee80211_cipher *cip = k->wk_cipher;
1820 	u_int keyix = k->wk_keyix;
1821 
1822 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1823 
1824 	if (!device_has_power(sc->sc_dev)) {
1825 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1826 		    k->wk_keyix);
1827 	}
1828 
1829 	ath_hal_keyreset(ah, keyix);
1830 	/*
1831 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1832 	 */
1833 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1834 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1835 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1836 	if (keyix >= IEEE80211_WEP_NKID) {
1837 		/*
1838 		 * Don't touch keymap entries for global keys so
1839 		 * they are never considered for dynamic allocation.
1840 		 */
1841 		clrbit(sc->sc_keymap, keyix);
1842 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1843 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1844 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1845 			if (sc->sc_splitmic) {
1846 				/* +32 for RX key, +32+64 for RX key MIC */
1847 				clrbit(sc->sc_keymap, keyix+32);
1848 				clrbit(sc->sc_keymap, keyix+32+64);
1849 			}
1850 		}
1851 	}
1852 	return 1;
1853 }
1854 
1855 /*
1856  * Set the key cache contents for the specified key.  Key cache
1857  * slot(s) must already have been allocated by ath_key_alloc.
1858  */
1859 static int
1860 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1861 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1862 {
1863 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1864 
1865 	if (!device_has_power(sc->sc_dev)) {
1866 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1867 		    k->wk_keyix);
1868 	}
1869 	return ath_keyset(sc, k, mac, ic->ic_bss);
1870 }
1871 
1872 /*
1873  * Block/unblock tx+rx processing while a key change is done.
1874  * We assume the caller serializes key management operations
1875  * so we only need to worry about synchronization with other
1876  * uses that originate in the driver.
1877  */
1878 static void
1879 ath_key_update_begin(struct ieee80211com *ic)
1880 {
1881 	struct ifnet *ifp = ic->ic_ifp;
1882 	struct ath_softc *sc = ifp->if_softc;
1883 
1884 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1885 #if 0
1886 	tasklet_disable(&sc->sc_rxtq);
1887 #endif
1888 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1889 }
1890 
1891 static void
1892 ath_key_update_end(struct ieee80211com *ic)
1893 {
1894 	struct ifnet *ifp = ic->ic_ifp;
1895 	struct ath_softc *sc = ifp->if_softc;
1896 
1897 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1898 	IF_UNLOCK(&ifp->if_snd);
1899 #if 0
1900 	tasklet_enable(&sc->sc_rxtq);
1901 #endif
1902 }
1903 
1904 /*
1905  * Calculate the receive filter according to the
1906  * operating mode and state:
1907  *
1908  * o always accept unicast, broadcast, and multicast traffic
1909  * o maintain current state of phy error reception (the hal
1910  *   may enable phy error frames for noise immunity work)
1911  * o probe request frames are accepted only when operating in
1912  *   hostap, adhoc, or monitor modes
1913  * o enable promiscuous mode according to the interface state
1914  * o accept beacons:
1915  *   - when operating in adhoc mode so the 802.11 layer creates
1916  *     node table entries for peers,
1917  *   - when operating in station mode for collecting rssi data when
1918  *     the station is otherwise quiet, or
1919  *   - when scanning
1920  */
1921 static u_int32_t
1922 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1923 {
1924 	struct ieee80211com *ic = &sc->sc_ic;
1925 	struct ath_hal *ah = sc->sc_ah;
1926 	struct ifnet *ifp = &sc->sc_if;
1927 	u_int32_t rfilt;
1928 
1929 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1930 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1931 	if (ic->ic_opmode != IEEE80211_M_STA)
1932 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1933 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1934 	    (ifp->if_flags & IFF_PROMISC))
1935 		rfilt |= HAL_RX_FILTER_PROM;
1936 	if (ifp->if_flags & IFF_PROMISC)
1937 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1938 	if (ic->ic_opmode == IEEE80211_M_STA ||
1939 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1940 	    state == IEEE80211_S_SCAN)
1941 		rfilt |= HAL_RX_FILTER_BEACON;
1942 	return rfilt;
1943 }
1944 
1945 static void
1946 ath_mode_init(struct ath_softc *sc)
1947 {
1948 	struct ifnet *ifp = &sc->sc_if;
1949 	struct ieee80211com *ic = &sc->sc_ic;
1950 	struct ath_hal *ah = sc->sc_ah;
1951 	struct ether_multi *enm;
1952 	struct ether_multistep estep;
1953 	u_int32_t rfilt, mfilt[2], val;
1954 	int i;
1955 	uint8_t pos;
1956 
1957 	/* configure rx filter */
1958 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1959 	ath_hal_setrxfilter(ah, rfilt);
1960 
1961 	/* configure operational mode */
1962 	ath_hal_setopmode(ah);
1963 
1964 	/* Write keys to hardware; it may have been powered down. */
1965 	ath_key_update_begin(ic);
1966 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1967 		ath_key_set(ic,
1968 			    &ic->ic_crypto.cs_nw_keys[i],
1969 			    ic->ic_myaddr);
1970 	}
1971 	ath_key_update_end(ic);
1972 
1973 	/*
1974 	 * Handle any link-level address change.  Note that we only
1975 	 * need to force ic_myaddr; any other addresses are handled
1976 	 * as a byproduct of the ifnet code marking the interface
1977 	 * down then up.
1978 	 *
1979 	 * XXX should get from lladdr instead of arpcom but that's more work
1980 	 */
1981 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1982 	ath_hal_setmac(ah, ic->ic_myaddr);
1983 
1984 	/* calculate and install multicast filter */
1985 	ifp->if_flags &= ~IFF_ALLMULTI;
1986 	mfilt[0] = mfilt[1] = 0;
1987 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1988 	while (enm != NULL) {
1989 		void *dl;
1990 		/* XXX Punt on ranges. */
1991 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1992 			mfilt[0] = mfilt[1] = 0xffffffff;
1993 			ifp->if_flags |= IFF_ALLMULTI;
1994 			break;
1995 		}
1996 		dl = enm->enm_addrlo;
1997 		val = LE_READ_4((char *)dl + 0);
1998 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1999 		val = LE_READ_4((char *)dl + 3);
2000 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2001 		pos &= 0x3f;
2002 		mfilt[pos / 32] |= (1 << (pos % 32));
2003 
2004 		ETHER_NEXT_MULTI(estep, enm);
2005 	}
2006 
2007 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2008 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2009 		__func__, rfilt, mfilt[0], mfilt[1]);
2010 }
2011 
2012 /*
2013  * Set the slot time based on the current setting.
2014  */
2015 static void
2016 ath_setslottime(struct ath_softc *sc)
2017 {
2018 	struct ieee80211com *ic = &sc->sc_ic;
2019 	struct ath_hal *ah = sc->sc_ah;
2020 
2021 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2022 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2023 	else
2024 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2025 	sc->sc_updateslot = OK;
2026 }
2027 
2028 /*
2029  * Callback from the 802.11 layer to update the
2030  * slot time based on the current setting.
2031  */
2032 static void
2033 ath_updateslot(struct ifnet *ifp)
2034 {
2035 	struct ath_softc *sc = ifp->if_softc;
2036 	struct ieee80211com *ic = &sc->sc_ic;
2037 
2038 	/*
2039 	 * When not coordinating the BSS, change the hardware
2040 	 * immediately.  For other operation we defer the change
2041 	 * until beacon updates have propagated to the stations.
2042 	 */
2043 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2044 		sc->sc_updateslot = UPDATE;
2045 	else
2046 		ath_setslottime(sc);
2047 }
2048 
2049 /*
2050  * Setup a h/w transmit queue for beacons.
2051  */
2052 static int
2053 ath_beaconq_setup(struct ath_hal *ah)
2054 {
2055 	HAL_TXQ_INFO qi;
2056 
2057 	memset(&qi, 0, sizeof(qi));
2058 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2059 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2060 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2061 	/* NB: for dynamic turbo, don't enable any other interrupts */
2062 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2063 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2064 }
2065 
2066 /*
2067  * Setup the transmit queue parameters for the beacon queue.
2068  */
2069 static int
2070 ath_beaconq_config(struct ath_softc *sc)
2071 {
2072 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2073 	struct ieee80211com *ic = &sc->sc_ic;
2074 	struct ath_hal *ah = sc->sc_ah;
2075 	HAL_TXQ_INFO qi;
2076 
2077 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2078 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2079 		/*
2080 		 * Always burst out beacon and CAB traffic.
2081 		 */
2082 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2083 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2084 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2085 	} else {
2086 		struct wmeParams *wmep =
2087 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2088 		/*
2089 		 * Adhoc mode; important thing is to use 2x cwmin.
2090 		 */
2091 		qi.tqi_aifs = wmep->wmep_aifsn;
2092 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2093 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2094 	}
2095 
2096 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2097 		device_printf(sc->sc_dev, "unable to update parameters for "
2098 			"beacon hardware queue!\n");
2099 		return 0;
2100 	} else {
2101 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2102 		return 1;
2103 	}
2104 #undef ATH_EXPONENT_TO_VALUE
2105 }
2106 
2107 /*
2108  * Allocate and setup an initial beacon frame.
2109  */
2110 static int
2111 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2112 {
2113 	struct ieee80211com *ic = ni->ni_ic;
2114 	struct ath_buf *bf;
2115 	struct mbuf *m;
2116 	int error;
2117 
2118 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2119 	if (bf == NULL) {
2120 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2121 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2122 		return ENOMEM;			/* XXX */
2123 	}
2124 	/*
2125 	 * NB: the beacon data buffer must be 32-bit aligned;
2126 	 * we assume the mbuf routines will return us something
2127 	 * with this alignment (perhaps should assert).
2128 	 */
2129 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2130 	if (m == NULL) {
2131 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2132 			__func__);
2133 		sc->sc_stats.ast_be_nombuf++;
2134 		return ENOMEM;
2135 	}
2136 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2137 				     BUS_DMA_NOWAIT);
2138 	if (error == 0) {
2139 		bf->bf_m = m;
2140 		bf->bf_node = ieee80211_ref_node(ni);
2141 	} else {
2142 		m_freem(m);
2143 	}
2144 	return error;
2145 }
2146 
2147 /*
2148  * Setup the beacon frame for transmit.
2149  */
2150 static void
2151 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2152 {
2153 #define	USE_SHPREAMBLE(_ic) \
2154 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2155 		== IEEE80211_F_SHPREAMBLE)
2156 	struct ieee80211_node *ni = bf->bf_node;
2157 	struct ieee80211com *ic = ni->ni_ic;
2158 	struct mbuf *m = bf->bf_m;
2159 	struct ath_hal *ah = sc->sc_ah;
2160 	struct ath_desc *ds;
2161 	int flags, antenna;
2162 	const HAL_RATE_TABLE *rt;
2163 	u_int8_t rix, rate;
2164 
2165 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2166 		__func__, m, m->m_len);
2167 
2168 	/* setup descriptors */
2169 	ds = bf->bf_desc;
2170 
2171 	flags = HAL_TXDESC_NOACK;
2172 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2173 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2174 		flags |= HAL_TXDESC_VEOL;
2175 		/*
2176 		 * Let hardware handle antenna switching unless
2177 		 * the user has selected a transmit antenna
2178 		 * (sc_txantenna is not 0).
2179 		 */
2180 		antenna = sc->sc_txantenna;
2181 	} else {
2182 		ds->ds_link = 0;
2183 		/*
2184 		 * Switch antenna every 4 beacons, unless the user
2185 		 * has selected a transmit antenna (sc_txantenna
2186 		 * is not 0).
2187 		 *
2188 		 * XXX assumes two antenna
2189 		 */
2190 		if (sc->sc_txantenna == 0)
2191 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2192 		else
2193 			antenna = sc->sc_txantenna;
2194 	}
2195 
2196 	KASSERT(bf->bf_nseg == 1,
2197 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2198 	ds->ds_data = bf->bf_segs[0].ds_addr;
2199 	/*
2200 	 * Calculate rate code.
2201 	 * XXX everything at min xmit rate
2202 	 */
2203 	rix = sc->sc_minrateix;
2204 	rt = sc->sc_currates;
2205 	rate = rt->info[rix].rateCode;
2206 	if (USE_SHPREAMBLE(ic))
2207 		rate |= rt->info[rix].shortPreamble;
2208 	ath_hal_setuptxdesc(ah, ds
2209 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2210 		, sizeof(struct ieee80211_frame)/* header length */
2211 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2212 		, ni->ni_txpower		/* txpower XXX */
2213 		, rate, 1			/* series 0 rate/tries */
2214 		, HAL_TXKEYIX_INVALID		/* no encryption */
2215 		, antenna			/* antenna mode */
2216 		, flags				/* no ack, veol for beacons */
2217 		, 0				/* rts/cts rate */
2218 		, 0				/* rts/cts duration */
2219 	);
2220 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2221 	ath_hal_filltxdesc(ah, ds
2222 		, roundup(m->m_len, 4)		/* buffer length */
2223 		, AH_TRUE			/* first segment */
2224 		, AH_TRUE			/* last segment */
2225 		, ds				/* first descriptor */
2226 	);
2227 
2228 	/* NB: The desc swap function becomes void, if descriptor swapping
2229 	 * is not enabled
2230 	 */
2231 	ath_desc_swap(ds);
2232 
2233 #undef USE_SHPREAMBLE
2234 }
2235 
2236 /*
2237  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2238  * frame contents are done as needed and the slot time is
2239  * also adjusted based on current state.
2240  */
2241 static void
2242 ath_beacon_proc(void *arg, int pending)
2243 {
2244 	struct ath_softc *sc = arg;
2245 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2246 	struct ieee80211_node *ni = bf->bf_node;
2247 	struct ieee80211com *ic = ni->ni_ic;
2248 	struct ath_hal *ah = sc->sc_ah;
2249 	struct mbuf *m;
2250 	int ncabq, error, otherant;
2251 
2252 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2253 		__func__, pending);
2254 
2255 	if (ic->ic_opmode == IEEE80211_M_STA ||
2256 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2257 	    bf == NULL || bf->bf_m == NULL) {
2258 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2259 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2260 		return;
2261 	}
2262 	/*
2263 	 * Check if the previous beacon has gone out.  If
2264 	 * not don't try to post another, skip this period
2265 	 * and wait for the next.  Missed beacons indicate
2266 	 * a problem and should not occur.  If we miss too
2267 	 * many consecutive beacons reset the device.
2268 	 */
2269 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2270 		sc->sc_bmisscount++;
2271 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2272 			"%s: missed %u consecutive beacons\n",
2273 			__func__, sc->sc_bmisscount);
2274 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2275 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2276 		return;
2277 	}
2278 	if (sc->sc_bmisscount != 0) {
2279 		DPRINTF(sc, ATH_DEBUG_BEACON,
2280 			"%s: resume beacon xmit after %u misses\n",
2281 			__func__, sc->sc_bmisscount);
2282 		sc->sc_bmisscount = 0;
2283 	}
2284 
2285 	/*
2286 	 * Update dynamic beacon contents.  If this returns
2287 	 * non-zero then we need to remap the memory because
2288 	 * the beacon frame changed size (probably because
2289 	 * of the TIM bitmap).
2290 	 */
2291 	m = bf->bf_m;
2292 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2293 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2294 		/* XXX too conservative? */
2295 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2296 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2297 					     BUS_DMA_NOWAIT);
2298 		if (error != 0) {
2299 			if_printf(&sc->sc_if,
2300 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2301 			    __func__, error);
2302 			return;
2303 		}
2304 	}
2305 
2306 	/*
2307 	 * Handle slot time change when a non-ERP station joins/leaves
2308 	 * an 11g network.  The 802.11 layer notifies us via callback,
2309 	 * we mark updateslot, then wait one beacon before effecting
2310 	 * the change.  This gives associated stations at least one
2311 	 * beacon interval to note the state change.
2312 	 */
2313 	/* XXX locking */
2314 	if (sc->sc_updateslot == UPDATE)
2315 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2316 	else if (sc->sc_updateslot == COMMIT)
2317 		ath_setslottime(sc);		/* commit change to h/w */
2318 
2319 	/*
2320 	 * Check recent per-antenna transmit statistics and flip
2321 	 * the default antenna if noticeably more frames went out
2322 	 * on the non-default antenna.
2323 	 * XXX assumes 2 anntenae
2324 	 */
2325 	otherant = sc->sc_defant & 1 ? 2 : 1;
2326 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2327 		ath_setdefantenna(sc, otherant);
2328 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2329 
2330 	/*
2331 	 * Construct tx descriptor.
2332 	 */
2333 	ath_beacon_setup(sc, bf);
2334 
2335 	/*
2336 	 * Stop any current dma and put the new frame on the queue.
2337 	 * This should never fail since we check above that no frames
2338 	 * are still pending on the queue.
2339 	 */
2340 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2341 		DPRINTF(sc, ATH_DEBUG_ANY,
2342 			"%s: beacon queue %u did not stop?\n",
2343 			__func__, sc->sc_bhalq);
2344 	}
2345 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2346 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2347 
2348 	/*
2349 	 * Enable the CAB queue before the beacon queue to
2350 	 * insure cab frames are triggered by this beacon.
2351 	 */
2352 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2353 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2354 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2355 	ath_hal_txstart(ah, sc->sc_bhalq);
2356 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2357 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2358 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2359 
2360 	sc->sc_stats.ast_be_xmit++;
2361 }
2362 
2363 /*
2364  * Reset the hardware after detecting beacons have stopped.
2365  */
2366 static void
2367 ath_bstuck_proc(void *arg, int pending)
2368 {
2369 	struct ath_softc *sc = arg;
2370 	struct ifnet *ifp = &sc->sc_if;
2371 
2372 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2373 		sc->sc_bmisscount);
2374 	ath_reset(ifp);
2375 }
2376 
2377 /*
2378  * Reclaim beacon resources.
2379  */
2380 static void
2381 ath_beacon_free(struct ath_softc *sc)
2382 {
2383 	struct ath_buf *bf;
2384 
2385 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2386 		if (bf->bf_m != NULL) {
2387 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2388 			m_freem(bf->bf_m);
2389 			bf->bf_m = NULL;
2390 		}
2391 		if (bf->bf_node != NULL) {
2392 			ieee80211_free_node(bf->bf_node);
2393 			bf->bf_node = NULL;
2394 		}
2395 	}
2396 }
2397 
2398 /*
2399  * Configure the beacon and sleep timers.
2400  *
2401  * When operating as an AP this resets the TSF and sets
2402  * up the hardware to notify us when we need to issue beacons.
2403  *
2404  * When operating in station mode this sets up the beacon
2405  * timers according to the timestamp of the last received
2406  * beacon and the current TSF, configures PCF and DTIM
2407  * handling, programs the sleep registers so the hardware
2408  * will wakeup in time to receive beacons, and configures
2409  * the beacon miss handling so we'll receive a BMISS
2410  * interrupt when we stop seeing beacons from the AP
2411  * we've associated with.
2412  */
2413 static void
2414 ath_beacon_config(struct ath_softc *sc)
2415 {
2416 #define	TSF_TO_TU(_h,_l) \
2417 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2418 #define	FUDGE	2
2419 	struct ath_hal *ah = sc->sc_ah;
2420 	struct ieee80211com *ic = &sc->sc_ic;
2421 	struct ieee80211_node *ni = ic->ic_bss;
2422 	u_int32_t nexttbtt, intval, tsftu;
2423 	u_int64_t tsf;
2424 
2425 	/* extract tstamp from last beacon and convert to TU */
2426 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2427 			     LE_READ_4(ni->ni_tstamp.data));
2428 	/* NB: the beacon interval is kept internally in TU's */
2429 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2430 	if (nexttbtt == 0)		/* e.g. for ap mode */
2431 		nexttbtt = intval;
2432 	else if (intval)		/* NB: can be 0 for monitor mode */
2433 		nexttbtt = roundup(nexttbtt, intval);
2434 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2435 		__func__, nexttbtt, intval, ni->ni_intval);
2436 	if (ic->ic_opmode == IEEE80211_M_STA) {
2437 		HAL_BEACON_STATE bs;
2438 		int dtimperiod, dtimcount;
2439 		int cfpperiod, cfpcount;
2440 
2441 		/*
2442 		 * Setup dtim and cfp parameters according to
2443 		 * last beacon we received (which may be none).
2444 		 */
2445 		dtimperiod = ni->ni_dtim_period;
2446 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2447 			dtimperiod = 1;
2448 		dtimcount = ni->ni_dtim_count;
2449 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2450 			dtimcount = 0;		/* XXX? */
2451 		cfpperiod = 1;			/* NB: no PCF support yet */
2452 		cfpcount = 0;
2453 		/*
2454 		 * Pull nexttbtt forward to reflect the current
2455 		 * TSF and calculate dtim+cfp state for the result.
2456 		 */
2457 		tsf = ath_hal_gettsf64(ah);
2458 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2459 		do {
2460 			nexttbtt += intval;
2461 			if (--dtimcount < 0) {
2462 				dtimcount = dtimperiod - 1;
2463 				if (--cfpcount < 0)
2464 					cfpcount = cfpperiod - 1;
2465 			}
2466 		} while (nexttbtt < tsftu);
2467 		memset(&bs, 0, sizeof(bs));
2468 		bs.bs_intval = intval;
2469 		bs.bs_nexttbtt = nexttbtt;
2470 		bs.bs_dtimperiod = dtimperiod*intval;
2471 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2472 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2473 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2474 		bs.bs_cfpmaxduration = 0;
2475 #if 0
2476 		/*
2477 		 * The 802.11 layer records the offset to the DTIM
2478 		 * bitmap while receiving beacons; use it here to
2479 		 * enable h/w detection of our AID being marked in
2480 		 * the bitmap vector (to indicate frames for us are
2481 		 * pending at the AP).
2482 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2483 		 * XXX enable based on h/w rev for newer chips
2484 		 */
2485 		bs.bs_timoffset = ni->ni_timoff;
2486 #endif
2487 		/*
2488 		 * Calculate the number of consecutive beacons to miss
2489 		 * before taking a BMISS interrupt.  The configuration
2490 		 * is specified in ms, so we need to convert that to
2491 		 * TU's and then calculate based on the beacon interval.
2492 		 * Note that we clamp the result to at most 10 beacons.
2493 		 */
2494 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2495 		if (bs.bs_bmissthreshold > 10)
2496 			bs.bs_bmissthreshold = 10;
2497 		else if (bs.bs_bmissthreshold <= 0)
2498 			bs.bs_bmissthreshold = 1;
2499 
2500 		/*
2501 		 * Calculate sleep duration.  The configuration is
2502 		 * given in ms.  We insure a multiple of the beacon
2503 		 * period is used.  Also, if the sleep duration is
2504 		 * greater than the DTIM period then it makes senses
2505 		 * to make it a multiple of that.
2506 		 *
2507 		 * XXX fixed at 100ms
2508 		 */
2509 		bs.bs_sleepduration =
2510 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2511 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2512 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2513 
2514 		DPRINTF(sc, ATH_DEBUG_BEACON,
2515 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2516 			, __func__
2517 			, tsf, tsftu
2518 			, bs.bs_intval
2519 			, bs.bs_nexttbtt
2520 			, bs.bs_dtimperiod
2521 			, bs.bs_nextdtim
2522 			, bs.bs_bmissthreshold
2523 			, bs.bs_sleepduration
2524 			, bs.bs_cfpperiod
2525 			, bs.bs_cfpmaxduration
2526 			, bs.bs_cfpnext
2527 			, bs.bs_timoffset
2528 		);
2529 		ath_hal_intrset(ah, 0);
2530 		ath_hal_beacontimers(ah, &bs);
2531 		sc->sc_imask |= HAL_INT_BMISS;
2532 		ath_hal_intrset(ah, sc->sc_imask);
2533 	} else {
2534 		ath_hal_intrset(ah, 0);
2535 		if (nexttbtt == intval)
2536 			intval |= HAL_BEACON_RESET_TSF;
2537 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2538 			/*
2539 			 * In IBSS mode enable the beacon timers but only
2540 			 * enable SWBA interrupts if we need to manually
2541 			 * prepare beacon frames.  Otherwise we use a
2542 			 * self-linked tx descriptor and let the hardware
2543 			 * deal with things.
2544 			 */
2545 			intval |= HAL_BEACON_ENA;
2546 			if (!sc->sc_hasveol)
2547 				sc->sc_imask |= HAL_INT_SWBA;
2548 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2549 				/*
2550 				 * Pull nexttbtt forward to reflect
2551 				 * the current TSF.
2552 				 */
2553 				tsf = ath_hal_gettsf64(ah);
2554 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2555 				do {
2556 					nexttbtt += intval;
2557 				} while (nexttbtt < tsftu);
2558 			}
2559 			ath_beaconq_config(sc);
2560 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2561 			/*
2562 			 * In AP mode we enable the beacon timers and
2563 			 * SWBA interrupts to prepare beacon frames.
2564 			 */
2565 			intval |= HAL_BEACON_ENA;
2566 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2567 			ath_beaconq_config(sc);
2568 		}
2569 		ath_hal_beaconinit(ah, nexttbtt, intval);
2570 		sc->sc_bmisscount = 0;
2571 		ath_hal_intrset(ah, sc->sc_imask);
2572 		/*
2573 		 * When using a self-linked beacon descriptor in
2574 		 * ibss mode load it once here.
2575 		 */
2576 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2577 			ath_beacon_proc(sc, 0);
2578 	}
2579 	sc->sc_syncbeacon = 0;
2580 #undef UNDEF
2581 #undef TSF_TO_TU
2582 }
2583 
2584 static int
2585 ath_descdma_setup(struct ath_softc *sc,
2586 	struct ath_descdma *dd, ath_bufhead *head,
2587 	const char *name, int nbuf, int ndesc)
2588 {
2589 #define	DS2PHYS(_dd, _ds) \
2590 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2591 	struct ifnet *ifp = &sc->sc_if;
2592 	struct ath_desc *ds;
2593 	struct ath_buf *bf;
2594 	int i, bsize, error;
2595 
2596 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2597 	    __func__, name, nbuf, ndesc);
2598 
2599 	dd->dd_name = name;
2600 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2601 
2602 	/*
2603 	 * Setup DMA descriptor area.
2604 	 */
2605 	dd->dd_dmat = sc->sc_dmat;
2606 
2607 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2608 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2609 
2610 	if (error != 0) {
2611 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2612 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2613 		goto fail0;
2614 	}
2615 
2616 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2617 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2618 	if (error != 0) {
2619 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2620 		    nbuf * ndesc, dd->dd_name, error);
2621 		goto fail1;
2622 	}
2623 
2624 	/* allocate descriptors */
2625 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2626 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2627 	if (error != 0) {
2628 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2629 			"error %u\n", dd->dd_name, error);
2630 		goto fail2;
2631 	}
2632 
2633 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2634 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2635 	if (error != 0) {
2636 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2637 			dd->dd_name, error);
2638 		goto fail3;
2639 	}
2640 
2641 	ds = dd->dd_desc;
2642 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2643 	DPRINTF(sc, ATH_DEBUG_RESET,
2644 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2645 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2646 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2647 
2648 	/* allocate rx buffers */
2649 	bsize = sizeof(struct ath_buf) * nbuf;
2650 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2651 	if (bf == NULL) {
2652 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2653 			dd->dd_name, bsize);
2654 		goto fail4;
2655 	}
2656 	dd->dd_bufptr = bf;
2657 
2658 	STAILQ_INIT(head);
2659 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2660 		bf->bf_desc = ds;
2661 		bf->bf_daddr = DS2PHYS(dd, ds);
2662 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2663 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2664 		if (error != 0) {
2665 			if_printf(ifp, "unable to create dmamap for %s "
2666 				"buffer %u, error %u\n", dd->dd_name, i, error);
2667 			ath_descdma_cleanup(sc, dd, head);
2668 			return error;
2669 		}
2670 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2671 	}
2672 	return 0;
2673 fail4:
2674 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2675 fail3:
2676 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2677 fail2:
2678 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2679 fail1:
2680 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2681 fail0:
2682 	memset(dd, 0, sizeof(*dd));
2683 	return error;
2684 #undef DS2PHYS
2685 }
2686 
2687 static void
2688 ath_descdma_cleanup(struct ath_softc *sc,
2689 	struct ath_descdma *dd, ath_bufhead *head)
2690 {
2691 	struct ath_buf *bf;
2692 	struct ieee80211_node *ni;
2693 
2694 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2695 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2696 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2697 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2698 
2699 	STAILQ_FOREACH(bf, head, bf_list) {
2700 		if (bf->bf_m) {
2701 			m_freem(bf->bf_m);
2702 			bf->bf_m = NULL;
2703 		}
2704 		if (bf->bf_dmamap != NULL) {
2705 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2706 			bf->bf_dmamap = NULL;
2707 		}
2708 		ni = bf->bf_node;
2709 		bf->bf_node = NULL;
2710 		if (ni != NULL) {
2711 			/*
2712 			 * Reclaim node reference.
2713 			 */
2714 			ieee80211_free_node(ni);
2715 		}
2716 	}
2717 
2718 	STAILQ_INIT(head);
2719 	free(dd->dd_bufptr, M_ATHDEV);
2720 	memset(dd, 0, sizeof(*dd));
2721 }
2722 
2723 static int
2724 ath_desc_alloc(struct ath_softc *sc)
2725 {
2726 	int error;
2727 
2728 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2729 			"rx", ath_rxbuf, 1);
2730 	if (error != 0)
2731 		return error;
2732 
2733 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2734 			"tx", ath_txbuf, ATH_TXDESC);
2735 	if (error != 0) {
2736 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2737 		return error;
2738 	}
2739 
2740 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2741 			"beacon", 1, 1);
2742 	if (error != 0) {
2743 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2744 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2745 		return error;
2746 	}
2747 	return 0;
2748 }
2749 
2750 static void
2751 ath_desc_free(struct ath_softc *sc)
2752 {
2753 
2754 	if (sc->sc_bdma.dd_desc_len != 0)
2755 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2756 	if (sc->sc_txdma.dd_desc_len != 0)
2757 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2758 	if (sc->sc_rxdma.dd_desc_len != 0)
2759 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2760 }
2761 
2762 static struct ieee80211_node *
2763 ath_node_alloc(struct ieee80211_node_table *nt)
2764 {
2765 	struct ieee80211com *ic = nt->nt_ic;
2766 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2767 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2768 	struct ath_node *an;
2769 
2770 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2771 	if (an == NULL) {
2772 		/* XXX stat+msg */
2773 		return NULL;
2774 	}
2775 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2776 	ath_rate_node_init(sc, an);
2777 
2778 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2779 	return &an->an_node;
2780 }
2781 
2782 static void
2783 ath_node_free(struct ieee80211_node *ni)
2784 {
2785 	struct ieee80211com *ic = ni->ni_ic;
2786         struct ath_softc *sc = ic->ic_ifp->if_softc;
2787 
2788 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2789 
2790 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2791 	sc->sc_node_free(ni);
2792 }
2793 
2794 static u_int8_t
2795 ath_node_getrssi(const struct ieee80211_node *ni)
2796 {
2797 #define	HAL_EP_RND(x, mul) \
2798 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2799 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2800 	int32_t rssi;
2801 
2802 	/*
2803 	 * When only one frame is received there will be no state in
2804 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2805 	 */
2806 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2807 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2808 	else
2809 		rssi = ni->ni_rssi;
2810 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2811 #undef HAL_EP_RND
2812 }
2813 
2814 static int
2815 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2816 {
2817 	struct ath_hal *ah = sc->sc_ah;
2818 	int error;
2819 	struct mbuf *m;
2820 	struct ath_desc *ds;
2821 
2822 	m = bf->bf_m;
2823 	if (m == NULL) {
2824 		/*
2825 		 * NB: by assigning a page to the rx dma buffer we
2826 		 * implicitly satisfy the Atheros requirement that
2827 		 * this buffer be cache-line-aligned and sized to be
2828 		 * multiple of the cache line size.  Not doing this
2829 		 * causes weird stuff to happen (for the 5210 at least).
2830 		 */
2831 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2832 		if (m == NULL) {
2833 			DPRINTF(sc, ATH_DEBUG_ANY,
2834 				"%s: no mbuf/cluster\n", __func__);
2835 			sc->sc_stats.ast_rx_nombuf++;
2836 			return ENOMEM;
2837 		}
2838 		bf->bf_m = m;
2839 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2840 
2841 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2842 					     bf->bf_dmamap, m,
2843 					     BUS_DMA_NOWAIT);
2844 		if (error != 0) {
2845 			DPRINTF(sc, ATH_DEBUG_ANY,
2846 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2847 			    __func__, error);
2848 			sc->sc_stats.ast_rx_busdma++;
2849 			return error;
2850 		}
2851 		KASSERT(bf->bf_nseg == 1,
2852 			("multi-segment packet; nseg %u", bf->bf_nseg));
2853 	}
2854 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2855 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2856 
2857 	/*
2858 	 * Setup descriptors.  For receive we always terminate
2859 	 * the descriptor list with a self-linked entry so we'll
2860 	 * not get overrun under high load (as can happen with a
2861 	 * 5212 when ANI processing enables PHY error frames).
2862 	 *
2863 	 * To insure the last descriptor is self-linked we create
2864 	 * each descriptor as self-linked and add it to the end.  As
2865 	 * each additional descriptor is added the previous self-linked
2866 	 * entry is ``fixed'' naturally.  This should be safe even
2867 	 * if DMA is happening.  When processing RX interrupts we
2868 	 * never remove/process the last, self-linked, entry on the
2869 	 * descriptor list.  This insures the hardware always has
2870 	 * someplace to write a new frame.
2871 	 */
2872 	ds = bf->bf_desc;
2873 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2874 	ds->ds_data = bf->bf_segs[0].ds_addr;
2875 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2876 	ath_hal_setuprxdesc(ah, ds
2877 		, m->m_len		/* buffer size */
2878 		, 0
2879 	);
2880 
2881 	if (sc->sc_rxlink != NULL)
2882 		*sc->sc_rxlink = bf->bf_daddr;
2883 	sc->sc_rxlink = &ds->ds_link;
2884 	return 0;
2885 }
2886 
2887 /*
2888  * Extend 15-bit time stamp from rx descriptor to
2889  * a full 64-bit TSF using the specified TSF.
2890  */
2891 static inline u_int64_t
2892 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2893 {
2894 	if ((tsf & 0x7fff) < rstamp)
2895 		tsf -= 0x8000;
2896 	return ((tsf &~ 0x7fff) | rstamp);
2897 }
2898 
2899 /*
2900  * Intercept management frames to collect beacon rssi data
2901  * and to do ibss merges.
2902  */
2903 static void
2904 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2905 	struct ieee80211_node *ni,
2906 	int subtype, int rssi, u_int32_t rstamp)
2907 {
2908 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2909 
2910 	/*
2911 	 * Call up first so subsequent work can use information
2912 	 * potentially stored in the node (e.g. for ibss merge).
2913 	 */
2914 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2915 	switch (subtype) {
2916 	case IEEE80211_FC0_SUBTYPE_BEACON:
2917 		/* update rssi statistics for use by the hal */
2918 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2919 		if (sc->sc_syncbeacon &&
2920 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2921 			/*
2922 			 * Resync beacon timers using the tsf of the beacon
2923 			 * frame we just received.
2924 			 */
2925 			ath_beacon_config(sc);
2926 		}
2927 		/* fall thru... */
2928 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2929 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2930 		    ic->ic_state == IEEE80211_S_RUN) {
2931 			u_int64_t tsf = ath_extend_tsf(rstamp,
2932 				ath_hal_gettsf64(sc->sc_ah));
2933 
2934 			/*
2935 			 * Handle ibss merge as needed; check the tsf on the
2936 			 * frame before attempting the merge.  The 802.11 spec
2937 			 * says the station should change it's bssid to match
2938 			 * the oldest station with the same ssid, where oldest
2939 			 * is determined by the tsf.  Note that hardware
2940 			 * reconfiguration happens through callback to
2941 			 * ath_newstate as the state machine will go from
2942 			 * RUN -> RUN when this happens.
2943 			 */
2944 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2945 				DPRINTF(sc, ATH_DEBUG_STATE,
2946 				    "ibss merge, rstamp %u tsf %ju "
2947 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2948 				    (uintmax_t)ni->ni_tstamp.tsf);
2949 				(void) ieee80211_ibss_merge(ni);
2950 			}
2951 		}
2952 		break;
2953 	}
2954 }
2955 
2956 /*
2957  * Set the default antenna.
2958  */
2959 static void
2960 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2961 {
2962 	struct ath_hal *ah = sc->sc_ah;
2963 
2964 	/* XXX block beacon interrupts */
2965 	ath_hal_setdefantenna(ah, antenna);
2966 	if (sc->sc_defant != antenna)
2967 		sc->sc_stats.ast_ant_defswitch++;
2968 	sc->sc_defant = antenna;
2969 	sc->sc_rxotherant = 0;
2970 }
2971 
2972 static void
2973 ath_handle_micerror(struct ieee80211com *ic,
2974 	struct ieee80211_frame *wh, int keyix)
2975 {
2976 	struct ieee80211_node *ni;
2977 
2978 	/* XXX recheck MIC to deal w/ chips that lie */
2979 	/* XXX discard MIC errors on !data frames */
2980 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2981 	if (ni != NULL) {
2982 		ieee80211_notify_michael_failure(ic, wh, keyix);
2983 		ieee80211_free_node(ni);
2984 	}
2985 }
2986 
2987 static void
2988 ath_rx_proc(void *arg, int npending)
2989 {
2990 #define	PA2DESC(_sc, _pa) \
2991 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2992 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2993 	struct ath_softc *sc = arg;
2994 	struct ath_buf *bf;
2995 	struct ieee80211com *ic = &sc->sc_ic;
2996 	struct ifnet *ifp = &sc->sc_if;
2997 	struct ath_hal *ah = sc->sc_ah;
2998 	struct ath_desc *ds;
2999 	struct mbuf *m;
3000 	struct ieee80211_node *ni;
3001 	struct ath_node *an;
3002 	int len, ngood, type;
3003 	u_int phyerr;
3004 	HAL_STATUS status;
3005 	int16_t nf;
3006 	u_int64_t tsf;
3007 	uint8_t rxerr_tap, rxerr_mon;
3008 
3009 	NET_LOCK_GIANT();		/* XXX */
3010 
3011 	rxerr_tap =
3012 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3013 
3014 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3015 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3016 	else if (ifp->if_flags & IFF_PROMISC)
3017 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3018 
3019 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3020 	ngood = 0;
3021 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3022 	tsf = ath_hal_gettsf64(ah);
3023 	do {
3024 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3025 		if (bf == NULL) {		/* NB: shouldn't happen */
3026 			if_printf(ifp, "%s: no buffer!\n", __func__);
3027 			break;
3028 		}
3029 		ds = bf->bf_desc;
3030 		if (ds->ds_link == bf->bf_daddr) {
3031 			/* NB: never process the self-linked entry at the end */
3032 			break;
3033 		}
3034 		m = bf->bf_m;
3035 		if (m == NULL) {		/* NB: shouldn't happen */
3036 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3037 			break;
3038 		}
3039 		/* XXX sync descriptor memory */
3040 		/*
3041 		 * Must provide the virtual address of the current
3042 		 * descriptor, the physical address, and the virtual
3043 		 * address of the next descriptor in the h/w chain.
3044 		 * This allows the HAL to look ahead to see if the
3045 		 * hardware is done with a descriptor by checking the
3046 		 * done bit in the following descriptor and the address
3047 		 * of the current descriptor the DMA engine is working
3048 		 * on.  All this is necessary because of our use of
3049 		 * a self-linked list to avoid rx overruns.
3050 		 */
3051 		status = ath_hal_rxprocdesc(ah, ds,
3052 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3053 				&ds->ds_rxstat);
3054 #ifdef AR_DEBUG
3055 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3056 			ath_printrxbuf(bf, status == HAL_OK);
3057 #endif
3058 		if (status == HAL_EINPROGRESS)
3059 			break;
3060 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3061 		if (ds->ds_rxstat.rs_more) {
3062 			/*
3063 			 * Frame spans multiple descriptors; this
3064 			 * cannot happen yet as we don't support
3065 			 * jumbograms.  If not in monitor mode,
3066 			 * discard the frame.
3067 			 */
3068 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3069 				sc->sc_stats.ast_rx_toobig++;
3070 				goto rx_next;
3071 			}
3072 			/* fall thru for monitor mode handling... */
3073 		} else if (ds->ds_rxstat.rs_status != 0) {
3074 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3075 				sc->sc_stats.ast_rx_crcerr++;
3076 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3077 				sc->sc_stats.ast_rx_fifoerr++;
3078 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3079 				sc->sc_stats.ast_rx_phyerr++;
3080 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3081 				sc->sc_stats.ast_rx_phy[phyerr]++;
3082 				goto rx_next;
3083 			}
3084 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3085 				/*
3086 				 * Decrypt error.  If the error occurred
3087 				 * because there was no hardware key, then
3088 				 * let the frame through so the upper layers
3089 				 * can process it.  This is necessary for 5210
3090 				 * parts which have no way to setup a ``clear''
3091 				 * key cache entry.
3092 				 *
3093 				 * XXX do key cache faulting
3094 				 */
3095 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3096 					goto rx_accept;
3097 				sc->sc_stats.ast_rx_badcrypt++;
3098 			}
3099 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3100 				sc->sc_stats.ast_rx_badmic++;
3101 				/*
3102 				 * Do minimal work required to hand off
3103 				 * the 802.11 header for notifcation.
3104 				 */
3105 				/* XXX frag's and qos frames */
3106 				len = ds->ds_rxstat.rs_datalen;
3107 				if (len >= sizeof (struct ieee80211_frame)) {
3108 					bus_dmamap_sync(sc->sc_dmat,
3109 					    bf->bf_dmamap,
3110 					    0, bf->bf_dmamap->dm_mapsize,
3111 					    BUS_DMASYNC_POSTREAD);
3112 					ath_handle_micerror(ic,
3113 					    mtod(m, struct ieee80211_frame *),
3114 					    sc->sc_splitmic ?
3115 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3116 				}
3117 			}
3118 			ifp->if_ierrors++;
3119 			/*
3120 			 * Reject error frames, we normally don't want
3121 			 * to see them in monitor mode (in monitor mode
3122 			 * allow through packets that have crypto problems).
3123 			 */
3124 
3125 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3126 				goto rx_next;
3127 		}
3128 rx_accept:
3129 		/*
3130 		 * Sync and unmap the frame.  At this point we're
3131 		 * committed to passing the mbuf somewhere so clear
3132 		 * bf_m; this means a new sk_buff must be allocated
3133 		 * when the rx descriptor is setup again to receive
3134 		 * another frame.
3135 		 */
3136 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3137 		    0, bf->bf_dmamap->dm_mapsize,
3138 		    BUS_DMASYNC_POSTREAD);
3139 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3140 		bf->bf_m = NULL;
3141 
3142 		m->m_pkthdr.rcvif = ifp;
3143 		len = ds->ds_rxstat.rs_datalen;
3144 		m->m_pkthdr.len = m->m_len = len;
3145 
3146 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3147 
3148 		if (sc->sc_drvbpf) {
3149 			u_int8_t rix;
3150 
3151 			/*
3152 			 * Discard anything shorter than an ack or cts.
3153 			 */
3154 			if (len < IEEE80211_ACK_LEN) {
3155 				DPRINTF(sc, ATH_DEBUG_RECV,
3156 					"%s: runt packet %d\n",
3157 					__func__, len);
3158 				sc->sc_stats.ast_rx_tooshort++;
3159 				m_freem(m);
3160 				goto rx_next;
3161 			}
3162 			rix = ds->ds_rxstat.rs_rate;
3163 			sc->sc_rx_th.wr_tsf = htole64(
3164 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3165 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3166 			if (ds->ds_rxstat.rs_status &
3167 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3168 				sc->sc_rx_th.wr_flags |=
3169 				    IEEE80211_RADIOTAP_F_BADFCS;
3170 			}
3171 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3172 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3173 			sc->sc_rx_th.wr_antnoise = nf;
3174 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3175 
3176 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3177 			    sc->sc_rx_th_len, m);
3178 		}
3179 
3180 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3181 			m_freem(m);
3182 			goto rx_next;
3183 		}
3184 		/*
3185 		 * From this point on we assume the frame is at least
3186 		 * as large as ieee80211_frame_min; verify that.
3187 		 */
3188 		if (len < IEEE80211_MIN_LEN) {
3189 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3190 				__func__, len);
3191 			sc->sc_stats.ast_rx_tooshort++;
3192 			m_freem(m);
3193 			goto rx_next;
3194 		}
3195 
3196 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3197 			ieee80211_dump_pkt(mtod(m, void *), len,
3198 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3199 				   ds->ds_rxstat.rs_rssi);
3200 		}
3201 
3202 		m_adj(m, -IEEE80211_CRC_LEN);
3203 
3204 		/*
3205 		 * Locate the node for sender, track state, and then
3206 		 * pass the (referenced) node up to the 802.11 layer
3207 		 * for its use.
3208 		 */
3209 		ni = ieee80211_find_rxnode_withkey(ic,
3210 			mtod(m, const struct ieee80211_frame_min *),
3211 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3212 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3213 		/*
3214 		 * Track rx rssi and do any rx antenna management.
3215 		 */
3216 		an = ATH_NODE(ni);
3217 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3218 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3219 		/*
3220 		 * Send frame up for processing.
3221 		 */
3222 		type = ieee80211_input(ic, m, ni,
3223 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3224 		ieee80211_free_node(ni);
3225 		if (sc->sc_diversity) {
3226 			/*
3227 			 * When using fast diversity, change the default rx
3228 			 * antenna if diversity chooses the other antenna 3
3229 			 * times in a row.
3230 			 */
3231 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3232 				if (++sc->sc_rxotherant >= 3)
3233 					ath_setdefantenna(sc,
3234 						ds->ds_rxstat.rs_antenna);
3235 			} else
3236 				sc->sc_rxotherant = 0;
3237 		}
3238 		if (sc->sc_softled) {
3239 			/*
3240 			 * Blink for any data frame.  Otherwise do a
3241 			 * heartbeat-style blink when idle.  The latter
3242 			 * is mainly for station mode where we depend on
3243 			 * periodic beacon frames to trigger the poll event.
3244 			 */
3245 			if (type == IEEE80211_FC0_TYPE_DATA) {
3246 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3247 				ath_led_event(sc, ATH_LED_RX);
3248 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3249 				ath_led_event(sc, ATH_LED_POLL);
3250 		}
3251 		/*
3252 		 * Arrange to update the last rx timestamp only for
3253 		 * frames from our ap when operating in station mode.
3254 		 * This assumes the rx key is always setup when associated.
3255 		 */
3256 		if (ic->ic_opmode == IEEE80211_M_STA &&
3257 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3258 			ngood++;
3259 rx_next:
3260 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3261 	} while (ath_rxbuf_init(sc, bf) == 0);
3262 
3263 	/* rx signal state monitoring */
3264 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3265 #if 0
3266 	if (ath_hal_radar_event(ah))
3267 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3268 #endif
3269 	if (ngood)
3270 		sc->sc_lastrx = tsf;
3271 
3272 #ifdef __NetBSD__
3273 	/* XXX Why isn't this necessary in FreeBSD? */
3274 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3275 		ath_start(ifp);
3276 #endif /* __NetBSD__ */
3277 
3278 	NET_UNLOCK_GIANT();		/* XXX */
3279 #undef PA2DESC
3280 }
3281 
3282 /*
3283  * Setup a h/w transmit queue.
3284  */
3285 static struct ath_txq *
3286 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3287 {
3288 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3289 	struct ath_hal *ah = sc->sc_ah;
3290 	HAL_TXQ_INFO qi;
3291 	int qnum;
3292 
3293 	memset(&qi, 0, sizeof(qi));
3294 	qi.tqi_subtype = subtype;
3295 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3296 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3297 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3298 	/*
3299 	 * Enable interrupts only for EOL and DESC conditions.
3300 	 * We mark tx descriptors to receive a DESC interrupt
3301 	 * when a tx queue gets deep; otherwise waiting for the
3302 	 * EOL to reap descriptors.  Note that this is done to
3303 	 * reduce interrupt load and this only defers reaping
3304 	 * descriptors, never transmitting frames.  Aside from
3305 	 * reducing interrupts this also permits more concurrency.
3306 	 * The only potential downside is if the tx queue backs
3307 	 * up in which case the top half of the kernel may backup
3308 	 * due to a lack of tx descriptors.
3309 	 */
3310 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3311 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3312 	if (qnum == -1) {
3313 		/*
3314 		 * NB: don't print a message, this happens
3315 		 * normally on parts with too few tx queues
3316 		 */
3317 		return NULL;
3318 	}
3319 	if (qnum >= N(sc->sc_txq)) {
3320 		device_printf(sc->sc_dev,
3321 			"hal qnum %u out of range, max %zu!\n",
3322 			qnum, N(sc->sc_txq));
3323 		ath_hal_releasetxqueue(ah, qnum);
3324 		return NULL;
3325 	}
3326 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3327 		struct ath_txq *txq = &sc->sc_txq[qnum];
3328 
3329 		txq->axq_qnum = qnum;
3330 		txq->axq_depth = 0;
3331 		txq->axq_intrcnt = 0;
3332 		txq->axq_link = NULL;
3333 		STAILQ_INIT(&txq->axq_q);
3334 		ATH_TXQ_LOCK_INIT(sc, txq);
3335 		sc->sc_txqsetup |= 1<<qnum;
3336 	}
3337 	return &sc->sc_txq[qnum];
3338 #undef N
3339 }
3340 
3341 /*
3342  * Setup a hardware data transmit queue for the specified
3343  * access control.  The hal may not support all requested
3344  * queues in which case it will return a reference to a
3345  * previously setup queue.  We record the mapping from ac's
3346  * to h/w queues for use by ath_tx_start and also track
3347  * the set of h/w queues being used to optimize work in the
3348  * transmit interrupt handler and related routines.
3349  */
3350 static int
3351 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3352 {
3353 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3354 	struct ath_txq *txq;
3355 
3356 	if (ac >= N(sc->sc_ac2q)) {
3357 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3358 			ac, N(sc->sc_ac2q));
3359 		return 0;
3360 	}
3361 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3362 	if (txq != NULL) {
3363 		sc->sc_ac2q[ac] = txq;
3364 		return 1;
3365 	} else
3366 		return 0;
3367 #undef N
3368 }
3369 
3370 /*
3371  * Update WME parameters for a transmit queue.
3372  */
3373 static int
3374 ath_txq_update(struct ath_softc *sc, int ac)
3375 {
3376 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3377 #define	ATH_TXOP_TO_US(v)		(v<<5)
3378 	struct ieee80211com *ic = &sc->sc_ic;
3379 	struct ath_txq *txq = sc->sc_ac2q[ac];
3380 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3381 	struct ath_hal *ah = sc->sc_ah;
3382 	HAL_TXQ_INFO qi;
3383 
3384 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3385 	qi.tqi_aifs = wmep->wmep_aifsn;
3386 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3387 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3388 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3389 
3390 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3391 		device_printf(sc->sc_dev, "unable to update hardware queue "
3392 			"parameters for %s traffic!\n",
3393 			ieee80211_wme_acnames[ac]);
3394 		return 0;
3395 	} else {
3396 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3397 		return 1;
3398 	}
3399 #undef ATH_TXOP_TO_US
3400 #undef ATH_EXPONENT_TO_VALUE
3401 }
3402 
3403 /*
3404  * Callback from the 802.11 layer to update WME parameters.
3405  */
3406 static int
3407 ath_wme_update(struct ieee80211com *ic)
3408 {
3409 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3410 
3411 	return !ath_txq_update(sc, WME_AC_BE) ||
3412 	    !ath_txq_update(sc, WME_AC_BK) ||
3413 	    !ath_txq_update(sc, WME_AC_VI) ||
3414 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3415 }
3416 
3417 /*
3418  * Reclaim resources for a setup queue.
3419  */
3420 static void
3421 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3422 {
3423 
3424 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3425 	ATH_TXQ_LOCK_DESTROY(txq);
3426 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3427 }
3428 
3429 /*
3430  * Reclaim all tx queue resources.
3431  */
3432 static void
3433 ath_tx_cleanup(struct ath_softc *sc)
3434 {
3435 	int i;
3436 
3437 	ATH_TXBUF_LOCK_DESTROY(sc);
3438 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3439 		if (ATH_TXQ_SETUP(sc, i))
3440 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3441 }
3442 
3443 /*
3444  * Defragment an mbuf chain, returning at most maxfrags separate
3445  * mbufs+clusters.  If this is not possible NULL is returned and
3446  * the original mbuf chain is left in it's present (potentially
3447  * modified) state.  We use two techniques: collapsing consecutive
3448  * mbufs and replacing consecutive mbufs by a cluster.
3449  */
3450 static struct mbuf *
3451 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3452 {
3453 	struct mbuf *m, *n, *n2, **prev;
3454 	u_int curfrags;
3455 
3456 	/*
3457 	 * Calculate the current number of frags.
3458 	 */
3459 	curfrags = 0;
3460 	for (m = m0; m != NULL; m = m->m_next)
3461 		curfrags++;
3462 	/*
3463 	 * First, try to collapse mbufs.  Note that we always collapse
3464 	 * towards the front so we don't need to deal with moving the
3465 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3466 	 * less data than the following.
3467 	 */
3468 	m = m0;
3469 again:
3470 	for (;;) {
3471 		n = m->m_next;
3472 		if (n == NULL)
3473 			break;
3474 		if (n->m_len < M_TRAILINGSPACE(m)) {
3475 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3476 				n->m_len);
3477 			m->m_len += n->m_len;
3478 			m->m_next = n->m_next;
3479 			m_free(n);
3480 			if (--curfrags <= maxfrags)
3481 				return m0;
3482 		} else
3483 			m = n;
3484 	}
3485 	KASSERT(maxfrags > 1,
3486 		("maxfrags %u, but normal collapse failed", maxfrags));
3487 	/*
3488 	 * Collapse consecutive mbufs to a cluster.
3489 	 */
3490 	prev = &m0->m_next;		/* NB: not the first mbuf */
3491 	while ((n = *prev) != NULL) {
3492 		if ((n2 = n->m_next) != NULL &&
3493 		    n->m_len + n2->m_len < MCLBYTES) {
3494 			m = m_getcl(how, MT_DATA, 0);
3495 			if (m == NULL)
3496 				goto bad;
3497 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3498 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3499 				n2->m_len);
3500 			m->m_len = n->m_len + n2->m_len;
3501 			m->m_next = n2->m_next;
3502 			*prev = m;
3503 			m_free(n);
3504 			m_free(n2);
3505 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3506 				return m0;
3507 			/*
3508 			 * Still not there, try the normal collapse
3509 			 * again before we allocate another cluster.
3510 			 */
3511 			goto again;
3512 		}
3513 		prev = &n->m_next;
3514 	}
3515 	/*
3516 	 * No place where we can collapse to a cluster; punt.
3517 	 * This can occur if, for example, you request 2 frags
3518 	 * but the packet requires that both be clusters (we
3519 	 * never reallocate the first mbuf to avoid moving the
3520 	 * packet header).
3521 	 */
3522 bad:
3523 	return NULL;
3524 }
3525 
3526 /*
3527  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3528  */
3529 static int
3530 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3531 {
3532 	int i;
3533 
3534 	for (i = 0; i < rt->rateCount; i++)
3535 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3536 			return i;
3537 	return 0;		/* NB: lowest rate */
3538 }
3539 
3540 static void
3541 ath_freetx(struct mbuf *m)
3542 {
3543 	struct mbuf *next;
3544 
3545 	do {
3546 		next = m->m_nextpkt;
3547 		m->m_nextpkt = NULL;
3548 		m_freem(m);
3549 	} while ((m = next) != NULL);
3550 }
3551 
3552 static int
3553 deduct_pad_bytes(int len, int hdrlen)
3554 {
3555 	/* XXX I am suspicious that this code, which I extracted
3556 	 * XXX from ath_tx_start() for reuse, does the right thing.
3557 	 */
3558 	return len - (hdrlen & 3);
3559 }
3560 
3561 static int
3562 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3563     struct mbuf *m0)
3564 {
3565 	struct ieee80211com *ic = &sc->sc_ic;
3566 	struct ath_hal *ah = sc->sc_ah;
3567 	struct ifnet *ifp = &sc->sc_if;
3568 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3569 	int i, error, iswep, ismcast, isfrag, ismrr;
3570 	int keyix, hdrlen, pktlen, try0;
3571 	u_int8_t rix, txrate, ctsrate;
3572 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3573 	struct ath_desc *ds, *ds0;
3574 	struct ath_txq *txq;
3575 	struct ieee80211_frame *wh;
3576 	u_int subtype, flags, ctsduration;
3577 	HAL_PKT_TYPE atype;
3578 	const HAL_RATE_TABLE *rt;
3579 	HAL_BOOL shortPreamble;
3580 	struct ath_node *an;
3581 	struct mbuf *m;
3582 	u_int pri;
3583 
3584 	wh = mtod(m0, struct ieee80211_frame *);
3585 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3586 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3587 	isfrag = m0->m_flags & M_FRAG;
3588 	hdrlen = ieee80211_anyhdrsize(wh);
3589 	/*
3590 	 * Packet length must not include any
3591 	 * pad bytes; deduct them here.
3592 	 */
3593 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3594 
3595 	if (iswep) {
3596 		const struct ieee80211_cipher *cip;
3597 		struct ieee80211_key *k;
3598 
3599 		/*
3600 		 * Construct the 802.11 header+trailer for an encrypted
3601 		 * frame. The only reason this can fail is because of an
3602 		 * unknown or unsupported cipher/key type.
3603 		 */
3604 		k = ieee80211_crypto_encap(ic, ni, m0);
3605 		if (k == NULL) {
3606 			/*
3607 			 * This can happen when the key is yanked after the
3608 			 * frame was queued.  Just discard the frame; the
3609 			 * 802.11 layer counts failures and provides
3610 			 * debugging/diagnostics.
3611 			 */
3612 			ath_freetx(m0);
3613 			return EIO;
3614 		}
3615 		/*
3616 		 * Adjust the packet + header lengths for the crypto
3617 		 * additions and calculate the h/w key index.  When
3618 		 * a s/w mic is done the frame will have had any mic
3619 		 * added to it prior to entry so m0->m_pkthdr.len above will
3620 		 * account for it. Otherwise we need to add it to the
3621 		 * packet length.
3622 		 */
3623 		cip = k->wk_cipher;
3624 		hdrlen += cip->ic_header;
3625 		pktlen += cip->ic_header + cip->ic_trailer;
3626 		/* NB: frags always have any TKIP MIC done in s/w */
3627 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3628 			pktlen += cip->ic_miclen;
3629 		keyix = k->wk_keyix;
3630 
3631 		/* packet header may have moved, reset our local pointer */
3632 		wh = mtod(m0, struct ieee80211_frame *);
3633 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3634 		/*
3635 		 * Use station key cache slot, if assigned.
3636 		 */
3637 		keyix = ni->ni_ucastkey.wk_keyix;
3638 		if (keyix == IEEE80211_KEYIX_NONE)
3639 			keyix = HAL_TXKEYIX_INVALID;
3640 	} else
3641 		keyix = HAL_TXKEYIX_INVALID;
3642 
3643 	pktlen += IEEE80211_CRC_LEN;
3644 
3645 	/*
3646 	 * Load the DMA map so any coalescing is done.  This
3647 	 * also calculates the number of descriptors we need.
3648 	 */
3649 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3650 				     BUS_DMA_NOWAIT);
3651 	if (error == EFBIG) {
3652 		/* XXX packet requires too many descriptors */
3653 		bf->bf_nseg = ATH_TXDESC+1;
3654 	} else if (error != 0) {
3655 		sc->sc_stats.ast_tx_busdma++;
3656 		ath_freetx(m0);
3657 		return error;
3658 	}
3659 	/*
3660 	 * Discard null packets and check for packets that
3661 	 * require too many TX descriptors.  We try to convert
3662 	 * the latter to a cluster.
3663 	 */
3664 	if (error == EFBIG) {		/* too many desc's, linearize */
3665 		sc->sc_stats.ast_tx_linear++;
3666 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3667 		if (m == NULL) {
3668 			ath_freetx(m0);
3669 			sc->sc_stats.ast_tx_nombuf++;
3670 			return ENOMEM;
3671 		}
3672 		m0 = m;
3673 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3674 					     BUS_DMA_NOWAIT);
3675 		if (error != 0) {
3676 			sc->sc_stats.ast_tx_busdma++;
3677 			ath_freetx(m0);
3678 			return error;
3679 		}
3680 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3681 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3682 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3683 		sc->sc_stats.ast_tx_nodata++;
3684 		ath_freetx(m0);
3685 		return EIO;
3686 	}
3687 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3688 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3689             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3690 	bf->bf_m = m0;
3691 	bf->bf_node = ni;			/* NB: held reference */
3692 
3693 	/* setup descriptors */
3694 	ds = bf->bf_desc;
3695 	rt = sc->sc_currates;
3696 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3697 
3698 	/*
3699 	 * NB: the 802.11 layer marks whether or not we should
3700 	 * use short preamble based on the current mode and
3701 	 * negotiated parameters.
3702 	 */
3703 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3704 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3705 		shortPreamble = AH_TRUE;
3706 		sc->sc_stats.ast_tx_shortpre++;
3707 	} else {
3708 		shortPreamble = AH_FALSE;
3709 	}
3710 
3711 	an = ATH_NODE(ni);
3712 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3713 	ismrr = 0;				/* default no multi-rate retry*/
3714 	/*
3715 	 * Calculate Atheros packet type from IEEE80211 packet header,
3716 	 * setup for rate calculations, and select h/w transmit queue.
3717 	 */
3718 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3719 	case IEEE80211_FC0_TYPE_MGT:
3720 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3721 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3722 			atype = HAL_PKT_TYPE_BEACON;
3723 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3724 			atype = HAL_PKT_TYPE_PROBE_RESP;
3725 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3726 			atype = HAL_PKT_TYPE_ATIM;
3727 		else
3728 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3729 		rix = sc->sc_minrateix;
3730 		txrate = rt->info[rix].rateCode;
3731 		if (shortPreamble)
3732 			txrate |= rt->info[rix].shortPreamble;
3733 		try0 = ATH_TXMGTTRY;
3734 		/* NB: force all management frames to highest queue */
3735 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3736 			/* NB: force all management frames to highest queue */
3737 			pri = WME_AC_VO;
3738 		} else
3739 			pri = WME_AC_BE;
3740 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3741 		break;
3742 	case IEEE80211_FC0_TYPE_CTL:
3743 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3744 		rix = sc->sc_minrateix;
3745 		txrate = rt->info[rix].rateCode;
3746 		if (shortPreamble)
3747 			txrate |= rt->info[rix].shortPreamble;
3748 		try0 = ATH_TXMGTTRY;
3749 		/* NB: force all ctl frames to highest queue */
3750 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3751 			/* NB: force all ctl frames to highest queue */
3752 			pri = WME_AC_VO;
3753 		} else
3754 			pri = WME_AC_BE;
3755 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3756 		break;
3757 	case IEEE80211_FC0_TYPE_DATA:
3758 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3759 		/*
3760 		 * Data frames: multicast frames go out at a fixed rate,
3761 		 * otherwise consult the rate control module for the
3762 		 * rate to use.
3763 		 */
3764 		if (ismcast) {
3765 			/*
3766 			 * Check mcast rate setting in case it's changed.
3767 			 * XXX move out of fastpath
3768 			 */
3769 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3770 				sc->sc_mcastrix =
3771 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3772 				sc->sc_mcastrate = ic->ic_mcast_rate;
3773 			}
3774 			rix = sc->sc_mcastrix;
3775 			txrate = rt->info[rix].rateCode;
3776 			try0 = 1;
3777 		} else {
3778 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3779 				&rix, &try0, &txrate);
3780 			sc->sc_txrate = txrate;		/* for LED blinking */
3781 			if (try0 != ATH_TXMAXTRY)
3782 				ismrr = 1;
3783 		}
3784 		pri = M_WME_GETAC(m0);
3785 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3786 			flags |= HAL_TXDESC_NOACK;
3787 		break;
3788 	default:
3789 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3790 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3791 		/* XXX statistic */
3792 		ath_freetx(m0);
3793 		return EIO;
3794 	}
3795 	txq = sc->sc_ac2q[pri];
3796 
3797 	/*
3798 	 * When servicing one or more stations in power-save mode
3799 	 * multicast frames must be buffered until after the beacon.
3800 	 * We use the CAB queue for that.
3801 	 */
3802 	if (ismcast && ic->ic_ps_sta) {
3803 		txq = sc->sc_cabq;
3804 		/* XXX? more bit in 802.11 frame header */
3805 	}
3806 
3807 	/*
3808 	 * Calculate miscellaneous flags.
3809 	 */
3810 	if (ismcast) {
3811 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3812 	} else if (pktlen > ic->ic_rtsthreshold) {
3813 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3814 		cix = rt->info[rix].controlRate;
3815 		sc->sc_stats.ast_tx_rts++;
3816 	}
3817 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3818 		sc->sc_stats.ast_tx_noack++;
3819 
3820 	/*
3821 	 * If 802.11g protection is enabled, determine whether
3822 	 * to use RTS/CTS or just CTS.  Note that this is only
3823 	 * done for OFDM unicast frames.
3824 	 */
3825 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3826 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3827 	    (flags & HAL_TXDESC_NOACK) == 0) {
3828 		/* XXX fragments must use CCK rates w/ protection */
3829 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3830 			flags |= HAL_TXDESC_RTSENA;
3831 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3832 			flags |= HAL_TXDESC_CTSENA;
3833 		if (isfrag) {
3834 			/*
3835 			 * For frags it would be desirable to use the
3836 			 * highest CCK rate for RTS/CTS.  But stations
3837 			 * farther away may detect it at a lower CCK rate
3838 			 * so use the configured protection rate instead
3839 			 * (for now).
3840 			 */
3841 			cix = rt->info[sc->sc_protrix].controlRate;
3842 		} else
3843 			cix = rt->info[sc->sc_protrix].controlRate;
3844 		sc->sc_stats.ast_tx_protect++;
3845 	}
3846 
3847 	/*
3848 	 * Calculate duration.  This logically belongs in the 802.11
3849 	 * layer but it lacks sufficient information to calculate it.
3850 	 */
3851 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3852 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3853 		u_int16_t dur;
3854 		/*
3855 		 * XXX not right with fragmentation.
3856 		 */
3857 		if (shortPreamble)
3858 			dur = rt->info[rix].spAckDuration;
3859 		else
3860 			dur = rt->info[rix].lpAckDuration;
3861 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3862 			dur += dur;             /* additional SIFS+ACK */
3863 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3864 			/*
3865 			 * Include the size of next fragment so NAV is
3866 			 * updated properly.  The last fragment uses only
3867 			 * the ACK duration
3868 			 */
3869 			dur += ath_hal_computetxtime(ah, rt,
3870 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3871 			        hdrlen) -
3872 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3873 			    rix, shortPreamble);
3874 		}
3875 		if (isfrag) {
3876 			/*
3877 			 * Force hardware to use computed duration for next
3878 			 * fragment by disabling multi-rate retry which updates
3879 			 * duration based on the multi-rate duration table.
3880 			 */
3881 			try0 = ATH_TXMAXTRY;
3882 		}
3883 		*(u_int16_t *)wh->i_dur = htole16(dur);
3884 	}
3885 
3886 	/*
3887 	 * Calculate RTS/CTS rate and duration if needed.
3888 	 */
3889 	ctsduration = 0;
3890 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3891 		/*
3892 		 * CTS transmit rate is derived from the transmit rate
3893 		 * by looking in the h/w rate table.  We must also factor
3894 		 * in whether or not a short preamble is to be used.
3895 		 */
3896 		/* NB: cix is set above where RTS/CTS is enabled */
3897 		KASSERT(cix != 0xff, ("cix not setup"));
3898 		ctsrate = rt->info[cix].rateCode;
3899 		/*
3900 		 * Compute the transmit duration based on the frame
3901 		 * size and the size of an ACK frame.  We call into the
3902 		 * HAL to do the computation since it depends on the
3903 		 * characteristics of the actual PHY being used.
3904 		 *
3905 		 * NB: CTS is assumed the same size as an ACK so we can
3906 		 *     use the precalculated ACK durations.
3907 		 */
3908 		if (shortPreamble) {
3909 			ctsrate |= rt->info[cix].shortPreamble;
3910 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3911 				ctsduration += rt->info[cix].spAckDuration;
3912 			ctsduration += ath_hal_computetxtime(ah,
3913 				rt, pktlen, rix, AH_TRUE);
3914 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3915 				ctsduration += rt->info[rix].spAckDuration;
3916 		} else {
3917 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3918 				ctsduration += rt->info[cix].lpAckDuration;
3919 			ctsduration += ath_hal_computetxtime(ah,
3920 				rt, pktlen, rix, AH_FALSE);
3921 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3922 				ctsduration += rt->info[rix].lpAckDuration;
3923 		}
3924 		/*
3925 		 * Must disable multi-rate retry when using RTS/CTS.
3926 		 */
3927 		ismrr = 0;
3928 		try0 = ATH_TXMGTTRY;		/* XXX */
3929 	} else
3930 		ctsrate = 0;
3931 
3932 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3933 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3934 			sc->sc_hwmap[txrate].ieeerate, -1);
3935 	bpf_mtap3(ic->ic_rawbpf, m0);
3936 	if (sc->sc_drvbpf) {
3937 		u_int64_t tsf = ath_hal_gettsf64(ah);
3938 
3939 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3940 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3941 		if (iswep)
3942 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3943 		if (isfrag)
3944 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3945 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3946 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3947 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3948 
3949 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3950 	}
3951 
3952 	/*
3953 	 * Determine if a tx interrupt should be generated for
3954 	 * this descriptor.  We take a tx interrupt to reap
3955 	 * descriptors when the h/w hits an EOL condition or
3956 	 * when the descriptor is specifically marked to generate
3957 	 * an interrupt.  We periodically mark descriptors in this
3958 	 * way to insure timely replenishing of the supply needed
3959 	 * for sending frames.  Defering interrupts reduces system
3960 	 * load and potentially allows more concurrent work to be
3961 	 * done but if done to aggressively can cause senders to
3962 	 * backup.
3963 	 *
3964 	 * NB: use >= to deal with sc_txintrperiod changing
3965 	 *     dynamically through sysctl.
3966 	 */
3967 	if (flags & HAL_TXDESC_INTREQ) {
3968 		txq->axq_intrcnt = 0;
3969 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3970 		flags |= HAL_TXDESC_INTREQ;
3971 		txq->axq_intrcnt = 0;
3972 	}
3973 
3974 	/*
3975 	 * Formulate first tx descriptor with tx controls.
3976 	 */
3977 	/* XXX check return value? */
3978 	ath_hal_setuptxdesc(ah, ds
3979 		, pktlen		/* packet length */
3980 		, hdrlen		/* header length */
3981 		, atype			/* Atheros packet type */
3982 		, ni->ni_txpower	/* txpower */
3983 		, txrate, try0		/* series 0 rate/tries */
3984 		, keyix			/* key cache index */
3985 		, sc->sc_txantenna	/* antenna mode */
3986 		, flags			/* flags */
3987 		, ctsrate		/* rts/cts rate */
3988 		, ctsduration		/* rts/cts duration */
3989 	);
3990 	bf->bf_flags = flags;
3991 	/*
3992 	 * Setup the multi-rate retry state only when we're
3993 	 * going to use it.  This assumes ath_hal_setuptxdesc
3994 	 * initializes the descriptors (so we don't have to)
3995 	 * when the hardware supports multi-rate retry and
3996 	 * we don't use it.
3997 	 */
3998 	if (ismrr)
3999 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4000 
4001 	/*
4002 	 * Fillin the remainder of the descriptor info.
4003 	 */
4004 	ds0 = ds;
4005 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4006 		ds->ds_data = bf->bf_segs[i].ds_addr;
4007 		if (i == bf->bf_nseg - 1)
4008 			ds->ds_link = 0;
4009 		else
4010 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4011 		ath_hal_filltxdesc(ah, ds
4012 			, bf->bf_segs[i].ds_len	/* segment length */
4013 			, i == 0		/* first segment */
4014 			, i == bf->bf_nseg - 1	/* last segment */
4015 			, ds0			/* first descriptor */
4016 		);
4017 
4018 		/* NB: The desc swap function becomes void,
4019 		 * if descriptor swapping is not enabled
4020 		 */
4021 		ath_desc_swap(ds);
4022 
4023 		DPRINTF(sc, ATH_DEBUG_XMIT,
4024 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4025 			__func__, i, ds->ds_link, ds->ds_data,
4026 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4027 	}
4028 	/*
4029 	 * Insert the frame on the outbound list and
4030 	 * pass it on to the hardware.
4031 	 */
4032 	ATH_TXQ_LOCK(txq);
4033 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4034 	if (txq->axq_link == NULL) {
4035 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4036 		DPRINTF(sc, ATH_DEBUG_XMIT,
4037 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4038 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4039 		    txq->axq_depth);
4040 	} else {
4041 		*txq->axq_link = HTOAH32(bf->bf_daddr);
4042 		DPRINTF(sc, ATH_DEBUG_XMIT,
4043 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4044 		    __func__, txq->axq_qnum, txq->axq_link,
4045 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4046 	}
4047 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4048 	/*
4049 	 * The CAB queue is started from the SWBA handler since
4050 	 * frames only go out on DTIM and to avoid possible races.
4051 	 */
4052 	if (txq != sc->sc_cabq)
4053 		ath_hal_txstart(ah, txq->axq_qnum);
4054 	ATH_TXQ_UNLOCK(txq);
4055 
4056 	return 0;
4057 }
4058 
4059 /*
4060  * Process completed xmit descriptors from the specified queue.
4061  */
4062 static int
4063 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4064 {
4065 	struct ath_hal *ah = sc->sc_ah;
4066 	struct ieee80211com *ic = &sc->sc_ic;
4067 	struct ath_buf *bf;
4068 	struct ath_desc *ds, *ds0;
4069 	struct ieee80211_node *ni;
4070 	struct ath_node *an;
4071 	int sr, lr, pri, nacked;
4072 	HAL_STATUS status;
4073 
4074 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4075 		__func__, txq->axq_qnum,
4076 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4077 		txq->axq_link);
4078 	nacked = 0;
4079 	for (;;) {
4080 		ATH_TXQ_LOCK(txq);
4081 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4082 		bf = STAILQ_FIRST(&txq->axq_q);
4083 		if (bf == NULL) {
4084 			txq->axq_link = NULL;
4085 			ATH_TXQ_UNLOCK(txq);
4086 			break;
4087 		}
4088 		ds0 = &bf->bf_desc[0];
4089 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4090 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4091 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4092 			ath_printtxbuf(bf, status == HAL_OK);
4093 		if (status == HAL_EINPROGRESS) {
4094 			ATH_TXQ_UNLOCK(txq);
4095 			break;
4096 		}
4097 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4098 		ATH_TXQ_UNLOCK(txq);
4099 
4100 		ni = bf->bf_node;
4101 		if (ni != NULL) {
4102 			an = ATH_NODE(ni);
4103 			if (ds->ds_txstat.ts_status == 0) {
4104 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4105 				sc->sc_stats.ast_ant_tx[txant]++;
4106 				sc->sc_ant_tx[txant]++;
4107 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4108 					sc->sc_stats.ast_tx_altrate++;
4109 				sc->sc_stats.ast_tx_rssi =
4110 					ds->ds_txstat.ts_rssi;
4111 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4112 					ds->ds_txstat.ts_rssi);
4113 				pri = M_WME_GETAC(bf->bf_m);
4114 				if (pri >= WME_AC_VO)
4115 					ic->ic_wme.wme_hipri_traffic++;
4116 				ni->ni_inact = ni->ni_inact_reload;
4117 			} else {
4118 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4119 					sc->sc_stats.ast_tx_xretries++;
4120 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4121 					sc->sc_stats.ast_tx_fifoerr++;
4122 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4123 					sc->sc_stats.ast_tx_filtered++;
4124 			}
4125 			sr = ds->ds_txstat.ts_shortretry;
4126 			lr = ds->ds_txstat.ts_longretry;
4127 			sc->sc_stats.ast_tx_shortretry += sr;
4128 			sc->sc_stats.ast_tx_longretry += lr;
4129 			/*
4130 			 * Hand the descriptor to the rate control algorithm.
4131 			 */
4132 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4133 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4134 				/*
4135 				 * If frame was ack'd update the last rx time
4136 				 * used to workaround phantom bmiss interrupts.
4137 				 */
4138 				if (ds->ds_txstat.ts_status == 0)
4139 					nacked++;
4140 				ath_rate_tx_complete(sc, an, ds, ds0);
4141 			}
4142 			/*
4143 			 * Reclaim reference to node.
4144 			 *
4145 			 * NB: the node may be reclaimed here if, for example
4146 			 *     this is a DEAUTH message that was sent and the
4147 			 *     node was timed out due to inactivity.
4148 			 */
4149 			ieee80211_free_node(ni);
4150 		}
4151 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4152 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4153 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4154 		m_freem(bf->bf_m);
4155 		bf->bf_m = NULL;
4156 		bf->bf_node = NULL;
4157 
4158 		ATH_TXBUF_LOCK(sc);
4159 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4160 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4161 		ATH_TXBUF_UNLOCK(sc);
4162 	}
4163 	return nacked;
4164 }
4165 
4166 static inline int
4167 txqactive(struct ath_hal *ah, int qnum)
4168 {
4169 	u_int32_t txqs = 1<<qnum;
4170 	ath_hal_gettxintrtxqs(ah, &txqs);
4171 	return (txqs & (1<<qnum));
4172 }
4173 
4174 /*
4175  * Deferred processing of transmit interrupt; special-cased
4176  * for a single hardware transmit queue (e.g. 5210 and 5211).
4177  */
4178 static void
4179 ath_tx_proc_q0(void *arg, int npending)
4180 {
4181 	struct ath_softc *sc = arg;
4182 	struct ifnet *ifp = &sc->sc_if;
4183 
4184 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4185 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4186 	}
4187 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4188 		ath_tx_processq(sc, sc->sc_cabq);
4189 
4190 	if (sc->sc_softled)
4191 		ath_led_event(sc, ATH_LED_TX);
4192 
4193 	ath_start(ifp);
4194 }
4195 
4196 /*
4197  * Deferred processing of transmit interrupt; special-cased
4198  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4199  */
4200 static void
4201 ath_tx_proc_q0123(void *arg, int npending)
4202 {
4203 	struct ath_softc *sc = arg;
4204 	struct ifnet *ifp = &sc->sc_if;
4205 	int nacked;
4206 
4207 	/*
4208 	 * Process each active queue.
4209 	 */
4210 	nacked = 0;
4211 	if (txqactive(sc->sc_ah, 0))
4212 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4213 	if (txqactive(sc->sc_ah, 1))
4214 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4215 	if (txqactive(sc->sc_ah, 2))
4216 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4217 	if (txqactive(sc->sc_ah, 3))
4218 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4219 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4220 		ath_tx_processq(sc, sc->sc_cabq);
4221 	if (nacked) {
4222 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4223 	}
4224 
4225 	if (sc->sc_softled)
4226 		ath_led_event(sc, ATH_LED_TX);
4227 
4228 	ath_start(ifp);
4229 }
4230 
4231 /*
4232  * Deferred processing of transmit interrupt.
4233  */
4234 static void
4235 ath_tx_proc(void *arg, int npending)
4236 {
4237 	struct ath_softc *sc = arg;
4238 	struct ifnet *ifp = &sc->sc_if;
4239 	int i, nacked;
4240 
4241 	/*
4242 	 * Process each active queue.
4243 	 */
4244 	nacked = 0;
4245 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4246 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4247 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4248 	if (nacked) {
4249 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4250 	}
4251 
4252 	if (sc->sc_softled)
4253 		ath_led_event(sc, ATH_LED_TX);
4254 
4255 	ath_start(ifp);
4256 }
4257 
4258 static void
4259 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4260 {
4261 	struct ath_hal *ah = sc->sc_ah;
4262 	struct ieee80211_node *ni;
4263 	struct ath_buf *bf;
4264 	struct ath_desc *ds;
4265 
4266 	/*
4267 	 * NB: this assumes output has been stopped and
4268 	 *     we do not need to block ath_tx_tasklet
4269 	 */
4270 	for (;;) {
4271 		ATH_TXQ_LOCK(txq);
4272 		bf = STAILQ_FIRST(&txq->axq_q);
4273 		if (bf == NULL) {
4274 			txq->axq_link = NULL;
4275 			ATH_TXQ_UNLOCK(txq);
4276 			break;
4277 		}
4278 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4279 		ATH_TXQ_UNLOCK(txq);
4280 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4281 		if (sc->sc_debug & ATH_DEBUG_RESET)
4282 			ath_printtxbuf(bf,
4283 				ath_hal_txprocdesc(ah, bf->bf_desc,
4284 					&ds->ds_txstat) == HAL_OK);
4285 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4286 		m_freem(bf->bf_m);
4287 		bf->bf_m = NULL;
4288 		ni = bf->bf_node;
4289 		bf->bf_node = NULL;
4290 		if (ni != NULL) {
4291 			/*
4292 			 * Reclaim node reference.
4293 			 */
4294 			ieee80211_free_node(ni);
4295 		}
4296 		ATH_TXBUF_LOCK(sc);
4297 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4298 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4299 		ATH_TXBUF_UNLOCK(sc);
4300 	}
4301 }
4302 
4303 static void
4304 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4305 {
4306 	struct ath_hal *ah = sc->sc_ah;
4307 
4308 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4309 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4310 	    __func__, txq->axq_qnum,
4311 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4312 	    txq->axq_link);
4313 }
4314 
4315 /*
4316  * Drain the transmit queues and reclaim resources.
4317  */
4318 static void
4319 ath_draintxq(struct ath_softc *sc)
4320 {
4321 	struct ath_hal *ah = sc->sc_ah;
4322 	int i;
4323 
4324 	/* XXX return value */
4325 	if (device_is_active(sc->sc_dev)) {
4326 		/* don't touch the hardware if marked invalid */
4327 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4328 		DPRINTF(sc, ATH_DEBUG_RESET,
4329 		    "%s: beacon queue %p\n", __func__,
4330 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4331 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4332 			if (ATH_TXQ_SETUP(sc, i))
4333 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4334 	}
4335 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4336 		if (ATH_TXQ_SETUP(sc, i))
4337 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4338 }
4339 
4340 /*
4341  * Disable the receive h/w in preparation for a reset.
4342  */
4343 static void
4344 ath_stoprecv(struct ath_softc *sc)
4345 {
4346 #define	PA2DESC(_sc, _pa) \
4347 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4348 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4349 	struct ath_hal *ah = sc->sc_ah;
4350 	u_int64_t tsf;
4351 
4352 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4353 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4354 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4355 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4356 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4357 		struct ath_buf *bf;
4358 
4359 		printf("%s: rx queue %p, link %p\n", __func__,
4360 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4361 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4362 			struct ath_desc *ds = bf->bf_desc;
4363 			tsf = ath_hal_gettsf64(sc->sc_ah);
4364 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4365 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4366 				&ds->ds_rxstat);
4367 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4368 				ath_printrxbuf(bf, status == HAL_OK);
4369 		}
4370 	}
4371 	sc->sc_rxlink = NULL;		/* just in case */
4372 #undef PA2DESC
4373 }
4374 
4375 /*
4376  * Enable the receive h/w following a reset.
4377  */
4378 static int
4379 ath_startrecv(struct ath_softc *sc)
4380 {
4381 	struct ath_hal *ah = sc->sc_ah;
4382 	struct ath_buf *bf;
4383 
4384 	sc->sc_rxlink = NULL;
4385 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4386 		int error = ath_rxbuf_init(sc, bf);
4387 		if (error != 0) {
4388 			DPRINTF(sc, ATH_DEBUG_RECV,
4389 				"%s: ath_rxbuf_init failed %d\n",
4390 				__func__, error);
4391 			return error;
4392 		}
4393 	}
4394 
4395 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4396 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4397 	ath_hal_rxena(ah);		/* enable recv descriptors */
4398 	ath_mode_init(sc);		/* set filters, etc. */
4399 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4400 	return 0;
4401 }
4402 
4403 /*
4404  * Update internal state after a channel change.
4405  */
4406 static void
4407 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4408 {
4409 	struct ieee80211com *ic = &sc->sc_ic;
4410 	enum ieee80211_phymode mode;
4411 	u_int16_t flags;
4412 
4413 	/*
4414 	 * Change channels and update the h/w rate map
4415 	 * if we're switching; e.g. 11a to 11b/g.
4416 	 */
4417 	mode = ieee80211_chan2mode(ic, chan);
4418 	if (mode != sc->sc_curmode)
4419 		ath_setcurmode(sc, mode);
4420 	/*
4421 	 * Update BPF state.  NB: ethereal et. al. don't handle
4422 	 * merged flags well so pick a unique mode for their use.
4423 	 */
4424 	if (IEEE80211_IS_CHAN_A(chan))
4425 		flags = IEEE80211_CHAN_A;
4426 	/* XXX 11g schizophrenia */
4427 	else if (IEEE80211_IS_CHAN_G(chan) ||
4428 	    IEEE80211_IS_CHAN_PUREG(chan))
4429 		flags = IEEE80211_CHAN_G;
4430 	else
4431 		flags = IEEE80211_CHAN_B;
4432 	if (IEEE80211_IS_CHAN_T(chan))
4433 		flags |= IEEE80211_CHAN_TURBO;
4434 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4435 		htole16(chan->ic_freq);
4436 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4437 		htole16(flags);
4438 }
4439 
4440 #if 0
4441 /*
4442  * Poll for a channel clear indication; this is required
4443  * for channels requiring DFS and not previously visited
4444  * and/or with a recent radar detection.
4445  */
4446 static void
4447 ath_dfswait(void *arg)
4448 {
4449 	struct ath_softc *sc = arg;
4450 	struct ath_hal *ah = sc->sc_ah;
4451 	HAL_CHANNEL hchan;
4452 
4453 	ath_hal_radar_wait(ah, &hchan);
4454 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4455 		if_printf(&sc->sc_if,
4456 		    "channel %u/0x%x/0x%x has interference\n",
4457 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4458 		return;
4459 	}
4460 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4461 		/* XXX should not happen */
4462 		return;
4463 	}
4464 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4465 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4466 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4467 		if_printf(&sc->sc_if,
4468 		    "channel %u/0x%x/0x%x marked clear\n",
4469 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4470 	} else
4471 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4472 }
4473 #endif
4474 
4475 /*
4476  * Set/change channels.  If the channel is really being changed,
4477  * it's done by reseting the chip.  To accomplish this we must
4478  * first cleanup any pending DMA, then restart stuff after a la
4479  * ath_init.
4480  */
4481 static int
4482 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4483 {
4484 	struct ath_hal *ah = sc->sc_ah;
4485 	struct ieee80211com *ic = &sc->sc_ic;
4486 	HAL_CHANNEL hchan;
4487 
4488 	/*
4489 	 * Convert to a HAL channel description with
4490 	 * the flags constrained to reflect the current
4491 	 * operating mode.
4492 	 */
4493 	hchan.channel = chan->ic_freq;
4494 	hchan.channelFlags = ath_chan2flags(ic, chan);
4495 
4496 	DPRINTF(sc, ATH_DEBUG_RESET,
4497 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4498 	    __func__,
4499 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4500 		sc->sc_curchan.channelFlags),
4501 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4502 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4503 	        hchan.channel, hchan.channelFlags);
4504 	if (hchan.channel != sc->sc_curchan.channel ||
4505 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4506 		HAL_STATUS status;
4507 
4508 		/*
4509 		 * To switch channels clear any pending DMA operations;
4510 		 * wait long enough for the RX fifo to drain, reset the
4511 		 * hardware at the new frequency, and then re-enable
4512 		 * the relevant bits of the h/w.
4513 		 */
4514 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4515 		ath_draintxq(sc);		/* clear pending tx frames */
4516 		ath_stoprecv(sc);		/* turn off frame recv */
4517 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4518 			if_printf(ic->ic_ifp, "%s: unable to reset "
4519 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4520 			    __func__, ieee80211_chan2ieee(ic, chan),
4521 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4522 			return EIO;
4523 		}
4524 		sc->sc_curchan = hchan;
4525 		ath_update_txpow(sc);		/* update tx power state */
4526 		ath_restore_diversity(sc);
4527 		sc->sc_calinterval = 1;
4528 		sc->sc_caltries = 0;
4529 
4530 		/*
4531 		 * Re-enable rx framework.
4532 		 */
4533 		if (ath_startrecv(sc) != 0) {
4534 			if_printf(&sc->sc_if,
4535 				"%s: unable to restart recv logic\n", __func__);
4536 			return EIO;
4537 		}
4538 
4539 		/*
4540 		 * Change channels and update the h/w rate map
4541 		 * if we're switching; e.g. 11a to 11b/g.
4542 		 */
4543 		ic->ic_ibss_chan = chan;
4544 		ath_chan_change(sc, chan);
4545 
4546 #if 0
4547 		/*
4548 		 * Handle DFS required waiting period to determine
4549 		 * if channel is clear of radar traffic.
4550 		 */
4551 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4552 #define	DFS_AND_NOT_CLEAR(_c) \
4553 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4554 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4555 				if_printf(&sc->sc_if,
4556 					"wait for DFS clear channel signal\n");
4557 				/* XXX stop sndq */
4558 				sc->sc_if.if_flags |= IFF_OACTIVE;
4559 				callout_reset(&sc->sc_dfs_ch,
4560 					2 * hz, ath_dfswait, sc);
4561 			} else
4562 				callout_stop(&sc->sc_dfs_ch);
4563 #undef DFS_NOT_CLEAR
4564 		}
4565 #endif
4566 
4567 		/*
4568 		 * Re-enable interrupts.
4569 		 */
4570 		ath_hal_intrset(ah, sc->sc_imask);
4571 	}
4572 	return 0;
4573 }
4574 
4575 static void
4576 ath_next_scan(void *arg)
4577 {
4578 	struct ath_softc *sc = arg;
4579 	struct ieee80211com *ic = &sc->sc_ic;
4580 	int s;
4581 
4582 	/* don't call ath_start w/o network interrupts blocked */
4583 	s = splnet();
4584 
4585 	if (ic->ic_state == IEEE80211_S_SCAN)
4586 		ieee80211_next_scan(ic);
4587 	splx(s);
4588 }
4589 
4590 /*
4591  * Periodically recalibrate the PHY to account
4592  * for temperature/environment changes.
4593  */
4594 static void
4595 ath_calibrate(void *arg)
4596 {
4597 	struct ath_softc *sc = arg;
4598 	struct ath_hal *ah = sc->sc_ah;
4599 	HAL_BOOL iqCalDone;
4600 
4601 	sc->sc_stats.ast_per_cal++;
4602 
4603 	ATH_LOCK(sc);
4604 
4605 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4606 		/*
4607 		 * Rfgain is out of bounds, reset the chip
4608 		 * to load new gain values.
4609 		 */
4610 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4611 			"%s: rfgain change\n", __func__);
4612 		sc->sc_stats.ast_per_rfgain++;
4613 		ath_reset(&sc->sc_if);
4614 	}
4615 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4616 		DPRINTF(sc, ATH_DEBUG_ANY,
4617 			"%s: calibration of channel %u failed\n",
4618 			__func__, sc->sc_curchan.channel);
4619 		sc->sc_stats.ast_per_calfail++;
4620 	}
4621 	/*
4622 	 * Calibrate noise floor data again in case of change.
4623 	 */
4624 	ath_hal_process_noisefloor(ah);
4625 	/*
4626 	 * Poll more frequently when the IQ calibration is in
4627 	 * progress to speedup loading the final settings.
4628 	 * We temper this aggressive polling with an exponential
4629 	 * back off after 4 tries up to ath_calinterval.
4630 	 */
4631 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4632 		sc->sc_caltries = 0;
4633 		sc->sc_calinterval = ath_calinterval;
4634 	} else if (sc->sc_caltries > 4) {
4635 		sc->sc_caltries = 0;
4636 		sc->sc_calinterval <<= 1;
4637 		if (sc->sc_calinterval > ath_calinterval)
4638 			sc->sc_calinterval = ath_calinterval;
4639 	}
4640 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4641 		("bad calibration interval %u", sc->sc_calinterval));
4642 
4643 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4644 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4645 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4646 	sc->sc_caltries++;
4647 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4648 		ath_calibrate, sc);
4649 	ATH_UNLOCK(sc);
4650 }
4651 
4652 static int
4653 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4654 {
4655 	struct ifnet *ifp = ic->ic_ifp;
4656 	struct ath_softc *sc = ifp->if_softc;
4657 	struct ath_hal *ah = sc->sc_ah;
4658 	struct ieee80211_node *ni;
4659 	int i, error;
4660 	const u_int8_t *bssid;
4661 	u_int32_t rfilt;
4662 	static const HAL_LED_STATE leds[] = {
4663 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4664 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4665 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4666 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4667 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4668 	};
4669 
4670 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4671 		ieee80211_state_name[ic->ic_state],
4672 		ieee80211_state_name[nstate]);
4673 
4674 	callout_stop(&sc->sc_scan_ch);
4675 	callout_stop(&sc->sc_cal_ch);
4676 #if 0
4677 	callout_stop(&sc->sc_dfs_ch);
4678 #endif
4679 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4680 
4681 	if (nstate == IEEE80211_S_INIT) {
4682 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4683 		/*
4684 		 * NB: disable interrupts so we don't rx frames.
4685 		 */
4686 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4687 		/*
4688 		 * Notify the rate control algorithm.
4689 		 */
4690 		ath_rate_newstate(sc, nstate);
4691 		goto done;
4692 	}
4693 	ni = ic->ic_bss;
4694 	error = ath_chan_set(sc, ic->ic_curchan);
4695 	if (error != 0)
4696 		goto bad;
4697 	rfilt = ath_calcrxfilter(sc, nstate);
4698 	if (nstate == IEEE80211_S_SCAN)
4699 		bssid = ifp->if_broadcastaddr;
4700 	else
4701 		bssid = ni->ni_bssid;
4702 	ath_hal_setrxfilter(ah, rfilt);
4703 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4704 		 __func__, rfilt, ether_sprintf(bssid));
4705 
4706 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4707 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4708 	else
4709 		ath_hal_setassocid(ah, bssid, 0);
4710 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4711 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4712 			if (ath_hal_keyisvalid(ah, i))
4713 				ath_hal_keysetmac(ah, i, bssid);
4714 	}
4715 
4716 	/*
4717 	 * Notify the rate control algorithm so rates
4718 	 * are setup should ath_beacon_alloc be called.
4719 	 */
4720 	ath_rate_newstate(sc, nstate);
4721 
4722 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4723 		/* nothing to do */;
4724 	} else if (nstate == IEEE80211_S_RUN) {
4725 		DPRINTF(sc, ATH_DEBUG_STATE,
4726 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4727 			"capinfo=0x%04x chan=%d\n"
4728 			 , __func__
4729 			 , ic->ic_flags
4730 			 , ni->ni_intval
4731 			 , ether_sprintf(ni->ni_bssid)
4732 			 , ni->ni_capinfo
4733 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4734 
4735 		switch (ic->ic_opmode) {
4736 		case IEEE80211_M_HOSTAP:
4737 		case IEEE80211_M_IBSS:
4738 			/*
4739 			 * Allocate and setup the beacon frame.
4740 			 *
4741 			 * Stop any previous beacon DMA.  This may be
4742 			 * necessary, for example, when an ibss merge
4743 			 * causes reconfiguration; there will be a state
4744 			 * transition from RUN->RUN that means we may
4745 			 * be called with beacon transmission active.
4746 			 */
4747 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4748 			ath_beacon_free(sc);
4749 			error = ath_beacon_alloc(sc, ni);
4750 			if (error != 0)
4751 				goto bad;
4752 			/*
4753 			 * If joining an adhoc network defer beacon timer
4754 			 * configuration to the next beacon frame so we
4755 			 * have a current TSF to use.  Otherwise we're
4756 			 * starting an ibss/bss so there's no need to delay.
4757 			 */
4758 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4759 			    ic->ic_bss->ni_tstamp.tsf != 0)
4760 				sc->sc_syncbeacon = 1;
4761 			else
4762 				ath_beacon_config(sc);
4763 			break;
4764 		case IEEE80211_M_STA:
4765 			/*
4766 			 * Allocate a key cache slot to the station.
4767 			 */
4768 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4769 			    sc->sc_hasclrkey &&
4770 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4771 				ath_setup_stationkey(ni);
4772 			/*
4773 			 * Defer beacon timer configuration to the next
4774 			 * beacon frame so we have a current TSF to use
4775 			 * (any TSF collected when scanning is likely old).
4776 			 */
4777 			sc->sc_syncbeacon = 1;
4778 			break;
4779 		default:
4780 			break;
4781 		}
4782 		/*
4783 		 * Let the hal process statistics collected during a
4784 		 * scan so it can provide calibrated noise floor data.
4785 		 */
4786 		ath_hal_process_noisefloor(ah);
4787 		/*
4788 		 * Reset rssi stats; maybe not the best place...
4789 		 */
4790 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4791 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4792 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4793 	} else {
4794 		ath_hal_intrset(ah,
4795 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4796 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4797 	}
4798 done:
4799 	/*
4800 	 * Invoke the parent method to complete the work.
4801 	 */
4802 	error = sc->sc_newstate(ic, nstate, arg);
4803 	/*
4804 	 * Finally, start any timers.
4805 	 */
4806 	if (nstate == IEEE80211_S_RUN) {
4807 		/* start periodic recalibration timer */
4808 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4809 			ath_calibrate, sc);
4810 	} else if (nstate == IEEE80211_S_SCAN) {
4811 		/* start ap/neighbor scan timer */
4812 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4813 			ath_next_scan, sc);
4814 	}
4815 bad:
4816 	return error;
4817 }
4818 
4819 /*
4820  * Allocate a key cache slot to the station so we can
4821  * setup a mapping from key index to node. The key cache
4822  * slot is needed for managing antenna state and for
4823  * compression when stations do not use crypto.  We do
4824  * it uniliaterally here; if crypto is employed this slot
4825  * will be reassigned.
4826  */
4827 static void
4828 ath_setup_stationkey(struct ieee80211_node *ni)
4829 {
4830 	struct ieee80211com *ic = ni->ni_ic;
4831 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4832 	ieee80211_keyix keyix, rxkeyix;
4833 
4834 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4835 		/*
4836 		 * Key cache is full; we'll fall back to doing
4837 		 * the more expensive lookup in software.  Note
4838 		 * this also means no h/w compression.
4839 		 */
4840 		/* XXX msg+statistic */
4841 	} else {
4842 		/* XXX locking? */
4843 		ni->ni_ucastkey.wk_keyix = keyix;
4844 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4845 		/* NB: this will create a pass-thru key entry */
4846 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4847 	}
4848 }
4849 
4850 /*
4851  * Setup driver-specific state for a newly associated node.
4852  * Note that we're called also on a re-associate, the isnew
4853  * param tells us if this is the first time or not.
4854  */
4855 static void
4856 ath_newassoc(struct ieee80211_node *ni, int isnew)
4857 {
4858 	struct ieee80211com *ic = ni->ni_ic;
4859 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4860 
4861 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4862 	if (isnew &&
4863 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4864 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4865 		    ("new assoc with a unicast key already setup (keyix %u)",
4866 		    ni->ni_ucastkey.wk_keyix));
4867 		ath_setup_stationkey(ni);
4868 	}
4869 }
4870 
4871 static int
4872 ath_getchannels(struct ath_softc *sc, u_int cc,
4873 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4874 {
4875 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4876 	struct ieee80211com *ic = &sc->sc_ic;
4877 	struct ifnet *ifp = &sc->sc_if;
4878 	struct ath_hal *ah = sc->sc_ah;
4879 	HAL_CHANNEL *chans;
4880 	int i, ix, nchan;
4881 
4882 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4883 			M_TEMP, M_NOWAIT);
4884 	if (chans == NULL) {
4885 		if_printf(ifp, "unable to allocate channel table\n");
4886 		return ENOMEM;
4887 	}
4888 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4889 	    NULL, 0, NULL,
4890 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4891 		u_int32_t rd;
4892 
4893 		(void)ath_hal_getregdomain(ah, &rd);
4894 		if_printf(ifp, "unable to collect channel list from hal; "
4895 			"regdomain likely %u country code %u\n", rd, cc);
4896 		free(chans, M_TEMP);
4897 		return EINVAL;
4898 	}
4899 
4900 	/*
4901 	 * Convert HAL channels to ieee80211 ones and insert
4902 	 * them in the table according to their channel number.
4903 	 */
4904 	for (i = 0; i < nchan; i++) {
4905 		HAL_CHANNEL *c = &chans[i];
4906 		u_int16_t flags;
4907 
4908 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4909 		if (ix > IEEE80211_CHAN_MAX) {
4910 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4911 				ix, c->channel, c->channelFlags);
4912 			continue;
4913 		}
4914 		if (ix < 0) {
4915 			/* XXX can't handle stuff <2400 right now */
4916 			if (bootverbose)
4917 				if_printf(ifp, "hal channel %d (%u/%x) "
4918 				    "cannot be handled; ignored\n",
4919 				    ix, c->channel, c->channelFlags);
4920 			continue;
4921 		}
4922 		/*
4923 		 * Calculate net80211 flags; most are compatible
4924 		 * but some need massaging.  Note the static turbo
4925 		 * conversion can be removed once net80211 is updated
4926 		 * to understand static vs. dynamic turbo.
4927 		 */
4928 		flags = c->channelFlags & COMPAT;
4929 		if (c->channelFlags & CHANNEL_STURBO)
4930 			flags |= IEEE80211_CHAN_TURBO;
4931 		if (ic->ic_channels[ix].ic_freq == 0) {
4932 			ic->ic_channels[ix].ic_freq = c->channel;
4933 			ic->ic_channels[ix].ic_flags = flags;
4934 		} else {
4935 			/* channels overlap; e.g. 11g and 11b */
4936 			ic->ic_channels[ix].ic_flags |= flags;
4937 		}
4938 	}
4939 	free(chans, M_TEMP);
4940 	return 0;
4941 #undef COMPAT
4942 }
4943 
4944 static void
4945 ath_led_done(void *arg)
4946 {
4947 	struct ath_softc *sc = arg;
4948 
4949 	sc->sc_blinking = 0;
4950 }
4951 
4952 /*
4953  * Turn the LED off: flip the pin and then set a timer so no
4954  * update will happen for the specified duration.
4955  */
4956 static void
4957 ath_led_off(void *arg)
4958 {
4959 	struct ath_softc *sc = arg;
4960 
4961 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4962 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4963 }
4964 
4965 /*
4966  * Blink the LED according to the specified on/off times.
4967  */
4968 static void
4969 ath_led_blink(struct ath_softc *sc, int on, int off)
4970 {
4971 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4972 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4973 	sc->sc_blinking = 1;
4974 	sc->sc_ledoff = off;
4975 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4976 }
4977 
4978 static void
4979 ath_led_event(struct ath_softc *sc, int event)
4980 {
4981 
4982 	sc->sc_ledevent = ticks;	/* time of last event */
4983 	if (sc->sc_blinking)		/* don't interrupt active blink */
4984 		return;
4985 	switch (event) {
4986 	case ATH_LED_POLL:
4987 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4988 			sc->sc_hwmap[0].ledoff);
4989 		break;
4990 	case ATH_LED_TX:
4991 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4992 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4993 		break;
4994 	case ATH_LED_RX:
4995 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4996 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4997 		break;
4998 	}
4999 }
5000 
5001 static void
5002 ath_update_txpow(struct ath_softc *sc)
5003 {
5004 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5005 	struct ieee80211com *ic = &sc->sc_ic;
5006 	struct ath_hal *ah = sc->sc_ah;
5007 	u_int32_t txpow;
5008 
5009 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5010 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5011 		/* read back in case value is clamped */
5012 		(void)ath_hal_gettxpowlimit(ah, &txpow);
5013 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5014 	}
5015 	/*
5016 	 * Fetch max tx power level for status requests.
5017 	 */
5018 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5019 	ic->ic_bss->ni_txpower = txpow;
5020 }
5021 
5022 static void
5023 rate_setup(struct ath_softc *sc,
5024 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5025 {
5026 	int i, maxrates;
5027 
5028 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5029 		DPRINTF(sc, ATH_DEBUG_ANY,
5030 			"%s: rate table too small (%u > %u)\n",
5031 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5032 		maxrates = IEEE80211_RATE_MAXSIZE;
5033 	} else
5034 		maxrates = rt->rateCount;
5035 	for (i = 0; i < maxrates; i++)
5036 		rs->rs_rates[i] = rt->info[i].dot11Rate;
5037 	rs->rs_nrates = maxrates;
5038 }
5039 
5040 static int
5041 ath_rate_setup(struct ath_softc *sc, u_int mode)
5042 {
5043 	struct ath_hal *ah = sc->sc_ah;
5044 	struct ieee80211com *ic = &sc->sc_ic;
5045 	const HAL_RATE_TABLE *rt;
5046 
5047 	switch (mode) {
5048 	case IEEE80211_MODE_11A:
5049 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5050 		break;
5051 	case IEEE80211_MODE_11B:
5052 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5053 		break;
5054 	case IEEE80211_MODE_11G:
5055 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5056 		break;
5057 	case IEEE80211_MODE_TURBO_A:
5058 		/* XXX until static/dynamic turbo is fixed */
5059 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5060 		break;
5061 	case IEEE80211_MODE_TURBO_G:
5062 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5063 		break;
5064 	default:
5065 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5066 			__func__, mode);
5067 		return 0;
5068 	}
5069 	sc->sc_rates[mode] = rt;
5070 	if (rt != NULL) {
5071 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5072 		return 1;
5073 	} else
5074 		return 0;
5075 }
5076 
5077 static void
5078 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5079 {
5080 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5081 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5082 	static const struct {
5083 		u_int		rate;		/* tx/rx 802.11 rate */
5084 		u_int16_t	timeOn;		/* LED on time (ms) */
5085 		u_int16_t	timeOff;	/* LED off time (ms) */
5086 	} blinkrates[] = {
5087 		{ 108,  40,  10 },
5088 		{  96,  44,  11 },
5089 		{  72,  50,  13 },
5090 		{  48,  57,  14 },
5091 		{  36,  67,  16 },
5092 		{  24,  80,  20 },
5093 		{  22, 100,  25 },
5094 		{  18, 133,  34 },
5095 		{  12, 160,  40 },
5096 		{  10, 200,  50 },
5097 		{   6, 240,  58 },
5098 		{   4, 267,  66 },
5099 		{   2, 400, 100 },
5100 		{   0, 500, 130 },
5101 	};
5102 	const HAL_RATE_TABLE *rt;
5103 	int i, j;
5104 
5105 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5106 	rt = sc->sc_rates[mode];
5107 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5108 	for (i = 0; i < rt->rateCount; i++)
5109 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5110 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5111 	for (i = 0; i < 32; i++) {
5112 		u_int8_t ix = rt->rateCodeToIndex[i];
5113 		if (ix == 0xff) {
5114 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5115 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5116 			continue;
5117 		}
5118 		sc->sc_hwmap[i].ieeerate =
5119 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5120 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5121 		if (rt->info[ix].shortPreamble ||
5122 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5123 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5124 		/* NB: receive frames include FCS */
5125 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5126 			IEEE80211_RADIOTAP_F_FCS;
5127 		/* setup blink rate table to avoid per-packet lookup */
5128 		for (j = 0; j < N(blinkrates)-1; j++)
5129 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5130 				break;
5131 		/* NB: this uses the last entry if the rate isn't found */
5132 		/* XXX beware of overlow */
5133 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5134 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5135 	}
5136 	sc->sc_currates = rt;
5137 	sc->sc_curmode = mode;
5138 	/*
5139 	 * All protection frames are transmited at 2Mb/s for
5140 	 * 11g, otherwise at 1Mb/s.
5141 	 */
5142 	if (mode == IEEE80211_MODE_11G)
5143 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5144 	else
5145 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5146 	/* rate index used to send management frames */
5147 	sc->sc_minrateix = 0;
5148 	/*
5149 	 * Setup multicast rate state.
5150 	 */
5151 	/* XXX layering violation */
5152 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5153 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5154 	/* NB: caller is responsible for reseting rate control state */
5155 #undef N
5156 }
5157 
5158 #ifdef AR_DEBUG
5159 static void
5160 ath_printrxbuf(struct ath_buf *bf, int done)
5161 {
5162 	struct ath_desc *ds;
5163 	int i;
5164 
5165 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5166 		printf("R%d (%p %" PRIx64
5167 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5168 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5169 		    ds->ds_link, ds->ds_data,
5170 		    ds->ds_ctl0, ds->ds_ctl1,
5171 		    ds->ds_hw[0], ds->ds_hw[1],
5172 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5173 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5174 	}
5175 }
5176 
5177 static void
5178 ath_printtxbuf(struct ath_buf *bf, int done)
5179 {
5180 	struct ath_desc *ds;
5181 	int i;
5182 
5183 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5184 		printf("T%d (%p %" PRIx64
5185 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5186 		    i, ds,
5187 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5188 		    ds->ds_link, ds->ds_data,
5189 		    ds->ds_ctl0, ds->ds_ctl1,
5190 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5191 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5192 	}
5193 }
5194 #endif	/* AR_DEBUG */
5195 
5196 static void
5197 ath_watchdog(struct ifnet *ifp)
5198 {
5199 	struct ath_softc *sc = ifp->if_softc;
5200 	struct ieee80211com *ic = &sc->sc_ic;
5201 	struct ath_txq *axq;
5202 	int i;
5203 
5204 	ifp->if_timer = 0;
5205 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5206 	    !device_is_active(sc->sc_dev))
5207 		return;
5208 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5209 		if (!ATH_TXQ_SETUP(sc, i))
5210 			continue;
5211 		axq = &sc->sc_txq[i];
5212 		ATH_TXQ_LOCK(axq);
5213 		if (axq->axq_timer == 0)
5214 			;
5215 		else if (--axq->axq_timer == 0) {
5216 			ATH_TXQ_UNLOCK(axq);
5217 			if_printf(ifp, "device timeout (txq %d, "
5218 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5219 			if (sc->sc_txintrperiod > 1)
5220 				sc->sc_txintrperiod--;
5221 			ath_reset(ifp);
5222 			ifp->if_oerrors++;
5223 			sc->sc_stats.ast_watchdog++;
5224 			break;
5225 		} else
5226 			ifp->if_timer = 1;
5227 		ATH_TXQ_UNLOCK(axq);
5228 	}
5229 	ieee80211_watchdog(ic);
5230 }
5231 
5232 /*
5233  * Diagnostic interface to the HAL.  This is used by various
5234  * tools to do things like retrieve register contents for
5235  * debugging.  The mechanism is intentionally opaque so that
5236  * it can change frequently w/o concern for compatiblity.
5237  */
5238 static int
5239 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5240 {
5241 	struct ath_hal *ah = sc->sc_ah;
5242 	u_int id = ad->ad_id & ATH_DIAG_ID;
5243 	void *indata = NULL;
5244 	void *outdata = NULL;
5245 	u_int32_t insize = ad->ad_in_size;
5246 	u_int32_t outsize = ad->ad_out_size;
5247 	int error = 0;
5248 
5249 	if (ad->ad_id & ATH_DIAG_IN) {
5250 		/*
5251 		 * Copy in data.
5252 		 */
5253 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5254 		if (indata == NULL) {
5255 			error = ENOMEM;
5256 			goto bad;
5257 		}
5258 		error = copyin(ad->ad_in_data, indata, insize);
5259 		if (error)
5260 			goto bad;
5261 	}
5262 	if (ad->ad_id & ATH_DIAG_DYN) {
5263 		/*
5264 		 * Allocate a buffer for the results (otherwise the HAL
5265 		 * returns a pointer to a buffer where we can read the
5266 		 * results).  Note that we depend on the HAL leaving this
5267 		 * pointer for us to use below in reclaiming the buffer;
5268 		 * may want to be more defensive.
5269 		 */
5270 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5271 		if (outdata == NULL) {
5272 			error = ENOMEM;
5273 			goto bad;
5274 		}
5275 	}
5276 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5277 		if (outsize < ad->ad_out_size)
5278 			ad->ad_out_size = outsize;
5279 		if (outdata != NULL)
5280 			error = copyout(outdata, ad->ad_out_data,
5281 					ad->ad_out_size);
5282 	} else {
5283 		error = EINVAL;
5284 	}
5285 bad:
5286 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5287 		free(indata, M_TEMP);
5288 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5289 		free(outdata, M_TEMP);
5290 	return error;
5291 }
5292 
5293 static int
5294 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5295 {
5296 #define	IS_RUNNING(ifp) \
5297 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5298 	struct ath_softc *sc = ifp->if_softc;
5299 	struct ieee80211com *ic = &sc->sc_ic;
5300 	struct ifreq *ifr = (struct ifreq *)data;
5301 	int error = 0;
5302 
5303 	ATH_LOCK(sc);
5304 	switch (cmd) {
5305 	case SIOCSIFFLAGS:
5306 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5307 			break;
5308 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5309 		case IFF_UP|IFF_RUNNING:
5310 			/*
5311 			 * To avoid rescanning another access point,
5312 			 * do not call ath_init() here.  Instead,
5313 			 * only reflect promisc mode settings.
5314 			 */
5315 			ath_mode_init(sc);
5316 			break;
5317 		case IFF_UP:
5318 			/*
5319 			 * Beware of being called during attach/detach
5320 			 * to reset promiscuous mode.  In that case we
5321 			 * will still be marked UP but not RUNNING.
5322 			 * However trying to re-init the interface
5323 			 * is the wrong thing to do as we've already
5324 			 * torn down much of our state.  There's
5325 			 * probably a better way to deal with this.
5326 			 */
5327 			error = ath_init(sc);
5328 			break;
5329 		case IFF_RUNNING:
5330 			ath_stop_locked(ifp, 1);
5331 			break;
5332 		case 0:
5333 			break;
5334 		}
5335 		break;
5336 	case SIOCADDMULTI:
5337 	case SIOCDELMULTI:
5338 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5339 			if (ifp->if_flags & IFF_RUNNING)
5340 				ath_mode_init(sc);
5341 			error = 0;
5342 		}
5343 		break;
5344 	case SIOCGATHSTATS:
5345 		/* NB: embed these numbers to get a consistent view */
5346 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5347 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5348 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5349 		ATH_UNLOCK(sc);
5350 		/*
5351 		 * NB: Drop the softc lock in case of a page fault;
5352 		 * we'll accept any potential inconsisentcy in the
5353 		 * statistics.  The alternative is to copy the data
5354 		 * to a local structure.
5355 		 */
5356 		return copyout(&sc->sc_stats,
5357 				ifr->ifr_data, sizeof (sc->sc_stats));
5358 	case SIOCGATHDIAG:
5359 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5360 		break;
5361 	default:
5362 		error = ieee80211_ioctl(ic, cmd, data);
5363 		if (error != ENETRESET)
5364 			;
5365 		else if (IS_RUNNING(ifp) &&
5366 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5367 			error = ath_init(sc);
5368 		else
5369 			error = 0;
5370 		break;
5371 	}
5372 	ATH_UNLOCK(sc);
5373 	return error;
5374 #undef IS_RUNNING
5375 }
5376 
5377 static void
5378 ath_bpfattach(struct ath_softc *sc)
5379 {
5380 	struct ifnet *ifp = &sc->sc_if;
5381 
5382 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5383 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5384 	    &sc->sc_drvbpf);
5385 
5386 	/*
5387 	 * Initialize constant fields.
5388 	 * XXX make header lengths a multiple of 32-bits so subsequent
5389 	 *     headers are properly aligned; this is a kludge to keep
5390 	 *     certain applications happy.
5391 	 *
5392 	 * NB: the channel is setup each time we transition to the
5393 	 *     RUN state to avoid filling it in for each frame.
5394 	 */
5395 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5396 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5397 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5398 
5399 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5400 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5401 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5402 }
5403 
5404 /*
5405  * Announce various information on device/driver attach.
5406  */
5407 static void
5408 ath_announce(struct ath_softc *sc)
5409 {
5410 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5411 	struct ifnet *ifp = &sc->sc_if;
5412 	struct ath_hal *ah = sc->sc_ah;
5413 	u_int modes, cc;
5414 
5415 	if_printf(ifp, "mac %d.%d phy %d.%d",
5416 		ah->ah_macVersion, ah->ah_macRev,
5417 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5418 	/*
5419 	 * Print radio revision(s).  We check the wireless modes
5420 	 * to avoid falsely printing revs for inoperable parts.
5421 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5422 	 */
5423 	ath_hal_getcountrycode(ah, &cc);
5424 	modes = ath_hal_getwirelessmodes(ah, cc);
5425 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5426 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5427 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5428 				ah->ah_analog5GhzRev >> 4,
5429 				ah->ah_analog5GhzRev & 0xf,
5430 				ah->ah_analog2GhzRev >> 4,
5431 				ah->ah_analog2GhzRev & 0xf);
5432 		else
5433 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5434 				ah->ah_analog5GhzRev & 0xf);
5435 	} else
5436 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5437 			ah->ah_analog5GhzRev & 0xf);
5438 	printf("\n");
5439 	if (bootverbose) {
5440 		int i;
5441 		for (i = 0; i <= WME_AC_VO; i++) {
5442 			struct ath_txq *txq = sc->sc_ac2q[i];
5443 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5444 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5445 		}
5446 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5447 			sc->sc_cabq->axq_qnum);
5448 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5449 	}
5450 	if (ath_rxbuf != ATH_RXBUF)
5451 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5452 	if (ath_txbuf != ATH_TXBUF)
5453 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5454 #undef HAL_MODE_DUALBAND
5455 }
5456