xref: /netbsd-src/sys/dev/ic/arn9380.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: arn9380.c,v 1.3 2014/01/22 17:29:29 matt Exp $	*/
2 /*	$OpenBSD: ar9380.c,v 1.17 2012/10/20 09:54:20 stsp Exp $	*/
3 
4 /*-
5  * Copyright (c) 2011 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2010 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  * Routines for AR9380 and AR9485 chipsets.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn9380.c,v 1.3 2014/01/22 17:29:29 matt Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/queue.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 
43 #include <net/bpf.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_dl.h>
47 #include <net/if_ether.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 
55 #include <net80211/ieee80211_var.h>
56 #include <net80211/ieee80211_amrr.h>
57 #include <net80211/ieee80211_radiotap.h>
58 
59 #include <dev/ic/athnreg.h>
60 #include <dev/ic/athnvar.h>
61 
62 #include <dev/ic/arn9003reg.h>
63 #include <dev/ic/arn9380reg.h>
64 
65 #include <dev/ic/arn9003.h>
66 #include <dev/ic/arn9380.h>
67 
68 #define Static static
69 
70 Static void	ar9380_get_correction(struct athn_softc *,
71 		    struct ieee80211_channel *, int, int *, int *);
72 Static void	ar9380_get_paprd_masks(struct athn_softc *,
73 		    struct ieee80211_channel *, uint32_t *, uint32_t *);
74 Static const uint8_t *
75 		ar9380_get_rom_template(struct athn_softc *, uint8_t);
76 Static void	ar9380_init_from_rom(struct athn_softc *,
77 		    struct ieee80211_channel *, struct ieee80211_channel *);
78 Static void	ar9380_set_correction(struct athn_softc *,
79 		    struct ieee80211_channel *);
80 Static int	ar9380_set_synth(struct athn_softc *,
81 		    struct ieee80211_channel *, struct ieee80211_channel *);
82 Static void	ar9380_set_txpower(struct athn_softc *,
83 		    struct ieee80211_channel *, struct ieee80211_channel *);
84 Static void	ar9380_setup(struct athn_softc *);
85 Static void	ar9380_spur_mitigate(struct athn_softc *,
86 		    struct ieee80211_channel *, struct ieee80211_channel *);
87 Static void	ar9380_spur_mitigate_cck(struct athn_softc *,
88 		    struct ieee80211_channel *, struct ieee80211_channel *);
89 Static void	ar9380_spur_mitigate_ofdm(struct athn_softc *,
90 		    struct ieee80211_channel *, struct ieee80211_channel *);
91 Static void	ar9380_swap_rom(struct athn_softc *);
92 
93 Static void	ar9485_init_swreg(struct athn_softc *);
94 #define		ar9485_pmu_read		AR_READ
95 Static int	ar9485_pmu_write(struct athn_softc *, uint32_t, uint32_t);
96 
97 #ifdef notused
98 Static void	ar9380_init_swreg(struct athn_softc *);
99 #endif /* notused */
100 
101 PUBLIC int
102 ar9380_attach(struct athn_softc *sc)
103 {
104 
105 	sc->sc_ngpiopins = 17;
106 	sc->sc_ops.setup = ar9380_setup;
107 	sc->sc_ops.get_rom_template = ar9380_get_rom_template;
108 	sc->sc_ops.swap_rom = ar9380_swap_rom;
109 	sc->sc_ops.init_from_rom = ar9380_init_from_rom;
110 	sc->sc_ops.set_txpower = ar9380_set_txpower;
111 	sc->sc_ops.set_synth = ar9380_set_synth;
112 	sc->sc_ops.spur_mitigate = ar9380_spur_mitigate;
113 	sc->sc_ops.get_paprd_masks = ar9380_get_paprd_masks;
114 	sc->sc_cca_min_2g = AR9380_PHY_CCA_MIN_GOOD_VAL_2GHZ;
115 	sc->sc_cca_max_2g = AR9380_PHY_CCA_MAX_GOOD_VAL_2GHZ;
116 	sc->sc_cca_min_5g = AR9380_PHY_CCA_MIN_GOOD_VAL_5GHZ;
117 	sc->sc_cca_max_5g = AR9380_PHY_CCA_MAX_GOOD_VAL_5GHZ;
118 	if (AR_SREV_9485(sc)) {
119 		sc->sc_ini = &ar9485_1_1_ini;
120 		sc->sc_serdes = &ar9485_1_1_serdes;
121 	}
122 	else {
123 		sc->sc_ini = &ar9380_2_2_ini;
124 		sc->sc_serdes = &ar9380_2_2_serdes;
125 	}
126 
127 	return ar9003_attach(sc);
128 }
129 
130 Static void
131 ar9380_setup(struct athn_softc *sc)
132 {
133 	struct ieee80211com *ic = &sc->sc_ic;
134 	struct ar9380_eeprom *eep = sc->sc_eep;
135 	struct ar9380_base_eep_hdr *base = &eep->baseEepHeader;
136 	uint8_t type;
137 
138 	if (base->opFlags & AR_OPFLAGS_11A)
139 		sc->sc_flags |= ATHN_FLAG_11A;
140 	if (base->opFlags & AR_OPFLAGS_11G)
141 		sc->sc_flags |= ATHN_FLAG_11G;
142 	if (base->opFlags & AR_OPFLAGS_11N)
143 		sc->sc_flags |= ATHN_FLAG_11N;
144 
145 	IEEE80211_ADDR_COPY(ic->ic_myaddr, eep->macAddr);
146 	sc->sc_led_pin = base->wlanLedGpio;
147 
148 	/* Check if we have a hardware radio switch. */
149 	if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) {
150 		sc->sc_flags |= ATHN_FLAG_RFSILENT;
151 		/* Get GPIO pin used by hardware radio switch. */
152 		sc->sc_rfsilent_pin = MS(base->rfSilent,
153 		    AR_EEP_RFSILENT_GPIO_SEL);
154 		/* Get polarity of hardware radio switch. */
155 		if (base->rfSilent & AR_EEP_RFSILENT_POLARITY)
156 			sc->sc_flags |= ATHN_FLAG_RFSILENT_REVERSED;
157 	}
158 
159 	/* Set the number of HW key cache entries. */
160 	sc->sc_kc_entries = AR_KEYTABLE_SIZE;
161 
162 	sc->sc_txchainmask = MS(base->txrxMask, AR_EEP_TX_MASK);
163 	sc->sc_rxchainmask = MS(base->txrxMask, AR_EEP_RX_MASK);
164 
165 	/* Fast PLL clock is always supported. */
166 	sc->sc_flags |= ATHN_FLAG_FAST_PLL_CLOCK;
167 
168 	/* Enable PA predistortion if supported. */
169 	if (base->featureEnable & AR_EEP_PAPRD)
170 		sc->sc_flags |= ATHN_FLAG_PAPRD;
171 	/*
172 	 * Some 3-stream chips may exceed the PCIe power requirements,
173 	 * requiring to reduce the number of Tx chains in some cases.
174 	 */
175 	if ((base->miscConfiguration & AR_EEP_CHAIN_MASK_REDUCE) &&
176 	    sc->sc_txchainmask == 0x7)
177 		sc->sc_flags |= ATHN_FLAG_3TREDUCE_CHAIN;
178 
179 	/* Select initialization values based on ROM. */
180 	type = MS(eep->baseEepHeader.txrxgain, AR_EEP_RX_GAIN);
181 	if (!AR_SREV_9485(sc)) {
182 		if (type == AR_EEP_RX_GAIN_WO_XLNA)
183 			sc->sc_rx_gain = &ar9380_2_2_rx_gain_wo_xlna;
184 		else
185 			sc->sc_rx_gain = &ar9380_2_2_rx_gain;
186 	}
187 	else
188 		sc->sc_rx_gain = &ar9485_1_1_rx_gain;
189 
190 	/* Select initialization values based on ROM. */
191 	type = MS(eep->baseEepHeader.txrxgain, AR_EEP_TX_GAIN);
192 	if (!AR_SREV_9485(sc)) {
193 		if (type == AR_EEP_TX_GAIN_HIGH_OB_DB)
194 			sc->sc_tx_gain = &ar9380_2_2_tx_gain_high_ob_db;
195 		else if (type == AR_EEP_TX_GAIN_LOW_OB_DB)
196 			sc->sc_tx_gain = &ar9380_2_2_tx_gain_low_ob_db;
197 		else if (type == AR_EEP_TX_GAIN_HIGH_POWER)
198 			sc->sc_tx_gain = &ar9380_2_2_tx_gain_high_power;
199 		else
200 			sc->sc_tx_gain = &ar9380_2_2_tx_gain;
201 	}
202 	else
203 		sc->sc_tx_gain = &ar9485_1_1_tx_gain;
204 }
205 
206 Static const uint8_t *
207 ar9380_get_rom_template(struct athn_softc *sc, uint8_t ref)
208 {
209 	size_t i;
210 
211 	/* Retrieve template ROM image for given reference. */
212 	for (i = 0; i < __arraycount(ar9380_rom_templates); i++)
213 		if (ar9380_rom_templates[i][1] == ref)
214 			return ar9380_rom_templates[i];
215 	return NULL;
216 }
217 
218 Static void
219 ar9380_swap_rom(struct athn_softc *sc)
220 {
221 #if BYTE_ORDER == BIG_ENDIAN
222 	struct ar9380_eeprom *eep = sc->sc_eep;
223 	struct ar9380_base_eep_hdr *base = &eep->baseEepHeader;
224 	struct ar9380_modal_eep_header *modal;
225 	int i;
226 
227 	base->regDmn[0] = bswap16(base->regDmn[0]);
228 	base->regDmn[1] = bswap16(base->regDmn[1]);
229 	base->swreg = bswap32(base->swreg);
230 
231 	modal = &eep->modalHeader2G;
232 	modal->antCtrlCommon = bswap32(modal->antCtrlCommon);
233 	modal->antCtrlCommon2 = bswap32(modal->antCtrlCommon2);
234 	modal->papdRateMaskHt20 = bswap32(modal->papdRateMaskHt20);
235 	modal->papdRateMaskHt40 = bswap32(modal->papdRateMaskHt40);
236 	for (i = 0; i < AR9380_MAX_CHAINS; i++)
237 		modal->antCtrlChain[i] = bswap16(modal->antCtrlChain[i]);
238 
239 	modal = &eep->modalHeader5G;
240 	modal->antCtrlCommon = bswap32(modal->antCtrlCommon);
241 	modal->antCtrlCommon2 = bswap32(modal->antCtrlCommon2);
242 	modal->papdRateMaskHt20 = bswap32(modal->papdRateMaskHt20);
243 	modal->papdRateMaskHt40 = bswap32(modal->papdRateMaskHt40);
244 	for (i = 0; i < AR9380_MAX_CHAINS; i++)
245 		modal->antCtrlChain[i] = bswap16(modal->antCtrlChain[i]);
246 #endif
247 }
248 
249 Static void
250 ar9380_get_paprd_masks(struct athn_softc *sc, struct ieee80211_channel *c,
251     uint32_t *ht20mask, uint32_t *ht40mask)
252 {
253 	const struct ar9380_eeprom *eep = sc->sc_eep;
254 	const struct ar9380_modal_eep_header *modal;
255 
256 	if (IEEE80211_IS_CHAN_2GHZ(c))
257 		modal = &eep->modalHeader2G;
258 	else
259 		modal = &eep->modalHeader5G;
260 	*ht20mask = modal->papdRateMaskHt20;
261 	*ht40mask = modal->papdRateMaskHt40;
262 }
263 
264 Static int
265 ar9380_set_synth(struct athn_softc *sc, struct ieee80211_channel *c,
266     struct ieee80211_channel *extc)
267 {
268 	uint32_t freq = c->ic_freq;
269 	uint32_t chansel, phy;
270 
271 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
272 		if (AR_SREV_9485(sc))
273 			chansel = ((freq << 16) - 215) / 15;
274 		else
275 			chansel = (freq << 16) / 15;
276 		AR_WRITE(sc, AR_PHY_SYNTH_CONTROL, AR9380_BMODE);
277 	}
278 	else {
279 		chansel = (freq << 15) / 15;
280 		chansel >>= 1;
281 		AR_WRITE(sc, AR_PHY_SYNTH_CONTROL, 0);
282 	}
283 
284 	/* Enable Long Shift Select for synthesizer. */
285 	AR_SETBITS(sc, AR_PHY_65NM_CH0_SYNTH4,
286 	    AR_PHY_SYNTH4_LONG_SHIFT_SELECT);
287 	AR_WRITE_BARRIER(sc);
288 
289 	/* Program synthesizer. */
290 	phy = (chansel << 2) | AR9380_FRACMODE;
291 	DPRINTFN(DBG_RF, sc, "AR_PHY_65NM_CH0_SYNTH7=0x%08x\n", phy);
292 	AR_WRITE(sc, AR_PHY_65NM_CH0_SYNTH7, phy);
293 	AR_WRITE_BARRIER(sc);
294 	/* Toggle Load Synth Channel bit. */
295 	AR_WRITE(sc, AR_PHY_65NM_CH0_SYNTH7, phy | AR9380_LOAD_SYNTH);
296 	AR_WRITE_BARRIER(sc);
297 	return 0;
298 }
299 
300 Static void
301 ar9380_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
302     struct ieee80211_channel *extc)
303 {
304 	const struct ar9380_eeprom *eep = sc->sc_eep;
305 	const struct ar9380_modal_eep_header *modal;
306 	uint8_t db, margin, ant_div_ctrl;
307 	uint32_t reg;
308 	int i, maxchains;
309 
310 	if (IEEE80211_IS_CHAN_2GHZ(c))
311 		modal = &eep->modalHeader2G;
312 	else
313 		modal = &eep->modalHeader5G;
314 
315 	/* Apply XPA bias level. */
316 	if (AR_SREV_9485(sc)) {
317 		reg = AR_READ(sc, AR9485_PHY_65NM_CH0_TOP2);
318 		reg = RW(reg, AR9485_PHY_65NM_CH0_TOP2_XPABIASLVL,
319 		    modal->xpaBiasLvl);
320 		AR_WRITE(sc, AR9485_PHY_65NM_CH0_TOP2, reg);
321 	}
322 	else {
323 		reg = AR_READ(sc, AR_PHY_65NM_CH0_TOP);
324 		reg = RW(reg, AR_PHY_65NM_CH0_TOP_XPABIASLVL,
325 		    modal->xpaBiasLvl & 0x3);
326 		AR_WRITE(sc, AR_PHY_65NM_CH0_TOP, reg);
327 		reg = AR_READ(sc, AR_PHY_65NM_CH0_THERM);
328 		reg = RW(reg, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB,
329 		    modal->xpaBiasLvl >> 2);
330 		reg |= AR_PHY_65NM_CH0_THERM_XPASHORT2GND;
331 		AR_WRITE(sc, AR_PHY_65NM_CH0_THERM, reg);
332 	}
333 
334 	/* Apply antenna control. */
335 	reg = AR_READ(sc, AR_PHY_SWITCH_COM);
336 	reg = RW(reg, AR_SWITCH_TABLE_COM_ALL, modal->antCtrlCommon);
337 	AR_WRITE(sc, AR_PHY_SWITCH_COM, reg);
338 	reg = AR_READ(sc, AR_PHY_SWITCH_COM_2);
339 	reg = RW(reg, AR_SWITCH_TABLE_COM_2_ALL, modal->antCtrlCommon2);
340 	AR_WRITE(sc, AR_PHY_SWITCH_COM_2, reg);
341 
342 	maxchains = AR_SREV_9485(sc) ? 1 : AR9380_MAX_CHAINS;
343 	for (i = 0; i < maxchains; i++) {
344 		reg = AR_READ(sc, AR_PHY_SWITCH_CHAIN(i));
345 		reg = RW(reg, AR_SWITCH_TABLE_ALL, modal->antCtrlChain[i]);
346 		AR_WRITE(sc, AR_PHY_SWITCH_CHAIN(i), reg);
347 	}
348 
349 	if (AR_SREV_9485(sc)) {
350 		ant_div_ctrl = eep->base_ext1.ant_div_control;
351 		reg = AR_READ(sc, AR_PHY_MC_GAIN_CTRL);
352 		reg = RW(reg, AR_PHY_MC_GAIN_CTRL_ANT_DIV_CTRL_ALL,
353 		    MS(ant_div_ctrl, AR_EEP_ANT_DIV_CTRL_ALL));
354 		if (ant_div_ctrl & AR_EEP_ANT_DIV_CTRL_ANT_DIV)
355 			reg |= AR_PHY_MC_GAIN_CTRL_ENABLE_ANT_DIV;
356 		else
357 			reg &= ~AR_PHY_MC_GAIN_CTRL_ENABLE_ANT_DIV;
358 		AR_WRITE(sc, AR_PHY_MC_GAIN_CTRL, reg);
359 		reg = AR_READ(sc, AR_PHY_CCK_DETECT);
360 		if (ant_div_ctrl & AR_EEP_ANT_DIV_CTRL_FAST_DIV)
361 			reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
362 		else
363 			reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
364 		AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
365 	}
366 
367 	if (eep->baseEepHeader.miscConfiguration & AR_EEP_DRIVE_STRENGTH) {
368 		/* Apply drive strength. */
369 		reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS1);
370 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_0, 5);
371 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_1, 5);
372 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_2, 5);
373 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_3, 5);
374 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_4, 5);
375 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS1_5, 5);
376 		AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS1, reg);
377 
378 		reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS2);
379 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_0, 5);
380 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_1, 5);
381 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_2, 5);
382 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_3, 5);
383 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_4, 5);
384 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_5, 5);
385 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_6, 5);
386 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_7, 5);
387 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS2_8, 5);
388 		AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS2, reg);
389 
390 		reg = AR_READ(sc, AR_PHY_65NM_CH0_BIAS4);
391 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_0, 5);
392 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_1, 5);
393 		reg = RW(reg, AR_PHY_65NM_CH0_BIAS4_2, 5);
394 		AR_WRITE(sc, AR_PHY_65NM_CH0_BIAS4, reg);
395 	}
396 
397 	/* Apply attenuation settings. */
398 	maxchains = AR_SREV_9485(sc) ? 1 : AR9380_MAX_CHAINS;
399 	for (i = 0; i < maxchains; i++) {
400 		if (IEEE80211_IS_CHAN_5GHZ(c) &&
401 		    eep->base_ext2.xatten1DBLow[i] != 0) {
402 			if (c->ic_freq <= 5500) {
403 				db = athn_interpolate(c->ic_freq,
404 				    5180, eep->base_ext2.xatten1DBLow[i],
405 				    5500, modal->xatten1DB[i]);
406 			}
407 			else {
408 				db = athn_interpolate(c->ic_freq,
409 				    5500, modal->xatten1DB[i],
410 				    5785, eep->base_ext2.xatten1DBHigh[i]);
411 			}
412 		}
413 		else
414 			db = modal->xatten1DB[i];
415 		if (IEEE80211_IS_CHAN_5GHZ(c) &&
416 		    eep->base_ext2.xatten1MarginLow[i] != 0) {
417 			if (c->ic_freq <= 5500) {
418 				margin = athn_interpolate(c->ic_freq,
419 				    5180, eep->base_ext2.xatten1MarginLow[i],
420 				    5500, modal->xatten1Margin[i]);
421 			}
422 			else {
423 				margin = athn_interpolate(c->ic_freq,
424 				    5500, modal->xatten1Margin[i],
425 				    5785, eep->base_ext2.xatten1MarginHigh[i]);
426 			}
427 		}
428 		else
429 			margin = modal->xatten1Margin[i];
430 		reg = AR_READ(sc, AR_PHY_EXT_ATTEN_CTL(i));
431 		reg = RW(reg, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, db);
432 		reg = RW(reg, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, margin);
433 		AR_WRITE(sc, AR_PHY_EXT_ATTEN_CTL(i), reg);
434 	}
435 
436 	/* Initialize switching regulator. */
437 	if (AR_SREV_9485(sc))
438 		ar9485_init_swreg(sc);
439 	else
440 		ar9485_init_swreg(sc);
441 
442 	/* Apply tuning capabilities. */
443 	if (AR_SREV_9485(sc) &&
444 	    (eep->baseEepHeader.featureEnable & AR_EEP_TUNING_CAPS)) {
445 		reg = AR_READ(sc, AR9485_PHY_CH0_XTAL);
446 		reg = RW(reg, AR9485_PHY_CH0_XTAL_CAPINDAC,
447 		    eep->baseEepHeader.params_for_tuning_caps[0]);
448 		reg = RW(reg, AR9485_PHY_CH0_XTAL_CAPOUTDAC,
449 		    eep->baseEepHeader.params_for_tuning_caps[0]);
450 		AR_WRITE(sc, AR9485_PHY_CH0_XTAL, reg);
451 	}
452 	AR_WRITE_BARRIER(sc);
453 }
454 
455 #ifdef notused
456 Static void
457 ar9380_init_swreg(struct athn_softc *sc)
458 {
459 	const struct ar9380_eeprom *eep = sc->sc_eep;
460 
461 	if (eep->baseEepHeader.featureEnable & AR_EEP_INTERNAL_REGULATOR) {
462 		/* Internal regulator is ON. */
463 		AR_CLRBITS(sc, AR_RTC_REG_CONTROL1,
464 		    AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
465 		AR_WRITE(sc, AR_RTC_REG_CONTROL0, eep->baseEepHeader.swreg);
466 		AR_SETBITS(sc, AR_RTC_REG_CONTROL1,
467 		    AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
468 	}
469 	else
470 		AR_SETBITS(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_SWREG_PRD);
471 	AR_WRITE_BARRIER(sc);
472 }
473 #endif /* notused */
474 
475 Static int
476 ar9485_pmu_write(struct athn_softc *sc, uint32_t addr, uint32_t val)
477 {
478 	int ntries;
479 
480 	AR_WRITE(sc, addr, val);
481 	/* Wait for write to complete. */
482 	for (ntries = 0; ntries < 100; ntries++) {
483 		if (AR_READ(sc, addr) == val)
484 			return 0;
485 		AR_WRITE(sc, addr, val);	/* Insist. */
486 		AR_WRITE_BARRIER(sc);
487 		DELAY(10);
488 	}
489 	return ETIMEDOUT;
490 }
491 
492 Static void
493 ar9485_init_swreg(struct athn_softc *sc)
494 {
495 	const struct ar9380_eeprom *eep = sc->sc_eep;
496 	uint32_t reg;
497 
498 	ar9485_pmu_write(sc, AR_PHY_PMU2,
499 	    ar9485_pmu_read(sc, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM);
500 
501 	if (eep->baseEepHeader.featureEnable & AR_EEP_INTERNAL_REGULATOR) {
502 		ar9485_pmu_write(sc, AR_PHY_PMU1, 0x131dc17a);
503 
504 		reg = ar9485_pmu_read(sc, AR_PHY_PMU2);
505 		reg = (reg & ~0xffc00000) | 0x10000000;
506 		ar9485_pmu_write(sc, AR_PHY_PMU2, reg);
507 	}
508 	else {
509 		ar9485_pmu_write(sc, AR_PHY_PMU1,
510 		    ar9485_pmu_read(sc, AR_PHY_PMU1) | AR_PHY_PMU1_PWD);
511 	}
512 
513 	ar9485_pmu_write(sc, AR_PHY_PMU2,
514 	    ar9485_pmu_read(sc, AR_PHY_PMU2) | AR_PHY_PMU2_PGM);
515 }
516 
517 /*
518  * NB: It is safe to call this function for 5GHz channels.
519  */
520 Static void
521 ar9380_spur_mitigate_cck(struct athn_softc *sc, struct ieee80211_channel *c,
522     struct ieee80211_channel *extc)
523 {
524 	static const int16_t freqs[] = { 2420, 2440, 2464, 2480 };
525 	size_t i;
526 	int spur, freq;
527 	uint32_t reg;
528 
529 	for (i = 0; i < __arraycount(freqs); i++) {
530 		spur = freqs[i] - c->ic_freq;
531 		if (abs(spur) < 10)	/* +/- 10MHz range. */
532 			break;
533 	}
534 	if (i == __arraycount(freqs)) {
535 		/* Disable CCK spur mitigation. */
536 		reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
537 		reg = RW(reg, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
538 		AR_WRITE(sc, AR_PHY_AGC_CONTROL, reg);
539 		reg = AR_READ(sc, AR_PHY_CCK_SPUR_MIT);
540 		reg = RW(reg, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0);
541 		reg &= ~AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT;
542 		AR_WRITE(sc, AR_PHY_CCK_SPUR_MIT, reg);
543 		AR_WRITE_BARRIER(sc);
544 		return;
545 	}
546 	freq = (spur * 524288) / 11;
547 
548 	reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
549 	reg = RW(reg, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
550 	AR_WRITE(sc, AR_PHY_AGC_CONTROL, reg);
551 
552 	reg = AR_READ(sc, AR_PHY_CCK_SPUR_MIT);
553 	reg = RW(reg, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, freq);
554 	reg = RW(reg, AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
555 	reg = RW(reg, AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, 0x2);
556 	reg |= AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT;
557 	AR_WRITE(sc, AR_PHY_CCK_SPUR_MIT, reg);
558 	AR_WRITE_BARRIER(sc);
559 }
560 
561 Static void
562 ar9380_spur_mitigate_ofdm(struct athn_softc *sc, struct ieee80211_channel *c,
563     struct ieee80211_channel *extc)
564 {
565 	const struct ar9380_eeprom *eep = sc->sc_eep;
566 	const uint8_t *spurchans;
567 	uint32_t reg;
568 	int idx, spur_delta_phase, spur_off, range, i;
569 	int freq, spur, spur_freq_sd, spur_subchannel_sd;
570 
571 	if (IEEE80211_IS_CHAN_2GHZ(c))
572 		spurchans = eep->modalHeader2G.spurChans;
573 	else
574 		spurchans = eep->modalHeader5G.spurChans;
575 	if (spurchans[0] == 0)
576 		return;
577 
578 	/* Disable OFDM spur mitigation. */
579 	AR_CLRBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER);
580 
581 	reg = AR_READ(sc, AR_PHY_TIMING11);
582 	reg = RW(reg, AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
583 	reg = RW(reg, AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
584 	reg &= ~AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC;
585 	reg &= ~AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR;
586 	AR_WRITE(sc, AR_PHY_TIMING11, reg);
587 
588 	AR_CLRBITS(sc, AR_PHY_SFCORR_EXT,
589 	    AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD);
590 
591 	AR_CLRBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI);
592 
593 	reg = AR_READ(sc, AR_PHY_SPUR_REG);
594 	reg = RW(reg, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
595 	reg &= ~AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI;
596 	reg &= ~AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT;
597 	reg &= ~AR_PHY_SPUR_REG_ENABLE_MASK_PPM;
598 	AR_WRITE(sc, AR_PHY_SPUR_REG, reg);
599 	AR_WRITE_BARRIER(sc);
600 
601 	freq = c->ic_freq;
602 #ifndef IEEE80211_NO_HT
603 	if (extc != NULL) {
604 		range = 19;	/* +/- 19MHz range. */
605 		if (AR_READ(sc, AR_PHY_GEN_CTRL) & AR_PHY_GC_DYN2040_PRI_CH)
606 			freq += 10;
607 		else
608 			freq -= 10;
609 	}
610 	else
611 #endif
612 		range = 10;	/* +/- 10MHz range. */
613 	for (i = 0; i < AR9380_EEPROM_MODAL_SPURS; i++) {
614 		spur = spurchans[i];
615 		if (spur == 0)
616 			return;
617 		/* Convert to frequency. */
618 		if (IEEE80211_IS_CHAN_2GHZ(c))
619 			spur = 2300 + spur;
620 		else
621 			spur = 4900 + (spur * 5);
622 		spur -= freq;
623 		if (abs(spur) < range)
624 			break;
625 	}
626 	if (i == AR9380_EEPROM_MODAL_SPURS)
627 		return;
628 
629 	/* Enable OFDM spur mitigation. */
630 #ifndef IEEE80211_NO_HT
631 	if (extc != NULL) {
632 		spur_delta_phase = (spur * 131072) / 5;
633 		reg = AR_READ(sc, AR_PHY_GEN_CTRL);
634 		if (spur < 0) {
635 			spur_subchannel_sd =
636 			    (reg & AR_PHY_GC_DYN2040_PRI_CH) == 0;
637 			spur_off = spur + 10;
638 		}
639 		else {
640 			spur_subchannel_sd =
641 			    (reg & AR_PHY_GC_DYN2040_PRI_CH) != 0;
642 			spur_off = spur - 10;
643 		}
644 	}
645 	else
646 #endif
647 	{
648 		spur_delta_phase = (spur * 262144) / 5;
649 		spur_subchannel_sd = 0;
650 		spur_off = spur;
651 	}
652 	spur_freq_sd = (spur_off * 512) / 11;
653 
654 	AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER);
655 
656 	reg = AR_READ(sc, AR_PHY_TIMING11);
657 	reg = RW(reg, AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
658 	reg = RW(reg, AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
659 	reg |= AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC;
660 	reg |= AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR;
661 	AR_WRITE(sc, AR_PHY_TIMING11, reg);
662 
663 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
664 	if (spur_subchannel_sd)
665 		reg |= AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD;
666 	else
667 		reg &= ~AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD;
668 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
669 
670 	AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI);
671 
672 	reg = AR_READ(sc, AR_PHY_SPUR_REG);
673 	reg = RW(reg, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
674 	reg = RW(reg, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
675 	reg |= AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI;
676 	if (AR_READ(sc, AR_PHY_MODE) & AR_PHY_MODE_DYNAMIC)
677 		reg |= AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT;
678 	reg |= AR_PHY_SPUR_REG_ENABLE_MASK_PPM;
679 	AR_WRITE(sc, AR_PHY_SPUR_REG, reg);
680 
681 	idx = (spur * 16) / 5;
682 	if (idx < 0)
683 		idx--;
684 
685 	/* Write pilot mask. */
686 	AR_SETBITS(sc, AR_PHY_TIMING4,
687 	    AR_PHY_TIMING4_ENABLE_PILOT_MASK |
688 	    AR_PHY_TIMING4_ENABLE_CHAN_MASK);
689 
690 	reg = AR_READ(sc, AR_PHY_PILOT_SPUR_MASK);
691 	reg = RW(reg, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, idx);
692 	reg = RW(reg, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0x0c);
693 	AR_WRITE(sc, AR_PHY_PILOT_SPUR_MASK, reg);
694 
695 	reg = AR_READ(sc, AR_PHY_SPUR_MASK_A);
696 	reg = RW(reg, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, idx);
697 	reg = RW(reg, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
698 	AR_WRITE(sc, AR_PHY_SPUR_MASK_A, reg);
699 
700 	reg = AR_READ(sc, AR_PHY_CHAN_SPUR_MASK);
701 	reg = RW(reg, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, idx);
702 	reg = RW(reg, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0x0c);
703 	AR_WRITE(sc, AR_PHY_CHAN_SPUR_MASK, reg);
704 	AR_WRITE_BARRIER(sc);
705 }
706 
707 Static void
708 ar9380_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c,
709     struct ieee80211_channel *extc)
710 {
711 
712 	/* NB: We call spur_mitigate_cck for 5GHz too, just to disable it. */
713 	ar9380_spur_mitigate_cck(sc, c, extc);
714 	ar9380_spur_mitigate_ofdm(sc, c, extc);
715 }
716 
717 Static void
718 ar9380_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
719     struct ieee80211_channel *extc)
720 {
721 	const struct ar9380_eeprom *eep = sc->sc_eep;
722 	uint8_t tpow_cck[4], tpow_ofdm[4];
723 	uint8_t tpow_ht20[14], tpow_ht40[14];
724 	int16_t power[ATHN_POWER_COUNT];
725 
726 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
727 		/* Get CCK target powers. */
728 		ar9003_get_lg_tpow(sc, c, AR_CTL_11B,
729 		    eep->calTargetFbinCck, eep->calTargetPowerCck,
730 		    AR9380_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
731 
732 		/* Get OFDM target powers. */
733 		ar9003_get_lg_tpow(sc, c, AR_CTL_11G,
734 		    eep->calTargetFbin2G, eep->calTargetPower2G,
735 		    AR9380_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
736 
737 		/* Get HT-20 target powers. */
738 		ar9003_get_ht_tpow(sc, c, AR_CTL_2GHT20,
739 		    eep->calTargetFbin2GHT20, eep->calTargetPower2GHT20,
740 		    AR9380_NUM_2G_20_TARGET_POWERS, tpow_ht20);
741 
742 		if (extc != NULL) {
743 			/* Get HT-40 target powers. */
744 			ar9003_get_ht_tpow(sc, c, AR_CTL_2GHT40,
745 			    eep->calTargetFbin2GHT40,
746 			    eep->calTargetPower2GHT40,
747 			    AR9380_NUM_2G_40_TARGET_POWERS, tpow_ht40);
748 		}
749 	}
750 	else {
751 		/* Get OFDM target powers. */
752 		ar9003_get_lg_tpow(sc, c, AR_CTL_11A,
753 		    eep->calTargetFbin5G, eep->calTargetPower5G,
754 		    AR9380_NUM_5G_20_TARGET_POWERS, tpow_ofdm);
755 
756 		/* Get HT-20 target powers. */
757 		ar9003_get_ht_tpow(sc, c, AR_CTL_5GHT20,
758 		    eep->calTargetFbin5GHT20, eep->calTargetPower5GHT20,
759 		    AR9380_NUM_5G_20_TARGET_POWERS, tpow_ht20);
760 
761 		if (extc != NULL) {
762 			/* Get HT-40 target powers. */
763 			ar9003_get_ht_tpow(sc, c, AR_CTL_5GHT40,
764 			    eep->calTargetFbin5GHT40,
765 			    eep->calTargetPower5GHT40,
766 			    AR9380_NUM_5G_40_TARGET_POWERS, tpow_ht40);
767 		}
768 	}
769 
770 	memset(power, 0, sizeof(power));
771 	/* Shuffle target powers accross transmit rates. */
772 	power[ATHN_POWER_OFDM6 ] =
773 	power[ATHN_POWER_OFDM9 ] =
774 	power[ATHN_POWER_OFDM12] =
775 	power[ATHN_POWER_OFDM18] =
776 	power[ATHN_POWER_OFDM24] = tpow_ofdm[0];
777 	power[ATHN_POWER_OFDM36] = tpow_ofdm[1];
778 	power[ATHN_POWER_OFDM48] = tpow_ofdm[2];
779 	power[ATHN_POWER_OFDM54] = tpow_ofdm[3];
780 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
781 		power[ATHN_POWER_CCK1_LP ] =
782 		power[ATHN_POWER_CCK2_LP ] =
783 		power[ATHN_POWER_CCK2_SP ] =
784 		power[ATHN_POWER_CCK55_LP] = tpow_cck[0];
785 		power[ATHN_POWER_CCK55_SP] = tpow_cck[1];
786 		power[ATHN_POWER_CCK11_LP] = tpow_cck[2];
787 		power[ATHN_POWER_CCK11_SP] = tpow_cck[3];
788 	}
789 	/* Next entry covers MCS0, MCS8 and MCS16. */
790 	power[ATHN_POWER_HT20( 0)] = tpow_ht20[ 0];
791 	/* Next entry covers MCS1-3, MCS9-11 and MCS17-19. */
792 	power[ATHN_POWER_HT20( 1)] = tpow_ht20[ 1];
793 	power[ATHN_POWER_HT20( 4)] = tpow_ht20[ 2];
794 	power[ATHN_POWER_HT20( 5)] = tpow_ht20[ 3];
795 	power[ATHN_POWER_HT20( 6)] = tpow_ht20[ 4];
796 	power[ATHN_POWER_HT20( 7)] = tpow_ht20[ 5];
797 	power[ATHN_POWER_HT20(12)] = tpow_ht20[ 6];
798 	power[ATHN_POWER_HT20(13)] = tpow_ht20[ 7];
799 	power[ATHN_POWER_HT20(14)] = tpow_ht20[ 8];
800 	power[ATHN_POWER_HT20(15)] = tpow_ht20[ 9];
801 	power[ATHN_POWER_HT20(20)] = tpow_ht20[10];
802 	power[ATHN_POWER_HT20(21)] = tpow_ht20[11];
803 	power[ATHN_POWER_HT20(22)] = tpow_ht20[12];
804 	power[ATHN_POWER_HT20(23)] = tpow_ht20[13];
805 	if (extc != NULL) {
806 		/* Next entry covers MCS0, MCS8 and MCS16. */
807 		power[ATHN_POWER_HT40( 0)] = tpow_ht40[ 0];
808 		/* Next entry covers MCS1-3, MCS9-11 and MCS17-19. */
809 		power[ATHN_POWER_HT40( 1)] = tpow_ht40[ 1];
810 		power[ATHN_POWER_HT40( 4)] = tpow_ht40[ 2];
811 		power[ATHN_POWER_HT40( 5)] = tpow_ht40[ 3];
812 		power[ATHN_POWER_HT40( 6)] = tpow_ht40[ 4];
813 		power[ATHN_POWER_HT40( 7)] = tpow_ht40[ 5];
814 		power[ATHN_POWER_HT40(12)] = tpow_ht40[ 6];
815 		power[ATHN_POWER_HT40(13)] = tpow_ht40[ 7];
816 		power[ATHN_POWER_HT40(14)] = tpow_ht40[ 8];
817 		power[ATHN_POWER_HT40(15)] = tpow_ht40[ 9];
818 		power[ATHN_POWER_HT40(20)] = tpow_ht40[10];
819 		power[ATHN_POWER_HT40(21)] = tpow_ht40[11];
820 		power[ATHN_POWER_HT40(22)] = tpow_ht40[12];
821 		power[ATHN_POWER_HT40(23)] = tpow_ht40[13];
822 	}
823 
824 	/* Write transmit power values to hardware. */
825 	ar9003_write_txpower(sc, power);
826 
827 	/* Apply transmit power correction. */
828 	ar9380_set_correction(sc, c);
829 }
830 
831 Static void
832 ar9380_get_correction(struct athn_softc *sc, struct ieee80211_channel *c,
833     int chain, int *corr, int *temp)
834 {
835 	const struct ar9380_eeprom *eep = sc->sc_eep;
836 	const struct ar9380_cal_data_per_freq_op_loop *pierdata;
837 	const uint8_t *pierfreq;
838 	uint8_t fbin;
839 	int lo, hi, npiers;
840 
841 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
842 		pierfreq = eep->calFreqPier2G;
843 		pierdata = eep->calPierData2G[chain];
844 		npiers = AR9380_NUM_2G_CAL_PIERS;
845 	}
846 	else {
847 		pierfreq = eep->calFreqPier5G;
848 		pierdata = eep->calPierData5G[chain];
849 		npiers = AR9380_NUM_5G_CAL_PIERS;
850 	}
851 	/* Find channel in ROM pier table. */
852 	fbin = athn_chan2fbin(c);
853 	athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
854 
855 	*corr = athn_interpolate(fbin,
856 	    pierfreq[lo], pierdata[lo].refPower,
857 	    pierfreq[hi], pierdata[hi].refPower);
858 	*temp = athn_interpolate(fbin,
859 	    pierfreq[lo], pierdata[lo].tempMeas,
860 	    pierfreq[hi], pierdata[hi].tempMeas);
861 }
862 
863 Static void
864 ar9380_set_correction(struct athn_softc *sc, struct ieee80211_channel *c)
865 {
866 	const struct ar9380_eeprom *eep = sc->sc_eep;
867 	const struct ar9380_modal_eep_header *modal;
868 	uint32_t reg;
869 	int8_t slope;
870 	int i, corr, temp, temp0;
871 
872 	if (IEEE80211_IS_CHAN_2GHZ(c))
873 		modal = &eep->modalHeader2G;
874 	else
875 		modal = &eep->modalHeader5G;
876 
877 	temp0 = 0;	/* XXX: gcc */
878 	for (i = 0; i < AR9380_MAX_CHAINS; i++) {
879 		ar9380_get_correction(sc, c, i, &corr, &temp);
880 		if (i == 0)
881 			temp0 = temp;
882 
883 		reg = AR_READ(sc, AR_PHY_TPC_11_B(i));
884 		reg = RW(reg, AR_PHY_TPC_11_OLPC_GAIN_DELTA, corr);
885 		AR_WRITE(sc, AR_PHY_TPC_11_B(i), reg);
886 
887 		/* Enable open loop power control. */
888 		reg = AR_READ(sc, AR_PHY_TPC_6_B(i));
889 		reg = RW(reg, AR_PHY_TPC_6_ERROR_EST_MODE, 3);
890 		AR_WRITE(sc, AR_PHY_TPC_6_B(i), reg);
891 	}
892 
893 	/* Enable temperature compensation. */
894 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
895 	    eep->base_ext2.tempSlopeLow != 0) {
896 		if (c->ic_freq <= 5500) {
897 			slope = athn_interpolate(c->ic_freq,
898 			    5180, eep->base_ext2.tempSlopeLow,
899 			    5500, modal->tempSlope);
900 		}
901 		else {
902 			slope = athn_interpolate(c->ic_freq,
903 			    5500, modal->tempSlope,
904 			    5785, eep->base_ext2.tempSlopeHigh);
905 		}
906 	}
907 	else
908 		slope = modal->tempSlope;
909 
910 	reg = AR_READ(sc, AR_PHY_TPC_19);
911 	reg = RW(reg, AR_PHY_TPC_19_ALPHA_THERM, slope);
912 	AR_WRITE(sc, AR_PHY_TPC_19, reg);
913 
914 	reg = AR_READ(sc, AR_PHY_TPC_18);
915 	reg = RW(reg, AR_PHY_TPC_18_THERM_CAL, temp0);
916 	AR_WRITE(sc, AR_PHY_TPC_18, reg);
917 	AR_WRITE_BARRIER(sc);
918 }
919