1 /* $NetBSD: arn9280.c,v 1.2 2013/04/03 14:20:02 christos Exp $ */ 2 /* $OpenBSD: ar9280.c,v 1.18 2012/06/10 21:23:36 kettenis Exp $ */ 3 4 /*- 5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2008-2009 Atheros Communications Inc. 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Atheros 802.11a/g/n chipsets. 23 * Routines for AR9220, AR9223, AR9280 and AR9281 chipsets. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: arn9280.c,v 1.2 2013/04/03 14:20:02 christos Exp $"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/queue.h> 37 #include <sys/callout.h> 38 #include <sys/conf.h> 39 #include <sys/device.h> 40 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/intr.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_arp.h> 48 #include <net/if_dl.h> 49 #include <net/if_ether.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/in_var.h> 56 #include <netinet/ip.h> 57 58 #include <net80211/ieee80211_var.h> 59 #include <net80211/ieee80211_amrr.h> 60 #include <net80211/ieee80211_radiotap.h> 61 62 #include <dev/ic/athnreg.h> 63 #include <dev/ic/athnvar.h> 64 65 #include <dev/ic/arn5008reg.h> 66 #include <dev/ic/arn5008.h> 67 #include <dev/ic/arn5416reg.h> /* We share the ROM layout. */ 68 #include <dev/ic/arn5416.h> /* We share the ROM layout. */ 69 #include <dev/ic/arn9280reg.h> 70 #include <dev/ic/arn9280.h> 71 72 #define Static static 73 74 Static void ar9280_init_from_rom(struct athn_softc *, 75 struct ieee80211_channel *, struct ieee80211_channel *); 76 Static void ar9280_olpc_init(struct athn_softc *); 77 Static void ar9280_olpc_temp_compensation(struct athn_softc *); 78 Static void ar9280_setup(struct athn_softc *); 79 80 PUBLIC int 81 ar9280_attach(struct athn_softc *sc) 82 { 83 84 sc->sc_eep_base = AR5416_EEP_START_LOC; 85 sc->sc_eep_size = sizeof(struct ar5416_eeprom); 86 sc->sc_def_nf = AR9280_PHY_CCA_MAX_GOOD_VALUE; 87 sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 10; 88 sc->sc_led_pin = 1; 89 sc->sc_workaround = AR9280_WA_DEFAULT; 90 sc->sc_ops.setup = ar9280_setup; 91 sc->sc_ops.swap_rom = ar5416_swap_rom; 92 sc->sc_ops.init_from_rom = ar9280_init_from_rom; 93 sc->sc_ops.set_txpower = ar5416_set_txpower; 94 sc->sc_ops.set_synth = ar9280_set_synth; 95 sc->sc_ops.spur_mitigate = ar9280_spur_mitigate; 96 sc->sc_ops.get_spur_chans = ar5416_get_spur_chans; 97 sc->sc_ops.olpc_init = ar9280_olpc_init; 98 sc->sc_ops.olpc_temp_compensation = ar9280_olpc_temp_compensation; 99 sc->sc_ini = &ar9280_2_0_ini; 100 sc->sc_serdes = &ar9280_2_0_serdes; 101 102 return ar5008_attach(sc); 103 } 104 105 Static void 106 ar9280_setup(struct athn_softc *sc) 107 { 108 const struct ar5416_eeprom *eep = sc->sc_eep; 109 uint8_t type; 110 111 /* Determine if open loop power control should be used. */ 112 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_19 && 113 eep->baseEepHeader.openLoopPwrCntl) 114 sc->sc_flags |= ATHN_FLAG_OLPC; 115 116 /* Determine if fast PLL clock is supported. */ 117 if (AR_SREV_9280_20(sc) && 118 (sc->sc_eep_rev <= AR_EEP_MINOR_VER_16 || 119 eep->baseEepHeader.fastClk5g)) 120 sc->sc_flags |= ATHN_FLAG_FAST_PLL_CLOCK; 121 122 /* 123 * Determine if initialization value for AR_AN_TOP2 must be fixed. 124 * This is required for some AR9220 devices such as Ubiquiti SR71-12. 125 */ 126 if (AR_SREV_9280_20(sc) && 127 sc->sc_eep_rev > AR_EEP_MINOR_VER_10 && 128 !eep->baseEepHeader.pwdclkind) { 129 DPRINTFN(DBG_INIT, sc, "AR_AN_TOP2 fixup required\n"); 130 sc->sc_flags |= ATHN_FLAG_AN_TOP2_FIXUP; 131 } 132 133 if (AR_SREV_9280_20(sc)) { 134 /* Check if we have a valid rxGainType field in ROM. */ 135 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_17) { 136 /* Select initialization values based on ROM. */ 137 type = eep->baseEepHeader.rxGainType; 138 DPRINTFN(DBG_INIT, sc, "Rx gain type=0x%x\n", type); 139 if (type == AR5416_EEP_RXGAIN_23DB_BACKOFF) 140 sc->sc_rx_gain = &ar9280_2_0_rx_gain_23db_backoff; 141 else if (type == AR5416_EEP_RXGAIN_13DB_BACKOFF) 142 sc->sc_rx_gain = &ar9280_2_0_rx_gain_13db_backoff; 143 else 144 sc->sc_rx_gain = &ar9280_2_0_rx_gain; 145 } 146 else 147 sc->sc_rx_gain = &ar9280_2_0_rx_gain; 148 149 /* Check if we have a valid txGainType field in ROM. */ 150 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_19) { 151 /* Select initialization values based on ROM. */ 152 type = eep->baseEepHeader.txGainType; 153 DPRINTFN(DBG_INIT, sc, "Tx gain type=0x%x\n", type); 154 if (type == AR_EEP_TXGAIN_HIGH_POWER) 155 sc->sc_tx_gain = &ar9280_2_0_tx_gain_high_power; 156 else 157 sc->sc_tx_gain = &ar9280_2_0_tx_gain; 158 } 159 else 160 sc->sc_tx_gain = &ar9280_2_0_tx_gain; 161 } 162 } 163 164 PUBLIC int 165 ar9280_set_synth(struct athn_softc *sc, struct ieee80211_channel *c, 166 struct ieee80211_channel *extc) 167 { 168 uint32_t phy, reg, ndiv = 0; 169 uint32_t freq = c->ic_freq; 170 171 phy = AR_READ(sc, AR9280_PHY_SYNTH_CONTROL) & ~0x3fffffff; 172 173 if (IEEE80211_IS_CHAN_2GHZ(c)) { 174 phy |= (freq << 16) / 15; 175 phy |= AR9280_BMODE | AR9280_FRACMODE; 176 177 if (AR_SREV_9287_11_OR_LATER(sc)) { 178 /* NB: Magic values from the Linux driver. */ 179 if (freq == 2484) { /* Channel 14. */ 180 /* Japanese regulatory requirements. */ 181 AR_WRITE(sc, AR_PHY(637), 0x00000000); 182 AR_WRITE(sc, AR_PHY(638), 0xefff0301); 183 AR_WRITE(sc, AR_PHY(639), 0xca9228ee); 184 } 185 else { 186 AR_WRITE(sc, AR_PHY(637), 0x00fffeff); 187 AR_WRITE(sc, AR_PHY(638), 0x00f5f9ff); 188 AR_WRITE(sc, AR_PHY(639), 0xb79f6427); 189 } 190 } 191 else { 192 reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL); 193 if (freq == 2484) /* Channel 14. */ 194 reg |= AR_PHY_CCK_TX_CTRL_JAPAN; 195 else 196 reg &= ~AR_PHY_CCK_TX_CTRL_JAPAN; 197 AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg); 198 } 199 } 200 else { 201 if (AR_SREV_9285_10_OR_LATER(sc) || 202 sc->sc_eep_rev < AR_EEP_MINOR_VER_22 || 203 !((struct ar5416_base_eep_header *)sc->sc_eep)->frac_n_5g) { 204 if ((freq % 20) == 0) { 205 ndiv = (freq * 3) / 60; 206 phy |= SM(AR9280_AMODE_REFSEL, 3); 207 } 208 else if ((freq % 10) == 0) { 209 ndiv = (freq * 6) / 60; 210 phy |= SM(AR9280_AMODE_REFSEL, 2); 211 } 212 } 213 if (ndiv != 0) { 214 phy |= (ndiv & 0x1ff) << 17; 215 phy |= (ndiv & ~0x1ff) * 2; 216 } 217 else { 218 phy |= (freq << 15) / 15; 219 phy |= AR9280_FRACMODE; 220 221 reg = AR_READ(sc, AR_AN_SYNTH9); 222 reg = RW(reg, AR_AN_SYNTH9_REFDIVA, 1); 223 AR_WRITE(sc, AR_AN_SYNTH9, reg); 224 } 225 } 226 AR_WRITE_BARRIER(sc); 227 DPRINTFN(DBG_RF, sc, "AR9280_PHY_SYNTH_CONTROL=0x%08x\n", phy); 228 AR_WRITE(sc, AR9280_PHY_SYNTH_CONTROL, phy); 229 AR_WRITE_BARRIER(sc); 230 return 0; 231 } 232 233 Static void 234 ar9280_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, 235 struct ieee80211_channel *extc) 236 { 237 static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 }; 238 const struct ar5416_eeprom *eep = sc->sc_eep; 239 const struct ar5416_modal_eep_header *modal; 240 uint32_t reg, offset; 241 uint8_t txRxAtten; 242 int i; 243 244 modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)]; 245 246 AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon); 247 248 for (i = 0; i < AR9280_MAX_CHAINS; i++) { 249 if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5) 250 offset = chainoffset[i]; 251 else 252 offset = i * 0x1000; 253 254 AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset, 255 modal->antCtrlChain[i]); 256 257 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset); 258 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, 259 modal->iqCalICh[i]); 260 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, 261 modal->iqCalQCh[i]); 262 AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg); 263 264 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) { 265 reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); 266 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 267 modal->bswMargin[i]); 268 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, 269 modal->bswAtten[i]); 270 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 271 modal->xatten2Margin[i]); 272 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB, 273 modal->xatten2Db[i]); 274 AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); 275 } 276 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) 277 txRxAtten = modal->txRxAttenCh[i]; 278 else /* Workaround for ROM versions < 14.3. */ 279 txRxAtten = IEEE80211_IS_CHAN_2GHZ(c) ? 23 : 44; 280 reg = AR_READ(sc, AR_PHY_RXGAIN + offset); 281 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, 282 txRxAtten); 283 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, 284 modal->rxTxMarginCh[i]); 285 AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg); 286 } 287 if (IEEE80211_IS_CHAN_2GHZ(c)) { 288 reg = AR_READ(sc, AR_AN_RF2G1_CH0); 289 reg = RW(reg, AR_AN_RF2G1_CH0_OB, modal->ob); 290 reg = RW(reg, AR_AN_RF2G1_CH0_DB, modal->db); 291 AR_WRITE(sc, AR_AN_RF2G1_CH0, reg); 292 AR_WRITE_BARRIER(sc); 293 DELAY(100); 294 295 reg = AR_READ(sc, AR_AN_RF2G1_CH1); 296 reg = RW(reg, AR_AN_RF2G1_CH1_OB, modal->ob_ch1); 297 reg = RW(reg, AR_AN_RF2G1_CH1_DB, modal->db_ch1); 298 AR_WRITE(sc, AR_AN_RF2G1_CH1, reg); 299 AR_WRITE_BARRIER(sc); 300 DELAY(100); 301 } 302 else { 303 reg = AR_READ(sc, AR_AN_RF5G1_CH0); 304 reg = RW(reg, AR_AN_RF5G1_CH0_OB5, modal->ob); 305 reg = RW(reg, AR_AN_RF5G1_CH0_DB5, modal->db); 306 AR_WRITE(sc, AR_AN_RF5G1_CH0, reg); 307 AR_WRITE_BARRIER(sc); 308 DELAY(100); 309 310 reg = AR_READ(sc, AR_AN_RF5G1_CH1); 311 reg = RW(reg, AR_AN_RF5G1_CH1_OB5, modal->ob_ch1); 312 reg = RW(reg, AR_AN_RF5G1_CH1_DB5, modal->db_ch1); 313 AR_WRITE(sc, AR_AN_RF5G1_CH1, reg); 314 AR_WRITE_BARRIER(sc); 315 DELAY(100); 316 } 317 reg = AR_READ(sc, AR_AN_TOP2); 318 if ((sc->sc_flags & ATHN_FLAG_USB) && IEEE80211_IS_CHAN_5GHZ(c)) { 319 /* 320 * Hardcode the output voltage of x-PA bias LDO to the 321 * lowest value for UB94 such that the card doesn't get 322 * too hot. 323 */ 324 reg = RW(reg, AR_AN_TOP2_XPABIAS_LVL, 0); 325 } 326 else 327 reg = RW(reg, AR_AN_TOP2_XPABIAS_LVL, modal->xpaBiasLvl); 328 if (modal->flagBits & AR5416_EEP_FLAG_LOCALBIAS) 329 reg |= AR_AN_TOP2_LOCALBIAS; 330 else 331 reg &= ~AR_AN_TOP2_LOCALBIAS; 332 AR_WRITE(sc, AR_AN_TOP2, reg); 333 AR_WRITE_BARRIER(sc); 334 DELAY(100); 335 336 reg = AR_READ(sc, AR_PHY_XPA_CFG); 337 if (modal->flagBits & AR5416_EEP_FLAG_FORCEXPAON) 338 reg |= AR_PHY_FORCE_XPA_CFG; 339 else 340 reg &= ~AR_PHY_FORCE_XPA_CFG; 341 AR_WRITE(sc, AR_PHY_XPA_CFG, reg); 342 343 reg = AR_READ(sc, AR_PHY_SETTLING); 344 reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling); 345 AR_WRITE(sc, AR_PHY_SETTLING, reg); 346 347 reg = AR_READ(sc, AR_PHY_DESIRED_SZ); 348 reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize); 349 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); 350 351 reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff); 352 reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff); 353 reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn); 354 reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn); 355 AR_WRITE(sc, AR_PHY_RF_CTL4, reg); 356 357 reg = AR_READ(sc, AR_PHY_RF_CTL3); 358 reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn); 359 AR_WRITE(sc, AR_PHY_RF_CTL3, reg); 360 361 reg = AR_READ(sc, AR_PHY_CCA(0)); 362 reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62); 363 AR_WRITE(sc, AR_PHY_CCA(0), reg); 364 365 reg = AR_READ(sc, AR_PHY_EXT_CCA0); 366 reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62); 367 AR_WRITE(sc, AR_PHY_EXT_CCA0, reg); 368 369 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) { 370 reg = AR_READ(sc, AR_PHY_RF_CTL2); 371 reg = RW(reg, AR_PHY_TX_END_DATA_START, 372 modal->txFrameToDataStart); 373 reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn); 374 AR_WRITE(sc, AR_PHY_RF_CTL2, reg); 375 } 376 #ifndef IEEE80211_NO_HT 377 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) { 378 /* Overwrite switch settling with HT-40 value. */ 379 reg = AR_READ(sc, AR_PHY_SETTLING); 380 reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40); 381 AR_WRITE(sc, AR_PHY_SETTLING, reg); 382 } 383 #endif 384 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_19) { 385 reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL); 386 reg = RW(reg, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, 387 MS(modal->miscBits, AR5416_EEP_MISC_TX_DAC_SCALE_CCK)); 388 AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg); 389 } 390 if (AR_SREV_9280_20(sc) && 391 sc->sc_eep_rev >= AR_EEP_MINOR_VER_20) { 392 reg = AR_READ(sc, AR_AN_TOP1); 393 if (eep->baseEepHeader.dacLpMode && 394 (IEEE80211_IS_CHAN_2GHZ(c) || 395 !eep->baseEepHeader.dacHiPwrMode_5G)) 396 reg |= AR_AN_TOP1_DACLPMODE; 397 else 398 reg &= ~AR_AN_TOP1_DACLPMODE; 399 AR_WRITE(sc, AR_AN_TOP1, reg); 400 AR_WRITE_BARRIER(sc); 401 DELAY(100); 402 403 reg = AR_READ(sc, AR_PHY_FRAME_CTL); 404 reg = RW(reg, AR_PHY_FRAME_CTL_TX_CLIP, 405 MS(modal->miscBits, AR5416_EEP_MISC_TX_CLIP)); 406 AR_WRITE(sc, AR_PHY_FRAME_CTL, reg); 407 408 reg = AR_READ(sc, AR_PHY_TX_PWRCTRL9); 409 reg = RW(reg, AR_PHY_TX_DESIRED_SCALE_CCK, 410 eep->baseEepHeader.desiredScaleCCK); 411 AR_WRITE(sc, AR_PHY_TX_PWRCTRL9, reg); 412 } 413 AR_WRITE_BARRIER(sc); 414 } 415 416 PUBLIC void 417 ar9280_olpc_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c, 418 int chain, uint8_t *boundaries, uint8_t *pdadcs, uint8_t *txgain) 419 { 420 const struct ar5416_eeprom *eep = sc->sc_eep; 421 const struct ar_cal_data_per_freq_olpc *pierdata; 422 const uint8_t *pierfreq; 423 uint8_t fbin, pcdac, pwr, idx; 424 int i, lo, hi, npiers; 425 426 if (IEEE80211_IS_CHAN_2GHZ(c)) { 427 pierfreq = eep->calFreqPier2G; 428 pierdata = (const struct ar_cal_data_per_freq_olpc *) 429 eep->calPierData2G[chain]; 430 npiers = AR5416_NUM_2G_CAL_PIERS; 431 } 432 else { 433 pierfreq = eep->calFreqPier5G; 434 pierdata = (const struct ar_cal_data_per_freq_olpc *) 435 eep->calPierData5G[chain]; 436 npiers = AR5416_NUM_5G_CAL_PIERS; 437 } 438 /* Find channel in ROM pier table. */ 439 fbin = athn_chan2fbin(c); 440 athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); 441 442 /* Get average. */ 443 pwr = (pierdata[lo].pwrPdg[0][0] + pierdata[hi].pwrPdg[0][0]) / 2; 444 pwr /= 2; /* Convert to dB. */ 445 446 /* Find power control digital-to-analog converter (PCDAC) value. */ 447 pcdac = pierdata[hi].pcdac[0][0]; 448 for (idx = 0; idx < AR9280_TX_GAIN_TABLE_SIZE - 1; idx++) 449 if (pcdac <= sc->sc_tx_gain_tbl[idx]) 450 break; 451 *txgain = idx; 452 453 DPRINTFN(DBG_RF, sc, 454 "fbin=%d lo=%d hi=%d pwr=%d pcdac=%d txgain=%d\n", 455 fbin, lo, hi, pwr, pcdac, idx); 456 457 /* Fill phase domain analog-to-digital converter (PDADC) table. */ 458 for (i = 0; i < AR_NUM_PDADC_VALUES; i++) 459 pdadcs[i] = (i < pwr) ? 0x00 : 0xff; 460 461 for (i = 0; i < AR_PD_GAINS_IN_MASK; i++) 462 boundaries[i] = AR9280_PD_GAIN_BOUNDARY_DEFAULT; 463 } 464 465 PUBLIC void 466 ar9280_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c, 467 struct ieee80211_channel *extc) 468 { 469 const struct ar_spur_chan *spurchans; 470 int spur, bin, spur_delta_phase, spur_freq_sd, spur_subchannel_sd; 471 int spur_off, range, i; 472 473 /* NB: Always clear. */ 474 AR_CLRBITS(sc, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); 475 476 range = (extc != NULL) ? 19 : 10; 477 478 spurchans = sc->sc_ops.get_spur_chans(sc, IEEE80211_IS_CHAN_2GHZ(c)); 479 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 480 spur = spurchans[i].spurChan; 481 if (spur == AR_NO_SPUR) 482 return; /* XXX disable if it was enabled! */ 483 spur /= 10; 484 if (IEEE80211_IS_CHAN_2GHZ(c)) 485 spur += AR_BASE_FREQ_2GHZ; 486 else 487 spur += AR_BASE_FREQ_5GHZ; 488 spur -= c->ic_freq; 489 if (abs(spur) < range) 490 break; 491 } 492 if (i == AR_EEPROM_MODAL_SPURS) 493 return; /* XXX disable if it was enabled! */ 494 DPRINTFN(DBG_RF, sc, "enabling spur mitigation\n"); 495 496 AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, 497 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | 498 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | 499 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | 500 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); 501 502 AR_WRITE(sc, AR_PHY_SPUR_REG, 503 AR_PHY_SPUR_REG_MASK_RATE_CNTL | 504 AR_PHY_SPUR_REG_ENABLE_MASK_PPM | 505 AR_PHY_SPUR_REG_MASK_RATE_SELECT | 506 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | 507 SM(AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, AR_SPUR_RSSI_THRESH)); 508 509 #ifndef IEEE80211_NO_HT 510 if (extc != NULL) { 511 spur_delta_phase = (spur * 262144) / 10; 512 if (spur < 0) { 513 spur_subchannel_sd = 1; 514 spur_off = spur + 10; 515 } 516 else { 517 spur_subchannel_sd = 0; 518 spur_off = spur - 10; 519 } 520 } 521 else 522 #endif 523 { 524 spur_delta_phase = (spur * 524288) / 10; 525 spur_subchannel_sd = 0; 526 spur_off = spur; 527 } 528 if (IEEE80211_IS_CHAN_2GHZ(c)) 529 spur_freq_sd = (spur_off * 2048) / 44; 530 else 531 spur_freq_sd = (spur_off * 2048) / 40; 532 533 AR_WRITE(sc, AR_PHY_TIMING11, 534 AR_PHY_TIMING11_USE_SPUR_IN_AGC | 535 SM(AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd) | 536 SM(AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase)); 537 538 AR_WRITE(sc, AR_PHY_SFCORR_EXT, 539 SM(AR_PHY_SFCORR_SPUR_SUBCHNL_SD, spur_subchannel_sd)); 540 AR_WRITE_BARRIER(sc); 541 542 bin = spur * 320; 543 ar5008_set_viterbi_mask(sc, bin); 544 } 545 546 PUBLIC void 547 ar9280_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c) 548 { 549 const struct athn_gain *prog = sc->sc_rx_gain; 550 const uint32_t *pvals; 551 int i; 552 553 if (IEEE80211_IS_CHAN_2GHZ(c)) 554 pvals = prog->vals_2g; 555 else 556 pvals = prog->vals_5g; 557 for (i = 0; i < prog->nregs; i++) 558 AR_WRITE(sc, prog->regs[i], pvals[i]); 559 } 560 561 PUBLIC void 562 ar9280_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c) 563 { 564 const struct athn_gain *prog = sc->sc_tx_gain; 565 const uint32_t *pvals; 566 int i; 567 568 if (IEEE80211_IS_CHAN_2GHZ(c)) 569 pvals = prog->vals_2g; 570 else 571 pvals = prog->vals_5g; 572 for (i = 0; i < prog->nregs; i++) 573 AR_WRITE(sc, prog->regs[i], pvals[i]); 574 } 575 576 Static void 577 ar9280_olpc_init(struct athn_softc *sc) 578 { 579 uint32_t reg; 580 int i; 581 582 /* Save original Tx gain values. */ 583 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) { 584 reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i)); 585 sc->sc_tx_gain_tbl[i] = MS(reg, AR_PHY_TX_GAIN); 586 } 587 /* Initial Tx gain temperature compensation. */ 588 sc->sc_tcomp = 0; 589 } 590 591 Static void 592 ar9280_olpc_temp_compensation(struct athn_softc *sc) 593 { 594 const struct ar5416_eeprom *eep = sc->sc_eep; 595 int8_t pdadc, txgain, tcomp; 596 uint32_t reg; 597 int i; 598 599 reg = AR_READ(sc, AR_PHY_TX_PWRCTRL4); 600 pdadc = MS(reg, AR_PHY_TX_PWRCTRL_PD_AVG_OUT); 601 DPRINTFN(DBG_RF, sc, "PD Avg Out=%d\n", pdadc); 602 603 if (sc->sc_pdadc == 0 || pdadc == 0) 604 return; /* No frames transmitted yet. */ 605 606 /* Compute Tx gain temperature compensation. */ 607 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_20 && 608 eep->baseEepHeader.dacHiPwrMode_5G) 609 tcomp = (pdadc - sc->sc_pdadc + 4) / 8; 610 else 611 tcomp = (pdadc - sc->sc_pdadc + 5) / 10; 612 DPRINTFN(DBG_RF, sc, "OLPC temp compensation=%d\n", tcomp); 613 614 if (tcomp == sc->sc_tcomp) 615 return; /* Don't rewrite the same values. */ 616 sc->sc_tcomp = tcomp; 617 618 /* Adjust Tx gain values. */ 619 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) { 620 txgain = sc->sc_tx_gain_tbl[i] - tcomp; 621 if (txgain < 0) 622 txgain = 0; 623 reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i)); 624 reg = RW(reg, AR_PHY_TX_GAIN, txgain); 625 AR_WRITE(sc, AR_PHY_TX_GAIN_TBL(i), reg); 626 } 627 AR_WRITE_BARRIER(sc); 628 } 629