xref: /netbsd-src/sys/dev/ic/arn9003.c (revision 7788a0781fe6ff2cce37368b4578a7ade0850cb1)
1 /*	$NetBSD: arn9003.c,v 1.3 2013/04/06 14:57:38 martin Exp $	*/
2 /*	$OpenBSD: ar9003.c,v 1.25 2012/10/20 09:53:32 stsp Exp $	*/
3 
4 /*-
5  * Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2010 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  * Routines for AR9003 family.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn9003.c,v 1.3 2013/04/06 14:57:38 martin Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/queue.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <dev/ic/athnreg.h>
63 #include <dev/ic/athnvar.h>
64 #include <dev/ic/arn9003reg.h>
65 #include <dev/ic/arn9003.h>
66 
67 #define Static static
68 
69 Static void	ar9003_calib_iq(struct athn_softc *);
70 Static int	ar9003_calib_tx_iq(struct athn_softc *);
71 Static int	ar9003_compute_predistortion(struct athn_softc *,
72 		    const uint32_t *, const uint32_t *);
73 Static void	ar9003_disable_ofdm_weak_signal(struct athn_softc *);
74 Static void	ar9003_disable_phy(struct athn_softc *);
75 Static int	ar9003_dma_alloc(struct athn_softc *);
76 Static void	ar9003_dma_free(struct athn_softc *);
77 Static void	ar9003_do_calib(struct athn_softc *);
78 Static void	ar9003_do_noisefloor_calib(struct athn_softc *);
79 Static void	ar9003_enable_antenna_diversity(struct athn_softc *);
80 Static void	ar9003_enable_ofdm_weak_signal(struct athn_softc *);
81 Static void	ar9003_enable_predistorter(struct athn_softc *, int);
82 Static int	ar9003_find_rom(struct athn_softc *);
83 Static void	ar9003_force_txgain(struct athn_softc *, uint32_t);
84 Static int	ar9003_get_desired_txgain(struct athn_softc *, int, int);
85 Static int	ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]);
86 Static void	ar9003_gpio_config_input(struct athn_softc *, int);
87 Static void	ar9003_gpio_config_output(struct athn_softc *, int, int);
88 Static int	ar9003_gpio_read(struct athn_softc *, int);
89 Static void	ar9003_gpio_write(struct athn_softc *, int, int);
90 Static void	ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *,
91 		    struct ieee80211_channel *);
92 Static void	ar9003_init_baseband(struct athn_softc *);
93 Static void	ar9003_init_chains(struct athn_softc *);
94 Static int	ar9003_intr(struct athn_softc *);
95 Static void	ar9003_next_calib(struct athn_softc *);
96 Static void	ar9003_paprd_enable(struct athn_softc *);
97 Static int	ar9003_paprd_tx_tone(struct athn_softc *);
98 Static void	ar9003_paprd_tx_tone_done(struct athn_softc *);
99 Static int	ar9003_read_eep_data(struct athn_softc *, uint32_t, void *,
100 		    int);
101 Static int	ar9003_read_eep_word(struct athn_softc *, uint32_t,
102 		    uint16_t *);
103 Static int	ar9003_read_otp_data(struct athn_softc *, uint32_t, void *,
104 		    int);
105 Static int	ar9003_read_otp_word(struct athn_softc *, uint32_t,
106 		    uint32_t *);
107 Static int	ar9003_read_rom(struct athn_softc *);
108 Static void	ar9003_reset_rx_gain(struct athn_softc *,
109 		    struct ieee80211_channel *);
110 Static void	ar9003_reset_tx_gain(struct athn_softc *,
111 		    struct ieee80211_channel *);
112 Static int	ar9003_restore_rom_block(struct athn_softc *, uint8_t,
113 		    uint8_t, const uint8_t *, size_t);
114 Static void	ar9003_rf_bus_release(struct athn_softc *);
115 Static int	ar9003_rf_bus_request(struct athn_softc *);
116 Static void	ar9003_rfsilent_init(struct athn_softc *);
117 Static int	ar9003_rx_alloc(struct athn_softc *, int, int);
118 Static void	ar9003_rx_enable(struct athn_softc *);
119 Static void	ar9003_rx_free(struct athn_softc *, int);
120 Static void	ar9003_rx_intr(struct athn_softc *, int);
121 Static int	ar9003_rx_process(struct athn_softc *, int);
122 Static void	ar9003_rx_radiotap(struct athn_softc *, struct mbuf *,
123 		    struct ar_rx_status *);
124 Static void	ar9003_set_cck_weak_signal(struct athn_softc *, int);
125 Static void	ar9003_set_delta_slope(struct athn_softc *,
126 		    struct ieee80211_channel *, struct ieee80211_channel *);
127 Static void	ar9003_set_firstep_level(struct athn_softc *, int);
128 Static void	ar9003_set_noise_immunity_level(struct athn_softc *, int);
129 Static void	ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *,
130 		    struct ieee80211_channel *);
131 Static void	ar9003_set_rf_mode(struct athn_softc *,
132 		    struct ieee80211_channel *);
133 Static void	ar9003_set_rxchains(struct athn_softc *);
134 Static void	ar9003_set_spur_immunity_level(struct athn_softc *, int);
135 Static void	ar9003_set_training_gain(struct athn_softc *, int);
136 Static int	ar9003_swba_intr(struct athn_softc *);
137 Static int	ar9003_tx(struct athn_softc *, struct mbuf *,
138 		    struct ieee80211_node *, int);
139 Static int	ar9003_tx_alloc(struct athn_softc *);
140 Static void	ar9003_tx_free(struct athn_softc *);
141 Static void	ar9003_tx_intr(struct athn_softc *);
142 Static int	ar9003_tx_process(struct athn_softc *);
143 
144 #ifdef notused
145 Static void	ar9003_bb_load_noisefloor(struct athn_softc *);
146 Static void	ar9003_get_noisefloor(struct athn_softc *,
147 		    struct ieee80211_channel *);
148 Static void	ar9003_paprd_calib(struct athn_softc *,
149 		    struct ieee80211_channel *);
150 Static void	ar9003_read_noisefloor(struct athn_softc *, int16_t *,
151 		    int16_t *);
152 Static void	ar9003_write_noisefloor(struct athn_softc *, int16_t *,
153 		    int16_t *);
154 Static void	ar9300_noisefloor_calib(struct athn_softc *);
155 #endif /* notused */
156 
157 /*
158  * XXX: See if_iwn.c:MCLGETIalt() for a better solution.
159  * XXX: Put this in a header or in athn.c so it can be shared between
160  *      ar5008.c and ar9003.c?
161  */
162 static struct mbuf *
163 MCLGETI(struct athn_softc *sc __unused, int how,
164     struct ifnet *ifp __unused, u_int size)
165 {
166 	struct mbuf *m;
167 
168 	MGETHDR(m, how, MT_DATA);
169 	if (m == NULL)
170 		return NULL;
171 
172 	MEXTMALLOC(m, size, how);
173 	if ((m->m_flags & M_EXT) == 0) {
174 		m_freem(m);
175 		return NULL;
176 	}
177 	return m;
178 }
179 
180 PUBLIC int
181 ar9003_attach(struct athn_softc *sc)
182 {
183 	struct athn_ops *ops = &sc->sc_ops;
184 	int error;
185 
186 	/* Set callbacks for AR9003 family. */
187 	ops->gpio_read = ar9003_gpio_read;
188 	ops->gpio_write = ar9003_gpio_write;
189 	ops->gpio_config_input = ar9003_gpio_config_input;
190 	ops->gpio_config_output = ar9003_gpio_config_output;
191 	ops->rfsilent_init = ar9003_rfsilent_init;
192 
193 	ops->dma_alloc = ar9003_dma_alloc;
194 	ops->dma_free = ar9003_dma_free;
195 	ops->rx_enable = ar9003_rx_enable;
196 	ops->intr = ar9003_intr;
197 	ops->tx = ar9003_tx;
198 
199 	ops->set_rf_mode = ar9003_set_rf_mode;
200 	ops->rf_bus_request = ar9003_rf_bus_request;
201 	ops->rf_bus_release = ar9003_rf_bus_release;
202 	ops->set_phy = ar9003_set_phy;
203 	ops->set_delta_slope = ar9003_set_delta_slope;
204 	ops->enable_antenna_diversity = ar9003_enable_antenna_diversity;
205 	ops->init_baseband = ar9003_init_baseband;
206 	ops->disable_phy = ar9003_disable_phy;
207 	ops->set_rxchains = ar9003_set_rxchains;
208 	ops->noisefloor_calib = ar9003_do_noisefloor_calib;
209 	ops->do_calib = ar9003_do_calib;
210 	ops->next_calib = ar9003_next_calib;
211 	ops->hw_init = ar9003_hw_init;
212 
213 	ops->set_noise_immunity_level = ar9003_set_noise_immunity_level;
214 	ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal;
215 	ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal;
216 	ops->set_cck_weak_signal = ar9003_set_cck_weak_signal;
217 	ops->set_firstep_level = ar9003_set_firstep_level;
218 	ops->set_spur_immunity_level = ar9003_set_spur_immunity_level;
219 
220 	/* Set MAC registers offsets. */
221 	sc->sc_obs_off = AR_OBS;
222 	sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
223 
224 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
225 		athn_config_nonpcie(sc);
226 	else
227 		athn_config_pcie(sc);
228 
229 	/* Determine ROM type and location. */
230 	if ((error = ar9003_find_rom(sc)) != 0) {
231 		printf("%s: could not find ROM\n", device_xname(sc->sc_dev));
232 		return error;
233 	}
234 	/* Read entire ROM content in memory. */
235 	if ((error = ar9003_read_rom(sc)) != 0) {
236 		printf("%s: could not read ROM\n", device_xname(sc->sc_dev));
237 		return error;
238 	}
239 
240 	/* Determine if it is a non-enterprise AR9003 card. */
241 	if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD)
242 		sc->sc_flags |= ATHN_FLAG_NON_ENTERPRISE;
243 
244 	ops->setup(sc);
245 	return 0;
246 }
247 
248 /*
249  * Read 16-bit word from EEPROM.
250  */
251 Static int
252 ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
253 {
254 	uint32_t reg;
255 	int ntries;
256 
257 	reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
258 	for (ntries = 0; ntries < 1000; ntries++) {
259 		reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
260 		if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
261 		    AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
262 			*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
263 			return 0;
264 		}
265 		DELAY(10);
266 	}
267 	*val = 0xffff;
268 	return ETIMEDOUT;
269 }
270 
271 /*
272  * Read an arbitrary number of bytes at a specified address in EEPROM.
273  * NB: The address may not be 16-bit aligned.
274  */
275 Static int
276 ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
277 {
278 	uint8_t *dst = buf;
279 	uint16_t val;
280 	int error;
281 
282 	if (len > 0 && (addr & 1)) {
283 		/* Deal with non-aligned reads. */
284 		addr >>= 1;
285 		error = ar9003_read_eep_word(sc, addr, &val);
286 		if (error != 0)
287 			return error;
288 		*dst++ = val & 0xff;
289 		addr--;
290 		len--;
291 	}
292 	else
293 		addr >>= 1;
294 	for (; len >= 2; addr--, len -= 2) {
295 		error = ar9003_read_eep_word(sc, addr, &val);
296 		if (error != 0)
297 			return error;
298 		*dst++ = val >> 8;
299 		*dst++ = val & 0xff;
300 	}
301 	if (len > 0) {
302 		error = ar9003_read_eep_word(sc, addr, &val);
303 		if (error != 0)
304 			return error;
305 		*dst++ = val >> 8;
306 	}
307 	return 0;
308 }
309 
310 /*
311  * Read 32-bit word from OTPROM.
312  */
313 Static int
314 ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val)
315 {
316 	uint32_t reg;
317 	int ntries;
318 
319 	reg = AR_READ(sc, AR_OTP_BASE(addr));
320 	for (ntries = 0; ntries < 1000; ntries++) {
321 		reg = AR_READ(sc, AR_OTP_STATUS);
322 		if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) {
323 			*val = AR_READ(sc, AR_OTP_READ_DATA);
324 			return 0;
325 		}
326 		DELAY(10);
327 	}
328 	return ETIMEDOUT;
329 }
330 
331 /*
332  * Read an arbitrary number of bytes at a specified address in OTPROM.
333  * NB: The address may not be 32-bit aligned.
334  */
335 Static int
336 ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
337 {
338 	uint8_t *dst = buf;
339 	uint32_t val;
340 	int error;
341 
342 	/* NB: not optimal for non-aligned reads, but correct. */
343 	for (; len > 0; addr--, len--) {
344 		error = ar9003_read_otp_word(sc, addr >> 2, &val);
345 		if (error != 0)
346 			return error;
347 		*dst++ = (val >> ((addr & 3) * 8)) & 0xff;
348 	}
349 	return 0;
350 }
351 
352 /*
353  * Determine if the chip has an external EEPROM or an OTPROM and its size.
354  */
355 Static int
356 ar9003_find_rom(struct athn_softc *sc)
357 {
358 	struct athn_ops *ops = &sc->sc_ops;
359 	uint32_t hdr;
360 	int error;
361 
362 	/* Try EEPROM. */
363 	ops->read_rom_data = ar9003_read_eep_data;
364 
365 	sc->sc_eep_size = AR_SREV_9485(sc) ? 4096 : 1024;
366 	sc->sc_eep_base = sc->sc_eep_size - 1;
367 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
368 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
369 		return 0;
370 
371 	sc->sc_eep_size = 512;
372 	sc->sc_eep_base = sc->sc_eep_size - 1;
373 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
374 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
375 		return 0;
376 
377 	/* Try OTPROM. */
378 	ops->read_rom_data = ar9003_read_otp_data;
379 
380 	sc->sc_eep_size = 1024;
381 	sc->sc_eep_base = sc->sc_eep_size - 1;
382 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
383 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
384 		return 0;
385 
386 	sc->sc_eep_size = 512;
387 	sc->sc_eep_base = sc->sc_eep_size - 1;
388 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
389 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
390 		return 0;
391 
392 	return EIO;	/* Not found. */
393 }
394 
395 Static int
396 ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref,
397     const uint8_t *buf, size_t len)
398 {
399 	const uint8_t *def, *ptr, *end;
400 	uint8_t *eep = sc->sc_eep;
401 	size_t off, clen;
402 
403 	if (alg == AR_EEP_COMPRESS_BLOCK) {
404 		/* Block contains chunks that shadow ROM template. */
405 		def = sc->sc_ops.get_rom_template(sc, ref);
406 		if (def == NULL) {
407 			DPRINTFN(DBG_INIT, sc, "unknown template image %d\n",
408 			    ref);
409 			return EINVAL;
410 		}
411 		/* Start with template. */
412 		memcpy(eep, def, sc->sc_eep_size);
413 		/* Shadow template with chunks. */
414 		off = 0;	/* Offset in ROM image. */
415 		ptr = buf;	/* Offset in block. */
416 		end = buf + len;
417 		/* Process chunks. */
418 		while (ptr + 2 <= end) {
419 			off += *ptr++;	/* Gap with previous chunk. */
420 			clen = *ptr++;	/* Chunk length. */
421 			/* Make sure block is large enough. */
422 			if (ptr + clen > end)
423 				return EINVAL;
424 			/* Make sure chunk fits in ROM image. */
425 			if (off + clen > sc->sc_eep_size)
426 				return EINVAL;
427 			/* Restore chunk. */
428 			DPRINTFN(DBG_INIT, sc, "ROM chunk @%zd/%zd\n",
429 			    off, clen);
430 			memcpy(&eep[off], ptr, clen);
431 			ptr += clen;
432 			off += clen;
433 		}
434 	}
435 	else if (alg == AR_EEP_COMPRESS_NONE) {
436 		/* Block contains full ROM image. */
437 		if (len != sc->sc_eep_size) {
438 			DPRINTFN(DBG_INIT, sc, "block length mismatch %zd\n",
439 			    len);
440 			return EINVAL;
441 		}
442 		memcpy(eep, buf, len);
443 	}
444 	return 0;
445 }
446 
447 Static int
448 ar9003_read_rom(struct athn_softc *sc)
449 {
450 	struct athn_ops *ops = &sc->sc_ops;
451 	uint8_t *buf, *ptr, alg, ref;
452 	uint16_t sum, rsum;
453 	uint32_t hdr;
454 	int error, addr;
455 	size_t len, i, j;
456 
457 	/* Allocate space to store ROM in host memory. */
458 	sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT);
459 	if (sc->sc_eep == NULL)
460 		return ENOMEM;
461 
462 	/* Allocate temporary buffer to store ROM blocks. */
463 	buf = malloc(2048, M_DEVBUF, M_NOWAIT);
464 	if (buf == NULL)
465 		return ENOMEM;
466 
467 	/* Restore vendor-specified ROM blocks. */
468 	addr = sc->sc_eep_base;
469 	for (i = 0; i < 100; i++) {
470 		/* Read block header. */
471 		error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr));
472 		if (error != 0)
473 			break;
474 		if (hdr == 0 || hdr == 0xffffffff)
475 			break;
476 		addr -= sizeof(hdr);
477 
478 		/* Extract bits from header. */
479 		ptr = (uint8_t *)&hdr;
480 		alg = (ptr[0] & 0xe0) >> 5;
481 		ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f);
482 		len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4;
483 		DPRINTFN(DBG_INIT, sc,
484 		    "ROM block %zd: alg=%d ref=%d len=%zd\n",
485 		    i, alg, ref, len);
486 
487 		/* Read block data (len <= 0x7ff). */
488 		error = ops->read_rom_data(sc, addr, buf, len);
489 		if (error != 0)
490 			break;
491 		addr -= len;
492 
493 		/* Read block checksum. */
494 		error = ops->read_rom_data(sc, addr, &sum, sizeof(sum));
495 		if (error != 0)
496 			break;
497 		addr -= sizeof(sum);
498 
499 		/* Compute block checksum. */
500 		rsum = 0;
501 		for (j = 0; j < len; j++)
502 			rsum += buf[j];
503 		/* Compare to that in ROM. */
504 		if (le16toh(sum) != rsum) {
505 			DPRINTFN(DBG_INIT, sc,
506 			    "bad block checksum 0x%x/0x%x\n",
507 			    le16toh(sum), rsum);
508 			continue;	/* Skip bad block. */
509 		}
510 		/* Checksum is correct, restore block. */
511 		ar9003_restore_rom_block(sc, alg, ref, buf, len);
512 	}
513 #if BYTE_ORDER == BIG_ENDIAN
514 	/* NB: ROM is always little endian. */
515 	if (error == 0)
516 		ops->swap_rom(sc);
517 #endif
518 	free(buf, M_DEVBUF);
519 	return error;
520 }
521 
522 /*
523  * Access to General Purpose Input/Output ports.
524  */
525 Static int
526 ar9003_gpio_read(struct athn_softc *sc, int pin)
527 {
528 
529 	KASSERT(pin < sc->sc_ngpiopins);
530 	return ((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) &
531 	    (1 << pin)) != 0;
532 }
533 
534 Static void
535 ar9003_gpio_write(struct athn_softc *sc, int pin, int set)
536 {
537 	uint32_t reg;
538 
539 	KASSERT(pin < sc->sc_ngpiopins);
540 	reg = AR_READ(sc, AR_GPIO_IN_OUT);
541 	if (set)
542 		reg |= 1 << pin;
543 	else
544 		reg &= ~(1 << pin);
545 	AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
546 	AR_WRITE_BARRIER(sc);
547 }
548 
549 Static void
550 ar9003_gpio_config_input(struct athn_softc *sc, int pin)
551 {
552 	uint32_t reg;
553 
554 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
555 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
556 	reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
557 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
558 	AR_WRITE_BARRIER(sc);
559 }
560 
561 Static void
562 ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type)
563 {
564 	uint32_t reg;
565 	int mux, off;
566 
567 	mux = pin / 6;
568 	off = pin % 6;
569 
570 	reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
571 	reg &= ~(0x1f << (off * 5));
572 	reg |= (type & 0x1f) << (off * 5);
573 	AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
574 
575 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
576 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
577 	reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
578 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
579 	AR_WRITE_BARRIER(sc);
580 }
581 
582 Static void
583 ar9003_rfsilent_init(struct athn_softc *sc)
584 {
585 	uint32_t reg;
586 
587 	/* Configure hardware radio switch. */
588 	AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
589 	reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
590 	reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
591 	AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
592 	ar9003_gpio_config_input(sc, sc->sc_rfsilent_pin);
593 	AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
594 	if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
595 		AR_SETBITS(sc, AR_GPIO_INTR_POL,
596 		    AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
597 	}
598 	AR_WRITE_BARRIER(sc);
599 }
600 
601 Static int
602 ar9003_dma_alloc(struct athn_softc *sc)
603 {
604 	int error;
605 
606 	error = ar9003_tx_alloc(sc);
607 	if (error != 0)
608 		return error;
609 
610 	error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH);
611 	if (error != 0)
612 		return error;
613 
614 	error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH);
615 	if (error != 0)
616 		return error;
617 
618 	return 0;
619 }
620 
621 Static void
622 ar9003_dma_free(struct athn_softc *sc)
623 {
624 
625 	ar9003_tx_free(sc);
626 	ar9003_rx_free(sc, ATHN_QID_LP);
627 	ar9003_rx_free(sc, ATHN_QID_HP);
628 }
629 
630 Static int
631 ar9003_tx_alloc(struct athn_softc *sc)
632 {
633 	struct athn_tx_buf *bf;
634 	bus_size_t size;
635 	int error, nsegs, i;
636 
637 	/*
638 	 * Allocate Tx status ring.
639 	 */
640 	size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status);
641 
642 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
643 	    BUS_DMA_NOWAIT, &sc->sc_txsmap);
644 	if (error != 0)
645 		goto fail;
646 
647 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_txsseg, 1,
648 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
649 	    &nsegs, BUS_DMA_NOWAIT);
650 	if (error != 0)
651 		goto fail;
652 
653 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_txsseg, 1, size,
654 	    (void **)&sc->sc_txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
655 	if (error != 0)
656 		goto fail;
657 
658 	error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_txsmap, &sc->sc_txsseg,
659 	    1, size, BUS_DMA_NOWAIT | BUS_DMA_READ);
660 	if (error != 0)
661 		goto fail;
662 
663 	/*
664 	 * Allocate a pool of Tx descriptors shared between all Tx queues.
665 	 */
666 	size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc);
667 
668 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
669 	    BUS_DMA_NOWAIT, &sc->sc_map);
670 	if (error != 0)
671 		goto fail;
672 
673 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
674 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
675 	    &nsegs, BUS_DMA_NOWAIT);
676 	if (error != 0)
677 		goto fail;
678 
679 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
680 	    (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
681 	if (error != 0)
682 		goto fail;
683 
684 	error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_map, &sc->sc_seg, 1, size,
685 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
686 	if (error != 0)
687 		goto fail;
688 
689 	SIMPLEQ_INIT(&sc->sc_txbufs);
690 	for (i = 0; i < ATHN_NTXBUFS; i++) {
691 		bf = &sc->sc_txpool[i];
692 
693 		error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
694 		    AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
695 		    &bf->bf_map);
696 		if (error != 0) {
697 			printf("%s: could not create Tx buf DMA map\n",
698 			    device_xname(sc->sc_dev));
699 			goto fail;
700 		}
701 
702 		bf->bf_descs = &((struct ar_tx_desc *)sc->sc_descs)[i];
703 		bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
704 		    i * sizeof(struct ar_tx_desc);
705 
706 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
707 	}
708 	return 0;
709  fail:
710 	ar9003_tx_free(sc);
711 	return error;
712 }
713 
714 Static void
715 ar9003_tx_free(struct athn_softc *sc)
716 {
717 	struct athn_tx_buf *bf;
718 	int i;
719 
720 	for (i = 0; i < ATHN_NTXBUFS; i++) {
721 		bf = &sc->sc_txpool[i];
722 
723 		if (bf->bf_map != NULL)
724 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
725 	}
726 	/* Free Tx descriptors. */
727 	if (sc->sc_map != NULL) {
728 		if (sc->sc_descs != NULL) {
729 			bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
730 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
731 			    ATHN_NTXBUFS * sizeof(struct ar_tx_desc));
732 			bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
733 		}
734 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
735 	}
736 	/* Free Tx status ring. */
737 	if (sc->sc_txsmap != NULL) {
738 		if (sc->sc_txsring != NULL) {
739 			bus_dmamap_unload(sc->sc_dmat, sc->sc_txsmap);
740 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_txsring,
741 			     AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
742 			bus_dmamem_free(sc->sc_dmat, &sc->sc_txsseg, 1);
743 		}
744 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsmap);
745 	}
746 }
747 
748 Static int
749 ar9003_rx_alloc(struct athn_softc *sc, int qid, int count)
750 {
751 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
752 	struct athn_rx_buf *bf;
753 	struct ar_rx_status *ds;
754 	int error, i;
755 
756 	rxq->bf = malloc(count * sizeof(*bf), M_DEVBUF, M_NOWAIT | M_ZERO);
757 	if (rxq->bf == NULL)
758 		return ENOMEM;
759 
760 	rxq->count = count;
761 
762 	for (i = 0; i < rxq->count; i++) {
763 		bf = &rxq->bf[i];
764 
765 		error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
766 		    ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
767 		    &bf->bf_map);
768 		if (error != 0) {
769 			printf("%s: could not create Rx buf DMA map\n",
770 			    device_xname(sc->sc_dev));
771 			goto fail;
772 		}
773 		/*
774 		 * Assumes MCLGETI returns cache-line-size aligned buffers.
775 		 */
776 		bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
777 		if (bf->bf_m == NULL) {
778 			printf("%s: could not allocate Rx mbuf\n",
779 			    device_xname(sc->sc_dev));
780 			error = ENOBUFS;
781 			goto fail;
782 		}
783 
784 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
785 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
786 		    BUS_DMA_NOWAIT);
787 		if (error != 0) {
788 			printf("%s: could not DMA map Rx buffer\n",
789 			    device_xname(sc->sc_dev));
790 			goto fail;
791 		}
792 
793 		ds = mtod(bf->bf_m, struct ar_rx_status *);
794 		memset(ds, 0, sizeof(*ds));
795 		bf->bf_desc = ds;
796 		bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
797 
798 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
799 		    BUS_DMASYNC_PREREAD);
800 	}
801 	return 0;
802  fail:
803 	ar9003_rx_free(sc, qid);
804 	return error;
805 }
806 
807 Static void
808 ar9003_rx_free(struct athn_softc *sc, int qid)
809 {
810 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
811 	struct athn_rx_buf *bf;
812 	int i;
813 
814 	if (rxq->bf == NULL)
815 		return;
816 	for (i = 0; i < rxq->count; i++) {
817 		bf = &rxq->bf[i];
818 
819 		if (bf->bf_map != NULL)
820 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
821 		if (bf->bf_m != NULL)
822 			m_freem(bf->bf_m);
823 	}
824 	free(rxq->bf, M_DEVBUF);
825 }
826 
827 PUBLIC void
828 ar9003_reset_txsring(struct athn_softc *sc)
829 {
830 
831 	sc->sc_txscur = 0;
832 	memset(sc->sc_txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
833 	AR_WRITE(sc, AR_Q_STATUS_RING_START,
834 	    sc->sc_txsmap->dm_segs[0].ds_addr);
835 	AR_WRITE(sc, AR_Q_STATUS_RING_END,
836 	    sc->sc_txsmap->dm_segs[0].ds_addr + sc->sc_txsmap->dm_segs[0].ds_len);
837 	AR_WRITE_BARRIER(sc);
838 }
839 
840 Static void
841 ar9003_rx_enable(struct athn_softc *sc)
842 {
843 	struct athn_rxq *rxq;
844 	struct athn_rx_buf *bf;
845 	struct ar_rx_status *ds;
846 	uint32_t reg;
847 	int qid, i;
848 
849 	reg = AR_READ(sc, AR_RXBP_THRESH);
850 	reg = RW(reg, AR_RXBP_THRESH_HP, 1);
851 	reg = RW(reg, AR_RXBP_THRESH_LP, 1);
852 	AR_WRITE(sc, AR_RXBP_THRESH, reg);
853 
854 	/* Set Rx buffer size. */
855 	AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds));
856 
857 	for (qid = 0; qid < 2; qid++) {
858 		rxq = &sc->sc_rxq[qid];
859 
860 		/* Setup Rx status descriptors. */
861 		SIMPLEQ_INIT(&rxq->head);
862 		for (i = 0; i < rxq->count; i++) {
863 			bf = &rxq->bf[i];
864 			ds = bf->bf_desc;
865 
866 			memset(ds, 0, sizeof(*ds));
867 			if (qid == ATHN_QID_LP)
868 				AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
869 			else
870 				AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
871 			AR_WRITE_BARRIER(sc);
872 			SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
873 		}
874 	}
875 	/* Enable Rx. */
876 	AR_WRITE(sc, AR_CR, 0);
877 	AR_WRITE_BARRIER(sc);
878 }
879 
880 Static void
881 ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
882     struct ar_rx_status *ds)
883 {
884 	struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
885 	struct ieee80211com *ic = &sc->sc_ic;
886 	uint64_t tsf;
887 	uint32_t tstamp;
888 	uint8_t rate;
889 
890 	/* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */
891 	tstamp = ds->ds_status3;
892 	tsf = AR_READ(sc, AR_TSF_U32);
893 	tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
894 	if ((tsf & 0x7fff) < tstamp)
895 		tsf -= 0x8000;
896 	tsf = (tsf & ~0x7fff) | tstamp;
897 
898 	tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
899 	tap->wr_tsft = htole64(tsf);
900 	tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
901 	tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
902 	tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
903 	/* XXX noise. */
904 	tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA);
905 	tap->wr_rate = 0;	/* In case it can't be found below. */
906 	rate = MS(ds->ds_status1, AR_RXS1_RATE);
907 	if (rate & 0x80) {		/* HT. */
908 		/* Bit 7 set means HT MCS instead of rate. */
909 		tap->wr_rate = rate;
910 		if (!(ds->ds_status4 & AR_RXS4_GI))
911 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
912 
913 	}
914 	else if (rate & 0x10) {	/* CCK. */
915 		if (rate & 0x04)
916 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
917 		switch (rate & ~0x14) {
918 		case 0xb: tap->wr_rate =   2; break;
919 		case 0xa: tap->wr_rate =   4; break;
920 		case 0x9: tap->wr_rate =  11; break;
921 		case 0x8: tap->wr_rate =  22; break;
922 		}
923 	}
924 	else {			/* OFDM. */
925 		switch (rate) {
926 		case 0xb: tap->wr_rate =  12; break;
927 		case 0xf: tap->wr_rate =  18; break;
928 		case 0xa: tap->wr_rate =  24; break;
929 		case 0xe: tap->wr_rate =  36; break;
930 		case 0x9: tap->wr_rate =  48; break;
931 		case 0xd: tap->wr_rate =  72; break;
932 		case 0x8: tap->wr_rate =  96; break;
933 		case 0xc: tap->wr_rate = 108; break;
934 		}
935 	}
936 	bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
937 }
938 
939 Static int
940 ar9003_rx_process(struct athn_softc *sc, int qid)
941 {
942 	struct ieee80211com *ic = &sc->sc_ic;
943 	struct ifnet *ifp = &sc->sc_if;
944 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
945 	struct athn_rx_buf *bf;
946 	struct ar_rx_status *ds;
947 	struct ieee80211_frame *wh;
948 	struct ieee80211_node *ni;
949 	struct mbuf *m, *m1;
950 	size_t len;
951 	u_int32_t rstamp;
952 	int error, rssi;
953 
954 	bf = SIMPLEQ_FIRST(&rxq->head);
955 	if (__predict_false(bf == NULL)) {	/* Should not happen. */
956 		printf("%s: Rx queue is empty!\n", device_xname(sc->sc_dev));
957 		return ENOENT;
958 	}
959 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
960 	    BUS_DMASYNC_POSTREAD);
961 
962 	ds = mtod(bf->bf_m, struct ar_rx_status *);
963 	if (!(ds->ds_status1 & AR_RXS1_DONE))
964 		return EBUSY;
965 
966 	/* Check that it is a valid Rx status descriptor. */
967 	if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX |
968 	    AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS))
969 		goto skip;
970 
971 	if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) {
972 		if (ds->ds_status11 & AR_RXS11_CRC_ERR)
973 			DPRINTFN(DBG_RX, sc, "CRC error\n");
974 		else if (ds->ds_status11 & AR_RXS11_PHY_ERR)
975 			DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
976 			    MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE));
977 		else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR)
978 			DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
979 		else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) {
980 			DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
981 			/* Report Michael MIC failures to net80211. */
982 
983 			len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
984 			m = bf->bf_m;
985 			m->m_pkthdr.rcvif = ifp;
986 			m->m_data = (void *)&ds[1];
987 			m->m_pkthdr.len = m->m_len = len;
988 			wh = mtod(m, struct ieee80211_frame *);
989 
990 			ieee80211_notify_michael_failure(ic, wh,
991 			    0 /* XXX: keyix */);
992 		}
993 		ifp->if_ierrors++;
994 		goto skip;
995 	}
996 
997 	len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
998 	if (__predict_false(len < IEEE80211_MIN_LEN ||
999 	    len > ATHN_RXBUFSZ - sizeof(*ds))) {
1000 		DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%zd\n",
1001 		    len);
1002 		ifp->if_ierrors++;
1003 		goto skip;
1004 	}
1005 
1006 	/* Allocate a new Rx buffer. */
1007 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
1008 	if (__predict_false(m1 == NULL)) {
1009 		ic->ic_stats.is_rx_nobuf++;
1010 		ifp->if_ierrors++;
1011 		goto skip;
1012 	}
1013 
1014 	/* Unmap the old Rx buffer. */
1015 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1016 
1017 	/* Map the new Rx buffer. */
1018 	error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
1019 	    ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1020 	if (__predict_false(error != 0)) {
1021 		m_freem(m1);
1022 
1023 		/* Remap the old Rx buffer or panic. */
1024 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
1025 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
1026 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1027 		KASSERT(error != 0);
1028 		bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
1029 		ifp->if_ierrors++;
1030 		goto skip;
1031 	}
1032 	bf->bf_desc = mtod(m1, struct ar_rx_status *);
1033 	bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
1034 
1035 	m = bf->bf_m;
1036 	bf->bf_m = m1;
1037 
1038 	/* Finalize mbuf. */
1039 	m->m_pkthdr.rcvif = ifp;
1040 	/* Strip Rx status descriptor from head. */
1041 	m->m_data = (void *)&ds[1];
1042 	m->m_pkthdr.len = m->m_len = len;
1043 
1044 	/* Grab a reference to the source node. */
1045 	wh = mtod(m, struct ieee80211_frame *);
1046 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1047 
1048 	/* Remove any HW padding after the 802.11 header. */
1049 	if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
1050 		u_int hdrlen = ieee80211_anyhdrsize(wh);
1051 		if (hdrlen & 3) {
1052 			ovbcopy(wh, (uint8_t *)wh + 2, hdrlen);
1053 			m_adj(m, 2);
1054 		}
1055 	}
1056 	if (__predict_false(sc->sc_drvbpf != NULL))
1057 		ar9003_rx_radiotap(sc, m, ds);
1058 	/* Trim 802.11 FCS after radiotap. */
1059 	m_adj(m, -IEEE80211_CRC_LEN);
1060 
1061 	/* Send the frame to the 802.11 layer. */
1062 	rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
1063 	rstamp = ds->ds_status3;
1064 	ieee80211_input(ic, m, ni, rssi, rstamp);
1065 
1066 	/* Node is no longer needed. */
1067 	ieee80211_free_node(ni);
1068 
1069  skip:
1070 	/* Unlink this descriptor from head. */
1071 	SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
1072 	memset(bf->bf_desc, 0, sizeof(*ds));
1073 
1074 	/* Re-use this descriptor and link it to tail. */
1075 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
1076 	    BUS_DMASYNC_PREREAD);
1077 
1078 	if (qid == ATHN_QID_LP)
1079 		AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
1080 	else
1081 		AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
1082 	AR_WRITE_BARRIER(sc);
1083 	SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
1084 
1085 	/* Re-enable Rx. */
1086 	AR_WRITE(sc, AR_CR, 0);
1087 	AR_WRITE_BARRIER(sc);
1088 	return 0;
1089 }
1090 
1091 Static void
1092 ar9003_rx_intr(struct athn_softc *sc, int qid)
1093 {
1094 
1095 	while (ar9003_rx_process(sc, qid) == 0)
1096 		continue;
1097 }
1098 
1099 Static int
1100 ar9003_tx_process(struct athn_softc *sc)
1101 {
1102 	struct ifnet *ifp = &sc->sc_if;
1103 	struct athn_txq *txq;
1104 	struct athn_node *an;
1105 	struct athn_tx_buf *bf;
1106 	struct ar_tx_status *ds;
1107 	uint8_t qid, failcnt;
1108 
1109 	ds = &((struct ar_tx_status *)sc->sc_txsring)[sc->sc_txscur];
1110 	if (!(ds->ds_status8 & AR_TXS8_DONE))
1111 		return EBUSY;
1112 
1113 	sc->sc_txscur = (sc->sc_txscur + 1) % AR9003_NTXSTATUS;
1114 
1115 	/* Check that it is a valid Tx status descriptor. */
1116 	if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) !=
1117 	    (SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) {
1118 		memset(ds, 0, sizeof(*ds));
1119 		return 0;
1120 	}
1121 	/* Retrieve the queue that was used to send this PDU. */
1122 	qid = MS(ds->ds_info, AR_TXI_QCU_NUM);
1123 	txq = &sc->sc_txq[qid];
1124 
1125 	bf = SIMPLEQ_FIRST(&txq->head);
1126 	if (bf == NULL || bf == txq->wait) {
1127 		memset(ds, 0, sizeof(*ds));
1128 		return 0;
1129 	}
1130 	SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1131 	ifp->if_opackets++;
1132 
1133 	sc->sc_tx_timer = 0;
1134 
1135 	if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES)
1136 		ifp->if_oerrors++;
1137 
1138 	if (ds->ds_status3 & AR_TXS3_UNDERRUN)
1139 		athn_inc_tx_trigger_level(sc);
1140 
1141 	/* Wakeup PA predistortion state machine. */
1142 	if (bf->bf_txflags & ATHN_TXFLAG_PAPRD)
1143 		ar9003_paprd_tx_tone_done(sc);
1144 
1145 	an = (struct athn_node *)bf->bf_ni;
1146 	/*
1147 	 * NB: the data fail count contains the number of un-acked tries
1148 	 * for the final series used.  We must add the number of tries for
1149 	 * each series that was fully processed.
1150 	 */
1151 	failcnt  = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT);
1152 	/* NB: Assume two tries per series. */
1153 	failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2;
1154 
1155 	/* Update rate control statistics. */
1156 	an->amn.amn_txcnt++;
1157 	if (failcnt > 0)
1158 		an->amn.amn_retrycnt++;
1159 
1160 	DPRINTFN(DBG_TX, sc, "Tx done qid=%d status3=%d fail count=%d\n",
1161 	    qid, ds->ds_status3, failcnt);
1162 
1163 	/* Reset Tx status descriptor. */
1164 	memset(ds, 0, sizeof(*ds));
1165 
1166 	/* Unmap Tx buffer. */
1167 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1168 	    BUS_DMASYNC_POSTWRITE);
1169 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1170 
1171 	m_freem(bf->bf_m);
1172 	bf->bf_m = NULL;
1173 	ieee80211_free_node(bf->bf_ni);
1174 	bf->bf_ni = NULL;
1175 
1176 	/* Link Tx buffer back to global free list. */
1177 	SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1178 
1179 	/* Queue buffers that are waiting if there is new room. */
1180 	if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) {
1181 		AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr);
1182 		AR_WRITE_BARRIER(sc);
1183 		txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list);
1184 	}
1185 	return 0;
1186 }
1187 
1188 Static void
1189 ar9003_tx_intr(struct athn_softc *sc)
1190 {
1191 	struct ifnet *ifp = &sc->sc_if;
1192 
1193 	while (ar9003_tx_process(sc) == 0);
1194 
1195 	if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
1196 		ifp->if_flags &= ~IFF_OACTIVE;
1197 		ifp->if_start(ifp);
1198 	}
1199 }
1200 
1201 #ifndef IEEE80211_STA_ONLY
1202 /*
1203  * Process Software Beacon Alert interrupts.
1204  */
1205 Static int
1206 ar9003_swba_intr(struct athn_softc *sc)
1207 {
1208 	struct ieee80211com *ic = &sc->sc_ic;
1209 	struct ifnet *ifp = &sc->sc_if;
1210 	struct ieee80211_node *ni = ic->ic_bss;
1211 	struct athn_tx_buf *bf = sc->sc_bcnbuf;
1212 	struct ieee80211_frame *wh;
1213 	struct ieee80211_beacon_offsets bo;
1214 	struct ar_tx_desc *ds;
1215 	struct mbuf *m;
1216 	uint32_t sum;
1217 	uint8_t ridx, hwrate;
1218 	int error, totlen;
1219 
1220 #if notyet
1221 	if (ic->ic_tim_mcast_pending &&
1222 	    IF_IS_EMPTY(&ni->ni_savedq) &&
1223 	    SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
1224 		ic->ic_tim_mcast_pending = 0;
1225 #endif
1226 	if (ic->ic_dtim_count == 0)
1227 		ic->ic_dtim_count = ic->ic_dtim_period - 1;
1228 	else
1229 		ic->ic_dtim_count--;
1230 
1231 	/* Make sure previous beacon has been sent. */
1232 	if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
1233 		DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
1234 		return EBUSY;
1235 	}
1236 	/* Get new beacon. */
1237 	m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
1238 	if (__predict_false(m == NULL))
1239 		return ENOBUFS;
1240 	/* Assign sequence number. */
1241 	/* XXX: use non-QoS tid? */
1242 	wh = mtod(m, struct ieee80211_frame *);
1243 	*(uint16_t *)&wh->i_seq[0] =
1244 	    htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
1245 	ic->ic_bss->ni_txseqs[0]++;
1246 
1247 	/* Unmap and free old beacon if any. */
1248 	if (__predict_true(bf->bf_m != NULL)) {
1249 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1250 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1251 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1252 		m_freem(bf->bf_m);
1253 		bf->bf_m = NULL;
1254 	}
1255 	/* DMA map new beacon. */
1256 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1257 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1258 	if (__predict_false(error != 0)) {
1259 		m_freem(m);
1260 		return error;
1261 	}
1262 	bf->bf_m = m;
1263 
1264 	/* Setup Tx descriptor (simplified ar9003_tx()). */
1265 	ds = bf->bf_descs;
1266 	memset(ds, 0, sizeof(*ds));
1267 
1268 	ds->ds_info =
1269 	    SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
1270 	    SM(AR_TXI_DESC_NDWORDS, 23) |
1271 	    SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) |
1272 	    AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
1273 
1274 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1275 	ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen);
1276 	ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER);
1277 	ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
1278 	ds->ds_ctl12 |= AR_TXC12_NO_ACK;
1279 	ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
1280 
1281 	/* Write number of tries. */
1282 	ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1);
1283 
1284 	/* Write Tx rate. */
1285 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1286 	    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1287 	hwrate = athn_rates[ridx].hwrate;
1288 	ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate);
1289 
1290 	/* Write Tx chains. */
1291 	ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask);
1292 
1293 	ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr;
1294 	/* Segment length must be a multiple of 4. */
1295 	ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN,
1296 	    (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
1297 	/* Compute Tx descriptor checksum. */
1298 	sum = ds->ds_info;
1299 	sum += ds->ds_segs[0].ds_data;
1300 	sum += ds->ds_segs[0].ds_ctl;
1301 	sum = (sum >> 16) + (sum & 0xffff);
1302 	ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
1303 
1304 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1305 	    BUS_DMASYNC_PREWRITE);
1306 
1307 	/* Stop Tx DMA before putting the new beacon on the queue. */
1308 	athn_stop_tx_dma(sc, ATHN_QID_BEACON);
1309 
1310 	AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
1311 
1312 	for(;;) {
1313 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
1314 			break;
1315 
1316 		IF_DEQUEUE(&ni->ni_savedq, m);
1317 		if (m == NULL)
1318 			break;
1319 		if (!IF_IS_EMPTY(&ni->ni_savedq)) {
1320 			/* more queued frames, set the more data bit */
1321 			wh = mtod(m, struct ieee80211_frame *);
1322 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1323 		}
1324 
1325 		if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
1326 			ieee80211_free_node(ni);
1327 			ifp->if_oerrors++;
1328 			break;
1329 		}
1330 	}
1331 
1332 	/* Kick Tx. */
1333 	AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
1334 	AR_WRITE_BARRIER(sc);
1335 	return 0;
1336 }
1337 #endif
1338 
1339 Static int
1340 ar9003_intr(struct athn_softc *sc)
1341 {
1342 	uint32_t intr, intr2, intr5, sync;
1343 
1344 	/* Get pending interrupts. */
1345 	intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
1346 	if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
1347 		intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
1348 		if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
1349 			return 0;	/* Not for us. */
1350 	}
1351 
1352 	if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
1353 	    (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
1354 		intr = AR_READ(sc, AR_ISR);
1355 	else
1356 		intr = 0;
1357 	sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
1358 	if (intr == 0 && sync == 0)
1359 		return 0;	/* Not for us. */
1360 
1361 	if (intr != 0) {
1362 		if (intr & AR_ISR_BCNMISC) {
1363 			intr2 = AR_READ(sc, AR_ISR_S2);
1364 #ifdef notyet
1365 			if (intr2 & AR_ISR_S2_TIM)
1366 				/* TBD */;
1367 			if (intr2 & AR_ISR_S2_TSFOOR)
1368 				/* TBD */;
1369 			if (intr2 & AR_ISR_S2_BB_WATCHDOG)
1370 				/* TBD */;
1371 #endif
1372 		}
1373 		intr = AR_READ(sc, AR_ISR_RAC);
1374 		if (intr == AR_INTR_SPURIOUS)
1375 			return 1;
1376 
1377 #ifndef IEEE80211_STA_ONLY
1378 		if (intr & AR_ISR_SWBA)
1379 			ar9003_swba_intr(sc);
1380 #endif
1381 		if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
1382 			ar9003_rx_intr(sc, ATHN_QID_LP);
1383 		if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR))
1384 			ar9003_rx_intr(sc, ATHN_QID_LP);
1385 		if (intr & AR_ISR_HP_RXOK)
1386 			ar9003_rx_intr(sc, ATHN_QID_HP);
1387 
1388 		if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
1389 			ar9003_tx_intr(sc);
1390 		if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL))
1391 			ar9003_tx_intr(sc);
1392 
1393 		if (intr & AR_ISR_GENTMR) {
1394 			intr5 = AR_READ(sc, AR_ISR_S5_S);
1395 			DPRINTFN(DBG_INTR, sc,
1396 			    "GENTMR trigger=%d thresh=%d\n",
1397 			    MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
1398 			    MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
1399 		}
1400 	}
1401 	if (sync != 0) {
1402 		if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
1403 			AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
1404 			AR_WRITE(sc, AR_RC, 0);
1405 		}
1406 
1407 		if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
1408 		    (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
1409 			pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
1410 			return 1;
1411 		}
1412 
1413 		AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
1414 		(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
1415 	}
1416 	return 1;
1417 }
1418 
1419 Static int
1420 ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
1421     int txflags)
1422 {
1423 	struct ieee80211com *ic = &sc->sc_ic;
1424 	struct ieee80211_key *k = NULL;
1425 	struct ieee80211_frame *wh;
1426 	struct athn_series series[4];
1427 	struct ar_tx_desc *ds;
1428 	struct athn_txq *txq;
1429 	struct athn_tx_buf *bf;
1430 	struct athn_node *an = (void *)ni;
1431 	struct mbuf *m1;
1432 	uint32_t sum;
1433 	uint16_t qos;
1434 	uint8_t txpower, type, encrtype, ridx[4];
1435 	int i, error, totlen, hasqos, qid;
1436 
1437 	/* Grab a Tx buffer from our global free list. */
1438 	bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
1439 	KASSERT(bf != NULL);
1440 
1441 	/* Map 802.11 frame type to hardware frame type. */
1442 	wh = mtod(m, struct ieee80211_frame *);
1443 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1444 	    IEEE80211_FC0_TYPE_MGT) {
1445 		/* NB: Beacons do not use ar9003_tx(). */
1446 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1447 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1448 			type = AR_FRAME_TYPE_PROBE_RESP;
1449 		else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1450 		    IEEE80211_FC0_SUBTYPE_ATIM)
1451 			type = AR_FRAME_TYPE_ATIM;
1452 		else
1453 			type = AR_FRAME_TYPE_NORMAL;
1454 	}
1455 	else if ((wh->i_fc[0] &
1456 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1457 	    (IEEE80211_FC0_TYPE_CTL  | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
1458 		type = AR_FRAME_TYPE_PSPOLL;
1459 	}
1460 	else
1461 		type = AR_FRAME_TYPE_NORMAL;
1462 
1463 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1464 		k = ieee80211_crypto_encap(ic, ni, m);
1465 		if (k == NULL)
1466 			return ENOBUFS;
1467 
1468 		/* packet header may have moved, reset our local pointer */
1469 		wh = mtod(m, struct ieee80211_frame *);
1470 	}
1471 
1472 	/* XXX 2-byte padding for QoS and 4-addr headers. */
1473 
1474 	/* Select the HW Tx queue to use for this frame. */
1475 	if ((hasqos = ieee80211_has_qos(wh))) {
1476 #ifdef notyet_edca
1477 		uint8_t tid;
1478 
1479 		qos = ieee80211_get_qos(wh);
1480 		tid = qos & IEEE80211_QOS_TID;
1481 		qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
1482 #else
1483 		qos = ieee80211_get_qos(wh);
1484 		qid = ATHN_QID_AC_BE;
1485 #endif /* notyet_edca */
1486 	}
1487 	else if (type == AR_FRAME_TYPE_PSPOLL) {
1488 		qos = 0;
1489 		qid = ATHN_QID_PSPOLL;
1490 	}
1491 	else if (txflags & ATHN_TXFLAG_CAB) {
1492 		qos = 0;
1493 		qid = ATHN_QID_CAB;
1494 	}
1495 	else {
1496 		qos = 0;
1497 		qid = ATHN_QID_AC_BE;
1498 	}
1499 	txq = &sc->sc_txq[qid];
1500 
1501 	/* Select the transmit rates to use for this frame. */
1502 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1503 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1504 	    IEEE80211_FC0_TYPE_DATA) {
1505 		/* Use lowest rate for all tries. */
1506 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1507 		    (ic->ic_curmode == IEEE80211_MODE_11A) ?
1508 			ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1509 	}
1510 	else if (ic->ic_fixed_rate != -1) {
1511 		/* Use same fixed rate for all tries. */
1512 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1513 		    sc->sc_fixed_ridx;
1514 	}
1515 	else {
1516 		int txrate = ni->ni_txrate;
1517 		/* Use fallback table of the node. */
1518 		for (i = 0; i < 4; i++) {
1519 			ridx[i] = an->ridx[txrate];
1520 			txrate = an->fallback[txrate];
1521 		}
1522 	}
1523 
1524 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1525 		struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
1526 
1527 		tap->wt_flags = 0;
1528 		/* Use initial transmit rate. */
1529 		tap->wt_rate = athn_rates[ridx[0]].rate;
1530 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1531 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1532 // XXX		tap->wt_hwqueue = qid;
1533 		if (ridx[0] != ATHN_RIDX_CCK1 &&
1534 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1535 			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1536 
1537 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1538 	}
1539 
1540 	/* DMA map mbuf. */
1541 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1542 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1543 	if (__predict_false(error != 0)) {
1544 		if (error != EFBIG) {
1545 			printf("%s: can't map mbuf (error %d)\n",
1546 			    device_xname(sc->sc_dev), error);
1547 			m_freem(m);
1548 			return error;
1549 		}
1550 		/*
1551 		 * DMA mapping requires too many DMA segments; linearize
1552 		 * mbuf in kernel virtual address space and retry.
1553 		 */
1554 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1555 		if (m1 == NULL) {
1556 			m_freem(m);
1557 			return ENOBUFS;
1558 		}
1559 		if (m->m_pkthdr.len > (int)MHLEN) {
1560 			MCLGET(m1, M_DONTWAIT);
1561 			if (!(m1->m_flags & M_EXT)) {
1562 				m_freem(m);
1563 				m_freem(m1);
1564 				return ENOBUFS;
1565 			}
1566 		}
1567 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
1568 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
1569 		m_freem(m);
1570 		m = m1;
1571 
1572 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1573 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1574 		if (error != 0) {
1575 			printf("%s: can't map mbuf (error %d)\n",
1576 			    device_xname(sc->sc_dev), error);
1577 			m_freem(m);
1578 			return error;
1579 		}
1580 	}
1581 	bf->bf_m = m;
1582 	bf->bf_ni = ni;
1583 	bf->bf_txflags = txflags;
1584 
1585 	wh = mtod(m, struct ieee80211_frame *);
1586 
1587 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1588 
1589 	/* Setup Tx descriptor. */
1590 	ds = bf->bf_descs;
1591 	memset(ds, 0, sizeof(*ds));
1592 
1593 	ds->ds_info =
1594 	    SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
1595 	    SM(AR_TXI_DESC_NDWORDS, 23) |
1596 	    SM(AR_TXI_QCU_NUM, qid) |
1597 	    AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
1598 
1599 	ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK;
1600 	txpower = AR_MAX_RATE_POWER;	/* Get from per-rate registers. */
1601 	ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower);
1602 
1603 	ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type);
1604 
1605 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1606 	    (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
1607 	     IEEE80211_QOS_ACKPOLICY_NOACK))
1608 		ds->ds_ctl12 |= AR_TXC12_NO_ACK;
1609 
1610 #if notyet
1611 	if (0 && k != NULL) {
1612 		uintptr_t entry;
1613 
1614 		/*
1615 		 * Map 802.11 cipher to hardware encryption type and
1616 		 * compute MIC+ICV overhead.
1617 		 */
1618 		switch (k->k_cipher) {
1619 		case IEEE80211_CIPHER_WEP40:
1620 		case IEEE80211_CIPHER_WEP104:
1621 			encrtype = AR_ENCR_TYPE_WEP;
1622 			totlen += 4;
1623 			break;
1624 		case IEEE80211_CIPHER_TKIP:
1625 			encrtype = AR_ENCR_TYPE_TKIP;
1626 			totlen += 12;
1627 			break;
1628 		case IEEE80211_CIPHER_CCMP:
1629 			encrtype = AR_ENCR_TYPE_AES;
1630 			totlen += 8;
1631 			break;
1632 		default:
1633 			panic("unsupported cipher");
1634 		}
1635 		/*
1636 		 * NB: The key cache entry index is stored in the key
1637 		 * private field when the key is installed.
1638 		 */
1639 		entry = (uintptr_t)k->k_priv;
1640 		ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry);
1641 		ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID;
1642 	}
1643 	else
1644 #endif
1645 		encrtype = AR_ENCR_TYPE_CLEAR;
1646 	ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype);
1647 
1648 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1649 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1650 		/* NB: Group frames are sent using CCK in 802.11b/g. */
1651 		if (totlen > ic->ic_rtsthreshold) {
1652 			ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
1653 		}
1654 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1655 		    athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
1656 			if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1657 				ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
1658 			else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1659 				ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE;
1660 		}
1661 	}
1662 	if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
1663 		/* Disable multi-rate retries when protection is used. */
1664 		ridx[1] = ridx[2] = ridx[3] = ridx[0];
1665 	}
1666 	/* Setup multi-rate retries. */
1667 	for (i = 0; i < 4; i++) {
1668 		series[i].hwrate = athn_rates[ridx[i]].hwrate;
1669 		if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
1670 		    ridx[i] != ATHN_RIDX_CCK1 &&
1671 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1672 			series[i].hwrate |= 0x04;
1673 		series[i].dur = 0;
1674 	}
1675 	if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
1676 		/* Compute duration for each series. */
1677 		for (i = 0; i < 4; i++) {
1678 			series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
1679 			    athn_rates[ridx[i]].rspridx, ic->ic_flags);
1680 		}
1681 	}
1682 	/* If this is a PA training frame, select the Tx chain to use. */
1683 	if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) {
1684 		ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK,
1685 		    1 << sc->sc_paprd_curchain);
1686 	}
1687 
1688 	/* Write number of tries for each series. */
1689 	ds->ds_ctl13 =
1690 	    SM(AR_TXC13_XMIT_DATA_TRIES0, 2) |
1691 	    SM(AR_TXC13_XMIT_DATA_TRIES1, 2) |
1692 	    SM(AR_TXC13_XMIT_DATA_TRIES2, 2) |
1693 	    SM(AR_TXC13_XMIT_DATA_TRIES3, 4);
1694 
1695 	/* Tell HW to update duration field in 802.11 header. */
1696 	if (type != AR_FRAME_TYPE_PSPOLL)
1697 		ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA;
1698 
1699 	/* Write Tx rate for each series. */
1700 	ds->ds_ctl14 =
1701 	    SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) |
1702 	    SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) |
1703 	    SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) |
1704 	    SM(AR_TXC14_XMIT_RATE3, series[3].hwrate);
1705 
1706 	/* Write duration for each series. */
1707 	ds->ds_ctl15 =
1708 	    SM(AR_TXC15_PACKET_DUR0, series[0].dur) |
1709 	    SM(AR_TXC15_PACKET_DUR1, series[1].dur);
1710 	ds->ds_ctl16 =
1711 	    SM(AR_TXC16_PACKET_DUR2, series[2].dur) |
1712 	    SM(AR_TXC16_PACKET_DUR3, series[3].dur);
1713 
1714 	if ((sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) &&
1715 	    ic->ic_curmode == IEEE80211_MODE_11A) {
1716 		/*
1717 		 * In order to not exceed PCIe power requirements, we only
1718 		 * use two Tx chains for MCS0~15 on 5GHz band on these chips.
1719 		 */
1720 		ds->ds_ctl18 =
1721 		    SM(AR_TXC18_CHAIN_SEL0,
1722 			(ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1723 		    SM(AR_TXC18_CHAIN_SEL1,
1724 			(ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1725 		    SM(AR_TXC18_CHAIN_SEL2,
1726 			(ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1727 		    SM(AR_TXC18_CHAIN_SEL3,
1728 			(ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask);
1729 	}
1730 	else {
1731 		/* Use the same Tx chains for all tries. */
1732 		ds->ds_ctl18 =
1733 		    SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask) |
1734 		    SM(AR_TXC18_CHAIN_SEL1, sc->sc_txchainmask) |
1735 		    SM(AR_TXC18_CHAIN_SEL2, sc->sc_txchainmask) |
1736 		    SM(AR_TXC18_CHAIN_SEL3, sc->sc_txchainmask);
1737 	}
1738 #ifdef notyet
1739 #ifndef IEEE80211_NO_HT
1740 	/* Use the same short GI setting for all tries. */
1741 	if (ic->ic_flags & IEEE80211_F_SHGI)
1742 		ds->ds_ctl18 |= AR_TXC18_GI0123;
1743 	/* Use the same channel width for all tries. */
1744 	if (ic->ic_flags & IEEE80211_F_CBW40)
1745 		ds->ds_ctl18 |= AR_TXC18_2040_0123;
1746 #endif
1747 #endif
1748 
1749 	if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
1750 		uint8_t protridx, hwrate;
1751 		uint16_t dur = 0;
1752 
1753 		/* Use the same protection mode for all tries. */
1754 		if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
1755 			ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01;
1756 			ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23;
1757 		}
1758 		/* Select protection rate (suboptimal but ok). */
1759 		protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1760 		    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
1761 		if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
1762 			/* Account for CTS duration. */
1763 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1764 			    athn_rates[protridx].rspridx, ic->ic_flags);
1765 		}
1766 		dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
1767 		if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
1768 			/* Account for ACK duration. */
1769 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1770 			    athn_rates[ridx[0]].rspridx, ic->ic_flags);
1771 		}
1772 		/* Write protection frame duration and rate. */
1773 		ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur);
1774 		hwrate = athn_rates[protridx].hwrate;
1775 		if (protridx == ATHN_RIDX_CCK2 &&
1776 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1777 			hwrate |= 0x04;
1778 		ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate);
1779 	}
1780 
1781 	ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen);
1782 	ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING;
1783 
1784 	for (i = 0; i < bf->bf_map->dm_nsegs; i++) {
1785 		ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr;
1786 		ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN,
1787 		    bf->bf_map->dm_segs[i].ds_len);
1788 	}
1789 	/* Compute Tx descriptor checksum. */
1790 	sum = ds->ds_info + ds->ds_link;
1791 	for (i = 0; i < 4; i++) {
1792 		sum += ds->ds_segs[i].ds_data;
1793 		sum += ds->ds_segs[i].ds_ctl;
1794 	}
1795 	sum = (sum >> 16) + (sum & 0xffff);
1796 	ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
1797 
1798 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1799 	    BUS_DMASYNC_PREWRITE);
1800 
1801 	DPRINTFN(DBG_TX, sc,
1802 	    "Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n",
1803 	    qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12,
1804 	    ds->ds_ctl14);
1805 
1806 	SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
1807 	SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
1808 
1809 	/* Queue buffer unless hardware FIFO is already full. */
1810 	if (++txq->queued <= AR9003_TX_QDEPTH) {
1811 		AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
1812 		AR_WRITE_BARRIER(sc);
1813 	}
1814 	else if (txq->wait == NULL)
1815 		txq->wait = bf;
1816 	return 0;
1817 }
1818 
1819 Static void
1820 ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
1821 {
1822 	uint32_t reg;
1823 
1824 	reg = IEEE80211_IS_CHAN_2GHZ(c) ?
1825 	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1826 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
1827 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
1828 		reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
1829 	}
1830 	AR_WRITE(sc, AR_PHY_MODE, reg);
1831 	AR_WRITE_BARRIER(sc);
1832 }
1833 
1834 static __inline uint32_t
1835 ar9003_synth_delay(struct athn_softc *sc)
1836 {
1837 	uint32_t delay;
1838 
1839 	delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
1840 	if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
1841 		delay = (delay * 4) / 22;
1842 	else
1843 		delay = delay / 10;	/* in 100ns steps */
1844 	return delay;
1845 }
1846 
1847 Static int
1848 ar9003_rf_bus_request(struct athn_softc *sc)
1849 {
1850 	int ntries;
1851 
1852 	/* Request RF Bus grant. */
1853 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1854 	for (ntries = 0; ntries < 10000; ntries++) {
1855 		if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
1856 			return 0;
1857 		DELAY(10);
1858 	}
1859 	DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
1860 	return ETIMEDOUT;
1861 }
1862 
1863 Static void
1864 ar9003_rf_bus_release(struct athn_softc *sc)
1865 {
1866 	/* Wait for the synthesizer to settle. */
1867 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc));
1868 
1869 	/* Release the RF Bus grant. */
1870 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
1871 	AR_WRITE_BARRIER(sc);
1872 }
1873 
1874 Static void
1875 ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
1876     struct ieee80211_channel *extc)
1877 {
1878 	uint32_t phy;
1879 
1880 	phy = AR_READ(sc, AR_PHY_GEN_CTRL);
1881 	phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 |
1882 	    AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH;
1883 #ifndef IEEE80211_NO_HT
1884 	if (extc != NULL) {
1885 		phy |= AR_PHY_GC_DYN2040_EN;
1886 		if (extc > c)	/* XXX */
1887 			phy |= AR_PHY_GC_DYN2040_PRI_CH;
1888 	}
1889 #endif
1890 	/* Turn off Green Field detection for now. */
1891 	phy &= ~AR_PHY_GC_GF_DETECT_EN;
1892 	AR_WRITE(sc, AR_PHY_GEN_CTRL, phy);
1893 
1894 	AR_WRITE(sc, AR_2040_MODE,
1895 	    (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
1896 
1897 	/* Set global transmit timeout. */
1898 	AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
1899 	/* Set carrier sense timeout. */
1900 	AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
1901 	AR_WRITE_BARRIER(sc);
1902 }
1903 
1904 Static void
1905 ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
1906     struct ieee80211_channel *extc)
1907 {
1908 	uint32_t coeff, exp, man, reg;
1909 
1910 	/* Set Delta Slope (exponent and mantissa). */
1911 	coeff = (100 << 24) / c->ic_freq;
1912 	athn_get_delta_slope(coeff, &exp, &man);
1913 	DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1914 
1915 	reg = AR_READ(sc, AR_PHY_TIMING3);
1916 	reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
1917 	reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
1918 	AR_WRITE(sc, AR_PHY_TIMING3, reg);
1919 
1920 	/* For Short GI, coeff is 9/10 that of normal coeff. */
1921 	coeff = (9 * coeff) / 10;
1922 	athn_get_delta_slope(coeff, &exp, &man);
1923 	DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1924 
1925 	reg = AR_READ(sc, AR_PHY_SGI_DELTA);
1926 	reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp);
1927 	reg = RW(reg, AR_PHY_SGI_DSC_MAN, man);
1928 	AR_WRITE(sc, AR_PHY_SGI_DELTA, reg);
1929 	AR_WRITE_BARRIER(sc);
1930 }
1931 
1932 Static void
1933 ar9003_enable_antenna_diversity(struct athn_softc *sc)
1934 {
1935 	AR_SETBITS(sc, AR_PHY_CCK_DETECT,
1936 	    AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1937 	AR_WRITE_BARRIER(sc);
1938 }
1939 
1940 Static void
1941 ar9003_init_baseband(struct athn_softc *sc)
1942 {
1943 	uint32_t synth_delay;
1944 
1945 	synth_delay = ar9003_synth_delay(sc);
1946 	/* Activate the PHY (includes baseband activate and synthesizer on). */
1947 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1948 	AR_WRITE_BARRIER(sc);
1949 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
1950 }
1951 
1952 Static void
1953 ar9003_disable_phy(struct athn_softc *sc)
1954 {
1955 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1956 	AR_WRITE_BARRIER(sc);
1957 }
1958 
1959 Static void
1960 ar9003_init_chains(struct athn_softc *sc)
1961 {
1962 	if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
1963 		AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1964 
1965 	/* Setup chain masks. */
1966 	AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
1967 	AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
1968 
1969 	if (sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) {
1970 		/*
1971 		 * All self-generated frames are sent using two Tx chains
1972 		 * on these chips to not exceed PCIe power requirements.
1973 		 */
1974 		AR_WRITE(sc, AR_SELFGEN_MASK, 0x3);
1975 	}
1976 	else
1977 		AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
1978 	AR_WRITE_BARRIER(sc);
1979 }
1980 
1981 Static void
1982 ar9003_set_rxchains(struct athn_softc *sc)
1983 {
1984 	if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
1985 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
1986 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
1987 		AR_WRITE_BARRIER(sc);
1988 	}
1989 }
1990 
1991 #ifdef notused
1992 Static void
1993 ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
1994 {
1995 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
1996 #define SIGN_EXT(v)	(((v) ^ 0x100) - 0x100)
1997 	uint32_t reg;
1998 	int i;
1999 
2000 	for (i = 0; i < sc->sc_nrxchains; i++) {
2001 		reg = AR_READ(sc, AR_PHY_CCA(i));
2002 		nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
2003 		nf[i] = SIGN_EXT(nf[i]);
2004 
2005 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
2006 		nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
2007 		nf_ext[i] = SIGN_EXT(nf_ext[i]);
2008 	}
2009 #undef SIGN_EXT
2010 }
2011 #endif /* notused */
2012 
2013 #ifdef notused
2014 Static void
2015 ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
2016 {
2017 	uint32_t reg;
2018 	int i;
2019 
2020 	for (i = 0; i < sc->sc_nrxchains; i++) {
2021 		reg = AR_READ(sc, AR_PHY_CCA(i));
2022 		reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
2023 		AR_WRITE(sc, AR_PHY_CCA(i), reg);
2024 
2025 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
2026 		reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
2027 		AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
2028 	}
2029 	AR_WRITE_BARRIER(sc);
2030 }
2031 #endif /* notused */
2032 
2033 #ifdef notused
2034 Static void
2035 ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
2036 {
2037 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
2038 	int16_t cca_min, cca_max;
2039 	int i;
2040 
2041 	if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
2042 		/* Noisefloor calibration not finished. */
2043 		return;
2044 	}
2045 	/* Noisefloor calibration is finished. */
2046 	ar9003_read_noisefloor(sc, nf, nf_ext);
2047 
2048 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
2049 		cca_min = sc->sc_cca_min_2g;
2050 		cca_max = sc->sc_cca_max_2g;
2051 	}
2052 	else {
2053 		cca_min = sc->sc_cca_min_5g;
2054 		cca_max = sc->sc_cca_max_5g;
2055 	}
2056 	/* Update noisefloor history. */
2057 	for (i = 0; i < sc->sc_nrxchains; i++) {
2058 		if (nf[i] < cca_min)
2059 			nf[i] = cca_min;
2060 		else if (nf[i] > cca_max)
2061 			nf[i] = cca_max;
2062 		if (nf_ext[i] < cca_min)
2063 			nf_ext[i] = cca_min;
2064 		else if (nf_ext[i] > cca_max)
2065 			nf_ext[i] = cca_max;
2066 
2067 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
2068 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
2069 	}
2070 	if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
2071 		sc->sc_nf_hist_cur = 0;
2072 }
2073 #endif /* notused */
2074 
2075 #ifdef notused
2076 Static void
2077 ar9003_bb_load_noisefloor(struct athn_softc *sc)
2078 {
2079 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
2080 	int i, ntries;
2081 
2082 	/* Write filtered noisefloor values. */
2083 	for (i = 0; i < sc->sc_nrxchains; i++) {
2084 		nf[i] = sc->sc_nf_priv[i] * 2;
2085 		nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
2086 	}
2087 	ar9003_write_noisefloor(sc, nf, nf_ext);
2088 
2089 	/* Load filtered noisefloor values into baseband. */
2090 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2091 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2092 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2093 	/* Wait for load to complete. */
2094 	for (ntries = 0; ntries < 1000; ntries++) {
2095 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
2096 			break;
2097 		DELAY(10);
2098 	}
2099 	if (ntries == 1000) {
2100 		DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
2101 		return;
2102 	}
2103 
2104 	/* Restore noisefloor values to initial (max) values. */
2105 	for (i = 0; i < AR_MAX_CHAINS; i++)
2106 		nf[i] = nf_ext[i] = -50 * 2;
2107 	ar9003_write_noisefloor(sc, nf, nf_ext);
2108 }
2109 #endif /* notused */
2110 
2111 #ifdef notused
2112 Static void
2113 ar9300_noisefloor_calib(struct athn_softc *sc)
2114 {
2115 
2116 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2117 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2118 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2119 }
2120 #endif /* notused */
2121 
2122 Static void
2123 ar9003_do_noisefloor_calib(struct athn_softc *sc)
2124 {
2125 
2126 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2127 }
2128 
2129 PUBLIC int
2130 ar9003_init_calib(struct athn_softc *sc)
2131 {
2132 	uint8_t txchainmask, rxchainmask;
2133 	uint32_t reg;
2134 	int ntries;
2135 
2136 	/* Save chains masks. */
2137 	txchainmask = sc->sc_txchainmask;
2138 	rxchainmask = sc->sc_rxchainmask;
2139 	/* Configure hardware before calibration. */
2140 	if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE)
2141 		txchainmask = rxchainmask = 0x3;
2142 	else
2143 		txchainmask = rxchainmask = 0x7;
2144 	ar9003_init_chains(sc);
2145 
2146 	/* Perform Tx IQ calibration. */
2147 	ar9003_calib_tx_iq(sc);
2148 	/* Disable and re-enable the PHY chips. */
2149 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2150 	AR_WRITE_BARRIER(sc);
2151 	DELAY(5);
2152 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
2153 
2154 	/* Calibrate the AGC. */
2155 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
2156 	/* Poll for offset calibration completion. */
2157 	for (ntries = 0; ntries < 10000; ntries++) {
2158 		reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
2159 		if (!(reg & AR_PHY_AGC_CONTROL_CAL))
2160 			break;
2161 		DELAY(10);
2162 	}
2163 	if (ntries == 10000)
2164 		return ETIMEDOUT;
2165 
2166 	/* Restore chains masks. */
2167 	sc->sc_txchainmask = txchainmask;
2168 	sc->sc_rxchainmask = rxchainmask;
2169 	ar9003_init_chains(sc);
2170 
2171 	return 0;
2172 }
2173 
2174 Static void
2175 ar9003_do_calib(struct athn_softc *sc)
2176 {
2177 	uint32_t reg;
2178 
2179 	if (sc->sc_cur_calib_mask & ATHN_CAL_IQ) {
2180 		reg = AR_READ(sc, AR_PHY_TIMING4);
2181 		reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10);
2182 		AR_WRITE(sc, AR_PHY_TIMING4, reg);
2183 		AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
2184 		AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
2185 		AR_WRITE_BARRIER(sc);
2186 	}
2187 	else if (sc->sc_cur_calib_mask & ATHN_CAL_TEMP) {
2188 		AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
2189 		    AR_PHY_65NM_CH0_THERM_LOCAL);
2190 		AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
2191 		    AR_PHY_65NM_CH0_THERM_START);
2192 		AR_WRITE_BARRIER(sc);
2193 	}
2194 }
2195 
2196 Static void
2197 ar9003_next_calib(struct athn_softc *sc)
2198 {
2199 	/* Check if we have any calibration in progress. */
2200 	if (sc->sc_cur_calib_mask != 0) {
2201 		if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
2202 			/* Calibration completed for current sample. */
2203 			ar9003_calib_iq(sc);
2204 		}
2205 	}
2206 }
2207 
2208 Static void
2209 ar9003_calib_iq(struct athn_softc *sc)
2210 {
2211 	struct athn_iq_cal *cal;
2212 	uint32_t reg, i_coff_denom, q_coff_denom;
2213 	int32_t i_coff, q_coff;
2214 	int i, iq_corr_neg;
2215 
2216 	for (i = 0; i < AR_MAX_CHAINS; i++) {
2217 		cal = &sc->sc_calib.iq[i];
2218 
2219 		/* Read IQ calibration measures (clear on read). */
2220 		cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i));
2221 		cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i));
2222 		cal->iq_corr_meas =
2223 		    (int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i));
2224 	}
2225 
2226 	for (i = 0; i < sc->sc_nrxchains; i++) {
2227 		cal = &sc->sc_calib.iq[i];
2228 
2229 		if (cal->pwr_meas_q == 0)
2230 			continue;
2231 
2232 		if ((iq_corr_neg = cal->iq_corr_meas < 0))
2233 			cal->iq_corr_meas = -cal->iq_corr_meas;
2234 
2235 		i_coff_denom =
2236 		    (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256;
2237 		q_coff_denom = cal->pwr_meas_q / 64;
2238 
2239 		if (i_coff_denom == 0 || q_coff_denom == 0)
2240 			continue;	/* Prevents division by zero. */
2241 
2242 		i_coff = cal->iq_corr_meas / i_coff_denom;
2243 		q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
2244 
2245 		if (i_coff > 63)
2246 			i_coff = 63;
2247 		else if (i_coff < -63)
2248 			i_coff = -63;
2249 		/* Negate i_coff if iq_corr_meas is positive. */
2250 		if (!iq_corr_neg)
2251 			i_coff = -i_coff;
2252 		if (q_coff > 63)
2253 			q_coff = 63;
2254 		else if (q_coff < -63)
2255 			q_coff = -63;
2256 
2257 		DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
2258 		reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
2259 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
2260 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
2261 		AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
2262 	}
2263 
2264 	/* Apply new settings. */
2265 	AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
2266 	    AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
2267 	AR_WRITE_BARRIER(sc);
2268 
2269 	/* IQ calibration done. */
2270 	sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
2271 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2272 }
2273 
2274 #define DELPT	32
2275 Static int
2276 ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2])
2277 {
2278 /* Sign-extends 12-bit value (assumes upper bits are zeroes). */
2279 #define SIGN_EXT(v)	(((v) ^ 0x800) - 0x800)
2280 #define SCALE		(1 << 15)
2281 #define SHIFT		(1 <<  8)
2282 	struct {
2283 		int32_t	m, p, c;
2284 	} val[2][2];
2285 	int32_t mag[2][2], phs[2][2], cos[2], sin[2];
2286 	int32_t div, f1, f2, f3, m, p, c;
2287 	int32_t txmag, txphs, rxmag, rxphs;
2288 	int32_t q_coff, i_coff;
2289 	int i, j;
2290 
2291 	/* Extract our twelve signed 12-bit values from res[] array. */
2292 	val[0][0].m = res[0] & 0xfff;
2293 	val[0][0].p = (res[0] >> 12) & 0xfff;
2294 	val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8;
2295 
2296 	val[0][1].m = (res[1] >> 4) & 0xfff;
2297 	val[0][1].p = res[2] & 0xfff;
2298 	val[0][1].c = (res[2] >> 12) & 0xfff;
2299 
2300 	val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8;
2301 	val[1][0].p = (res[3] >> 4) & 0xfff;
2302 	val[1][0].c = res[4] & 0xfff;
2303 
2304 	val[1][1].m = (res[4] >> 12) & 0xfff;
2305 	val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8;
2306 	val[1][1].c = (res[5] >> 4) & 0xfff;
2307 
2308 	for (i = 0; i < 2; i++) {
2309 		int32_t ymin, ymax;
2310 		for (j = 0; j < 2; j++) {
2311 			m = SIGN_EXT(val[i][j].m);
2312 			p = SIGN_EXT(val[i][j].p);
2313 			c = SIGN_EXT(val[i][j].c);
2314 
2315 			if (p == 0)
2316 				return 1;	/* Prevent division by 0. */
2317 
2318 			mag[i][j] = (m * SCALE) / p;
2319 			phs[i][j] = (c * SCALE) / p;
2320 		}
2321 		sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT;
2322 		cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT;
2323 		/* Find magnitude by approximation. */
2324 		ymin = MIN(abs(sin[i]), abs(cos[i]));
2325 		ymax = MAX(abs(sin[i]), abs(cos[i]));
2326 		div = ymax - (ymax / 32) + (ymin / 8) + (ymin / 4);
2327 		if (div == 0)
2328 			return 1;	/* Prevent division by 0. */
2329 		/* Normalize sin and cos by magnitude. */
2330 		sin[i] = (sin[i] * SCALE) / div;
2331 		cos[i] = (cos[i] * SCALE) / div;
2332 	}
2333 
2334 	/* Compute IQ mismatch (solve 4x4 linear equation). */
2335 	f1 = cos[0] - cos[1];
2336 	f3 = sin[0] - sin[1];
2337 	f2 = (f1 * f1 + f3 * f3) / SCALE;
2338 	if (f2 == 0)
2339 		return 1;	/* Prevent division by 0. */
2340 
2341 	/* Compute Tx magnitude mismatch. */
2342 	txmag = (f1 * ( mag[0][0] - mag[1][0]) +
2343 		 f3 * ( phs[0][0] - phs[1][0])) / f2;
2344 	/* Compute Tx phase mismatch. */
2345 	txphs = (f3 * (-mag[0][0] + mag[1][0]) +
2346 		 f1 * ( phs[0][0] - phs[1][0])) / f2;
2347 
2348 	if (txmag == SCALE)
2349 		return 1;	/* Prevent division by 0. */
2350 
2351 	/* Compute Rx magnitude mismatch. */
2352 	rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE;
2353 	/* Compute Rx phase mismatch. */
2354 	rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE;
2355 
2356 	if (-rxmag == SCALE)
2357 		return 1;	/* Prevent division by 0. */
2358 
2359 	txmag = (txmag * SCALE) / (SCALE - txmag);
2360 	txphs = -txphs;
2361 
2362 	q_coff = (txmag * 128) / SCALE;
2363 	if (q_coff < -63)
2364 		q_coff = -63;
2365 	else if (q_coff > 63)
2366 		q_coff = 63;
2367 	i_coff = (txphs * 256) / SCALE;
2368 	if (i_coff < -63)
2369 		i_coff = -63;
2370 	else if (i_coff > 63)
2371 		i_coff = 63;
2372 	coeff[0] = q_coff * 128 + i_coff;
2373 
2374 	rxmag = (-rxmag * SCALE) / (SCALE + rxmag);
2375 	rxphs = -rxphs;
2376 
2377 	q_coff = (rxmag * 128) / SCALE;
2378 	if (q_coff < -63)
2379 		q_coff = -63;
2380 	else if (q_coff > 63)
2381 		q_coff = 63;
2382 	i_coff = (rxphs * 256) / SCALE;
2383 	if (i_coff < -63)
2384 		i_coff = -63;
2385 	else if (i_coff > 63)
2386 		i_coff = 63;
2387 	coeff[1] = q_coff * 128 + i_coff;
2388 
2389 	return 0;
2390 #undef SHIFT
2391 #undef SCALE
2392 #undef SIGN_EXT
2393 }
2394 
2395 Static int
2396 ar9003_calib_tx_iq(struct athn_softc *sc)
2397 {
2398 	uint32_t reg;
2399 	int32_t res[6], coeff[2];
2400 	int i, j, ntries;
2401 
2402 	reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1);
2403 	reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
2404 	AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg);
2405 
2406 	/* Start Tx IQ calibration. */
2407 	AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL);
2408 	/* Wait for completion. */
2409 	for (ntries = 0; ntries < 10000; ntries++) {
2410 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_START);
2411 		if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL))
2412 			break;
2413 		DELAY(10);
2414 	}
2415 	if (ntries == 10000)
2416 		return ETIMEDOUT;
2417 
2418 	for (i = 0; i < sc->sc_ntxchains; i++) {
2419 		/* Read Tx IQ calibration status for this chain. */
2420 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i));
2421 		if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED)
2422 			return EIO;
2423 		/*
2424 		 * Read Tx IQ calibration results for this chain.
2425 		 * This consists in twelve signed 12-bit values.
2426 		 */
2427 		for (j = 0; j < 3; j++) {
2428 			AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
2429 			    AR_PHY_CHAN_INFO_TAB_S2_READ);
2430 			reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
2431 			res[j * 2 + 0] = reg;
2432 
2433 			AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
2434 			    AR_PHY_CHAN_INFO_TAB_S2_READ);
2435 			reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
2436 			res[j * 2 + 1] = reg & 0xffff;
2437 		}
2438 
2439 		/* Compute Tx IQ correction. */
2440 		if (ar9003_get_iq_corr(sc, res, coeff) != 0)
2441 			return EIO;
2442 
2443 		/* Write Tx IQ correction coefficients. */
2444 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i));
2445 		reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
2446 		    coeff[0]);
2447 		AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg);
2448 
2449 		reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
2450 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF,
2451 		    coeff[1] >> 7);
2452 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF,
2453 		    coeff[1]);
2454 		AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
2455 		AR_WRITE_BARRIER(sc);
2456 	}
2457 
2458 	/* Enable Tx IQ correction. */
2459 	AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3,
2460 	    AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN);
2461 	AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
2462 	    AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN);
2463 	AR_WRITE_BARRIER(sc);
2464 	return 0;
2465 }
2466 #undef DELPT
2467 
2468 /*-
2469  * The power amplifier predistortion state machine works as follows:
2470  * 1) Disable digital predistorters for all Tx chains
2471  * 2) Repeat steps 3~7 for all Tx chains
2472  * 3)   Force Tx gain to that of training signal
2473  * 4)   Send training signal (asynchronous)
2474  * 5)   Wait for training signal to complete (asynchronous)
2475  * 6)   Read PA measurements (input power, output power, output phase)
2476  * 7)   Compute the predistortion function that linearizes PA output
2477  * 8) Write predistortion functions to hardware tables for all Tx chains
2478  * 9) Enable digital predistorters for all Tx chains
2479  */
2480 #ifdef notused
2481 Static void
2482 ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c)
2483 {
2484 	static const int scaling[] = {
2485 		261376, 248079, 233759, 220464,
2486 		208194, 196949, 185706, 175487
2487 	};
2488 	struct athn_ops *ops = &sc->sc_ops;
2489 	uint32_t reg, ht20mask, ht40mask;
2490 	int i;
2491 
2492 	/* Read PA predistortion masks from ROM. */
2493 	ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask);
2494 
2495 	/* AM-to-AM: amplifier's amplitude characteristic. */
2496 	reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM);
2497 	reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask);
2498 	AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg);
2499 
2500 	/* AM-to-PM: amplifier's phase transfer characteristic. */
2501 	reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM);
2502 	reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask);
2503 	AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg);
2504 
2505 	reg = AR_READ(sc, AR_PHY_PAPRD_HT40);
2506 	reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask);
2507 	AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg);
2508 
2509 	for (i = 0; i < AR9003_MAX_CHAINS; i++) {
2510 		AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
2511 		    AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE);
2512 
2513 		reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i));
2514 		reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181);
2515 		reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361);
2516 		reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA;
2517 		reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA;
2518 		reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA;
2519 		AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg);
2520 
2521 		reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i));
2522 		reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
2523 		AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg);
2524 	}
2525 
2526 	/* Disable all digital predistorters during calibration. */
2527 	for (i = 0; i < AR9003_MAX_CHAINS; i++) {
2528 		AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
2529 		    AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
2530 	}
2531 	AR_WRITE_BARRIER(sc);
2532 
2533 	/*
2534 	 * Configure training signal.
2535 	 */
2536 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1);
2537 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28);
2538 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30);
2539 	reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE;
2540 	reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE;
2541 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE;
2542 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE;
2543 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE;
2544 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg);
2545 
2546 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147);
2547 
2548 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3);
2549 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4);
2550 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4);
2551 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7);
2552 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1);
2553 	if (AR_SREV_9485(sc))
2554 		reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3);
2555 	else
2556 		reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6);
2557 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15);
2558 	reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE;
2559 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg);
2560 
2561 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4);
2562 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0);
2563 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400);
2564 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100);
2565 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg);
2566 
2567 	for (i = 0; i < __arraycount(scaling); i++) {
2568 		reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i));
2569 		reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]);
2570 		AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg);
2571 	}
2572 
2573 	/* Save Tx gain table. */
2574 	for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++)
2575 		sc->sc_txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i));
2576 
2577 	/* Set Tx power of training signal (use setting for MCS0). */
2578 	sc->sc_trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5),
2579 	    AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4;
2580 
2581 	/*
2582 	 * Start PA predistortion calibration state machine.
2583 	 */
2584 	/* Find first available Tx chain. */
2585 	sc->sc_paprd_curchain = 0;
2586 	while (!(sc->sc_txchainmask & (1 << sc->sc_paprd_curchain)))
2587 		sc->sc_paprd_curchain++;
2588 
2589 	/* Make sure training done bit is clear. */
2590 	AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
2591 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
2592 	AR_WRITE_BARRIER(sc);
2593 
2594 	/* Transmit training signal. */
2595 	ar9003_paprd_tx_tone(sc);
2596 }
2597 #endif /* notused */
2598 
2599 Static int
2600 ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow)
2601 {
2602 	int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt;
2603 	int32_t tempcorr, voltcorr;
2604 	uint32_t reg;
2605 	int8_t delta;
2606 
2607 	scale = MS(AR_READ(sc, AR_PHY_TPC_12),
2608 	    AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
2609 
2610 	reg = AR_READ(sc, AR_PHY_TPC_19);
2611 	atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM);
2612 	avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT);
2613 
2614 	reg = AR_READ(sc, AR_PHY_TPC_18);
2615 	tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL);
2616 	voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL);
2617 
2618 	reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4);
2619 	temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM);
2620 	volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT);
2621 
2622 	delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)),
2623 	    AR_PHY_TPC_11_OLPC_GAIN_DELTA);
2624 
2625 	/* Compute temperature and voltage correction. */
2626 	tempcorr = (atemp * (temp - tempcal) + 128) / 256;
2627 	voltcorr = (avolt * (volt - voltcal) + 64) / 128;
2628 
2629 	/* Compute desired Tx gain. */
2630 	return pow - delta - tempcorr - voltcorr + scale;
2631 }
2632 
2633 Static void
2634 ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain)
2635 {
2636 	uint32_t reg;
2637 
2638 	reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN);
2639 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN,
2640 	    MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN));
2641 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN,
2642 	    MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN));
2643 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN,
2644 	    MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN));
2645 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA,
2646 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNA));
2647 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB,
2648 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNB));
2649 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC,
2650 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNC));
2651 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND,
2652 	    MS(txgain, AR_PHY_TXGAIN_PADRVGND));
2653 	reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL;
2654 	reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN;
2655 	AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg);
2656 
2657 	reg = AR_READ(sc, AR_PHY_TPC_1);
2658 	reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
2659 	reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN;
2660 	AR_WRITE(sc, AR_PHY_TPC_1, reg);
2661 	AR_WRITE_BARRIER(sc);
2662 }
2663 
2664 Static void
2665 ar9003_set_training_gain(struct athn_softc *sc, int chain)
2666 {
2667 	size_t i;
2668 	int gain;
2669 
2670 	/*
2671 	 * Get desired gain for training signal power (take into account
2672 	 * current temperature/voltage).
2673 	 */
2674 	gain = ar9003_get_desired_txgain(sc, chain, sc->sc_trainpow);
2675 	/* Find entry in table. */
2676 	for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++)
2677 		if ((int)MS(sc->sc_txgain[i], AR_PHY_TXGAIN_INDEX) >= gain)
2678 			break;
2679 	ar9003_force_txgain(sc, sc->sc_txgain[i]);
2680 }
2681 
2682 Static int
2683 ar9003_paprd_tx_tone(struct athn_softc *sc)
2684 {
2685 #define TONE_LEN	1800
2686 	struct ieee80211com *ic = &sc->sc_ic;
2687 	struct ieee80211_frame *wh;
2688 	struct ieee80211_node *ni;
2689 	struct mbuf *m;
2690 	int error;
2691 
2692 	/* Build a Null (no data) frame of TONE_LEN bytes. */
2693 	m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN);
2694 	if (m == NULL)
2695 		return ENOBUFS;
2696 	memset(mtod(m, void *), 0, TONE_LEN);
2697 	wh = mtod(m, struct ieee80211_frame *);
2698 	wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA;
2699 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2700 	*(uint16_t *)wh->i_dur = htole16(10);	/* XXX */
2701 	IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr);
2702 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2703 	IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
2704 	m->m_pkthdr.len = m->m_len = TONE_LEN;
2705 
2706 	/* Set gain of training signal. */
2707 	ar9003_set_training_gain(sc, sc->sc_paprd_curchain);
2708 
2709 	/* Transmit training signal. */
2710 	ni = ieee80211_ref_node(ic->ic_bss);
2711 	if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0)
2712 		ieee80211_free_node(ni);
2713 	return error;
2714 #undef TONE_LEN
2715 }
2716 
2717 static __inline int
2718 get_scale(int val)
2719 {
2720 	int log = 0;
2721 
2722 	/* Find the log base 2 (position of highest bit set). */
2723 	while (val >>= 1)
2724 		log++;
2725 
2726 	return (log > 10) ? log - 10 : 0;
2727 }
2728 
2729 /*
2730  * Compute predistortion function to linearize power amplifier output based
2731  * on feedback from training signal.
2732  */
2733 Static int
2734 ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo,
2735     const uint32_t *hi)
2736 {
2737 #define NBINS	23
2738 	int chain = sc->sc_paprd_curchain;
2739 	int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1];
2740 	int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1];
2741 	int nsamples, txsum, rxsum, rosum, maxidx;
2742 	int order, order5x, order5xrem, order3x, order3xrem, y5, y3;
2743 	int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4;
2744 	int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2;
2745 	int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in;
2746 	int tmp, i;
2747 
2748 	/* Set values at origin. */
2749 	x[0] = y[0] = t[0] = 0;
2750 
2751 #define SCALE	32
2752 	maxidx = 0;
2753 	for (i = 0; i < NBINS; i++) {
2754 		nsamples = lo[i] & 0xffff;
2755 		/* Skip bins that contain 16 or less samples. */
2756 		if (nsamples <= 16) {
2757 			x[i + 1] = y[i + 1] = t[i + 1] = 0;
2758 			continue;
2759 		}
2760 		txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16;
2761 		rxsum = (lo[i + NBINS] & 0xffff) << 5 |
2762 		    ((hi[i] >> 11) & 0x1f);
2763 		rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16;
2764 		/* Sign-extend 27-bit value. */
2765 		rosum = (rosum ^ 0x4000000) - 0x4000000;
2766 
2767 		txsum *= SCALE;
2768 		rxsum *= SCALE;
2769 		rosum *= SCALE;
2770 
2771 		x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE;
2772 		y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE +
2773 		    SCALE * maxidx + SCALE / 2;
2774 		t[i + 1] = (rosum + nsamples) / nsamples;
2775 		maxidx++;
2776 	}
2777 #undef SCALE
2778 
2779 #define SCALE_LOG	8
2780 #define SCALE		(1 << SCALE_LOG)
2781 	if (x[6] == x[3])
2782 		return 1;	/* Prevent division by 0. */
2783 	G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]);
2784 	if (G == 0)
2785 		return 1;	/* Prevent division by 0. */
2786 
2787 	sc->sc_gain1[chain] = G;	/* Save low signal gain. */
2788 
2789 	/* Find interception point. */
2790 	icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3];
2791 	for (i = 0; i <= 3; i++) {
2792 		y[i] = i * 32;
2793 		x[i] = (y[i] * SCALE + G) / G;
2794 	}
2795 	for (i = 4; i <= maxidx; i++)
2796 		y[i] -= icept;
2797 
2798 	xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G;
2799 	order = (xnonlin + y[maxidx]) / y[maxidx];
2800 	if (order == 0)
2801 		M = 10;
2802 	else if (order == 1)
2803 		M = 9;
2804 	else
2805 		M = 8;
2806 
2807 	I = (maxidx >= 16) ? 7 : maxidx / 2;
2808 	L = maxidx - I;
2809 
2810 	sumy2 = sumy4 = y2 = y4 = 0;
2811 	for (i = 0; i <= L; i++) {
2812 		if (y[i + I] == 0)
2813 			return 1;	/* Prevent division by 0. */
2814 
2815 		xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G;
2816 		xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I];
2817 		xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
2818 		xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
2819 
2820 		y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE);
2821 
2822 		sumy2 += y2;
2823 		sumy4 += y2 * y2;
2824 
2825 		b1[i] = y2 * (L + 1);
2826 		b2[i] = y2;
2827 	}
2828 	for (i = 0; i <= L; i++) {
2829 		b1[i] -= sumy2;
2830 		b2[i] = sumy4 - sumy2 * b2[i];
2831 	}
2832 
2833 	maxxtildeabs = maxb1abs = maxb2abs = 0;
2834 	for (i = 0; i <= L; i++) {
2835 		tmp = abs(xtilde[i]);
2836 		if (tmp > maxxtildeabs)
2837 			maxxtildeabs = tmp;
2838 
2839 		tmp = abs(b1[i]);
2840 		if (tmp > maxb1abs)
2841 			maxb1abs = tmp;
2842 
2843 		tmp = abs(b2[i]);
2844 		if (tmp > maxb2abs)
2845 			maxb2abs = tmp;
2846 	}
2847 	Qx  = get_scale(maxxtildeabs);
2848 	Qb1 = get_scale(maxb1abs);
2849 	Qb2 = get_scale(maxb2abs);
2850 	for (i = 0; i <= L; i++) {
2851 		xtilde[i] /= 1 << Qx;
2852 		b1[i] /= 1 << Qb1;
2853 		b2[i] /= 1 << Qb2;
2854 	}
2855 
2856 	alpha = beta = 0;
2857 	for (i = 0; i <= L; i++) {
2858 		alpha += b1[i] * xtilde[i];
2859 		beta  += b2[i] * xtilde[i];
2860 	}
2861 
2862 	scale = ((y4 / SCALE_LOG) * (L + 1) -
2863 		 (y2 / SCALE_LOG) * sumy2) * SCALE_LOG;
2864 
2865 	Qscale = get_scale(abs(scale));
2866 	scale /= 1 << Qscale;
2867 	Qalpha = get_scale(abs(alpha));
2868 	alpha /= 1 << Qalpha;
2869 	Qbeta  = get_scale(abs(beta));
2870 	beta  /= 1 << Qbeta;
2871 
2872 	order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale;
2873 	order5x = 1 << (order / 5);
2874 	order5xrem = 1 << (order % 5);
2875 
2876 	order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale;
2877 	order3x = 1 << (order / 3);
2878 	order3xrem = 1 << (order % 3);
2879 
2880 	for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2881 		tmp = i * 32;
2882 
2883 		/* Fifth order. */
2884 		y5 = ((beta * tmp) / 64) / order5x;
2885 		y5 = (y5 * tmp) / order5x;
2886 		y5 = (y5 * tmp) / order5x;
2887 		y5 = (y5 * tmp) / order5x;
2888 		y5 = (y5 * tmp) / order5x;
2889 		y5 = y5 / order5xrem;
2890 
2891 		/* Third oder. */
2892 		y3 = (alpha * tmp) / order3x;
2893 		y3 = (y3 * tmp) / order3x;
2894 		y3 = (y3 * tmp) / order3x;
2895 		y3 = y3 / order3xrem;
2896 
2897 		in = y5 + y3 + (SCALE * tmp) / G;
2898 		if (i >= 2 && in < sc->sc_pa_in[chain][i - 1]) {
2899 			in = sc->sc_pa_in[chain][i - 1] +
2900 			    (sc->sc_pa_in[chain][i - 1] -
2901 			     sc->sc_pa_in[chain][i - 2]);
2902 		}
2903 		if (in > 1400)
2904 			in = 1400;
2905 		sc->sc_pa_in[chain][i] = in;
2906 	}
2907 
2908 	/* Compute average theta of first 5 bins (linear region). */
2909 	tavg = 0;
2910 	for (i = 1; i <= 5; i++)
2911 		tavg += t[i];
2912 	tavg /= 5;
2913 	for (i = 1; i <= 5; i++)
2914 		t[i] = 0;
2915 	for (i = 6; i <= maxidx; i++)
2916 		t[i] -= tavg;
2917 
2918 	alpha = beta = 0;
2919 	for (i = 0; i <= L; i++) {
2920 		ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I];
2921 		ttilde = ((ttilde << M) +  y[i + I]) / y[i + I];
2922 		ttilde = ((ttilde << M) +  y[i + I]) / y[i + I];
2923 
2924 		alpha += b2[i] * ttilde;
2925 		beta  += b1[i] * ttilde;
2926 	}
2927 
2928 	Qalpha = get_scale(abs(alpha));
2929 	alpha /= 1 << Qalpha;
2930 	Qbeta  = get_scale(abs(beta));
2931 	beta  /= 1 << Qbeta;
2932 
2933 	order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5;
2934 	order5x = 1 << (order / 5);
2935 	order5xrem = 1 << (order % 5);
2936 
2937 	order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5;
2938 	order3x = 1 << (order / 3);
2939 	order3xrem = 1 << (order % 3);
2940 
2941 	for (i = 0; i <= 4; i++)
2942 		sc->sc_angle[chain][i] = 0;	/* Linear at that range. */
2943 	for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2944 		tmp = i * 32;
2945 
2946 		/* Fifth order. */
2947 		if (beta > 0)
2948 			y5 = (((beta * tmp - 64) / 64) - order5x) / order5x;
2949 		else
2950 			y5 = (((beta * tmp - 64) / 64) + order5x) / order5x;
2951 		y5 = (y5 * tmp) / order5x;
2952 		y5 = (y5 * tmp) / order5x;
2953 		y5 = (y5 * tmp) / order5x;
2954 		y5 = (y5 * tmp) / order5x;
2955 		y5 = y5 / order5xrem;
2956 
2957 		/* Third oder. */
2958 		if (beta > 0)	/* XXX alpha? */
2959 			y3 = (alpha * tmp - order3x) / order3x;
2960 		else
2961 			y3 = (alpha * tmp + order3x) / order3x;
2962 		y3 = (y3 * tmp) / order3x;
2963 		y3 = (y3 * tmp) / order3x;
2964 		y3 = y3 / order3xrem;
2965 
2966 		angle = y5 + y3;
2967 		if (angle < -150)
2968 			angle = -150;
2969 		else if (angle > 150)
2970 			angle = 150;
2971 		sc->sc_angle[chain][i] = angle;
2972 	}
2973 	/* Angle for entry 4 is derived from angle for entry 5. */
2974 	sc->sc_angle[chain][4] = (sc->sc_angle[chain][5] + 2) / 2;
2975 
2976 	return 0;
2977 #undef SCALE
2978 #undef SCALE_LOG
2979 #undef NBINS
2980 }
2981 
2982 Static void
2983 ar9003_enable_predistorter(struct athn_softc *sc, int chain)
2984 {
2985 	uint32_t reg;
2986 	int i;
2987 
2988 	/* Write digital predistorter lookup table. */
2989 	for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2990 		AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i),
2991 		    SM(AR_PHY_PAPRD_PA_IN, sc->sc_pa_in[chain][i]) |
2992 		    SM(AR_PHY_PAPRD_ANGLE, sc->sc_angle[chain][i]));
2993 	}
2994 
2995 	reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain));
2996 	reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->sc_gain1[chain]);
2997 	AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg);
2998 
2999 	/* Indicate Tx power used for calibration (training signal). */
3000 	reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain));
3001 	reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->sc_trainpow);
3002 	AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg);
3003 
3004 	/* Enable digital predistorter for this chain. */
3005 	AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain),
3006 	    AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
3007 	AR_WRITE_BARRIER(sc);
3008 }
3009 
3010 Static void
3011 ar9003_paprd_enable(struct athn_softc *sc)
3012 {
3013 	int i;
3014 
3015 	/* Enable digital predistorters for all Tx chains. */
3016 	for (i = 0; i < AR9003_MAX_CHAINS; i++)
3017 		if (sc->sc_txchainmask & (1 << i))
3018 			ar9003_enable_predistorter(sc, i);
3019 }
3020 
3021 /*
3022  * This function is called when our training signal has been sent.
3023  */
3024 Static void
3025 ar9003_paprd_tx_tone_done(struct athn_softc *sc)
3026 {
3027 	uint32_t lo[48], hi[48];
3028 	size_t i;
3029 
3030 	/* Make sure training is complete. */
3031 	if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) &
3032 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE))
3033 		return;
3034 
3035 	/* Read feedback from training signal. */
3036 	AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
3037 	for (i = 0; i < __arraycount(lo); i++)
3038 		lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
3039 	AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
3040 	for (i = 0; i < __arraycount(hi); i++)
3041 		hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
3042 
3043 	AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
3044 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
3045 
3046 	/* Compute predistortion function based on this feedback. */
3047 	if (ar9003_compute_predistortion(sc, lo, hi) != 0)
3048 		return;
3049 
3050 	/* Get next available Tx chain. */
3051 	while (++sc->sc_paprd_curchain < AR9003_MAX_CHAINS)
3052 		if (sc->sc_txchainmask & (1 << sc->sc_paprd_curchain))
3053 			break;
3054 	if (sc->sc_paprd_curchain == AR9003_MAX_CHAINS) {
3055 		/* All Tx chains measured; enable digital predistortion. */
3056 		ar9003_paprd_enable(sc);
3057 	}
3058 	else	/* Measure next Tx chain. */
3059 		ar9003_paprd_tx_tone(sc);
3060 }
3061 
3062 PUBLIC void
3063 ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
3064 {
3065 
3066 	/* Make sure forced gain is disabled. */
3067 	AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0);
3068 
3069 	AR_WRITE(sc, AR_PHY_PWRTX_RATE1,
3070 	    (power[ATHN_POWER_OFDM18  ] & 0x3f) << 24 |
3071 	    (power[ATHN_POWER_OFDM12  ] & 0x3f) << 16 |
3072 	    (power[ATHN_POWER_OFDM9   ] & 0x3f) <<  8 |
3073 	    (power[ATHN_POWER_OFDM6   ] & 0x3f));
3074 	AR_WRITE(sc, AR_PHY_PWRTX_RATE2,
3075 	    (power[ATHN_POWER_OFDM54  ] & 0x3f) << 24 |
3076 	    (power[ATHN_POWER_OFDM48  ] & 0x3f) << 16 |
3077 	    (power[ATHN_POWER_OFDM36  ] & 0x3f) <<  8 |
3078 	    (power[ATHN_POWER_OFDM24  ] & 0x3f));
3079 	AR_WRITE(sc, AR_PHY_PWRTX_RATE3,
3080 	    (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
3081 	    (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
3082 	    /* NB: No eXtended Range for AR9003. */
3083 	    (power[ATHN_POWER_CCK1_LP ] & 0x3f));
3084 	AR_WRITE(sc, AR_PHY_PWRTX_RATE4,
3085 	    (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
3086 	    (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
3087 	    (power[ATHN_POWER_CCK55_SP] & 0x3f) <<  8 |
3088 	    (power[ATHN_POWER_CCK55_LP] & 0x3f));
3089 	/*
3090 	 * NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled
3091 	 * because it is read by PA predistortion functions.
3092 	 */
3093 	AR_WRITE(sc, AR_PHY_PWRTX_RATE5,
3094 	    (power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 |
3095 	    (power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 |
3096 	    (power[ATHN_POWER_HT20( 1)] & 0x3f) <<  8 |
3097 	    (power[ATHN_POWER_HT20( 0)] & 0x3f));
3098 #ifndef IEEE80211_NO_HT
3099 	AR_WRITE(sc, AR_PHY_PWRTX_RATE6,
3100 	    (power[ATHN_POWER_HT20(13)] & 0x3f) << 24 |
3101 	    (power[ATHN_POWER_HT20(12)] & 0x3f) << 16 |
3102 	    (power[ATHN_POWER_HT20( 7)] & 0x3f) <<  8 |
3103 	    (power[ATHN_POWER_HT20( 6)] & 0x3f));
3104 	AR_WRITE(sc, AR_PHY_PWRTX_RATE7,
3105 	    (power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 |
3106 	    (power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 |
3107 	    (power[ATHN_POWER_HT40( 1)] & 0x3f) <<  8 |
3108 	    (power[ATHN_POWER_HT40( 0)] & 0x3f));
3109 	AR_WRITE(sc, AR_PHY_PWRTX_RATE8,
3110 	    (power[ATHN_POWER_HT40(13)] & 0x3f) << 24 |
3111 	    (power[ATHN_POWER_HT40(12)] & 0x3f) << 16 |
3112 	    (power[ATHN_POWER_HT40( 7)] & 0x3f) <<  8 |
3113 	    (power[ATHN_POWER_HT40( 6)] & 0x3f));
3114 	AR_WRITE(sc, AR_PHY_PWRTX_RATE10,
3115 	    (power[ATHN_POWER_HT20(21)] & 0x3f) << 24 |
3116 	    (power[ATHN_POWER_HT20(20)] & 0x3f) << 16 |
3117 	    (power[ATHN_POWER_HT20(15)] & 0x3f) <<  8 |
3118 	    (power[ATHN_POWER_HT20(14)] & 0x3f));
3119 	AR_WRITE(sc, AR_PHY_PWRTX_RATE11,
3120 	    (power[ATHN_POWER_HT40(23)] & 0x3f) << 24 |
3121 	    (power[ATHN_POWER_HT40(22)] & 0x3f) << 16 |
3122 	    (power[ATHN_POWER_HT20(23)] & 0x3f) <<  8 |
3123 	    (power[ATHN_POWER_HT20(22)] & 0x3f));
3124 	AR_WRITE(sc, AR_PHY_PWRTX_RATE12,
3125 	    (power[ATHN_POWER_HT40(21)] & 0x3f) << 24 |
3126 	    (power[ATHN_POWER_HT40(20)] & 0x3f) << 16 |
3127 	    (power[ATHN_POWER_HT40(15)] & 0x3f) <<  8 |
3128 	    (power[ATHN_POWER_HT40(14)] & 0x3f));
3129 #endif
3130 	AR_WRITE_BARRIER(sc);
3131 }
3132 
3133 Static void
3134 ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
3135 {
3136 #define X(x)	((uint32_t)(x) << 2)
3137 	const struct athn_gain *prog = sc->sc_rx_gain;
3138 	const uint32_t *pvals;
3139 	int i;
3140 
3141 	if (IEEE80211_IS_CHAN_2GHZ(c))
3142 		pvals = prog->vals_2g;
3143 	else
3144 		pvals = prog->vals_5g;
3145 	for (i = 0; i < prog->nregs; i++)
3146 		AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
3147 	AR_WRITE_BARRIER(sc);
3148 #undef X
3149 }
3150 
3151 Static void
3152 ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
3153 {
3154 #define X(x)	((uint32_t)(x) << 2)
3155 	const struct athn_gain *prog = sc->sc_tx_gain;
3156 	const uint32_t *pvals;
3157 	int i;
3158 
3159 	if (IEEE80211_IS_CHAN_2GHZ(c))
3160 		pvals = prog->vals_2g;
3161 	else
3162 		pvals = prog->vals_5g;
3163 	for (i = 0; i < prog->nregs; i++)
3164 		AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
3165 	AR_WRITE_BARRIER(sc);
3166 #undef X
3167 }
3168 
3169 Static void
3170 ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
3171     struct ieee80211_channel *extc)
3172 {
3173 #define X(x)	((uint32_t)(x) << 2)
3174 	struct athn_ops *ops = &sc->sc_ops;
3175 	const struct athn_ini *ini = sc->sc_ini;
3176 	const uint32_t *pvals;
3177 	uint32_t reg;
3178 	int i;
3179 
3180 	/*
3181 	 * The common init values include the pre and core phases for the
3182 	 * SoC, MAC, BB and Radio subsystems.
3183 	 */
3184 	DPRINTFN(DBG_INIT, sc, "writing pre and core init vals\n");
3185 	for (i = 0; i < ini->ncmregs; i++) {
3186 		AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]);
3187 		if (AR_IS_ANALOG_REG(X(ini->cmregs[i])))
3188 			DELAY(100);
3189 		if ((i & 0x1f) == 0)
3190 			DELAY(1);
3191 	}
3192 
3193 	/*
3194 	 * The modal init values include the post phase for the SoC, MAC,
3195 	 * BB and Radio subsystems.
3196 	 */
3197 #ifndef IEEE80211_NO_HT
3198 	if (extc != NULL) {
3199 		if (IEEE80211_IS_CHAN_2GHZ(c))
3200 			pvals = ini->vals_2g40;
3201 		else
3202 			pvals = ini->vals_5g40;
3203 	}
3204 	else
3205 #endif
3206 	{
3207 		if (IEEE80211_IS_CHAN_2GHZ(c))
3208 			pvals = ini->vals_2g20;
3209 		else
3210 			pvals = ini->vals_5g20;
3211 	}
3212 	DPRINTFN(DBG_INIT, sc, "writing post init vals\n");
3213 	for (i = 0; i < ini->nregs; i++) {
3214 		AR_WRITE(sc, X(ini->regs[i]), pvals[i]);
3215 		if (AR_IS_ANALOG_REG(X(ini->regs[i])))
3216 			DELAY(100);
3217 		if ((i & 0x1f) == 0)
3218 			DELAY(1);
3219 	}
3220 
3221 	if (sc->sc_rx_gain != NULL)
3222 		ar9003_reset_rx_gain(sc, c);
3223 	if (sc->sc_tx_gain != NULL)
3224 		ar9003_reset_tx_gain(sc, c);
3225 
3226 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
3227 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
3228 		/* Update modal values for fast PLL clock. */
3229 #ifndef IEEE80211_NO_HT
3230 		if (extc != NULL)
3231 			pvals = ini->fastvals_5g40;
3232 		else
3233 #endif
3234 			pvals = ini->fastvals_5g20;
3235 		DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
3236 		for (i = 0; i < ini->nfastregs; i++) {
3237 			AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]);
3238 			if (AR_IS_ANALOG_REG(X(ini->fastregs[i])))
3239 				DELAY(100);
3240 			if ((i & 0x1f) == 0)
3241 				DELAY(1);
3242 		}
3243 	}
3244 
3245 	/*
3246 	 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
3247 	 * descriptor status.
3248 	 */
3249 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
3250 
3251 	reg = AR_READ(sc, AR_PCU_MISC_MODE2);
3252 	reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE;
3253 	reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX;
3254 	reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP;
3255 	AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
3256 	AR_WRITE_BARRIER(sc);
3257 
3258 	ar9003_set_phy(sc, c, extc);
3259 	ar9003_init_chains(sc);
3260 
3261 	ops->set_txpower(sc, c, extc);
3262 #undef X
3263 }
3264 
3265 PUBLIC void
3266 ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
3267     uint8_t ctl, const uint8_t *fbins,
3268     const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4])
3269 {
3270 	uint8_t fbin;
3271 	int i, delta, lo, hi;
3272 
3273 	lo = hi = -1;
3274 	fbin = athn_chan2fbin(c);
3275 	for (i = 0; i < nchans; i++) {
3276 		delta = fbin - fbins[i];
3277 		/* Find the largest sample that is <= our frequency. */
3278 		if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
3279 			lo = i;
3280 		/* Find the smallest sample that is >= our frequency. */
3281 		if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
3282 			hi = i;
3283 	}
3284 	if (lo == -1)
3285 		lo = hi;
3286 	else if (hi == -1)
3287 		hi = lo;
3288 	/* Interpolate values. */
3289 	for (i = 0; i < 4; i++) {
3290 		tpow[i] = athn_interpolate(fbin,
3291 		    fbins[lo], tgt[lo].tPow2x[i],
3292 		    fbins[hi], tgt[hi].tPow2x[i]);
3293 	}
3294 	/* XXX Apply conformance test limit. */
3295 }
3296 
3297 PUBLIC void
3298 ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
3299     uint8_t ctl, const uint8_t *fbins,
3300     const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14])
3301 {
3302 	uint8_t fbin;
3303 	int i, delta, lo, hi;
3304 
3305 	lo = hi = -1;
3306 	fbin = athn_chan2fbin(c);
3307 	for (i = 0; i < nchans; i++) {
3308 		delta = fbin - fbins[i];
3309 		/* Find the largest sample that is <= our frequency. */
3310 		if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
3311 			lo = i;
3312 		/* Find the smallest sample that is >= our frequency. */
3313 		if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
3314 			hi = i;
3315 	}
3316 	if (lo == -1)
3317 		lo = hi;
3318 	else if (hi == -1)
3319 		hi = lo;
3320 	/* Interpolate values. */
3321 	for (i = 0; i < 14; i++) {
3322 		tpow[i] = athn_interpolate(fbin,
3323 		    fbins[lo], tgt[lo].tPow2x[i],
3324 		    fbins[hi], tgt[hi].tPow2x[i]);
3325 	}
3326 	/* XXX Apply conformance test limit. */
3327 }
3328 
3329 /*
3330  * Adaptive noise immunity.
3331  */
3332 Static void
3333 ar9003_set_noise_immunity_level(struct athn_softc *sc, int level)
3334 {
3335 	int high = level == 4;
3336 	uint32_t reg;
3337 
3338 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
3339 	reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
3340 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
3341 
3342 	reg = AR_READ(sc, AR_PHY_AGC);
3343 	reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64);
3344 	reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14);
3345 	AR_WRITE(sc, AR_PHY_AGC, reg);
3346 
3347 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
3348 	reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
3349 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
3350 	AR_WRITE_BARRIER(sc);
3351 }
3352 
3353 Static void
3354 ar9003_enable_ofdm_weak_signal(struct athn_softc *sc)
3355 {
3356 	uint32_t reg;
3357 
3358 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
3359 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
3360 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
3361 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
3362 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
3363 
3364 	reg = AR_READ(sc, AR_PHY_SFCORR);
3365 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
3366 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
3367 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
3368 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
3369 
3370 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
3371 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
3372 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
3373 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
3374 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
3375 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
3376 
3377 	AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
3378 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
3379 	AR_WRITE_BARRIER(sc);
3380 }
3381 
3382 Static void
3383 ar9003_disable_ofdm_weak_signal(struct athn_softc *sc)
3384 {
3385 	uint32_t reg;
3386 
3387 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
3388 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
3389 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
3390 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
3391 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
3392 
3393 	reg = AR_READ(sc, AR_PHY_SFCORR);
3394 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
3395 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
3396 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
3397 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
3398 
3399 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
3400 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
3401 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
3402 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
3403 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
3404 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
3405 
3406 	AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
3407 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
3408 	AR_WRITE_BARRIER(sc);
3409 }
3410 
3411 Static void
3412 ar9003_set_cck_weak_signal(struct athn_softc *sc, int high)
3413 {
3414 	uint32_t reg;
3415 
3416 	reg = AR_READ(sc, AR_PHY_CCK_DETECT);
3417 	reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
3418 	AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
3419 	AR_WRITE_BARRIER(sc);
3420 }
3421 
3422 Static void
3423 ar9003_set_firstep_level(struct athn_softc *sc, int level)
3424 {
3425 	uint32_t reg;
3426 
3427 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
3428 	reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
3429 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
3430 	AR_WRITE_BARRIER(sc);
3431 }
3432 
3433 Static void
3434 ar9003_set_spur_immunity_level(struct athn_softc *sc, int level)
3435 {
3436 	uint32_t reg;
3437 
3438 	reg = AR_READ(sc, AR_PHY_TIMING5);
3439 	reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
3440 	AR_WRITE(sc, AR_PHY_TIMING5, reg);
3441 	AR_WRITE_BARRIER(sc);
3442 }
3443