1 /* $NetBSD: arn9003.c,v 1.6 2014/02/23 15:29:12 christos Exp $ */ 2 /* $OpenBSD: ar9003.c,v 1.25 2012/10/20 09:53:32 stsp Exp $ */ 3 4 /*- 5 * Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2010 Atheros Communications Inc. 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Atheros 802.11a/g/n chipsets. 23 * Routines for AR9003 family. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: arn9003.c,v 1.6 2014/02/23 15:29:12 christos Exp $"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/queue.h> 37 #include <sys/callout.h> 38 #include <sys/conf.h> 39 #include <sys/device.h> 40 41 #include <sys/bus.h> 42 #include <sys/endian.h> 43 #include <sys/intr.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_arp.h> 48 #include <net/if_dl.h> 49 #include <net/if_ether.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/in_var.h> 56 #include <netinet/ip.h> 57 58 #include <net80211/ieee80211_var.h> 59 #include <net80211/ieee80211_amrr.h> 60 #include <net80211/ieee80211_radiotap.h> 61 62 #include <dev/ic/athnreg.h> 63 #include <dev/ic/athnvar.h> 64 #include <dev/ic/arn9003reg.h> 65 #include <dev/ic/arn9003.h> 66 67 #define Static static 68 69 Static void ar9003_calib_iq(struct athn_softc *); 70 Static int ar9003_calib_tx_iq(struct athn_softc *); 71 Static int ar9003_compute_predistortion(struct athn_softc *, 72 const uint32_t *, const uint32_t *); 73 Static void ar9003_disable_ofdm_weak_signal(struct athn_softc *); 74 Static void ar9003_disable_phy(struct athn_softc *); 75 Static int ar9003_dma_alloc(struct athn_softc *); 76 Static void ar9003_dma_free(struct athn_softc *); 77 Static void ar9003_do_calib(struct athn_softc *); 78 Static void ar9003_do_noisefloor_calib(struct athn_softc *); 79 Static void ar9003_enable_antenna_diversity(struct athn_softc *); 80 Static void ar9003_enable_ofdm_weak_signal(struct athn_softc *); 81 Static void ar9003_enable_predistorter(struct athn_softc *, int); 82 Static int ar9003_find_rom(struct athn_softc *); 83 Static void ar9003_force_txgain(struct athn_softc *, uint32_t); 84 Static int ar9003_get_desired_txgain(struct athn_softc *, int, int); 85 Static int ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]); 86 Static void ar9003_gpio_config_input(struct athn_softc *, int); 87 Static void ar9003_gpio_config_output(struct athn_softc *, int, int); 88 Static int ar9003_gpio_read(struct athn_softc *, int); 89 Static void ar9003_gpio_write(struct athn_softc *, int, int); 90 Static void ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *, 91 struct ieee80211_channel *); 92 Static void ar9003_init_baseband(struct athn_softc *); 93 Static void ar9003_init_chains(struct athn_softc *); 94 Static int ar9003_intr(struct athn_softc *); 95 Static void ar9003_next_calib(struct athn_softc *); 96 Static void ar9003_paprd_enable(struct athn_softc *); 97 Static int ar9003_paprd_tx_tone(struct athn_softc *); 98 Static void ar9003_paprd_tx_tone_done(struct athn_softc *); 99 Static int ar9003_read_eep_data(struct athn_softc *, uint32_t, void *, 100 int); 101 Static int ar9003_read_eep_word(struct athn_softc *, uint32_t, 102 uint16_t *); 103 Static int ar9003_read_otp_data(struct athn_softc *, uint32_t, void *, 104 int); 105 Static int ar9003_read_otp_word(struct athn_softc *, uint32_t, 106 uint32_t *); 107 Static int ar9003_read_rom(struct athn_softc *); 108 Static void ar9003_reset_rx_gain(struct athn_softc *, 109 struct ieee80211_channel *); 110 Static void ar9003_reset_tx_gain(struct athn_softc *, 111 struct ieee80211_channel *); 112 Static int ar9003_restore_rom_block(struct athn_softc *, uint8_t, 113 uint8_t, const uint8_t *, size_t); 114 Static void ar9003_rf_bus_release(struct athn_softc *); 115 Static int ar9003_rf_bus_request(struct athn_softc *); 116 Static void ar9003_rfsilent_init(struct athn_softc *); 117 Static int ar9003_rx_alloc(struct athn_softc *, int, int); 118 Static void ar9003_rx_enable(struct athn_softc *); 119 Static void ar9003_rx_free(struct athn_softc *, int); 120 Static void ar9003_rx_intr(struct athn_softc *, int); 121 Static int ar9003_rx_process(struct athn_softc *, int); 122 Static void ar9003_rx_radiotap(struct athn_softc *, struct mbuf *, 123 struct ar_rx_status *); 124 Static void ar9003_set_cck_weak_signal(struct athn_softc *, int); 125 Static void ar9003_set_delta_slope(struct athn_softc *, 126 struct ieee80211_channel *, struct ieee80211_channel *); 127 Static void ar9003_set_firstep_level(struct athn_softc *, int); 128 Static void ar9003_set_noise_immunity_level(struct athn_softc *, int); 129 Static void ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *, 130 struct ieee80211_channel *); 131 Static void ar9003_set_rf_mode(struct athn_softc *, 132 struct ieee80211_channel *); 133 Static void ar9003_set_rxchains(struct athn_softc *); 134 Static void ar9003_set_spur_immunity_level(struct athn_softc *, int); 135 Static void ar9003_set_training_gain(struct athn_softc *, int); 136 Static int ar9003_swba_intr(struct athn_softc *); 137 Static int ar9003_tx(struct athn_softc *, struct mbuf *, 138 struct ieee80211_node *, int); 139 Static int ar9003_tx_alloc(struct athn_softc *); 140 Static void ar9003_tx_free(struct athn_softc *); 141 Static void ar9003_tx_intr(struct athn_softc *); 142 Static int ar9003_tx_process(struct athn_softc *); 143 144 #ifdef notused 145 Static void ar9003_bb_load_noisefloor(struct athn_softc *); 146 Static void ar9003_get_noisefloor(struct athn_softc *, 147 struct ieee80211_channel *); 148 Static void ar9003_paprd_calib(struct athn_softc *, 149 struct ieee80211_channel *); 150 Static void ar9003_read_noisefloor(struct athn_softc *, int16_t *, 151 int16_t *); 152 Static void ar9003_write_noisefloor(struct athn_softc *, int16_t *, 153 int16_t *); 154 Static void ar9300_noisefloor_calib(struct athn_softc *); 155 #endif /* notused */ 156 157 /* 158 * XXX: See if_iwn.c:MCLGETIalt() for a better solution. 159 * XXX: Put this in a header or in athn.c so it can be shared between 160 * ar5008.c and ar9003.c? 161 */ 162 static struct mbuf * 163 MCLGETI(struct athn_softc *sc __unused, int how, 164 struct ifnet *ifp __unused, u_int size) 165 { 166 struct mbuf *m; 167 168 MGETHDR(m, how, MT_DATA); 169 if (m == NULL) 170 return NULL; 171 172 MEXTMALLOC(m, size, how); 173 if ((m->m_flags & M_EXT) == 0) { 174 m_freem(m); 175 return NULL; 176 } 177 return m; 178 } 179 180 PUBLIC int 181 ar9003_attach(struct athn_softc *sc) 182 { 183 struct athn_ops *ops = &sc->sc_ops; 184 int error; 185 186 /* Set callbacks for AR9003 family. */ 187 ops->gpio_read = ar9003_gpio_read; 188 ops->gpio_write = ar9003_gpio_write; 189 ops->gpio_config_input = ar9003_gpio_config_input; 190 ops->gpio_config_output = ar9003_gpio_config_output; 191 ops->rfsilent_init = ar9003_rfsilent_init; 192 193 ops->dma_alloc = ar9003_dma_alloc; 194 ops->dma_free = ar9003_dma_free; 195 ops->rx_enable = ar9003_rx_enable; 196 ops->intr = ar9003_intr; 197 ops->tx = ar9003_tx; 198 199 ops->set_rf_mode = ar9003_set_rf_mode; 200 ops->rf_bus_request = ar9003_rf_bus_request; 201 ops->rf_bus_release = ar9003_rf_bus_release; 202 ops->set_phy = ar9003_set_phy; 203 ops->set_delta_slope = ar9003_set_delta_slope; 204 ops->enable_antenna_diversity = ar9003_enable_antenna_diversity; 205 ops->init_baseband = ar9003_init_baseband; 206 ops->disable_phy = ar9003_disable_phy; 207 ops->set_rxchains = ar9003_set_rxchains; 208 ops->noisefloor_calib = ar9003_do_noisefloor_calib; 209 ops->do_calib = ar9003_do_calib; 210 ops->next_calib = ar9003_next_calib; 211 ops->hw_init = ar9003_hw_init; 212 213 ops->set_noise_immunity_level = ar9003_set_noise_immunity_level; 214 ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal; 215 ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal; 216 ops->set_cck_weak_signal = ar9003_set_cck_weak_signal; 217 ops->set_firstep_level = ar9003_set_firstep_level; 218 ops->set_spur_immunity_level = ar9003_set_spur_immunity_level; 219 220 /* Set MAC registers offsets. */ 221 sc->sc_obs_off = AR_OBS; 222 sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL; 223 224 if (!(sc->sc_flags & ATHN_FLAG_PCIE)) 225 athn_config_nonpcie(sc); 226 else 227 athn_config_pcie(sc); 228 229 /* Determine ROM type and location. */ 230 if ((error = ar9003_find_rom(sc)) != 0) { 231 aprint_error_dev(sc->sc_dev, "could not find ROM\n"); 232 return error; 233 } 234 /* Read entire ROM content in memory. */ 235 if ((error = ar9003_read_rom(sc)) != 0) { 236 aprint_error_dev(sc->sc_dev, "could not read ROM\n"); 237 return error; 238 } 239 240 /* Determine if it is a non-enterprise AR9003 card. */ 241 if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD) 242 sc->sc_flags |= ATHN_FLAG_NON_ENTERPRISE; 243 244 ops->setup(sc); 245 return 0; 246 } 247 248 /* 249 * Read 16-bit word from EEPROM. 250 */ 251 Static int 252 ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val) 253 { 254 uint32_t reg; 255 int ntries; 256 257 reg = AR_READ(sc, AR_EEPROM_OFFSET(addr)); 258 for (ntries = 0; ntries < 1000; ntries++) { 259 reg = AR_READ(sc, AR_EEPROM_STATUS_DATA); 260 if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY | 261 AR_EEPROM_STATUS_DATA_PROT_ACCESS))) { 262 *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL); 263 return 0; 264 } 265 DELAY(10); 266 } 267 *val = 0xffff; 268 return ETIMEDOUT; 269 } 270 271 /* 272 * Read an arbitrary number of bytes at a specified address in EEPROM. 273 * NB: The address may not be 16-bit aligned. 274 */ 275 Static int 276 ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len) 277 { 278 uint8_t *dst = buf; 279 uint16_t val; 280 int error; 281 282 if (len > 0 && (addr & 1)) { 283 /* Deal with non-aligned reads. */ 284 addr >>= 1; 285 error = ar9003_read_eep_word(sc, addr, &val); 286 if (error != 0) 287 return error; 288 *dst++ = val & 0xff; 289 addr--; 290 len--; 291 } 292 else 293 addr >>= 1; 294 for (; len >= 2; addr--, len -= 2) { 295 error = ar9003_read_eep_word(sc, addr, &val); 296 if (error != 0) 297 return error; 298 *dst++ = val >> 8; 299 *dst++ = val & 0xff; 300 } 301 if (len > 0) { 302 error = ar9003_read_eep_word(sc, addr, &val); 303 if (error != 0) 304 return error; 305 *dst++ = val >> 8; 306 } 307 return 0; 308 } 309 310 /* 311 * Read 32-bit word from OTPROM. 312 */ 313 Static int 314 ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val) 315 { 316 uint32_t reg; 317 int ntries; 318 319 reg = AR_READ(sc, AR_OTP_BASE(addr)); 320 for (ntries = 0; ntries < 1000; ntries++) { 321 reg = AR_READ(sc, AR_OTP_STATUS); 322 if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) { 323 *val = AR_READ(sc, AR_OTP_READ_DATA); 324 return 0; 325 } 326 DELAY(10); 327 } 328 return ETIMEDOUT; 329 } 330 331 /* 332 * Read an arbitrary number of bytes at a specified address in OTPROM. 333 * NB: The address may not be 32-bit aligned. 334 */ 335 Static int 336 ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len) 337 { 338 uint8_t *dst = buf; 339 uint32_t val; 340 int error; 341 342 /* NB: not optimal for non-aligned reads, but correct. */ 343 for (; len > 0; addr--, len--) { 344 error = ar9003_read_otp_word(sc, addr >> 2, &val); 345 if (error != 0) 346 return error; 347 *dst++ = (val >> ((addr & 3) * 8)) & 0xff; 348 } 349 return 0; 350 } 351 352 /* 353 * Determine if the chip has an external EEPROM or an OTPROM and its size. 354 */ 355 Static int 356 ar9003_find_rom(struct athn_softc *sc) 357 { 358 struct athn_ops *ops = &sc->sc_ops; 359 uint32_t hdr; 360 int error; 361 362 /* Try EEPROM. */ 363 ops->read_rom_data = ar9003_read_eep_data; 364 365 sc->sc_eep_size = AR_SREV_9485(sc) ? 4096 : 1024; 366 sc->sc_eep_base = sc->sc_eep_size - 1; 367 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr)); 368 if (error == 0 && hdr != 0 && hdr != 0xffffffff) 369 return 0; 370 371 sc->sc_eep_size = 512; 372 sc->sc_eep_base = sc->sc_eep_size - 1; 373 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr)); 374 if (error == 0 && hdr != 0 && hdr != 0xffffffff) 375 return 0; 376 377 /* Try OTPROM. */ 378 ops->read_rom_data = ar9003_read_otp_data; 379 380 sc->sc_eep_size = 1024; 381 sc->sc_eep_base = sc->sc_eep_size - 1; 382 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr)); 383 if (error == 0 && hdr != 0 && hdr != 0xffffffff) 384 return 0; 385 386 sc->sc_eep_size = 512; 387 sc->sc_eep_base = sc->sc_eep_size - 1; 388 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr)); 389 if (error == 0 && hdr != 0 && hdr != 0xffffffff) 390 return 0; 391 392 return EIO; /* Not found. */ 393 } 394 395 Static int 396 ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref, 397 const uint8_t *buf, size_t len) 398 { 399 const uint8_t *def, *ptr, *end; 400 uint8_t *eep = sc->sc_eep; 401 size_t off, clen; 402 403 if (alg == AR_EEP_COMPRESS_BLOCK) { 404 /* Block contains chunks that shadow ROM template. */ 405 def = sc->sc_ops.get_rom_template(sc, ref); 406 if (def == NULL) { 407 DPRINTFN(DBG_INIT, sc, "unknown template image %d\n", 408 ref); 409 return EINVAL; 410 } 411 /* Start with template. */ 412 memcpy(eep, def, sc->sc_eep_size); 413 /* Shadow template with chunks. */ 414 off = 0; /* Offset in ROM image. */ 415 ptr = buf; /* Offset in block. */ 416 end = buf + len; 417 /* Process chunks. */ 418 while (ptr + 2 <= end) { 419 off += *ptr++; /* Gap with previous chunk. */ 420 clen = *ptr++; /* Chunk length. */ 421 /* Make sure block is large enough. */ 422 if (ptr + clen > end) 423 return EINVAL; 424 /* Make sure chunk fits in ROM image. */ 425 if (off + clen > sc->sc_eep_size) 426 return EINVAL; 427 /* Restore chunk. */ 428 DPRINTFN(DBG_INIT, sc, "ROM chunk @%zd/%zd\n", 429 off, clen); 430 memcpy(&eep[off], ptr, clen); 431 ptr += clen; 432 off += clen; 433 } 434 } 435 else if (alg == AR_EEP_COMPRESS_NONE) { 436 /* Block contains full ROM image. */ 437 if (len != sc->sc_eep_size) { 438 DPRINTFN(DBG_INIT, sc, "block length mismatch %zd\n", 439 len); 440 return EINVAL; 441 } 442 memcpy(eep, buf, len); 443 } 444 return 0; 445 } 446 447 Static int 448 ar9003_read_rom(struct athn_softc *sc) 449 { 450 struct athn_ops *ops = &sc->sc_ops; 451 uint8_t *buf, *ptr, alg, ref; 452 uint16_t sum, rsum; 453 uint32_t hdr; 454 int error, addr; 455 size_t len, i, j; 456 457 /* Allocate space to store ROM in host memory. */ 458 sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT); 459 if (sc->sc_eep == NULL) 460 return ENOMEM; 461 462 /* Allocate temporary buffer to store ROM blocks. */ 463 buf = malloc(2048, M_DEVBUF, M_NOWAIT); 464 if (buf == NULL) 465 return ENOMEM; 466 467 /* Restore vendor-specified ROM blocks. */ 468 addr = sc->sc_eep_base; 469 for (i = 0; i < 100; i++) { 470 /* Read block header. */ 471 error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr)); 472 if (error != 0) 473 break; 474 if (hdr == 0 || hdr == 0xffffffff) 475 break; 476 addr -= sizeof(hdr); 477 478 /* Extract bits from header. */ 479 ptr = (uint8_t *)&hdr; 480 alg = (ptr[0] & 0xe0) >> 5; 481 ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f); 482 len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4; 483 DPRINTFN(DBG_INIT, sc, 484 "ROM block %zd: alg=%d ref=%d len=%zd\n", 485 i, alg, ref, len); 486 487 /* Read block data (len <= 0x7ff). */ 488 error = ops->read_rom_data(sc, addr, buf, len); 489 if (error != 0) 490 break; 491 addr -= len; 492 493 /* Read block checksum. */ 494 error = ops->read_rom_data(sc, addr, &sum, sizeof(sum)); 495 if (error != 0) 496 break; 497 addr -= sizeof(sum); 498 499 /* Compute block checksum. */ 500 rsum = 0; 501 for (j = 0; j < len; j++) 502 rsum += buf[j]; 503 /* Compare to that in ROM. */ 504 if (le16toh(sum) != rsum) { 505 DPRINTFN(DBG_INIT, sc, 506 "bad block checksum 0x%x/0x%x\n", 507 le16toh(sum), rsum); 508 continue; /* Skip bad block. */ 509 } 510 /* Checksum is correct, restore block. */ 511 ar9003_restore_rom_block(sc, alg, ref, buf, len); 512 } 513 #if BYTE_ORDER == BIG_ENDIAN 514 /* NB: ROM is always little endian. */ 515 if (error == 0) 516 ops->swap_rom(sc); 517 #endif 518 free(buf, M_DEVBUF); 519 return error; 520 } 521 522 /* 523 * Access to General Purpose Input/Output ports. 524 */ 525 Static int 526 ar9003_gpio_read(struct athn_softc *sc, int pin) 527 { 528 529 KASSERT(pin < sc->sc_ngpiopins); 530 return ((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) & 531 (1 << pin)) != 0; 532 } 533 534 Static void 535 ar9003_gpio_write(struct athn_softc *sc, int pin, int set) 536 { 537 uint32_t reg; 538 539 KASSERT(pin < sc->sc_ngpiopins); 540 reg = AR_READ(sc, AR_GPIO_IN_OUT); 541 if (set) 542 reg |= 1 << pin; 543 else 544 reg &= ~(1 << pin); 545 AR_WRITE(sc, AR_GPIO_IN_OUT, reg); 546 AR_WRITE_BARRIER(sc); 547 } 548 549 Static void 550 ar9003_gpio_config_input(struct athn_softc *sc, int pin) 551 { 552 uint32_t reg; 553 554 reg = AR_READ(sc, AR_GPIO_OE_OUT); 555 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); 556 reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2); 557 AR_WRITE(sc, AR_GPIO_OE_OUT, reg); 558 AR_WRITE_BARRIER(sc); 559 } 560 561 Static void 562 ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type) 563 { 564 uint32_t reg; 565 int mux, off; 566 567 mux = pin / 6; 568 off = pin % 6; 569 570 reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux)); 571 reg &= ~(0x1f << (off * 5)); 572 reg |= (type & 0x1f) << (off * 5); 573 AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg); 574 575 reg = AR_READ(sc, AR_GPIO_OE_OUT); 576 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); 577 reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2); 578 AR_WRITE(sc, AR_GPIO_OE_OUT, reg); 579 AR_WRITE_BARRIER(sc); 580 } 581 582 Static void 583 ar9003_rfsilent_init(struct athn_softc *sc) 584 { 585 uint32_t reg; 586 587 /* Configure hardware radio switch. */ 588 AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); 589 reg = AR_READ(sc, AR_GPIO_INPUT_MUX2); 590 reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0); 591 AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg); 592 ar9003_gpio_config_input(sc, sc->sc_rfsilent_pin); 593 AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB); 594 if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) { 595 AR_SETBITS(sc, AR_GPIO_INTR_POL, 596 AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin)); 597 } 598 AR_WRITE_BARRIER(sc); 599 } 600 601 Static int 602 ar9003_dma_alloc(struct athn_softc *sc) 603 { 604 int error; 605 606 error = ar9003_tx_alloc(sc); 607 if (error != 0) 608 return error; 609 610 error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH); 611 if (error != 0) 612 return error; 613 614 error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH); 615 if (error != 0) 616 return error; 617 618 return 0; 619 } 620 621 Static void 622 ar9003_dma_free(struct athn_softc *sc) 623 { 624 625 ar9003_tx_free(sc); 626 ar9003_rx_free(sc, ATHN_QID_LP); 627 ar9003_rx_free(sc, ATHN_QID_HP); 628 } 629 630 Static int 631 ar9003_tx_alloc(struct athn_softc *sc) 632 { 633 struct athn_tx_buf *bf; 634 bus_size_t size; 635 int error, nsegs, i; 636 637 /* 638 * Allocate Tx status ring. 639 */ 640 size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status); 641 642 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 643 BUS_DMA_NOWAIT, &sc->sc_txsmap); 644 if (error != 0) 645 goto fail; 646 647 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_txsseg, 1, 648 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); 649 &nsegs, BUS_DMA_NOWAIT); 650 if (error != 0) 651 goto fail; 652 653 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_txsseg, 1, size, 654 (void **)&sc->sc_txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 655 if (error != 0) 656 goto fail; 657 658 error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_txsmap, &sc->sc_txsseg, 659 1, size, BUS_DMA_NOWAIT | BUS_DMA_READ); 660 if (error != 0) 661 goto fail; 662 663 /* 664 * Allocate a pool of Tx descriptors shared between all Tx queues. 665 */ 666 size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc); 667 668 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 669 BUS_DMA_NOWAIT, &sc->sc_map); 670 if (error != 0) 671 goto fail; 672 673 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1, 674 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); 675 &nsegs, BUS_DMA_NOWAIT); 676 if (error != 0) 677 goto fail; 678 679 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size, 680 (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 681 if (error != 0) 682 goto fail; 683 684 error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_map, &sc->sc_seg, 1, size, 685 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 686 if (error != 0) 687 goto fail; 688 689 SIMPLEQ_INIT(&sc->sc_txbufs); 690 for (i = 0; i < ATHN_NTXBUFS; i++) { 691 bf = &sc->sc_txpool[i]; 692 693 error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ, 694 AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT, 695 &bf->bf_map); 696 if (error != 0) { 697 aprint_error_dev(sc->sc_dev, 698 "could not create Tx buf DMA map\n"); 699 goto fail; 700 } 701 702 bf->bf_descs = &((struct ar_tx_desc *)sc->sc_descs)[i]; 703 bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr + 704 i * sizeof(struct ar_tx_desc); 705 706 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list); 707 } 708 return 0; 709 fail: 710 ar9003_tx_free(sc); 711 return error; 712 } 713 714 Static void 715 ar9003_tx_free(struct athn_softc *sc) 716 { 717 struct athn_tx_buf *bf; 718 int i; 719 720 for (i = 0; i < ATHN_NTXBUFS; i++) { 721 bf = &sc->sc_txpool[i]; 722 723 if (bf->bf_map != NULL) 724 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); 725 } 726 /* Free Tx descriptors. */ 727 if (sc->sc_map != NULL) { 728 if (sc->sc_descs != NULL) { 729 bus_dmamap_unload(sc->sc_dmat, sc->sc_map); 730 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs, 731 ATHN_NTXBUFS * sizeof(struct ar_tx_desc)); 732 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1); 733 } 734 bus_dmamap_destroy(sc->sc_dmat, sc->sc_map); 735 } 736 /* Free Tx status ring. */ 737 if (sc->sc_txsmap != NULL) { 738 if (sc->sc_txsring != NULL) { 739 bus_dmamap_unload(sc->sc_dmat, sc->sc_txsmap); 740 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_txsring, 741 AR9003_NTXSTATUS * sizeof(struct ar_tx_status)); 742 bus_dmamem_free(sc->sc_dmat, &sc->sc_txsseg, 1); 743 } 744 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsmap); 745 } 746 } 747 748 Static int 749 ar9003_rx_alloc(struct athn_softc *sc, int qid, int count) 750 { 751 struct athn_rxq *rxq = &sc->sc_rxq[qid]; 752 struct athn_rx_buf *bf; 753 struct ar_rx_status *ds; 754 int error, i; 755 756 rxq->bf = malloc(count * sizeof(*bf), M_DEVBUF, M_NOWAIT | M_ZERO); 757 if (rxq->bf == NULL) 758 return ENOMEM; 759 760 rxq->count = count; 761 762 for (i = 0; i < rxq->count; i++) { 763 bf = &rxq->bf[i]; 764 765 error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1, 766 ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 767 &bf->bf_map); 768 if (error != 0) { 769 aprint_error_dev(sc->sc_dev, 770 "could not create Rx buf DMA map\n"); 771 goto fail; 772 } 773 /* 774 * Assumes MCLGETI returns cache-line-size aligned buffers. 775 */ 776 bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 777 if (bf->bf_m == NULL) { 778 aprint_error_dev(sc->sc_dev, 779 "could not allocate Rx mbuf\n"); 780 error = ENOBUFS; 781 goto fail; 782 } 783 784 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, 785 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, 786 BUS_DMA_NOWAIT); 787 if (error != 0) { 788 aprint_error_dev(sc->sc_dev, 789 "could not DMA map Rx buffer\n"); 790 goto fail; 791 } 792 793 ds = mtod(bf->bf_m, struct ar_rx_status *); 794 memset(ds, 0, sizeof(*ds)); 795 bf->bf_desc = ds; 796 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr; 797 798 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 799 BUS_DMASYNC_PREREAD); 800 } 801 return 0; 802 fail: 803 ar9003_rx_free(sc, qid); 804 return error; 805 } 806 807 Static void 808 ar9003_rx_free(struct athn_softc *sc, int qid) 809 { 810 struct athn_rxq *rxq = &sc->sc_rxq[qid]; 811 struct athn_rx_buf *bf; 812 int i; 813 814 if (rxq->bf == NULL) 815 return; 816 for (i = 0; i < rxq->count; i++) { 817 bf = &rxq->bf[i]; 818 819 if (bf->bf_map != NULL) 820 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); 821 if (bf->bf_m != NULL) 822 m_freem(bf->bf_m); 823 } 824 free(rxq->bf, M_DEVBUF); 825 } 826 827 PUBLIC void 828 ar9003_reset_txsring(struct athn_softc *sc) 829 { 830 831 sc->sc_txscur = 0; 832 memset(sc->sc_txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status)); 833 AR_WRITE(sc, AR_Q_STATUS_RING_START, 834 sc->sc_txsmap->dm_segs[0].ds_addr); 835 AR_WRITE(sc, AR_Q_STATUS_RING_END, 836 sc->sc_txsmap->dm_segs[0].ds_addr + sc->sc_txsmap->dm_segs[0].ds_len); 837 AR_WRITE_BARRIER(sc); 838 } 839 840 Static void 841 ar9003_rx_enable(struct athn_softc *sc) 842 { 843 struct athn_rxq *rxq; 844 struct athn_rx_buf *bf; 845 struct ar_rx_status *ds; 846 uint32_t reg; 847 int qid, i; 848 849 reg = AR_READ(sc, AR_RXBP_THRESH); 850 reg = RW(reg, AR_RXBP_THRESH_HP, 1); 851 reg = RW(reg, AR_RXBP_THRESH_LP, 1); 852 AR_WRITE(sc, AR_RXBP_THRESH, reg); 853 854 /* Set Rx buffer size. */ 855 AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds)); 856 857 for (qid = 0; qid < 2; qid++) { 858 rxq = &sc->sc_rxq[qid]; 859 860 /* Setup Rx status descriptors. */ 861 SIMPLEQ_INIT(&rxq->head); 862 for (i = 0; i < rxq->count; i++) { 863 bf = &rxq->bf[i]; 864 ds = bf->bf_desc; 865 866 memset(ds, 0, sizeof(*ds)); 867 if (qid == ATHN_QID_LP) 868 AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr); 869 else 870 AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr); 871 AR_WRITE_BARRIER(sc); 872 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); 873 } 874 } 875 /* Enable Rx. */ 876 AR_WRITE(sc, AR_CR, 0); 877 AR_WRITE_BARRIER(sc); 878 } 879 880 Static void 881 ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m, 882 struct ar_rx_status *ds) 883 { 884 struct athn_rx_radiotap_header *tap = &sc->sc_rxtap; 885 struct ieee80211com *ic = &sc->sc_ic; 886 uint64_t tsf; 887 uint32_t tstamp; 888 uint8_t rate; 889 890 /* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */ 891 tstamp = ds->ds_status3; 892 tsf = AR_READ(sc, AR_TSF_U32); 893 tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32); 894 if ((tsf & 0x7fff) < tstamp) 895 tsf -= 0x8000; 896 tsf = (tsf & ~0x7fff) | tstamp; 897 898 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 899 tap->wr_tsft = htole64(tsf); 900 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 901 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 902 tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED); 903 /* XXX noise. */ 904 tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA); 905 tap->wr_rate = 0; /* In case it can't be found below. */ 906 rate = MS(ds->ds_status1, AR_RXS1_RATE); 907 if (rate & 0x80) { /* HT. */ 908 /* Bit 7 set means HT MCS instead of rate. */ 909 tap->wr_rate = rate; 910 if (!(ds->ds_status4 & AR_RXS4_GI)) 911 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 912 913 } 914 else if (rate & 0x10) { /* CCK. */ 915 if (rate & 0x04) 916 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 917 switch (rate & ~0x14) { 918 case 0xb: tap->wr_rate = 2; break; 919 case 0xa: tap->wr_rate = 4; break; 920 case 0x9: tap->wr_rate = 11; break; 921 case 0x8: tap->wr_rate = 22; break; 922 } 923 } 924 else { /* OFDM. */ 925 switch (rate) { 926 case 0xb: tap->wr_rate = 12; break; 927 case 0xf: tap->wr_rate = 18; break; 928 case 0xa: tap->wr_rate = 24; break; 929 case 0xe: tap->wr_rate = 36; break; 930 case 0x9: tap->wr_rate = 48; break; 931 case 0xd: tap->wr_rate = 72; break; 932 case 0x8: tap->wr_rate = 96; break; 933 case 0xc: tap->wr_rate = 108; break; 934 } 935 } 936 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 937 } 938 939 Static int 940 ar9003_rx_process(struct athn_softc *sc, int qid) 941 { 942 struct ieee80211com *ic = &sc->sc_ic; 943 struct ifnet *ifp = &sc->sc_if; 944 struct athn_rxq *rxq = &sc->sc_rxq[qid]; 945 struct athn_rx_buf *bf; 946 struct ar_rx_status *ds; 947 struct ieee80211_frame *wh; 948 struct ieee80211_node *ni; 949 struct mbuf *m, *m1; 950 size_t len; 951 u_int32_t rstamp; 952 int error, rssi; 953 954 bf = SIMPLEQ_FIRST(&rxq->head); 955 if (__predict_false(bf == NULL)) { /* Should not happen. */ 956 aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n"); 957 return ENOENT; 958 } 959 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 960 BUS_DMASYNC_POSTREAD); 961 962 ds = mtod(bf->bf_m, struct ar_rx_status *); 963 if (!(ds->ds_status1 & AR_RXS1_DONE)) 964 return EBUSY; 965 966 /* Check that it is a valid Rx status descriptor. */ 967 if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX | 968 AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS)) 969 goto skip; 970 971 if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) { 972 if (ds->ds_status11 & AR_RXS11_CRC_ERR) 973 DPRINTFN(DBG_RX, sc, "CRC error\n"); 974 else if (ds->ds_status11 & AR_RXS11_PHY_ERR) 975 DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n", 976 MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE)); 977 else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR) 978 DPRINTFN(DBG_RX, sc, "Decryption CRC error\n"); 979 else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) { 980 DPRINTFN(DBG_RX, sc, "Michael MIC failure\n"); 981 /* Report Michael MIC failures to net80211. */ 982 983 len = MS(ds->ds_status2, AR_RXS2_DATA_LEN); 984 m = bf->bf_m; 985 m->m_pkthdr.rcvif = ifp; 986 m->m_data = (void *)&ds[1]; 987 m->m_pkthdr.len = m->m_len = len; 988 wh = mtod(m, struct ieee80211_frame *); 989 990 ieee80211_notify_michael_failure(ic, wh, 991 0 /* XXX: keyix */); 992 } 993 ifp->if_ierrors++; 994 goto skip; 995 } 996 997 len = MS(ds->ds_status2, AR_RXS2_DATA_LEN); 998 if (__predict_false(len < IEEE80211_MIN_LEN || 999 len > ATHN_RXBUFSZ - sizeof(*ds))) { 1000 DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%zd\n", 1001 len); 1002 ifp->if_ierrors++; 1003 goto skip; 1004 } 1005 1006 /* Allocate a new Rx buffer. */ 1007 m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 1008 if (__predict_false(m1 == NULL)) { 1009 ic->ic_stats.is_rx_nobuf++; 1010 ifp->if_ierrors++; 1011 goto skip; 1012 } 1013 1014 /* Unmap the old Rx buffer. */ 1015 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 1016 1017 /* Map the new Rx buffer. */ 1018 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *), 1019 ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 1020 if (__predict_false(error != 0)) { 1021 m_freem(m1); 1022 1023 /* Remap the old Rx buffer or panic. */ 1024 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, 1025 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, 1026 BUS_DMA_NOWAIT | BUS_DMA_READ); 1027 KASSERT(error != 0); 1028 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr; 1029 ifp->if_ierrors++; 1030 goto skip; 1031 } 1032 bf->bf_desc = mtod(m1, struct ar_rx_status *); 1033 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr; 1034 1035 m = bf->bf_m; 1036 bf->bf_m = m1; 1037 1038 /* Finalize mbuf. */ 1039 m->m_pkthdr.rcvif = ifp; 1040 /* Strip Rx status descriptor from head. */ 1041 m->m_data = (void *)&ds[1]; 1042 m->m_pkthdr.len = m->m_len = len; 1043 1044 /* Grab a reference to the source node. */ 1045 wh = mtod(m, struct ieee80211_frame *); 1046 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 1047 1048 /* Remove any HW padding after the 802.11 header. */ 1049 if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) { 1050 u_int hdrlen = ieee80211_anyhdrsize(wh); 1051 if (hdrlen & 3) { 1052 ovbcopy(wh, (uint8_t *)wh + 2, hdrlen); 1053 m_adj(m, 2); 1054 } 1055 } 1056 if (__predict_false(sc->sc_drvbpf != NULL)) 1057 ar9003_rx_radiotap(sc, m, ds); 1058 /* Trim 802.11 FCS after radiotap. */ 1059 m_adj(m, -IEEE80211_CRC_LEN); 1060 1061 /* Send the frame to the 802.11 layer. */ 1062 rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED); 1063 rstamp = ds->ds_status3; 1064 ieee80211_input(ic, m, ni, rssi, rstamp); 1065 1066 /* Node is no longer needed. */ 1067 ieee80211_free_node(ni); 1068 1069 skip: 1070 /* Unlink this descriptor from head. */ 1071 SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list); 1072 memset(bf->bf_desc, 0, sizeof(*ds)); 1073 1074 /* Re-use this descriptor and link it to tail. */ 1075 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 1076 BUS_DMASYNC_PREREAD); 1077 1078 if (qid == ATHN_QID_LP) 1079 AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr); 1080 else 1081 AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr); 1082 AR_WRITE_BARRIER(sc); 1083 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); 1084 1085 /* Re-enable Rx. */ 1086 AR_WRITE(sc, AR_CR, 0); 1087 AR_WRITE_BARRIER(sc); 1088 return 0; 1089 } 1090 1091 Static void 1092 ar9003_rx_intr(struct athn_softc *sc, int qid) 1093 { 1094 1095 while (ar9003_rx_process(sc, qid) == 0) 1096 continue; 1097 } 1098 1099 Static int 1100 ar9003_tx_process(struct athn_softc *sc) 1101 { 1102 struct ifnet *ifp = &sc->sc_if; 1103 struct athn_txq *txq; 1104 struct athn_node *an; 1105 struct athn_tx_buf *bf; 1106 struct ar_tx_status *ds; 1107 uint8_t qid, failcnt; 1108 1109 ds = &((struct ar_tx_status *)sc->sc_txsring)[sc->sc_txscur]; 1110 if (!(ds->ds_status8 & AR_TXS8_DONE)) 1111 return EBUSY; 1112 1113 sc->sc_txscur = (sc->sc_txscur + 1) % AR9003_NTXSTATUS; 1114 1115 /* Check that it is a valid Tx status descriptor. */ 1116 if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) != 1117 (SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) { 1118 memset(ds, 0, sizeof(*ds)); 1119 return 0; 1120 } 1121 /* Retrieve the queue that was used to send this PDU. */ 1122 qid = MS(ds->ds_info, AR_TXI_QCU_NUM); 1123 txq = &sc->sc_txq[qid]; 1124 1125 bf = SIMPLEQ_FIRST(&txq->head); 1126 if (bf == NULL || bf == txq->wait) { 1127 memset(ds, 0, sizeof(*ds)); 1128 return 0; 1129 } 1130 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list); 1131 ifp->if_opackets++; 1132 1133 sc->sc_tx_timer = 0; 1134 1135 if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES) 1136 ifp->if_oerrors++; 1137 1138 if (ds->ds_status3 & AR_TXS3_UNDERRUN) 1139 athn_inc_tx_trigger_level(sc); 1140 1141 /* Wakeup PA predistortion state machine. */ 1142 if (bf->bf_txflags & ATHN_TXFLAG_PAPRD) 1143 ar9003_paprd_tx_tone_done(sc); 1144 1145 an = (struct athn_node *)bf->bf_ni; 1146 /* 1147 * NB: the data fail count contains the number of un-acked tries 1148 * for the final series used. We must add the number of tries for 1149 * each series that was fully processed. 1150 */ 1151 failcnt = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT); 1152 /* NB: Assume two tries per series. */ 1153 failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2; 1154 1155 /* Update rate control statistics. */ 1156 an->amn.amn_txcnt++; 1157 if (failcnt > 0) 1158 an->amn.amn_retrycnt++; 1159 1160 DPRINTFN(DBG_TX, sc, "Tx done qid=%d status3=%d fail count=%d\n", 1161 qid, ds->ds_status3, failcnt); 1162 1163 /* Reset Tx status descriptor. */ 1164 memset(ds, 0, sizeof(*ds)); 1165 1166 /* Unmap Tx buffer. */ 1167 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1168 BUS_DMASYNC_POSTWRITE); 1169 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 1170 1171 m_freem(bf->bf_m); 1172 bf->bf_m = NULL; 1173 ieee80211_free_node(bf->bf_ni); 1174 bf->bf_ni = NULL; 1175 1176 /* Link Tx buffer back to global free list. */ 1177 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list); 1178 1179 /* Queue buffers that are waiting if there is new room. */ 1180 if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) { 1181 AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr); 1182 AR_WRITE_BARRIER(sc); 1183 txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list); 1184 } 1185 return 0; 1186 } 1187 1188 Static void 1189 ar9003_tx_intr(struct athn_softc *sc) 1190 { 1191 struct ifnet *ifp = &sc->sc_if; 1192 1193 while (ar9003_tx_process(sc) == 0); 1194 1195 if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) { 1196 ifp->if_flags &= ~IFF_OACTIVE; 1197 ifp->if_start(ifp); 1198 } 1199 } 1200 1201 #ifndef IEEE80211_STA_ONLY 1202 /* 1203 * Process Software Beacon Alert interrupts. 1204 */ 1205 Static int 1206 ar9003_swba_intr(struct athn_softc *sc) 1207 { 1208 struct ieee80211com *ic = &sc->sc_ic; 1209 struct ifnet *ifp = &sc->sc_if; 1210 struct ieee80211_node *ni = ic->ic_bss; 1211 struct athn_tx_buf *bf = sc->sc_bcnbuf; 1212 struct ieee80211_frame *wh; 1213 struct ieee80211_beacon_offsets bo; 1214 struct ar_tx_desc *ds; 1215 struct mbuf *m; 1216 uint32_t sum; 1217 uint8_t ridx, hwrate; 1218 int error, totlen; 1219 1220 #if notyet 1221 if (ic->ic_tim_mcast_pending && 1222 IF_IS_EMPTY(&ni->ni_savedq) && 1223 SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head)) 1224 ic->ic_tim_mcast_pending = 0; 1225 #endif 1226 if (ic->ic_dtim_count == 0) 1227 ic->ic_dtim_count = ic->ic_dtim_period - 1; 1228 else 1229 ic->ic_dtim_count--; 1230 1231 /* Make sure previous beacon has been sent. */ 1232 if (athn_tx_pending(sc, ATHN_QID_BEACON)) { 1233 DPRINTFN(DBG_INTR, sc, "beacon stuck\n"); 1234 return EBUSY; 1235 } 1236 /* Get new beacon. */ 1237 m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo); 1238 if (__predict_false(m == NULL)) 1239 return ENOBUFS; 1240 /* Assign sequence number. */ 1241 /* XXX: use non-QoS tid? */ 1242 wh = mtod(m, struct ieee80211_frame *); 1243 *(uint16_t *)&wh->i_seq[0] = 1244 htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 1245 ic->ic_bss->ni_txseqs[0]++; 1246 1247 /* Unmap and free old beacon if any. */ 1248 if (__predict_true(bf->bf_m != NULL)) { 1249 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, 1250 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1251 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 1252 m_freem(bf->bf_m); 1253 bf->bf_m = NULL; 1254 } 1255 /* DMA map new beacon. */ 1256 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1257 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1258 if (__predict_false(error != 0)) { 1259 m_freem(m); 1260 return error; 1261 } 1262 bf->bf_m = m; 1263 1264 /* Setup Tx descriptor (simplified ar9003_tx()). */ 1265 ds = bf->bf_descs; 1266 memset(ds, 0, sizeof(*ds)); 1267 1268 ds->ds_info = 1269 SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | 1270 SM(AR_TXI_DESC_NDWORDS, 23) | 1271 SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) | 1272 AR_TXI_DESC_TX | AR_TXI_CTRL_STAT; 1273 1274 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1275 ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen); 1276 ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER); 1277 ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON); 1278 ds->ds_ctl12 |= AR_TXC12_NO_ACK; 1279 ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR); 1280 1281 /* Write number of tries. */ 1282 ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1); 1283 1284 /* Write Tx rate. */ 1285 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 1286 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; 1287 hwrate = athn_rates[ridx].hwrate; 1288 ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate); 1289 1290 /* Write Tx chains. */ 1291 ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask); 1292 1293 ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr; 1294 /* Segment length must be a multiple of 4. */ 1295 ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN, 1296 (bf->bf_map->dm_segs[0].ds_len + 3) & ~3); 1297 /* Compute Tx descriptor checksum. */ 1298 sum = ds->ds_info; 1299 sum += ds->ds_segs[0].ds_data; 1300 sum += ds->ds_segs[0].ds_ctl; 1301 sum = (sum >> 16) + (sum & 0xffff); 1302 ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum); 1303 1304 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1305 BUS_DMASYNC_PREWRITE); 1306 1307 /* Stop Tx DMA before putting the new beacon on the queue. */ 1308 athn_stop_tx_dma(sc, ATHN_QID_BEACON); 1309 1310 AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr); 1311 1312 for(;;) { 1313 if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) 1314 break; 1315 1316 IF_DEQUEUE(&ni->ni_savedq, m); 1317 if (m == NULL) 1318 break; 1319 if (!IF_IS_EMPTY(&ni->ni_savedq)) { 1320 /* more queued frames, set the more data bit */ 1321 wh = mtod(m, struct ieee80211_frame *); 1322 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1323 } 1324 1325 if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) { 1326 ieee80211_free_node(ni); 1327 ifp->if_oerrors++; 1328 break; 1329 } 1330 } 1331 1332 /* Kick Tx. */ 1333 AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON); 1334 AR_WRITE_BARRIER(sc); 1335 return 0; 1336 } 1337 #endif 1338 1339 Static int 1340 ar9003_intr(struct athn_softc *sc) 1341 { 1342 uint32_t intr, sync; 1343 1344 /* Get pending interrupts. */ 1345 intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE); 1346 if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) { 1347 intr = AR_READ(sc, AR_INTR_SYNC_CAUSE); 1348 if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0) 1349 return 0; /* Not for us. */ 1350 } 1351 1352 if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) && 1353 (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) 1354 intr = AR_READ(sc, AR_ISR); 1355 else 1356 intr = 0; 1357 sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync; 1358 if (intr == 0 && sync == 0) 1359 return 0; /* Not for us. */ 1360 1361 if (intr != 0) { 1362 if (intr & AR_ISR_BCNMISC) { 1363 uint32_t intr2 = AR_READ(sc, AR_ISR_S2); 1364 #ifdef notyet 1365 if (intr2 & AR_ISR_S2_TIM) 1366 /* TBD */; 1367 if (intr2 & AR_ISR_S2_TSFOOR) 1368 /* TBD */; 1369 if (intr2 & AR_ISR_S2_BB_WATCHDOG) 1370 /* TBD */; 1371 #else 1372 __USE(intr2); 1373 #endif 1374 } 1375 intr = AR_READ(sc, AR_ISR_RAC); 1376 if (intr == AR_INTR_SPURIOUS) 1377 return 1; 1378 1379 #ifndef IEEE80211_STA_ONLY 1380 if (intr & AR_ISR_SWBA) 1381 ar9003_swba_intr(sc); 1382 #endif 1383 if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) 1384 ar9003_rx_intr(sc, ATHN_QID_LP); 1385 if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR)) 1386 ar9003_rx_intr(sc, ATHN_QID_LP); 1387 if (intr & AR_ISR_HP_RXOK) 1388 ar9003_rx_intr(sc, ATHN_QID_HP); 1389 1390 if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM)) 1391 ar9003_tx_intr(sc); 1392 if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL)) 1393 ar9003_tx_intr(sc); 1394 1395 if (intr & AR_ISR_GENTMR) { 1396 uint32_t intr5 = AR_READ(sc, AR_ISR_S5_S); 1397 #ifdef ATHN_DEBUG 1398 DPRINTFN(DBG_INTR, sc, 1399 "GENTMR trigger=%d thresh=%d\n", 1400 MS(intr5, AR_ISR_S5_GENTIMER_TRIG), 1401 MS(intr5, AR_ISR_S5_GENTIMER_THRESH)); 1402 #else 1403 __USE(intr5); 1404 #endif 1405 } 1406 } 1407 if (sync != 0) { 1408 if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { 1409 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF); 1410 AR_WRITE(sc, AR_RC, 0); 1411 } 1412 1413 if ((sc->sc_flags & ATHN_FLAG_RFSILENT) && 1414 (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) { 1415 pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF); 1416 return 1; 1417 } 1418 1419 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync); 1420 (void)AR_READ(sc, AR_INTR_SYNC_CAUSE); 1421 } 1422 return 1; 1423 } 1424 1425 Static int 1426 ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 1427 int txflags) 1428 { 1429 struct ieee80211com *ic = &sc->sc_ic; 1430 struct ieee80211_key *k = NULL; 1431 struct ieee80211_frame *wh; 1432 struct athn_series series[4]; 1433 struct ar_tx_desc *ds; 1434 struct athn_txq *txq; 1435 struct athn_tx_buf *bf; 1436 struct athn_node *an = (void *)ni; 1437 struct mbuf *m1; 1438 uint32_t sum; 1439 uint16_t qos; 1440 uint8_t txpower, type, encrtype, ridx[4]; 1441 int i, error, totlen, hasqos, qid; 1442 1443 /* Grab a Tx buffer from our global free list. */ 1444 bf = SIMPLEQ_FIRST(&sc->sc_txbufs); 1445 KASSERT(bf != NULL); 1446 1447 /* Map 802.11 frame type to hardware frame type. */ 1448 wh = mtod(m, struct ieee80211_frame *); 1449 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1450 IEEE80211_FC0_TYPE_MGT) { 1451 /* NB: Beacons do not use ar9003_tx(). */ 1452 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1453 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1454 type = AR_FRAME_TYPE_PROBE_RESP; 1455 else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1456 IEEE80211_FC0_SUBTYPE_ATIM) 1457 type = AR_FRAME_TYPE_ATIM; 1458 else 1459 type = AR_FRAME_TYPE_NORMAL; 1460 } 1461 else if ((wh->i_fc[0] & 1462 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1463 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) { 1464 type = AR_FRAME_TYPE_PSPOLL; 1465 } 1466 else 1467 type = AR_FRAME_TYPE_NORMAL; 1468 1469 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1470 k = ieee80211_crypto_encap(ic, ni, m); 1471 if (k == NULL) 1472 return ENOBUFS; 1473 1474 /* packet header may have moved, reset our local pointer */ 1475 wh = mtod(m, struct ieee80211_frame *); 1476 } 1477 1478 /* XXX 2-byte padding for QoS and 4-addr headers. */ 1479 1480 /* Select the HW Tx queue to use for this frame. */ 1481 if ((hasqos = ieee80211_has_qos(wh))) { 1482 #ifdef notyet_edca 1483 uint8_t tid; 1484 1485 qos = ieee80211_get_qos(wh); 1486 tid = qos & IEEE80211_QOS_TID; 1487 qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)]; 1488 #else 1489 qos = ieee80211_get_qos(wh); 1490 qid = ATHN_QID_AC_BE; 1491 #endif /* notyet_edca */ 1492 } 1493 else if (type == AR_FRAME_TYPE_PSPOLL) { 1494 qos = 0; 1495 qid = ATHN_QID_PSPOLL; 1496 } 1497 else if (txflags & ATHN_TXFLAG_CAB) { 1498 qos = 0; 1499 qid = ATHN_QID_CAB; 1500 } 1501 else { 1502 qos = 0; 1503 qid = ATHN_QID_AC_BE; 1504 } 1505 txq = &sc->sc_txq[qid]; 1506 1507 /* Select the transmit rates to use for this frame. */ 1508 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1509 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 1510 IEEE80211_FC0_TYPE_DATA) { 1511 /* Use lowest rate for all tries. */ 1512 ridx[0] = ridx[1] = ridx[2] = ridx[3] = 1513 (ic->ic_curmode == IEEE80211_MODE_11A) ? 1514 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; 1515 } 1516 else if (ic->ic_fixed_rate != -1) { 1517 /* Use same fixed rate for all tries. */ 1518 ridx[0] = ridx[1] = ridx[2] = ridx[3] = 1519 sc->sc_fixed_ridx; 1520 } 1521 else { 1522 int txrate = ni->ni_txrate; 1523 /* Use fallback table of the node. */ 1524 for (i = 0; i < 4; i++) { 1525 ridx[i] = an->ridx[txrate]; 1526 txrate = an->fallback[txrate]; 1527 } 1528 } 1529 1530 if (__predict_false(sc->sc_drvbpf != NULL)) { 1531 struct athn_tx_radiotap_header *tap = &sc->sc_txtap; 1532 1533 tap->wt_flags = 0; 1534 /* Use initial transmit rate. */ 1535 tap->wt_rate = athn_rates[ridx[0]].rate; 1536 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1537 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1538 // XXX tap->wt_hwqueue = qid; 1539 if (ridx[0] != ATHN_RIDX_CCK1 && 1540 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1541 tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1542 1543 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); 1544 } 1545 1546 /* DMA map mbuf. */ 1547 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1548 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1549 if (__predict_false(error != 0)) { 1550 if (error != EFBIG) { 1551 aprint_error_dev(sc->sc_dev, 1552 "can't map mbuf (error %d)\n", error); 1553 m_freem(m); 1554 return error; 1555 } 1556 /* 1557 * DMA mapping requires too many DMA segments; linearize 1558 * mbuf in kernel virtual address space and retry. 1559 */ 1560 MGETHDR(m1, M_DONTWAIT, MT_DATA); 1561 if (m1 == NULL) { 1562 m_freem(m); 1563 return ENOBUFS; 1564 } 1565 if (m->m_pkthdr.len > (int)MHLEN) { 1566 MCLGET(m1, M_DONTWAIT); 1567 if (!(m1->m_flags & M_EXT)) { 1568 m_freem(m); 1569 m_freem(m1); 1570 return ENOBUFS; 1571 } 1572 } 1573 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 1574 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 1575 m_freem(m); 1576 m = m1; 1577 1578 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1579 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1580 if (error != 0) { 1581 aprint_error_dev(sc->sc_dev, 1582 "can't map mbuf (error %d)\n", error); 1583 m_freem(m); 1584 return error; 1585 } 1586 } 1587 bf->bf_m = m; 1588 bf->bf_ni = ni; 1589 bf->bf_txflags = txflags; 1590 1591 wh = mtod(m, struct ieee80211_frame *); 1592 1593 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1594 1595 /* Setup Tx descriptor. */ 1596 ds = bf->bf_descs; 1597 memset(ds, 0, sizeof(*ds)); 1598 1599 ds->ds_info = 1600 SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | 1601 SM(AR_TXI_DESC_NDWORDS, 23) | 1602 SM(AR_TXI_QCU_NUM, qid) | 1603 AR_TXI_DESC_TX | AR_TXI_CTRL_STAT; 1604 1605 ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK; 1606 txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */ 1607 ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower); 1608 1609 ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type); 1610 1611 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1612 (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) == 1613 IEEE80211_QOS_ACKPOLICY_NOACK)) 1614 ds->ds_ctl12 |= AR_TXC12_NO_ACK; 1615 1616 #if notyet 1617 if (0 && k != NULL) { 1618 uintptr_t entry; 1619 1620 /* 1621 * Map 802.11 cipher to hardware encryption type and 1622 * compute MIC+ICV overhead. 1623 */ 1624 switch (k->k_cipher) { 1625 case IEEE80211_CIPHER_WEP40: 1626 case IEEE80211_CIPHER_WEP104: 1627 encrtype = AR_ENCR_TYPE_WEP; 1628 totlen += 4; 1629 break; 1630 case IEEE80211_CIPHER_TKIP: 1631 encrtype = AR_ENCR_TYPE_TKIP; 1632 totlen += 12; 1633 break; 1634 case IEEE80211_CIPHER_CCMP: 1635 encrtype = AR_ENCR_TYPE_AES; 1636 totlen += 8; 1637 break; 1638 default: 1639 panic("unsupported cipher"); 1640 } 1641 /* 1642 * NB: The key cache entry index is stored in the key 1643 * private field when the key is installed. 1644 */ 1645 entry = (uintptr_t)k->k_priv; 1646 ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry); 1647 ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID; 1648 } 1649 else 1650 #endif 1651 encrtype = AR_ENCR_TYPE_CLEAR; 1652 ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype); 1653 1654 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 1655 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1656 /* NB: Group frames are sent using CCK in 802.11b/g. */ 1657 if (totlen > ic->ic_rtsthreshold) { 1658 ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE; 1659 } 1660 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1661 athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) { 1662 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1663 ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE; 1664 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1665 ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE; 1666 } 1667 } 1668 if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) { 1669 /* Disable multi-rate retries when protection is used. */ 1670 ridx[1] = ridx[2] = ridx[3] = ridx[0]; 1671 } 1672 /* Setup multi-rate retries. */ 1673 for (i = 0; i < 4; i++) { 1674 series[i].hwrate = athn_rates[ridx[i]].hwrate; 1675 if (athn_rates[ridx[i]].phy == IEEE80211_T_DS && 1676 ridx[i] != ATHN_RIDX_CCK1 && 1677 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1678 series[i].hwrate |= 0x04; 1679 series[i].dur = 0; 1680 } 1681 if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) { 1682 /* Compute duration for each series. */ 1683 for (i = 0; i < 4; i++) { 1684 series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN, 1685 athn_rates[ridx[i]].rspridx, ic->ic_flags); 1686 } 1687 } 1688 /* If this is a PA training frame, select the Tx chain to use. */ 1689 if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) { 1690 ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK, 1691 1 << sc->sc_paprd_curchain); 1692 } 1693 1694 /* Write number of tries for each series. */ 1695 ds->ds_ctl13 = 1696 SM(AR_TXC13_XMIT_DATA_TRIES0, 2) | 1697 SM(AR_TXC13_XMIT_DATA_TRIES1, 2) | 1698 SM(AR_TXC13_XMIT_DATA_TRIES2, 2) | 1699 SM(AR_TXC13_XMIT_DATA_TRIES3, 4); 1700 1701 /* Tell HW to update duration field in 802.11 header. */ 1702 if (type != AR_FRAME_TYPE_PSPOLL) 1703 ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA; 1704 1705 /* Write Tx rate for each series. */ 1706 ds->ds_ctl14 = 1707 SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) | 1708 SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) | 1709 SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) | 1710 SM(AR_TXC14_XMIT_RATE3, series[3].hwrate); 1711 1712 /* Write duration for each series. */ 1713 ds->ds_ctl15 = 1714 SM(AR_TXC15_PACKET_DUR0, series[0].dur) | 1715 SM(AR_TXC15_PACKET_DUR1, series[1].dur); 1716 ds->ds_ctl16 = 1717 SM(AR_TXC16_PACKET_DUR2, series[2].dur) | 1718 SM(AR_TXC16_PACKET_DUR3, series[3].dur); 1719 1720 if ((sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) && 1721 ic->ic_curmode == IEEE80211_MODE_11A) { 1722 /* 1723 * In order to not exceed PCIe power requirements, we only 1724 * use two Tx chains for MCS0~15 on 5GHz band on these chips. 1725 */ 1726 ds->ds_ctl18 = 1727 SM(AR_TXC18_CHAIN_SEL0, 1728 (ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) | 1729 SM(AR_TXC18_CHAIN_SEL1, 1730 (ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) | 1731 SM(AR_TXC18_CHAIN_SEL2, 1732 (ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) | 1733 SM(AR_TXC18_CHAIN_SEL3, 1734 (ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask); 1735 } 1736 else { 1737 /* Use the same Tx chains for all tries. */ 1738 ds->ds_ctl18 = 1739 SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask) | 1740 SM(AR_TXC18_CHAIN_SEL1, sc->sc_txchainmask) | 1741 SM(AR_TXC18_CHAIN_SEL2, sc->sc_txchainmask) | 1742 SM(AR_TXC18_CHAIN_SEL3, sc->sc_txchainmask); 1743 } 1744 #ifdef notyet 1745 #ifndef IEEE80211_NO_HT 1746 /* Use the same short GI setting for all tries. */ 1747 if (ic->ic_flags & IEEE80211_F_SHGI) 1748 ds->ds_ctl18 |= AR_TXC18_GI0123; 1749 /* Use the same channel width for all tries. */ 1750 if (ic->ic_flags & IEEE80211_F_CBW40) 1751 ds->ds_ctl18 |= AR_TXC18_2040_0123; 1752 #endif 1753 #endif 1754 1755 if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) { 1756 uint8_t protridx, hwrate; 1757 uint16_t dur = 0; 1758 1759 /* Use the same protection mode for all tries. */ 1760 if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) { 1761 ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01; 1762 ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23; 1763 } 1764 /* Select protection rate (suboptimal but ok). */ 1765 protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 1766 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2; 1767 if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) { 1768 /* Account for CTS duration. */ 1769 dur += athn_txtime(sc, IEEE80211_ACK_LEN, 1770 athn_rates[protridx].rspridx, ic->ic_flags); 1771 } 1772 dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags); 1773 if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) { 1774 /* Account for ACK duration. */ 1775 dur += athn_txtime(sc, IEEE80211_ACK_LEN, 1776 athn_rates[ridx[0]].rspridx, ic->ic_flags); 1777 } 1778 /* Write protection frame duration and rate. */ 1779 ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur); 1780 hwrate = athn_rates[protridx].hwrate; 1781 if (protridx == ATHN_RIDX_CCK2 && 1782 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1783 hwrate |= 0x04; 1784 ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate); 1785 } 1786 1787 ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen); 1788 ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING; 1789 1790 for (i = 0; i < bf->bf_map->dm_nsegs; i++) { 1791 ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr; 1792 ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN, 1793 bf->bf_map->dm_segs[i].ds_len); 1794 } 1795 /* Compute Tx descriptor checksum. */ 1796 sum = ds->ds_info + ds->ds_link; 1797 for (i = 0; i < 4; i++) { 1798 sum += ds->ds_segs[i].ds_data; 1799 sum += ds->ds_segs[i].ds_ctl; 1800 } 1801 sum = (sum >> 16) + (sum & 0xffff); 1802 ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum); 1803 1804 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1805 BUS_DMASYNC_PREWRITE); 1806 1807 DPRINTFN(DBG_TX, sc, 1808 "Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n", 1809 qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12, 1810 ds->ds_ctl14); 1811 1812 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list); 1813 SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list); 1814 1815 /* Queue buffer unless hardware FIFO is already full. */ 1816 if (++txq->queued <= AR9003_TX_QDEPTH) { 1817 AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr); 1818 AR_WRITE_BARRIER(sc); 1819 } 1820 else if (txq->wait == NULL) 1821 txq->wait = bf; 1822 return 0; 1823 } 1824 1825 Static void 1826 ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c) 1827 { 1828 uint32_t reg; 1829 1830 reg = IEEE80211_IS_CHAN_2GHZ(c) ? 1831 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; 1832 if (IEEE80211_IS_CHAN_5GHZ(c) && 1833 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) { 1834 reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE; 1835 } 1836 AR_WRITE(sc, AR_PHY_MODE, reg); 1837 AR_WRITE_BARRIER(sc); 1838 } 1839 1840 static __inline uint32_t 1841 ar9003_synth_delay(struct athn_softc *sc) 1842 { 1843 uint32_t synth_delay; 1844 1845 synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY); 1846 if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B) 1847 synth_delay = (synth_delay * 4) / 22; 1848 else 1849 synth_delay = synth_delay / 10; /* in 100ns steps */ 1850 return synth_delay; 1851 } 1852 1853 Static int 1854 ar9003_rf_bus_request(struct athn_softc *sc) 1855 { 1856 int ntries; 1857 1858 /* Request RF Bus grant. */ 1859 AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); 1860 for (ntries = 0; ntries < 10000; ntries++) { 1861 if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN) 1862 return 0; 1863 DELAY(10); 1864 } 1865 DPRINTFN(DBG_RF, sc, "could not kill baseband Rx"); 1866 return ETIMEDOUT; 1867 } 1868 1869 Static void 1870 ar9003_rf_bus_release(struct athn_softc *sc) 1871 { 1872 /* Wait for the synthesizer to settle. */ 1873 DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc)); 1874 1875 /* Release the RF Bus grant. */ 1876 AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0); 1877 AR_WRITE_BARRIER(sc); 1878 } 1879 1880 Static void 1881 ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c, 1882 struct ieee80211_channel *extc) 1883 { 1884 uint32_t phy; 1885 1886 phy = AR_READ(sc, AR_PHY_GEN_CTRL); 1887 phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 | 1888 AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH; 1889 #ifndef IEEE80211_NO_HT 1890 if (extc != NULL) { 1891 phy |= AR_PHY_GC_DYN2040_EN; 1892 if (extc > c) /* XXX */ 1893 phy |= AR_PHY_GC_DYN2040_PRI_CH; 1894 } 1895 #endif 1896 /* Turn off Green Field detection for now. */ 1897 phy &= ~AR_PHY_GC_GF_DETECT_EN; 1898 AR_WRITE(sc, AR_PHY_GEN_CTRL, phy); 1899 1900 AR_WRITE(sc, AR_2040_MODE, 1901 (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0); 1902 1903 /* Set global transmit timeout. */ 1904 AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25)); 1905 /* Set carrier sense timeout. */ 1906 AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15)); 1907 AR_WRITE_BARRIER(sc); 1908 } 1909 1910 Static void 1911 ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c, 1912 struct ieee80211_channel *extc) 1913 { 1914 uint32_t coeff, exp, man, reg; 1915 1916 /* Set Delta Slope (exponent and mantissa). */ 1917 coeff = (100 << 24) / c->ic_freq; 1918 athn_get_delta_slope(coeff, &exp, &man); 1919 DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man); 1920 1921 reg = AR_READ(sc, AR_PHY_TIMING3); 1922 reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp); 1923 reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man); 1924 AR_WRITE(sc, AR_PHY_TIMING3, reg); 1925 1926 /* For Short GI, coeff is 9/10 that of normal coeff. */ 1927 coeff = (9 * coeff) / 10; 1928 athn_get_delta_slope(coeff, &exp, &man); 1929 DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man); 1930 1931 reg = AR_READ(sc, AR_PHY_SGI_DELTA); 1932 reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp); 1933 reg = RW(reg, AR_PHY_SGI_DSC_MAN, man); 1934 AR_WRITE(sc, AR_PHY_SGI_DELTA, reg); 1935 AR_WRITE_BARRIER(sc); 1936 } 1937 1938 Static void 1939 ar9003_enable_antenna_diversity(struct athn_softc *sc) 1940 { 1941 AR_SETBITS(sc, AR_PHY_CCK_DETECT, 1942 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); 1943 AR_WRITE_BARRIER(sc); 1944 } 1945 1946 Static void 1947 ar9003_init_baseband(struct athn_softc *sc) 1948 { 1949 uint32_t synth_delay; 1950 1951 synth_delay = ar9003_synth_delay(sc); 1952 /* Activate the PHY (includes baseband activate and synthesizer on). */ 1953 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 1954 AR_WRITE_BARRIER(sc); 1955 DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay); 1956 } 1957 1958 Static void 1959 ar9003_disable_phy(struct athn_softc *sc) 1960 { 1961 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 1962 AR_WRITE_BARRIER(sc); 1963 } 1964 1965 Static void 1966 ar9003_init_chains(struct athn_softc *sc) 1967 { 1968 if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5) 1969 AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1970 1971 /* Setup chain masks. */ 1972 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask); 1973 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask); 1974 1975 if (sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) { 1976 /* 1977 * All self-generated frames are sent using two Tx chains 1978 * on these chips to not exceed PCIe power requirements. 1979 */ 1980 AR_WRITE(sc, AR_SELFGEN_MASK, 0x3); 1981 } 1982 else 1983 AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask); 1984 AR_WRITE_BARRIER(sc); 1985 } 1986 1987 Static void 1988 ar9003_set_rxchains(struct athn_softc *sc) 1989 { 1990 if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) { 1991 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask); 1992 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask); 1993 AR_WRITE_BARRIER(sc); 1994 } 1995 } 1996 1997 #ifdef notused 1998 Static void 1999 ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) 2000 { 2001 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */ 2002 #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100) 2003 uint32_t reg; 2004 int i; 2005 2006 for (i = 0; i < sc->sc_nrxchains; i++) { 2007 reg = AR_READ(sc, AR_PHY_CCA(i)); 2008 nf[i] = MS(reg, AR_PHY_MINCCA_PWR); 2009 nf[i] = SIGN_EXT(nf[i]); 2010 2011 reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); 2012 nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR); 2013 nf_ext[i] = SIGN_EXT(nf_ext[i]); 2014 } 2015 #undef SIGN_EXT 2016 } 2017 #endif /* notused */ 2018 2019 #ifdef notused 2020 Static void 2021 ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) 2022 { 2023 uint32_t reg; 2024 int i; 2025 2026 for (i = 0; i < sc->sc_nrxchains; i++) { 2027 reg = AR_READ(sc, AR_PHY_CCA(i)); 2028 reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]); 2029 AR_WRITE(sc, AR_PHY_CCA(i), reg); 2030 2031 reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); 2032 reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]); 2033 AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg); 2034 } 2035 AR_WRITE_BARRIER(sc); 2036 } 2037 #endif /* notused */ 2038 2039 #ifdef notused 2040 Static void 2041 ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c) 2042 { 2043 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; 2044 int16_t cca_min, cca_max; 2045 int i; 2046 2047 if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { 2048 /* Noisefloor calibration not finished. */ 2049 return; 2050 } 2051 /* Noisefloor calibration is finished. */ 2052 ar9003_read_noisefloor(sc, nf, nf_ext); 2053 2054 if (IEEE80211_IS_CHAN_2GHZ(c)) { 2055 cca_min = sc->sc_cca_min_2g; 2056 cca_max = sc->sc_cca_max_2g; 2057 } 2058 else { 2059 cca_min = sc->sc_cca_min_5g; 2060 cca_max = sc->sc_cca_max_5g; 2061 } 2062 /* Update noisefloor history. */ 2063 for (i = 0; i < sc->sc_nrxchains; i++) { 2064 if (nf[i] < cca_min) 2065 nf[i] = cca_min; 2066 else if (nf[i] > cca_max) 2067 nf[i] = cca_max; 2068 if (nf_ext[i] < cca_min) 2069 nf_ext[i] = cca_min; 2070 else if (nf_ext[i] > cca_max) 2071 nf_ext[i] = cca_max; 2072 2073 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i]; 2074 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i]; 2075 } 2076 if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX) 2077 sc->sc_nf_hist_cur = 0; 2078 } 2079 #endif /* notused */ 2080 2081 #ifdef notused 2082 Static void 2083 ar9003_bb_load_noisefloor(struct athn_softc *sc) 2084 { 2085 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; 2086 int i, ntries; 2087 2088 /* Write filtered noisefloor values. */ 2089 for (i = 0; i < sc->sc_nrxchains; i++) { 2090 nf[i] = sc->sc_nf_priv[i] * 2; 2091 nf_ext[i] = sc->sc_nf_ext_priv[i] * 2; 2092 } 2093 ar9003_write_noisefloor(sc, nf, nf_ext); 2094 2095 /* Load filtered noisefloor values into baseband. */ 2096 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); 2097 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); 2098 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 2099 /* Wait for load to complete. */ 2100 for (ntries = 0; ntries < 1000; ntries++) { 2101 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)) 2102 break; 2103 DELAY(10); 2104 } 2105 if (ntries == 1000) { 2106 DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n"); 2107 return; 2108 } 2109 2110 /* Restore noisefloor values to initial (max) values. */ 2111 for (i = 0; i < AR_MAX_CHAINS; i++) 2112 nf[i] = nf_ext[i] = -50 * 2; 2113 ar9003_write_noisefloor(sc, nf, nf_ext); 2114 } 2115 #endif /* notused */ 2116 2117 #ifdef notused 2118 Static void 2119 ar9300_noisefloor_calib(struct athn_softc *sc) 2120 { 2121 2122 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); 2123 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); 2124 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 2125 } 2126 #endif /* notused */ 2127 2128 Static void 2129 ar9003_do_noisefloor_calib(struct athn_softc *sc) 2130 { 2131 2132 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 2133 } 2134 2135 PUBLIC int 2136 ar9003_init_calib(struct athn_softc *sc) 2137 { 2138 uint8_t txchainmask, rxchainmask; 2139 uint32_t reg; 2140 int ntries; 2141 2142 /* Save chains masks. */ 2143 txchainmask = sc->sc_txchainmask; 2144 rxchainmask = sc->sc_rxchainmask; 2145 /* Configure hardware before calibration. */ 2146 if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE) 2147 txchainmask = rxchainmask = 0x3; 2148 else 2149 txchainmask = rxchainmask = 0x7; 2150 ar9003_init_chains(sc); 2151 2152 /* Perform Tx IQ calibration. */ 2153 ar9003_calib_tx_iq(sc); 2154 /* Disable and re-enable the PHY chips. */ 2155 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 2156 AR_WRITE_BARRIER(sc); 2157 DELAY(5); 2158 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 2159 2160 /* Calibrate the AGC. */ 2161 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); 2162 /* Poll for offset calibration completion. */ 2163 for (ntries = 0; ntries < 10000; ntries++) { 2164 reg = AR_READ(sc, AR_PHY_AGC_CONTROL); 2165 if (!(reg & AR_PHY_AGC_CONTROL_CAL)) 2166 break; 2167 DELAY(10); 2168 } 2169 if (ntries == 10000) 2170 return ETIMEDOUT; 2171 2172 /* Restore chains masks. */ 2173 sc->sc_txchainmask = txchainmask; 2174 sc->sc_rxchainmask = rxchainmask; 2175 ar9003_init_chains(sc); 2176 2177 return 0; 2178 } 2179 2180 Static void 2181 ar9003_do_calib(struct athn_softc *sc) 2182 { 2183 uint32_t reg; 2184 2185 if (sc->sc_cur_calib_mask & ATHN_CAL_IQ) { 2186 reg = AR_READ(sc, AR_PHY_TIMING4); 2187 reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10); 2188 AR_WRITE(sc, AR_PHY_TIMING4, reg); 2189 AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ); 2190 AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL); 2191 AR_WRITE_BARRIER(sc); 2192 } 2193 else if (sc->sc_cur_calib_mask & ATHN_CAL_TEMP) { 2194 AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM, 2195 AR_PHY_65NM_CH0_THERM_LOCAL); 2196 AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM, 2197 AR_PHY_65NM_CH0_THERM_START); 2198 AR_WRITE_BARRIER(sc); 2199 } 2200 } 2201 2202 Static void 2203 ar9003_next_calib(struct athn_softc *sc) 2204 { 2205 /* Check if we have any calibration in progress. */ 2206 if (sc->sc_cur_calib_mask != 0) { 2207 if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) { 2208 /* Calibration completed for current sample. */ 2209 ar9003_calib_iq(sc); 2210 } 2211 } 2212 } 2213 2214 Static void 2215 ar9003_calib_iq(struct athn_softc *sc) 2216 { 2217 struct athn_iq_cal *cal; 2218 uint32_t reg, i_coff_denom, q_coff_denom; 2219 int32_t i_coff, q_coff; 2220 int i, iq_corr_neg; 2221 2222 for (i = 0; i < AR_MAX_CHAINS; i++) { 2223 cal = &sc->sc_calib.iq[i]; 2224 2225 /* Read IQ calibration measures (clear on read). */ 2226 cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i)); 2227 cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i)); 2228 cal->iq_corr_meas = 2229 (int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i)); 2230 } 2231 2232 for (i = 0; i < sc->sc_nrxchains; i++) { 2233 cal = &sc->sc_calib.iq[i]; 2234 2235 if (cal->pwr_meas_q == 0) 2236 continue; 2237 2238 if ((iq_corr_neg = cal->iq_corr_meas < 0)) 2239 cal->iq_corr_meas = -cal->iq_corr_meas; 2240 2241 i_coff_denom = 2242 (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256; 2243 q_coff_denom = cal->pwr_meas_q / 64; 2244 2245 if (i_coff_denom == 0 || q_coff_denom == 0) 2246 continue; /* Prevents division by zero. */ 2247 2248 i_coff = cal->iq_corr_meas / i_coff_denom; 2249 q_coff = (cal->pwr_meas_i / q_coff_denom) - 64; 2250 2251 if (i_coff > 63) 2252 i_coff = 63; 2253 else if (i_coff < -63) 2254 i_coff = -63; 2255 /* Negate i_coff if iq_corr_meas is positive. */ 2256 if (!iq_corr_neg) 2257 i_coff = -i_coff; 2258 if (q_coff > 63) 2259 q_coff = 63; 2260 else if (q_coff < -63) 2261 q_coff = -63; 2262 2263 DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i); 2264 reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i)); 2265 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff); 2266 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff); 2267 AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg); 2268 } 2269 2270 /* Apply new settings. */ 2271 AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0), 2272 AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE); 2273 AR_WRITE_BARRIER(sc); 2274 2275 /* IQ calibration done. */ 2276 sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ; 2277 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib)); 2278 } 2279 2280 #define DELPT 32 2281 Static int 2282 ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2]) 2283 { 2284 /* Sign-extends 12-bit value (assumes upper bits are zeroes). */ 2285 #define SIGN_EXT(v) (((v) ^ 0x800) - 0x800) 2286 #define SCALE (1 << 15) 2287 #define SHIFT (1 << 8) 2288 struct { 2289 int32_t m, p, c; 2290 } val[2][2]; 2291 int32_t mag[2][2], phs[2][2], cos[2], sin[2]; 2292 int32_t div, f1, f2, f3, m, p, c; 2293 int32_t txmag, txphs, rxmag, rxphs; 2294 int32_t q_coff, i_coff; 2295 int i, j; 2296 2297 /* Extract our twelve signed 12-bit values from res[] array. */ 2298 val[0][0].m = res[0] & 0xfff; 2299 val[0][0].p = (res[0] >> 12) & 0xfff; 2300 val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8; 2301 2302 val[0][1].m = (res[1] >> 4) & 0xfff; 2303 val[0][1].p = res[2] & 0xfff; 2304 val[0][1].c = (res[2] >> 12) & 0xfff; 2305 2306 val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8; 2307 val[1][0].p = (res[3] >> 4) & 0xfff; 2308 val[1][0].c = res[4] & 0xfff; 2309 2310 val[1][1].m = (res[4] >> 12) & 0xfff; 2311 val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8; 2312 val[1][1].c = (res[5] >> 4) & 0xfff; 2313 2314 for (i = 0; i < 2; i++) { 2315 int32_t ymin, ymax; 2316 for (j = 0; j < 2; j++) { 2317 m = SIGN_EXT(val[i][j].m); 2318 p = SIGN_EXT(val[i][j].p); 2319 c = SIGN_EXT(val[i][j].c); 2320 2321 if (p == 0) 2322 return 1; /* Prevent division by 0. */ 2323 2324 mag[i][j] = (m * SCALE) / p; 2325 phs[i][j] = (c * SCALE) / p; 2326 } 2327 sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT; 2328 cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT; 2329 /* Find magnitude by approximation. */ 2330 ymin = MIN(abs(sin[i]), abs(cos[i])); 2331 ymax = MAX(abs(sin[i]), abs(cos[i])); 2332 div = ymax - (ymax / 32) + (ymin / 8) + (ymin / 4); 2333 if (div == 0) 2334 return 1; /* Prevent division by 0. */ 2335 /* Normalize sin and cos by magnitude. */ 2336 sin[i] = (sin[i] * SCALE) / div; 2337 cos[i] = (cos[i] * SCALE) / div; 2338 } 2339 2340 /* Compute IQ mismatch (solve 4x4 linear equation). */ 2341 f1 = cos[0] - cos[1]; 2342 f3 = sin[0] - sin[1]; 2343 f2 = (f1 * f1 + f3 * f3) / SCALE; 2344 if (f2 == 0) 2345 return 1; /* Prevent division by 0. */ 2346 2347 /* Compute Tx magnitude mismatch. */ 2348 txmag = (f1 * ( mag[0][0] - mag[1][0]) + 2349 f3 * ( phs[0][0] - phs[1][0])) / f2; 2350 /* Compute Tx phase mismatch. */ 2351 txphs = (f3 * (-mag[0][0] + mag[1][0]) + 2352 f1 * ( phs[0][0] - phs[1][0])) / f2; 2353 2354 if (txmag == SCALE) 2355 return 1; /* Prevent division by 0. */ 2356 2357 /* Compute Rx magnitude mismatch. */ 2358 rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE; 2359 /* Compute Rx phase mismatch. */ 2360 rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE; 2361 2362 if (-rxmag == SCALE) 2363 return 1; /* Prevent division by 0. */ 2364 2365 txmag = (txmag * SCALE) / (SCALE - txmag); 2366 txphs = -txphs; 2367 2368 q_coff = (txmag * 128) / SCALE; 2369 if (q_coff < -63) 2370 q_coff = -63; 2371 else if (q_coff > 63) 2372 q_coff = 63; 2373 i_coff = (txphs * 256) / SCALE; 2374 if (i_coff < -63) 2375 i_coff = -63; 2376 else if (i_coff > 63) 2377 i_coff = 63; 2378 coeff[0] = q_coff * 128 + i_coff; 2379 2380 rxmag = (-rxmag * SCALE) / (SCALE + rxmag); 2381 rxphs = -rxphs; 2382 2383 q_coff = (rxmag * 128) / SCALE; 2384 if (q_coff < -63) 2385 q_coff = -63; 2386 else if (q_coff > 63) 2387 q_coff = 63; 2388 i_coff = (rxphs * 256) / SCALE; 2389 if (i_coff < -63) 2390 i_coff = -63; 2391 else if (i_coff > 63) 2392 i_coff = 63; 2393 coeff[1] = q_coff * 128 + i_coff; 2394 2395 return 0; 2396 #undef SHIFT 2397 #undef SCALE 2398 #undef SIGN_EXT 2399 } 2400 2401 Static int 2402 ar9003_calib_tx_iq(struct athn_softc *sc) 2403 { 2404 uint32_t reg; 2405 int32_t res[6], coeff[2]; 2406 int i, j, ntries; 2407 2408 reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1); 2409 reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT); 2410 AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg); 2411 2412 /* Start Tx IQ calibration. */ 2413 AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL); 2414 /* Wait for completion. */ 2415 for (ntries = 0; ntries < 10000; ntries++) { 2416 reg = AR_READ(sc, AR_PHY_TX_IQCAL_START); 2417 if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL)) 2418 break; 2419 DELAY(10); 2420 } 2421 if (ntries == 10000) 2422 return ETIMEDOUT; 2423 2424 for (i = 0; i < sc->sc_ntxchains; i++) { 2425 /* Read Tx IQ calibration status for this chain. */ 2426 reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i)); 2427 if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED) 2428 return EIO; 2429 /* 2430 * Read Tx IQ calibration results for this chain. 2431 * This consists in twelve signed 12-bit values. 2432 */ 2433 for (j = 0; j < 3; j++) { 2434 AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, 2435 AR_PHY_CHAN_INFO_TAB_S2_READ); 2436 reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j)); 2437 res[j * 2 + 0] = reg; 2438 2439 AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, 2440 AR_PHY_CHAN_INFO_TAB_S2_READ); 2441 reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j)); 2442 res[j * 2 + 1] = reg & 0xffff; 2443 } 2444 2445 /* Compute Tx IQ correction. */ 2446 if (ar9003_get_iq_corr(sc, res, coeff) != 0) 2447 return EIO; 2448 2449 /* Write Tx IQ correction coefficients. */ 2450 reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i)); 2451 reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE, 2452 coeff[0]); 2453 AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg); 2454 2455 reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i)); 2456 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF, 2457 coeff[1] >> 7); 2458 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF, 2459 coeff[1]); 2460 AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg); 2461 AR_WRITE_BARRIER(sc); 2462 } 2463 2464 /* Enable Tx IQ correction. */ 2465 AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3, 2466 AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN); 2467 AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0), 2468 AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN); 2469 AR_WRITE_BARRIER(sc); 2470 return 0; 2471 } 2472 #undef DELPT 2473 2474 /*- 2475 * The power amplifier predistortion state machine works as follows: 2476 * 1) Disable digital predistorters for all Tx chains 2477 * 2) Repeat steps 3~7 for all Tx chains 2478 * 3) Force Tx gain to that of training signal 2479 * 4) Send training signal (asynchronous) 2480 * 5) Wait for training signal to complete (asynchronous) 2481 * 6) Read PA measurements (input power, output power, output phase) 2482 * 7) Compute the predistortion function that linearizes PA output 2483 * 8) Write predistortion functions to hardware tables for all Tx chains 2484 * 9) Enable digital predistorters for all Tx chains 2485 */ 2486 #ifdef notused 2487 Static void 2488 ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c) 2489 { 2490 static const int scaling[] = { 2491 261376, 248079, 233759, 220464, 2492 208194, 196949, 185706, 175487 2493 }; 2494 struct athn_ops *ops = &sc->sc_ops; 2495 uint32_t reg, ht20mask, ht40mask; 2496 int i; 2497 2498 /* Read PA predistortion masks from ROM. */ 2499 ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask); 2500 2501 /* AM-to-AM: amplifier's amplitude characteristic. */ 2502 reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM); 2503 reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask); 2504 AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg); 2505 2506 /* AM-to-PM: amplifier's phase transfer characteristic. */ 2507 reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM); 2508 reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask); 2509 AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg); 2510 2511 reg = AR_READ(sc, AR_PHY_PAPRD_HT40); 2512 reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask); 2513 AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg); 2514 2515 for (i = 0; i < AR9003_MAX_CHAINS; i++) { 2516 AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i), 2517 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE); 2518 2519 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i)); 2520 reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181); 2521 reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361); 2522 reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA; 2523 reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA; 2524 reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA; 2525 AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg); 2526 2527 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i)); 2528 reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3); 2529 AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg); 2530 } 2531 2532 /* Disable all digital predistorters during calibration. */ 2533 for (i = 0; i < AR9003_MAX_CHAINS; i++) { 2534 AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i), 2535 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE); 2536 } 2537 AR_WRITE_BARRIER(sc); 2538 2539 /* 2540 * Configure training signal. 2541 */ 2542 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1); 2543 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28); 2544 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30); 2545 reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE; 2546 reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE; 2547 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE; 2548 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE; 2549 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE; 2550 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg); 2551 2552 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147); 2553 2554 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3); 2555 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4); 2556 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4); 2557 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7); 2558 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1); 2559 if (AR_SREV_9485(sc)) 2560 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3); 2561 else 2562 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6); 2563 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15); 2564 reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE; 2565 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg); 2566 2567 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4); 2568 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0); 2569 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400); 2570 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100); 2571 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg); 2572 2573 for (i = 0; i < __arraycount(scaling); i++) { 2574 reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i)); 2575 reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]); 2576 AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg); 2577 } 2578 2579 /* Save Tx gain table. */ 2580 for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++) 2581 sc->sc_txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i)); 2582 2583 /* Set Tx power of training signal (use setting for MCS0). */ 2584 sc->sc_trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5), 2585 AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4; 2586 2587 /* 2588 * Start PA predistortion calibration state machine. 2589 */ 2590 /* Find first available Tx chain. */ 2591 sc->sc_paprd_curchain = 0; 2592 while (!(sc->sc_txchainmask & (1 << sc->sc_paprd_curchain))) 2593 sc->sc_paprd_curchain++; 2594 2595 /* Make sure training done bit is clear. */ 2596 AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1, 2597 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE); 2598 AR_WRITE_BARRIER(sc); 2599 2600 /* Transmit training signal. */ 2601 ar9003_paprd_tx_tone(sc); 2602 } 2603 #endif /* notused */ 2604 2605 Static int 2606 ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow) 2607 { 2608 int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt; 2609 int32_t tempcorr, voltcorr; 2610 uint32_t reg; 2611 int8_t delta; 2612 2613 scale = MS(AR_READ(sc, AR_PHY_TPC_12), 2614 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5); 2615 2616 reg = AR_READ(sc, AR_PHY_TPC_19); 2617 atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM); 2618 avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT); 2619 2620 reg = AR_READ(sc, AR_PHY_TPC_18); 2621 tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL); 2622 voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL); 2623 2624 reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4); 2625 temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM); 2626 volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT); 2627 2628 delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)), 2629 AR_PHY_TPC_11_OLPC_GAIN_DELTA); 2630 2631 /* Compute temperature and voltage correction. */ 2632 tempcorr = (atemp * (temp - tempcal) + 128) / 256; 2633 voltcorr = (avolt * (volt - voltcal) + 64) / 128; 2634 2635 /* Compute desired Tx gain. */ 2636 return pow - delta - tempcorr - voltcorr + scale; 2637 } 2638 2639 Static void 2640 ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain) 2641 { 2642 uint32_t reg; 2643 2644 reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN); 2645 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN, 2646 MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN)); 2647 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN, 2648 MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN)); 2649 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN, 2650 MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN)); 2651 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA, 2652 MS(txgain, AR_PHY_TXGAIN_PADRVGNA)); 2653 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB, 2654 MS(txgain, AR_PHY_TXGAIN_PADRVGNB)); 2655 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC, 2656 MS(txgain, AR_PHY_TXGAIN_PADRVGNC)); 2657 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND, 2658 MS(txgain, AR_PHY_TXGAIN_PADRVGND)); 2659 reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL; 2660 reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN; 2661 AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg); 2662 2663 reg = AR_READ(sc, AR_PHY_TPC_1); 2664 reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0); 2665 reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN; 2666 AR_WRITE(sc, AR_PHY_TPC_1, reg); 2667 AR_WRITE_BARRIER(sc); 2668 } 2669 2670 Static void 2671 ar9003_set_training_gain(struct athn_softc *sc, int chain) 2672 { 2673 size_t i; 2674 int gain; 2675 2676 /* 2677 * Get desired gain for training signal power (take into account 2678 * current temperature/voltage). 2679 */ 2680 gain = ar9003_get_desired_txgain(sc, chain, sc->sc_trainpow); 2681 /* Find entry in table. */ 2682 for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++) 2683 if ((int)MS(sc->sc_txgain[i], AR_PHY_TXGAIN_INDEX) >= gain) 2684 break; 2685 ar9003_force_txgain(sc, sc->sc_txgain[i]); 2686 } 2687 2688 Static int 2689 ar9003_paprd_tx_tone(struct athn_softc *sc) 2690 { 2691 #define TONE_LEN 1800 2692 struct ieee80211com *ic = &sc->sc_ic; 2693 struct ieee80211_frame *wh; 2694 struct ieee80211_node *ni; 2695 struct mbuf *m; 2696 int error; 2697 2698 /* Build a Null (no data) frame of TONE_LEN bytes. */ 2699 m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN); 2700 if (m == NULL) 2701 return ENOBUFS; 2702 memset(mtod(m, void *), 0, TONE_LEN); 2703 wh = mtod(m, struct ieee80211_frame *); 2704 wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA; 2705 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2706 *(uint16_t *)wh->i_dur = htole16(10); /* XXX */ 2707 IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr); 2708 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 2709 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr); 2710 m->m_pkthdr.len = m->m_len = TONE_LEN; 2711 2712 /* Set gain of training signal. */ 2713 ar9003_set_training_gain(sc, sc->sc_paprd_curchain); 2714 2715 /* Transmit training signal. */ 2716 ni = ieee80211_ref_node(ic->ic_bss); 2717 if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0) 2718 ieee80211_free_node(ni); 2719 return error; 2720 #undef TONE_LEN 2721 } 2722 2723 static __inline int 2724 get_scale(int val) 2725 { 2726 int log = 0; 2727 2728 /* Find the log base 2 (position of highest bit set). */ 2729 while (val >>= 1) 2730 log++; 2731 2732 return (log > 10) ? log - 10 : 0; 2733 } 2734 2735 /* 2736 * Compute predistortion function to linearize power amplifier output based 2737 * on feedback from training signal. 2738 */ 2739 Static int 2740 ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo, 2741 const uint32_t *hi) 2742 { 2743 #define NBINS 23 2744 int chain = sc->sc_paprd_curchain; 2745 int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1]; 2746 int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1]; 2747 int nsamples, txsum, rxsum, rosum, maxidx; 2748 int order, order5x, order5xrem, order3x, order3xrem, y5, y3; 2749 int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4; 2750 int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2; 2751 int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in; 2752 int tmp, i; 2753 2754 /* Set values at origin. */ 2755 x[0] = y[0] = t[0] = 0; 2756 2757 #define SCALE 32 2758 maxidx = 0; 2759 for (i = 0; i < NBINS; i++) { 2760 nsamples = lo[i] & 0xffff; 2761 /* Skip bins that contain 16 or less samples. */ 2762 if (nsamples <= 16) { 2763 x[i + 1] = y[i + 1] = t[i + 1] = 0; 2764 continue; 2765 } 2766 txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16; 2767 rxsum = (lo[i + NBINS] & 0xffff) << 5 | 2768 ((hi[i] >> 11) & 0x1f); 2769 rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16; 2770 /* Sign-extend 27-bit value. */ 2771 rosum = (rosum ^ 0x4000000) - 0x4000000; 2772 2773 txsum *= SCALE; 2774 rxsum *= SCALE; 2775 rosum *= SCALE; 2776 2777 x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE; 2778 y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE + 2779 SCALE * maxidx + SCALE / 2; 2780 t[i + 1] = (rosum + nsamples) / nsamples; 2781 maxidx++; 2782 } 2783 #undef SCALE 2784 2785 #define SCALE_LOG 8 2786 #define SCALE (1 << SCALE_LOG) 2787 if (x[6] == x[3]) 2788 return 1; /* Prevent division by 0. */ 2789 G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]); 2790 if (G == 0) 2791 return 1; /* Prevent division by 0. */ 2792 2793 sc->sc_gain1[chain] = G; /* Save low signal gain. */ 2794 2795 /* Find interception point. */ 2796 icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3]; 2797 for (i = 0; i <= 3; i++) { 2798 y[i] = i * 32; 2799 x[i] = (y[i] * SCALE + G) / G; 2800 } 2801 for (i = 4; i <= maxidx; i++) 2802 y[i] -= icept; 2803 2804 xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G; 2805 order = (xnonlin + y[maxidx]) / y[maxidx]; 2806 if (order == 0) 2807 M = 10; 2808 else if (order == 1) 2809 M = 9; 2810 else 2811 M = 8; 2812 2813 I = (maxidx >= 16) ? 7 : maxidx / 2; 2814 L = maxidx - I; 2815 2816 sumy2 = sumy4 = y2 = y4 = 0; 2817 for (i = 0; i <= L; i++) { 2818 if (y[i + I] == 0) 2819 return 1; /* Prevent division by 0. */ 2820 2821 xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G; 2822 xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I]; 2823 xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I]; 2824 xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I]; 2825 2826 y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE); 2827 2828 sumy2 += y2; 2829 sumy4 += y2 * y2; 2830 2831 b1[i] = y2 * (L + 1); 2832 b2[i] = y2; 2833 } 2834 for (i = 0; i <= L; i++) { 2835 b1[i] -= sumy2; 2836 b2[i] = sumy4 - sumy2 * b2[i]; 2837 } 2838 2839 maxxtildeabs = maxb1abs = maxb2abs = 0; 2840 for (i = 0; i <= L; i++) { 2841 tmp = abs(xtilde[i]); 2842 if (tmp > maxxtildeabs) 2843 maxxtildeabs = tmp; 2844 2845 tmp = abs(b1[i]); 2846 if (tmp > maxb1abs) 2847 maxb1abs = tmp; 2848 2849 tmp = abs(b2[i]); 2850 if (tmp > maxb2abs) 2851 maxb2abs = tmp; 2852 } 2853 Qx = get_scale(maxxtildeabs); 2854 Qb1 = get_scale(maxb1abs); 2855 Qb2 = get_scale(maxb2abs); 2856 for (i = 0; i <= L; i++) { 2857 xtilde[i] /= 1 << Qx; 2858 b1[i] /= 1 << Qb1; 2859 b2[i] /= 1 << Qb2; 2860 } 2861 2862 alpha = beta = 0; 2863 for (i = 0; i <= L; i++) { 2864 alpha += b1[i] * xtilde[i]; 2865 beta += b2[i] * xtilde[i]; 2866 } 2867 2868 scale = ((y4 / SCALE_LOG) * (L + 1) - 2869 (y2 / SCALE_LOG) * sumy2) * SCALE_LOG; 2870 2871 Qscale = get_scale(abs(scale)); 2872 scale /= 1 << Qscale; 2873 Qalpha = get_scale(abs(alpha)); 2874 alpha /= 1 << Qalpha; 2875 Qbeta = get_scale(abs(beta)); 2876 beta /= 1 << Qbeta; 2877 2878 order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale; 2879 order5x = 1 << (order / 5); 2880 order5xrem = 1 << (order % 5); 2881 2882 order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale; 2883 order3x = 1 << (order / 3); 2884 order3xrem = 1 << (order % 3); 2885 2886 for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) { 2887 tmp = i * 32; 2888 2889 /* Fifth order. */ 2890 y5 = ((beta * tmp) / 64) / order5x; 2891 y5 = (y5 * tmp) / order5x; 2892 y5 = (y5 * tmp) / order5x; 2893 y5 = (y5 * tmp) / order5x; 2894 y5 = (y5 * tmp) / order5x; 2895 y5 = y5 / order5xrem; 2896 2897 /* Third oder. */ 2898 y3 = (alpha * tmp) / order3x; 2899 y3 = (y3 * tmp) / order3x; 2900 y3 = (y3 * tmp) / order3x; 2901 y3 = y3 / order3xrem; 2902 2903 in = y5 + y3 + (SCALE * tmp) / G; 2904 if (i >= 2 && in < sc->sc_pa_in[chain][i - 1]) { 2905 in = sc->sc_pa_in[chain][i - 1] + 2906 (sc->sc_pa_in[chain][i - 1] - 2907 sc->sc_pa_in[chain][i - 2]); 2908 } 2909 if (in > 1400) 2910 in = 1400; 2911 sc->sc_pa_in[chain][i] = in; 2912 } 2913 2914 /* Compute average theta of first 5 bins (linear region). */ 2915 tavg = 0; 2916 for (i = 1; i <= 5; i++) 2917 tavg += t[i]; 2918 tavg /= 5; 2919 for (i = 1; i <= 5; i++) 2920 t[i] = 0; 2921 for (i = 6; i <= maxidx; i++) 2922 t[i] -= tavg; 2923 2924 alpha = beta = 0; 2925 for (i = 0; i <= L; i++) { 2926 ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I]; 2927 ttilde = ((ttilde << M) + y[i + I]) / y[i + I]; 2928 ttilde = ((ttilde << M) + y[i + I]) / y[i + I]; 2929 2930 alpha += b2[i] * ttilde; 2931 beta += b1[i] * ttilde; 2932 } 2933 2934 Qalpha = get_scale(abs(alpha)); 2935 alpha /= 1 << Qalpha; 2936 Qbeta = get_scale(abs(beta)); 2937 beta /= 1 << Qbeta; 2938 2939 order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5; 2940 order5x = 1 << (order / 5); 2941 order5xrem = 1 << (order % 5); 2942 2943 order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5; 2944 order3x = 1 << (order / 3); 2945 order3xrem = 1 << (order % 3); 2946 2947 for (i = 0; i <= 4; i++) 2948 sc->sc_angle[chain][i] = 0; /* Linear at that range. */ 2949 for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) { 2950 tmp = i * 32; 2951 2952 /* Fifth order. */ 2953 if (beta > 0) 2954 y5 = (((beta * tmp - 64) / 64) - order5x) / order5x; 2955 else 2956 y5 = (((beta * tmp - 64) / 64) + order5x) / order5x; 2957 y5 = (y5 * tmp) / order5x; 2958 y5 = (y5 * tmp) / order5x; 2959 y5 = (y5 * tmp) / order5x; 2960 y5 = (y5 * tmp) / order5x; 2961 y5 = y5 / order5xrem; 2962 2963 /* Third oder. */ 2964 if (beta > 0) /* XXX alpha? */ 2965 y3 = (alpha * tmp - order3x) / order3x; 2966 else 2967 y3 = (alpha * tmp + order3x) / order3x; 2968 y3 = (y3 * tmp) / order3x; 2969 y3 = (y3 * tmp) / order3x; 2970 y3 = y3 / order3xrem; 2971 2972 angle = y5 + y3; 2973 if (angle < -150) 2974 angle = -150; 2975 else if (angle > 150) 2976 angle = 150; 2977 sc->sc_angle[chain][i] = angle; 2978 } 2979 /* Angle for entry 4 is derived from angle for entry 5. */ 2980 sc->sc_angle[chain][4] = (sc->sc_angle[chain][5] + 2) / 2; 2981 2982 return 0; 2983 #undef SCALE 2984 #undef SCALE_LOG 2985 #undef NBINS 2986 } 2987 2988 Static void 2989 ar9003_enable_predistorter(struct athn_softc *sc, int chain) 2990 { 2991 uint32_t reg; 2992 int i; 2993 2994 /* Write digital predistorter lookup table. */ 2995 for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) { 2996 AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i), 2997 SM(AR_PHY_PAPRD_PA_IN, sc->sc_pa_in[chain][i]) | 2998 SM(AR_PHY_PAPRD_ANGLE, sc->sc_angle[chain][i])); 2999 } 3000 3001 reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain)); 3002 reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->sc_gain1[chain]); 3003 AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg); 3004 3005 /* Indicate Tx power used for calibration (training signal). */ 3006 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain)); 3007 reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->sc_trainpow); 3008 AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg); 3009 3010 /* Enable digital predistorter for this chain. */ 3011 AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain), 3012 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE); 3013 AR_WRITE_BARRIER(sc); 3014 } 3015 3016 Static void 3017 ar9003_paprd_enable(struct athn_softc *sc) 3018 { 3019 int i; 3020 3021 /* Enable digital predistorters for all Tx chains. */ 3022 for (i = 0; i < AR9003_MAX_CHAINS; i++) 3023 if (sc->sc_txchainmask & (1 << i)) 3024 ar9003_enable_predistorter(sc, i); 3025 } 3026 3027 /* 3028 * This function is called when our training signal has been sent. 3029 */ 3030 Static void 3031 ar9003_paprd_tx_tone_done(struct athn_softc *sc) 3032 { 3033 uint32_t lo[48], hi[48]; 3034 size_t i; 3035 3036 /* Make sure training is complete. */ 3037 if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) & 3038 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE)) 3039 return; 3040 3041 /* Read feedback from training signal. */ 3042 AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ); 3043 for (i = 0; i < __arraycount(lo); i++) 3044 lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i)); 3045 AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ); 3046 for (i = 0; i < __arraycount(hi); i++) 3047 hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i)); 3048 3049 AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1, 3050 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE); 3051 3052 /* Compute predistortion function based on this feedback. */ 3053 if (ar9003_compute_predistortion(sc, lo, hi) != 0) 3054 return; 3055 3056 /* Get next available Tx chain. */ 3057 while (++sc->sc_paprd_curchain < AR9003_MAX_CHAINS) 3058 if (sc->sc_txchainmask & (1 << sc->sc_paprd_curchain)) 3059 break; 3060 if (sc->sc_paprd_curchain == AR9003_MAX_CHAINS) { 3061 /* All Tx chains measured; enable digital predistortion. */ 3062 ar9003_paprd_enable(sc); 3063 } 3064 else /* Measure next Tx chain. */ 3065 ar9003_paprd_tx_tone(sc); 3066 } 3067 3068 PUBLIC void 3069 ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT]) 3070 { 3071 3072 /* Make sure forced gain is disabled. */ 3073 AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0); 3074 3075 AR_WRITE(sc, AR_PHY_PWRTX_RATE1, 3076 (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 | 3077 (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 | 3078 (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 | 3079 (power[ATHN_POWER_OFDM6 ] & 0x3f)); 3080 AR_WRITE(sc, AR_PHY_PWRTX_RATE2, 3081 (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 | 3082 (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 | 3083 (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 | 3084 (power[ATHN_POWER_OFDM24 ] & 0x3f)); 3085 AR_WRITE(sc, AR_PHY_PWRTX_RATE3, 3086 (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 | 3087 (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 | 3088 /* NB: No eXtended Range for AR9003. */ 3089 (power[ATHN_POWER_CCK1_LP ] & 0x3f)); 3090 AR_WRITE(sc, AR_PHY_PWRTX_RATE4, 3091 (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 | 3092 (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 | 3093 (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 | 3094 (power[ATHN_POWER_CCK55_LP] & 0x3f)); 3095 /* 3096 * NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled 3097 * because it is read by PA predistortion functions. 3098 */ 3099 AR_WRITE(sc, AR_PHY_PWRTX_RATE5, 3100 (power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 | 3101 (power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 | 3102 (power[ATHN_POWER_HT20( 1)] & 0x3f) << 8 | 3103 (power[ATHN_POWER_HT20( 0)] & 0x3f)); 3104 #ifndef IEEE80211_NO_HT 3105 AR_WRITE(sc, AR_PHY_PWRTX_RATE6, 3106 (power[ATHN_POWER_HT20(13)] & 0x3f) << 24 | 3107 (power[ATHN_POWER_HT20(12)] & 0x3f) << 16 | 3108 (power[ATHN_POWER_HT20( 7)] & 0x3f) << 8 | 3109 (power[ATHN_POWER_HT20( 6)] & 0x3f)); 3110 AR_WRITE(sc, AR_PHY_PWRTX_RATE7, 3111 (power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 | 3112 (power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 | 3113 (power[ATHN_POWER_HT40( 1)] & 0x3f) << 8 | 3114 (power[ATHN_POWER_HT40( 0)] & 0x3f)); 3115 AR_WRITE(sc, AR_PHY_PWRTX_RATE8, 3116 (power[ATHN_POWER_HT40(13)] & 0x3f) << 24 | 3117 (power[ATHN_POWER_HT40(12)] & 0x3f) << 16 | 3118 (power[ATHN_POWER_HT40( 7)] & 0x3f) << 8 | 3119 (power[ATHN_POWER_HT40( 6)] & 0x3f)); 3120 AR_WRITE(sc, AR_PHY_PWRTX_RATE10, 3121 (power[ATHN_POWER_HT20(21)] & 0x3f) << 24 | 3122 (power[ATHN_POWER_HT20(20)] & 0x3f) << 16 | 3123 (power[ATHN_POWER_HT20(15)] & 0x3f) << 8 | 3124 (power[ATHN_POWER_HT20(14)] & 0x3f)); 3125 AR_WRITE(sc, AR_PHY_PWRTX_RATE11, 3126 (power[ATHN_POWER_HT40(23)] & 0x3f) << 24 | 3127 (power[ATHN_POWER_HT40(22)] & 0x3f) << 16 | 3128 (power[ATHN_POWER_HT20(23)] & 0x3f) << 8 | 3129 (power[ATHN_POWER_HT20(22)] & 0x3f)); 3130 AR_WRITE(sc, AR_PHY_PWRTX_RATE12, 3131 (power[ATHN_POWER_HT40(21)] & 0x3f) << 24 | 3132 (power[ATHN_POWER_HT40(20)] & 0x3f) << 16 | 3133 (power[ATHN_POWER_HT40(15)] & 0x3f) << 8 | 3134 (power[ATHN_POWER_HT40(14)] & 0x3f)); 3135 #endif 3136 AR_WRITE_BARRIER(sc); 3137 } 3138 3139 Static void 3140 ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c) 3141 { 3142 #define X(x) ((uint32_t)(x) << 2) 3143 const struct athn_gain *prog = sc->sc_rx_gain; 3144 const uint32_t *pvals; 3145 int i; 3146 3147 if (IEEE80211_IS_CHAN_2GHZ(c)) 3148 pvals = prog->vals_2g; 3149 else 3150 pvals = prog->vals_5g; 3151 for (i = 0; i < prog->nregs; i++) 3152 AR_WRITE(sc, X(prog->regs[i]), pvals[i]); 3153 AR_WRITE_BARRIER(sc); 3154 #undef X 3155 } 3156 3157 Static void 3158 ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c) 3159 { 3160 #define X(x) ((uint32_t)(x) << 2) 3161 const struct athn_gain *prog = sc->sc_tx_gain; 3162 const uint32_t *pvals; 3163 int i; 3164 3165 if (IEEE80211_IS_CHAN_2GHZ(c)) 3166 pvals = prog->vals_2g; 3167 else 3168 pvals = prog->vals_5g; 3169 for (i = 0; i < prog->nregs; i++) 3170 AR_WRITE(sc, X(prog->regs[i]), pvals[i]); 3171 AR_WRITE_BARRIER(sc); 3172 #undef X 3173 } 3174 3175 Static void 3176 ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c, 3177 struct ieee80211_channel *extc) 3178 { 3179 #define X(x) ((uint32_t)(x) << 2) 3180 struct athn_ops *ops = &sc->sc_ops; 3181 const struct athn_ini *ini = sc->sc_ini; 3182 const uint32_t *pvals; 3183 uint32_t reg; 3184 int i; 3185 3186 /* 3187 * The common init values include the pre and core phases for the 3188 * SoC, MAC, BB and Radio subsystems. 3189 */ 3190 DPRINTFN(DBG_INIT, sc, "writing pre and core init vals\n"); 3191 for (i = 0; i < ini->ncmregs; i++) { 3192 AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]); 3193 if (AR_IS_ANALOG_REG(X(ini->cmregs[i]))) 3194 DELAY(100); 3195 if ((i & 0x1f) == 0) 3196 DELAY(1); 3197 } 3198 3199 /* 3200 * The modal init values include the post phase for the SoC, MAC, 3201 * BB and Radio subsystems. 3202 */ 3203 #ifndef IEEE80211_NO_HT 3204 if (extc != NULL) { 3205 if (IEEE80211_IS_CHAN_2GHZ(c)) 3206 pvals = ini->vals_2g40; 3207 else 3208 pvals = ini->vals_5g40; 3209 } 3210 else 3211 #endif 3212 { 3213 if (IEEE80211_IS_CHAN_2GHZ(c)) 3214 pvals = ini->vals_2g20; 3215 else 3216 pvals = ini->vals_5g20; 3217 } 3218 DPRINTFN(DBG_INIT, sc, "writing post init vals\n"); 3219 for (i = 0; i < ini->nregs; i++) { 3220 AR_WRITE(sc, X(ini->regs[i]), pvals[i]); 3221 if (AR_IS_ANALOG_REG(X(ini->regs[i]))) 3222 DELAY(100); 3223 if ((i & 0x1f) == 0) 3224 DELAY(1); 3225 } 3226 3227 if (sc->sc_rx_gain != NULL) 3228 ar9003_reset_rx_gain(sc, c); 3229 if (sc->sc_tx_gain != NULL) 3230 ar9003_reset_tx_gain(sc, c); 3231 3232 if (IEEE80211_IS_CHAN_5GHZ(c) && 3233 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) { 3234 /* Update modal values for fast PLL clock. */ 3235 #ifndef IEEE80211_NO_HT 3236 if (extc != NULL) 3237 pvals = ini->fastvals_5g40; 3238 else 3239 #endif 3240 pvals = ini->fastvals_5g20; 3241 DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n"); 3242 for (i = 0; i < ini->nfastregs; i++) { 3243 AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]); 3244 if (AR_IS_ANALOG_REG(X(ini->fastregs[i]))) 3245 DELAY(100); 3246 if ((i & 0x1f) == 0) 3247 DELAY(1); 3248 } 3249 } 3250 3251 /* 3252 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted 3253 * descriptor status. 3254 */ 3255 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); 3256 3257 reg = AR_READ(sc, AR_PCU_MISC_MODE2); 3258 reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE; 3259 reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX; 3260 reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP; 3261 AR_WRITE(sc, AR_PCU_MISC_MODE2, reg); 3262 AR_WRITE_BARRIER(sc); 3263 3264 ar9003_set_phy(sc, c, extc); 3265 ar9003_init_chains(sc); 3266 3267 ops->set_txpower(sc, c, extc); 3268 #undef X 3269 } 3270 3271 PUBLIC void 3272 ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c, 3273 uint8_t ctl, const uint8_t *fbins, 3274 const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4]) 3275 { 3276 uint8_t fbin; 3277 int i, delta, lo, hi; 3278 3279 lo = hi = -1; 3280 fbin = athn_chan2fbin(c); 3281 for (i = 0; i < nchans; i++) { 3282 delta = fbin - fbins[i]; 3283 /* Find the largest sample that is <= our frequency. */ 3284 if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo])) 3285 lo = i; 3286 /* Find the smallest sample that is >= our frequency. */ 3287 if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi])) 3288 hi = i; 3289 } 3290 if (lo == -1) 3291 lo = hi; 3292 else if (hi == -1) 3293 hi = lo; 3294 /* Interpolate values. */ 3295 for (i = 0; i < 4; i++) { 3296 tpow[i] = athn_interpolate(fbin, 3297 fbins[lo], tgt[lo].tPow2x[i], 3298 fbins[hi], tgt[hi].tPow2x[i]); 3299 } 3300 /* XXX Apply conformance test limit. */ 3301 } 3302 3303 PUBLIC void 3304 ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c, 3305 uint8_t ctl, const uint8_t *fbins, 3306 const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14]) 3307 { 3308 uint8_t fbin; 3309 int i, delta, lo, hi; 3310 3311 lo = hi = -1; 3312 fbin = athn_chan2fbin(c); 3313 for (i = 0; i < nchans; i++) { 3314 delta = fbin - fbins[i]; 3315 /* Find the largest sample that is <= our frequency. */ 3316 if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo])) 3317 lo = i; 3318 /* Find the smallest sample that is >= our frequency. */ 3319 if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi])) 3320 hi = i; 3321 } 3322 if (lo == -1) 3323 lo = hi; 3324 else if (hi == -1) 3325 hi = lo; 3326 /* Interpolate values. */ 3327 for (i = 0; i < 14; i++) { 3328 tpow[i] = athn_interpolate(fbin, 3329 fbins[lo], tgt[lo].tPow2x[i], 3330 fbins[hi], tgt[hi].tPow2x[i]); 3331 } 3332 /* XXX Apply conformance test limit. */ 3333 } 3334 3335 /* 3336 * Adaptive noise immunity. 3337 */ 3338 Static void 3339 ar9003_set_noise_immunity_level(struct athn_softc *sc, int level) 3340 { 3341 int high = level == 4; 3342 uint32_t reg; 3343 3344 reg = AR_READ(sc, AR_PHY_DESIRED_SZ); 3345 reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55); 3346 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); 3347 3348 reg = AR_READ(sc, AR_PHY_AGC); 3349 reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64); 3350 reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14); 3351 AR_WRITE(sc, AR_PHY_AGC, reg); 3352 3353 reg = AR_READ(sc, AR_PHY_FIND_SIG); 3354 reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78); 3355 AR_WRITE(sc, AR_PHY_FIND_SIG, reg); 3356 AR_WRITE_BARRIER(sc); 3357 } 3358 3359 Static void 3360 ar9003_enable_ofdm_weak_signal(struct athn_softc *sc) 3361 { 3362 uint32_t reg; 3363 3364 reg = AR_READ(sc, AR_PHY_SFCORR_LOW); 3365 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50); 3366 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40); 3367 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48); 3368 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); 3369 3370 reg = AR_READ(sc, AR_PHY_SFCORR); 3371 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77); 3372 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64); 3373 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16); 3374 AR_WRITE(sc, AR_PHY_SFCORR, reg); 3375 3376 reg = AR_READ(sc, AR_PHY_SFCORR_EXT); 3377 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50); 3378 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40); 3379 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77); 3380 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64); 3381 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); 3382 3383 AR_SETBITS(sc, AR_PHY_SFCORR_LOW, 3384 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 3385 AR_WRITE_BARRIER(sc); 3386 } 3387 3388 Static void 3389 ar9003_disable_ofdm_weak_signal(struct athn_softc *sc) 3390 { 3391 uint32_t reg; 3392 3393 reg = AR_READ(sc, AR_PHY_SFCORR_LOW); 3394 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127); 3395 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127); 3396 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63); 3397 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); 3398 3399 reg = AR_READ(sc, AR_PHY_SFCORR); 3400 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127); 3401 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127); 3402 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31); 3403 AR_WRITE(sc, AR_PHY_SFCORR, reg); 3404 3405 reg = AR_READ(sc, AR_PHY_SFCORR_EXT); 3406 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127); 3407 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127); 3408 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127); 3409 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127); 3410 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); 3411 3412 AR_CLRBITS(sc, AR_PHY_SFCORR_LOW, 3413 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 3414 AR_WRITE_BARRIER(sc); 3415 } 3416 3417 Static void 3418 ar9003_set_cck_weak_signal(struct athn_softc *sc, int high) 3419 { 3420 uint32_t reg; 3421 3422 reg = AR_READ(sc, AR_PHY_CCK_DETECT); 3423 reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8); 3424 AR_WRITE(sc, AR_PHY_CCK_DETECT, reg); 3425 AR_WRITE_BARRIER(sc); 3426 } 3427 3428 Static void 3429 ar9003_set_firstep_level(struct athn_softc *sc, int level) 3430 { 3431 uint32_t reg; 3432 3433 reg = AR_READ(sc, AR_PHY_FIND_SIG); 3434 reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4); 3435 AR_WRITE(sc, AR_PHY_FIND_SIG, reg); 3436 AR_WRITE_BARRIER(sc); 3437 } 3438 3439 Static void 3440 ar9003_set_spur_immunity_level(struct athn_softc *sc, int level) 3441 { 3442 uint32_t reg; 3443 3444 reg = AR_READ(sc, AR_PHY_TIMING5); 3445 reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2); 3446 AR_WRITE(sc, AR_PHY_TIMING5, reg); 3447 AR_WRITE_BARRIER(sc); 3448 } 3449