xref: /netbsd-src/sys/dev/ic/arn5416.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: arn5416.c,v 1.2 2013/04/03 14:20:02 christos Exp $	*/
2 /*	$OpenBSD: ar5416.c,v 1.12 2012/06/10 21:23:36 kettenis Exp $	*/
3 
4 /*-
5  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008-2009 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  * Routines for AR5416, AR5418 and AR9160 chipsets.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn5416.c,v 1.2 2013/04/03 14:20:02 christos Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/queue.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/intr.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61 
62 #include <dev/ic/athnreg.h>
63 #include <dev/ic/athnvar.h>
64 
65 #include <dev/ic/arn5008reg.h>
66 #include <dev/ic/arn5008.h>
67 #include <dev/ic/arn5416reg.h>
68 #include <dev/ic/arn5416.h>
69 #include <dev/ic/arn9280.h>
70 
71 #define Static static
72 
73 Static void	ar5416_force_bias(struct athn_softc *,
74 		    struct ieee80211_channel *);
75 Static void	ar5416_get_pdadcs(struct athn_softc *,
76 		    struct ieee80211_channel *, int, int, uint8_t, uint8_t *,
77 		    uint8_t *);
78 Static void	ar5416_init_from_rom(struct athn_softc *,
79 		    struct ieee80211_channel *, struct ieee80211_channel *);
80 Static uint8_t	ar5416_reverse_bits(uint8_t, int);
81 Static void	ar5416_rw_bank6tpc(struct athn_softc *,
82 		    struct ieee80211_channel *, uint32_t *);
83 Static void	ar5416_rw_rfbits(uint32_t *, int, int, uint32_t, int);
84 Static void	ar5416_set_power_calib(struct athn_softc *,
85 		    struct ieee80211_channel *);
86 Static int	ar5416_set_synth(struct athn_softc *,
87 		    struct ieee80211_channel *, struct ieee80211_channel *);
88 Static void	ar5416_setup(struct athn_softc *);
89 Static void	ar5416_spur_mitigate(struct athn_softc *,
90 		    struct ieee80211_channel *, struct ieee80211_channel *);
91 Static void	ar9160_rw_addac(struct athn_softc *,
92 		    struct ieee80211_channel *, uint32_t *);
93 
94 PUBLIC int
95 ar5416_attach(struct athn_softc *sc)
96 {
97 	sc->sc_eep_base = AR5416_EEP_START_LOC;
98 	sc->sc_eep_size = sizeof(struct ar5416_eeprom);
99 	sc->sc_def_nf = AR5416_PHY_CCA_MAX_GOOD_VALUE;
100 	sc->sc_ngpiopins = 14;
101 	sc->sc_led_pin = 1;
102 	sc->sc_workaround = AR5416_WA_DEFAULT;
103 	sc->sc_ops.setup = ar5416_setup;
104 	sc->sc_ops.swap_rom = ar5416_swap_rom;
105 	sc->sc_ops.init_from_rom = ar5416_init_from_rom;
106 	sc->sc_ops.set_txpower = ar5416_set_txpower;
107 	sc->sc_ops.set_synth = ar5416_set_synth;
108 	sc->sc_ops.spur_mitigate = ar5416_spur_mitigate;
109 	sc->sc_ops.get_spur_chans = ar5416_get_spur_chans;
110 	if (AR_SREV_9160_10_OR_LATER(sc))
111 		sc->sc_ini = &ar9160_ini;
112 	else
113 		sc->sc_ini = &ar5416_ini;
114 	sc->sc_serdes = &ar5416_serdes;
115 
116 	return ar5008_attach(sc);
117 }
118 
119 Static void
120 ar5416_setup(struct athn_softc *sc)
121 {
122 	/* Select ADDAC programming. */
123 	if (AR_SREV_9160_11(sc))
124 		sc->sc_addac = &ar9160_1_1_addac;
125 	else if (AR_SREV_9160_10_OR_LATER(sc))
126 		sc->sc_addac = &ar9160_1_0_addac;
127 	else if (AR_SREV_5416_22_OR_LATER(sc))
128 		sc->sc_addac = &ar5416_2_2_addac;
129 	else
130 		sc->sc_addac = &ar5416_2_1_addac;
131 }
132 
133 PUBLIC void
134 ar5416_swap_rom(struct athn_softc *sc)
135 {
136 	struct ar5416_eeprom *eep = sc->sc_eep;
137 	struct ar5416_modal_eep_header *modal;
138 	int i, j;
139 
140 	for (i = 0; i < 2; i++) {	/* Dual-band. */
141 		modal = &eep->modalHeader[i];
142 
143 		modal->antCtrlCommon = bswap32(modal->antCtrlCommon);
144 		for (j = 0; j < AR5416_MAX_CHAINS; j++) {
145 			modal->antCtrlChain[j] =
146 			    bswap32(modal->antCtrlChain[j]);
147 		}
148 		for (j = 0; j < AR_EEPROM_MODAL_SPURS; j++) {
149 			modal->spurChans[j].spurChan =
150 			    bswap16(modal->spurChans[j].spurChan);
151 		}
152 	}
153 }
154 
155 PUBLIC const struct ar_spur_chan *
156 ar5416_get_spur_chans(struct athn_softc *sc, int is2ghz)
157 {
158 	const struct ar5416_eeprom *eep = sc->sc_eep;
159 
160 	return eep->modalHeader[is2ghz].spurChans;
161 }
162 
163 Static int
164 ar5416_set_synth(struct athn_softc *sc, struct ieee80211_channel *c,
165     struct ieee80211_channel *extc)
166 {
167 	uint32_t phy, reg;
168 	uint32_t freq = c->ic_freq;
169 	uint8_t chansel;
170 
171 	phy = 0;
172 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
173 		if (((freq - 2192) % 5) == 0) {
174 			chansel = ((freq - 672) * 2 - 3040) / 10;
175 		}
176 		else if (((freq - 2224) % 5) == 0) {
177 			chansel = ((freq - 704) * 2 - 3040) / 10;
178 			phy |= AR5416_BMODE_SYNTH;
179 		}
180 		else
181 			return EINVAL;
182 		chansel <<= 2;
183 
184 		reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL);
185 		if (freq == 2484)	/* Channel 14. */
186 			reg |= AR_PHY_CCK_TX_CTRL_JAPAN;
187 		else
188 			reg &= ~AR_PHY_CCK_TX_CTRL_JAPAN;
189 		AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg);
190 
191 		/* Fix for orientation sensitivity issue. */
192 		if (AR_SREV_5416(sc))
193 			ar5416_force_bias(sc, c);
194 	}
195 	else {
196 		if (freq >= 5120 && (freq % 20) == 0) {
197 			chansel = (freq - 4800) / 20;
198 			chansel <<= 2;
199 			phy |= SM(AR5416_AMODE_REFSEL, 2);
200 		}
201 		else if ((freq % 10) == 0) {
202 			chansel = (freq - 4800) / 10;
203 			chansel <<= 1;
204 			if (AR_SREV_9160_10_OR_LATER(sc))
205 				phy |= SM(AR5416_AMODE_REFSEL, 1);
206 			else
207 				phy |= SM(AR5416_AMODE_REFSEL, 2);
208 		}
209 		else if ((freq % 5) == 0) {
210 			chansel = (freq - 4800) / 5;
211 			phy |= SM(AR5416_AMODE_REFSEL, 2);
212 		}
213 		else
214 			return EINVAL;
215 	}
216 	chansel = ar5416_reverse_bits(chansel, 8);
217 	phy |= chansel << 8 | 1 << 5 | 1;
218 	DPRINTFN(DBG_RF, sc, "AR_PHY(0x37)=0x%08x\n", phy);
219 	AR_WRITE(sc, AR_PHY(0x37), phy);
220 	return 0;
221 }
222 
223 Static void
224 ar5416_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
225     struct ieee80211_channel *extc)
226 {
227 	static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 };
228 	const struct ar5416_eeprom *eep = sc->sc_eep;
229 	const struct ar5416_modal_eep_header *modal;
230 	uint32_t reg, offset;
231 	uint8_t txRxAtten;
232 	int i;
233 
234 	modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
235 
236 	AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
237 
238 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
239 		if (AR_SREV_5416_20_OR_LATER(sc) &&
240 		    (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5))
241 			offset = chainoffset[i];
242 		else
243 			offset = i * 0x1000;
244 
245 		AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset,
246 		    modal->antCtrlChain[i]);
247 
248 		reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset);
249 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
250 		    modal->iqCalICh[i]);
251 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
252 		    modal->iqCalQCh[i]);
253 		AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg);
254 
255 		if (i > 0 && !AR_SREV_5416_20_OR_LATER(sc))
256 			continue;
257 
258 		if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) {
259 			reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
260 			reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_MARGIN,
261 			    modal->bswMargin[i]);
262 			reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_ATTEN,
263 			    modal->bswAtten[i]);
264 			AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
265 		}
266 		if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3)
267 			txRxAtten = modal->txRxAttenCh[i];
268 		else	/* Workaround for ROM versions < 14.3. */
269 			txRxAtten = IEEE80211_IS_CHAN_2GHZ(c) ? 23 : 44;
270 		reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
271 		reg = RW(reg, AR_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
272 		AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
273 
274 		reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
275 		reg = RW(reg, AR_PHY_GAIN_2GHZ_RXTX_MARGIN,
276 		    modal->rxTxMarginCh[i]);
277 		AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
278 	}
279 	reg = AR_READ(sc, AR_PHY_SETTLING);
280 	reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
281 	AR_WRITE(sc, AR_PHY_SETTLING, reg);
282 
283 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
284 	reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
285 	reg = RW(reg, AR_PHY_DESIRED_SZ_PGA, modal->pgaDesiredSize);
286 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
287 
288 	reg =  SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
289 	reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
290 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
291 	reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
292 	AR_WRITE(sc, AR_PHY_RF_CTL4, reg);
293 
294 	reg = AR_READ(sc, AR_PHY_RF_CTL3);
295 	reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
296 	AR_WRITE(sc, AR_PHY_RF_CTL3, reg);
297 
298 	reg = AR_READ(sc, AR_PHY_CCA(0));
299 	reg = RW(reg, AR_PHY_CCA_THRESH62, modal->thresh62);
300 	AR_WRITE(sc, AR_PHY_CCA(0), reg);
301 
302 	reg = AR_READ(sc, AR_PHY_EXT_CCA(0));
303 	reg = RW(reg, AR_PHY_EXT_CCA_THRESH62, modal->thresh62);
304 	AR_WRITE(sc, AR_PHY_EXT_CCA(0), reg);
305 
306 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) {
307 		reg = AR_READ(sc, AR_PHY_RF_CTL2);
308 		reg = RW(reg, AR_PHY_TX_END_DATA_START,
309 		    modal->txFrameToDataStart);
310 		reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn);
311 		AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
312 	}
313 #ifndef IEEE80211_NO_HT
314 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
315 		/* Overwrite switch settling with HT-40 value. */
316 		reg = AR_READ(sc, AR_PHY_SETTLING);
317 		reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
318 		AR_WRITE(sc, AR_PHY_SETTLING, reg);
319 	}
320 #endif
321 }
322 
323 PUBLIC int
324 ar5416_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
325     struct ieee80211_channel *extc)
326 {
327 	int ntries;
328 
329 	if (AR_SREV_9280_10_OR_LATER(sc)) {
330 		/* XXX Linux tests AR9287?! */
331 		AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
332 		AR_SETBITS(sc, AR_PHY_AGC_CONTROL,
333 		    AR_PHY_AGC_CONTROL_FLTR_CAL);
334 	}
335 	/* Calibrate the AGC. */
336 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
337 	/* Poll for offset calibration completion. */
338 	for (ntries = 0; ntries < 10000; ntries++) {
339 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
340 		    AR_PHY_AGC_CONTROL_CAL))
341 			break;
342 		DELAY(10);
343 	}
344 	if (ntries == 10000)
345 		return ETIMEDOUT;
346 	if (AR_SREV_9280_10_OR_LATER(sc)) {
347 		AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
348 		AR_CLRBITS(sc, AR_PHY_AGC_CONTROL,
349 		    AR_PHY_AGC_CONTROL_FLTR_CAL);
350 	}
351 	return 0;
352 }
353 
354 Static void
355 ar5416_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
356     int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries,
357     uint8_t *pdadcs)
358 {
359 	const struct ar5416_eeprom *eep = sc->sc_eep;
360 	const struct ar5416_cal_data_per_freq *pierdata;
361 	const uint8_t *pierfreq;
362 	struct athn_pier lopier, hipier;
363 	int16_t delta;
364 	uint8_t fbin, pwroff;
365 	int i, lo, hi, npiers;
366 
367 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
368 		pierfreq = eep->calFreqPier2G;
369 		pierdata = eep->calPierData2G[chain];
370 		npiers = AR5416_NUM_2G_CAL_PIERS;
371 	}
372 	else {
373 		pierfreq = eep->calFreqPier5G;
374 		pierdata = eep->calPierData5G[chain];
375 		npiers = AR5416_NUM_5G_CAL_PIERS;
376 	}
377 	/* Find channel in ROM pier table. */
378 	fbin = athn_chan2fbin(c);
379 	athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
380 
381 	lopier.fbin = pierfreq[lo];
382 	hipier.fbin = pierfreq[hi];
383 	for (i = 0; i < nxpdgains; i++) {
384 		lopier.pwr[i] = pierdata[lo].pwrPdg[i];
385 		lopier.vpd[i] = pierdata[lo].vpdPdg[i];
386 		hipier.pwr[i] = pierdata[lo].pwrPdg[i];
387 		hipier.vpd[i] = pierdata[lo].vpdPdg[i];
388 	}
389 	ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
390 	    AR5416_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);
391 
392 	if (!AR_SREV_9280_20_OR_LATER(sc))
393 		return;
394 
395 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_21)
396 		pwroff = eep->baseEepHeader.pwrTableOffset;
397 	else
398 		pwroff = AR_PWR_TABLE_OFFSET_DB;
399 	delta = (pwroff - AR_PWR_TABLE_OFFSET_DB) * 2;	/* In half dB. */
400 
401 	/* Change the original gain boundaries setting. */
402 	for (i = 0; i < nxpdgains; i++) {
403 		/* XXX Possible overflows? */
404 		boundaries[i] -= delta;
405 		if (boundaries[i] > AR_MAX_RATE_POWER - overlap)
406 			boundaries[i] = AR_MAX_RATE_POWER - overlap;
407 	}
408 	if (delta != 0) {
409 		/* Shift the PDADC table to start at the new offset. */
410 		for (i = 0; i < AR_NUM_PDADC_VALUES; i++)
411 			pdadcs[i] = pdadcs[MIN(i + delta,
412 			    AR_NUM_PDADC_VALUES - 1)];
413 	}
414 }
415 
416 Static void
417 ar5416_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
418 {
419 	static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 };
420 	const struct ar5416_eeprom *eep = sc->sc_eep;
421 	const struct ar5416_modal_eep_header *modal;
422 	uint8_t boundaries[AR_PD_GAINS_IN_MASK];
423 	uint8_t pdadcs[AR_NUM_PDADC_VALUES];
424 	uint8_t xpdgains[AR5416_NUM_PD_GAINS];
425 	uint8_t overlap, txgain;
426 	uint32_t reg, offset;
427 	int i, j, nxpdgains;
428 
429 	modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
430 
431 	if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) {
432 		overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
433 		    AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
434 	}
435 	else
436 		overlap = modal->pdGainOverlap;
437 
438 	if ((sc->sc_flags & ATHN_FLAG_OLPC) && IEEE80211_IS_CHAN_2GHZ(c)) {
439 		/* XXX not here. */
440 		sc->sc_pdadc =
441 		    ((const struct ar_cal_data_per_freq_olpc *)
442 		     eep->calPierData2G[0])->vpdPdg[0][0];
443 	}
444 
445 	nxpdgains = 0;
446 	memset(xpdgains, 0, sizeof(xpdgains));
447 	for (i = AR5416_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
448 		if (nxpdgains >= AR5416_NUM_PD_GAINS)
449 			break;	/* Can't happen. */
450 		if (modal->xpdGain & (1 << i))
451 			xpdgains[nxpdgains++] = i;
452 	}
453 	reg = AR_READ(sc, AR_PHY_TPCRG1);
454 	reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
455 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
456 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
457 	reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_3, xpdgains[2]);
458 	AR_WRITE(sc, AR_PHY_TPCRG1, reg);
459 
460 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
461 		if (!(sc->sc_txchainmask & (1 << i)))
462 			continue;
463 
464 		if (AR_SREV_5416_20_OR_LATER(sc) &&
465 		    (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5))
466 			offset = chainoffset[i];
467 		else
468 			offset = i * 0x1000;
469 
470 		if (sc->sc_flags & ATHN_FLAG_OLPC) {
471 			ar9280_olpc_get_pdadcs(sc, c, i, boundaries,
472 			    pdadcs, &txgain);
473 
474 			reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0);
475 			reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
476 			AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg);
477 
478 			reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1);
479 			reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
480 			AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg);
481 
482 			reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7);
483 			reg = RW(reg, AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, txgain);
484 			AR_WRITE(sc, AR_PHY_TX_PWRCTRL7, reg);
485 
486 			overlap = 6;
487 		}
488 		else {
489 			ar5416_get_pdadcs(sc, c, i, nxpdgains, overlap,
490 			    boundaries, pdadcs);
491 		}
492 		/* Write boundaries. */
493 		if (i == 0 || AR_SREV_5416_20_OR_LATER(sc)) {
494 			reg  = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP,
495 			    overlap);
496 			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1,
497 			    boundaries[0]);
498 			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2,
499 			    boundaries[1]);
500 			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3,
501 			    boundaries[2]);
502 			reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4,
503 			    boundaries[3]);
504 			AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg);
505 		}
506 		/* Write PDADC values. */
507 		for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) {
508 			AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j,
509 			    pdadcs[j + 0] <<  0 |
510 			    pdadcs[j + 1] <<  8 |
511 			    pdadcs[j + 2] << 16 |
512 			    pdadcs[j + 3] << 24);
513 		}
514 	}
515 }
516 
517 PUBLIC void
518 ar5416_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
519     struct ieee80211_channel *extc)
520 {
521 	const struct ar5416_eeprom *eep = sc->sc_eep;
522 	const struct ar5416_modal_eep_header *modal;
523 	uint8_t tpow_cck[4], tpow_ofdm[4];
524 #ifndef IEEE80211_NO_HT
525 	uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
526 	uint8_t tpow_ht20[8], tpow_ht40[8];
527 	uint8_t ht40inc;
528 #endif
529 	int16_t pwr = 0, pwroff, max_ant_gain, power[ATHN_POWER_COUNT];
530 	uint8_t cckinc;
531 	int i;
532 
533 	ar5416_set_power_calib(sc, c);
534 
535 	modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
536 
537 	/* Compute transmit power reduction due to antenna gain. */
538 	max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]);
539 	max_ant_gain = MAX(modal->antennaGainCh[2], max_ant_gain);
540 	/* XXX */
541 
542 	/*
543 	 * Reduce scaled power by number of active chains to get per-chain
544 	 * transmit power level.
545 	 */
546 	if (sc->sc_ntxchains == 2)
547 		pwr -= AR_PWR_DECREASE_FOR_2_CHAIN;
548 	else if (sc->sc_ntxchains == 3)
549 		pwr -= AR_PWR_DECREASE_FOR_3_CHAIN;
550 	if (pwr < 0)
551 		pwr = 0;
552 
553 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
554 		/* Get CCK target powers. */
555 		ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
556 		    AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
557 
558 		/* Get OFDM target powers. */
559 		ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
560 		    AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
561 
562 #ifndef IEEE80211_NO_HT
563 		/* Get HT-20 target powers. */
564 		ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20,
565 		    eep->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS,
566 		    tpow_ht20);
567 
568 		if (extc != NULL) {
569 			/* Get HT-40 target powers. */
570 			ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
571 			    eep->calTargetPower2GHT40,
572 			    AR5416_NUM_2G_40_TARGET_POWERS, tpow_ht40);
573 
574 			/* Get secondary channel CCK target powers. */
575 			ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
576 			    eep->calTargetPowerCck,
577 			    AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck_ext);
578 
579 			/* Get secondary channel OFDM target powers. */
580 			ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
581 			    eep->calTargetPower2G,
582 			    AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm_ext);
583 		}
584 #endif
585 	}
586 	else {
587 		/* Get OFDM target powers. */
588 		ar5008_get_lg_tpow(sc, c, AR_CTL_11A, eep->calTargetPower5G,
589 		    AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm);
590 
591 #ifndef IEEE80211_NO_HT
592 		/* Get HT-20 target powers. */
593 		ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT20,
594 		    eep->calTargetPower5GHT20, AR5416_NUM_5G_20_TARGET_POWERS,
595 		    tpow_ht20);
596 
597 		if (extc != NULL) {
598 			/* Get HT-40 target powers. */
599 			ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT40,
600 			    eep->calTargetPower5GHT40,
601 			    AR5416_NUM_5G_40_TARGET_POWERS, tpow_ht40);
602 
603 			/* Get secondary channel OFDM target powers. */
604 			ar5008_get_lg_tpow(sc, extc, AR_CTL_11A,
605 			    eep->calTargetPower5G,
606 			    AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm_ext);
607 		}
608 #endif
609 	}
610 
611 	/* Compute CCK/OFDM delta. */
612 	cckinc = (sc->sc_flags & ATHN_FLAG_OLPC) ? -2 : 0;
613 
614 	memset(power, 0, sizeof(power));
615 	/* Shuffle target powers accross transmit rates. */
616 	power[ATHN_POWER_OFDM6 ] =
617 	power[ATHN_POWER_OFDM9 ] =
618 	power[ATHN_POWER_OFDM12] =
619 	power[ATHN_POWER_OFDM18] =
620 	power[ATHN_POWER_OFDM24] = tpow_ofdm[0];
621 	power[ATHN_POWER_OFDM36] = tpow_ofdm[1];
622 	power[ATHN_POWER_OFDM48] = tpow_ofdm[2];
623 	power[ATHN_POWER_OFDM54] = tpow_ofdm[3];
624 	power[ATHN_POWER_XR    ] = tpow_ofdm[0];
625 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
626 		power[ATHN_POWER_CCK1_LP ] = tpow_cck[0] + cckinc;
627 		power[ATHN_POWER_CCK2_LP ] =
628 		power[ATHN_POWER_CCK2_SP ] = tpow_cck[1] + cckinc;
629 		power[ATHN_POWER_CCK55_LP] =
630 		power[ATHN_POWER_CCK55_SP] = tpow_cck[2] + cckinc;
631 		power[ATHN_POWER_CCK11_LP] =
632 		power[ATHN_POWER_CCK11_SP] = tpow_cck[3] + cckinc;
633 	}
634 #ifndef IEEE80211_NO_HT
635 	for (i = 0; i < nitems(tpow_ht20); i++)
636 		power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
637 	if (extc != NULL) {
638 		/* Correct PAR difference between HT40 and HT20/Legacy. */
639 		if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2)
640 			ht40inc = modal->ht40PowerIncForPdadc;
641 		else
642 			ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
643 		for (i = 0; i < nitems(tpow_ht40); i++)
644 			power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
645 		power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
646 		power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0] + cckinc;
647 		power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
648 		if (IEEE80211_IS_CHAN_2GHZ(c))
649 			power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0] + cckinc;
650 	}
651 #endif
652 
653 	if (AR_SREV_9280_10_OR_LATER(sc)) {
654 		if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_21)
655 			pwroff = eep->baseEepHeader.pwrTableOffset;
656 		else
657 			pwroff = AR_PWR_TABLE_OFFSET_DB;
658 		for (i = 0; i < ATHN_POWER_COUNT; i++)
659 			power[i] -= pwroff * 2;	/* In half dB. */
660 	}
661 	for (i = 0; i < ATHN_POWER_COUNT; i++) {
662 		if (power[i] > AR_MAX_RATE_POWER)
663 			power[i] = AR_MAX_RATE_POWER;
664 	}
665 
666 	/* Write transmit power values to hardware. */
667 	ar5008_write_txpower(sc, power);
668 
669 	/*
670 	 * Write transmit power substraction for dynamic chain changing
671 	 * and per-packet transmit power.
672 	 */
673 	AR_WRITE(sc, AR_PHY_POWER_TX_SUB,
674 	    (modal->pwrDecreaseFor3Chain & 0x3f) << 6 |
675 	    (modal->pwrDecreaseFor2Chain & 0x3f));
676 }
677 
678 Static void
679 ar5416_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c,
680     struct ieee80211_channel *extc)
681 {
682 	const struct ar_spur_chan *spurchans;
683 	int i, spur, bin, spur_delta_phase, spur_freq_sd;
684 
685 	spurchans = sc->sc_ops.get_spur_chans(sc, IEEE80211_IS_CHAN_2GHZ(c));
686 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
687 		spur = spurchans[i].spurChan;
688 		if (spur == AR_NO_SPUR)
689 			return; /* XXX disable if it was enabled! */
690 		spur -= c->ic_freq * 10;
691 		/* Verify range +/-9.5MHz */
692 		if (abs(spur) < 95)
693 			break;
694 	}
695 	if (i == AR_EEPROM_MODAL_SPURS)
696 		return; /* XXX disable if it was enabled! */
697 	DPRINTFN(DBG_RF, sc, "enabling spur mitigation\n");
698 
699 	AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,
700 	    AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
701 	    AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
702 	    AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
703 	    AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
704 
705 	AR_WRITE(sc, AR_PHY_SPUR_REG,
706 	    AR_PHY_SPUR_REG_MASK_RATE_CNTL |
707 	    AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
708 	    AR_PHY_SPUR_REG_MASK_RATE_SELECT |
709 	    AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
710 	    SM(AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, AR_SPUR_RSSI_THRESH));
711 
712 	spur_delta_phase = (spur * 524288) / 100;
713 	if (IEEE80211_IS_CHAN_2GHZ(c))
714 		spur_freq_sd = (spur * 2048) / 440;
715 	else
716 		spur_freq_sd = (spur * 2048) / 400;
717 
718 	AR_WRITE(sc, AR_PHY_TIMING11,
719 	    AR_PHY_TIMING11_USE_SPUR_IN_AGC |
720 	    SM(AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd) |
721 	    SM(AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase));
722 
723 	bin = spur * 32;
724 	ar5008_set_viterbi_mask(sc, bin);
725 }
726 
727 Static uint8_t
728 ar5416_reverse_bits(uint8_t v, int nbits)
729 {
730 	KASSERT(nbits <= 8);
731 	v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
732 	v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
733 	v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
734 	return v >> (8 - nbits);
735 }
736 
737 PUBLIC uint8_t
738 ar5416_get_rf_rev(struct athn_softc *sc)
739 {
740 	uint8_t rev, reg;
741 	int i;
742 
743 	/* Allow access to analog chips. */
744 	AR_WRITE(sc, AR_PHY(0), 0x00000007);
745 
746 	AR_WRITE(sc, AR_PHY(0x36), 0x00007058);
747 	for (i = 0; i < 8; i++)
748 		AR_WRITE(sc, AR_PHY(0x20), 0x00010000);
749 	reg = (AR_READ(sc, AR_PHY(256)) >> 24) & 0xff;
750 	reg = (reg & 0xf0) >> 4 | (reg & 0x0f) << 4;
751 
752 	rev = ar5416_reverse_bits(reg, 8);
753 	if ((rev & AR_RADIO_SREV_MAJOR) == 0)
754 		rev = AR_RAD5133_SREV_MAJOR;
755 	return rev;
756 }
757 
758 /*
759  * Replace bits "off" to "off+nbits-1" in column "col" with the specified
760  * value.
761  */
762 Static void
763 ar5416_rw_rfbits(uint32_t *buf, int col, int off, uint32_t val, int nbits)
764 {
765 	int idx, bit;
766 
767 	KASSERT(off >= 1 && col < 4 && nbits <= 32);
768 
769 	off--;	/* Starts at 1. */
770 	while (nbits-- > 0) {
771 		idx = off / 8;
772 		bit = off % 8;
773 		buf[idx] &= ~(1 << (bit + col * 8));
774 		buf[idx] |= ((val >> nbits) & 1) << (bit + col * 8);
775 		off++;
776 	}
777 }
778 
779 /*
780  * Overwrite db and ob based on ROM settings.
781  */
782 Static void
783 ar5416_rw_bank6tpc(struct athn_softc *sc, struct ieee80211_channel *c,
784     uint32_t *rwbank6tpc)
785 {
786 	const struct ar5416_eeprom *eep = sc->sc_eep;
787 	const struct ar5416_modal_eep_header *modal;
788 
789 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
790 		modal = &eep->modalHeader[0];
791 		/* 5GHz db in column 0, bits [200-202]. */
792 		ar5416_rw_rfbits(rwbank6tpc, 0, 200, modal->db, 3);
793 		/* 5GHz ob in column 0, bits [203-205]. */
794 		ar5416_rw_rfbits(rwbank6tpc, 0, 203, modal->ob, 3);
795 	}
796 	else {
797 		modal = &eep->modalHeader[1];
798 		/* 2GHz db in column 0, bits [194-196]. */
799 		ar5416_rw_rfbits(rwbank6tpc, 0, 194, modal->db, 3);
800 		/* 2GHz ob in column 0, bits [197-199]. */
801 		ar5416_rw_rfbits(rwbank6tpc, 0, 197, modal->ob, 3);
802 	}
803 }
804 
805 /*
806  * Program analog RF.
807  */
808 PUBLIC void
809 ar5416_rf_reset(struct athn_softc *sc, struct ieee80211_channel *c)
810 {
811 	const uint32_t *bank6tpc;
812 	int i;
813 
814 	/* Bank 0. */
815 	AR_WRITE(sc, 0x98b0, 0x1e5795e5);
816 	AR_WRITE(sc, 0x98e0, 0x02008020);
817 
818 	/* Bank 1. */
819 	AR_WRITE(sc, 0x98b0, 0x02108421);
820 	AR_WRITE(sc, 0x98ec, 0x00000008);
821 
822 	/* Bank 2. */
823 	AR_WRITE(sc, 0x98b0, 0x0e73ff17);
824 	AR_WRITE(sc, 0x98e0, 0x00000420);
825 
826 	/* Bank 3. */
827 	if (IEEE80211_IS_CHAN_5GHZ(c))
828 		AR_WRITE(sc, 0x98f0, 0x01400018);
829 	else
830 		AR_WRITE(sc, 0x98f0, 0x01c00018);
831 
832 	/* Select the Bank 6 TPC values to use. */
833 	if (AR_SREV_9160_10_OR_LATER(sc))
834 		bank6tpc = ar9160_bank6tpc_vals;
835 	else
836 		bank6tpc = ar5416_bank6tpc_vals;
837 	if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) {
838 		uint32_t *rwbank6tpc = sc->sc_rwbuf;
839 
840 		/* Copy values from .rodata to writable buffer. */
841 		memcpy(rwbank6tpc, bank6tpc, 32 * sizeof(uint32_t));
842 		ar5416_rw_bank6tpc(sc, c, rwbank6tpc);
843 		bank6tpc = rwbank6tpc;
844 	}
845 	/* Bank 6 TPC. */
846 	for (i = 0; i < 32; i++)
847 		AR_WRITE(sc, 0x989c, bank6tpc[i]);
848 	if (IEEE80211_IS_CHAN_5GHZ(c))
849 		AR_WRITE(sc, 0x98d0, 0x0000000f);
850 	else
851 		AR_WRITE(sc, 0x98d0, 0x0010000f);
852 
853 	/* Bank 7. */
854 	AR_WRITE(sc, 0x989c, 0x00000500);
855 	AR_WRITE(sc, 0x989c, 0x00000800);
856 	AR_WRITE(sc, 0x98cc, 0x0000000e);
857 }
858 
859 PUBLIC void
860 ar5416_reset_bb_gain(struct athn_softc *sc, struct ieee80211_channel *c)
861 {
862 	const uint32_t *pvals;
863 	int i;
864 
865 	if (IEEE80211_IS_CHAN_2GHZ(c))
866 		pvals = ar5416_bb_rfgain_vals_2g;
867 	else
868 		pvals = ar5416_bb_rfgain_vals_5g;
869 	for (i = 0; i < 64; i++)
870 		AR_WRITE(sc, AR_PHY_BB_RFGAIN(i), pvals[i]);
871 }
872 
873 /*
874  * Fix orientation sensitivity issue on AR5416/2GHz by increasing
875  * rf_pwd_icsyndiv.
876  */
877 Static void
878 ar5416_force_bias(struct athn_softc *sc, struct ieee80211_channel *c)
879 {
880 	uint32_t *rwbank6 = sc->sc_rwbuf;
881 	uint8_t bias;
882 	int i;
883 
884 	KASSERT(IEEE80211_IS_CHAN_2GHZ(c));
885 
886 	/* Copy values from .rodata to writable buffer. */
887 	memcpy(rwbank6, ar5416_bank6_vals, sizeof(ar5416_bank6_vals));
888 
889 	if (c->ic_freq < 2412)
890 		bias = 0;
891 	else if (c->ic_freq < 2422)
892 		bias = 1;
893 	else
894 		bias = 2;
895 	ar5416_reverse_bits(bias, 3);
896 
897 	/* Overwrite "rf_pwd_icsyndiv" (column 3, bits [181-183].) */
898 	ar5416_rw_rfbits(rwbank6, 3, 181, bias, 3);
899 
900 	/* Write Bank 6. */
901 	for (i = 0; i < 32; i++)
902 		AR_WRITE(sc, 0x989c, rwbank6[i]);
903 	AR_WRITE(sc, 0x98d0, 0x0010000f);
904 }
905 
906 /*
907  * Overwrite XPA bias level based on ROM setting.
908  */
909 Static void
910 ar9160_rw_addac(struct athn_softc *sc, struct ieee80211_channel *c,
911     uint32_t *addac)
912 {
913 	struct ar5416_eeprom *eep = sc->sc_eep;
914 	struct ar5416_modal_eep_header *modal;
915 	uint8_t fbin, bias;
916 	int i;
917 
918 	/* XXX xpaBiasLvlFreq values have not been endian-swapped? */
919 
920 	/* Get the XPA bias level to use for the specified channel. */
921 	modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
922 	if (modal->xpaBiasLvl == 0xff) {
923 		bias = modal->xpaBiasLvlFreq[0] >> 14;
924 		fbin = athn_chan2fbin(c);
925 		for (i = 1; i < 3; i++) {
926 			if (modal->xpaBiasLvlFreq[i] == 0)
927 				break;
928 			if ((modal->xpaBiasLvlFreq[i] & 0xff) < fbin)
929 				break;
930 			bias = modal->xpaBiasLvlFreq[i] >> 14;
931 		}
932 	}
933 	else
934 		bias = modal->xpaBiasLvl & 0x3;
935 
936 	bias = ar5416_reverse_bits(bias, 2);	/* Put in host bit-order. */
937 	DPRINTFN(DBG_RF, sc, "bias level=%d\n", bias);
938 	if (IEEE80211_IS_CHAN_2GHZ(c))
939 		ar5416_rw_rfbits(addac, 0, 60, bias, 2);
940 	else
941 		ar5416_rw_rfbits(addac, 0, 55, bias, 2);
942 }
943 
944 PUBLIC void
945 ar5416_reset_addac(struct athn_softc *sc, struct ieee80211_channel *c)
946 {
947 	const struct athn_addac *addac = sc->sc_addac;
948 	const uint32_t *pvals;
949 	int i;
950 
951 	if (AR_SREV_9160(sc) && sc->sc_eep_rev >= AR_EEP_MINOR_VER_7) {
952 		uint32_t *rwaddac = sc->sc_rwbuf;
953 
954 		/* Copy values from .rodata to writable buffer. */
955 		memcpy(rwaddac, addac->vals, addac->nvals * sizeof(uint32_t));
956 		ar9160_rw_addac(sc, c, rwaddac);
957 		pvals = rwaddac;
958 	}
959 	else
960 		pvals = addac->vals;
961 	for (i = 0; i < addac->nvals; i++)
962 		AR_WRITE(sc, 0x989c, pvals[i]);
963 	AR_WRITE(sc, 0x98cc, 0);	/* Finalize. */
964 }
965