1 /* $NetBSD: arn5008.c,v 1.15 2018/06/26 06:48:00 msaitoh Exp $ */ 2 /* $OpenBSD: ar5008.c,v 1.21 2012/08/25 12:14:31 kettenis Exp $ */ 3 4 /*- 5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2008-2009 Atheros Communications Inc. 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Atheros 802.11a/g/n chipsets. 23 * Routines common to AR5008, AR9001 and AR9002 families. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: arn5008.c,v 1.15 2018/06/26 06:48:00 msaitoh Exp $"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/queue.h> 37 #include <sys/conf.h> 38 #include <sys/device.h> 39 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/intr.h> 43 44 #include <net/bpf.h> 45 #include <net/if.h> 46 #include <net/if_arp.h> 47 #include <net/if_dl.h> 48 #include <net/if_ether.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 52 #include <netinet/in.h> 53 #include <netinet/in_systm.h> 54 #include <netinet/in_var.h> 55 #include <netinet/ip.h> 56 57 #include <net80211/ieee80211_var.h> 58 #include <net80211/ieee80211_amrr.h> 59 #include <net80211/ieee80211_radiotap.h> 60 61 #include <dev/ic/athnreg.h> 62 #include <dev/ic/athnvar.h> 63 64 #include <dev/ic/arn5008reg.h> 65 #include <dev/ic/arn5008.h> 66 #include <dev/ic/arn5416.h> 67 #include <dev/ic/arn9280.h> 68 69 #define Static static 70 71 Static void ar5008_calib_adc_dc_off(struct athn_softc *); 72 Static void ar5008_calib_adc_gain(struct athn_softc *); 73 Static void ar5008_calib_iq(struct athn_softc *); 74 Static void ar5008_disable_ofdm_weak_signal(struct athn_softc *); 75 Static void ar5008_disable_phy(struct athn_softc *); 76 Static int ar5008_dma_alloc(struct athn_softc *); 77 Static void ar5008_dma_free(struct athn_softc *); 78 Static void ar5008_do_calib(struct athn_softc *); 79 Static void ar5008_do_noisefloor_calib(struct athn_softc *); 80 Static void ar5008_enable_antenna_diversity(struct athn_softc *); 81 Static void ar5008_enable_ofdm_weak_signal(struct athn_softc *); 82 Static uint8_t ar5008_get_vpd(uint8_t, const uint8_t *, const uint8_t *, int); 83 Static void ar5008_gpio_config_input(struct athn_softc *, int); 84 Static void ar5008_gpio_config_output(struct athn_softc *, int, int); 85 Static int ar5008_gpio_read(struct athn_softc *, int); 86 Static void ar5008_gpio_write(struct athn_softc *, int, int); 87 Static void ar5008_hw_init(struct athn_softc *, struct ieee80211_channel *, 88 struct ieee80211_channel *); 89 Static void ar5008_init_baseband(struct athn_softc *); 90 Static void ar5008_init_chains(struct athn_softc *); 91 Static int ar5008_intr_status(struct athn_softc *); 92 Static int ar5008_intr(struct athn_softc *); 93 Static void ar5008_next_calib(struct athn_softc *); 94 Static int ar5008_read_eep_word(struct athn_softc *, uint32_t, 95 uint16_t *); 96 Static int ar5008_read_rom(struct athn_softc *); 97 Static void ar5008_rf_bus_release(struct athn_softc *); 98 Static int ar5008_rf_bus_request(struct athn_softc *); 99 Static void ar5008_rfsilent_init(struct athn_softc *); 100 Static int ar5008_rx_alloc(struct athn_softc *); 101 Static void ar5008_rx_enable(struct athn_softc *); 102 Static void ar5008_rx_free(struct athn_softc *); 103 Static void ar5008_rx_intr(struct athn_softc *); 104 Static void ar5008_rx_radiotap(struct athn_softc *, struct mbuf *, 105 struct ar_rx_desc *); 106 Static void ar5008_set_cck_weak_signal(struct athn_softc *, int); 107 Static void ar5008_set_delta_slope(struct athn_softc *, 108 struct ieee80211_channel *, struct ieee80211_channel *); 109 Static void ar5008_set_firstep_level(struct athn_softc *, int); 110 Static void ar5008_set_noise_immunity_level(struct athn_softc *, int); 111 Static void ar5008_set_phy(struct athn_softc *, struct ieee80211_channel *, 112 struct ieee80211_channel *); 113 Static void ar5008_set_rf_mode(struct athn_softc *, 114 struct ieee80211_channel *); 115 Static void ar5008_set_rxchains(struct athn_softc *); 116 Static void ar5008_set_spur_immunity_level(struct athn_softc *, int); 117 Static void ar5008_swap_rom(struct athn_softc *); 118 Static int ar5008_swba_intr(struct athn_softc *); 119 Static int ar5008_tx(struct athn_softc *, struct mbuf *, 120 struct ieee80211_node *, int); 121 Static int ar5008_tx_alloc(struct athn_softc *); 122 Static void ar5008_tx_free(struct athn_softc *); 123 Static void ar5008_tx_intr(struct athn_softc *); 124 Static int ar5008_tx_process(struct athn_softc *, int); 125 126 #ifdef notused 127 Static void ar5008_bb_load_noisefloor(struct athn_softc *); 128 Static void ar5008_get_noisefloor(struct athn_softc *, 129 struct ieee80211_channel *); 130 Static void ar5008_noisefloor_calib(struct athn_softc *); 131 Static void ar5008_read_noisefloor(struct athn_softc *, int16_t *, 132 int16_t *); 133 Static void ar5008_write_noisefloor(struct athn_softc *, int16_t *, 134 int16_t *); 135 #endif /* notused */ 136 137 // bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 138 139 /* 140 * XXX: see if_iwn.c:MCLGETIalt() for a better solution. 141 */ 142 static struct mbuf * 143 MCLGETI(struct athn_softc *sc __unused, int how, 144 struct ifnet *ifp __unused, u_int size) 145 { 146 struct mbuf *m; 147 148 MGETHDR(m, how, MT_DATA); 149 if (m == NULL) 150 return NULL; 151 152 MEXTMALLOC(m, size, how); 153 if ((m->m_flags & M_EXT) == 0) { 154 m_freem(m); 155 return NULL; 156 } 157 return m; 158 } 159 160 PUBLIC int 161 ar5008_attach(struct athn_softc *sc) 162 { 163 struct athn_ops *ops = &sc->sc_ops; 164 struct ieee80211com *ic = &sc->sc_ic; 165 struct ar_base_eep_header *base; 166 uint8_t eep_ver, kc_entries_log; 167 int error; 168 169 /* Set callbacks for AR5008, AR9001 and AR9002 families. */ 170 ops->gpio_read = ar5008_gpio_read; 171 ops->gpio_write = ar5008_gpio_write; 172 ops->gpio_config_input = ar5008_gpio_config_input; 173 ops->gpio_config_output = ar5008_gpio_config_output; 174 ops->rfsilent_init = ar5008_rfsilent_init; 175 176 ops->dma_alloc = ar5008_dma_alloc; 177 ops->dma_free = ar5008_dma_free; 178 ops->rx_enable = ar5008_rx_enable; 179 ops->intr_status = ar5008_intr_status; 180 ops->intr = ar5008_intr; 181 ops->tx = ar5008_tx; 182 183 ops->set_rf_mode = ar5008_set_rf_mode; 184 ops->rf_bus_request = ar5008_rf_bus_request; 185 ops->rf_bus_release = ar5008_rf_bus_release; 186 ops->set_phy = ar5008_set_phy; 187 ops->set_delta_slope = ar5008_set_delta_slope; 188 ops->enable_antenna_diversity = ar5008_enable_antenna_diversity; 189 ops->init_baseband = ar5008_init_baseband; 190 ops->disable_phy = ar5008_disable_phy; 191 ops->set_rxchains = ar5008_set_rxchains; 192 ops->noisefloor_calib = ar5008_do_noisefloor_calib; 193 ops->do_calib = ar5008_do_calib; 194 ops->next_calib = ar5008_next_calib; 195 ops->hw_init = ar5008_hw_init; 196 197 ops->set_noise_immunity_level = ar5008_set_noise_immunity_level; 198 ops->enable_ofdm_weak_signal = ar5008_enable_ofdm_weak_signal; 199 ops->disable_ofdm_weak_signal = ar5008_disable_ofdm_weak_signal; 200 ops->set_cck_weak_signal = ar5008_set_cck_weak_signal; 201 ops->set_firstep_level = ar5008_set_firstep_level; 202 ops->set_spur_immunity_level = ar5008_set_spur_immunity_level; 203 204 /* Set MAC registers offsets. */ 205 sc->sc_obs_off = AR_OBS; 206 sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL; 207 208 if (!(sc->sc_flags & ATHN_FLAG_PCIE)) 209 athn_config_nonpcie(sc); 210 else 211 athn_config_pcie(sc); 212 213 /* Read entire ROM content in memory. */ 214 if ((error = ar5008_read_rom(sc)) != 0) { 215 aprint_error_dev(sc->sc_dev, "could not read ROM\n"); 216 return error; 217 } 218 219 /* Get RF revision. */ 220 sc->sc_rf_rev = ar5416_get_rf_rev(sc); 221 222 base = sc->sc_eep; 223 eep_ver = (base->version >> 12) & 0xf; 224 sc->sc_eep_rev = (base->version & 0xfff); 225 if (eep_ver != AR_EEP_VER || sc->sc_eep_rev == 0) { 226 aprint_error_dev(sc->sc_dev, "unsupported ROM version %d.%d\n", 227 eep_ver, sc->sc_eep_rev); 228 return EINVAL; 229 } 230 231 if (base->opCapFlags & AR_OPFLAGS_11A) 232 sc->sc_flags |= ATHN_FLAG_11A; 233 if (base->opCapFlags & AR_OPFLAGS_11G) 234 sc->sc_flags |= ATHN_FLAG_11G; 235 if (base->opCapFlags & AR_OPFLAGS_11N) 236 sc->sc_flags |= ATHN_FLAG_11N; 237 238 IEEE80211_ADDR_COPY(ic->ic_myaddr, base->macAddr); 239 240 /* Check if we have a hardware radio switch. */ 241 if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) { 242 sc->sc_flags |= ATHN_FLAG_RFSILENT; 243 /* Get GPIO pin used by hardware radio switch. */ 244 sc->sc_rfsilent_pin = MS(base->rfSilent, 245 AR_EEP_RFSILENT_GPIO_SEL); 246 /* Get polarity of hardware radio switch. */ 247 if (base->rfSilent & AR_EEP_RFSILENT_POLARITY) 248 sc->sc_flags |= ATHN_FLAG_RFSILENT_REVERSED; 249 } 250 251 /* Get the number of HW key cache entries. */ 252 kc_entries_log = MS(base->deviceCap, AR_EEP_DEVCAP_KC_ENTRIES); 253 sc->sc_kc_entries = kc_entries_log != 0 ? 254 1 << kc_entries_log : AR_KEYTABLE_SIZE; 255 256 sc->sc_txchainmask = base->txMask; 257 if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCI && 258 !(base->opCapFlags & AR_OPFLAGS_11A)) { 259 /* For single-band AR5416 PCI, use GPIO pin 0. */ 260 sc->sc_rxchainmask = ar5008_gpio_read(sc, 0) ? 0x5 : 0x7; 261 } 262 else 263 sc->sc_rxchainmask = base->rxMask; 264 265 ops->setup(sc); 266 return 0; 267 } 268 269 /* 270 * Read 16-bit word from ROM. 271 */ 272 Static int 273 ar5008_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val) 274 { 275 uint32_t reg; 276 int ntries; 277 278 reg = AR_READ(sc, AR_EEPROM_OFFSET(addr)); 279 for (ntries = 0; ntries < 1000; ntries++) { 280 reg = AR_READ(sc, AR_EEPROM_STATUS_DATA); 281 if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY | 282 AR_EEPROM_STATUS_DATA_PROT_ACCESS))) { 283 *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL); 284 return 0; 285 } 286 DELAY(10); 287 } 288 *val = 0xffff; 289 return ETIMEDOUT; 290 } 291 292 Static int 293 ar5008_read_rom(struct athn_softc *sc) 294 { 295 uint32_t addr, end; 296 uint16_t magic, sum, *eep; 297 int need_swap = 0; 298 int error; 299 300 /* Determine ROM endianness. */ 301 error = ar5008_read_eep_word(sc, AR_EEPROM_MAGIC_OFFSET, &magic); 302 if (error != 0) 303 return error; 304 if (magic != AR_EEPROM_MAGIC) { 305 if (magic != bswap16(AR_EEPROM_MAGIC)) { 306 DPRINTFN(DBG_INIT, sc, 307 "invalid ROM magic 0x%x != 0x%x\n", 308 magic, AR_EEPROM_MAGIC); 309 return EIO; 310 } 311 DPRINTFN(DBG_INIT, sc, "non-native ROM endianness\n"); 312 need_swap = 1; 313 } 314 315 /* Allocate space to store ROM in host memory. */ 316 sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT); 317 if (sc->sc_eep == NULL) 318 return ENOMEM; 319 320 /* Read entire ROM and compute checksum. */ 321 sum = 0; 322 eep = sc->sc_eep; 323 end = sc->sc_eep_base + sc->sc_eep_size / sizeof(uint16_t); 324 for (addr = sc->sc_eep_base; addr < end; addr++, eep++) { 325 if ((error = ar5008_read_eep_word(sc, addr, eep)) != 0) { 326 DPRINTFN(DBG_INIT, sc, 327 "could not read ROM at 0x%x\n", addr); 328 return error; 329 } 330 if (need_swap) 331 *eep = bswap16(*eep); 332 sum ^= *eep; 333 } 334 if (sum != 0xffff) { 335 aprint_error_dev(sc->sc_dev, "bad ROM checksum 0x%04x\n", sum); 336 return EIO; 337 } 338 if (need_swap) 339 ar5008_swap_rom(sc); 340 341 return 0; 342 } 343 344 Static void 345 ar5008_swap_rom(struct athn_softc *sc) 346 { 347 struct ar_base_eep_header *base = sc->sc_eep; 348 349 /* Swap common fields first. */ 350 base->length = bswap16(base->length); 351 base->version = bswap16(base->version); 352 base->regDmn[0] = bswap16(base->regDmn[0]); 353 base->regDmn[1] = bswap16(base->regDmn[1]); 354 base->rfSilent = bswap16(base->rfSilent); 355 base->blueToothOptions = bswap16(base->blueToothOptions); 356 base->deviceCap = bswap16(base->deviceCap); 357 358 /* Swap device-dependent fields. */ 359 sc->sc_ops.swap_rom(sc); 360 } 361 362 /* 363 * Access to General Purpose Input/Output ports. 364 */ 365 Static int 366 ar5008_gpio_read(struct athn_softc *sc, int pin) 367 { 368 369 KASSERT(pin < sc->sc_ngpiopins); 370 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) 371 return !((AR_READ(sc, AR7010_GPIO_IN) >> pin) & 1); 372 return (AR_READ(sc, AR_GPIO_IN_OUT) >> (sc->sc_ngpiopins + pin)) & 1; 373 } 374 375 Static void 376 ar5008_gpio_write(struct athn_softc *sc, int pin, int set) 377 { 378 uint32_t reg; 379 380 KASSERT(pin < sc->sc_ngpiopins); 381 382 if (sc->sc_flags & ATHN_FLAG_USB) 383 set = !set; /* AR9271/AR7010 is reversed. */ 384 385 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { 386 /* Special case for AR7010. */ 387 reg = AR_READ(sc, AR7010_GPIO_OUT); 388 if (set) 389 reg |= 1 << pin; 390 else 391 reg &= ~(1 << pin); 392 AR_WRITE(sc, AR7010_GPIO_OUT, reg); 393 } 394 else { 395 reg = AR_READ(sc, AR_GPIO_IN_OUT); 396 if (set) 397 reg |= 1 << pin; 398 else 399 reg &= ~(1 << pin); 400 AR_WRITE(sc, AR_GPIO_IN_OUT, reg); 401 } 402 AR_WRITE_BARRIER(sc); 403 } 404 405 Static void 406 ar5008_gpio_config_input(struct athn_softc *sc, int pin) 407 { 408 uint32_t reg; 409 410 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { 411 /* Special case for AR7010. */ 412 AR_SETBITS(sc, AR7010_GPIO_OE, 1 << pin); 413 } 414 else { 415 reg = AR_READ(sc, AR_GPIO_OE_OUT); 416 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); 417 reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2); 418 AR_WRITE(sc, AR_GPIO_OE_OUT, reg); 419 } 420 AR_WRITE_BARRIER(sc); 421 } 422 423 Static void 424 ar5008_gpio_config_output(struct athn_softc *sc, int pin, int type) 425 { 426 uint32_t reg; 427 int mux, off; 428 429 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { 430 /* Special case for AR7010. */ 431 AR_CLRBITS(sc, AR7010_GPIO_OE, 1 << pin); 432 AR_WRITE_BARRIER(sc); 433 return; 434 } 435 mux = pin / 6; 436 off = pin % 6; 437 438 reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux)); 439 if (!AR_SREV_9280_20_OR_LATER(sc) && mux == 0) 440 reg = (reg & ~0x1f0) | (reg & 0x1f0) << 1; 441 reg &= ~(0x1f << (off * 5)); 442 reg |= (type & 0x1f) << (off * 5); 443 AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg); 444 445 reg = AR_READ(sc, AR_GPIO_OE_OUT); 446 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); 447 reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2); 448 AR_WRITE(sc, AR_GPIO_OE_OUT, reg); 449 AR_WRITE_BARRIER(sc); 450 } 451 452 Static void 453 ar5008_rfsilent_init(struct athn_softc *sc) 454 { 455 uint32_t reg; 456 457 /* Configure hardware radio switch. */ 458 AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); 459 reg = AR_READ(sc, AR_GPIO_INPUT_MUX2); 460 reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0); 461 AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg); 462 ar5008_gpio_config_input(sc, sc->sc_rfsilent_pin); 463 AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB); 464 if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) { 465 AR_SETBITS(sc, AR_GPIO_INTR_POL, 466 AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin)); 467 } 468 AR_WRITE_BARRIER(sc); 469 } 470 471 Static int 472 ar5008_dma_alloc(struct athn_softc *sc) 473 { 474 int error; 475 476 error = ar5008_tx_alloc(sc); 477 if (error != 0) 478 return error; 479 480 error = ar5008_rx_alloc(sc); 481 if (error != 0) 482 return error; 483 484 return 0; 485 } 486 487 Static void 488 ar5008_dma_free(struct athn_softc *sc) 489 { 490 491 ar5008_tx_free(sc); 492 ar5008_rx_free(sc); 493 } 494 495 Static int 496 ar5008_tx_alloc(struct athn_softc *sc) 497 { 498 struct athn_tx_buf *bf; 499 bus_size_t size; 500 int error, nsegs, i; 501 502 /* 503 * Allocate a pool of Tx descriptors shared between all Tx queues. 504 */ 505 size = ATHN_NTXBUFS * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc); 506 507 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 508 BUS_DMA_NOWAIT, &sc->sc_map); 509 if (error != 0) 510 goto fail; 511 512 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1, 513 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); 514 &nsegs, BUS_DMA_NOWAIT); 515 if (error != 0) 516 goto fail; 517 518 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size, 519 (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 520 if (error != 0) 521 goto fail; 522 523 error = bus_dmamap_load(sc->sc_dmat, sc->sc_map, sc->sc_descs, 524 size, NULL, BUS_DMA_NOWAIT); 525 if (error != 0) 526 goto fail; 527 528 SIMPLEQ_INIT(&sc->sc_txbufs); 529 for (i = 0; i < ATHN_NTXBUFS; i++) { 530 bf = &sc->sc_txpool[i]; 531 532 error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ, 533 AR5008_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT, 534 &bf->bf_map); 535 if (error != 0) { 536 aprint_error_dev(sc->sc_dev, 537 "could not create Tx buf DMA map\n"); 538 goto fail; 539 } 540 541 bf->bf_descs = 542 &((struct ar_tx_desc *)sc->sc_descs)[i * AR5008_MAX_SCATTER]; 543 bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr + 544 i * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc); 545 546 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list); 547 } 548 return 0; 549 fail: 550 ar5008_tx_free(sc); 551 return error; 552 } 553 554 Static void 555 ar5008_tx_free(struct athn_softc *sc) 556 { 557 struct athn_tx_buf *bf; 558 int i; 559 560 for (i = 0; i < ATHN_NTXBUFS; i++) { 561 bf = &sc->sc_txpool[i]; 562 563 if (bf->bf_map != NULL) 564 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); 565 } 566 /* Free Tx descriptors. */ 567 if (sc->sc_map != NULL) { 568 if (sc->sc_descs != NULL) { 569 bus_dmamap_unload(sc->sc_dmat, sc->sc_map); 570 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs, 571 ATHN_NTXBUFS * AR5008_MAX_SCATTER * 572 sizeof(struct ar_tx_desc)); 573 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1); 574 } 575 bus_dmamap_destroy(sc->sc_dmat, sc->sc_map); 576 } 577 } 578 579 Static int 580 ar5008_rx_alloc(struct athn_softc *sc) 581 { 582 struct athn_rxq *rxq = &sc->sc_rxq[0]; 583 struct athn_rx_buf *bf; 584 struct ar_rx_desc *ds; 585 bus_size_t size; 586 int error, nsegs, i; 587 588 rxq->bf = malloc(ATHN_NRXBUFS * sizeof(*bf), M_DEVBUF, 589 M_NOWAIT | M_ZERO); 590 if (rxq->bf == NULL) 591 return ENOMEM; 592 593 size = ATHN_NRXBUFS * sizeof(struct ar_rx_desc); 594 595 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 596 BUS_DMA_NOWAIT, &rxq->map); 597 if (error != 0) 598 goto fail; 599 600 error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rxq->seg, 1, 601 // &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); 602 &nsegs, BUS_DMA_NOWAIT); 603 if (error != 0) 604 goto fail; 605 606 error = bus_dmamem_map(sc->sc_dmat, &rxq->seg, 1, size, 607 (void **)&rxq->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 608 if (error != 0) 609 goto fail; 610 611 error = bus_dmamap_load(sc->sc_dmat, rxq->map, rxq->descs, 612 size, NULL, BUS_DMA_NOWAIT); 613 if (error != 0) 614 goto fail; 615 616 for (i = 0; i < ATHN_NRXBUFS; i++) { 617 bf = &rxq->bf[i]; 618 ds = &((struct ar_rx_desc *)rxq->descs)[i]; 619 620 error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1, 621 ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 622 &bf->bf_map); 623 if (error != 0) { 624 aprint_error_dev(sc->sc_dev, 625 " could not create Rx buf DMA map\n"); 626 goto fail; 627 } 628 /* 629 * Assumes MCLGETI returns cache-line-size aligned buffers. 630 * XXX: does ours? 631 */ 632 bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 633 if (bf->bf_m == NULL) { 634 aprint_error_dev(sc->sc_dev, 635 "could not allocate Rx mbuf\n"); 636 error = ENOBUFS; 637 goto fail; 638 } 639 640 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, 641 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, 642 BUS_DMA_NOWAIT | BUS_DMA_READ); 643 if (error != 0) { 644 aprint_error_dev(sc->sc_dev, 645 "could not DMA map Rx buffer\n"); 646 goto fail; 647 } 648 649 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 650 BUS_DMASYNC_PREREAD); 651 652 bf->bf_desc = ds; 653 bf->bf_daddr = rxq->map->dm_segs[0].ds_addr + 654 i * sizeof(struct ar_rx_desc); 655 } 656 return 0; 657 fail: 658 ar5008_rx_free(sc); 659 return error; 660 } 661 662 Static void 663 ar5008_rx_free(struct athn_softc *sc) 664 { 665 struct athn_rxq *rxq = &sc->sc_rxq[0]; 666 struct athn_rx_buf *bf; 667 int i; 668 669 if (rxq->bf == NULL) 670 return; 671 for (i = 0; i < ATHN_NRXBUFS; i++) { 672 bf = &rxq->bf[i]; 673 674 if (bf->bf_map != NULL) 675 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); 676 if (bf->bf_m != NULL) 677 m_freem(bf->bf_m); 678 } 679 free(rxq->bf, M_DEVBUF); 680 681 /* Free Rx descriptors. */ 682 if (rxq->map != NULL) { 683 if (rxq->descs != NULL) { 684 bus_dmamap_unload(sc->sc_dmat, rxq->map); 685 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->descs, 686 ATHN_NRXBUFS * sizeof(struct ar_rx_desc)); 687 bus_dmamem_free(sc->sc_dmat, &rxq->seg, 1); 688 } 689 bus_dmamap_destroy(sc->sc_dmat, rxq->map); 690 } 691 } 692 693 Static void 694 ar5008_rx_enable(struct athn_softc *sc) 695 { 696 struct athn_rxq *rxq = &sc->sc_rxq[0]; 697 struct athn_rx_buf *bf; 698 struct ar_rx_desc *ds; 699 int i; 700 701 /* Setup and link Rx descriptors. */ 702 SIMPLEQ_INIT(&rxq->head); 703 rxq->lastds = NULL; 704 for (i = 0; i < ATHN_NRXBUFS; i++) { 705 bf = &rxq->bf[i]; 706 ds = bf->bf_desc; 707 708 memset(ds, 0, sizeof(*ds)); 709 ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; 710 ds->ds_ctl1 = SM(AR_RXC1_BUF_LEN, ATHN_RXBUFSZ); 711 712 if (rxq->lastds != NULL) { 713 ((struct ar_rx_desc *)rxq->lastds)->ds_link = 714 bf->bf_daddr; 715 } 716 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); 717 rxq->lastds = ds; 718 } 719 bus_dmamap_sync(sc->sc_dmat, rxq->map, 0, rxq->map->dm_mapsize, 720 BUS_DMASYNC_PREREAD); 721 722 /* Enable Rx. */ 723 AR_WRITE(sc, AR_RXDP, SIMPLEQ_FIRST(&rxq->head)->bf_daddr); 724 AR_WRITE(sc, AR_CR, AR_CR_RXE); 725 AR_WRITE_BARRIER(sc); 726 } 727 728 Static void 729 ar5008_rx_radiotap(struct athn_softc *sc, struct mbuf *m, 730 struct ar_rx_desc *ds) 731 { 732 struct athn_rx_radiotap_header *tap = &sc->sc_rxtap; 733 struct ieee80211com *ic = &sc->sc_ic; 734 uint64_t tsf; 735 uint32_t tstamp; 736 uint8_t rate; 737 738 /* Extend the 15-bit timestamp from Rx descriptor to 64-bit TSF. */ 739 tstamp = ds->ds_status2; 740 tsf = AR_READ(sc, AR_TSF_U32); 741 tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32); 742 if ((tsf & 0x7fff) < tstamp) 743 tsf -= 0x8000; 744 tsf = (tsf & ~0x7fff) | tstamp; 745 746 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 747 tap->wr_tsft = htole64(tsf); 748 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 749 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 750 tap->wr_dbm_antsignal = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED); 751 /* XXX noise. */ 752 tap->wr_antenna = MS(ds->ds_status3, AR_RXS3_ANTENNA); 753 tap->wr_rate = 0; /* In case it can't be found below. */ 754 if (AR_SREV_5416_20_OR_LATER(sc)) 755 rate = MS(ds->ds_status0, AR_RXS0_RATE); 756 else 757 rate = MS(ds->ds_status3, AR_RXS3_RATE); 758 if (rate & 0x80) { /* HT. */ 759 /* Bit 7 set means HT MCS instead of rate. */ 760 tap->wr_rate = rate; 761 if (!(ds->ds_status3 & AR_RXS3_GI)) 762 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 763 764 } 765 else if (rate & 0x10) { /* CCK. */ 766 if (rate & 0x04) 767 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 768 switch (rate & ~0x14) { 769 case 0xb: tap->wr_rate = 2; break; 770 case 0xa: tap->wr_rate = 4; break; 771 case 0x9: tap->wr_rate = 11; break; 772 case 0x8: tap->wr_rate = 22; break; 773 } 774 } 775 else { /* OFDM. */ 776 switch (rate) { 777 case 0xb: tap->wr_rate = 12; break; 778 case 0xf: tap->wr_rate = 18; break; 779 case 0xa: tap->wr_rate = 24; break; 780 case 0xe: tap->wr_rate = 36; break; 781 case 0x9: tap->wr_rate = 48; break; 782 case 0xd: tap->wr_rate = 72; break; 783 case 0x8: tap->wr_rate = 96; break; 784 case 0xc: tap->wr_rate = 108; break; 785 } 786 } 787 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN); 788 } 789 790 static __inline int 791 ar5008_rx_process(struct athn_softc *sc) 792 { 793 struct ieee80211com *ic = &sc->sc_ic; 794 struct ifnet *ifp = &sc->sc_if; 795 struct athn_rxq *rxq = &sc->sc_rxq[0]; 796 struct athn_rx_buf *bf, *nbf; 797 struct ar_rx_desc *ds; 798 struct ieee80211_frame *wh; 799 struct ieee80211_node *ni; 800 struct mbuf *m, *m1; 801 u_int32_t rstamp; 802 int error, len, rssi, s; 803 804 bf = SIMPLEQ_FIRST(&rxq->head); 805 if (__predict_false(bf == NULL)) { /* Should not happen. */ 806 aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n"); 807 return ENOENT; 808 } 809 ds = bf->bf_desc; 810 811 if (!(ds->ds_status8 & AR_RXS8_DONE)) { 812 /* 813 * On some parts, the status words can get corrupted 814 * (including the "done" bit), so we check the next 815 * descriptor "done" bit. If it is set, it is a good 816 * indication that the status words are corrupted, so 817 * we skip this descriptor and drop the frame. 818 */ 819 nbf = SIMPLEQ_NEXT(bf, bf_list); 820 if (nbf != NULL && 821 (((struct ar_rx_desc *)nbf->bf_desc)->ds_status8 & 822 AR_RXS8_DONE)) { 823 DPRINTFN(DBG_RX, sc, 824 "corrupted descriptor status=0x%x\n", 825 ds->ds_status8); 826 /* HW will not "move" RXDP in this case, so do it. */ 827 AR_WRITE(sc, AR_RXDP, nbf->bf_daddr); 828 AR_WRITE_BARRIER(sc); 829 ifp->if_ierrors++; 830 goto skip; 831 } 832 return EBUSY; 833 } 834 835 if (__predict_false(ds->ds_status1 & AR_RXS1_MORE)) { 836 /* Drop frames that span multiple Rx descriptors. */ 837 DPRINTFN(DBG_RX, sc, "dropping split frame\n"); 838 ifp->if_ierrors++; 839 goto skip; 840 } 841 if (!(ds->ds_status8 & AR_RXS8_FRAME_OK)) { 842 if (ds->ds_status8 & AR_RXS8_CRC_ERR) 843 DPRINTFN(DBG_RX, sc, "CRC error\n"); 844 else if (ds->ds_status8 & AR_RXS8_PHY_ERR) 845 DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n", 846 MS(ds->ds_status8, AR_RXS8_PHY_ERR_CODE)); 847 else if (ds->ds_status8 & AR_RXS8_DECRYPT_CRC_ERR) 848 DPRINTFN(DBG_RX, sc, "Decryption CRC error\n"); 849 else if (ds->ds_status8 & AR_RXS8_MICHAEL_ERR) { 850 DPRINTFN(DBG_RX, sc, "Michael MIC failure\n"); 851 852 len = MS(ds->ds_status1, AR_RXS1_DATA_LEN); 853 m = bf->bf_m; 854 m_set_rcvif(m, ifp); 855 m->m_pkthdr.len = m->m_len = len; 856 wh = mtod(m, struct ieee80211_frame *); 857 858 /* Report Michael MIC failures to net80211. */ 859 ieee80211_notify_michael_failure(ic, wh, 0 /* XXX: keyix */); 860 } 861 ifp->if_ierrors++; 862 goto skip; 863 } 864 865 len = MS(ds->ds_status1, AR_RXS1_DATA_LEN); 866 if (__predict_false(len < (int)IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ)) { 867 DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%d\n", len); 868 ifp->if_ierrors++; 869 goto skip; 870 } 871 872 /* Allocate a new Rx buffer. */ 873 m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 874 if (__predict_false(m1 == NULL)) { 875 ic->ic_stats.is_rx_nobuf++; 876 ifp->if_ierrors++; 877 goto skip; 878 } 879 880 /* Sync and unmap the old Rx buffer. */ 881 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 882 BUS_DMASYNC_POSTREAD); 883 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 884 885 /* Map the new Rx buffer. */ 886 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *), 887 ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 888 if (__predict_false(error != 0)) { 889 m_freem(m1); 890 891 /* Remap the old Rx buffer or panic. */ 892 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, 893 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, 894 BUS_DMA_NOWAIT | BUS_DMA_READ); 895 KASSERT(error != 0); 896 ifp->if_ierrors++; 897 goto skip; 898 } 899 900 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 901 BUS_DMASYNC_PREREAD); 902 903 /* Write physical address of new Rx buffer. */ 904 ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; 905 906 m = bf->bf_m; 907 bf->bf_m = m1; 908 909 /* Finalize mbuf. */ 910 m_set_rcvif(m, ifp); 911 m->m_pkthdr.len = m->m_len = len; 912 913 s = splnet(); 914 915 /* Grab a reference to the source node. */ 916 wh = mtod(m, struct ieee80211_frame *); 917 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 918 919 /* Remove any HW padding after the 802.11 header. */ 920 if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) { 921 u_int hdrlen = ieee80211_anyhdrsize(wh); 922 if (hdrlen & 3) { 923 memmove((uint8_t *)wh + 2, wh, hdrlen); 924 m_adj(m, 2); 925 } 926 } 927 if (__predict_false(sc->sc_drvbpf != NULL)) 928 ar5008_rx_radiotap(sc, m, ds); 929 930 /* Trim 802.11 FCS after radiotap. */ 931 m_adj(m, -IEEE80211_CRC_LEN); 932 933 /* Send the frame to the 802.11 layer. */ 934 rssi = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED); 935 rstamp = ds->ds_status2; 936 ieee80211_input(ic, m, ni, rssi, rstamp); 937 938 /* Node is no longer needed. */ 939 ieee80211_free_node(ni); 940 941 splx(s); 942 943 skip: 944 /* Unlink this descriptor from head. */ 945 SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list); 946 memset(&ds->ds_status0, 0, 36); /* XXX Really needed? */ 947 ds->ds_status8 &= ~AR_RXS8_DONE; 948 ds->ds_link = 0; 949 950 /* Re-use this descriptor and link it to tail. */ 951 if (__predict_true(!SIMPLEQ_EMPTY(&rxq->head))) 952 ((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr; 953 else 954 AR_WRITE(sc, AR_RXDP, bf->bf_daddr); 955 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); 956 rxq->lastds = ds; 957 958 /* Re-enable Rx. */ 959 AR_WRITE(sc, AR_CR, AR_CR_RXE); 960 AR_WRITE_BARRIER(sc); 961 return 0; 962 } 963 964 Static void 965 ar5008_rx_intr(struct athn_softc *sc) 966 { 967 968 while (ar5008_rx_process(sc) == 0) 969 continue; 970 } 971 972 Static int 973 ar5008_tx_process(struct athn_softc *sc, int qid) 974 { 975 struct ifnet *ifp = &sc->sc_if; 976 struct athn_txq *txq = &sc->sc_txq[qid]; 977 struct athn_node *an; 978 struct athn_tx_buf *bf; 979 struct ar_tx_desc *ds; 980 uint8_t failcnt; 981 982 bf = SIMPLEQ_FIRST(&txq->head); 983 if (bf == NULL) 984 return ENOENT; 985 /* Get descriptor of last DMA segment. */ 986 ds = &((struct ar_tx_desc *)bf->bf_descs)[bf->bf_map->dm_nsegs - 1]; 987 988 if (!(ds->ds_status9 & AR_TXS9_DONE)) 989 return EBUSY; 990 991 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list); 992 ifp->if_opackets++; 993 994 sc->sc_tx_timer = 0; 995 996 if (ds->ds_status1 & AR_TXS1_EXCESSIVE_RETRIES) 997 ifp->if_oerrors++; 998 999 if (ds->ds_status1 & AR_TXS1_UNDERRUN) 1000 athn_inc_tx_trigger_level(sc); 1001 1002 an = (struct athn_node *)bf->bf_ni; 1003 /* 1004 * NB: the data fail count contains the number of un-acked tries 1005 * for the final series used. We must add the number of tries for 1006 * each series that was fully processed. 1007 */ 1008 failcnt = MS(ds->ds_status1, AR_TXS1_DATA_FAIL_CNT); 1009 /* NB: Assume two tries per series. */ 1010 failcnt += MS(ds->ds_status9, AR_TXS9_FINAL_IDX) * 2; 1011 1012 /* Update rate control statistics. */ 1013 an->amn.amn_txcnt++; 1014 if (failcnt > 0) 1015 an->amn.amn_retrycnt++; 1016 1017 DPRINTFN(DBG_TX, sc, "Tx done qid=%d status1=%d fail count=%d\n", 1018 qid, ds->ds_status1, failcnt); 1019 1020 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1021 BUS_DMASYNC_POSTWRITE); 1022 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 1023 1024 m_freem(bf->bf_m); 1025 bf->bf_m = NULL; 1026 ieee80211_free_node(bf->bf_ni); 1027 bf->bf_ni = NULL; 1028 1029 /* Link Tx buffer back to global free list. */ 1030 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list); 1031 return 0; 1032 } 1033 1034 Static void 1035 ar5008_tx_intr(struct athn_softc *sc) 1036 { 1037 struct ifnet *ifp = &sc->sc_if; 1038 uint16_t mask = 0; 1039 uint32_t reg; 1040 int qid, s; 1041 1042 s = splnet(); 1043 1044 reg = AR_READ(sc, AR_ISR_S0_S); 1045 mask |= MS(reg, AR_ISR_S0_QCU_TXOK); 1046 mask |= MS(reg, AR_ISR_S0_QCU_TXDESC); 1047 1048 reg = AR_READ(sc, AR_ISR_S1_S); 1049 mask |= MS(reg, AR_ISR_S1_QCU_TXERR); 1050 mask |= MS(reg, AR_ISR_S1_QCU_TXEOL); 1051 1052 DPRINTFN(DBG_TX, sc, "Tx interrupt mask=0x%x\n", mask); 1053 for (qid = 0; mask != 0; mask >>= 1, qid++) { 1054 if (mask & 1) 1055 while (ar5008_tx_process(sc, qid) == 0); 1056 } 1057 if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) { 1058 ifp->if_flags &= ~IFF_OACTIVE; 1059 ifp->if_start(ifp); /* in softint */ 1060 } 1061 1062 splx(s); 1063 } 1064 1065 #ifndef IEEE80211_STA_ONLY 1066 /* 1067 * Process Software Beacon Alert interrupts. 1068 */ 1069 Static int 1070 ar5008_swba_intr(struct athn_softc *sc) 1071 { 1072 struct ieee80211com *ic = &sc->sc_ic; 1073 struct ifnet *ifp = &sc->sc_if; 1074 struct ieee80211_node *ni = ic->ic_bss; 1075 struct athn_tx_buf *bf = sc->sc_bcnbuf; 1076 struct ieee80211_frame *wh; 1077 struct ieee80211_beacon_offsets bo; 1078 struct ar_tx_desc *ds; 1079 struct mbuf *m; 1080 uint8_t ridx, hwrate; 1081 int error, totlen; 1082 1083 #if notyet 1084 if (ic->ic_tim_mcast_pending && 1085 IF_IS_EMPTY(&ni->ni_savedq) && 1086 SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head)) 1087 ic->ic_tim_mcast_pending = 0; 1088 #endif 1089 if (ic->ic_dtim_count == 0) 1090 ic->ic_dtim_count = ic->ic_dtim_period - 1; 1091 else 1092 ic->ic_dtim_count--; 1093 1094 /* Make sure previous beacon has been sent. */ 1095 if (athn_tx_pending(sc, ATHN_QID_BEACON)) { 1096 DPRINTFN(DBG_INTR, sc, "beacon stuck\n"); 1097 return EBUSY; 1098 } 1099 /* Get new beacon. */ 1100 m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo); 1101 if (__predict_false(m == NULL)) 1102 return ENOBUFS; 1103 /* Assign sequence number. */ 1104 /* XXX: use non-QoS tid? */ 1105 wh = mtod(m, struct ieee80211_frame *); 1106 *(uint16_t *)&wh->i_seq[0] = 1107 htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 1108 ic->ic_bss->ni_txseqs[0]++; 1109 1110 /* Unmap and free old beacon if any. */ 1111 if (__predict_true(bf->bf_m != NULL)) { 1112 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, 1113 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1114 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 1115 m_freem(bf->bf_m); 1116 bf->bf_m = NULL; 1117 } 1118 /* DMA map new beacon. */ 1119 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1120 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1121 if (__predict_false(error != 0)) { 1122 m_freem(m); 1123 return error; 1124 } 1125 bf->bf_m = m; 1126 1127 /* Setup Tx descriptor (simplified ar5008_tx()). */ 1128 ds = bf->bf_descs; 1129 memset(ds, 0, sizeof(*ds)); 1130 1131 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1132 ds->ds_ctl0 = SM(AR_TXC0_FRAME_LEN, totlen); 1133 ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, AR_MAX_RATE_POWER); 1134 ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, AR_FRAME_TYPE_BEACON); 1135 ds->ds_ctl1 |= AR_TXC1_NO_ACK; 1136 ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, AR_ENCR_TYPE_CLEAR); 1137 1138 /* Write number of tries. */ 1139 ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 1); 1140 1141 /* Write Tx rate. */ 1142 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 1143 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; 1144 hwrate = athn_rates[ridx].hwrate; 1145 ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, hwrate); 1146 1147 /* Write Tx chains. */ 1148 ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask); 1149 1150 ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; 1151 /* Segment length must be a multiple of 4. */ 1152 ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN, 1153 (bf->bf_map->dm_segs[0].ds_len + 3) & ~3); 1154 1155 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1156 BUS_DMASYNC_PREWRITE); 1157 1158 /* Stop Tx DMA before putting the new beacon on the queue. */ 1159 athn_stop_tx_dma(sc, ATHN_QID_BEACON); 1160 1161 AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr); 1162 1163 for(;;) { 1164 if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) 1165 break; 1166 1167 IF_DEQUEUE(&ni->ni_savedq, m); 1168 if (m == NULL) 1169 break; 1170 if (!IF_IS_EMPTY(&ni->ni_savedq)) { 1171 /* more queued frames, set the more data bit */ 1172 wh = mtod(m, struct ieee80211_frame *); 1173 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1174 } 1175 1176 if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) { 1177 ieee80211_free_node(ni); 1178 ifp->if_oerrors++; 1179 break; 1180 } 1181 } 1182 1183 /* Kick Tx. */ 1184 AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON); 1185 AR_WRITE_BARRIER(sc); 1186 return 0; 1187 } 1188 #endif 1189 1190 static int 1191 ar5008_get_intr_status(struct athn_softc *sc, uint32_t *intrp, uint32_t *syncp) 1192 { 1193 uint32_t intr, sync; 1194 1195 /* Get pending interrupts. */ 1196 intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE); 1197 if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) { 1198 intr = AR_READ(sc, AR_INTR_SYNC_CAUSE); 1199 if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0) 1200 return 0; /* Not for us. */ 1201 } 1202 1203 if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) && 1204 (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) 1205 intr = AR_READ(sc, AR_ISR); 1206 else 1207 intr = 0; 1208 sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync; 1209 if (intr == 0 && sync == 0) 1210 return 0; /* Not for us. */ 1211 1212 *intrp = intr; 1213 *syncp = sync; 1214 return 1; 1215 } 1216 1217 1218 Static int 1219 ar5008_intr_status(struct athn_softc *sc) 1220 { 1221 uint32_t intr, sync; 1222 1223 return ar5008_get_intr_status(sc, &intr, &sync); 1224 } 1225 1226 Static int 1227 ar5008_intr(struct athn_softc *sc) 1228 { 1229 uint32_t intr, intr5, sync; 1230 #ifndef IEEE80211_STA_ONLY 1231 int s; 1232 #endif 1233 1234 if (!ar5008_get_intr_status(sc, &intr, &sync)) 1235 return 0; 1236 1237 if (intr != 0) { 1238 if (intr & AR_ISR_BCNMISC) { 1239 uint32_t intr2 = AR_READ(sc, AR_ISR_S2); 1240 #if notyet 1241 if (intr2 & AR_ISR_S2_TIM) 1242 /* TBD */; 1243 if (intr2 & AR_ISR_S2_TSFOOR) 1244 /* TBD */; 1245 #else 1246 __USE(intr2); 1247 #endif 1248 } 1249 intr = AR_READ(sc, AR_ISR_RAC); 1250 if (intr == AR_INTR_SPURIOUS) 1251 return 1; 1252 1253 #ifndef IEEE80211_STA_ONLY 1254 if (intr & AR_ISR_SWBA) { 1255 s = splnet(); 1256 ar5008_swba_intr(sc); 1257 splx(s); 1258 } 1259 #endif 1260 if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) 1261 ar5008_rx_intr(sc); 1262 if (intr & (AR_ISR_RXOK | AR_ISR_RXERR | AR_ISR_RXORN)) 1263 ar5008_rx_intr(sc); 1264 1265 if (intr & (AR_ISR_TXOK | AR_ISR_TXDESC | 1266 AR_ISR_TXERR | AR_ISR_TXEOL)) 1267 ar5008_tx_intr(sc); 1268 1269 intr5 = AR_READ(sc, AR_ISR_S5_S); 1270 if (intr & AR_ISR_GENTMR) { 1271 if (intr5 & AR_ISR_GENTMR) { 1272 DPRINTFN(DBG_INTR, sc, 1273 "GENTMR trigger=%d thresh=%d\n", 1274 MS(intr5, AR_ISR_S5_GENTIMER_TRIG), 1275 MS(intr5, AR_ISR_S5_GENTIMER_THRESH)); 1276 } 1277 } 1278 #if notyet 1279 if (intr5 & AR_ISR_S5_TIM_TIMER) { 1280 /* TBD */; 1281 } 1282 #endif 1283 } 1284 if (sync != 0) { 1285 #if notyet 1286 if (sync & 1287 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) { 1288 /* TBD */; 1289 } 1290 #endif 1291 if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { 1292 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF); 1293 AR_WRITE(sc, AR_RC, 0); 1294 } 1295 1296 if ((sc->sc_flags & ATHN_FLAG_RFSILENT) && 1297 (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) { 1298 AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0); 1299 (void)AR_READ(sc, AR_INTR_SYNC_ENABLE); 1300 pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF); 1301 } 1302 1303 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync); 1304 (void)AR_READ(sc, AR_INTR_SYNC_CAUSE); 1305 } 1306 return 1; 1307 } 1308 1309 Static int 1310 ar5008_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 1311 int txflags) 1312 { 1313 struct ieee80211com *ic = &sc->sc_ic; 1314 struct ieee80211_key *k = NULL; 1315 struct ieee80211_frame *wh; 1316 struct athn_series series[4]; 1317 struct ar_tx_desc *ds, *lastds; 1318 struct athn_txq *txq; 1319 struct athn_tx_buf *bf; 1320 struct athn_node *an = (void *)ni; 1321 struct mbuf *m1; 1322 uint16_t qos; 1323 uint8_t txpower, type, encrtype, ridx[4]; 1324 int i, error, totlen, hasqos, qid; 1325 1326 /* Grab a Tx buffer from our global free list. */ 1327 bf = SIMPLEQ_FIRST(&sc->sc_txbufs); 1328 KASSERT(bf != NULL); 1329 1330 /* Map 802.11 frame type to hardware frame type. */ 1331 wh = mtod(m, struct ieee80211_frame *); 1332 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1333 IEEE80211_FC0_TYPE_MGT) { 1334 /* NB: Beacons do not use ar5008_tx(). */ 1335 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1336 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1337 type = AR_FRAME_TYPE_PROBE_RESP; 1338 else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1339 IEEE80211_FC0_SUBTYPE_ATIM) 1340 type = AR_FRAME_TYPE_ATIM; 1341 else 1342 type = AR_FRAME_TYPE_NORMAL; 1343 } 1344 else if ((wh->i_fc[0] & 1345 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1346 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) { 1347 type = AR_FRAME_TYPE_PSPOLL; 1348 } 1349 else 1350 type = AR_FRAME_TYPE_NORMAL; 1351 1352 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1353 k = ieee80211_crypto_encap(ic, ni, m); 1354 if (k == NULL) 1355 return ENOBUFS; 1356 1357 /* packet header may have moved, reset our local pointer */ 1358 wh = mtod(m, struct ieee80211_frame *); 1359 } 1360 1361 /* XXX 2-byte padding for QoS and 4-addr headers. */ 1362 1363 /* Select the HW Tx queue to use for this frame. */ 1364 if ((hasqos = ieee80211_has_qos(wh))) { 1365 #ifdef notyet_edca 1366 uint8_t tid; 1367 1368 qos = ieee80211_get_qos(wh); 1369 tid = qos & IEEE80211_QOS_TID; 1370 qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)]; 1371 #else 1372 qos = ieee80211_get_qos(wh); 1373 qid = ATHN_QID_AC_BE; 1374 #endif /* notyet_edca */ 1375 } 1376 else if (type == AR_FRAME_TYPE_PSPOLL) { 1377 qos = 0; 1378 qid = ATHN_QID_PSPOLL; 1379 } 1380 else if (txflags & ATHN_TXFLAG_CAB) { 1381 qos = 0; 1382 qid = ATHN_QID_CAB; 1383 } 1384 else { 1385 qos = 0; 1386 qid = ATHN_QID_AC_BE; 1387 } 1388 txq = &sc->sc_txq[qid]; 1389 1390 /* Select the transmit rates to use for this frame. */ 1391 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1392 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 1393 IEEE80211_FC0_TYPE_DATA) { 1394 /* Use lowest rate for all tries. */ 1395 ridx[0] = ridx[1] = ridx[2] = ridx[3] = 1396 (ic->ic_curmode == IEEE80211_MODE_11A) ? 1397 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; 1398 } 1399 else if (ic->ic_fixed_rate != -1) { 1400 /* Use same fixed rate for all tries. */ 1401 ridx[0] = ridx[1] = ridx[2] = ridx[3] = 1402 sc->sc_fixed_ridx; 1403 } 1404 else { 1405 int txrate = ni->ni_txrate; 1406 /* Use fallback table of the node. */ 1407 for (i = 0; i < 4; i++) { 1408 ridx[i] = an->ridx[txrate]; 1409 txrate = an->fallback[txrate]; 1410 } 1411 } 1412 1413 if (__predict_false(sc->sc_drvbpf != NULL)) { 1414 struct athn_tx_radiotap_header *tap = &sc->sc_txtap; 1415 1416 tap->wt_flags = 0; 1417 /* Use initial transmit rate. */ 1418 tap->wt_rate = athn_rates[ridx[0]].rate; 1419 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1420 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1421 // XXX tap->wt_hwqueue = qid; 1422 if (ridx[0] != ATHN_RIDX_CCK1 && 1423 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1424 tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1425 1426 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT); 1427 } 1428 1429 /* DMA map mbuf. */ 1430 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1431 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1432 if (__predict_false(error != 0)) { 1433 if (error != EFBIG) { 1434 aprint_error_dev(sc->sc_dev, 1435 "can't map mbuf (error %d)\n", error); 1436 m_freem(m); 1437 return error; 1438 } 1439 /* 1440 * DMA mapping requires too many DMA segments; linearize 1441 * mbuf in kernel virtual address space and retry. 1442 */ 1443 MGETHDR(m1, M_DONTWAIT, MT_DATA); 1444 if (m1 == NULL) { 1445 m_freem(m); 1446 return ENOBUFS; 1447 } 1448 if (m->m_pkthdr.len > (int)MHLEN) { 1449 MCLGET(m1, M_DONTWAIT); 1450 if (!(m1->m_flags & M_EXT)) { 1451 m_freem(m); 1452 m_freem(m1); 1453 return ENOBUFS; 1454 } 1455 } 1456 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 1457 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 1458 m_freem(m); 1459 m = m1; 1460 1461 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1462 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1463 if (error != 0) { 1464 aprint_error_dev(sc->sc_dev, 1465 "can't map mbuf (error %d)\n", error); 1466 m_freem(m); 1467 return error; 1468 } 1469 } 1470 bf->bf_m = m; 1471 bf->bf_ni = ni; 1472 bf->bf_txflags = txflags; 1473 1474 wh = mtod(m, struct ieee80211_frame *); 1475 1476 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1477 1478 /* Clear all Tx descriptors that we will use. */ 1479 memset(bf->bf_descs, 0, bf->bf_map->dm_nsegs * sizeof(*ds)); 1480 1481 /* Setup first Tx descriptor. */ 1482 ds = bf->bf_descs; 1483 1484 ds->ds_ctl0 = AR_TXC0_INTR_REQ | AR_TXC0_CLR_DEST_MASK; 1485 txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */ 1486 ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, txpower); 1487 1488 ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, type); 1489 1490 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1491 (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) == 1492 IEEE80211_QOS_ACKPOLICY_NOACK)) 1493 ds->ds_ctl1 |= AR_TXC1_NO_ACK; 1494 #if notyet 1495 if (0 && k != NULL) { 1496 uintptr_t entry; 1497 1498 /* 1499 * Map 802.11 cipher to hardware encryption type and 1500 * compute MIC+ICV overhead. 1501 */ 1502 totlen += k->wk_keylen; 1503 switch (k->wk_cipher->ic_cipher) { 1504 case IEEE80211_CIPHER_WEP: 1505 encrtype = AR_ENCR_TYPE_WEP; 1506 break; 1507 case IEEE80211_CIPHER_TKIP: 1508 encrtype = AR_ENCR_TYPE_TKIP; 1509 break; 1510 case IEEE80211_CIPHER_AES_OCB: 1511 case IEEE80211_CIPHER_AES_CCM: 1512 encrtype = AR_ENCR_TYPE_AES; 1513 break; 1514 default: 1515 panic("unsupported cipher"); 1516 } 1517 /* 1518 * NB: The key cache entry index is stored in the key 1519 * private field when the key is installed. 1520 */ 1521 entry = (uintptr_t)k->k_priv; 1522 ds->ds_ctl1 |= SM(AR_TXC1_DEST_IDX, entry); 1523 ds->ds_ctl0 |= AR_TXC0_DEST_IDX_VALID; 1524 } 1525 else 1526 #endif 1527 encrtype = AR_ENCR_TYPE_CLEAR; 1528 ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, encrtype); 1529 1530 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 1531 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1532 /* NB: Group frames are sent using CCK in 802.11b/g. */ 1533 if (totlen > ic->ic_rtsthreshold) { 1534 ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE; 1535 } 1536 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1537 athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) { 1538 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1539 ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE; 1540 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1541 ds->ds_ctl0 |= AR_TXC0_CTS_ENABLE; 1542 } 1543 } 1544 if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) { 1545 /* Disable multi-rate retries when protection is used. */ 1546 ridx[1] = ridx[2] = ridx[3] = ridx[0]; 1547 } 1548 /* Setup multi-rate retries. */ 1549 for (i = 0; i < 4; i++) { 1550 series[i].hwrate = athn_rates[ridx[i]].hwrate; 1551 if (athn_rates[ridx[i]].phy == IEEE80211_T_DS && 1552 ridx[i] != ATHN_RIDX_CCK1 && 1553 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1554 series[i].hwrate |= 0x04; 1555 series[i].dur = 0; 1556 } 1557 if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) { 1558 /* Compute duration for each series. */ 1559 for (i = 0; i < 4; i++) { 1560 series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN, 1561 athn_rates[ridx[i]].rspridx, ic->ic_flags); 1562 } 1563 } 1564 1565 /* Write number of tries for each series. */ 1566 ds->ds_ctl2 = 1567 SM(AR_TXC2_XMIT_DATA_TRIES0, 2) | 1568 SM(AR_TXC2_XMIT_DATA_TRIES1, 2) | 1569 SM(AR_TXC2_XMIT_DATA_TRIES2, 2) | 1570 SM(AR_TXC2_XMIT_DATA_TRIES3, 4); 1571 1572 /* Tell HW to update duration field in 802.11 header. */ 1573 if (type != AR_FRAME_TYPE_PSPOLL) 1574 ds->ds_ctl2 |= AR_TXC2_DUR_UPDATE_ENA; 1575 1576 /* Write Tx rate for each series. */ 1577 ds->ds_ctl3 = 1578 SM(AR_TXC3_XMIT_RATE0, series[0].hwrate) | 1579 SM(AR_TXC3_XMIT_RATE1, series[1].hwrate) | 1580 SM(AR_TXC3_XMIT_RATE2, series[2].hwrate) | 1581 SM(AR_TXC3_XMIT_RATE3, series[3].hwrate); 1582 1583 /* Write duration for each series. */ 1584 ds->ds_ctl4 = 1585 SM(AR_TXC4_PACKET_DUR0, series[0].dur) | 1586 SM(AR_TXC4_PACKET_DUR1, series[1].dur); 1587 ds->ds_ctl5 = 1588 SM(AR_TXC5_PACKET_DUR2, series[2].dur) | 1589 SM(AR_TXC5_PACKET_DUR3, series[3].dur); 1590 1591 /* Use the same Tx chains for all tries. */ 1592 ds->ds_ctl7 = 1593 SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask) | 1594 SM(AR_TXC7_CHAIN_SEL1, sc->sc_txchainmask) | 1595 SM(AR_TXC7_CHAIN_SEL2, sc->sc_txchainmask) | 1596 SM(AR_TXC7_CHAIN_SEL3, sc->sc_txchainmask); 1597 #ifdef notyet 1598 #ifndef IEEE80211_NO_HT 1599 /* Use the same short GI setting for all tries. */ 1600 if (ic->ic_flags & IEEE80211_F_SHGI) 1601 ds->ds_ctl7 |= AR_TXC7_GI0123; 1602 /* Use the same channel width for all tries. */ 1603 if (ic->ic_flags & IEEE80211_F_CBW40) 1604 ds->ds_ctl7 |= AR_TXC7_2040_0123; 1605 #endif 1606 #endif 1607 1608 if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) { 1609 uint8_t protridx, hwrate; 1610 uint16_t dur = 0; 1611 1612 /* Use the same protection mode for all tries. */ 1613 if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) { 1614 ds->ds_ctl4 |= AR_TXC4_RTSCTS_QUAL01; 1615 ds->ds_ctl5 |= AR_TXC5_RTSCTS_QUAL23; 1616 } 1617 /* Select protection rate (suboptimal but ok). */ 1618 protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 1619 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2; 1620 if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) { 1621 /* Account for CTS duration. */ 1622 dur += athn_txtime(sc, IEEE80211_ACK_LEN, 1623 athn_rates[protridx].rspridx, ic->ic_flags); 1624 } 1625 dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags); 1626 if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) { 1627 /* Account for ACK duration. */ 1628 dur += athn_txtime(sc, IEEE80211_ACK_LEN, 1629 athn_rates[ridx[0]].rspridx, ic->ic_flags); 1630 } 1631 /* Write protection frame duration and rate. */ 1632 ds->ds_ctl2 |= SM(AR_TXC2_BURST_DUR, dur); 1633 hwrate = athn_rates[protridx].hwrate; 1634 if (protridx == ATHN_RIDX_CCK2 && 1635 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1636 hwrate |= 0x04; 1637 ds->ds_ctl7 |= SM(AR_TXC7_RTSCTS_RATE, hwrate); 1638 } 1639 1640 /* Finalize first Tx descriptor and fill others (if any). */ 1641 ds->ds_ctl0 |= SM(AR_TXC0_FRAME_LEN, totlen); 1642 1643 lastds = NULL; /* XXX: gcc */ 1644 for (i = 0; i < bf->bf_map->dm_nsegs; i++, ds++) { 1645 ds->ds_data = bf->bf_map->dm_segs[i].ds_addr; 1646 ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN, 1647 bf->bf_map->dm_segs[i].ds_len); 1648 1649 if (i != bf->bf_map->dm_nsegs - 1) 1650 ds->ds_ctl1 |= AR_TXC1_MORE; 1651 ds->ds_link = 0; 1652 1653 /* Chain Tx descriptor. */ 1654 if (i != 0) 1655 lastds->ds_link = bf->bf_daddr + i * sizeof(*ds); 1656 lastds = ds; 1657 } 1658 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1659 BUS_DMASYNC_PREWRITE); 1660 1661 if (!SIMPLEQ_EMPTY(&txq->head)) 1662 ((struct ar_tx_desc *)txq->lastds)->ds_link = bf->bf_daddr; 1663 else 1664 AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr); 1665 txq->lastds = lastds; 1666 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list); 1667 SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list); 1668 1669 ds = bf->bf_descs; 1670 DPRINTFN(DBG_TX, sc, 1671 "Tx qid=%d nsegs=%d ctl0=0x%x ctl1=0x%x ctl3=0x%x\n", 1672 qid, bf->bf_map->dm_nsegs, ds->ds_ctl0, ds->ds_ctl1, ds->ds_ctl3); 1673 1674 /* Kick Tx. */ 1675 AR_WRITE(sc, AR_Q_TXE, 1 << qid); 1676 AR_WRITE_BARRIER(sc); 1677 return 0; 1678 } 1679 1680 Static void 1681 ar5008_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c) 1682 { 1683 uint32_t reg; 1684 1685 reg = IEEE80211_IS_CHAN_2GHZ(c) ? 1686 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; 1687 if (!AR_SREV_9280_10_OR_LATER(sc)) { 1688 reg |= IEEE80211_IS_CHAN_2GHZ(c) ? 1689 AR_PHY_MODE_RF2GHZ : AR_PHY_MODE_RF5GHZ; 1690 } 1691 else if (IEEE80211_IS_CHAN_5GHZ(c) && 1692 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) { 1693 reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE; 1694 } 1695 AR_WRITE(sc, AR_PHY_MODE, reg); 1696 AR_WRITE_BARRIER(sc); 1697 } 1698 1699 static __inline uint32_t 1700 ar5008_synth_delay(struct athn_softc *sc) 1701 { 1702 uint32_t synth_delay; 1703 1704 synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY); 1705 if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B) 1706 synth_delay = (synth_delay * 4) / 22; 1707 else 1708 synth_delay = synth_delay / 10; /* in 100ns steps */ 1709 return synth_delay; 1710 } 1711 1712 Static int 1713 ar5008_rf_bus_request(struct athn_softc *sc) 1714 { 1715 int ntries; 1716 1717 /* Request RF Bus grant. */ 1718 AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); 1719 for (ntries = 0; ntries < 10000; ntries++) { 1720 if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN) 1721 return 0; 1722 DELAY(10); 1723 } 1724 DPRINTFN(DBG_RF, sc, "could not kill baseband Rx"); 1725 return ETIMEDOUT; 1726 } 1727 1728 Static void 1729 ar5008_rf_bus_release(struct athn_softc *sc) 1730 { 1731 1732 /* Wait for the synthesizer to settle. */ 1733 DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar5008_synth_delay(sc)); 1734 1735 /* Release the RF Bus grant. */ 1736 AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0); 1737 AR_WRITE_BARRIER(sc); 1738 } 1739 1740 Static void 1741 ar5008_set_phy(struct athn_softc *sc, struct ieee80211_channel *c, 1742 struct ieee80211_channel *extc) 1743 { 1744 uint32_t phy; 1745 1746 if (AR_SREV_9285_10_OR_LATER(sc)) 1747 phy = AR_READ(sc, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO; 1748 else 1749 phy = 0; 1750 phy |= AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 | 1751 AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH; 1752 #ifndef IEEE80211_NO_HT 1753 if (extc != NULL) { 1754 phy |= AR_PHY_FC_DYN2040_EN; 1755 if (extc > c) /* XXX */ 1756 phy |= AR_PHY_FC_DYN2040_PRI_CH; 1757 } 1758 #endif 1759 AR_WRITE(sc, AR_PHY_TURBO, phy); 1760 1761 AR_WRITE(sc, AR_2040_MODE, 1762 (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0); 1763 1764 /* Set global transmit timeout. */ 1765 AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25)); 1766 /* Set carrier sense timeout. */ 1767 AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15)); 1768 AR_WRITE_BARRIER(sc); 1769 } 1770 1771 Static void 1772 ar5008_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c, 1773 struct ieee80211_channel *extc) 1774 { 1775 uint32_t coeff, exp, man, reg; 1776 1777 /* Set Delta Slope (exponent and mantissa). */ 1778 coeff = (100 << 24) / c->ic_freq; 1779 athn_get_delta_slope(coeff, &exp, &man); 1780 DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man); 1781 1782 reg = AR_READ(sc, AR_PHY_TIMING3); 1783 reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp); 1784 reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man); 1785 AR_WRITE(sc, AR_PHY_TIMING3, reg); 1786 1787 /* For Short GI, coeff is 9/10 that of normal coeff. */ 1788 coeff = (9 * coeff) / 10; 1789 athn_get_delta_slope(coeff, &exp, &man); 1790 DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man); 1791 1792 reg = AR_READ(sc, AR_PHY_HALFGI); 1793 reg = RW(reg, AR_PHY_HALFGI_DSC_EXP, exp); 1794 reg = RW(reg, AR_PHY_HALFGI_DSC_MAN, man); 1795 AR_WRITE(sc, AR_PHY_HALFGI, reg); 1796 AR_WRITE_BARRIER(sc); 1797 } 1798 1799 Static void 1800 ar5008_enable_antenna_diversity(struct athn_softc *sc) 1801 { 1802 1803 AR_SETBITS(sc, AR_PHY_CCK_DETECT, 1804 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); 1805 AR_WRITE_BARRIER(sc); 1806 } 1807 1808 Static void 1809 ar5008_init_baseband(struct athn_softc *sc) 1810 { 1811 uint32_t synth_delay; 1812 1813 synth_delay = ar5008_synth_delay(sc); 1814 /* Activate the PHY (includes baseband activate and synthesizer on). */ 1815 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 1816 AR_WRITE_BARRIER(sc); 1817 DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay); 1818 } 1819 1820 Static void 1821 ar5008_disable_phy(struct athn_softc *sc) 1822 { 1823 1824 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 1825 AR_WRITE_BARRIER(sc); 1826 } 1827 1828 Static void 1829 ar5008_init_chains(struct athn_softc *sc) 1830 { 1831 1832 if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5) 1833 AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1834 1835 /* Setup chain masks. */ 1836 if (sc->sc_mac_ver <= AR_SREV_VERSION_9160 && 1837 (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5)) { 1838 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, 0x7); 1839 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, 0x7); 1840 } 1841 else { 1842 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask); 1843 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask); 1844 } 1845 AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask); 1846 AR_WRITE_BARRIER(sc); 1847 } 1848 1849 Static void 1850 ar5008_set_rxchains(struct athn_softc *sc) 1851 { 1852 1853 if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) { 1854 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask); 1855 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask); 1856 AR_WRITE_BARRIER(sc); 1857 } 1858 } 1859 1860 #ifdef notused 1861 Static void 1862 ar5008_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) 1863 { 1864 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */ 1865 #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100) 1866 uint32_t reg; 1867 int i; 1868 1869 for (i = 0; i < sc->sc_nrxchains; i++) { 1870 reg = AR_READ(sc, AR_PHY_CCA(i)); 1871 if (AR_SREV_9280_10_OR_LATER(sc)) 1872 nf[i] = MS(reg, AR9280_PHY_MINCCA_PWR); 1873 else 1874 nf[i] = MS(reg, AR_PHY_MINCCA_PWR); 1875 nf[i] = SIGN_EXT(nf[i]); 1876 1877 reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); 1878 if (AR_SREV_9280_10_OR_LATER(sc)) 1879 nf_ext[i] = MS(reg, AR9280_PHY_EXT_MINCCA_PWR); 1880 else 1881 nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR); 1882 nf_ext[i] = SIGN_EXT(nf_ext[i]); 1883 } 1884 #undef SIGN_EXT 1885 } 1886 #endif /* notused */ 1887 1888 #ifdef notused 1889 Static void 1890 ar5008_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) 1891 { 1892 uint32_t reg; 1893 int i; 1894 1895 for (i = 0; i < sc->sc_nrxchains; i++) { 1896 reg = AR_READ(sc, AR_PHY_CCA(i)); 1897 reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]); 1898 AR_WRITE(sc, AR_PHY_CCA(i), reg); 1899 1900 reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); 1901 reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]); 1902 AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg); 1903 } 1904 AR_WRITE_BARRIER(sc); 1905 } 1906 #endif /* notused */ 1907 1908 #ifdef notused 1909 Static void 1910 ar5008_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c) 1911 { 1912 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; 1913 int i; 1914 1915 if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { 1916 /* Noisefloor calibration not finished. */ 1917 return; 1918 } 1919 /* Noisefloor calibration is finished. */ 1920 ar5008_read_noisefloor(sc, nf, nf_ext); 1921 1922 /* Update noisefloor history. */ 1923 for (i = 0; i < sc->sc_nrxchains; i++) { 1924 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i]; 1925 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i]; 1926 } 1927 if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX) 1928 sc->sc_nf_hist_cur = 0; 1929 } 1930 #endif /* notused */ 1931 1932 #ifdef notused 1933 Static void 1934 ar5008_bb_load_noisefloor(struct athn_softc *sc) 1935 { 1936 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; 1937 int i, ntries; 1938 1939 /* Write filtered noisefloor values. */ 1940 for (i = 0; i < sc->sc_nrxchains; i++) { 1941 nf[i] = sc->sc_nf_priv[i] * 2; 1942 nf_ext[i] = sc->sc_nf_ext_priv[i] * 2; 1943 } 1944 ar5008_write_noisefloor(sc, nf, nf_ext); 1945 1946 /* Load filtered noisefloor values into baseband. */ 1947 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); 1948 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); 1949 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 1950 /* Wait for load to complete. */ 1951 for (ntries = 0; ntries < 1000; ntries++) { 1952 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)) 1953 break; 1954 DELAY(50); 1955 } 1956 if (ntries == 1000) { 1957 DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n"); 1958 return; 1959 } 1960 1961 /* Restore noisefloor values to initial (max) values. */ 1962 for (i = 0; i < AR_MAX_CHAINS; i++) 1963 nf[i] = nf_ext[i] = -50 * 2; 1964 ar5008_write_noisefloor(sc, nf, nf_ext); 1965 } 1966 #endif /* notused */ 1967 1968 #ifdef notused 1969 Static void 1970 ar5008_noisefloor_calib(struct athn_softc *sc) 1971 { 1972 1973 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); 1974 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); 1975 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 1976 AR_WRITE_BARRIER(sc); 1977 } 1978 #endif /* notused */ 1979 1980 Static void 1981 ar5008_do_noisefloor_calib(struct athn_softc *sc) 1982 { 1983 1984 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 1985 AR_WRITE_BARRIER(sc); 1986 } 1987 1988 Static void 1989 ar5008_do_calib(struct athn_softc *sc) 1990 { 1991 uint32_t mode, reg; 1992 int log; 1993 1994 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0); 1995 log = AR_SREV_9280_10_OR_LATER(sc) ? 10 : 2; 1996 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, log); 1997 AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg); 1998 1999 if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN) 2000 mode = AR_PHY_CALMODE_ADC_GAIN; 2001 else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC) 2002 mode = AR_PHY_CALMODE_ADC_DC_PER; 2003 else /* ATHN_CAL_IQ */ 2004 mode = AR_PHY_CALMODE_IQ; 2005 AR_WRITE(sc, AR_PHY_CALMODE, mode); 2006 2007 DPRINTFN(DBG_RF, sc, "starting calibration mode=0x%x\n", mode); 2008 AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_DO_CAL); 2009 AR_WRITE_BARRIER(sc); 2010 } 2011 2012 Static void 2013 ar5008_next_calib(struct athn_softc *sc) 2014 { 2015 2016 /* Check if we have any calibration in progress. */ 2017 if (sc->sc_cur_calib_mask != 0) { 2018 if (!(AR_READ(sc, AR_PHY_TIMING_CTRL4_0) & 2019 AR_PHY_TIMING_CTRL4_DO_CAL)) { 2020 /* Calibration completed for current sample. */ 2021 if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN) 2022 ar5008_calib_adc_gain(sc); 2023 else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC) 2024 ar5008_calib_adc_dc_off(sc); 2025 else /* ATHN_CAL_IQ */ 2026 ar5008_calib_iq(sc); 2027 } 2028 } 2029 } 2030 2031 Static void 2032 ar5008_calib_iq(struct athn_softc *sc) 2033 { 2034 struct athn_iq_cal *cal; 2035 uint32_t reg, i_coff_denom, q_coff_denom; 2036 int32_t i_coff, q_coff; 2037 int i, iq_corr_neg; 2038 2039 for (i = 0; i < AR_MAX_CHAINS; i++) { 2040 cal = &sc->sc_calib.iq[i]; 2041 2042 /* Accumulate IQ calibration measures (clear on read). */ 2043 cal->pwr_meas_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); 2044 cal->pwr_meas_q += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); 2045 cal->iq_corr_meas += 2046 (int32_t)AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); 2047 } 2048 if (!AR_SREV_9280_10_OR_LATER(sc) && 2049 ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) { 2050 /* Not enough samples accumulated, continue. */ 2051 ar5008_do_calib(sc); 2052 return; 2053 } 2054 2055 for (i = 0; i < sc->sc_nrxchains; i++) { 2056 cal = &sc->sc_calib.iq[i]; 2057 2058 if (cal->pwr_meas_q == 0) 2059 continue; 2060 2061 if ((iq_corr_neg = cal->iq_corr_meas) < 0) 2062 cal->iq_corr_meas = -cal->iq_corr_meas; 2063 2064 i_coff_denom = 2065 (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 128; 2066 q_coff_denom = cal->pwr_meas_q / 64; 2067 2068 if (i_coff_denom == 0 || q_coff_denom == 0) 2069 continue; /* Prevents division by zero. */ 2070 2071 i_coff = cal->iq_corr_meas / i_coff_denom; 2072 q_coff = (cal->pwr_meas_i / q_coff_denom) - 64; 2073 2074 /* Negate i_coff if iq_corr_meas is positive. */ 2075 if (!iq_corr_neg) 2076 i_coff = 0x40 - (i_coff & 0x3f); 2077 if (q_coff > 15) 2078 q_coff = 15; 2079 else if (q_coff <= -16) 2080 q_coff = -16; /* XXX Linux has a bug here? */ 2081 2082 DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i); 2083 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4(i)); 2084 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, i_coff); 2085 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, q_coff); 2086 AR_WRITE(sc, AR_PHY_TIMING_CTRL4(i), reg); 2087 } 2088 2089 /* Apply new settings. */ 2090 AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, 2091 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE); 2092 AR_WRITE_BARRIER(sc); 2093 2094 /* IQ calibration done. */ 2095 sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ; 2096 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib)); 2097 } 2098 2099 Static void 2100 ar5008_calib_adc_gain(struct athn_softc *sc) 2101 { 2102 struct athn_adc_cal *cal; 2103 uint32_t reg, gain_mismatch_i, gain_mismatch_q; 2104 int i; 2105 2106 for (i = 0; i < AR_MAX_CHAINS; i++) { 2107 cal = &sc->sc_calib.adc_gain[i]; 2108 2109 /* Accumulate ADC gain measures (clear on read). */ 2110 cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); 2111 cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); 2112 cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); 2113 cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i)); 2114 } 2115 if (!AR_SREV_9280_10_OR_LATER(sc) && 2116 ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) { 2117 /* Not enough samples accumulated, continue. */ 2118 ar5008_do_calib(sc); 2119 return; 2120 } 2121 2122 for (i = 0; i < sc->sc_nrxchains; i++) { 2123 cal = &sc->sc_calib.adc_gain[i]; 2124 2125 if (cal->pwr_meas_odd_i == 0 || cal->pwr_meas_even_q == 0) 2126 continue; /* Prevents division by zero. */ 2127 2128 gain_mismatch_i = 2129 (cal->pwr_meas_even_i * 32) / cal->pwr_meas_odd_i; 2130 gain_mismatch_q = 2131 (cal->pwr_meas_odd_q * 32) / cal->pwr_meas_even_q; 2132 2133 DPRINTFN(DBG_RF, sc, "ADC gain calibration for chain %d\n", i); 2134 reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); 2135 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IGAIN, gain_mismatch_i); 2136 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QGAIN, gain_mismatch_q); 2137 AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg); 2138 } 2139 2140 /* Apply new settings. */ 2141 AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), 2142 AR_PHY_NEW_ADC_GAIN_CORR_ENABLE); 2143 AR_WRITE_BARRIER(sc); 2144 2145 /* ADC gain calibration done. */ 2146 sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_GAIN; 2147 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib)); 2148 } 2149 2150 Static void 2151 ar5008_calib_adc_dc_off(struct athn_softc *sc) 2152 { 2153 struct athn_adc_cal *cal; 2154 int32_t dc_offset_mismatch_i, dc_offset_mismatch_q; 2155 uint32_t reg; 2156 int count, i; 2157 2158 for (i = 0; i < AR_MAX_CHAINS; i++) { 2159 cal = &sc->sc_calib.adc_dc_offset[i]; 2160 2161 /* Accumulate ADC DC offset measures (clear on read). */ 2162 cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); 2163 cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); 2164 cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); 2165 cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i)); 2166 } 2167 if (!AR_SREV_9280_10_OR_LATER(sc) && 2168 ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) { 2169 /* Not enough samples accumulated, continue. */ 2170 ar5008_do_calib(sc); 2171 return; 2172 } 2173 2174 if (AR_SREV_9280_10_OR_LATER(sc)) 2175 count = (1 << (10 + 5)); 2176 else 2177 count = (1 << ( 2 + 5)) * AR_CAL_SAMPLES; 2178 for (i = 0; i < sc->sc_nrxchains; i++) { 2179 cal = &sc->sc_calib.adc_dc_offset[i]; 2180 2181 dc_offset_mismatch_i = 2182 (cal->pwr_meas_even_i - cal->pwr_meas_odd_i * 2) / count; 2183 dc_offset_mismatch_q = 2184 (cal->pwr_meas_odd_q - cal->pwr_meas_even_q * 2) / count; 2185 2186 DPRINTFN(DBG_RF, sc, "ADC DC offset calibration for chain %d\n", i); 2187 reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); 2188 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QDC, 2189 dc_offset_mismatch_q); 2190 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IDC, 2191 dc_offset_mismatch_i); 2192 AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg); 2193 } 2194 2195 /* Apply new settings. */ 2196 AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), 2197 AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE); 2198 AR_WRITE_BARRIER(sc); 2199 2200 /* ADC DC offset calibration done. */ 2201 sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_DC; 2202 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib)); 2203 } 2204 2205 PUBLIC void 2206 ar5008_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT]) 2207 { 2208 2209 AR_WRITE(sc, AR_PHY_POWER_TX_RATE1, 2210 (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 | 2211 (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 | 2212 (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 | 2213 (power[ATHN_POWER_OFDM6 ] & 0x3f)); 2214 AR_WRITE(sc, AR_PHY_POWER_TX_RATE2, 2215 (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 | 2216 (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 | 2217 (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 | 2218 (power[ATHN_POWER_OFDM24 ] & 0x3f)); 2219 AR_WRITE(sc, AR_PHY_POWER_TX_RATE3, 2220 (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 | 2221 (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 | 2222 (power[ATHN_POWER_XR ] & 0x3f) << 8 | 2223 (power[ATHN_POWER_CCK1_LP ] & 0x3f)); 2224 AR_WRITE(sc, AR_PHY_POWER_TX_RATE4, 2225 (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 | 2226 (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 | 2227 (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 | 2228 (power[ATHN_POWER_CCK55_LP] & 0x3f)); 2229 #ifndef IEEE80211_NO_HT 2230 AR_WRITE(sc, AR_PHY_POWER_TX_RATE5, 2231 (power[ATHN_POWER_HT20(3) ] & 0x3f) << 24 | 2232 (power[ATHN_POWER_HT20(2) ] & 0x3f) << 16 | 2233 (power[ATHN_POWER_HT20(1) ] & 0x3f) << 8 | 2234 (power[ATHN_POWER_HT20(0) ] & 0x3f)); 2235 AR_WRITE(sc, AR_PHY_POWER_TX_RATE6, 2236 (power[ATHN_POWER_HT20(7) ] & 0x3f) << 24 | 2237 (power[ATHN_POWER_HT20(6) ] & 0x3f) << 16 | 2238 (power[ATHN_POWER_HT20(5) ] & 0x3f) << 8 | 2239 (power[ATHN_POWER_HT20(4) ] & 0x3f)); 2240 AR_WRITE(sc, AR_PHY_POWER_TX_RATE7, 2241 (power[ATHN_POWER_HT40(3) ] & 0x3f) << 24 | 2242 (power[ATHN_POWER_HT40(2) ] & 0x3f) << 16 | 2243 (power[ATHN_POWER_HT40(1) ] & 0x3f) << 8 | 2244 (power[ATHN_POWER_HT40(0) ] & 0x3f)); 2245 AR_WRITE(sc, AR_PHY_POWER_TX_RATE8, 2246 (power[ATHN_POWER_HT40(7) ] & 0x3f) << 24 | 2247 (power[ATHN_POWER_HT40(6) ] & 0x3f) << 16 | 2248 (power[ATHN_POWER_HT40(5) ] & 0x3f) << 8 | 2249 (power[ATHN_POWER_HT40(4) ] & 0x3f)); 2250 AR_WRITE(sc, AR_PHY_POWER_TX_RATE9, 2251 (power[ATHN_POWER_OFDM_EXT] & 0x3f) << 24 | 2252 (power[ATHN_POWER_CCK_EXT ] & 0x3f) << 16 | 2253 (power[ATHN_POWER_OFDM_DUP] & 0x3f) << 8 | 2254 (power[ATHN_POWER_CCK_DUP ] & 0x3f)); 2255 #endif 2256 AR_WRITE_BARRIER(sc); 2257 } 2258 2259 PUBLIC void 2260 ar5008_set_viterbi_mask(struct athn_softc *sc, int bin) 2261 { 2262 uint32_t mask[4], reg; 2263 uint8_t m[62], p[62]; /* XXX use bit arrays? */ 2264 int i, bit, cur; 2265 2266 /* Compute pilot mask. */ 2267 cur = -6000; 2268 for (i = 0; i < 4; i++) { 2269 mask[i] = 0; 2270 for (bit = 0; bit < 30; bit++) { 2271 if (abs(cur - bin) < 100) 2272 mask[i] |= 1 << bit; 2273 cur += 100; 2274 } 2275 if (cur == 0) /* Skip entry "0". */ 2276 cur = 100; 2277 } 2278 /* Write entries from -6000 to -3100. */ 2279 AR_WRITE(sc, AR_PHY_TIMING7, mask[0]); 2280 AR_WRITE(sc, AR_PHY_TIMING9, mask[0]); 2281 /* Write entries from -3000 to -100. */ 2282 AR_WRITE(sc, AR_PHY_TIMING8, mask[1]); 2283 AR_WRITE(sc, AR_PHY_TIMING10, mask[1]); 2284 /* Write entries from 100 to 3000. */ 2285 AR_WRITE(sc, AR_PHY_PILOT_MASK_01_30, mask[2]); 2286 AR_WRITE(sc, AR_PHY_CHANNEL_MASK_01_30, mask[2]); 2287 /* Write entries from 3100 to 6000. */ 2288 AR_WRITE(sc, AR_PHY_PILOT_MASK_31_60, mask[3]); 2289 AR_WRITE(sc, AR_PHY_CHANNEL_MASK_31_60, mask[3]); 2290 2291 /* Compute viterbi mask. */ 2292 for (cur = 6100; cur >= 0; cur -= 100) 2293 p[+cur / 100] = abs(cur - bin) < 75; 2294 for (cur = -100; cur >= -6100; cur -= 100) 2295 m[-cur / 100] = abs(cur - bin) < 75; 2296 2297 /* Write viterbi mask (XXX needs to be reworked). */ 2298 reg = 2299 m[46] << 30 | m[47] << 28 | m[48] << 26 | m[49] << 24 | 2300 m[50] << 22 | m[51] << 20 | m[52] << 18 | m[53] << 16 | 2301 m[54] << 14 | m[55] << 12 | m[56] << 10 | m[57] << 8 | 2302 m[58] << 6 | m[59] << 4 | m[60] << 2 | m[61] << 0; 2303 AR_WRITE(sc, AR_PHY_BIN_MASK_1, reg); 2304 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_46_61, reg); 2305 2306 /* XXX m[48] should be m[38] ? */ 2307 reg = m[31] << 28 | m[32] << 26 | m[33] << 24 | 2308 m[34] << 22 | m[35] << 20 | m[36] << 18 | m[37] << 16 | 2309 m[48] << 14 | m[39] << 12 | m[40] << 10 | m[41] << 8 | 2310 m[42] << 6 | m[43] << 4 | m[44] << 2 | m[45] << 0; 2311 AR_WRITE(sc, AR_PHY_BIN_MASK_2, reg); 2312 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_31_45, reg); 2313 2314 /* XXX This one is weird too. */ 2315 reg = 2316 m[16] << 30 | m[16] << 28 | m[18] << 26 | m[18] << 24 | 2317 m[20] << 22 | m[20] << 20 | m[22] << 18 | m[22] << 16 | 2318 m[24] << 14 | m[24] << 12 | m[25] << 10 | m[26] << 8 | 2319 m[27] << 6 | m[28] << 4 | m[29] << 2 | m[30] << 0; 2320 AR_WRITE(sc, AR_PHY_BIN_MASK_3, reg); 2321 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_16_30, reg); 2322 2323 reg = 2324 m[ 0] << 30 | m[ 1] << 28 | m[ 2] << 26 | m[ 3] << 24 | 2325 m[ 4] << 22 | m[ 5] << 20 | m[ 6] << 18 | m[ 7] << 16 | 2326 m[ 8] << 14 | m[ 9] << 12 | m[10] << 10 | m[11] << 8 | 2327 m[12] << 6 | m[13] << 4 | m[14] << 2 | m[15] << 0; 2328 AR_WRITE(sc, AR_PHY_MASK_CTL, reg); 2329 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_00_15, reg); 2330 2331 reg = p[15] << 28 | p[14] << 26 | p[13] << 24 | 2332 p[12] << 22 | p[11] << 20 | p[10] << 18 | p[ 9] << 16 | 2333 p[ 8] << 14 | p[ 7] << 12 | p[ 6] << 10 | p[ 5] << 8 | 2334 p[ 4] << 6 | p[ 3] << 4 | p[ 2] << 2 | p[ 1] << 0; 2335 AR_WRITE(sc, AR_PHY_BIN_MASK2_1, reg); 2336 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_15_01, reg); 2337 2338 reg = p[30] << 28 | p[29] << 26 | p[28] << 24 | 2339 p[27] << 22 | p[26] << 20 | p[25] << 18 | p[24] << 16 | 2340 p[23] << 14 | p[22] << 12 | p[21] << 10 | p[20] << 8 | 2341 p[19] << 6 | p[18] << 4 | p[17] << 2 | p[16] << 0; 2342 AR_WRITE(sc, AR_PHY_BIN_MASK2_2, reg); 2343 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_30_16, reg); 2344 2345 reg = p[45] << 28 | p[44] << 26 | p[43] << 24 | 2346 p[42] << 22 | p[41] << 20 | p[40] << 18 | p[39] << 16 | 2347 p[38] << 14 | p[37] << 12 | p[36] << 10 | p[35] << 8 | 2348 p[34] << 6 | p[33] << 4 | p[32] << 2 | p[31] << 0; 2349 AR_WRITE(sc, AR_PHY_BIN_MASK2_3, reg); 2350 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_45_31, reg); 2351 2352 reg = 2353 p[61] << 30 | p[60] << 28 | p[59] << 26 | p[58] << 24 | 2354 p[57] << 22 | p[56] << 20 | p[55] << 18 | p[54] << 16 | 2355 p[53] << 14 | p[52] << 12 | p[51] << 10 | p[50] << 8 | 2356 p[49] << 6 | p[48] << 4 | p[47] << 2 | p[46] << 0; 2357 AR_WRITE(sc, AR_PHY_BIN_MASK2_4, reg); 2358 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_61_46, reg); 2359 AR_WRITE_BARRIER(sc); 2360 } 2361 2362 Static void 2363 ar5008_hw_init(struct athn_softc *sc, struct ieee80211_channel *c, 2364 struct ieee80211_channel *extc) 2365 { 2366 struct athn_ops *ops = &sc->sc_ops; 2367 const struct athn_ini *ini = sc->sc_ini; 2368 const uint32_t *pvals; 2369 uint32_t reg; 2370 int i; 2371 2372 AR_WRITE(sc, AR_PHY(0), 0x00000007); 2373 AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); 2374 2375 if (!AR_SINGLE_CHIP(sc)) 2376 ar5416_reset_addac(sc, c); 2377 2378 AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); 2379 2380 /* First initialization step (depends on channel band/bandwidth). */ 2381 #ifndef IEEE80211_NO_HT 2382 if (extc != NULL) { 2383 if (IEEE80211_IS_CHAN_2GHZ(c)) 2384 pvals = ini->vals_2g40; 2385 else 2386 pvals = ini->vals_5g40; 2387 } 2388 else 2389 #endif 2390 { 2391 if (IEEE80211_IS_CHAN_2GHZ(c)) 2392 pvals = ini->vals_2g20; 2393 else 2394 pvals = ini->vals_5g20; 2395 } 2396 DPRINTFN(DBG_INIT, sc, "writing modal init vals\n"); 2397 for (i = 0; i < ini->nregs; i++) { 2398 uint32_t val = pvals[i]; 2399 2400 /* Fix AR_AN_TOP2 initialization value if required. */ 2401 if (ini->regs[i] == AR_AN_TOP2 && 2402 (sc->sc_flags & ATHN_FLAG_AN_TOP2_FIXUP)) 2403 val &= ~AR_AN_TOP2_PWDCLKIND; 2404 AR_WRITE(sc, ini->regs[i], val); 2405 if (AR_IS_ANALOG_REG(ini->regs[i])) { 2406 AR_WRITE_BARRIER(sc); 2407 DELAY(100); 2408 } 2409 if ((i & 0x1f) == 0) 2410 DELAY(1); 2411 } 2412 AR_WRITE_BARRIER(sc); 2413 2414 if (sc->sc_rx_gain != NULL) 2415 ar9280_reset_rx_gain(sc, c); 2416 if (sc->sc_tx_gain != NULL) 2417 ar9280_reset_tx_gain(sc, c); 2418 2419 if (AR_SREV_9271_10(sc)) { 2420 AR_WRITE(sc, AR_PHY(68), 0x30002311); 2421 AR_WRITE(sc, AR_PHY_RF_CTL3, 0x0a020001); 2422 } 2423 AR_WRITE_BARRIER(sc); 2424 2425 /* Second initialization step (common to all channels). */ 2426 DPRINTFN(DBG_INIT, sc, "writing common init vals\n"); 2427 for (i = 0; i < ini->ncmregs; i++) { 2428 AR_WRITE(sc, ini->cmregs[i], ini->cmvals[i]); 2429 if (AR_IS_ANALOG_REG(ini->cmregs[i])) { 2430 AR_WRITE_BARRIER(sc); 2431 DELAY(100); 2432 } 2433 if ((i & 0x1f) == 0) 2434 DELAY(1); 2435 } 2436 AR_WRITE_BARRIER(sc); 2437 2438 if (!AR_SINGLE_CHIP(sc)) 2439 ar5416_reset_bb_gain(sc, c); 2440 2441 if (IEEE80211_IS_CHAN_5GHZ(c) && 2442 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) { 2443 /* Update modal values for fast PLL clock. */ 2444 #ifndef IEEE80211_NO_HT 2445 if (extc != NULL) 2446 pvals = ini->fastvals_5g40; 2447 else 2448 #endif 2449 pvals = ini->fastvals_5g20; 2450 DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n"); 2451 for (i = 0; i < ini->nfastregs; i++) { 2452 AR_WRITE(sc, ini->fastregs[i], pvals[i]); 2453 if (AR_IS_ANALOG_REG(ini->fastregs[i])) { 2454 AR_WRITE_BARRIER(sc); 2455 DELAY(100); 2456 } 2457 if ((i & 0x1f) == 0) 2458 DELAY(1); 2459 } 2460 } 2461 2462 /* 2463 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted 2464 * descriptor status. 2465 */ 2466 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); 2467 2468 /* Hardware workarounds for occasional Rx data corruption. */ 2469 if (AR_SREV_9280_10_OR_LATER(sc)) { 2470 reg = AR_READ(sc, AR_PCU_MISC_MODE2); 2471 if (!AR_SREV_9271(sc)) 2472 reg &= ~AR_PCU_MISC_MODE2_HWWAR1; 2473 if (AR_SREV_9287_10_OR_LATER(sc)) 2474 reg &= ~AR_PCU_MISC_MODE2_HWWAR2; 2475 AR_WRITE(sc, AR_PCU_MISC_MODE2, reg); 2476 2477 } 2478 else if (AR_SREV_5416_20_OR_LATER(sc)) { 2479 /* Disable baseband clock gating. */ 2480 AR_WRITE(sc, AR_PHY(651), 0x11); 2481 2482 if (AR_SREV_9160(sc)) { 2483 /* Disable RIFS search to fix baseband hang. */ 2484 AR_CLRBITS(sc, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, 2485 AR_PHY_RIFS_INIT_DELAY_M); 2486 } 2487 } 2488 AR_WRITE_BARRIER(sc); 2489 2490 ar5008_set_phy(sc, c, extc); 2491 ar5008_init_chains(sc); 2492 2493 if (sc->sc_flags & ATHN_FLAG_OLPC) { 2494 extern int ticks; 2495 sc->sc_olpc_ticks = ticks; 2496 ops->olpc_init(sc); 2497 } 2498 2499 ops->set_txpower(sc, c, extc); 2500 2501 if (!AR_SINGLE_CHIP(sc)) 2502 ar5416_rf_reset(sc, c); 2503 } 2504 2505 Static uint8_t 2506 ar5008_get_vpd(uint8_t pwr, const uint8_t *pwrPdg, const uint8_t *vpdPdg, 2507 int nicepts) 2508 { 2509 uint8_t vpd; 2510 int i, lo, hi; 2511 2512 for (i = 0; i < nicepts; i++) 2513 if (pwrPdg[i] > pwr) 2514 break; 2515 hi = i; 2516 lo = hi - 1; 2517 if (lo == -1) 2518 lo = hi; 2519 else if (hi == nicepts) 2520 hi = lo; 2521 2522 vpd = athn_interpolate(pwr, pwrPdg[lo], vpdPdg[lo], 2523 pwrPdg[hi], vpdPdg[hi]); 2524 return vpd; 2525 } 2526 2527 PUBLIC void 2528 ar5008_get_pdadcs(struct athn_softc *sc, uint8_t fbin, 2529 struct athn_pier *lopier, struct athn_pier *hipier, int nxpdgains, 2530 int nicepts, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs) 2531 { 2532 #define DB(x) ((x) / 2) /* Convert half dB to dB. */ 2533 uint8_t minpwr[AR_PD_GAINS_IN_MASK], maxpwr[AR_PD_GAINS_IN_MASK]; 2534 uint8_t vpd[AR_MAX_PWR_RANGE_IN_HALF_DB], pwr; 2535 uint8_t lovpd, hivpd, boundary; 2536 int16_t ss, delta, vpdstep, val; 2537 int i, j, npdadcs, nvpds, maxidx, tgtidx; 2538 2539 /* Compute min and max power in half dB for each pdGain. */ 2540 for (i = 0; i < nxpdgains; i++) { 2541 minpwr[i] = MAX(lopier->pwr[i][0], hipier->pwr[i][0]); 2542 maxpwr[i] = MIN(lopier->pwr[i][nicepts - 1], 2543 hipier->pwr[i][nicepts - 1]); 2544 } 2545 2546 /* Fill phase domain analog-to-digital converter (PDADC) table. */ 2547 npdadcs = 0; 2548 for (i = 0; i < nxpdgains; i++) { 2549 if (i != nxpdgains - 1) 2550 boundaries[i] = DB(maxpwr[i] + minpwr[i + 1]) / 2; 2551 else 2552 boundaries[i] = DB(maxpwr[i]); 2553 if (boundaries[i] > AR_MAX_RATE_POWER) 2554 boundaries[i] = AR_MAX_RATE_POWER; 2555 2556 if (i == 0 && !AR_SREV_5416_20_OR_LATER(sc)) { 2557 /* Fix the gain delta (AR5416 1.0 only). */ 2558 delta = boundaries[0] - 23; 2559 boundaries[0] = 23; 2560 } 2561 else 2562 delta = 0; 2563 2564 /* Find starting index for this pdGain. */ 2565 if (i != 0) { 2566 ss = boundaries[i - 1] - DB(minpwr[i]) - 2567 overlap + 1 + delta; 2568 } 2569 else if (AR_SREV_9280_10_OR_LATER(sc)) 2570 ss = -DB(minpwr[i]); 2571 else 2572 ss = 0; 2573 2574 /* Compute Vpd table for this pdGain. */ 2575 nvpds = DB(maxpwr[i] - minpwr[i]) + 1; 2576 memset(vpd, 0, sizeof(vpd)); 2577 pwr = minpwr[i]; 2578 for (j = 0; j < nvpds; j++) { 2579 /* Get lower and higher Vpd. */ 2580 lovpd = ar5008_get_vpd(pwr, lopier->pwr[i], 2581 lopier->vpd[i], nicepts); 2582 hivpd = ar5008_get_vpd(pwr, hipier->pwr[i], 2583 hipier->vpd[i], nicepts); 2584 2585 /* Interpolate the final Vpd. */ 2586 vpd[j] = athn_interpolate(fbin, 2587 lopier->fbin, lovpd, hipier->fbin, hivpd); 2588 2589 pwr += 2; /* In half dB. */ 2590 } 2591 2592 /* Extrapolate data for ss < 0. */ 2593 if (vpd[1] > vpd[0]) 2594 vpdstep = vpd[1] - vpd[0]; 2595 else 2596 vpdstep = 1; 2597 while (ss < 0 && npdadcs < AR_NUM_PDADC_VALUES - 1) { 2598 val = vpd[0] + ss * vpdstep; 2599 pdadcs[npdadcs++] = MAX(val, 0); 2600 ss++; 2601 } 2602 2603 tgtidx = boundaries[i] + overlap - DB(minpwr[i]); 2604 maxidx = MIN(tgtidx, nvpds); 2605 while (ss < maxidx && npdadcs < AR_NUM_PDADC_VALUES - 1) 2606 pdadcs[npdadcs++] = vpd[ss++]; 2607 2608 if (tgtidx < maxidx) 2609 continue; 2610 2611 /* Extrapolate data for maxidx <= ss <= tgtidx. */ 2612 if (vpd[nvpds - 1] > vpd[nvpds - 2]) 2613 vpdstep = vpd[nvpds - 1] - vpd[nvpds - 2]; 2614 else 2615 vpdstep = 1; 2616 while (ss <= tgtidx && npdadcs < AR_NUM_PDADC_VALUES - 1) { 2617 val = vpd[nvpds - 1] + (ss - maxidx + 1) * vpdstep; 2618 pdadcs[npdadcs++] = MIN(val, 255); 2619 ss++; 2620 } 2621 } 2622 2623 /* Fill remaining PDADC and boundaries entries. */ 2624 if (AR_SREV_9285(sc)) 2625 boundary = AR9285_PD_GAIN_BOUNDARY_DEFAULT; 2626 else /* Fill with latest. */ 2627 boundary = boundaries[nxpdgains - 1]; 2628 2629 for (; nxpdgains < AR_PD_GAINS_IN_MASK; nxpdgains++) 2630 boundaries[nxpdgains] = boundary; 2631 2632 for (; npdadcs < AR_NUM_PDADC_VALUES; npdadcs++) 2633 pdadcs[npdadcs] = pdadcs[npdadcs - 1]; 2634 #undef DB 2635 } 2636 2637 PUBLIC void 2638 ar5008_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c, 2639 uint8_t ctl, const struct ar_cal_target_power_leg *tgt, int nchans, 2640 uint8_t tpow[4]) 2641 { 2642 uint8_t fbin; 2643 int i, lo, hi; 2644 2645 /* Find interval (lower and upper indices). */ 2646 fbin = athn_chan2fbin(c); 2647 for (i = 0; i < nchans; i++) { 2648 if (tgt[i].bChannel == AR_BCHAN_UNUSED || 2649 tgt[i].bChannel > fbin) 2650 break; 2651 } 2652 hi = i; 2653 lo = hi - 1; 2654 if (lo == -1) 2655 lo = hi; 2656 else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED) 2657 hi = lo; 2658 2659 /* Interpolate values. */ 2660 for (i = 0; i < 4; i++) { 2661 tpow[i] = athn_interpolate(fbin, 2662 tgt[lo].bChannel, tgt[lo].tPow2x[i], 2663 tgt[hi].bChannel, tgt[hi].tPow2x[i]); 2664 } 2665 /* XXX Apply conformance testing limit. */ 2666 } 2667 2668 #ifndef IEEE80211_NO_HT 2669 PUBLIC void 2670 ar5008_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c, 2671 uint8_t ctl, const struct ar_cal_target_power_ht *tgt, int nchans, 2672 uint8_t tpow[8]) 2673 { 2674 uint8_t fbin; 2675 int i, lo, hi; 2676 2677 /* Find interval (lower and upper indices). */ 2678 fbin = athn_chan2fbin(c); 2679 for (i = 0; i < nchans; i++) { 2680 if (tgt[i].bChannel == AR_BCHAN_UNUSED || 2681 tgt[i].bChannel > fbin) 2682 break; 2683 } 2684 hi = i; 2685 lo = hi - 1; 2686 if (lo == -1) 2687 lo = hi; 2688 else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED) 2689 hi = lo; 2690 2691 /* Interpolate values. */ 2692 for (i = 0; i < 8; i++) { 2693 tpow[i] = athn_interpolate(fbin, 2694 tgt[lo].bChannel, tgt[lo].tPow2x[i], 2695 tgt[hi].bChannel, tgt[hi].tPow2x[i]); 2696 } 2697 /* XXX Apply conformance testing limit. */ 2698 } 2699 #endif 2700 2701 /* 2702 * Adaptive noise immunity. 2703 */ 2704 Static void 2705 ar5008_set_noise_immunity_level(struct athn_softc *sc, int level) 2706 { 2707 int high = level == 4; 2708 uint32_t reg; 2709 2710 reg = AR_READ(sc, AR_PHY_DESIRED_SZ); 2711 reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55); 2712 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); 2713 2714 reg = AR_READ(sc, AR_PHY_AGC_CTL1); 2715 reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_LOW, high ? -70 : -64); 2716 reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_HIGH, high ? -12 : -14); 2717 AR_WRITE(sc, AR_PHY_AGC_CTL1, reg); 2718 2719 reg = AR_READ(sc, AR_PHY_FIND_SIG); 2720 reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78); 2721 AR_WRITE(sc, AR_PHY_FIND_SIG, reg); 2722 2723 AR_WRITE_BARRIER(sc); 2724 } 2725 2726 Static void 2727 ar5008_enable_ofdm_weak_signal(struct athn_softc *sc) 2728 { 2729 uint32_t reg; 2730 2731 reg = AR_READ(sc, AR_PHY_SFCORR_LOW); 2732 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50); 2733 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40); 2734 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48); 2735 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); 2736 2737 reg = AR_READ(sc, AR_PHY_SFCORR); 2738 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77); 2739 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64); 2740 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16); 2741 AR_WRITE(sc, AR_PHY_SFCORR, reg); 2742 2743 reg = AR_READ(sc, AR_PHY_SFCORR_EXT); 2744 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50); 2745 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40); 2746 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77); 2747 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64); 2748 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); 2749 2750 AR_SETBITS(sc, AR_PHY_SFCORR_LOW, 2751 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 2752 AR_WRITE_BARRIER(sc); 2753 } 2754 2755 Static void 2756 ar5008_disable_ofdm_weak_signal(struct athn_softc *sc) 2757 { 2758 uint32_t reg; 2759 2760 reg = AR_READ(sc, AR_PHY_SFCORR_LOW); 2761 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127); 2762 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127); 2763 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63); 2764 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); 2765 2766 reg = AR_READ(sc, AR_PHY_SFCORR); 2767 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127); 2768 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127); 2769 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31); 2770 AR_WRITE(sc, AR_PHY_SFCORR, reg); 2771 2772 reg = AR_READ(sc, AR_PHY_SFCORR_EXT); 2773 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127); 2774 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127); 2775 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127); 2776 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127); 2777 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); 2778 2779 AR_CLRBITS(sc, AR_PHY_SFCORR_LOW, 2780 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 2781 AR_WRITE_BARRIER(sc); 2782 } 2783 2784 Static void 2785 ar5008_set_cck_weak_signal(struct athn_softc *sc, int high) 2786 { 2787 uint32_t reg; 2788 2789 reg = AR_READ(sc, AR_PHY_CCK_DETECT); 2790 reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8); 2791 AR_WRITE(sc, AR_PHY_CCK_DETECT, reg); 2792 AR_WRITE_BARRIER(sc); 2793 } 2794 2795 Static void 2796 ar5008_set_firstep_level(struct athn_softc *sc, int level) 2797 { 2798 uint32_t reg; 2799 2800 reg = AR_READ(sc, AR_PHY_FIND_SIG); 2801 reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4); 2802 AR_WRITE(sc, AR_PHY_FIND_SIG, reg); 2803 AR_WRITE_BARRIER(sc); 2804 } 2805 2806 Static void 2807 ar5008_set_spur_immunity_level(struct athn_softc *sc, int level) 2808 { 2809 uint32_t reg; 2810 2811 reg = AR_READ(sc, AR_PHY_TIMING5); 2812 reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2); 2813 AR_WRITE(sc, AR_PHY_TIMING5, reg); 2814 AR_WRITE_BARRIER(sc); 2815 } 2816