xref: /netbsd-src/sys/dev/ic/arn5008.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: arn5008.c,v 1.15 2018/06/26 06:48:00 msaitoh Exp $	*/
2 /*	$OpenBSD: ar5008.c,v 1.21 2012/08/25 12:14:31 kettenis Exp $	*/
3 
4 /*-
5  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008-2009 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  * Routines common to AR5008, AR9001 and AR9002 families.
24  */
25 
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn5008.c,v 1.15 2018/06/26 06:48:00 msaitoh Exp $");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/queue.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/intr.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/if_dl.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60 
61 #include <dev/ic/athnreg.h>
62 #include <dev/ic/athnvar.h>
63 
64 #include <dev/ic/arn5008reg.h>
65 #include <dev/ic/arn5008.h>
66 #include <dev/ic/arn5416.h>
67 #include <dev/ic/arn9280.h>
68 
69 #define Static static
70 
71 Static void	ar5008_calib_adc_dc_off(struct athn_softc *);
72 Static void	ar5008_calib_adc_gain(struct athn_softc *);
73 Static void	ar5008_calib_iq(struct athn_softc *);
74 Static void	ar5008_disable_ofdm_weak_signal(struct athn_softc *);
75 Static void	ar5008_disable_phy(struct athn_softc *);
76 Static int	ar5008_dma_alloc(struct athn_softc *);
77 Static void	ar5008_dma_free(struct athn_softc *);
78 Static void	ar5008_do_calib(struct athn_softc *);
79 Static void	ar5008_do_noisefloor_calib(struct athn_softc *);
80 Static void	ar5008_enable_antenna_diversity(struct athn_softc *);
81 Static void	ar5008_enable_ofdm_weak_signal(struct athn_softc *);
82 Static uint8_t	ar5008_get_vpd(uint8_t, const uint8_t *, const uint8_t *, int);
83 Static void	ar5008_gpio_config_input(struct athn_softc *, int);
84 Static void	ar5008_gpio_config_output(struct athn_softc *, int, int);
85 Static int	ar5008_gpio_read(struct athn_softc *, int);
86 Static void	ar5008_gpio_write(struct athn_softc *, int, int);
87 Static void	ar5008_hw_init(struct athn_softc *, struct ieee80211_channel *,
88 		    struct ieee80211_channel *);
89 Static void	ar5008_init_baseband(struct athn_softc *);
90 Static void	ar5008_init_chains(struct athn_softc *);
91 Static int	ar5008_intr_status(struct athn_softc *);
92 Static int	ar5008_intr(struct athn_softc *);
93 Static void	ar5008_next_calib(struct athn_softc *);
94 Static int	ar5008_read_eep_word(struct athn_softc *, uint32_t,
95 		    uint16_t *);
96 Static int	ar5008_read_rom(struct athn_softc *);
97 Static void	ar5008_rf_bus_release(struct athn_softc *);
98 Static int	ar5008_rf_bus_request(struct athn_softc *);
99 Static void	ar5008_rfsilent_init(struct athn_softc *);
100 Static int	ar5008_rx_alloc(struct athn_softc *);
101 Static void	ar5008_rx_enable(struct athn_softc *);
102 Static void	ar5008_rx_free(struct athn_softc *);
103 Static void	ar5008_rx_intr(struct athn_softc *);
104 Static void	ar5008_rx_radiotap(struct athn_softc *, struct mbuf *,
105 		    struct ar_rx_desc *);
106 Static void	ar5008_set_cck_weak_signal(struct athn_softc *, int);
107 Static void	ar5008_set_delta_slope(struct athn_softc *,
108 		    struct ieee80211_channel *, struct ieee80211_channel *);
109 Static void	ar5008_set_firstep_level(struct athn_softc *, int);
110 Static void	ar5008_set_noise_immunity_level(struct athn_softc *, int);
111 Static void	ar5008_set_phy(struct athn_softc *, struct ieee80211_channel *,
112 		    struct ieee80211_channel *);
113 Static void	ar5008_set_rf_mode(struct athn_softc *,
114 		    struct ieee80211_channel *);
115 Static void	ar5008_set_rxchains(struct athn_softc *);
116 Static void	ar5008_set_spur_immunity_level(struct athn_softc *, int);
117 Static void	ar5008_swap_rom(struct athn_softc *);
118 Static int	ar5008_swba_intr(struct athn_softc *);
119 Static int	ar5008_tx(struct athn_softc *, struct mbuf *,
120 		    struct ieee80211_node *, int);
121 Static int	ar5008_tx_alloc(struct athn_softc *);
122 Static void	ar5008_tx_free(struct athn_softc *);
123 Static void	ar5008_tx_intr(struct athn_softc *);
124 Static int	ar5008_tx_process(struct athn_softc *, int);
125 
126 #ifdef notused
127 Static void	ar5008_bb_load_noisefloor(struct athn_softc *);
128 Static void	ar5008_get_noisefloor(struct athn_softc *,
129 		    struct ieee80211_channel *);
130 Static void	ar5008_noisefloor_calib(struct athn_softc *);
131 Static void	ar5008_read_noisefloor(struct athn_softc *, int16_t *,
132 		    int16_t *);
133 Static void	ar5008_write_noisefloor(struct athn_softc *, int16_t *,
134 		    int16_t *);
135 #endif /* notused */
136 
137 // bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
138 
139 /*
140  * XXX: see if_iwn.c:MCLGETIalt() for a better solution.
141  */
142 static struct mbuf *
143 MCLGETI(struct athn_softc *sc __unused, int how,
144     struct ifnet *ifp __unused, u_int size)
145 {
146 	struct mbuf *m;
147 
148 	MGETHDR(m, how, MT_DATA);
149 	if (m == NULL)
150 		return NULL;
151 
152 	MEXTMALLOC(m, size, how);
153 	if ((m->m_flags & M_EXT) == 0) {
154 		m_freem(m);
155 		return NULL;
156 	}
157 	return m;
158 }
159 
160 PUBLIC int
161 ar5008_attach(struct athn_softc *sc)
162 {
163 	struct athn_ops *ops = &sc->sc_ops;
164 	struct ieee80211com *ic = &sc->sc_ic;
165 	struct ar_base_eep_header *base;
166 	uint8_t eep_ver, kc_entries_log;
167 	int error;
168 
169 	/* Set callbacks for AR5008, AR9001 and AR9002 families. */
170 	ops->gpio_read = ar5008_gpio_read;
171 	ops->gpio_write = ar5008_gpio_write;
172 	ops->gpio_config_input = ar5008_gpio_config_input;
173 	ops->gpio_config_output = ar5008_gpio_config_output;
174 	ops->rfsilent_init = ar5008_rfsilent_init;
175 
176 	ops->dma_alloc = ar5008_dma_alloc;
177 	ops->dma_free = ar5008_dma_free;
178 	ops->rx_enable = ar5008_rx_enable;
179 	ops->intr_status = ar5008_intr_status;
180 	ops->intr = ar5008_intr;
181 	ops->tx = ar5008_tx;
182 
183 	ops->set_rf_mode = ar5008_set_rf_mode;
184 	ops->rf_bus_request = ar5008_rf_bus_request;
185 	ops->rf_bus_release = ar5008_rf_bus_release;
186 	ops->set_phy = ar5008_set_phy;
187 	ops->set_delta_slope = ar5008_set_delta_slope;
188 	ops->enable_antenna_diversity = ar5008_enable_antenna_diversity;
189 	ops->init_baseband = ar5008_init_baseband;
190 	ops->disable_phy = ar5008_disable_phy;
191 	ops->set_rxchains = ar5008_set_rxchains;
192 	ops->noisefloor_calib = ar5008_do_noisefloor_calib;
193 	ops->do_calib = ar5008_do_calib;
194 	ops->next_calib = ar5008_next_calib;
195 	ops->hw_init = ar5008_hw_init;
196 
197 	ops->set_noise_immunity_level = ar5008_set_noise_immunity_level;
198 	ops->enable_ofdm_weak_signal = ar5008_enable_ofdm_weak_signal;
199 	ops->disable_ofdm_weak_signal = ar5008_disable_ofdm_weak_signal;
200 	ops->set_cck_weak_signal = ar5008_set_cck_weak_signal;
201 	ops->set_firstep_level = ar5008_set_firstep_level;
202 	ops->set_spur_immunity_level = ar5008_set_spur_immunity_level;
203 
204 	/* Set MAC registers offsets. */
205 	sc->sc_obs_off = AR_OBS;
206 	sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
207 
208 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
209 		athn_config_nonpcie(sc);
210 	else
211 		athn_config_pcie(sc);
212 
213 	/* Read entire ROM content in memory. */
214 	if ((error = ar5008_read_rom(sc)) != 0) {
215 		aprint_error_dev(sc->sc_dev, "could not read ROM\n");
216 		return error;
217 	}
218 
219 	/* Get RF revision. */
220 	sc->sc_rf_rev = ar5416_get_rf_rev(sc);
221 
222 	base = sc->sc_eep;
223 	eep_ver = (base->version >> 12) & 0xf;
224 	sc->sc_eep_rev = (base->version & 0xfff);
225 	if (eep_ver != AR_EEP_VER || sc->sc_eep_rev == 0) {
226 		aprint_error_dev(sc->sc_dev, "unsupported ROM version %d.%d\n",
227 		    eep_ver, sc->sc_eep_rev);
228 		return EINVAL;
229 	}
230 
231 	if (base->opCapFlags & AR_OPFLAGS_11A)
232 		sc->sc_flags |= ATHN_FLAG_11A;
233 	if (base->opCapFlags & AR_OPFLAGS_11G)
234 		sc->sc_flags |= ATHN_FLAG_11G;
235 	if (base->opCapFlags & AR_OPFLAGS_11N)
236 		sc->sc_flags |= ATHN_FLAG_11N;
237 
238 	IEEE80211_ADDR_COPY(ic->ic_myaddr, base->macAddr);
239 
240 	/* Check if we have a hardware radio switch. */
241 	if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) {
242 		sc->sc_flags |= ATHN_FLAG_RFSILENT;
243 		/* Get GPIO pin used by hardware radio switch. */
244 		sc->sc_rfsilent_pin = MS(base->rfSilent,
245 		    AR_EEP_RFSILENT_GPIO_SEL);
246 		/* Get polarity of hardware radio switch. */
247 		if (base->rfSilent & AR_EEP_RFSILENT_POLARITY)
248 			sc->sc_flags |= ATHN_FLAG_RFSILENT_REVERSED;
249 	}
250 
251 	/* Get the number of HW key cache entries. */
252 	kc_entries_log = MS(base->deviceCap, AR_EEP_DEVCAP_KC_ENTRIES);
253 	sc->sc_kc_entries = kc_entries_log != 0 ?
254 	    1 << kc_entries_log : AR_KEYTABLE_SIZE;
255 
256 	sc->sc_txchainmask = base->txMask;
257 	if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCI &&
258 	    !(base->opCapFlags & AR_OPFLAGS_11A)) {
259 		/* For single-band AR5416 PCI, use GPIO pin 0. */
260 		sc->sc_rxchainmask = ar5008_gpio_read(sc, 0) ? 0x5 : 0x7;
261 	}
262 	else
263 		sc->sc_rxchainmask = base->rxMask;
264 
265 	ops->setup(sc);
266 	return 0;
267 }
268 
269 /*
270  * Read 16-bit word from ROM.
271  */
272 Static int
273 ar5008_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
274 {
275 	uint32_t reg;
276 	int ntries;
277 
278 	reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
279 	for (ntries = 0; ntries < 1000; ntries++) {
280 		reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
281 		if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
282 		    AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
283 			*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
284 			return 0;
285 		}
286 		DELAY(10);
287 	}
288 	*val = 0xffff;
289 	return ETIMEDOUT;
290 }
291 
292 Static int
293 ar5008_read_rom(struct athn_softc *sc)
294 {
295 	uint32_t addr, end;
296 	uint16_t magic, sum, *eep;
297 	int need_swap = 0;
298 	int error;
299 
300 	/* Determine ROM endianness. */
301 	error = ar5008_read_eep_word(sc, AR_EEPROM_MAGIC_OFFSET, &magic);
302 	if (error != 0)
303 		return error;
304 	if (magic != AR_EEPROM_MAGIC) {
305 		if (magic != bswap16(AR_EEPROM_MAGIC)) {
306 			DPRINTFN(DBG_INIT, sc,
307 			    "invalid ROM magic 0x%x != 0x%x\n",
308 			    magic, AR_EEPROM_MAGIC);
309 			return EIO;
310 		}
311 		DPRINTFN(DBG_INIT, sc, "non-native ROM endianness\n");
312 		need_swap = 1;
313 	}
314 
315 	/* Allocate space to store ROM in host memory. */
316 	sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT);
317 	if (sc->sc_eep == NULL)
318 		return ENOMEM;
319 
320 	/* Read entire ROM and compute checksum. */
321 	sum = 0;
322 	eep = sc->sc_eep;
323 	end = sc->sc_eep_base + sc->sc_eep_size / sizeof(uint16_t);
324 	for (addr = sc->sc_eep_base; addr < end; addr++, eep++) {
325 		if ((error = ar5008_read_eep_word(sc, addr, eep)) != 0) {
326 			DPRINTFN(DBG_INIT, sc,
327 			    "could not read ROM at 0x%x\n", addr);
328 			return error;
329 		}
330 		if (need_swap)
331 			*eep = bswap16(*eep);
332 		sum ^= *eep;
333 	}
334 	if (sum != 0xffff) {
335 		aprint_error_dev(sc->sc_dev, "bad ROM checksum 0x%04x\n", sum);
336 		return EIO;
337 	}
338 	if (need_swap)
339 		ar5008_swap_rom(sc);
340 
341 	return 0;
342 }
343 
344 Static void
345 ar5008_swap_rom(struct athn_softc *sc)
346 {
347 	struct ar_base_eep_header *base = sc->sc_eep;
348 
349 	/* Swap common fields first. */
350 	base->length = bswap16(base->length);
351 	base->version = bswap16(base->version);
352 	base->regDmn[0] = bswap16(base->regDmn[0]);
353 	base->regDmn[1] = bswap16(base->regDmn[1]);
354 	base->rfSilent = bswap16(base->rfSilent);
355 	base->blueToothOptions = bswap16(base->blueToothOptions);
356 	base->deviceCap = bswap16(base->deviceCap);
357 
358 	/* Swap device-dependent fields. */
359 	sc->sc_ops.swap_rom(sc);
360 }
361 
362 /*
363  * Access to General Purpose Input/Output ports.
364  */
365 Static int
366 ar5008_gpio_read(struct athn_softc *sc, int pin)
367 {
368 
369 	KASSERT(pin < sc->sc_ngpiopins);
370 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc))
371 		return !((AR_READ(sc, AR7010_GPIO_IN) >> pin) & 1);
372 	return (AR_READ(sc, AR_GPIO_IN_OUT) >> (sc->sc_ngpiopins + pin)) & 1;
373 }
374 
375 Static void
376 ar5008_gpio_write(struct athn_softc *sc, int pin, int set)
377 {
378 	uint32_t reg;
379 
380 	KASSERT(pin < sc->sc_ngpiopins);
381 
382 	if (sc->sc_flags & ATHN_FLAG_USB)
383 		set = !set;	/* AR9271/AR7010 is reversed. */
384 
385 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
386 		/* Special case for AR7010. */
387 		reg = AR_READ(sc, AR7010_GPIO_OUT);
388 		if (set)
389 			reg |= 1 << pin;
390 		else
391 			reg &= ~(1 << pin);
392 		AR_WRITE(sc, AR7010_GPIO_OUT, reg);
393 	}
394 	else {
395 		reg = AR_READ(sc, AR_GPIO_IN_OUT);
396 		if (set)
397 			reg |= 1 << pin;
398 		else
399 			reg &= ~(1 << pin);
400 		AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
401 	}
402 	AR_WRITE_BARRIER(sc);
403 }
404 
405 Static void
406 ar5008_gpio_config_input(struct athn_softc *sc, int pin)
407 {
408 	uint32_t reg;
409 
410 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
411 		/* Special case for AR7010. */
412 		AR_SETBITS(sc, AR7010_GPIO_OE, 1 << pin);
413 	}
414 	else {
415 		reg = AR_READ(sc, AR_GPIO_OE_OUT);
416 		reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
417 		reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
418 		AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
419 	}
420 	AR_WRITE_BARRIER(sc);
421 }
422 
423 Static void
424 ar5008_gpio_config_output(struct athn_softc *sc, int pin, int type)
425 {
426 	uint32_t reg;
427 	int mux, off;
428 
429 	if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) {
430 		/* Special case for AR7010. */
431 		AR_CLRBITS(sc, AR7010_GPIO_OE, 1 << pin);
432 		AR_WRITE_BARRIER(sc);
433 		return;
434 	}
435 	mux = pin / 6;
436 	off = pin % 6;
437 
438 	reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
439 	if (!AR_SREV_9280_20_OR_LATER(sc) && mux == 0)
440 		reg = (reg & ~0x1f0) | (reg & 0x1f0) << 1;
441 	reg &= ~(0x1f << (off * 5));
442 	reg |= (type & 0x1f) << (off * 5);
443 	AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
444 
445 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
446 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
447 	reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
448 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
449 	AR_WRITE_BARRIER(sc);
450 }
451 
452 Static void
453 ar5008_rfsilent_init(struct athn_softc *sc)
454 {
455 	uint32_t reg;
456 
457 	/* Configure hardware radio switch. */
458 	AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
459 	reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
460 	reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
461 	AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
462 	ar5008_gpio_config_input(sc, sc->sc_rfsilent_pin);
463 	AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
464 	if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
465 		AR_SETBITS(sc, AR_GPIO_INTR_POL,
466 		    AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
467 	}
468 	AR_WRITE_BARRIER(sc);
469 }
470 
471 Static int
472 ar5008_dma_alloc(struct athn_softc *sc)
473 {
474 	int error;
475 
476 	error = ar5008_tx_alloc(sc);
477 	if (error != 0)
478 		return error;
479 
480 	error = ar5008_rx_alloc(sc);
481 	if (error != 0)
482 		return error;
483 
484 	return 0;
485 }
486 
487 Static void
488 ar5008_dma_free(struct athn_softc *sc)
489 {
490 
491 	ar5008_tx_free(sc);
492 	ar5008_rx_free(sc);
493 }
494 
495 Static int
496 ar5008_tx_alloc(struct athn_softc *sc)
497 {
498 	struct athn_tx_buf *bf;
499 	bus_size_t size;
500 	int error, nsegs, i;
501 
502 	/*
503 	 * Allocate a pool of Tx descriptors shared between all Tx queues.
504 	 */
505 	size = ATHN_NTXBUFS * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc);
506 
507 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
508 	    BUS_DMA_NOWAIT, &sc->sc_map);
509 	if (error != 0)
510 		goto fail;
511 
512 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
513 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
514 	    &nsegs, BUS_DMA_NOWAIT);
515 	if (error != 0)
516 		goto fail;
517 
518 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
519 	    (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
520 	if (error != 0)
521 		goto fail;
522 
523 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_map, sc->sc_descs,
524 	    size, NULL, BUS_DMA_NOWAIT);
525 	if (error != 0)
526 		goto fail;
527 
528 	SIMPLEQ_INIT(&sc->sc_txbufs);
529 	for (i = 0; i < ATHN_NTXBUFS; i++) {
530 		bf = &sc->sc_txpool[i];
531 
532 		error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
533 		    AR5008_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
534 		    &bf->bf_map);
535 		if (error != 0) {
536 			aprint_error_dev(sc->sc_dev,
537 			    "could not create Tx buf DMA map\n");
538 			goto fail;
539 		}
540 
541 		bf->bf_descs =
542 		    &((struct ar_tx_desc *)sc->sc_descs)[i * AR5008_MAX_SCATTER];
543 		bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
544 		    i * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc);
545 
546 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
547 	}
548 	return 0;
549  fail:
550 	ar5008_tx_free(sc);
551 	return error;
552 }
553 
554 Static void
555 ar5008_tx_free(struct athn_softc *sc)
556 {
557 	struct athn_tx_buf *bf;
558 	int i;
559 
560 	for (i = 0; i < ATHN_NTXBUFS; i++) {
561 		bf = &sc->sc_txpool[i];
562 
563 		if (bf->bf_map != NULL)
564 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
565 	}
566 	/* Free Tx descriptors. */
567 	if (sc->sc_map != NULL) {
568 		if (sc->sc_descs != NULL) {
569 			bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
570 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
571 			    ATHN_NTXBUFS * AR5008_MAX_SCATTER *
572 			    sizeof(struct ar_tx_desc));
573 			bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
574 		}
575 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
576 	}
577 }
578 
579 Static int
580 ar5008_rx_alloc(struct athn_softc *sc)
581 {
582 	struct athn_rxq *rxq = &sc->sc_rxq[0];
583 	struct athn_rx_buf *bf;
584 	struct ar_rx_desc *ds;
585 	bus_size_t size;
586 	int error, nsegs, i;
587 
588 	rxq->bf = malloc(ATHN_NRXBUFS * sizeof(*bf), M_DEVBUF,
589 	    M_NOWAIT | M_ZERO);
590 	if (rxq->bf == NULL)
591 		return ENOMEM;
592 
593 	size = ATHN_NRXBUFS * sizeof(struct ar_rx_desc);
594 
595 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
596 	    BUS_DMA_NOWAIT, &rxq->map);
597 	if (error != 0)
598 		goto fail;
599 
600 	error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rxq->seg, 1,
601 //	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
602 	    &nsegs, BUS_DMA_NOWAIT);
603 	if (error != 0)
604 		goto fail;
605 
606 	error = bus_dmamem_map(sc->sc_dmat, &rxq->seg, 1, size,
607 	    (void **)&rxq->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
608 	if (error != 0)
609 		goto fail;
610 
611 	error = bus_dmamap_load(sc->sc_dmat, rxq->map, rxq->descs,
612 	    size, NULL, BUS_DMA_NOWAIT);
613 	if (error != 0)
614 		goto fail;
615 
616 	for (i = 0; i < ATHN_NRXBUFS; i++) {
617 		bf = &rxq->bf[i];
618 		ds = &((struct ar_rx_desc *)rxq->descs)[i];
619 
620 		error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
621 		    ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
622 		    &bf->bf_map);
623 		if (error != 0) {
624 			aprint_error_dev(sc->sc_dev,
625 			    " could not create Rx buf DMA map\n");
626 			goto fail;
627 		}
628 		/*
629 		 * Assumes MCLGETI returns cache-line-size aligned buffers.
630 		 * XXX: does ours?
631 		 */
632 		bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
633 		if (bf->bf_m == NULL) {
634 			aprint_error_dev(sc->sc_dev,
635 			    "could not allocate Rx mbuf\n");
636 			error = ENOBUFS;
637 			goto fail;
638 		}
639 
640 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
641 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
642 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
643 		if (error != 0) {
644 			aprint_error_dev(sc->sc_dev,
645 			    "could not DMA map Rx buffer\n");
646 			goto fail;
647 		}
648 
649 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
650 		    BUS_DMASYNC_PREREAD);
651 
652 		bf->bf_desc = ds;
653 		bf->bf_daddr = rxq->map->dm_segs[0].ds_addr +
654 		    i * sizeof(struct ar_rx_desc);
655 	}
656 	return 0;
657  fail:
658 	ar5008_rx_free(sc);
659 	return error;
660 }
661 
662 Static void
663 ar5008_rx_free(struct athn_softc *sc)
664 {
665 	struct athn_rxq *rxq = &sc->sc_rxq[0];
666 	struct athn_rx_buf *bf;
667 	int i;
668 
669 	if (rxq->bf == NULL)
670 		return;
671 	for (i = 0; i < ATHN_NRXBUFS; i++) {
672 		bf = &rxq->bf[i];
673 
674 		if (bf->bf_map != NULL)
675 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
676 		if (bf->bf_m != NULL)
677 			m_freem(bf->bf_m);
678 	}
679 	free(rxq->bf, M_DEVBUF);
680 
681 	/* Free Rx descriptors. */
682 	if (rxq->map != NULL) {
683 		if (rxq->descs != NULL) {
684 			bus_dmamap_unload(sc->sc_dmat, rxq->map);
685 			bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->descs,
686 			    ATHN_NRXBUFS * sizeof(struct ar_rx_desc));
687 			bus_dmamem_free(sc->sc_dmat, &rxq->seg, 1);
688 		}
689 		bus_dmamap_destroy(sc->sc_dmat, rxq->map);
690 	}
691 }
692 
693 Static void
694 ar5008_rx_enable(struct athn_softc *sc)
695 {
696 	struct athn_rxq *rxq = &sc->sc_rxq[0];
697 	struct athn_rx_buf *bf;
698 	struct ar_rx_desc *ds;
699 	int i;
700 
701 	/* Setup and link Rx descriptors. */
702 	SIMPLEQ_INIT(&rxq->head);
703 	rxq->lastds = NULL;
704 	for (i = 0; i < ATHN_NRXBUFS; i++) {
705 		bf = &rxq->bf[i];
706 		ds = bf->bf_desc;
707 
708 		memset(ds, 0, sizeof(*ds));
709 		ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
710 		ds->ds_ctl1 = SM(AR_RXC1_BUF_LEN, ATHN_RXBUFSZ);
711 
712 		if (rxq->lastds != NULL) {
713 			((struct ar_rx_desc *)rxq->lastds)->ds_link =
714 			    bf->bf_daddr;
715 		}
716 		SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
717 		rxq->lastds = ds;
718 	}
719 	bus_dmamap_sync(sc->sc_dmat, rxq->map, 0, rxq->map->dm_mapsize,
720 	    BUS_DMASYNC_PREREAD);
721 
722 	/* Enable Rx. */
723 	AR_WRITE(sc, AR_RXDP, SIMPLEQ_FIRST(&rxq->head)->bf_daddr);
724 	AR_WRITE(sc, AR_CR, AR_CR_RXE);
725 	AR_WRITE_BARRIER(sc);
726 }
727 
728 Static void
729 ar5008_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
730     struct ar_rx_desc *ds)
731 {
732 	struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
733 	struct ieee80211com *ic = &sc->sc_ic;
734 	uint64_t tsf;
735 	uint32_t tstamp;
736 	uint8_t rate;
737 
738 	/* Extend the 15-bit timestamp from Rx descriptor to 64-bit TSF. */
739 	tstamp = ds->ds_status2;
740 	tsf = AR_READ(sc, AR_TSF_U32);
741 	tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
742 	if ((tsf & 0x7fff) < tstamp)
743 		tsf -= 0x8000;
744 	tsf = (tsf & ~0x7fff) | tstamp;
745 
746 	tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
747 	tap->wr_tsft = htole64(tsf);
748 	tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
749 	tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
750 	tap->wr_dbm_antsignal = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED);
751 	/* XXX noise. */
752 	tap->wr_antenna = MS(ds->ds_status3, AR_RXS3_ANTENNA);
753 	tap->wr_rate = 0;	/* In case it can't be found below. */
754 	if (AR_SREV_5416_20_OR_LATER(sc))
755 		rate = MS(ds->ds_status0, AR_RXS0_RATE);
756 	else
757 		rate = MS(ds->ds_status3, AR_RXS3_RATE);
758 	if (rate & 0x80) {		/* HT. */
759 		/* Bit 7 set means HT MCS instead of rate. */
760 		tap->wr_rate = rate;
761 		if (!(ds->ds_status3 & AR_RXS3_GI))
762 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
763 
764 	}
765 	else if (rate & 0x10) {	/* CCK. */
766 		if (rate & 0x04)
767 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
768 		switch (rate & ~0x14) {
769 		case 0xb: tap->wr_rate =   2; break;
770 		case 0xa: tap->wr_rate =   4; break;
771 		case 0x9: tap->wr_rate =  11; break;
772 		case 0x8: tap->wr_rate =  22; break;
773 		}
774 	}
775 	else {			/* OFDM. */
776 		switch (rate) {
777 		case 0xb: tap->wr_rate =  12; break;
778 		case 0xf: tap->wr_rate =  18; break;
779 		case 0xa: tap->wr_rate =  24; break;
780 		case 0xe: tap->wr_rate =  36; break;
781 		case 0x9: tap->wr_rate =  48; break;
782 		case 0xd: tap->wr_rate =  72; break;
783 		case 0x8: tap->wr_rate =  96; break;
784 		case 0xc: tap->wr_rate = 108; break;
785 		}
786 	}
787 	bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
788 }
789 
790 static __inline int
791 ar5008_rx_process(struct athn_softc *sc)
792 {
793 	struct ieee80211com *ic = &sc->sc_ic;
794 	struct ifnet *ifp = &sc->sc_if;
795 	struct athn_rxq *rxq = &sc->sc_rxq[0];
796 	struct athn_rx_buf *bf, *nbf;
797 	struct ar_rx_desc *ds;
798 	struct ieee80211_frame *wh;
799 	struct ieee80211_node *ni;
800 	struct mbuf *m, *m1;
801 	u_int32_t rstamp;
802 	int error, len, rssi, s;
803 
804 	bf = SIMPLEQ_FIRST(&rxq->head);
805 	if (__predict_false(bf == NULL)) {	/* Should not happen. */
806 		aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n");
807 		return ENOENT;
808 	}
809 	ds = bf->bf_desc;
810 
811 	if (!(ds->ds_status8 & AR_RXS8_DONE)) {
812 		/*
813 		 * On some parts, the status words can get corrupted
814 		 * (including the "done" bit), so we check the next
815 		 * descriptor "done" bit.  If it is set, it is a good
816 		 * indication that the status words are corrupted, so
817 		 * we skip this descriptor and drop the frame.
818 		 */
819 		nbf = SIMPLEQ_NEXT(bf, bf_list);
820 		if (nbf != NULL &&
821 		    (((struct ar_rx_desc *)nbf->bf_desc)->ds_status8 &
822 		     AR_RXS8_DONE)) {
823 			DPRINTFN(DBG_RX, sc,
824 			    "corrupted descriptor status=0x%x\n",
825 			    ds->ds_status8);
826 			/* HW will not "move" RXDP in this case, so do it. */
827 			AR_WRITE(sc, AR_RXDP, nbf->bf_daddr);
828 			AR_WRITE_BARRIER(sc);
829 			ifp->if_ierrors++;
830 			goto skip;
831 		}
832 		return EBUSY;
833 	}
834 
835 	if (__predict_false(ds->ds_status1 & AR_RXS1_MORE)) {
836 		/* Drop frames that span multiple Rx descriptors. */
837 		DPRINTFN(DBG_RX, sc, "dropping split frame\n");
838 		ifp->if_ierrors++;
839 		goto skip;
840 	}
841 	if (!(ds->ds_status8 & AR_RXS8_FRAME_OK)) {
842 		if (ds->ds_status8 & AR_RXS8_CRC_ERR)
843 			DPRINTFN(DBG_RX, sc, "CRC error\n");
844 		else if (ds->ds_status8 & AR_RXS8_PHY_ERR)
845 			DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
846 			    MS(ds->ds_status8, AR_RXS8_PHY_ERR_CODE));
847 		else if (ds->ds_status8 & AR_RXS8_DECRYPT_CRC_ERR)
848 			DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
849 		else if (ds->ds_status8 & AR_RXS8_MICHAEL_ERR) {
850 			DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
851 
852 			len = MS(ds->ds_status1, AR_RXS1_DATA_LEN);
853 			m = bf->bf_m;
854 			m_set_rcvif(m, ifp);
855 			m->m_pkthdr.len = m->m_len = len;
856 			wh = mtod(m, struct ieee80211_frame *);
857 
858 			/* Report Michael MIC failures to net80211. */
859 			ieee80211_notify_michael_failure(ic, wh, 0 /* XXX: keyix */);
860 		}
861 		ifp->if_ierrors++;
862 		goto skip;
863 	}
864 
865 	len = MS(ds->ds_status1, AR_RXS1_DATA_LEN);
866 	if (__predict_false(len < (int)IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ)) {
867 		DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%d\n", len);
868 		ifp->if_ierrors++;
869 		goto skip;
870 	}
871 
872 	/* Allocate a new Rx buffer. */
873 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
874 	if (__predict_false(m1 == NULL)) {
875 		ic->ic_stats.is_rx_nobuf++;
876 		ifp->if_ierrors++;
877 		goto skip;
878 	}
879 
880 	/* Sync and unmap the old Rx buffer. */
881 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
882 	    BUS_DMASYNC_POSTREAD);
883 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
884 
885 	/* Map the new Rx buffer. */
886 	error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
887 	    ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
888 	if (__predict_false(error != 0)) {
889 		m_freem(m1);
890 
891 		/* Remap the old Rx buffer or panic. */
892 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
893 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
894 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
895 		KASSERT(error != 0);
896 		ifp->if_ierrors++;
897 		goto skip;
898 	}
899 
900 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
901 	    BUS_DMASYNC_PREREAD);
902 
903 	/* Write physical address of new Rx buffer. */
904 	ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
905 
906 	m = bf->bf_m;
907 	bf->bf_m = m1;
908 
909 	/* Finalize mbuf. */
910 	m_set_rcvif(m, ifp);
911 	m->m_pkthdr.len = m->m_len = len;
912 
913 	s = splnet();
914 
915 	/* Grab a reference to the source node. */
916 	wh = mtod(m, struct ieee80211_frame *);
917 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
918 
919 	/* Remove any HW padding after the 802.11 header. */
920 	if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
921 		u_int hdrlen = ieee80211_anyhdrsize(wh);
922 		if (hdrlen & 3) {
923 			memmove((uint8_t *)wh + 2, wh, hdrlen);
924 			m_adj(m, 2);
925 		}
926 	}
927 	if (__predict_false(sc->sc_drvbpf != NULL))
928 		ar5008_rx_radiotap(sc, m, ds);
929 
930 	/* Trim 802.11 FCS after radiotap. */
931 	m_adj(m, -IEEE80211_CRC_LEN);
932 
933 	/* Send the frame to the 802.11 layer. */
934 	rssi = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED);
935 	rstamp = ds->ds_status2;
936 	ieee80211_input(ic, m, ni, rssi, rstamp);
937 
938 	/* Node is no longer needed. */
939 	ieee80211_free_node(ni);
940 
941 	splx(s);
942 
943  skip:
944 	/* Unlink this descriptor from head. */
945 	SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
946 	memset(&ds->ds_status0, 0, 36);	/* XXX Really needed? */
947 	ds->ds_status8 &= ~AR_RXS8_DONE;
948 	ds->ds_link = 0;
949 
950 	/* Re-use this descriptor and link it to tail. */
951 	if (__predict_true(!SIMPLEQ_EMPTY(&rxq->head)))
952 		((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr;
953 	else
954 		AR_WRITE(sc, AR_RXDP, bf->bf_daddr);
955 	SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
956 	rxq->lastds = ds;
957 
958 	/* Re-enable Rx. */
959 	AR_WRITE(sc, AR_CR, AR_CR_RXE);
960 	AR_WRITE_BARRIER(sc);
961 	return 0;
962 }
963 
964 Static void
965 ar5008_rx_intr(struct athn_softc *sc)
966 {
967 
968 	while (ar5008_rx_process(sc) == 0)
969 		continue;
970 }
971 
972 Static int
973 ar5008_tx_process(struct athn_softc *sc, int qid)
974 {
975 	struct ifnet *ifp = &sc->sc_if;
976 	struct athn_txq *txq = &sc->sc_txq[qid];
977 	struct athn_node *an;
978 	struct athn_tx_buf *bf;
979 	struct ar_tx_desc *ds;
980 	uint8_t failcnt;
981 
982 	bf = SIMPLEQ_FIRST(&txq->head);
983 	if (bf == NULL)
984 		return ENOENT;
985 	/* Get descriptor of last DMA segment. */
986 	ds = &((struct ar_tx_desc *)bf->bf_descs)[bf->bf_map->dm_nsegs - 1];
987 
988 	if (!(ds->ds_status9 & AR_TXS9_DONE))
989 		return EBUSY;
990 
991 	SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
992 	ifp->if_opackets++;
993 
994 	sc->sc_tx_timer = 0;
995 
996 	if (ds->ds_status1 & AR_TXS1_EXCESSIVE_RETRIES)
997 		ifp->if_oerrors++;
998 
999 	if (ds->ds_status1 & AR_TXS1_UNDERRUN)
1000 		athn_inc_tx_trigger_level(sc);
1001 
1002 	an = (struct athn_node *)bf->bf_ni;
1003 	/*
1004 	 * NB: the data fail count contains the number of un-acked tries
1005 	 * for the final series used.  We must add the number of tries for
1006 	 * each series that was fully processed.
1007 	 */
1008 	failcnt  = MS(ds->ds_status1, AR_TXS1_DATA_FAIL_CNT);
1009 	/* NB: Assume two tries per series. */
1010 	failcnt += MS(ds->ds_status9, AR_TXS9_FINAL_IDX) * 2;
1011 
1012 	/* Update rate control statistics. */
1013 	an->amn.amn_txcnt++;
1014 	if (failcnt > 0)
1015 		an->amn.amn_retrycnt++;
1016 
1017 	DPRINTFN(DBG_TX, sc, "Tx done qid=%d status1=%d fail count=%d\n",
1018 	    qid, ds->ds_status1, failcnt);
1019 
1020 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1021 	    BUS_DMASYNC_POSTWRITE);
1022 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1023 
1024 	m_freem(bf->bf_m);
1025 	bf->bf_m = NULL;
1026 	ieee80211_free_node(bf->bf_ni);
1027 	bf->bf_ni = NULL;
1028 
1029 	/* Link Tx buffer back to global free list. */
1030 	SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1031 	return 0;
1032 }
1033 
1034 Static void
1035 ar5008_tx_intr(struct athn_softc *sc)
1036 {
1037 	struct ifnet *ifp = &sc->sc_if;
1038 	uint16_t mask = 0;
1039 	uint32_t reg;
1040 	int qid, s;
1041 
1042 	s = splnet();
1043 
1044 	reg = AR_READ(sc, AR_ISR_S0_S);
1045 	mask |= MS(reg, AR_ISR_S0_QCU_TXOK);
1046 	mask |= MS(reg, AR_ISR_S0_QCU_TXDESC);
1047 
1048 	reg = AR_READ(sc, AR_ISR_S1_S);
1049 	mask |= MS(reg, AR_ISR_S1_QCU_TXERR);
1050 	mask |= MS(reg, AR_ISR_S1_QCU_TXEOL);
1051 
1052 	DPRINTFN(DBG_TX, sc, "Tx interrupt mask=0x%x\n", mask);
1053 	for (qid = 0; mask != 0; mask >>= 1, qid++) {
1054 		if (mask & 1)
1055 			while (ar5008_tx_process(sc, qid) == 0);
1056 	}
1057 	if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
1058 		ifp->if_flags &= ~IFF_OACTIVE;
1059 		ifp->if_start(ifp); /* in softint */
1060 	}
1061 
1062 	splx(s);
1063 }
1064 
1065 #ifndef IEEE80211_STA_ONLY
1066 /*
1067  * Process Software Beacon Alert interrupts.
1068  */
1069 Static int
1070 ar5008_swba_intr(struct athn_softc *sc)
1071 {
1072 	struct ieee80211com *ic = &sc->sc_ic;
1073 	struct ifnet *ifp = &sc->sc_if;
1074 	struct ieee80211_node *ni = ic->ic_bss;
1075 	struct athn_tx_buf *bf = sc->sc_bcnbuf;
1076 	struct ieee80211_frame *wh;
1077 	struct ieee80211_beacon_offsets bo;
1078 	struct ar_tx_desc *ds;
1079 	struct mbuf *m;
1080 	uint8_t ridx, hwrate;
1081 	int error, totlen;
1082 
1083 #if notyet
1084 	if (ic->ic_tim_mcast_pending &&
1085 	    IF_IS_EMPTY(&ni->ni_savedq) &&
1086 	    SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
1087 		ic->ic_tim_mcast_pending = 0;
1088 #endif
1089 	if (ic->ic_dtim_count == 0)
1090 		ic->ic_dtim_count = ic->ic_dtim_period - 1;
1091 	else
1092 		ic->ic_dtim_count--;
1093 
1094 	/* Make sure previous beacon has been sent. */
1095 	if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
1096 		DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
1097 		return EBUSY;
1098 	}
1099 	/* Get new beacon. */
1100 	m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
1101 	if (__predict_false(m == NULL))
1102 		return ENOBUFS;
1103 	/* Assign sequence number. */
1104 	/* XXX: use non-QoS tid? */
1105 	wh = mtod(m, struct ieee80211_frame *);
1106 	*(uint16_t *)&wh->i_seq[0] =
1107 	    htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
1108 	ic->ic_bss->ni_txseqs[0]++;
1109 
1110 	/* Unmap and free old beacon if any. */
1111 	if (__predict_true(bf->bf_m != NULL)) {
1112 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1113 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1114 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1115 		m_freem(bf->bf_m);
1116 		bf->bf_m = NULL;
1117 	}
1118 	/* DMA map new beacon. */
1119 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1120 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1121 	if (__predict_false(error != 0)) {
1122 		m_freem(m);
1123 		return error;
1124 	}
1125 	bf->bf_m = m;
1126 
1127 	/* Setup Tx descriptor (simplified ar5008_tx()). */
1128 	ds = bf->bf_descs;
1129 	memset(ds, 0, sizeof(*ds));
1130 
1131 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1132 	ds->ds_ctl0 = SM(AR_TXC0_FRAME_LEN, totlen);
1133 	ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, AR_MAX_RATE_POWER);
1134 	ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
1135 	ds->ds_ctl1 |= AR_TXC1_NO_ACK;
1136 	ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
1137 
1138 	/* Write number of tries. */
1139 	ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 1);
1140 
1141 	/* Write Tx rate. */
1142 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1143 	    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1144 	hwrate = athn_rates[ridx].hwrate;
1145 	ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, hwrate);
1146 
1147 	/* Write Tx chains. */
1148 	ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask);
1149 
1150 	ds->ds_data = bf->bf_map->dm_segs[0].ds_addr;
1151 	/* Segment length must be a multiple of 4. */
1152 	ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,
1153 	    (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
1154 
1155 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1156 	    BUS_DMASYNC_PREWRITE);
1157 
1158 	/* Stop Tx DMA before putting the new beacon on the queue. */
1159 	athn_stop_tx_dma(sc, ATHN_QID_BEACON);
1160 
1161 	AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
1162 
1163 	for(;;) {
1164 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
1165 			break;
1166 
1167 		IF_DEQUEUE(&ni->ni_savedq, m);
1168 		if (m == NULL)
1169 			break;
1170 		if (!IF_IS_EMPTY(&ni->ni_savedq)) {
1171 			/* more queued frames, set the more data bit */
1172 			wh = mtod(m, struct ieee80211_frame *);
1173 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1174 		}
1175 
1176 		if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
1177 			ieee80211_free_node(ni);
1178 			ifp->if_oerrors++;
1179 			break;
1180 		}
1181 	}
1182 
1183 	/* Kick Tx. */
1184 	AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
1185 	AR_WRITE_BARRIER(sc);
1186 	return 0;
1187 }
1188 #endif
1189 
1190 static int
1191 ar5008_get_intr_status(struct athn_softc *sc, uint32_t *intrp, uint32_t *syncp)
1192 {
1193 	uint32_t intr, sync;
1194 
1195 	/* Get pending interrupts. */
1196 	intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
1197 	if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
1198 		intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
1199 		if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
1200 			return 0;	/* Not for us. */
1201 	}
1202 
1203 	if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
1204 	    (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
1205 		intr = AR_READ(sc, AR_ISR);
1206 	else
1207 		intr = 0;
1208 	sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
1209 	if (intr == 0 && sync == 0)
1210 		return 0;	/* Not for us. */
1211 
1212 	*intrp = intr;
1213 	*syncp = sync;
1214 	return 1;
1215 }
1216 
1217 
1218 Static int
1219 ar5008_intr_status(struct athn_softc *sc)
1220 {
1221 	uint32_t intr, sync;
1222 
1223 	return ar5008_get_intr_status(sc, &intr, &sync);
1224 }
1225 
1226 Static int
1227 ar5008_intr(struct athn_softc *sc)
1228 {
1229 	uint32_t intr, intr5, sync;
1230 #ifndef IEEE80211_STA_ONLY
1231 	int s;
1232 #endif
1233 
1234 	if (!ar5008_get_intr_status(sc, &intr, &sync))
1235 		return 0;
1236 
1237 	if (intr != 0) {
1238 		if (intr & AR_ISR_BCNMISC) {
1239 			uint32_t intr2 = AR_READ(sc, AR_ISR_S2);
1240 #if notyet
1241 			if (intr2 & AR_ISR_S2_TIM)
1242 				/* TBD */;
1243 			if (intr2 & AR_ISR_S2_TSFOOR)
1244 				/* TBD */;
1245 #else
1246 			__USE(intr2);
1247 #endif
1248 		}
1249 		intr = AR_READ(sc, AR_ISR_RAC);
1250 		if (intr == AR_INTR_SPURIOUS)
1251 			return 1;
1252 
1253 #ifndef IEEE80211_STA_ONLY
1254 		if (intr & AR_ISR_SWBA) {
1255 			s = splnet();
1256 			ar5008_swba_intr(sc);
1257 			splx(s);
1258 		}
1259 #endif
1260 		if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
1261 			ar5008_rx_intr(sc);
1262 		if (intr & (AR_ISR_RXOK | AR_ISR_RXERR | AR_ISR_RXORN))
1263 			ar5008_rx_intr(sc);
1264 
1265 		if (intr & (AR_ISR_TXOK | AR_ISR_TXDESC |
1266 		    AR_ISR_TXERR | AR_ISR_TXEOL))
1267 			ar5008_tx_intr(sc);
1268 
1269 		intr5 = AR_READ(sc, AR_ISR_S5_S);
1270 		if (intr & AR_ISR_GENTMR) {
1271 			if (intr5 & AR_ISR_GENTMR) {
1272 				DPRINTFN(DBG_INTR, sc,
1273 				    "GENTMR trigger=%d thresh=%d\n",
1274 				    MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
1275 				    MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
1276 			}
1277 		}
1278 #if notyet
1279 		if (intr5 & AR_ISR_S5_TIM_TIMER) {
1280 			/* TBD */;
1281 		}
1282 #endif
1283 	}
1284 	if (sync != 0) {
1285 #if notyet
1286 		if (sync &
1287 		    (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) {
1288 			/* TBD */;
1289 		}
1290 #endif
1291 		if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
1292 			AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
1293 			AR_WRITE(sc, AR_RC, 0);
1294 		}
1295 
1296 		if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
1297 		    (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
1298 			AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
1299 			(void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
1300 			pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
1301 		}
1302 
1303 		AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
1304 		(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
1305 	}
1306 	return 1;
1307 }
1308 
1309 Static int
1310 ar5008_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
1311     int txflags)
1312 {
1313 	struct ieee80211com *ic = &sc->sc_ic;
1314 	struct ieee80211_key *k = NULL;
1315 	struct ieee80211_frame *wh;
1316 	struct athn_series series[4];
1317 	struct ar_tx_desc *ds, *lastds;
1318 	struct athn_txq *txq;
1319 	struct athn_tx_buf *bf;
1320 	struct athn_node *an = (void *)ni;
1321 	struct mbuf *m1;
1322 	uint16_t qos;
1323 	uint8_t txpower, type, encrtype, ridx[4];
1324 	int i, error, totlen, hasqos, qid;
1325 
1326 	/* Grab a Tx buffer from our global free list. */
1327 	bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
1328 	KASSERT(bf != NULL);
1329 
1330 	/* Map 802.11 frame type to hardware frame type. */
1331 	wh = mtod(m, struct ieee80211_frame *);
1332 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1333 	    IEEE80211_FC0_TYPE_MGT) {
1334 		/* NB: Beacons do not use ar5008_tx(). */
1335 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1336 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1337 			type = AR_FRAME_TYPE_PROBE_RESP;
1338 		else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1339 		    IEEE80211_FC0_SUBTYPE_ATIM)
1340 			type = AR_FRAME_TYPE_ATIM;
1341 		else
1342 			type = AR_FRAME_TYPE_NORMAL;
1343 	}
1344 	else if ((wh->i_fc[0] &
1345 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1346 	    (IEEE80211_FC0_TYPE_CTL  | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
1347 		type = AR_FRAME_TYPE_PSPOLL;
1348 	}
1349 	else
1350 		type = AR_FRAME_TYPE_NORMAL;
1351 
1352 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1353 		k = ieee80211_crypto_encap(ic, ni, m);
1354 		if (k == NULL)
1355 			return ENOBUFS;
1356 
1357 		/* packet header may have moved, reset our local pointer */
1358 		wh = mtod(m, struct ieee80211_frame *);
1359 	}
1360 
1361 	/* XXX 2-byte padding for QoS and 4-addr headers. */
1362 
1363 	/* Select the HW Tx queue to use for this frame. */
1364 	if ((hasqos = ieee80211_has_qos(wh))) {
1365 #ifdef notyet_edca
1366 		uint8_t tid;
1367 
1368 		qos = ieee80211_get_qos(wh);
1369 		tid = qos & IEEE80211_QOS_TID;
1370 		qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
1371 #else
1372 		qos = ieee80211_get_qos(wh);
1373 		qid = ATHN_QID_AC_BE;
1374 #endif /* notyet_edca */
1375 	}
1376 	else if (type == AR_FRAME_TYPE_PSPOLL) {
1377 		qos = 0;
1378 		qid = ATHN_QID_PSPOLL;
1379 	}
1380 	else if (txflags & ATHN_TXFLAG_CAB) {
1381 		qos = 0;
1382 		qid = ATHN_QID_CAB;
1383 	}
1384 	else {
1385 		qos = 0;
1386 		qid = ATHN_QID_AC_BE;
1387 	}
1388 	txq = &sc->sc_txq[qid];
1389 
1390 	/* Select the transmit rates to use for this frame. */
1391 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1392 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1393 	    IEEE80211_FC0_TYPE_DATA) {
1394 		/* Use lowest rate for all tries. */
1395 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1396 		    (ic->ic_curmode == IEEE80211_MODE_11A) ?
1397 			ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1398 	}
1399 	else if (ic->ic_fixed_rate != -1) {
1400 		/* Use same fixed rate for all tries. */
1401 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1402 		    sc->sc_fixed_ridx;
1403 	}
1404 	else {
1405 		int txrate = ni->ni_txrate;
1406 		/* Use fallback table of the node. */
1407 		for (i = 0; i < 4; i++) {
1408 			ridx[i] = an->ridx[txrate];
1409 			txrate = an->fallback[txrate];
1410 		}
1411 	}
1412 
1413 	if (__predict_false(sc->sc_drvbpf != NULL)) {
1414 		struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
1415 
1416 		tap->wt_flags = 0;
1417 		/* Use initial transmit rate. */
1418 		tap->wt_rate = athn_rates[ridx[0]].rate;
1419 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1420 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1421 // XXX		tap->wt_hwqueue = qid;
1422 		if (ridx[0] != ATHN_RIDX_CCK1 &&
1423 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1424 			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1425 
1426 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
1427 	}
1428 
1429 	/* DMA map mbuf. */
1430 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1431 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1432 	if (__predict_false(error != 0)) {
1433 		if (error != EFBIG) {
1434 			aprint_error_dev(sc->sc_dev,
1435 			    "can't map mbuf (error %d)\n", error);
1436 			m_freem(m);
1437 			return error;
1438 		}
1439 		/*
1440 		 * DMA mapping requires too many DMA segments; linearize
1441 		 * mbuf in kernel virtual address space and retry.
1442 		 */
1443 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
1444 		if (m1 == NULL) {
1445 			m_freem(m);
1446 			return ENOBUFS;
1447 		}
1448 		if (m->m_pkthdr.len > (int)MHLEN) {
1449 			MCLGET(m1, M_DONTWAIT);
1450 			if (!(m1->m_flags & M_EXT)) {
1451 				m_freem(m);
1452 				m_freem(m1);
1453 				return ENOBUFS;
1454 			}
1455 		}
1456 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
1457 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
1458 		m_freem(m);
1459 		m = m1;
1460 
1461 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1462 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1463 		if (error != 0) {
1464 			aprint_error_dev(sc->sc_dev,
1465 			    "can't map mbuf (error %d)\n", error);
1466 			m_freem(m);
1467 			return error;
1468 		}
1469 	}
1470 	bf->bf_m = m;
1471 	bf->bf_ni = ni;
1472 	bf->bf_txflags = txflags;
1473 
1474 	wh = mtod(m, struct ieee80211_frame *);
1475 
1476 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1477 
1478 	/* Clear all Tx descriptors that we will use. */
1479 	memset(bf->bf_descs, 0, bf->bf_map->dm_nsegs * sizeof(*ds));
1480 
1481 	/* Setup first Tx descriptor. */
1482 	ds = bf->bf_descs;
1483 
1484 	ds->ds_ctl0 = AR_TXC0_INTR_REQ | AR_TXC0_CLR_DEST_MASK;
1485 	txpower = AR_MAX_RATE_POWER;	/* Get from per-rate registers. */
1486 	ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, txpower);
1487 
1488 	ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, type);
1489 
1490 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1491 	    (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
1492 	     IEEE80211_QOS_ACKPOLICY_NOACK))
1493 		ds->ds_ctl1 |= AR_TXC1_NO_ACK;
1494 #if notyet
1495 	if (0 && k != NULL) {
1496 		uintptr_t entry;
1497 
1498 		/*
1499 		 * Map 802.11 cipher to hardware encryption type and
1500 		 * compute MIC+ICV overhead.
1501 		 */
1502 		totlen += k->wk_keylen;
1503 		switch (k->wk_cipher->ic_cipher) {
1504 		case IEEE80211_CIPHER_WEP:
1505 			encrtype = AR_ENCR_TYPE_WEP;
1506 			break;
1507 		case IEEE80211_CIPHER_TKIP:
1508 			encrtype = AR_ENCR_TYPE_TKIP;
1509 			break;
1510 		case IEEE80211_CIPHER_AES_OCB:
1511 		case IEEE80211_CIPHER_AES_CCM:
1512 			encrtype = AR_ENCR_TYPE_AES;
1513 			break;
1514 		default:
1515 			panic("unsupported cipher");
1516 		}
1517 		/*
1518 		 * NB: The key cache entry index is stored in the key
1519 		 * private field when the key is installed.
1520 		 */
1521 		entry = (uintptr_t)k->k_priv;
1522 		ds->ds_ctl1 |= SM(AR_TXC1_DEST_IDX, entry);
1523 		ds->ds_ctl0 |= AR_TXC0_DEST_IDX_VALID;
1524 	}
1525 	else
1526 #endif
1527 		encrtype = AR_ENCR_TYPE_CLEAR;
1528 	ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, encrtype);
1529 
1530 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1531 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1532 		/* NB: Group frames are sent using CCK in 802.11b/g. */
1533 		if (totlen > ic->ic_rtsthreshold) {
1534 			ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE;
1535 		}
1536 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1537 		    athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
1538 			if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1539 				ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE;
1540 			else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1541 				ds->ds_ctl0 |= AR_TXC0_CTS_ENABLE;
1542 		}
1543 	}
1544 	if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) {
1545 		/* Disable multi-rate retries when protection is used. */
1546 		ridx[1] = ridx[2] = ridx[3] = ridx[0];
1547 	}
1548 	/* Setup multi-rate retries. */
1549 	for (i = 0; i < 4; i++) {
1550 		series[i].hwrate = athn_rates[ridx[i]].hwrate;
1551 		if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
1552 		    ridx[i] != ATHN_RIDX_CCK1 &&
1553 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1554 			series[i].hwrate |= 0x04;
1555 		series[i].dur = 0;
1556 	}
1557 	if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) {
1558 		/* Compute duration for each series. */
1559 		for (i = 0; i < 4; i++) {
1560 			series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
1561 			    athn_rates[ridx[i]].rspridx, ic->ic_flags);
1562 		}
1563 	}
1564 
1565 	/* Write number of tries for each series. */
1566 	ds->ds_ctl2 =
1567 	    SM(AR_TXC2_XMIT_DATA_TRIES0, 2) |
1568 	    SM(AR_TXC2_XMIT_DATA_TRIES1, 2) |
1569 	    SM(AR_TXC2_XMIT_DATA_TRIES2, 2) |
1570 	    SM(AR_TXC2_XMIT_DATA_TRIES3, 4);
1571 
1572 	/* Tell HW to update duration field in 802.11 header. */
1573 	if (type != AR_FRAME_TYPE_PSPOLL)
1574 		ds->ds_ctl2 |= AR_TXC2_DUR_UPDATE_ENA;
1575 
1576 	/* Write Tx rate for each series. */
1577 	ds->ds_ctl3 =
1578 	    SM(AR_TXC3_XMIT_RATE0, series[0].hwrate) |
1579 	    SM(AR_TXC3_XMIT_RATE1, series[1].hwrate) |
1580 	    SM(AR_TXC3_XMIT_RATE2, series[2].hwrate) |
1581 	    SM(AR_TXC3_XMIT_RATE3, series[3].hwrate);
1582 
1583 	/* Write duration for each series. */
1584 	ds->ds_ctl4 =
1585 	    SM(AR_TXC4_PACKET_DUR0, series[0].dur) |
1586 	    SM(AR_TXC4_PACKET_DUR1, series[1].dur);
1587 	ds->ds_ctl5 =
1588 	    SM(AR_TXC5_PACKET_DUR2, series[2].dur) |
1589 	    SM(AR_TXC5_PACKET_DUR3, series[3].dur);
1590 
1591 	/* Use the same Tx chains for all tries. */
1592 	ds->ds_ctl7 =
1593 	    SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask) |
1594 	    SM(AR_TXC7_CHAIN_SEL1, sc->sc_txchainmask) |
1595 	    SM(AR_TXC7_CHAIN_SEL2, sc->sc_txchainmask) |
1596 	    SM(AR_TXC7_CHAIN_SEL3, sc->sc_txchainmask);
1597 #ifdef notyet
1598 #ifndef IEEE80211_NO_HT
1599 	/* Use the same short GI setting for all tries. */
1600 	if (ic->ic_flags & IEEE80211_F_SHGI)
1601 		ds->ds_ctl7 |= AR_TXC7_GI0123;
1602 	/* Use the same channel width for all tries. */
1603 	if (ic->ic_flags & IEEE80211_F_CBW40)
1604 		ds->ds_ctl7 |= AR_TXC7_2040_0123;
1605 #endif
1606 #endif
1607 
1608 	if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) {
1609 		uint8_t protridx, hwrate;
1610 		uint16_t dur = 0;
1611 
1612 		/* Use the same protection mode for all tries. */
1613 		if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) {
1614 			ds->ds_ctl4 |= AR_TXC4_RTSCTS_QUAL01;
1615 			ds->ds_ctl5 |= AR_TXC5_RTSCTS_QUAL23;
1616 		}
1617 		/* Select protection rate (suboptimal but ok). */
1618 		protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1619 		    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
1620 		if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) {
1621 			/* Account for CTS duration. */
1622 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1623 			    athn_rates[protridx].rspridx, ic->ic_flags);
1624 		}
1625 		dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
1626 		if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) {
1627 			/* Account for ACK duration. */
1628 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1629 			    athn_rates[ridx[0]].rspridx, ic->ic_flags);
1630 		}
1631 		/* Write protection frame duration and rate. */
1632 		ds->ds_ctl2 |= SM(AR_TXC2_BURST_DUR, dur);
1633 		hwrate = athn_rates[protridx].hwrate;
1634 		if (protridx == ATHN_RIDX_CCK2 &&
1635 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1636 			hwrate |= 0x04;
1637 		ds->ds_ctl7 |= SM(AR_TXC7_RTSCTS_RATE, hwrate);
1638 	}
1639 
1640 	/* Finalize first Tx descriptor and fill others (if any). */
1641 	ds->ds_ctl0 |= SM(AR_TXC0_FRAME_LEN, totlen);
1642 
1643 	lastds = NULL;	/* XXX: gcc */
1644 	for (i = 0; i < bf->bf_map->dm_nsegs; i++, ds++) {
1645 		ds->ds_data = bf->bf_map->dm_segs[i].ds_addr;
1646 		ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN,
1647 		    bf->bf_map->dm_segs[i].ds_len);
1648 
1649 		if (i != bf->bf_map->dm_nsegs - 1)
1650 			ds->ds_ctl1 |= AR_TXC1_MORE;
1651 		ds->ds_link = 0;
1652 
1653 		/* Chain Tx descriptor. */
1654 		if (i != 0)
1655 			lastds->ds_link = bf->bf_daddr + i * sizeof(*ds);
1656 		lastds = ds;
1657 	}
1658 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1659 	    BUS_DMASYNC_PREWRITE);
1660 
1661 	if (!SIMPLEQ_EMPTY(&txq->head))
1662 		((struct ar_tx_desc *)txq->lastds)->ds_link = bf->bf_daddr;
1663 	else
1664 		AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
1665 	txq->lastds = lastds;
1666 	SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
1667 	SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
1668 
1669 	ds = bf->bf_descs;
1670 	DPRINTFN(DBG_TX, sc,
1671 	    "Tx qid=%d nsegs=%d ctl0=0x%x ctl1=0x%x ctl3=0x%x\n",
1672 	    qid, bf->bf_map->dm_nsegs, ds->ds_ctl0, ds->ds_ctl1, ds->ds_ctl3);
1673 
1674 	/* Kick Tx. */
1675 	AR_WRITE(sc, AR_Q_TXE, 1 << qid);
1676 	AR_WRITE_BARRIER(sc);
1677 	return 0;
1678 }
1679 
1680 Static void
1681 ar5008_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
1682 {
1683 	uint32_t reg;
1684 
1685 	reg = IEEE80211_IS_CHAN_2GHZ(c) ?
1686 	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1687 	if (!AR_SREV_9280_10_OR_LATER(sc)) {
1688 		reg |= IEEE80211_IS_CHAN_2GHZ(c) ?
1689 		    AR_PHY_MODE_RF2GHZ : AR_PHY_MODE_RF5GHZ;
1690 	}
1691 	else if (IEEE80211_IS_CHAN_5GHZ(c) &&
1692 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
1693 		reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
1694 	}
1695 	AR_WRITE(sc, AR_PHY_MODE, reg);
1696 	AR_WRITE_BARRIER(sc);
1697 }
1698 
1699 static __inline uint32_t
1700 ar5008_synth_delay(struct athn_softc *sc)
1701 {
1702 	uint32_t synth_delay;
1703 
1704 	synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
1705 	if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
1706 		synth_delay = (synth_delay * 4) / 22;
1707 	else
1708 		synth_delay = synth_delay / 10;	/* in 100ns steps */
1709 	return synth_delay;
1710 }
1711 
1712 Static int
1713 ar5008_rf_bus_request(struct athn_softc *sc)
1714 {
1715 	int ntries;
1716 
1717 	/* Request RF Bus grant. */
1718 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1719 	for (ntries = 0; ntries < 10000; ntries++) {
1720 		if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
1721 			return 0;
1722 		DELAY(10);
1723 	}
1724 	DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
1725 	return ETIMEDOUT;
1726 }
1727 
1728 Static void
1729 ar5008_rf_bus_release(struct athn_softc *sc)
1730 {
1731 
1732 	/* Wait for the synthesizer to settle. */
1733 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar5008_synth_delay(sc));
1734 
1735 	/* Release the RF Bus grant. */
1736 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
1737 	AR_WRITE_BARRIER(sc);
1738 }
1739 
1740 Static void
1741 ar5008_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
1742     struct ieee80211_channel *extc)
1743 {
1744 	uint32_t phy;
1745 
1746 	if (AR_SREV_9285_10_OR_LATER(sc))
1747 		phy = AR_READ(sc, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO;
1748 	else
1749 		phy = 0;
1750 	phy |= AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 |
1751 	    AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
1752 #ifndef IEEE80211_NO_HT
1753 	if (extc != NULL) {
1754 		phy |= AR_PHY_FC_DYN2040_EN;
1755 		if (extc > c)	/* XXX */
1756 			phy |= AR_PHY_FC_DYN2040_PRI_CH;
1757 	}
1758 #endif
1759 	AR_WRITE(sc, AR_PHY_TURBO, phy);
1760 
1761 	AR_WRITE(sc, AR_2040_MODE,
1762 	    (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
1763 
1764 	/* Set global transmit timeout. */
1765 	AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
1766 	/* Set carrier sense timeout. */
1767 	AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
1768 	AR_WRITE_BARRIER(sc);
1769 }
1770 
1771 Static void
1772 ar5008_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
1773     struct ieee80211_channel *extc)
1774 {
1775 	uint32_t coeff, exp, man, reg;
1776 
1777 	/* Set Delta Slope (exponent and mantissa). */
1778 	coeff = (100 << 24) / c->ic_freq;
1779 	athn_get_delta_slope(coeff, &exp, &man);
1780 	DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1781 
1782 	reg = AR_READ(sc, AR_PHY_TIMING3);
1783 	reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
1784 	reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
1785 	AR_WRITE(sc, AR_PHY_TIMING3, reg);
1786 
1787 	/* For Short GI, coeff is 9/10 that of normal coeff. */
1788 	coeff = (9 * coeff) / 10;
1789 	athn_get_delta_slope(coeff, &exp, &man);
1790 	DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1791 
1792 	reg = AR_READ(sc, AR_PHY_HALFGI);
1793 	reg = RW(reg, AR_PHY_HALFGI_DSC_EXP, exp);
1794 	reg = RW(reg, AR_PHY_HALFGI_DSC_MAN, man);
1795 	AR_WRITE(sc, AR_PHY_HALFGI, reg);
1796 	AR_WRITE_BARRIER(sc);
1797 }
1798 
1799 Static void
1800 ar5008_enable_antenna_diversity(struct athn_softc *sc)
1801 {
1802 
1803 	AR_SETBITS(sc, AR_PHY_CCK_DETECT,
1804 	    AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1805 	AR_WRITE_BARRIER(sc);
1806 }
1807 
1808 Static void
1809 ar5008_init_baseband(struct athn_softc *sc)
1810 {
1811 	uint32_t synth_delay;
1812 
1813 	synth_delay = ar5008_synth_delay(sc);
1814 	/* Activate the PHY (includes baseband activate and synthesizer on). */
1815 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1816 	AR_WRITE_BARRIER(sc);
1817 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
1818 }
1819 
1820 Static void
1821 ar5008_disable_phy(struct athn_softc *sc)
1822 {
1823 
1824 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1825 	AR_WRITE_BARRIER(sc);
1826 }
1827 
1828 Static void
1829 ar5008_init_chains(struct athn_softc *sc)
1830 {
1831 
1832 	if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
1833 		AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1834 
1835 	/* Setup chain masks. */
1836 	if (sc->sc_mac_ver <= AR_SREV_VERSION_9160 &&
1837 	    (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5)) {
1838 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  0x7);
1839 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, 0x7);
1840 	}
1841 	else {
1842 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
1843 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
1844 	}
1845 	AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
1846 	AR_WRITE_BARRIER(sc);
1847 }
1848 
1849 Static void
1850 ar5008_set_rxchains(struct athn_softc *sc)
1851 {
1852 
1853 	if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
1854 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
1855 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
1856 		AR_WRITE_BARRIER(sc);
1857 	}
1858 }
1859 
1860 #ifdef notused
1861 Static void
1862 ar5008_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
1863 {
1864 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
1865 #define SIGN_EXT(v)	(((v) ^ 0x100) - 0x100)
1866 	uint32_t reg;
1867 	int i;
1868 
1869 	for (i = 0; i < sc->sc_nrxchains; i++) {
1870 		reg = AR_READ(sc, AR_PHY_CCA(i));
1871 		if (AR_SREV_9280_10_OR_LATER(sc))
1872 			nf[i] = MS(reg, AR9280_PHY_MINCCA_PWR);
1873 		else
1874 			nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
1875 		nf[i] = SIGN_EXT(nf[i]);
1876 
1877 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
1878 		if (AR_SREV_9280_10_OR_LATER(sc))
1879 			nf_ext[i] = MS(reg, AR9280_PHY_EXT_MINCCA_PWR);
1880 		else
1881 			nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
1882 		nf_ext[i] = SIGN_EXT(nf_ext[i]);
1883 	}
1884 #undef SIGN_EXT
1885 }
1886 #endif /* notused */
1887 
1888 #ifdef notused
1889 Static void
1890 ar5008_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
1891 {
1892 	uint32_t reg;
1893 	int i;
1894 
1895 	for (i = 0; i < sc->sc_nrxchains; i++) {
1896 		reg = AR_READ(sc, AR_PHY_CCA(i));
1897 		reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
1898 		AR_WRITE(sc, AR_PHY_CCA(i), reg);
1899 
1900 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
1901 		reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
1902 		AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
1903 	}
1904 	AR_WRITE_BARRIER(sc);
1905 }
1906 #endif /* notused */
1907 
1908 #ifdef notused
1909 Static void
1910 ar5008_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
1911 {
1912 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
1913 	int i;
1914 
1915 	if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1916 		/* Noisefloor calibration not finished. */
1917 		return;
1918 	}
1919 	/* Noisefloor calibration is finished. */
1920 	ar5008_read_noisefloor(sc, nf, nf_ext);
1921 
1922 	/* Update noisefloor history. */
1923 	for (i = 0; i < sc->sc_nrxchains; i++) {
1924 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
1925 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
1926 	}
1927 	if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
1928 		sc->sc_nf_hist_cur = 0;
1929 }
1930 #endif /* notused */
1931 
1932 #ifdef notused
1933 Static void
1934 ar5008_bb_load_noisefloor(struct athn_softc *sc)
1935 {
1936 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
1937 	int i, ntries;
1938 
1939 	/* Write filtered noisefloor values. */
1940 	for (i = 0; i < sc->sc_nrxchains; i++) {
1941 		nf[i] = sc->sc_nf_priv[i] * 2;
1942 		nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
1943 	}
1944 	ar5008_write_noisefloor(sc, nf, nf_ext);
1945 
1946 	/* Load filtered noisefloor values into baseband. */
1947 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1948 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1949 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1950 	/* Wait for load to complete. */
1951 	for (ntries = 0; ntries < 1000; ntries++) {
1952 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
1953 			break;
1954 		DELAY(50);
1955 	}
1956 	if (ntries == 1000) {
1957 		DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
1958 		return;
1959 	}
1960 
1961 	/* Restore noisefloor values to initial (max) values. */
1962 	for (i = 0; i < AR_MAX_CHAINS; i++)
1963 		nf[i] = nf_ext[i] = -50 * 2;
1964 	ar5008_write_noisefloor(sc, nf, nf_ext);
1965 }
1966 #endif /* notused */
1967 
1968 #ifdef notused
1969 Static void
1970 ar5008_noisefloor_calib(struct athn_softc *sc)
1971 {
1972 
1973 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1974 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1975 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1976 	AR_WRITE_BARRIER(sc);
1977 }
1978 #endif /* notused */
1979 
1980 Static void
1981 ar5008_do_noisefloor_calib(struct athn_softc *sc)
1982 {
1983 
1984 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1985 	AR_WRITE_BARRIER(sc);
1986 }
1987 
1988 Static void
1989 ar5008_do_calib(struct athn_softc *sc)
1990 {
1991 	uint32_t mode, reg;
1992 	int log;
1993 
1994 	reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0);
1995 	log = AR_SREV_9280_10_OR_LATER(sc) ? 10 : 2;
1996 	reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, log);
1997 	AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg);
1998 
1999 	if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN)
2000 		mode = AR_PHY_CALMODE_ADC_GAIN;
2001 	else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC)
2002 		mode = AR_PHY_CALMODE_ADC_DC_PER;
2003 	else	/* ATHN_CAL_IQ */
2004 		mode = AR_PHY_CALMODE_IQ;
2005 	AR_WRITE(sc, AR_PHY_CALMODE, mode);
2006 
2007 	DPRINTFN(DBG_RF, sc, "starting calibration mode=0x%x\n", mode);
2008 	AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_DO_CAL);
2009 	AR_WRITE_BARRIER(sc);
2010 }
2011 
2012 Static void
2013 ar5008_next_calib(struct athn_softc *sc)
2014 {
2015 
2016 	/* Check if we have any calibration in progress. */
2017 	if (sc->sc_cur_calib_mask != 0) {
2018 		if (!(AR_READ(sc, AR_PHY_TIMING_CTRL4_0) &
2019 		    AR_PHY_TIMING_CTRL4_DO_CAL)) {
2020 			/* Calibration completed for current sample. */
2021 			if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN)
2022 				ar5008_calib_adc_gain(sc);
2023 			else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC)
2024 				ar5008_calib_adc_dc_off(sc);
2025 			else	/* ATHN_CAL_IQ */
2026 				ar5008_calib_iq(sc);
2027 		}
2028 	}
2029 }
2030 
2031 Static void
2032 ar5008_calib_iq(struct athn_softc *sc)
2033 {
2034 	struct athn_iq_cal *cal;
2035 	uint32_t reg, i_coff_denom, q_coff_denom;
2036 	int32_t i_coff, q_coff;
2037 	int i, iq_corr_neg;
2038 
2039 	for (i = 0; i < AR_MAX_CHAINS; i++) {
2040 		cal = &sc->sc_calib.iq[i];
2041 
2042 		/* Accumulate IQ calibration measures (clear on read). */
2043 		cal->pwr_meas_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
2044 		cal->pwr_meas_q += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
2045 		cal->iq_corr_meas +=
2046 		    (int32_t)AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
2047 	}
2048 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
2049 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
2050 		/* Not enough samples accumulated, continue. */
2051 		ar5008_do_calib(sc);
2052 		return;
2053 	}
2054 
2055 	for (i = 0; i < sc->sc_nrxchains; i++) {
2056 		cal = &sc->sc_calib.iq[i];
2057 
2058 		if (cal->pwr_meas_q == 0)
2059 			continue;
2060 
2061 		if ((iq_corr_neg = cal->iq_corr_meas) < 0)
2062 			cal->iq_corr_meas = -cal->iq_corr_meas;
2063 
2064 		i_coff_denom =
2065 		    (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 128;
2066 		q_coff_denom = cal->pwr_meas_q / 64;
2067 
2068 		if (i_coff_denom == 0 || q_coff_denom == 0)
2069 			continue;	/* Prevents division by zero. */
2070 
2071 		i_coff = cal->iq_corr_meas / i_coff_denom;
2072 		q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
2073 
2074 		/* Negate i_coff if iq_corr_meas is positive. */
2075 		if (!iq_corr_neg)
2076 			i_coff = 0x40 - (i_coff & 0x3f);
2077 		if (q_coff > 15)
2078 			q_coff = 15;
2079 		else if (q_coff <= -16)
2080 			q_coff = -16;	/* XXX Linux has a bug here? */
2081 
2082 		DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
2083 		reg = AR_READ(sc, AR_PHY_TIMING_CTRL4(i));
2084 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, i_coff);
2085 		reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, q_coff);
2086 		AR_WRITE(sc, AR_PHY_TIMING_CTRL4(i), reg);
2087 	}
2088 
2089 	/* Apply new settings. */
2090 	AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,
2091 	    AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
2092 	AR_WRITE_BARRIER(sc);
2093 
2094 	/* IQ calibration done. */
2095 	sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
2096 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2097 }
2098 
2099 Static void
2100 ar5008_calib_adc_gain(struct athn_softc *sc)
2101 {
2102 	struct athn_adc_cal *cal;
2103 	uint32_t reg, gain_mismatch_i, gain_mismatch_q;
2104 	int i;
2105 
2106 	for (i = 0; i < AR_MAX_CHAINS; i++) {
2107 		cal = &sc->sc_calib.adc_gain[i];
2108 
2109 		/* Accumulate ADC gain measures (clear on read). */
2110 		cal->pwr_meas_odd_i  += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
2111 		cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
2112 		cal->pwr_meas_odd_q  += AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
2113 		cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i));
2114 	}
2115 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
2116 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
2117 		/* Not enough samples accumulated, continue. */
2118 		ar5008_do_calib(sc);
2119 		return;
2120 	}
2121 
2122 	for (i = 0; i < sc->sc_nrxchains; i++) {
2123 		cal = &sc->sc_calib.adc_gain[i];
2124 
2125 		if (cal->pwr_meas_odd_i == 0 || cal->pwr_meas_even_q == 0)
2126 			continue;	/* Prevents division by zero. */
2127 
2128 		gain_mismatch_i =
2129 		    (cal->pwr_meas_even_i * 32) / cal->pwr_meas_odd_i;
2130 		gain_mismatch_q =
2131 		    (cal->pwr_meas_odd_q * 32) / cal->pwr_meas_even_q;
2132 
2133 		DPRINTFN(DBG_RF, sc, "ADC gain calibration for chain %d\n", i);
2134 		reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
2135 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IGAIN, gain_mismatch_i);
2136 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QGAIN, gain_mismatch_q);
2137 		AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg);
2138 	}
2139 
2140 	/* Apply new settings. */
2141 	AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
2142 	    AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
2143 	AR_WRITE_BARRIER(sc);
2144 
2145 	/* ADC gain calibration done. */
2146 	sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_GAIN;
2147 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2148 }
2149 
2150 Static void
2151 ar5008_calib_adc_dc_off(struct athn_softc *sc)
2152 {
2153 	struct athn_adc_cal *cal;
2154 	int32_t dc_offset_mismatch_i, dc_offset_mismatch_q;
2155 	uint32_t reg;
2156 	int count, i;
2157 
2158 	for (i = 0; i < AR_MAX_CHAINS; i++) {
2159 		cal = &sc->sc_calib.adc_dc_offset[i];
2160 
2161 		/* Accumulate ADC DC offset measures (clear on read). */
2162 		cal->pwr_meas_odd_i  += AR_READ(sc, AR_PHY_CAL_MEAS_0(i));
2163 		cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i));
2164 		cal->pwr_meas_odd_q  += AR_READ(sc, AR_PHY_CAL_MEAS_2(i));
2165 		cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i));
2166 	}
2167 	if (!AR_SREV_9280_10_OR_LATER(sc) &&
2168 	    ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) {
2169 		/* Not enough samples accumulated, continue. */
2170 		ar5008_do_calib(sc);
2171 		return;
2172 	}
2173 
2174 	if (AR_SREV_9280_10_OR_LATER(sc))
2175 		count = (1 << (10 + 5));
2176 	else
2177 		count = (1 << ( 2 + 5)) * AR_CAL_SAMPLES;
2178 	for (i = 0; i < sc->sc_nrxchains; i++) {
2179 		cal = &sc->sc_calib.adc_dc_offset[i];
2180 
2181 		dc_offset_mismatch_i =
2182 		    (cal->pwr_meas_even_i - cal->pwr_meas_odd_i * 2) / count;
2183 		dc_offset_mismatch_q =
2184 		    (cal->pwr_meas_odd_q - cal->pwr_meas_even_q * 2) / count;
2185 
2186 		DPRINTFN(DBG_RF, sc, "ADC DC offset calibration for chain %d\n", i);
2187 		reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
2188 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QDC,
2189 		    dc_offset_mismatch_q);
2190 		reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IDC,
2191 		    dc_offset_mismatch_i);
2192 		AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg);
2193 	}
2194 
2195 	/* Apply new settings. */
2196 	AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
2197 	    AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
2198 	AR_WRITE_BARRIER(sc);
2199 
2200 	/* ADC DC offset calibration done. */
2201 	sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_DC;
2202 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2203 }
2204 
2205 PUBLIC void
2206 ar5008_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
2207 {
2208 
2209 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE1,
2210 	    (power[ATHN_POWER_OFDM18  ] & 0x3f) << 24 |
2211 	    (power[ATHN_POWER_OFDM12  ] & 0x3f) << 16 |
2212 	    (power[ATHN_POWER_OFDM9   ] & 0x3f) <<  8 |
2213 	    (power[ATHN_POWER_OFDM6   ] & 0x3f));
2214 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE2,
2215 	    (power[ATHN_POWER_OFDM54  ] & 0x3f) << 24 |
2216 	    (power[ATHN_POWER_OFDM48  ] & 0x3f) << 16 |
2217 	    (power[ATHN_POWER_OFDM36  ] & 0x3f) <<  8 |
2218 	    (power[ATHN_POWER_OFDM24  ] & 0x3f));
2219 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE3,
2220 	    (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
2221 	    (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
2222 	    (power[ATHN_POWER_XR      ] & 0x3f) <<  8 |
2223 	    (power[ATHN_POWER_CCK1_LP ] & 0x3f));
2224 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE4,
2225 	    (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
2226 	    (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
2227 	    (power[ATHN_POWER_CCK55_SP] & 0x3f) <<  8 |
2228 	    (power[ATHN_POWER_CCK55_LP] & 0x3f));
2229 #ifndef IEEE80211_NO_HT
2230 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE5,
2231 	    (power[ATHN_POWER_HT20(3) ] & 0x3f) << 24 |
2232 	    (power[ATHN_POWER_HT20(2) ] & 0x3f) << 16 |
2233 	    (power[ATHN_POWER_HT20(1) ] & 0x3f) <<  8 |
2234 	    (power[ATHN_POWER_HT20(0) ] & 0x3f));
2235 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE6,
2236 	    (power[ATHN_POWER_HT20(7) ] & 0x3f) << 24 |
2237 	    (power[ATHN_POWER_HT20(6) ] & 0x3f) << 16 |
2238 	    (power[ATHN_POWER_HT20(5) ] & 0x3f) <<  8 |
2239 	    (power[ATHN_POWER_HT20(4) ] & 0x3f));
2240 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE7,
2241 	    (power[ATHN_POWER_HT40(3) ] & 0x3f) << 24 |
2242 	    (power[ATHN_POWER_HT40(2) ] & 0x3f) << 16 |
2243 	    (power[ATHN_POWER_HT40(1) ] & 0x3f) <<  8 |
2244 	    (power[ATHN_POWER_HT40(0) ] & 0x3f));
2245 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE8,
2246 	    (power[ATHN_POWER_HT40(7) ] & 0x3f) << 24 |
2247 	    (power[ATHN_POWER_HT40(6) ] & 0x3f) << 16 |
2248 	    (power[ATHN_POWER_HT40(5) ] & 0x3f) <<  8 |
2249 	    (power[ATHN_POWER_HT40(4) ] & 0x3f));
2250 	AR_WRITE(sc, AR_PHY_POWER_TX_RATE9,
2251 	    (power[ATHN_POWER_OFDM_EXT] & 0x3f) << 24 |
2252 	    (power[ATHN_POWER_CCK_EXT ] & 0x3f) << 16 |
2253 	    (power[ATHN_POWER_OFDM_DUP] & 0x3f) <<  8 |
2254 	    (power[ATHN_POWER_CCK_DUP ] & 0x3f));
2255 #endif
2256 	AR_WRITE_BARRIER(sc);
2257 }
2258 
2259 PUBLIC void
2260 ar5008_set_viterbi_mask(struct athn_softc *sc, int bin)
2261 {
2262 	uint32_t mask[4], reg;
2263 	uint8_t m[62], p[62];	/* XXX use bit arrays? */
2264 	int i, bit, cur;
2265 
2266 	/* Compute pilot mask. */
2267 	cur = -6000;
2268 	for (i = 0; i < 4; i++) {
2269 		mask[i] = 0;
2270 		for (bit = 0; bit < 30; bit++) {
2271 			if (abs(cur - bin) < 100)
2272 				mask[i] |= 1 << bit;
2273 			cur += 100;
2274 		}
2275 		if (cur == 0)	/* Skip entry "0". */
2276 			cur = 100;
2277 	}
2278 	/* Write entries from -6000 to -3100. */
2279 	AR_WRITE(sc, AR_PHY_TIMING7, mask[0]);
2280 	AR_WRITE(sc, AR_PHY_TIMING9, mask[0]);
2281 	/* Write entries from -3000 to -100. */
2282 	AR_WRITE(sc, AR_PHY_TIMING8, mask[1]);
2283 	AR_WRITE(sc, AR_PHY_TIMING10, mask[1]);
2284 	/* Write entries from 100 to 3000. */
2285 	AR_WRITE(sc, AR_PHY_PILOT_MASK_01_30, mask[2]);
2286 	AR_WRITE(sc, AR_PHY_CHANNEL_MASK_01_30, mask[2]);
2287 	/* Write entries from 3100 to 6000. */
2288 	AR_WRITE(sc, AR_PHY_PILOT_MASK_31_60, mask[3]);
2289 	AR_WRITE(sc, AR_PHY_CHANNEL_MASK_31_60, mask[3]);
2290 
2291 	/* Compute viterbi mask. */
2292 	for (cur = 6100; cur >= 0; cur -= 100)
2293 		p[+cur / 100] = abs(cur - bin) < 75;
2294 	for (cur = -100; cur >= -6100; cur -= 100)
2295 		m[-cur / 100] = abs(cur - bin) < 75;
2296 
2297 	/* Write viterbi mask (XXX needs to be reworked). */
2298 	reg =
2299 	    m[46] << 30 | m[47] << 28 | m[48] << 26 | m[49] << 24 |
2300 	    m[50] << 22 | m[51] << 20 | m[52] << 18 | m[53] << 16 |
2301 	    m[54] << 14 | m[55] << 12 | m[56] << 10 | m[57] <<  8 |
2302 	    m[58] <<  6 | m[59] <<  4 | m[60] <<  2 | m[61] <<  0;
2303 	AR_WRITE(sc, AR_PHY_BIN_MASK_1, reg);
2304 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_46_61, reg);
2305 
2306 	/* XXX m[48] should be m[38] ? */
2307 	reg =             m[31] << 28 | m[32] << 26 | m[33] << 24 |
2308 	    m[34] << 22 | m[35] << 20 | m[36] << 18 | m[37] << 16 |
2309 	    m[48] << 14 | m[39] << 12 | m[40] << 10 | m[41] <<  8 |
2310 	    m[42] <<  6 | m[43] <<  4 | m[44] <<  2 | m[45] <<  0;
2311 	AR_WRITE(sc, AR_PHY_BIN_MASK_2, reg);
2312 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_31_45, reg);
2313 
2314 	/* XXX This one is weird too. */
2315 	reg =
2316 	    m[16] << 30 | m[16] << 28 | m[18] << 26 | m[18] << 24 |
2317 	    m[20] << 22 | m[20] << 20 | m[22] << 18 | m[22] << 16 |
2318 	    m[24] << 14 | m[24] << 12 | m[25] << 10 | m[26] <<  8 |
2319 	    m[27] <<  6 | m[28] <<  4 | m[29] <<  2 | m[30] <<  0;
2320 	AR_WRITE(sc, AR_PHY_BIN_MASK_3, reg);
2321 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_16_30, reg);
2322 
2323 	reg =
2324 	    m[ 0] << 30 | m[ 1] << 28 | m[ 2] << 26 | m[ 3] << 24 |
2325 	    m[ 4] << 22 | m[ 5] << 20 | m[ 6] << 18 | m[ 7] << 16 |
2326 	    m[ 8] << 14 | m[ 9] << 12 | m[10] << 10 | m[11] <<  8 |
2327 	    m[12] <<  6 | m[13] <<  4 | m[14] <<  2 | m[15] <<  0;
2328 	AR_WRITE(sc, AR_PHY_MASK_CTL, reg);
2329 	AR_WRITE(sc, AR_PHY_VIT_MASK2_M_00_15, reg);
2330 
2331 	reg =             p[15] << 28 | p[14] << 26 | p[13] << 24 |
2332 	    p[12] << 22 | p[11] << 20 | p[10] << 18 | p[ 9] << 16 |
2333 	    p[ 8] << 14 | p[ 7] << 12 | p[ 6] << 10 | p[ 5] <<  8 |
2334 	    p[ 4] <<  6 | p[ 3] <<  4 | p[ 2] <<  2 | p[ 1] <<  0;
2335 	AR_WRITE(sc, AR_PHY_BIN_MASK2_1, reg);
2336 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_15_01, reg);
2337 
2338 	reg =             p[30] << 28 | p[29] << 26 | p[28] << 24 |
2339 	    p[27] << 22 | p[26] << 20 | p[25] << 18 | p[24] << 16 |
2340 	    p[23] << 14 | p[22] << 12 | p[21] << 10 | p[20] <<  8 |
2341 	    p[19] <<  6 | p[18] <<  4 | p[17] <<  2 | p[16] <<  0;
2342 	AR_WRITE(sc, AR_PHY_BIN_MASK2_2, reg);
2343 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_30_16, reg);
2344 
2345 	reg =             p[45] << 28 | p[44] << 26 | p[43] << 24 |
2346 	    p[42] << 22 | p[41] << 20 | p[40] << 18 | p[39] << 16 |
2347 	    p[38] << 14 | p[37] << 12 | p[36] << 10 | p[35] <<  8 |
2348 	    p[34] <<  6 | p[33] <<  4 | p[32] <<  2 | p[31] <<  0;
2349 	AR_WRITE(sc, AR_PHY_BIN_MASK2_3, reg);
2350 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_45_31, reg);
2351 
2352 	reg =
2353 	    p[61] << 30 | p[60] << 28 | p[59] << 26 | p[58] << 24 |
2354 	    p[57] << 22 | p[56] << 20 | p[55] << 18 | p[54] << 16 |
2355 	    p[53] << 14 | p[52] << 12 | p[51] << 10 | p[50] <<  8 |
2356 	    p[49] <<  6 | p[48] <<  4 | p[47] <<  2 | p[46] <<  0;
2357 	AR_WRITE(sc, AR_PHY_BIN_MASK2_4, reg);
2358 	AR_WRITE(sc, AR_PHY_VIT_MASK2_P_61_46, reg);
2359 	AR_WRITE_BARRIER(sc);
2360 }
2361 
2362 Static void
2363 ar5008_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
2364     struct ieee80211_channel *extc)
2365 {
2366 	struct athn_ops *ops = &sc->sc_ops;
2367 	const struct athn_ini *ini = sc->sc_ini;
2368 	const uint32_t *pvals;
2369 	uint32_t reg;
2370 	int i;
2371 
2372 	AR_WRITE(sc, AR_PHY(0), 0x00000007);
2373 	AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
2374 
2375 	if (!AR_SINGLE_CHIP(sc))
2376 		ar5416_reset_addac(sc, c);
2377 
2378 	AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
2379 
2380 	/* First initialization step (depends on channel band/bandwidth). */
2381 #ifndef IEEE80211_NO_HT
2382 	if (extc != NULL) {
2383 		if (IEEE80211_IS_CHAN_2GHZ(c))
2384 			pvals = ini->vals_2g40;
2385 		else
2386 			pvals = ini->vals_5g40;
2387 	}
2388 	else
2389 #endif
2390 	{
2391 		if (IEEE80211_IS_CHAN_2GHZ(c))
2392 			pvals = ini->vals_2g20;
2393 		else
2394 			pvals = ini->vals_5g20;
2395 	}
2396 	DPRINTFN(DBG_INIT, sc, "writing modal init vals\n");
2397 	for (i = 0; i < ini->nregs; i++) {
2398 		uint32_t val = pvals[i];
2399 
2400 		/* Fix AR_AN_TOP2 initialization value if required. */
2401 		if (ini->regs[i] == AR_AN_TOP2 &&
2402 		    (sc->sc_flags & ATHN_FLAG_AN_TOP2_FIXUP))
2403 			val &= ~AR_AN_TOP2_PWDCLKIND;
2404 		AR_WRITE(sc, ini->regs[i], val);
2405 		if (AR_IS_ANALOG_REG(ini->regs[i])) {
2406 			AR_WRITE_BARRIER(sc);
2407 			DELAY(100);
2408 		}
2409 		if ((i & 0x1f) == 0)
2410 			DELAY(1);
2411 	}
2412 	AR_WRITE_BARRIER(sc);
2413 
2414 	if (sc->sc_rx_gain != NULL)
2415 		ar9280_reset_rx_gain(sc, c);
2416 	if (sc->sc_tx_gain != NULL)
2417 		ar9280_reset_tx_gain(sc, c);
2418 
2419 	if (AR_SREV_9271_10(sc)) {
2420 		AR_WRITE(sc, AR_PHY(68), 0x30002311);
2421 		AR_WRITE(sc, AR_PHY_RF_CTL3, 0x0a020001);
2422 	}
2423 	AR_WRITE_BARRIER(sc);
2424 
2425 	/* Second initialization step (common to all channels). */
2426 	DPRINTFN(DBG_INIT, sc, "writing common init vals\n");
2427 	for (i = 0; i < ini->ncmregs; i++) {
2428 		AR_WRITE(sc, ini->cmregs[i], ini->cmvals[i]);
2429 		if (AR_IS_ANALOG_REG(ini->cmregs[i])) {
2430 			AR_WRITE_BARRIER(sc);
2431 			DELAY(100);
2432 		}
2433 		if ((i & 0x1f) == 0)
2434 			DELAY(1);
2435 	}
2436 	AR_WRITE_BARRIER(sc);
2437 
2438 	if (!AR_SINGLE_CHIP(sc))
2439 		ar5416_reset_bb_gain(sc, c);
2440 
2441 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
2442 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
2443 		/* Update modal values for fast PLL clock. */
2444 #ifndef IEEE80211_NO_HT
2445 		if (extc != NULL)
2446 			pvals = ini->fastvals_5g40;
2447 		else
2448 #endif
2449 			pvals = ini->fastvals_5g20;
2450 		DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
2451 		for (i = 0; i < ini->nfastregs; i++) {
2452 			AR_WRITE(sc, ini->fastregs[i], pvals[i]);
2453 			if (AR_IS_ANALOG_REG(ini->fastregs[i])) {
2454 				AR_WRITE_BARRIER(sc);
2455 				DELAY(100);
2456 			}
2457 			if ((i & 0x1f) == 0)
2458 				DELAY(1);
2459 		}
2460 	}
2461 
2462 	/*
2463 	 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
2464 	 * descriptor status.
2465 	 */
2466 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
2467 
2468 	/* Hardware workarounds for occasional Rx data corruption. */
2469 	if (AR_SREV_9280_10_OR_LATER(sc)) {
2470 		reg = AR_READ(sc, AR_PCU_MISC_MODE2);
2471 		if (!AR_SREV_9271(sc))
2472 			reg &= ~AR_PCU_MISC_MODE2_HWWAR1;
2473 		if (AR_SREV_9287_10_OR_LATER(sc))
2474 			reg &= ~AR_PCU_MISC_MODE2_HWWAR2;
2475 		AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
2476 
2477 	}
2478 	else if (AR_SREV_5416_20_OR_LATER(sc)) {
2479 		/* Disable baseband clock gating. */
2480 		AR_WRITE(sc, AR_PHY(651), 0x11);
2481 
2482 		if (AR_SREV_9160(sc)) {
2483 			/* Disable RIFS search to fix baseband hang. */
2484 			AR_CLRBITS(sc, AR_PHY_HEAVY_CLIP_FACTOR_RIFS,
2485 			    AR_PHY_RIFS_INIT_DELAY_M);
2486 		}
2487 	}
2488 	AR_WRITE_BARRIER(sc);
2489 
2490 	ar5008_set_phy(sc, c, extc);
2491 	ar5008_init_chains(sc);
2492 
2493 	if (sc->sc_flags & ATHN_FLAG_OLPC) {
2494 		extern int ticks;
2495 		sc->sc_olpc_ticks = ticks;
2496 		ops->olpc_init(sc);
2497 	}
2498 
2499 	ops->set_txpower(sc, c, extc);
2500 
2501 	if (!AR_SINGLE_CHIP(sc))
2502 		ar5416_rf_reset(sc, c);
2503 }
2504 
2505 Static uint8_t
2506 ar5008_get_vpd(uint8_t pwr, const uint8_t *pwrPdg, const uint8_t *vpdPdg,
2507     int nicepts)
2508 {
2509 	uint8_t vpd;
2510 	int i, lo, hi;
2511 
2512 	for (i = 0; i < nicepts; i++)
2513 		if (pwrPdg[i] > pwr)
2514 			break;
2515 	hi = i;
2516 	lo = hi - 1;
2517 	if (lo == -1)
2518 		lo = hi;
2519 	else if (hi == nicepts)
2520 		hi = lo;
2521 
2522 	vpd = athn_interpolate(pwr, pwrPdg[lo], vpdPdg[lo],
2523 	    pwrPdg[hi], vpdPdg[hi]);
2524 	return vpd;
2525 }
2526 
2527 PUBLIC void
2528 ar5008_get_pdadcs(struct athn_softc *sc, uint8_t fbin,
2529     struct athn_pier *lopier, struct athn_pier *hipier, int nxpdgains,
2530     int nicepts, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs)
2531 {
2532 #define DB(x)	((x) / 2)	/* Convert half dB to dB. */
2533 	uint8_t minpwr[AR_PD_GAINS_IN_MASK], maxpwr[AR_PD_GAINS_IN_MASK];
2534 	uint8_t vpd[AR_MAX_PWR_RANGE_IN_HALF_DB], pwr;
2535 	uint8_t lovpd, hivpd, boundary;
2536 	int16_t ss, delta, vpdstep, val;
2537 	int i, j, npdadcs, nvpds, maxidx, tgtidx;
2538 
2539 	/* Compute min and max power in half dB for each pdGain. */
2540 	for (i = 0; i < nxpdgains; i++) {
2541 		minpwr[i] = MAX(lopier->pwr[i][0], hipier->pwr[i][0]);
2542 		maxpwr[i] = MIN(lopier->pwr[i][nicepts - 1],
2543 		    hipier->pwr[i][nicepts - 1]);
2544 	}
2545 
2546 	/* Fill phase domain analog-to-digital converter (PDADC) table. */
2547 	npdadcs = 0;
2548 	for (i = 0; i < nxpdgains; i++) {
2549 		if (i != nxpdgains - 1)
2550 			boundaries[i] = DB(maxpwr[i] + minpwr[i + 1]) / 2;
2551 		else
2552 			boundaries[i] = DB(maxpwr[i]);
2553 		if (boundaries[i] > AR_MAX_RATE_POWER)
2554 			boundaries[i] = AR_MAX_RATE_POWER;
2555 
2556 		if (i == 0 && !AR_SREV_5416_20_OR_LATER(sc)) {
2557 			/* Fix the gain delta (AR5416 1.0 only). */
2558 			delta = boundaries[0] - 23;
2559 			boundaries[0] = 23;
2560 		}
2561 		else
2562 			delta = 0;
2563 
2564 		/* Find starting index for this pdGain. */
2565 		if (i != 0) {
2566 			ss = boundaries[i - 1] - DB(minpwr[i]) -
2567 			    overlap + 1 + delta;
2568 		}
2569 		else if (AR_SREV_9280_10_OR_LATER(sc))
2570 			ss = -DB(minpwr[i]);
2571 		else
2572 			ss = 0;
2573 
2574 		/* Compute Vpd table for this pdGain. */
2575 		nvpds = DB(maxpwr[i] - minpwr[i]) + 1;
2576 		memset(vpd, 0, sizeof(vpd));
2577 		pwr = minpwr[i];
2578 		for (j = 0; j < nvpds; j++) {
2579 			/* Get lower and higher Vpd. */
2580 			lovpd = ar5008_get_vpd(pwr, lopier->pwr[i],
2581 			    lopier->vpd[i], nicepts);
2582 			hivpd = ar5008_get_vpd(pwr, hipier->pwr[i],
2583 			    hipier->vpd[i], nicepts);
2584 
2585 			/* Interpolate the final Vpd. */
2586 			vpd[j] = athn_interpolate(fbin,
2587 			    lopier->fbin, lovpd, hipier->fbin, hivpd);
2588 
2589 			pwr += 2;	/* In half dB. */
2590 		}
2591 
2592 		/* Extrapolate data for ss < 0. */
2593 		if (vpd[1] > vpd[0])
2594 			vpdstep = vpd[1] - vpd[0];
2595 		else
2596 			vpdstep = 1;
2597 		while (ss < 0 && npdadcs < AR_NUM_PDADC_VALUES - 1) {
2598 			val = vpd[0] + ss * vpdstep;
2599 			pdadcs[npdadcs++] = MAX(val, 0);
2600 			ss++;
2601 		}
2602 
2603 		tgtidx = boundaries[i] + overlap - DB(minpwr[i]);
2604 		maxidx = MIN(tgtidx, nvpds);
2605 		while (ss < maxidx && npdadcs < AR_NUM_PDADC_VALUES - 1)
2606 			pdadcs[npdadcs++] = vpd[ss++];
2607 
2608 		if (tgtidx < maxidx)
2609 			continue;
2610 
2611 		/* Extrapolate data for maxidx <= ss <= tgtidx. */
2612 		if (vpd[nvpds - 1] > vpd[nvpds - 2])
2613 			vpdstep = vpd[nvpds - 1] - vpd[nvpds - 2];
2614 		else
2615 			vpdstep = 1;
2616 		while (ss <= tgtidx && npdadcs < AR_NUM_PDADC_VALUES - 1) {
2617 			val = vpd[nvpds - 1] + (ss - maxidx + 1) * vpdstep;
2618 			pdadcs[npdadcs++] = MIN(val, 255);
2619 			ss++;
2620 		}
2621 	}
2622 
2623 	/* Fill remaining PDADC and boundaries entries. */
2624 	if (AR_SREV_9285(sc))
2625 		boundary = AR9285_PD_GAIN_BOUNDARY_DEFAULT;
2626 	else	/* Fill with latest. */
2627 		boundary = boundaries[nxpdgains - 1];
2628 
2629 	for (; nxpdgains < AR_PD_GAINS_IN_MASK; nxpdgains++)
2630 		boundaries[nxpdgains] = boundary;
2631 
2632 	for (; npdadcs < AR_NUM_PDADC_VALUES; npdadcs++)
2633 		pdadcs[npdadcs] = pdadcs[npdadcs - 1];
2634 #undef DB
2635 }
2636 
2637 PUBLIC void
2638 ar5008_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
2639     uint8_t ctl, const struct ar_cal_target_power_leg *tgt, int nchans,
2640     uint8_t tpow[4])
2641 {
2642 	uint8_t fbin;
2643 	int i, lo, hi;
2644 
2645 	/* Find interval (lower and upper indices). */
2646 	fbin = athn_chan2fbin(c);
2647 	for (i = 0; i < nchans; i++) {
2648 		if (tgt[i].bChannel == AR_BCHAN_UNUSED ||
2649 		    tgt[i].bChannel > fbin)
2650 			break;
2651 	}
2652 	hi = i;
2653 	lo = hi - 1;
2654 	if (lo == -1)
2655 		lo = hi;
2656 	else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED)
2657 		hi = lo;
2658 
2659 	/* Interpolate values. */
2660 	for (i = 0; i < 4; i++) {
2661 		tpow[i] = athn_interpolate(fbin,
2662 		    tgt[lo].bChannel, tgt[lo].tPow2x[i],
2663 		    tgt[hi].bChannel, tgt[hi].tPow2x[i]);
2664 	}
2665 	/* XXX Apply conformance testing limit. */
2666 }
2667 
2668 #ifndef IEEE80211_NO_HT
2669 PUBLIC void
2670 ar5008_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
2671     uint8_t ctl, const struct ar_cal_target_power_ht *tgt, int nchans,
2672     uint8_t tpow[8])
2673 {
2674 	uint8_t fbin;
2675 	int i, lo, hi;
2676 
2677 	/* Find interval (lower and upper indices). */
2678 	fbin = athn_chan2fbin(c);
2679 	for (i = 0; i < nchans; i++) {
2680 		if (tgt[i].bChannel == AR_BCHAN_UNUSED ||
2681 		    tgt[i].bChannel > fbin)
2682 			break;
2683 	}
2684 	hi = i;
2685 	lo = hi - 1;
2686 	if (lo == -1)
2687 		lo = hi;
2688 	else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED)
2689 		hi = lo;
2690 
2691 	/* Interpolate values. */
2692 	for (i = 0; i < 8; i++) {
2693 		tpow[i] = athn_interpolate(fbin,
2694 		    tgt[lo].bChannel, tgt[lo].tPow2x[i],
2695 		    tgt[hi].bChannel, tgt[hi].tPow2x[i]);
2696 	}
2697 	/* XXX Apply conformance testing limit. */
2698 }
2699 #endif
2700 
2701 /*
2702  * Adaptive noise immunity.
2703  */
2704 Static void
2705 ar5008_set_noise_immunity_level(struct athn_softc *sc, int level)
2706 {
2707 	int high = level == 4;
2708 	uint32_t reg;
2709 
2710 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
2711 	reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
2712 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
2713 
2714 	reg = AR_READ(sc, AR_PHY_AGC_CTL1);
2715 	reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_LOW, high ? -70 : -64);
2716 	reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_HIGH, high ? -12 : -14);
2717 	AR_WRITE(sc, AR_PHY_AGC_CTL1, reg);
2718 
2719 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
2720 	reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
2721 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
2722 
2723 	AR_WRITE_BARRIER(sc);
2724 }
2725 
2726 Static void
2727 ar5008_enable_ofdm_weak_signal(struct athn_softc *sc)
2728 {
2729 	uint32_t reg;
2730 
2731 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
2732 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
2733 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
2734 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
2735 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
2736 
2737 	reg = AR_READ(sc, AR_PHY_SFCORR);
2738 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
2739 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
2740 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
2741 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
2742 
2743 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
2744 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
2745 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
2746 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
2747 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
2748 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
2749 
2750 	AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
2751 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
2752 	AR_WRITE_BARRIER(sc);
2753 }
2754 
2755 Static void
2756 ar5008_disable_ofdm_weak_signal(struct athn_softc *sc)
2757 {
2758 	uint32_t reg;
2759 
2760 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
2761 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
2762 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
2763 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
2764 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
2765 
2766 	reg = AR_READ(sc, AR_PHY_SFCORR);
2767 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
2768 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
2769 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
2770 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
2771 
2772 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
2773 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
2774 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
2775 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
2776 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
2777 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
2778 
2779 	AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
2780 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
2781 	AR_WRITE_BARRIER(sc);
2782 }
2783 
2784 Static void
2785 ar5008_set_cck_weak_signal(struct athn_softc *sc, int high)
2786 {
2787 	uint32_t reg;
2788 
2789 	reg = AR_READ(sc, AR_PHY_CCK_DETECT);
2790 	reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
2791 	AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
2792 	AR_WRITE_BARRIER(sc);
2793 }
2794 
2795 Static void
2796 ar5008_set_firstep_level(struct athn_softc *sc, int level)
2797 {
2798 	uint32_t reg;
2799 
2800 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
2801 	reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
2802 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
2803 	AR_WRITE_BARRIER(sc);
2804 }
2805 
2806 Static void
2807 ar5008_set_spur_immunity_level(struct athn_softc *sc, int level)
2808 {
2809 	uint32_t reg;
2810 
2811 	reg = AR_READ(sc, AR_PHY_TIMING5);
2812 	reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
2813 	AR_WRITE(sc, AR_PHY_TIMING5, reg);
2814 	AR_WRITE_BARRIER(sc);
2815 }
2816