1 /* $NetBSD: arn5008.c,v 1.6 2014/02/23 15:29:11 christos Exp $ */ 2 /* $OpenBSD: ar5008.c,v 1.21 2012/08/25 12:14:31 kettenis Exp $ */ 3 4 /*- 5 * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2008-2009 Atheros Communications Inc. 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Atheros 802.11a/g/n chipsets. 23 * Routines common to AR5008, AR9001 and AR9002 families. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: arn5008.c,v 1.6 2014/02/23 15:29:11 christos Exp $"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/queue.h> 37 #include <sys/conf.h> 38 #include <sys/device.h> 39 40 #include <sys/bus.h> 41 #include <sys/endian.h> 42 #include <sys/intr.h> 43 44 #include <net/bpf.h> 45 #include <net/if.h> 46 #include <net/if_arp.h> 47 #include <net/if_dl.h> 48 #include <net/if_ether.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 52 #include <netinet/in.h> 53 #include <netinet/in_systm.h> 54 #include <netinet/in_var.h> 55 #include <netinet/ip.h> 56 57 #include <net80211/ieee80211_var.h> 58 #include <net80211/ieee80211_amrr.h> 59 #include <net80211/ieee80211_radiotap.h> 60 61 #include <dev/ic/athnreg.h> 62 #include <dev/ic/athnvar.h> 63 64 #include <dev/ic/arn5008reg.h> 65 #include <dev/ic/arn5008.h> 66 #include <dev/ic/arn5416.h> 67 #include <dev/ic/arn9280.h> 68 69 #define Static static 70 71 Static void ar5008_calib_adc_dc_off(struct athn_softc *); 72 Static void ar5008_calib_adc_gain(struct athn_softc *); 73 Static void ar5008_calib_iq(struct athn_softc *); 74 Static void ar5008_disable_ofdm_weak_signal(struct athn_softc *); 75 Static void ar5008_disable_phy(struct athn_softc *); 76 Static int ar5008_dma_alloc(struct athn_softc *); 77 Static void ar5008_dma_free(struct athn_softc *); 78 Static void ar5008_do_calib(struct athn_softc *); 79 Static void ar5008_do_noisefloor_calib(struct athn_softc *); 80 Static void ar5008_enable_antenna_diversity(struct athn_softc *); 81 Static void ar5008_enable_ofdm_weak_signal(struct athn_softc *); 82 Static uint8_t ar5008_get_vpd(uint8_t, const uint8_t *, const uint8_t *, int); 83 Static void ar5008_gpio_config_input(struct athn_softc *, int); 84 Static void ar5008_gpio_config_output(struct athn_softc *, int, int); 85 Static int ar5008_gpio_read(struct athn_softc *, int); 86 Static void ar5008_gpio_write(struct athn_softc *, int, int); 87 Static void ar5008_hw_init(struct athn_softc *, struct ieee80211_channel *, 88 struct ieee80211_channel *); 89 Static void ar5008_init_baseband(struct athn_softc *); 90 Static void ar5008_init_chains(struct athn_softc *); 91 Static int ar5008_intr(struct athn_softc *); 92 Static void ar5008_next_calib(struct athn_softc *); 93 Static int ar5008_read_eep_word(struct athn_softc *, uint32_t, 94 uint16_t *); 95 Static int ar5008_read_rom(struct athn_softc *); 96 Static void ar5008_rf_bus_release(struct athn_softc *); 97 Static int ar5008_rf_bus_request(struct athn_softc *); 98 Static void ar5008_rfsilent_init(struct athn_softc *); 99 Static int ar5008_rx_alloc(struct athn_softc *); 100 Static void ar5008_rx_enable(struct athn_softc *); 101 Static void ar5008_rx_free(struct athn_softc *); 102 Static void ar5008_rx_intr(struct athn_softc *); 103 Static void ar5008_rx_radiotap(struct athn_softc *, struct mbuf *, 104 struct ar_rx_desc *); 105 Static void ar5008_set_cck_weak_signal(struct athn_softc *, int); 106 Static void ar5008_set_delta_slope(struct athn_softc *, 107 struct ieee80211_channel *, struct ieee80211_channel *); 108 Static void ar5008_set_firstep_level(struct athn_softc *, int); 109 Static void ar5008_set_noise_immunity_level(struct athn_softc *, int); 110 Static void ar5008_set_phy(struct athn_softc *, struct ieee80211_channel *, 111 struct ieee80211_channel *); 112 Static void ar5008_set_rf_mode(struct athn_softc *, 113 struct ieee80211_channel *); 114 Static void ar5008_set_rxchains(struct athn_softc *); 115 Static void ar5008_set_spur_immunity_level(struct athn_softc *, int); 116 Static void ar5008_swap_rom(struct athn_softc *); 117 Static int ar5008_swba_intr(struct athn_softc *); 118 Static int ar5008_tx(struct athn_softc *, struct mbuf *, 119 struct ieee80211_node *, int); 120 Static int ar5008_tx_alloc(struct athn_softc *); 121 Static void ar5008_tx_free(struct athn_softc *); 122 Static void ar5008_tx_intr(struct athn_softc *); 123 Static int ar5008_tx_process(struct athn_softc *, int); 124 125 #ifdef notused 126 Static void ar5008_bb_load_noisefloor(struct athn_softc *); 127 Static void ar5008_get_noisefloor(struct athn_softc *, 128 struct ieee80211_channel *); 129 Static void ar5008_noisefloor_calib(struct athn_softc *); 130 Static void ar5008_read_noisefloor(struct athn_softc *, int16_t *, 131 int16_t *); 132 Static void ar5008_write_noisefloor(struct athn_softc *, int16_t *, 133 int16_t *); 134 #endif /* notused */ 135 136 // bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 137 138 /* 139 * XXX: see if_iwn.c:MCLGETIalt() for a better solution. 140 */ 141 static struct mbuf * 142 MCLGETI(struct athn_softc *sc __unused, int how, 143 struct ifnet *ifp __unused, u_int size) 144 { 145 struct mbuf *m; 146 147 MGETHDR(m, how, MT_DATA); 148 if (m == NULL) 149 return NULL; 150 151 MEXTMALLOC(m, size, how); 152 if ((m->m_flags & M_EXT) == 0) { 153 m_freem(m); 154 return NULL; 155 } 156 return m; 157 } 158 159 PUBLIC int 160 ar5008_attach(struct athn_softc *sc) 161 { 162 struct athn_ops *ops = &sc->sc_ops; 163 struct ieee80211com *ic = &sc->sc_ic; 164 struct ar_base_eep_header *base; 165 uint8_t eep_ver, kc_entries_log; 166 int error; 167 168 /* Set callbacks for AR5008, AR9001 and AR9002 families. */ 169 ops->gpio_read = ar5008_gpio_read; 170 ops->gpio_write = ar5008_gpio_write; 171 ops->gpio_config_input = ar5008_gpio_config_input; 172 ops->gpio_config_output = ar5008_gpio_config_output; 173 ops->rfsilent_init = ar5008_rfsilent_init; 174 175 ops->dma_alloc = ar5008_dma_alloc; 176 ops->dma_free = ar5008_dma_free; 177 ops->rx_enable = ar5008_rx_enable; 178 ops->intr = ar5008_intr; 179 ops->tx = ar5008_tx; 180 181 ops->set_rf_mode = ar5008_set_rf_mode; 182 ops->rf_bus_request = ar5008_rf_bus_request; 183 ops->rf_bus_release = ar5008_rf_bus_release; 184 ops->set_phy = ar5008_set_phy; 185 ops->set_delta_slope = ar5008_set_delta_slope; 186 ops->enable_antenna_diversity = ar5008_enable_antenna_diversity; 187 ops->init_baseband = ar5008_init_baseband; 188 ops->disable_phy = ar5008_disable_phy; 189 ops->set_rxchains = ar5008_set_rxchains; 190 ops->noisefloor_calib = ar5008_do_noisefloor_calib; 191 ops->do_calib = ar5008_do_calib; 192 ops->next_calib = ar5008_next_calib; 193 ops->hw_init = ar5008_hw_init; 194 195 ops->set_noise_immunity_level = ar5008_set_noise_immunity_level; 196 ops->enable_ofdm_weak_signal = ar5008_enable_ofdm_weak_signal; 197 ops->disable_ofdm_weak_signal = ar5008_disable_ofdm_weak_signal; 198 ops->set_cck_weak_signal = ar5008_set_cck_weak_signal; 199 ops->set_firstep_level = ar5008_set_firstep_level; 200 ops->set_spur_immunity_level = ar5008_set_spur_immunity_level; 201 202 /* Set MAC registers offsets. */ 203 sc->sc_obs_off = AR_OBS; 204 sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL; 205 206 if (!(sc->sc_flags & ATHN_FLAG_PCIE)) 207 athn_config_nonpcie(sc); 208 else 209 athn_config_pcie(sc); 210 211 /* Read entire ROM content in memory. */ 212 if ((error = ar5008_read_rom(sc)) != 0) { 213 aprint_error_dev(sc->sc_dev, "could not read ROM\n"); 214 return error; 215 } 216 217 /* Get RF revision. */ 218 sc->sc_rf_rev = ar5416_get_rf_rev(sc); 219 220 base = sc->sc_eep; 221 eep_ver = (base->version >> 12) & 0xf; 222 sc->sc_eep_rev = (base->version & 0xfff); 223 if (eep_ver != AR_EEP_VER || sc->sc_eep_rev == 0) { 224 aprint_error_dev(sc->sc_dev, "unsupported ROM version %d.%d\n", 225 eep_ver, sc->sc_eep_rev); 226 return EINVAL; 227 } 228 229 if (base->opCapFlags & AR_OPFLAGS_11A) 230 sc->sc_flags |= ATHN_FLAG_11A; 231 if (base->opCapFlags & AR_OPFLAGS_11G) 232 sc->sc_flags |= ATHN_FLAG_11G; 233 if (base->opCapFlags & AR_OPFLAGS_11N) 234 sc->sc_flags |= ATHN_FLAG_11N; 235 236 IEEE80211_ADDR_COPY(ic->ic_myaddr, base->macAddr); 237 238 /* Check if we have a hardware radio switch. */ 239 if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) { 240 sc->sc_flags |= ATHN_FLAG_RFSILENT; 241 /* Get GPIO pin used by hardware radio switch. */ 242 sc->sc_rfsilent_pin = MS(base->rfSilent, 243 AR_EEP_RFSILENT_GPIO_SEL); 244 /* Get polarity of hardware radio switch. */ 245 if (base->rfSilent & AR_EEP_RFSILENT_POLARITY) 246 sc->sc_flags |= ATHN_FLAG_RFSILENT_REVERSED; 247 } 248 249 /* Get the number of HW key cache entries. */ 250 kc_entries_log = MS(base->deviceCap, AR_EEP_DEVCAP_KC_ENTRIES); 251 sc->sc_kc_entries = kc_entries_log != 0 ? 252 1 << kc_entries_log : AR_KEYTABLE_SIZE; 253 254 sc->sc_txchainmask = base->txMask; 255 if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCI && 256 !(base->opCapFlags & AR_OPFLAGS_11A)) { 257 /* For single-band AR5416 PCI, use GPIO pin 0. */ 258 sc->sc_rxchainmask = ar5008_gpio_read(sc, 0) ? 0x5 : 0x7; 259 } 260 else 261 sc->sc_rxchainmask = base->rxMask; 262 263 ops->setup(sc); 264 return 0; 265 } 266 267 /* 268 * Read 16-bit word from ROM. 269 */ 270 Static int 271 ar5008_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val) 272 { 273 uint32_t reg; 274 int ntries; 275 276 reg = AR_READ(sc, AR_EEPROM_OFFSET(addr)); 277 for (ntries = 0; ntries < 1000; ntries++) { 278 reg = AR_READ(sc, AR_EEPROM_STATUS_DATA); 279 if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY | 280 AR_EEPROM_STATUS_DATA_PROT_ACCESS))) { 281 *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL); 282 return 0; 283 } 284 DELAY(10); 285 } 286 *val = 0xffff; 287 return ETIMEDOUT; 288 } 289 290 Static int 291 ar5008_read_rom(struct athn_softc *sc) 292 { 293 uint32_t addr, end; 294 uint16_t magic, sum, *eep; 295 int need_swap = 0; 296 int error; 297 298 /* Determine ROM endianness. */ 299 error = ar5008_read_eep_word(sc, AR_EEPROM_MAGIC_OFFSET, &magic); 300 if (error != 0) 301 return error; 302 if (magic != AR_EEPROM_MAGIC) { 303 if (magic != bswap16(AR_EEPROM_MAGIC)) { 304 DPRINTFN(DBG_INIT, sc, 305 "invalid ROM magic 0x%x != 0x%x\n", 306 magic, AR_EEPROM_MAGIC); 307 return EIO; 308 } 309 DPRINTFN(DBG_INIT, sc, "non-native ROM endianness\n"); 310 need_swap = 1; 311 } 312 313 /* Allocate space to store ROM in host memory. */ 314 sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT); 315 if (sc->sc_eep == NULL) 316 return ENOMEM; 317 318 /* Read entire ROM and compute checksum. */ 319 sum = 0; 320 eep = sc->sc_eep; 321 end = sc->sc_eep_base + sc->sc_eep_size / sizeof(uint16_t); 322 for (addr = sc->sc_eep_base; addr < end; addr++, eep++) { 323 if ((error = ar5008_read_eep_word(sc, addr, eep)) != 0) { 324 DPRINTFN(DBG_INIT, sc, 325 "could not read ROM at 0x%x\n", addr); 326 return error; 327 } 328 if (need_swap) 329 *eep = bswap16(*eep); 330 sum ^= *eep; 331 } 332 if (sum != 0xffff) { 333 aprint_error_dev(sc->sc_dev, "bad ROM checksum 0x%04x\n", sum); 334 return EIO; 335 } 336 if (need_swap) 337 ar5008_swap_rom(sc); 338 339 return 0; 340 } 341 342 Static void 343 ar5008_swap_rom(struct athn_softc *sc) 344 { 345 struct ar_base_eep_header *base = sc->sc_eep; 346 347 /* Swap common fields first. */ 348 base->length = bswap16(base->length); 349 base->version = bswap16(base->version); 350 base->regDmn[0] = bswap16(base->regDmn[0]); 351 base->regDmn[1] = bswap16(base->regDmn[1]); 352 base->rfSilent = bswap16(base->rfSilent); 353 base->blueToothOptions = bswap16(base->blueToothOptions); 354 base->deviceCap = bswap16(base->deviceCap); 355 356 /* Swap device-dependent fields. */ 357 sc->sc_ops.swap_rom(sc); 358 } 359 360 /* 361 * Access to General Purpose Input/Output ports. 362 */ 363 Static int 364 ar5008_gpio_read(struct athn_softc *sc, int pin) 365 { 366 367 KASSERT(pin < sc->sc_ngpiopins); 368 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) 369 return !((AR_READ(sc, AR7010_GPIO_IN) >> pin) & 1); 370 return (AR_READ(sc, AR_GPIO_IN_OUT) >> (sc->sc_ngpiopins + pin)) & 1; 371 } 372 373 Static void 374 ar5008_gpio_write(struct athn_softc *sc, int pin, int set) 375 { 376 uint32_t reg; 377 378 KASSERT(pin < sc->sc_ngpiopins); 379 380 if (sc->sc_flags & ATHN_FLAG_USB) 381 set = !set; /* AR9271/AR7010 is reversed. */ 382 383 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { 384 /* Special case for AR7010. */ 385 reg = AR_READ(sc, AR7010_GPIO_OUT); 386 if (set) 387 reg |= 1 << pin; 388 else 389 reg &= ~(1 << pin); 390 AR_WRITE(sc, AR7010_GPIO_OUT, reg); 391 } 392 else { 393 reg = AR_READ(sc, AR_GPIO_IN_OUT); 394 if (set) 395 reg |= 1 << pin; 396 else 397 reg &= ~(1 << pin); 398 AR_WRITE(sc, AR_GPIO_IN_OUT, reg); 399 } 400 AR_WRITE_BARRIER(sc); 401 } 402 403 Static void 404 ar5008_gpio_config_input(struct athn_softc *sc, int pin) 405 { 406 uint32_t reg; 407 408 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { 409 /* Special case for AR7010. */ 410 AR_SETBITS(sc, AR7010_GPIO_OE, 1 << pin); 411 } 412 else { 413 reg = AR_READ(sc, AR_GPIO_OE_OUT); 414 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); 415 reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2); 416 AR_WRITE(sc, AR_GPIO_OE_OUT, reg); 417 } 418 AR_WRITE_BARRIER(sc); 419 } 420 421 Static void 422 ar5008_gpio_config_output(struct athn_softc *sc, int pin, int type) 423 { 424 uint32_t reg; 425 int mux, off; 426 427 if ((sc->sc_flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { 428 /* Special case for AR7010. */ 429 AR_CLRBITS(sc, AR7010_GPIO_OE, 1 << pin); 430 AR_WRITE_BARRIER(sc); 431 return; 432 } 433 mux = pin / 6; 434 off = pin % 6; 435 436 reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux)); 437 if (!AR_SREV_9280_20_OR_LATER(sc) && mux == 0) 438 reg = (reg & ~0x1f0) | (reg & 0x1f0) << 1; 439 reg &= ~(0x1f << (off * 5)); 440 reg |= (type & 0x1f) << (off * 5); 441 AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg); 442 443 reg = AR_READ(sc, AR_GPIO_OE_OUT); 444 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); 445 reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2); 446 AR_WRITE(sc, AR_GPIO_OE_OUT, reg); 447 AR_WRITE_BARRIER(sc); 448 } 449 450 Static void 451 ar5008_rfsilent_init(struct athn_softc *sc) 452 { 453 uint32_t reg; 454 455 /* Configure hardware radio switch. */ 456 AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); 457 reg = AR_READ(sc, AR_GPIO_INPUT_MUX2); 458 reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0); 459 AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg); 460 ar5008_gpio_config_input(sc, sc->sc_rfsilent_pin); 461 AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB); 462 if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) { 463 AR_SETBITS(sc, AR_GPIO_INTR_POL, 464 AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin)); 465 } 466 AR_WRITE_BARRIER(sc); 467 } 468 469 Static int 470 ar5008_dma_alloc(struct athn_softc *sc) 471 { 472 int error; 473 474 error = ar5008_tx_alloc(sc); 475 if (error != 0) 476 return error; 477 478 error = ar5008_rx_alloc(sc); 479 if (error != 0) 480 return error; 481 482 return 0; 483 } 484 485 Static void 486 ar5008_dma_free(struct athn_softc *sc) 487 { 488 489 ar5008_tx_free(sc); 490 ar5008_rx_free(sc); 491 } 492 493 Static int 494 ar5008_tx_alloc(struct athn_softc *sc) 495 { 496 struct athn_tx_buf *bf; 497 bus_size_t size; 498 int error, nsegs, i; 499 500 /* 501 * Allocate a pool of Tx descriptors shared between all Tx queues. 502 */ 503 size = ATHN_NTXBUFS * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc); 504 505 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 506 BUS_DMA_NOWAIT, &sc->sc_map); 507 if (error != 0) 508 goto fail; 509 510 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1, 511 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); 512 &nsegs, BUS_DMA_NOWAIT); 513 if (error != 0) 514 goto fail; 515 516 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size, 517 (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 518 if (error != 0) 519 goto fail; 520 521 error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_map, &sc->sc_seg, 1, size, 522 BUS_DMA_NOWAIT); 523 if (error != 0) 524 goto fail; 525 526 SIMPLEQ_INIT(&sc->sc_txbufs); 527 for (i = 0; i < ATHN_NTXBUFS; i++) { 528 bf = &sc->sc_txpool[i]; 529 530 error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ, 531 AR5008_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT, 532 &bf->bf_map); 533 if (error != 0) { 534 aprint_error_dev(sc->sc_dev, 535 "could not create Tx buf DMA map\n"); 536 goto fail; 537 } 538 539 bf->bf_descs = 540 &((struct ar_tx_desc *)sc->sc_descs)[i * AR5008_MAX_SCATTER]; 541 bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr + 542 i * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc); 543 544 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list); 545 } 546 return 0; 547 fail: 548 ar5008_tx_free(sc); 549 return error; 550 } 551 552 Static void 553 ar5008_tx_free(struct athn_softc *sc) 554 { 555 struct athn_tx_buf *bf; 556 int i; 557 558 for (i = 0; i < ATHN_NTXBUFS; i++) { 559 bf = &sc->sc_txpool[i]; 560 561 if (bf->bf_map != NULL) 562 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); 563 } 564 /* Free Tx descriptors. */ 565 if (sc->sc_map != NULL) { 566 if (sc->sc_descs != NULL) { 567 bus_dmamap_unload(sc->sc_dmat, sc->sc_map); 568 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs, 569 ATHN_NTXBUFS * AR5008_MAX_SCATTER * 570 sizeof(struct ar_tx_desc)); 571 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1); 572 } 573 bus_dmamap_destroy(sc->sc_dmat, sc->sc_map); 574 } 575 } 576 577 Static int 578 ar5008_rx_alloc(struct athn_softc *sc) 579 { 580 struct athn_rxq *rxq = &sc->sc_rxq[0]; 581 struct athn_rx_buf *bf; 582 struct ar_rx_desc *ds; 583 bus_size_t size; 584 int error, nsegs, i; 585 586 rxq->bf = malloc(ATHN_NRXBUFS * sizeof(*bf), M_DEVBUF, 587 M_NOWAIT | M_ZERO); 588 if (rxq->bf == NULL) 589 return ENOMEM; 590 591 size = ATHN_NRXBUFS * sizeof(struct ar_rx_desc); 592 593 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 594 BUS_DMA_NOWAIT, &rxq->map); 595 if (error != 0) 596 goto fail; 597 598 error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rxq->seg, 1, 599 // &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); 600 &nsegs, BUS_DMA_NOWAIT); 601 if (error != 0) 602 goto fail; 603 604 error = bus_dmamem_map(sc->sc_dmat, &rxq->seg, 1, size, 605 (void **)&rxq->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); 606 if (error != 0) 607 goto fail; 608 609 error = bus_dmamap_load_raw(sc->sc_dmat, rxq->map, &rxq->seg, 1, 610 size, BUS_DMA_NOWAIT); 611 if (error != 0) 612 goto fail; 613 614 for (i = 0; i < ATHN_NRXBUFS; i++) { 615 bf = &rxq->bf[i]; 616 ds = &((struct ar_rx_desc *)rxq->descs)[i]; 617 618 error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1, 619 ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 620 &bf->bf_map); 621 if (error != 0) { 622 aprint_error_dev(sc->sc_dev, 623 " could not create Rx buf DMA map\n"); 624 goto fail; 625 } 626 /* 627 * Assumes MCLGETI returns cache-line-size aligned buffers. 628 * XXX: does ours? 629 */ 630 bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 631 if (bf->bf_m == NULL) { 632 aprint_error_dev(sc->sc_dev, 633 "could not allocate Rx mbuf\n"); 634 error = ENOBUFS; 635 goto fail; 636 } 637 638 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, 639 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, 640 BUS_DMA_NOWAIT | BUS_DMA_READ); 641 if (error != 0) { 642 aprint_error_dev(sc->sc_dev, 643 "could not DMA map Rx buffer\n"); 644 goto fail; 645 } 646 647 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 648 BUS_DMASYNC_PREREAD); 649 650 bf->bf_desc = ds; 651 bf->bf_daddr = rxq->map->dm_segs[0].ds_addr + 652 i * sizeof(struct ar_rx_desc); 653 } 654 return 0; 655 fail: 656 ar5008_rx_free(sc); 657 return error; 658 } 659 660 Static void 661 ar5008_rx_free(struct athn_softc *sc) 662 { 663 struct athn_rxq *rxq = &sc->sc_rxq[0]; 664 struct athn_rx_buf *bf; 665 int i; 666 667 if (rxq->bf == NULL) 668 return; 669 for (i = 0; i < ATHN_NRXBUFS; i++) { 670 bf = &rxq->bf[i]; 671 672 if (bf->bf_map != NULL) 673 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); 674 if (bf->bf_m != NULL) 675 m_freem(bf->bf_m); 676 } 677 free(rxq->bf, M_DEVBUF); 678 679 /* Free Rx descriptors. */ 680 if (rxq->map != NULL) { 681 if (rxq->descs != NULL) { 682 bus_dmamap_unload(sc->sc_dmat, rxq->map); 683 bus_dmamem_unmap(sc->sc_dmat, (void *)rxq->descs, 684 ATHN_NRXBUFS * sizeof(struct ar_rx_desc)); 685 bus_dmamem_free(sc->sc_dmat, &rxq->seg, 1); 686 } 687 bus_dmamap_destroy(sc->sc_dmat, rxq->map); 688 } 689 } 690 691 Static void 692 ar5008_rx_enable(struct athn_softc *sc) 693 { 694 struct athn_rxq *rxq = &sc->sc_rxq[0]; 695 struct athn_rx_buf *bf; 696 struct ar_rx_desc *ds; 697 int i; 698 699 /* Setup and link Rx descriptors. */ 700 SIMPLEQ_INIT(&rxq->head); 701 rxq->lastds = NULL; 702 for (i = 0; i < ATHN_NRXBUFS; i++) { 703 bf = &rxq->bf[i]; 704 ds = bf->bf_desc; 705 706 memset(ds, 0, sizeof(*ds)); 707 ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; 708 ds->ds_ctl1 = SM(AR_RXC1_BUF_LEN, ATHN_RXBUFSZ); 709 710 if (rxq->lastds != NULL) { 711 ((struct ar_rx_desc *)rxq->lastds)->ds_link = 712 bf->bf_daddr; 713 } 714 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); 715 rxq->lastds = ds; 716 } 717 bus_dmamap_sync(sc->sc_dmat, rxq->map, 0, rxq->map->dm_mapsize, 718 BUS_DMASYNC_PREREAD); 719 720 /* Enable Rx. */ 721 AR_WRITE(sc, AR_RXDP, SIMPLEQ_FIRST(&rxq->head)->bf_daddr); 722 AR_WRITE(sc, AR_CR, AR_CR_RXE); 723 AR_WRITE_BARRIER(sc); 724 } 725 726 Static void 727 ar5008_rx_radiotap(struct athn_softc *sc, struct mbuf *m, 728 struct ar_rx_desc *ds) 729 { 730 struct athn_rx_radiotap_header *tap = &sc->sc_rxtap; 731 struct ieee80211com *ic = &sc->sc_ic; 732 uint64_t tsf; 733 uint32_t tstamp; 734 uint8_t rate; 735 736 /* Extend the 15-bit timestamp from Rx descriptor to 64-bit TSF. */ 737 tstamp = ds->ds_status2; 738 tsf = AR_READ(sc, AR_TSF_U32); 739 tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32); 740 if ((tsf & 0x7fff) < tstamp) 741 tsf -= 0x8000; 742 tsf = (tsf & ~0x7fff) | tstamp; 743 744 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; 745 tap->wr_tsft = htole64(tsf); 746 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 747 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 748 tap->wr_dbm_antsignal = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED); 749 /* XXX noise. */ 750 tap->wr_antenna = MS(ds->ds_status3, AR_RXS3_ANTENNA); 751 tap->wr_rate = 0; /* In case it can't be found below. */ 752 if (AR_SREV_5416_20_OR_LATER(sc)) 753 rate = MS(ds->ds_status0, AR_RXS0_RATE); 754 else 755 rate = MS(ds->ds_status3, AR_RXS3_RATE); 756 if (rate & 0x80) { /* HT. */ 757 /* Bit 7 set means HT MCS instead of rate. */ 758 tap->wr_rate = rate; 759 if (!(ds->ds_status3 & AR_RXS3_GI)) 760 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; 761 762 } 763 else if (rate & 0x10) { /* CCK. */ 764 if (rate & 0x04) 765 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 766 switch (rate & ~0x14) { 767 case 0xb: tap->wr_rate = 2; break; 768 case 0xa: tap->wr_rate = 4; break; 769 case 0x9: tap->wr_rate = 11; break; 770 case 0x8: tap->wr_rate = 22; break; 771 } 772 } 773 else { /* OFDM. */ 774 switch (rate) { 775 case 0xb: tap->wr_rate = 12; break; 776 case 0xf: tap->wr_rate = 18; break; 777 case 0xa: tap->wr_rate = 24; break; 778 case 0xe: tap->wr_rate = 36; break; 779 case 0x9: tap->wr_rate = 48; break; 780 case 0xd: tap->wr_rate = 72; break; 781 case 0x8: tap->wr_rate = 96; break; 782 case 0xc: tap->wr_rate = 108; break; 783 } 784 } 785 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 786 } 787 788 static __inline int 789 ar5008_rx_process(struct athn_softc *sc) 790 { 791 struct ieee80211com *ic = &sc->sc_ic; 792 struct ifnet *ifp = &sc->sc_if; 793 struct athn_rxq *rxq = &sc->sc_rxq[0]; 794 struct athn_rx_buf *bf, *nbf; 795 struct ar_rx_desc *ds; 796 struct ieee80211_frame *wh; 797 struct ieee80211_node *ni; 798 struct mbuf *m, *m1; 799 u_int32_t rstamp; 800 int error, len, rssi; 801 802 bf = SIMPLEQ_FIRST(&rxq->head); 803 if (__predict_false(bf == NULL)) { /* Should not happen. */ 804 aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n"); 805 return ENOENT; 806 } 807 ds = bf->bf_desc; 808 809 if (!(ds->ds_status8 & AR_RXS8_DONE)) { 810 /* 811 * On some parts, the status words can get corrupted 812 * (including the "done" bit), so we check the next 813 * descriptor "done" bit. If it is set, it is a good 814 * indication that the status words are corrupted, so 815 * we skip this descriptor and drop the frame. 816 */ 817 nbf = SIMPLEQ_NEXT(bf, bf_list); 818 if (nbf != NULL && 819 (((struct ar_rx_desc *)nbf->bf_desc)->ds_status8 & 820 AR_RXS8_DONE)) { 821 DPRINTFN(DBG_RX, sc, 822 "corrupted descriptor status=0x%x\n", 823 ds->ds_status8); 824 /* HW will not "move" RXDP in this case, so do it. */ 825 AR_WRITE(sc, AR_RXDP, nbf->bf_daddr); 826 AR_WRITE_BARRIER(sc); 827 ifp->if_ierrors++; 828 goto skip; 829 } 830 return EBUSY; 831 } 832 833 if (__predict_false(ds->ds_status1 & AR_RXS1_MORE)) { 834 /* Drop frames that span multiple Rx descriptors. */ 835 DPRINTFN(DBG_RX, sc, "dropping split frame\n"); 836 ifp->if_ierrors++; 837 goto skip; 838 } 839 if (!(ds->ds_status8 & AR_RXS8_FRAME_OK)) { 840 if (ds->ds_status8 & AR_RXS8_CRC_ERR) 841 DPRINTFN(DBG_RX, sc, "CRC error\n"); 842 else if (ds->ds_status8 & AR_RXS8_PHY_ERR) 843 DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n", 844 MS(ds->ds_status8, AR_RXS8_PHY_ERR_CODE)); 845 else if (ds->ds_status8 & AR_RXS8_DECRYPT_CRC_ERR) 846 DPRINTFN(DBG_RX, sc, "Decryption CRC error\n"); 847 else if (ds->ds_status8 & AR_RXS8_MICHAEL_ERR) { 848 DPRINTFN(DBG_RX, sc, "Michael MIC failure\n"); 849 850 len = MS(ds->ds_status1, AR_RXS1_DATA_LEN); 851 m = bf->bf_m; 852 m->m_pkthdr.rcvif = ifp; 853 m->m_pkthdr.len = m->m_len = len; 854 wh = mtod(m, struct ieee80211_frame *); 855 856 /* Report Michael MIC failures to net80211. */ 857 ieee80211_notify_michael_failure(ic, wh, 0 /* XXX: keyix */); 858 } 859 ifp->if_ierrors++; 860 goto skip; 861 } 862 863 len = MS(ds->ds_status1, AR_RXS1_DATA_LEN); 864 if (__predict_false(len < (int)IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ)) { 865 DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%d\n", len); 866 ifp->if_ierrors++; 867 goto skip; 868 } 869 870 /* Allocate a new Rx buffer. */ 871 m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ); 872 if (__predict_false(m1 == NULL)) { 873 ic->ic_stats.is_rx_nobuf++; 874 ifp->if_ierrors++; 875 goto skip; 876 } 877 878 /* Sync and unmap the old Rx buffer. */ 879 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 880 BUS_DMASYNC_POSTREAD); 881 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 882 883 /* Map the new Rx buffer. */ 884 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *), 885 ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); 886 if (__predict_false(error != 0)) { 887 m_freem(m1); 888 889 /* Remap the old Rx buffer or panic. */ 890 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, 891 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, 892 BUS_DMA_NOWAIT | BUS_DMA_READ); 893 KASSERT(error != 0); 894 ifp->if_ierrors++; 895 goto skip; 896 } 897 898 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, 899 BUS_DMASYNC_PREREAD); 900 901 /* Write physical address of new Rx buffer. */ 902 ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; 903 904 m = bf->bf_m; 905 bf->bf_m = m1; 906 907 /* Finalize mbuf. */ 908 m->m_pkthdr.rcvif = ifp; 909 m->m_pkthdr.len = m->m_len = len; 910 911 /* Grab a reference to the source node. */ 912 wh = mtod(m, struct ieee80211_frame *); 913 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 914 915 /* Remove any HW padding after the 802.11 header. */ 916 if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) { 917 u_int hdrlen = ieee80211_anyhdrsize(wh); 918 if (hdrlen & 3) { 919 ovbcopy(wh, (uint8_t *)wh + 2, hdrlen); 920 m_adj(m, 2); 921 } 922 } 923 if (__predict_false(sc->sc_drvbpf != NULL)) 924 ar5008_rx_radiotap(sc, m, ds); 925 926 /* Trim 802.11 FCS after radiotap. */ 927 m_adj(m, -IEEE80211_CRC_LEN); 928 929 /* Send the frame to the 802.11 layer. */ 930 rssi = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED); 931 rstamp = ds->ds_status2; 932 ieee80211_input(ic, m, ni, rssi, rstamp); 933 934 /* Node is no longer needed. */ 935 ieee80211_free_node(ni); 936 937 skip: 938 /* Unlink this descriptor from head. */ 939 SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list); 940 memset(&ds->ds_status0, 0, 36); /* XXX Really needed? */ 941 ds->ds_status8 &= ~AR_RXS8_DONE; 942 ds->ds_link = 0; 943 944 /* Re-use this descriptor and link it to tail. */ 945 if (__predict_true(!SIMPLEQ_EMPTY(&rxq->head))) 946 ((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr; 947 else 948 AR_WRITE(sc, AR_RXDP, bf->bf_daddr); 949 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); 950 rxq->lastds = ds; 951 952 /* Re-enable Rx. */ 953 AR_WRITE(sc, AR_CR, AR_CR_RXE); 954 AR_WRITE_BARRIER(sc); 955 return 0; 956 } 957 958 Static void 959 ar5008_rx_intr(struct athn_softc *sc) 960 { 961 962 while (ar5008_rx_process(sc) == 0) 963 continue; 964 } 965 966 Static int 967 ar5008_tx_process(struct athn_softc *sc, int qid) 968 { 969 struct ifnet *ifp = &sc->sc_if; 970 struct athn_txq *txq = &sc->sc_txq[qid]; 971 struct athn_node *an; 972 struct athn_tx_buf *bf; 973 struct ar_tx_desc *ds; 974 uint8_t failcnt; 975 976 bf = SIMPLEQ_FIRST(&txq->head); 977 if (bf == NULL) 978 return ENOENT; 979 /* Get descriptor of last DMA segment. */ 980 ds = &((struct ar_tx_desc *)bf->bf_descs)[bf->bf_map->dm_nsegs - 1]; 981 982 if (!(ds->ds_status9 & AR_TXS9_DONE)) 983 return EBUSY; 984 985 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list); 986 ifp->if_opackets++; 987 988 sc->sc_tx_timer = 0; 989 990 if (ds->ds_status1 & AR_TXS1_EXCESSIVE_RETRIES) 991 ifp->if_oerrors++; 992 993 if (ds->ds_status1 & AR_TXS1_UNDERRUN) 994 athn_inc_tx_trigger_level(sc); 995 996 an = (struct athn_node *)bf->bf_ni; 997 /* 998 * NB: the data fail count contains the number of un-acked tries 999 * for the final series used. We must add the number of tries for 1000 * each series that was fully processed. 1001 */ 1002 failcnt = MS(ds->ds_status1, AR_TXS1_DATA_FAIL_CNT); 1003 /* NB: Assume two tries per series. */ 1004 failcnt += MS(ds->ds_status9, AR_TXS9_FINAL_IDX) * 2; 1005 1006 /* Update rate control statistics. */ 1007 an->amn.amn_txcnt++; 1008 if (failcnt > 0) 1009 an->amn.amn_retrycnt++; 1010 1011 DPRINTFN(DBG_TX, sc, "Tx done qid=%d status1=%d fail count=%d\n", 1012 qid, ds->ds_status1, failcnt); 1013 1014 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1015 BUS_DMASYNC_POSTWRITE); 1016 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 1017 1018 m_freem(bf->bf_m); 1019 bf->bf_m = NULL; 1020 ieee80211_free_node(bf->bf_ni); 1021 bf->bf_ni = NULL; 1022 1023 /* Link Tx buffer back to global free list. */ 1024 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list); 1025 return 0; 1026 } 1027 1028 Static void 1029 ar5008_tx_intr(struct athn_softc *sc) 1030 { 1031 struct ifnet *ifp = &sc->sc_if; 1032 uint16_t mask = 0; 1033 uint32_t reg; 1034 int qid; 1035 1036 reg = AR_READ(sc, AR_ISR_S0_S); 1037 mask |= MS(reg, AR_ISR_S0_QCU_TXOK); 1038 mask |= MS(reg, AR_ISR_S0_QCU_TXDESC); 1039 1040 reg = AR_READ(sc, AR_ISR_S1_S); 1041 mask |= MS(reg, AR_ISR_S1_QCU_TXERR); 1042 mask |= MS(reg, AR_ISR_S1_QCU_TXEOL); 1043 1044 DPRINTFN(DBG_TX, sc, "Tx interrupt mask=0x%x\n", mask); 1045 for (qid = 0; mask != 0; mask >>= 1, qid++) { 1046 if (mask & 1) 1047 while (ar5008_tx_process(sc, qid) == 0); 1048 } 1049 if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) { 1050 ifp->if_flags &= ~IFF_OACTIVE; 1051 ifp->if_start(ifp); 1052 } 1053 } 1054 1055 #ifndef IEEE80211_STA_ONLY 1056 /* 1057 * Process Software Beacon Alert interrupts. 1058 */ 1059 Static int 1060 ar5008_swba_intr(struct athn_softc *sc) 1061 { 1062 struct ieee80211com *ic = &sc->sc_ic; 1063 struct ifnet *ifp = &sc->sc_if; 1064 struct ieee80211_node *ni = ic->ic_bss; 1065 struct athn_tx_buf *bf = sc->sc_bcnbuf; 1066 struct ieee80211_frame *wh; 1067 struct ieee80211_beacon_offsets bo; 1068 struct ar_tx_desc *ds; 1069 struct mbuf *m; 1070 uint8_t ridx, hwrate; 1071 int error, totlen; 1072 1073 #if notyet 1074 if (ic->ic_tim_mcast_pending && 1075 IF_IS_EMPTY(&ni->ni_savedq) && 1076 SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head)) 1077 ic->ic_tim_mcast_pending = 0; 1078 #endif 1079 if (ic->ic_dtim_count == 0) 1080 ic->ic_dtim_count = ic->ic_dtim_period - 1; 1081 else 1082 ic->ic_dtim_count--; 1083 1084 /* Make sure previous beacon has been sent. */ 1085 if (athn_tx_pending(sc, ATHN_QID_BEACON)) { 1086 DPRINTFN(DBG_INTR, sc, "beacon stuck\n"); 1087 return EBUSY; 1088 } 1089 /* Get new beacon. */ 1090 m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo); 1091 if (__predict_false(m == NULL)) 1092 return ENOBUFS; 1093 /* Assign sequence number. */ 1094 /* XXX: use non-QoS tid? */ 1095 wh = mtod(m, struct ieee80211_frame *); 1096 *(uint16_t *)&wh->i_seq[0] = 1097 htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 1098 ic->ic_bss->ni_txseqs[0]++; 1099 1100 /* Unmap and free old beacon if any. */ 1101 if (__predict_true(bf->bf_m != NULL)) { 1102 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, 1103 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1104 bus_dmamap_unload(sc->sc_dmat, bf->bf_map); 1105 m_freem(bf->bf_m); 1106 bf->bf_m = NULL; 1107 } 1108 /* DMA map new beacon. */ 1109 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1110 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1111 if (__predict_false(error != 0)) { 1112 m_freem(m); 1113 return error; 1114 } 1115 bf->bf_m = m; 1116 1117 /* Setup Tx descriptor (simplified ar5008_tx()). */ 1118 ds = bf->bf_descs; 1119 memset(ds, 0, sizeof(*ds)); 1120 1121 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1122 ds->ds_ctl0 = SM(AR_TXC0_FRAME_LEN, totlen); 1123 ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, AR_MAX_RATE_POWER); 1124 ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, AR_FRAME_TYPE_BEACON); 1125 ds->ds_ctl1 |= AR_TXC1_NO_ACK; 1126 ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, AR_ENCR_TYPE_CLEAR); 1127 1128 /* Write number of tries. */ 1129 ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 1); 1130 1131 /* Write Tx rate. */ 1132 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 1133 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; 1134 hwrate = athn_rates[ridx].hwrate; 1135 ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, hwrate); 1136 1137 /* Write Tx chains. */ 1138 ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask); 1139 1140 ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; 1141 /* Segment length must be a multiple of 4. */ 1142 ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN, 1143 (bf->bf_map->dm_segs[0].ds_len + 3) & ~3); 1144 1145 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1146 BUS_DMASYNC_PREWRITE); 1147 1148 /* Stop Tx DMA before putting the new beacon on the queue. */ 1149 athn_stop_tx_dma(sc, ATHN_QID_BEACON); 1150 1151 AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr); 1152 1153 for(;;) { 1154 if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) 1155 break; 1156 1157 IF_DEQUEUE(&ni->ni_savedq, m); 1158 if (m == NULL) 1159 break; 1160 if (!IF_IS_EMPTY(&ni->ni_savedq)) { 1161 /* more queued frames, set the more data bit */ 1162 wh = mtod(m, struct ieee80211_frame *); 1163 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1164 } 1165 1166 if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) { 1167 ieee80211_free_node(ni); 1168 ifp->if_oerrors++; 1169 break; 1170 } 1171 } 1172 1173 /* Kick Tx. */ 1174 AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON); 1175 AR_WRITE_BARRIER(sc); 1176 return 0; 1177 } 1178 #endif 1179 1180 Static int 1181 ar5008_intr(struct athn_softc *sc) 1182 { 1183 uint32_t intr, intr5, sync; 1184 1185 /* Get pending interrupts. */ 1186 intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE); 1187 if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) { 1188 intr = AR_READ(sc, AR_INTR_SYNC_CAUSE); 1189 if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0) 1190 return 0; /* Not for us. */ 1191 } 1192 1193 if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) && 1194 (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) 1195 intr = AR_READ(sc, AR_ISR); 1196 else 1197 intr = 0; 1198 sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync; 1199 if (intr == 0 && sync == 0) 1200 return 0; /* Not for us. */ 1201 1202 if (intr != 0) { 1203 if (intr & AR_ISR_BCNMISC) { 1204 uint32_t intr2 = AR_READ(sc, AR_ISR_S2); 1205 #if notyet 1206 if (intr2 & AR_ISR_S2_TIM) 1207 /* TBD */; 1208 if (intr2 & AR_ISR_S2_TSFOOR) 1209 /* TBD */; 1210 #else 1211 __USE(intr2); 1212 #endif 1213 } 1214 intr = AR_READ(sc, AR_ISR_RAC); 1215 if (intr == AR_INTR_SPURIOUS) 1216 return 1; 1217 1218 #ifndef IEEE80211_STA_ONLY 1219 if (intr & AR_ISR_SWBA) 1220 ar5008_swba_intr(sc); 1221 #endif 1222 if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) 1223 ar5008_rx_intr(sc); 1224 if (intr & (AR_ISR_RXOK | AR_ISR_RXERR | AR_ISR_RXORN)) 1225 ar5008_rx_intr(sc); 1226 1227 if (intr & (AR_ISR_TXOK | AR_ISR_TXDESC | 1228 AR_ISR_TXERR | AR_ISR_TXEOL)) 1229 ar5008_tx_intr(sc); 1230 1231 intr5 = AR_READ(sc, AR_ISR_S5_S); 1232 if (intr & AR_ISR_GENTMR) { 1233 if (intr5 & AR_ISR_GENTMR) { 1234 DPRINTFN(DBG_INTR, sc, 1235 "GENTMR trigger=%d thresh=%d\n", 1236 MS(intr5, AR_ISR_S5_GENTIMER_TRIG), 1237 MS(intr5, AR_ISR_S5_GENTIMER_THRESH)); 1238 } 1239 } 1240 #if notyet 1241 if (intr5 & AR_ISR_S5_TIM_TIMER) { 1242 /* TBD */; 1243 } 1244 #endif 1245 } 1246 if (sync != 0) { 1247 #if notyet 1248 if (sync & 1249 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) { 1250 /* TBD */; 1251 } 1252 #endif 1253 if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { 1254 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF); 1255 AR_WRITE(sc, AR_RC, 0); 1256 } 1257 1258 if ((sc->sc_flags & ATHN_FLAG_RFSILENT) && 1259 (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) { 1260 pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF); 1261 return 1; 1262 } 1263 1264 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync); 1265 (void)AR_READ(sc, AR_INTR_SYNC_CAUSE); 1266 } 1267 return 1; 1268 } 1269 1270 Static int 1271 ar5008_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 1272 int txflags) 1273 { 1274 struct ieee80211com *ic = &sc->sc_ic; 1275 struct ieee80211_key *k = NULL; 1276 struct ieee80211_frame *wh; 1277 struct athn_series series[4]; 1278 struct ar_tx_desc *ds, *lastds; 1279 struct athn_txq *txq; 1280 struct athn_tx_buf *bf; 1281 struct athn_node *an = (void *)ni; 1282 struct mbuf *m1; 1283 uint16_t qos; 1284 uint8_t txpower, type, encrtype, ridx[4]; 1285 int i, error, totlen, hasqos, qid; 1286 1287 /* Grab a Tx buffer from our global free list. */ 1288 bf = SIMPLEQ_FIRST(&sc->sc_txbufs); 1289 KASSERT(bf != NULL); 1290 1291 /* Map 802.11 frame type to hardware frame type. */ 1292 wh = mtod(m, struct ieee80211_frame *); 1293 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1294 IEEE80211_FC0_TYPE_MGT) { 1295 /* NB: Beacons do not use ar5008_tx(). */ 1296 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1297 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1298 type = AR_FRAME_TYPE_PROBE_RESP; 1299 else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1300 IEEE80211_FC0_SUBTYPE_ATIM) 1301 type = AR_FRAME_TYPE_ATIM; 1302 else 1303 type = AR_FRAME_TYPE_NORMAL; 1304 } 1305 else if ((wh->i_fc[0] & 1306 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1307 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) { 1308 type = AR_FRAME_TYPE_PSPOLL; 1309 } 1310 else 1311 type = AR_FRAME_TYPE_NORMAL; 1312 1313 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 1314 k = ieee80211_crypto_encap(ic, ni, m); 1315 if (k == NULL) 1316 return ENOBUFS; 1317 1318 /* packet header may have moved, reset our local pointer */ 1319 wh = mtod(m, struct ieee80211_frame *); 1320 } 1321 1322 /* XXX 2-byte padding for QoS and 4-addr headers. */ 1323 1324 /* Select the HW Tx queue to use for this frame. */ 1325 if ((hasqos = ieee80211_has_qos(wh))) { 1326 #ifdef notyet_edca 1327 uint8_t tid; 1328 1329 qos = ieee80211_get_qos(wh); 1330 tid = qos & IEEE80211_QOS_TID; 1331 qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)]; 1332 #else 1333 qos = ieee80211_get_qos(wh); 1334 qid = ATHN_QID_AC_BE; 1335 #endif /* notyet_edca */ 1336 } 1337 else if (type == AR_FRAME_TYPE_PSPOLL) { 1338 qos = 0; 1339 qid = ATHN_QID_PSPOLL; 1340 } 1341 else if (txflags & ATHN_TXFLAG_CAB) { 1342 qos = 0; 1343 qid = ATHN_QID_CAB; 1344 } 1345 else { 1346 qos = 0; 1347 qid = ATHN_QID_AC_BE; 1348 } 1349 txq = &sc->sc_txq[qid]; 1350 1351 /* Select the transmit rates to use for this frame. */ 1352 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1353 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != 1354 IEEE80211_FC0_TYPE_DATA) { 1355 /* Use lowest rate for all tries. */ 1356 ridx[0] = ridx[1] = ridx[2] = ridx[3] = 1357 (ic->ic_curmode == IEEE80211_MODE_11A) ? 1358 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; 1359 } 1360 else if (ic->ic_fixed_rate != -1) { 1361 /* Use same fixed rate for all tries. */ 1362 ridx[0] = ridx[1] = ridx[2] = ridx[3] = 1363 sc->sc_fixed_ridx; 1364 } 1365 else { 1366 int txrate = ni->ni_txrate; 1367 /* Use fallback table of the node. */ 1368 for (i = 0; i < 4; i++) { 1369 ridx[i] = an->ridx[txrate]; 1370 txrate = an->fallback[txrate]; 1371 } 1372 } 1373 1374 if (__predict_false(sc->sc_drvbpf != NULL)) { 1375 struct athn_tx_radiotap_header *tap = &sc->sc_txtap; 1376 1377 tap->wt_flags = 0; 1378 /* Use initial transmit rate. */ 1379 tap->wt_rate = athn_rates[ridx[0]].rate; 1380 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1381 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1382 // XXX tap->wt_hwqueue = qid; 1383 if (ridx[0] != ATHN_RIDX_CCK1 && 1384 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1385 tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 1386 1387 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); 1388 } 1389 1390 /* DMA map mbuf. */ 1391 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1392 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1393 if (__predict_false(error != 0)) { 1394 if (error != EFBIG) { 1395 aprint_error_dev(sc->sc_dev, 1396 "can't map mbuf (error %d)\n", error); 1397 m_freem(m); 1398 return error; 1399 } 1400 /* 1401 * DMA mapping requires too many DMA segments; linearize 1402 * mbuf in kernel virtual address space and retry. 1403 */ 1404 MGETHDR(m1, M_DONTWAIT, MT_DATA); 1405 if (m1 == NULL) { 1406 m_freem(m); 1407 return ENOBUFS; 1408 } 1409 if (m->m_pkthdr.len > (int)MHLEN) { 1410 MCLGET(m1, M_DONTWAIT); 1411 if (!(m1->m_flags & M_EXT)) { 1412 m_freem(m); 1413 m_freem(m1); 1414 return ENOBUFS; 1415 } 1416 } 1417 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); 1418 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; 1419 m_freem(m); 1420 m = m1; 1421 1422 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, 1423 BUS_DMA_NOWAIT | BUS_DMA_WRITE); 1424 if (error != 0) { 1425 aprint_error_dev(sc->sc_dev, 1426 "can't map mbuf (error %d)\n", error); 1427 m_freem(m); 1428 return error; 1429 } 1430 } 1431 bf->bf_m = m; 1432 bf->bf_ni = ni; 1433 bf->bf_txflags = txflags; 1434 1435 wh = mtod(m, struct ieee80211_frame *); 1436 1437 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 1438 1439 /* Clear all Tx descriptors that we will use. */ 1440 memset(bf->bf_descs, 0, bf->bf_map->dm_nsegs * sizeof(*ds)); 1441 1442 /* Setup first Tx descriptor. */ 1443 ds = bf->bf_descs; 1444 1445 ds->ds_ctl0 = AR_TXC0_INTR_REQ | AR_TXC0_CLR_DEST_MASK; 1446 txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */ 1447 ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, txpower); 1448 1449 ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, type); 1450 1451 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 1452 (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) == 1453 IEEE80211_QOS_ACKPOLICY_NOACK)) 1454 ds->ds_ctl1 |= AR_TXC1_NO_ACK; 1455 #if notyet 1456 if (0 && k != NULL) { 1457 uintptr_t entry; 1458 1459 /* 1460 * Map 802.11 cipher to hardware encryption type and 1461 * compute MIC+ICV overhead. 1462 */ 1463 totlen += k->wk_keylen; 1464 switch (k->wk_cipher->ic_cipher) { 1465 case IEEE80211_CIPHER_WEP: 1466 encrtype = AR_ENCR_TYPE_WEP; 1467 break; 1468 case IEEE80211_CIPHER_TKIP: 1469 encrtype = AR_ENCR_TYPE_TKIP; 1470 break; 1471 case IEEE80211_CIPHER_AES_OCB: 1472 case IEEE80211_CIPHER_AES_CCM: 1473 encrtype = AR_ENCR_TYPE_AES; 1474 break; 1475 default: 1476 panic("unsupported cipher"); 1477 } 1478 /* 1479 * NB: The key cache entry index is stored in the key 1480 * private field when the key is installed. 1481 */ 1482 entry = (uintptr_t)k->k_priv; 1483 ds->ds_ctl1 |= SM(AR_TXC1_DEST_IDX, entry); 1484 ds->ds_ctl0 |= AR_TXC0_DEST_IDX_VALID; 1485 } 1486 else 1487 #endif 1488 encrtype = AR_ENCR_TYPE_CLEAR; 1489 ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, encrtype); 1490 1491 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 1492 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1493 /* NB: Group frames are sent using CCK in 802.11b/g. */ 1494 if (totlen > ic->ic_rtsthreshold) { 1495 ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE; 1496 } 1497 else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 1498 athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) { 1499 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 1500 ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE; 1501 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 1502 ds->ds_ctl0 |= AR_TXC0_CTS_ENABLE; 1503 } 1504 } 1505 if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) { 1506 /* Disable multi-rate retries when protection is used. */ 1507 ridx[1] = ridx[2] = ridx[3] = ridx[0]; 1508 } 1509 /* Setup multi-rate retries. */ 1510 for (i = 0; i < 4; i++) { 1511 series[i].hwrate = athn_rates[ridx[i]].hwrate; 1512 if (athn_rates[ridx[i]].phy == IEEE80211_T_DS && 1513 ridx[i] != ATHN_RIDX_CCK1 && 1514 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1515 series[i].hwrate |= 0x04; 1516 series[i].dur = 0; 1517 } 1518 if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) { 1519 /* Compute duration for each series. */ 1520 for (i = 0; i < 4; i++) { 1521 series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN, 1522 athn_rates[ridx[i]].rspridx, ic->ic_flags); 1523 } 1524 } 1525 1526 /* Write number of tries for each series. */ 1527 ds->ds_ctl2 = 1528 SM(AR_TXC2_XMIT_DATA_TRIES0, 2) | 1529 SM(AR_TXC2_XMIT_DATA_TRIES1, 2) | 1530 SM(AR_TXC2_XMIT_DATA_TRIES2, 2) | 1531 SM(AR_TXC2_XMIT_DATA_TRIES3, 4); 1532 1533 /* Tell HW to update duration field in 802.11 header. */ 1534 if (type != AR_FRAME_TYPE_PSPOLL) 1535 ds->ds_ctl2 |= AR_TXC2_DUR_UPDATE_ENA; 1536 1537 /* Write Tx rate for each series. */ 1538 ds->ds_ctl3 = 1539 SM(AR_TXC3_XMIT_RATE0, series[0].hwrate) | 1540 SM(AR_TXC3_XMIT_RATE1, series[1].hwrate) | 1541 SM(AR_TXC3_XMIT_RATE2, series[2].hwrate) | 1542 SM(AR_TXC3_XMIT_RATE3, series[3].hwrate); 1543 1544 /* Write duration for each series. */ 1545 ds->ds_ctl4 = 1546 SM(AR_TXC4_PACKET_DUR0, series[0].dur) | 1547 SM(AR_TXC4_PACKET_DUR1, series[1].dur); 1548 ds->ds_ctl5 = 1549 SM(AR_TXC5_PACKET_DUR2, series[2].dur) | 1550 SM(AR_TXC5_PACKET_DUR3, series[3].dur); 1551 1552 /* Use the same Tx chains for all tries. */ 1553 ds->ds_ctl7 = 1554 SM(AR_TXC7_CHAIN_SEL0, sc->sc_txchainmask) | 1555 SM(AR_TXC7_CHAIN_SEL1, sc->sc_txchainmask) | 1556 SM(AR_TXC7_CHAIN_SEL2, sc->sc_txchainmask) | 1557 SM(AR_TXC7_CHAIN_SEL3, sc->sc_txchainmask); 1558 #ifdef notyet 1559 #ifndef IEEE80211_NO_HT 1560 /* Use the same short GI setting for all tries. */ 1561 if (ic->ic_flags & IEEE80211_F_SHGI) 1562 ds->ds_ctl7 |= AR_TXC7_GI0123; 1563 /* Use the same channel width for all tries. */ 1564 if (ic->ic_flags & IEEE80211_F_CBW40) 1565 ds->ds_ctl7 |= AR_TXC7_2040_0123; 1566 #endif 1567 #endif 1568 1569 if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) { 1570 uint8_t protridx, hwrate; 1571 uint16_t dur = 0; 1572 1573 /* Use the same protection mode for all tries. */ 1574 if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) { 1575 ds->ds_ctl4 |= AR_TXC4_RTSCTS_QUAL01; 1576 ds->ds_ctl5 |= AR_TXC5_RTSCTS_QUAL23; 1577 } 1578 /* Select protection rate (suboptimal but ok). */ 1579 protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 1580 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2; 1581 if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) { 1582 /* Account for CTS duration. */ 1583 dur += athn_txtime(sc, IEEE80211_ACK_LEN, 1584 athn_rates[protridx].rspridx, ic->ic_flags); 1585 } 1586 dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags); 1587 if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) { 1588 /* Account for ACK duration. */ 1589 dur += athn_txtime(sc, IEEE80211_ACK_LEN, 1590 athn_rates[ridx[0]].rspridx, ic->ic_flags); 1591 } 1592 /* Write protection frame duration and rate. */ 1593 ds->ds_ctl2 |= SM(AR_TXC2_BURST_DUR, dur); 1594 hwrate = athn_rates[protridx].hwrate; 1595 if (protridx == ATHN_RIDX_CCK2 && 1596 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1597 hwrate |= 0x04; 1598 ds->ds_ctl7 |= SM(AR_TXC7_RTSCTS_RATE, hwrate); 1599 } 1600 1601 /* Finalize first Tx descriptor and fill others (if any). */ 1602 ds->ds_ctl0 |= SM(AR_TXC0_FRAME_LEN, totlen); 1603 1604 lastds = NULL; /* XXX: gcc */ 1605 for (i = 0; i < bf->bf_map->dm_nsegs; i++, ds++) { 1606 ds->ds_data = bf->bf_map->dm_segs[i].ds_addr; 1607 ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN, 1608 bf->bf_map->dm_segs[i].ds_len); 1609 1610 if (i != bf->bf_map->dm_nsegs - 1) 1611 ds->ds_ctl1 |= AR_TXC1_MORE; 1612 ds->ds_link = 0; 1613 1614 /* Chain Tx descriptor. */ 1615 if (i != 0) 1616 lastds->ds_link = bf->bf_daddr + i * sizeof(*ds); 1617 lastds = ds; 1618 } 1619 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, 1620 BUS_DMASYNC_PREWRITE); 1621 1622 if (!SIMPLEQ_EMPTY(&txq->head)) 1623 ((struct ar_tx_desc *)txq->lastds)->ds_link = bf->bf_daddr; 1624 else 1625 AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr); 1626 txq->lastds = lastds; 1627 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list); 1628 SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list); 1629 1630 ds = bf->bf_descs; 1631 DPRINTFN(DBG_TX, sc, 1632 "Tx qid=%d nsegs=%d ctl0=0x%x ctl1=0x%x ctl3=0x%x\n", 1633 qid, bf->bf_map->dm_nsegs, ds->ds_ctl0, ds->ds_ctl1, ds->ds_ctl3); 1634 1635 /* Kick Tx. */ 1636 AR_WRITE(sc, AR_Q_TXE, 1 << qid); 1637 AR_WRITE_BARRIER(sc); 1638 return 0; 1639 } 1640 1641 Static void 1642 ar5008_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c) 1643 { 1644 uint32_t reg; 1645 1646 reg = IEEE80211_IS_CHAN_2GHZ(c) ? 1647 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; 1648 if (!AR_SREV_9280_10_OR_LATER(sc)) { 1649 reg |= IEEE80211_IS_CHAN_2GHZ(c) ? 1650 AR_PHY_MODE_RF2GHZ : AR_PHY_MODE_RF5GHZ; 1651 } 1652 else if (IEEE80211_IS_CHAN_5GHZ(c) && 1653 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) { 1654 reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE; 1655 } 1656 AR_WRITE(sc, AR_PHY_MODE, reg); 1657 AR_WRITE_BARRIER(sc); 1658 } 1659 1660 static __inline uint32_t 1661 ar5008_synth_delay(struct athn_softc *sc) 1662 { 1663 uint32_t synth_delay; 1664 1665 synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY); 1666 if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B) 1667 synth_delay = (synth_delay * 4) / 22; 1668 else 1669 synth_delay = synth_delay / 10; /* in 100ns steps */ 1670 return synth_delay; 1671 } 1672 1673 Static int 1674 ar5008_rf_bus_request(struct athn_softc *sc) 1675 { 1676 int ntries; 1677 1678 /* Request RF Bus grant. */ 1679 AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); 1680 for (ntries = 0; ntries < 10000; ntries++) { 1681 if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN) 1682 return 0; 1683 DELAY(10); 1684 } 1685 DPRINTFN(DBG_RF, sc, "could not kill baseband Rx"); 1686 return ETIMEDOUT; 1687 } 1688 1689 Static void 1690 ar5008_rf_bus_release(struct athn_softc *sc) 1691 { 1692 1693 /* Wait for the synthesizer to settle. */ 1694 DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar5008_synth_delay(sc)); 1695 1696 /* Release the RF Bus grant. */ 1697 AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0); 1698 AR_WRITE_BARRIER(sc); 1699 } 1700 1701 Static void 1702 ar5008_set_phy(struct athn_softc *sc, struct ieee80211_channel *c, 1703 struct ieee80211_channel *extc) 1704 { 1705 uint32_t phy; 1706 1707 if (AR_SREV_9285_10_OR_LATER(sc)) 1708 phy = AR_READ(sc, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO; 1709 else 1710 phy = 0; 1711 phy |= AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 | 1712 AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH; 1713 #ifndef IEEE80211_NO_HT 1714 if (extc != NULL) { 1715 phy |= AR_PHY_FC_DYN2040_EN; 1716 if (extc > c) /* XXX */ 1717 phy |= AR_PHY_FC_DYN2040_PRI_CH; 1718 } 1719 #endif 1720 AR_WRITE(sc, AR_PHY_TURBO, phy); 1721 1722 AR_WRITE(sc, AR_2040_MODE, 1723 (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0); 1724 1725 /* Set global transmit timeout. */ 1726 AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25)); 1727 /* Set carrier sense timeout. */ 1728 AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15)); 1729 AR_WRITE_BARRIER(sc); 1730 } 1731 1732 Static void 1733 ar5008_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c, 1734 struct ieee80211_channel *extc) 1735 { 1736 uint32_t coeff, exp, man, reg; 1737 1738 /* Set Delta Slope (exponent and mantissa). */ 1739 coeff = (100 << 24) / c->ic_freq; 1740 athn_get_delta_slope(coeff, &exp, &man); 1741 DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man); 1742 1743 reg = AR_READ(sc, AR_PHY_TIMING3); 1744 reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp); 1745 reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man); 1746 AR_WRITE(sc, AR_PHY_TIMING3, reg); 1747 1748 /* For Short GI, coeff is 9/10 that of normal coeff. */ 1749 coeff = (9 * coeff) / 10; 1750 athn_get_delta_slope(coeff, &exp, &man); 1751 DPRINTFN(DBG_RX, sc, "delta slope coeff exp=%u man=%u\n", exp, man); 1752 1753 reg = AR_READ(sc, AR_PHY_HALFGI); 1754 reg = RW(reg, AR_PHY_HALFGI_DSC_EXP, exp); 1755 reg = RW(reg, AR_PHY_HALFGI_DSC_MAN, man); 1756 AR_WRITE(sc, AR_PHY_HALFGI, reg); 1757 AR_WRITE_BARRIER(sc); 1758 } 1759 1760 Static void 1761 ar5008_enable_antenna_diversity(struct athn_softc *sc) 1762 { 1763 1764 AR_SETBITS(sc, AR_PHY_CCK_DETECT, 1765 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); 1766 AR_WRITE_BARRIER(sc); 1767 } 1768 1769 Static void 1770 ar5008_init_baseband(struct athn_softc *sc) 1771 { 1772 uint32_t synth_delay; 1773 1774 synth_delay = ar5008_synth_delay(sc); 1775 /* Activate the PHY (includes baseband activate and synthesizer on). */ 1776 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 1777 AR_WRITE_BARRIER(sc); 1778 DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay); 1779 } 1780 1781 Static void 1782 ar5008_disable_phy(struct athn_softc *sc) 1783 { 1784 1785 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 1786 AR_WRITE_BARRIER(sc); 1787 } 1788 1789 Static void 1790 ar5008_init_chains(struct athn_softc *sc) 1791 { 1792 1793 if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5) 1794 AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1795 1796 /* Setup chain masks. */ 1797 if (sc->sc_mac_ver <= AR_SREV_VERSION_9160 && 1798 (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5)) { 1799 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, 0x7); 1800 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, 0x7); 1801 } 1802 else { 1803 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask); 1804 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask); 1805 } 1806 AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask); 1807 AR_WRITE_BARRIER(sc); 1808 } 1809 1810 Static void 1811 ar5008_set_rxchains(struct athn_softc *sc) 1812 { 1813 1814 if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) { 1815 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask); 1816 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask); 1817 AR_WRITE_BARRIER(sc); 1818 } 1819 } 1820 1821 #ifdef notused 1822 Static void 1823 ar5008_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) 1824 { 1825 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */ 1826 #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100) 1827 uint32_t reg; 1828 int i; 1829 1830 for (i = 0; i < sc->sc_nrxchains; i++) { 1831 reg = AR_READ(sc, AR_PHY_CCA(i)); 1832 if (AR_SREV_9280_10_OR_LATER(sc)) 1833 nf[i] = MS(reg, AR9280_PHY_MINCCA_PWR); 1834 else 1835 nf[i] = MS(reg, AR_PHY_MINCCA_PWR); 1836 nf[i] = SIGN_EXT(nf[i]); 1837 1838 reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); 1839 if (AR_SREV_9280_10_OR_LATER(sc)) 1840 nf_ext[i] = MS(reg, AR9280_PHY_EXT_MINCCA_PWR); 1841 else 1842 nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR); 1843 nf_ext[i] = SIGN_EXT(nf_ext[i]); 1844 } 1845 #undef SIGN_EXT 1846 } 1847 #endif /* notused */ 1848 1849 #ifdef notused 1850 Static void 1851 ar5008_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) 1852 { 1853 uint32_t reg; 1854 int i; 1855 1856 for (i = 0; i < sc->sc_nrxchains; i++) { 1857 reg = AR_READ(sc, AR_PHY_CCA(i)); 1858 reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]); 1859 AR_WRITE(sc, AR_PHY_CCA(i), reg); 1860 1861 reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); 1862 reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]); 1863 AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg); 1864 } 1865 AR_WRITE_BARRIER(sc); 1866 } 1867 #endif /* notused */ 1868 1869 #ifdef notused 1870 Static void 1871 ar5008_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c) 1872 { 1873 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; 1874 int i; 1875 1876 if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { 1877 /* Noisefloor calibration not finished. */ 1878 return; 1879 } 1880 /* Noisefloor calibration is finished. */ 1881 ar5008_read_noisefloor(sc, nf, nf_ext); 1882 1883 /* Update noisefloor history. */ 1884 for (i = 0; i < sc->sc_nrxchains; i++) { 1885 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i]; 1886 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i]; 1887 } 1888 if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX) 1889 sc->sc_nf_hist_cur = 0; 1890 } 1891 #endif /* notused */ 1892 1893 #ifdef notused 1894 Static void 1895 ar5008_bb_load_noisefloor(struct athn_softc *sc) 1896 { 1897 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; 1898 int i, ntries; 1899 1900 /* Write filtered noisefloor values. */ 1901 for (i = 0; i < sc->sc_nrxchains; i++) { 1902 nf[i] = sc->sc_nf_priv[i] * 2; 1903 nf_ext[i] = sc->sc_nf_ext_priv[i] * 2; 1904 } 1905 ar5008_write_noisefloor(sc, nf, nf_ext); 1906 1907 /* Load filtered noisefloor values into baseband. */ 1908 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); 1909 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); 1910 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 1911 /* Wait for load to complete. */ 1912 for (ntries = 0; ntries < 1000; ntries++) { 1913 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)) 1914 break; 1915 DELAY(50); 1916 } 1917 if (ntries == 1000) { 1918 DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n"); 1919 return; 1920 } 1921 1922 /* Restore noisefloor values to initial (max) values. */ 1923 for (i = 0; i < AR_MAX_CHAINS; i++) 1924 nf[i] = nf_ext[i] = -50 * 2; 1925 ar5008_write_noisefloor(sc, nf, nf_ext); 1926 } 1927 #endif /* notused */ 1928 1929 #ifdef notused 1930 Static void 1931 ar5008_noisefloor_calib(struct athn_softc *sc) 1932 { 1933 1934 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); 1935 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); 1936 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 1937 AR_WRITE_BARRIER(sc); 1938 } 1939 #endif /* notused */ 1940 1941 Static void 1942 ar5008_do_noisefloor_calib(struct athn_softc *sc) 1943 { 1944 1945 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 1946 AR_WRITE_BARRIER(sc); 1947 } 1948 1949 Static void 1950 ar5008_do_calib(struct athn_softc *sc) 1951 { 1952 uint32_t mode, reg; 1953 int log; 1954 1955 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0); 1956 log = AR_SREV_9280_10_OR_LATER(sc) ? 10 : 2; 1957 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, log); 1958 AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg); 1959 1960 if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN) 1961 mode = AR_PHY_CALMODE_ADC_GAIN; 1962 else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC) 1963 mode = AR_PHY_CALMODE_ADC_DC_PER; 1964 else /* ATHN_CAL_IQ */ 1965 mode = AR_PHY_CALMODE_IQ; 1966 AR_WRITE(sc, AR_PHY_CALMODE, mode); 1967 1968 DPRINTFN(DBG_RF, sc, "starting calibration mode=0x%x\n", mode); 1969 AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_DO_CAL); 1970 AR_WRITE_BARRIER(sc); 1971 } 1972 1973 Static void 1974 ar5008_next_calib(struct athn_softc *sc) 1975 { 1976 1977 /* Check if we have any calibration in progress. */ 1978 if (sc->sc_cur_calib_mask != 0) { 1979 if (!(AR_READ(sc, AR_PHY_TIMING_CTRL4_0) & 1980 AR_PHY_TIMING_CTRL4_DO_CAL)) { 1981 /* Calibration completed for current sample. */ 1982 if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_GAIN) 1983 ar5008_calib_adc_gain(sc); 1984 else if (sc->sc_cur_calib_mask & ATHN_CAL_ADC_DC) 1985 ar5008_calib_adc_dc_off(sc); 1986 else /* ATHN_CAL_IQ */ 1987 ar5008_calib_iq(sc); 1988 } 1989 } 1990 } 1991 1992 Static void 1993 ar5008_calib_iq(struct athn_softc *sc) 1994 { 1995 struct athn_iq_cal *cal; 1996 uint32_t reg, i_coff_denom, q_coff_denom; 1997 int32_t i_coff, q_coff; 1998 int i, iq_corr_neg; 1999 2000 for (i = 0; i < AR_MAX_CHAINS; i++) { 2001 cal = &sc->sc_calib.iq[i]; 2002 2003 /* Accumulate IQ calibration measures (clear on read). */ 2004 cal->pwr_meas_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); 2005 cal->pwr_meas_q += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); 2006 cal->iq_corr_meas += 2007 (int32_t)AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); 2008 } 2009 if (!AR_SREV_9280_10_OR_LATER(sc) && 2010 ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) { 2011 /* Not enough samples accumulated, continue. */ 2012 ar5008_do_calib(sc); 2013 return; 2014 } 2015 2016 for (i = 0; i < sc->sc_nrxchains; i++) { 2017 cal = &sc->sc_calib.iq[i]; 2018 2019 if (cal->pwr_meas_q == 0) 2020 continue; 2021 2022 if ((iq_corr_neg = cal->iq_corr_meas < 0)) 2023 cal->iq_corr_meas = -cal->iq_corr_meas; 2024 2025 i_coff_denom = 2026 (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 128; 2027 q_coff_denom = cal->pwr_meas_q / 64; 2028 2029 if (i_coff_denom == 0 || q_coff_denom == 0) 2030 continue; /* Prevents division by zero. */ 2031 2032 i_coff = cal->iq_corr_meas / i_coff_denom; 2033 q_coff = (cal->pwr_meas_i / q_coff_denom) - 64; 2034 2035 /* Negate i_coff if iq_corr_meas is positive. */ 2036 if (!iq_corr_neg) 2037 i_coff = 0x40 - (i_coff & 0x3f); 2038 if (q_coff > 15) 2039 q_coff = 15; 2040 else if (q_coff <= -16) 2041 q_coff = -16; /* XXX Linux has a bug here? */ 2042 2043 DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i); 2044 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4(i)); 2045 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, i_coff); 2046 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, q_coff); 2047 AR_WRITE(sc, AR_PHY_TIMING_CTRL4(i), reg); 2048 } 2049 2050 /* Apply new settings. */ 2051 AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, 2052 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE); 2053 AR_WRITE_BARRIER(sc); 2054 2055 /* IQ calibration done. */ 2056 sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ; 2057 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib)); 2058 } 2059 2060 Static void 2061 ar5008_calib_adc_gain(struct athn_softc *sc) 2062 { 2063 struct athn_adc_cal *cal; 2064 uint32_t reg, gain_mismatch_i, gain_mismatch_q; 2065 int i; 2066 2067 for (i = 0; i < AR_MAX_CHAINS; i++) { 2068 cal = &sc->sc_calib.adc_gain[i]; 2069 2070 /* Accumulate ADC gain measures (clear on read). */ 2071 cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); 2072 cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); 2073 cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); 2074 cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i)); 2075 } 2076 if (!AR_SREV_9280_10_OR_LATER(sc) && 2077 ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) { 2078 /* Not enough samples accumulated, continue. */ 2079 ar5008_do_calib(sc); 2080 return; 2081 } 2082 2083 for (i = 0; i < sc->sc_nrxchains; i++) { 2084 cal = &sc->sc_calib.adc_gain[i]; 2085 2086 if (cal->pwr_meas_odd_i == 0 || cal->pwr_meas_even_q == 0) 2087 continue; /* Prevents division by zero. */ 2088 2089 gain_mismatch_i = 2090 (cal->pwr_meas_even_i * 32) / cal->pwr_meas_odd_i; 2091 gain_mismatch_q = 2092 (cal->pwr_meas_odd_q * 32) / cal->pwr_meas_even_q; 2093 2094 DPRINTFN(DBG_RF, sc, "ADC gain calibration for chain %d\n", i); 2095 reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); 2096 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IGAIN, gain_mismatch_i); 2097 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QGAIN, gain_mismatch_q); 2098 AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg); 2099 } 2100 2101 /* Apply new settings. */ 2102 AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), 2103 AR_PHY_NEW_ADC_GAIN_CORR_ENABLE); 2104 AR_WRITE_BARRIER(sc); 2105 2106 /* ADC gain calibration done. */ 2107 sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_GAIN; 2108 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib)); 2109 } 2110 2111 Static void 2112 ar5008_calib_adc_dc_off(struct athn_softc *sc) 2113 { 2114 struct athn_adc_cal *cal; 2115 int32_t dc_offset_mismatch_i, dc_offset_mismatch_q; 2116 uint32_t reg; 2117 int count, i; 2118 2119 for (i = 0; i < AR_MAX_CHAINS; i++) { 2120 cal = &sc->sc_calib.adc_dc_offset[i]; 2121 2122 /* Accumulate ADC DC offset measures (clear on read). */ 2123 cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); 2124 cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); 2125 cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); 2126 cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i)); 2127 } 2128 if (!AR_SREV_9280_10_OR_LATER(sc) && 2129 ++sc->sc_calib.nsamples < AR_CAL_SAMPLES) { 2130 /* Not enough samples accumulated, continue. */ 2131 ar5008_do_calib(sc); 2132 return; 2133 } 2134 2135 if (AR_SREV_9280_10_OR_LATER(sc)) 2136 count = (1 << (10 + 5)); 2137 else 2138 count = (1 << ( 2 + 5)) * AR_CAL_SAMPLES; 2139 for (i = 0; i < sc->sc_nrxchains; i++) { 2140 cal = &sc->sc_calib.adc_dc_offset[i]; 2141 2142 dc_offset_mismatch_i = 2143 (cal->pwr_meas_even_i - cal->pwr_meas_odd_i * 2) / count; 2144 dc_offset_mismatch_q = 2145 (cal->pwr_meas_odd_q - cal->pwr_meas_even_q * 2) / count; 2146 2147 DPRINTFN(DBG_RF, sc, "ADC DC offset calibration for chain %d\n", i); 2148 reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); 2149 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QDC, 2150 dc_offset_mismatch_q); 2151 reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IDC, 2152 dc_offset_mismatch_i); 2153 AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg); 2154 } 2155 2156 /* Apply new settings. */ 2157 AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), 2158 AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE); 2159 AR_WRITE_BARRIER(sc); 2160 2161 /* ADC DC offset calibration done. */ 2162 sc->sc_cur_calib_mask &= ~ATHN_CAL_ADC_DC; 2163 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib)); 2164 } 2165 2166 PUBLIC void 2167 ar5008_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT]) 2168 { 2169 2170 AR_WRITE(sc, AR_PHY_POWER_TX_RATE1, 2171 (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 | 2172 (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 | 2173 (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 | 2174 (power[ATHN_POWER_OFDM6 ] & 0x3f)); 2175 AR_WRITE(sc, AR_PHY_POWER_TX_RATE2, 2176 (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 | 2177 (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 | 2178 (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 | 2179 (power[ATHN_POWER_OFDM24 ] & 0x3f)); 2180 AR_WRITE(sc, AR_PHY_POWER_TX_RATE3, 2181 (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 | 2182 (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 | 2183 (power[ATHN_POWER_XR ] & 0x3f) << 8 | 2184 (power[ATHN_POWER_CCK1_LP ] & 0x3f)); 2185 AR_WRITE(sc, AR_PHY_POWER_TX_RATE4, 2186 (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 | 2187 (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 | 2188 (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 | 2189 (power[ATHN_POWER_CCK55_LP] & 0x3f)); 2190 #ifndef IEEE80211_NO_HT 2191 AR_WRITE(sc, AR_PHY_POWER_TX_RATE5, 2192 (power[ATHN_POWER_HT20(3) ] & 0x3f) << 24 | 2193 (power[ATHN_POWER_HT20(2) ] & 0x3f) << 16 | 2194 (power[ATHN_POWER_HT20(1) ] & 0x3f) << 8 | 2195 (power[ATHN_POWER_HT20(0) ] & 0x3f)); 2196 AR_WRITE(sc, AR_PHY_POWER_TX_RATE6, 2197 (power[ATHN_POWER_HT20(7) ] & 0x3f) << 24 | 2198 (power[ATHN_POWER_HT20(6) ] & 0x3f) << 16 | 2199 (power[ATHN_POWER_HT20(5) ] & 0x3f) << 8 | 2200 (power[ATHN_POWER_HT20(4) ] & 0x3f)); 2201 AR_WRITE(sc, AR_PHY_POWER_TX_RATE7, 2202 (power[ATHN_POWER_HT40(3) ] & 0x3f) << 24 | 2203 (power[ATHN_POWER_HT40(2) ] & 0x3f) << 16 | 2204 (power[ATHN_POWER_HT40(1) ] & 0x3f) << 8 | 2205 (power[ATHN_POWER_HT40(0) ] & 0x3f)); 2206 AR_WRITE(sc, AR_PHY_POWER_TX_RATE8, 2207 (power[ATHN_POWER_HT40(7) ] & 0x3f) << 24 | 2208 (power[ATHN_POWER_HT40(6) ] & 0x3f) << 16 | 2209 (power[ATHN_POWER_HT40(5) ] & 0x3f) << 8 | 2210 (power[ATHN_POWER_HT40(4) ] & 0x3f)); 2211 AR_WRITE(sc, AR_PHY_POWER_TX_RATE9, 2212 (power[ATHN_POWER_OFDM_EXT] & 0x3f) << 24 | 2213 (power[ATHN_POWER_CCK_EXT ] & 0x3f) << 16 | 2214 (power[ATHN_POWER_OFDM_DUP] & 0x3f) << 8 | 2215 (power[ATHN_POWER_CCK_DUP ] & 0x3f)); 2216 #endif 2217 AR_WRITE_BARRIER(sc); 2218 } 2219 2220 PUBLIC void 2221 ar5008_set_viterbi_mask(struct athn_softc *sc, int bin) 2222 { 2223 uint32_t mask[4], reg; 2224 uint8_t m[62], p[62]; /* XXX use bit arrays? */ 2225 int i, bit, cur; 2226 2227 /* Compute pilot mask. */ 2228 cur = -6000; 2229 for (i = 0; i < 4; i++) { 2230 mask[i] = 0; 2231 for (bit = 0; bit < 30; bit++) { 2232 if (abs(cur - bin) < 100) 2233 mask[i] |= 1 << bit; 2234 cur += 100; 2235 } 2236 if (cur == 0) /* Skip entry "0". */ 2237 cur = 100; 2238 } 2239 /* Write entries from -6000 to -3100. */ 2240 AR_WRITE(sc, AR_PHY_TIMING7, mask[0]); 2241 AR_WRITE(sc, AR_PHY_TIMING9, mask[0]); 2242 /* Write entries from -3000 to -100. */ 2243 AR_WRITE(sc, AR_PHY_TIMING8, mask[1]); 2244 AR_WRITE(sc, AR_PHY_TIMING10, mask[1]); 2245 /* Write entries from 100 to 3000. */ 2246 AR_WRITE(sc, AR_PHY_PILOT_MASK_01_30, mask[2]); 2247 AR_WRITE(sc, AR_PHY_CHANNEL_MASK_01_30, mask[2]); 2248 /* Write entries from 3100 to 6000. */ 2249 AR_WRITE(sc, AR_PHY_PILOT_MASK_31_60, mask[3]); 2250 AR_WRITE(sc, AR_PHY_CHANNEL_MASK_31_60, mask[3]); 2251 2252 /* Compute viterbi mask. */ 2253 for (cur = 6100; cur >= 0; cur -= 100) 2254 p[+cur / 100] = abs(cur - bin) < 75; 2255 for (cur = -100; cur >= -6100; cur -= 100) 2256 m[-cur / 100] = abs(cur - bin) < 75; 2257 2258 /* Write viterbi mask (XXX needs to be reworked). */ 2259 reg = 2260 m[46] << 30 | m[47] << 28 | m[48] << 26 | m[49] << 24 | 2261 m[50] << 22 | m[51] << 20 | m[52] << 18 | m[53] << 16 | 2262 m[54] << 14 | m[55] << 12 | m[56] << 10 | m[57] << 8 | 2263 m[58] << 6 | m[59] << 4 | m[60] << 2 | m[61] << 0; 2264 AR_WRITE(sc, AR_PHY_BIN_MASK_1, reg); 2265 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_46_61, reg); 2266 2267 /* XXX m[48] should be m[38] ? */ 2268 reg = m[31] << 28 | m[32] << 26 | m[33] << 24 | 2269 m[34] << 22 | m[35] << 20 | m[36] << 18 | m[37] << 16 | 2270 m[48] << 14 | m[39] << 12 | m[40] << 10 | m[41] << 8 | 2271 m[42] << 6 | m[43] << 4 | m[44] << 2 | m[45] << 0; 2272 AR_WRITE(sc, AR_PHY_BIN_MASK_2, reg); 2273 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_31_45, reg); 2274 2275 /* XXX This one is weird too. */ 2276 reg = 2277 m[16] << 30 | m[16] << 28 | m[18] << 26 | m[18] << 24 | 2278 m[20] << 22 | m[20] << 20 | m[22] << 18 | m[22] << 16 | 2279 m[24] << 14 | m[24] << 12 | m[25] << 10 | m[26] << 8 | 2280 m[27] << 6 | m[28] << 4 | m[29] << 2 | m[30] << 0; 2281 AR_WRITE(sc, AR_PHY_BIN_MASK_3, reg); 2282 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_16_30, reg); 2283 2284 reg = 2285 m[ 0] << 30 | m[ 1] << 28 | m[ 2] << 26 | m[ 3] << 24 | 2286 m[ 4] << 22 | m[ 5] << 20 | m[ 6] << 18 | m[ 7] << 16 | 2287 m[ 8] << 14 | m[ 9] << 12 | m[10] << 10 | m[11] << 8 | 2288 m[12] << 6 | m[13] << 4 | m[14] << 2 | m[15] << 0; 2289 AR_WRITE(sc, AR_PHY_MASK_CTL, reg); 2290 AR_WRITE(sc, AR_PHY_VIT_MASK2_M_00_15, reg); 2291 2292 reg = p[15] << 28 | p[14] << 26 | p[13] << 24 | 2293 p[12] << 22 | p[11] << 20 | p[10] << 18 | p[ 9] << 16 | 2294 p[ 8] << 14 | p[ 7] << 12 | p[ 6] << 10 | p[ 5] << 8 | 2295 p[ 4] << 6 | p[ 3] << 4 | p[ 2] << 2 | p[ 1] << 0; 2296 AR_WRITE(sc, AR_PHY_BIN_MASK2_1, reg); 2297 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_15_01, reg); 2298 2299 reg = p[30] << 28 | p[29] << 26 | p[28] << 24 | 2300 p[27] << 22 | p[26] << 20 | p[25] << 18 | p[24] << 16 | 2301 p[23] << 14 | p[22] << 12 | p[21] << 10 | p[20] << 8 | 2302 p[19] << 6 | p[18] << 4 | p[17] << 2 | p[16] << 0; 2303 AR_WRITE(sc, AR_PHY_BIN_MASK2_2, reg); 2304 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_30_16, reg); 2305 2306 reg = p[45] << 28 | p[44] << 26 | p[43] << 24 | 2307 p[42] << 22 | p[41] << 20 | p[40] << 18 | p[39] << 16 | 2308 p[38] << 14 | p[37] << 12 | p[36] << 10 | p[35] << 8 | 2309 p[34] << 6 | p[33] << 4 | p[32] << 2 | p[31] << 0; 2310 AR_WRITE(sc, AR_PHY_BIN_MASK2_3, reg); 2311 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_45_31, reg); 2312 2313 reg = 2314 p[61] << 30 | p[60] << 28 | p[59] << 26 | p[58] << 24 | 2315 p[57] << 22 | p[56] << 20 | p[55] << 18 | p[54] << 16 | 2316 p[53] << 14 | p[52] << 12 | p[51] << 10 | p[50] << 8 | 2317 p[49] << 6 | p[48] << 4 | p[47] << 2 | p[46] << 0; 2318 AR_WRITE(sc, AR_PHY_BIN_MASK2_4, reg); 2319 AR_WRITE(sc, AR_PHY_VIT_MASK2_P_61_46, reg); 2320 AR_WRITE_BARRIER(sc); 2321 } 2322 2323 Static void 2324 ar5008_hw_init(struct athn_softc *sc, struct ieee80211_channel *c, 2325 struct ieee80211_channel *extc) 2326 { 2327 struct athn_ops *ops = &sc->sc_ops; 2328 const struct athn_ini *ini = sc->sc_ini; 2329 const uint32_t *pvals; 2330 uint32_t reg; 2331 int i; 2332 2333 AR_WRITE(sc, AR_PHY(0), 0x00000007); 2334 AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); 2335 2336 if (!AR_SINGLE_CHIP(sc)) 2337 ar5416_reset_addac(sc, c); 2338 2339 AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); 2340 2341 /* First initialization step (depends on channel band/bandwidth). */ 2342 #ifndef IEEE80211_NO_HT 2343 if (extc != NULL) { 2344 if (IEEE80211_IS_CHAN_2GHZ(c)) 2345 pvals = ini->vals_2g40; 2346 else 2347 pvals = ini->vals_5g40; 2348 } 2349 else 2350 #endif 2351 { 2352 if (IEEE80211_IS_CHAN_2GHZ(c)) 2353 pvals = ini->vals_2g20; 2354 else 2355 pvals = ini->vals_5g20; 2356 } 2357 DPRINTFN(DBG_INIT, sc, "writing modal init vals\n"); 2358 for (i = 0; i < ini->nregs; i++) { 2359 uint32_t val = pvals[i]; 2360 2361 /* Fix AR_AN_TOP2 initialization value if required. */ 2362 if (ini->regs[i] == AR_AN_TOP2 && 2363 (sc->sc_flags & ATHN_FLAG_AN_TOP2_FIXUP)) 2364 val &= ~AR_AN_TOP2_PWDCLKIND; 2365 AR_WRITE(sc, ini->regs[i], val); 2366 if (AR_IS_ANALOG_REG(ini->regs[i])) { 2367 AR_WRITE_BARRIER(sc); 2368 DELAY(100); 2369 } 2370 if ((i & 0x1f) == 0) 2371 DELAY(1); 2372 } 2373 AR_WRITE_BARRIER(sc); 2374 2375 if (sc->sc_rx_gain != NULL) 2376 ar9280_reset_rx_gain(sc, c); 2377 if (sc->sc_tx_gain != NULL) 2378 ar9280_reset_tx_gain(sc, c); 2379 2380 if (AR_SREV_9271_10(sc)) { 2381 AR_WRITE(sc, AR_PHY(68), 0x30002311); 2382 AR_WRITE(sc, AR_PHY_RF_CTL3, 0x0a020001); 2383 } 2384 AR_WRITE_BARRIER(sc); 2385 2386 /* Second initialization step (common to all channels). */ 2387 DPRINTFN(DBG_INIT, sc, "writing common init vals\n"); 2388 for (i = 0; i < ini->ncmregs; i++) { 2389 AR_WRITE(sc, ini->cmregs[i], ini->cmvals[i]); 2390 if (AR_IS_ANALOG_REG(ini->cmregs[i])) { 2391 AR_WRITE_BARRIER(sc); 2392 DELAY(100); 2393 } 2394 if ((i & 0x1f) == 0) 2395 DELAY(1); 2396 } 2397 AR_WRITE_BARRIER(sc); 2398 2399 if (!AR_SINGLE_CHIP(sc)) 2400 ar5416_reset_bb_gain(sc, c); 2401 2402 if (IEEE80211_IS_CHAN_5GHZ(c) && 2403 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) { 2404 /* Update modal values for fast PLL clock. */ 2405 #ifndef IEEE80211_NO_HT 2406 if (extc != NULL) 2407 pvals = ini->fastvals_5g40; 2408 else 2409 #endif 2410 pvals = ini->fastvals_5g20; 2411 DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n"); 2412 for (i = 0; i < ini->nfastregs; i++) { 2413 AR_WRITE(sc, ini->fastregs[i], pvals[i]); 2414 if (AR_IS_ANALOG_REG(ini->fastregs[i])) { 2415 AR_WRITE_BARRIER(sc); 2416 DELAY(100); 2417 } 2418 if ((i & 0x1f) == 0) 2419 DELAY(1); 2420 } 2421 } 2422 2423 /* 2424 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted 2425 * descriptor status. 2426 */ 2427 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); 2428 2429 /* Hardware workarounds for occasional Rx data corruption. */ 2430 if (AR_SREV_9280_10_OR_LATER(sc)) { 2431 reg = AR_READ(sc, AR_PCU_MISC_MODE2); 2432 if (!AR_SREV_9271(sc)) 2433 reg &= ~AR_PCU_MISC_MODE2_HWWAR1; 2434 if (AR_SREV_9287_10_OR_LATER(sc)) 2435 reg &= ~AR_PCU_MISC_MODE2_HWWAR2; 2436 AR_WRITE(sc, AR_PCU_MISC_MODE2, reg); 2437 2438 } 2439 else if (AR_SREV_5416_20_OR_LATER(sc)) { 2440 /* Disable baseband clock gating. */ 2441 AR_WRITE(sc, AR_PHY(651), 0x11); 2442 2443 if (AR_SREV_9160(sc)) { 2444 /* Disable RIFS search to fix baseband hang. */ 2445 AR_CLRBITS(sc, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, 2446 AR_PHY_RIFS_INIT_DELAY_M); 2447 } 2448 } 2449 AR_WRITE_BARRIER(sc); 2450 2451 ar5008_set_phy(sc, c, extc); 2452 ar5008_init_chains(sc); 2453 2454 if (sc->sc_flags & ATHN_FLAG_OLPC) { 2455 extern int ticks; 2456 sc->sc_olpc_ticks = ticks; 2457 ops->olpc_init(sc); 2458 } 2459 2460 ops->set_txpower(sc, c, extc); 2461 2462 if (!AR_SINGLE_CHIP(sc)) 2463 ar5416_rf_reset(sc, c); 2464 } 2465 2466 Static uint8_t 2467 ar5008_get_vpd(uint8_t pwr, const uint8_t *pwrPdg, const uint8_t *vpdPdg, 2468 int nicepts) 2469 { 2470 uint8_t vpd; 2471 int i, lo, hi; 2472 2473 for (i = 0; i < nicepts; i++) 2474 if (pwrPdg[i] > pwr) 2475 break; 2476 hi = i; 2477 lo = hi - 1; 2478 if (lo == -1) 2479 lo = hi; 2480 else if (hi == nicepts) 2481 hi = lo; 2482 2483 vpd = athn_interpolate(pwr, pwrPdg[lo], vpdPdg[lo], 2484 pwrPdg[hi], vpdPdg[hi]); 2485 return vpd; 2486 } 2487 2488 PUBLIC void 2489 ar5008_get_pdadcs(struct athn_softc *sc, uint8_t fbin, 2490 struct athn_pier *lopier, struct athn_pier *hipier, int nxpdgains, 2491 int nicepts, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs) 2492 { 2493 #define DB(x) ((x) / 2) /* Convert half dB to dB. */ 2494 uint8_t minpwr[AR_PD_GAINS_IN_MASK], maxpwr[AR_PD_GAINS_IN_MASK]; 2495 uint8_t vpd[AR_MAX_PWR_RANGE_IN_HALF_DB], pwr; 2496 uint8_t lovpd, hivpd, boundary; 2497 int16_t ss, delta, vpdstep, val; 2498 int i, j, npdadcs, nvpds, maxidx, tgtidx; 2499 2500 /* Compute min and max power in half dB for each pdGain. */ 2501 for (i = 0; i < nxpdgains; i++) { 2502 minpwr[i] = MAX(lopier->pwr[i][0], hipier->pwr[i][0]); 2503 maxpwr[i] = MIN(lopier->pwr[i][nicepts - 1], 2504 hipier->pwr[i][nicepts - 1]); 2505 } 2506 2507 /* Fill phase domain analog-to-digital converter (PDADC) table. */ 2508 npdadcs = 0; 2509 for (i = 0; i < nxpdgains; i++) { 2510 if (i != nxpdgains - 1) 2511 boundaries[i] = DB(maxpwr[i] + minpwr[i + 1]) / 2; 2512 else 2513 boundaries[i] = DB(maxpwr[i]); 2514 if (boundaries[i] > AR_MAX_RATE_POWER) 2515 boundaries[i] = AR_MAX_RATE_POWER; 2516 2517 if (i == 0 && !AR_SREV_5416_20_OR_LATER(sc)) { 2518 /* Fix the gain delta (AR5416 1.0 only). */ 2519 delta = boundaries[0] - 23; 2520 boundaries[0] = 23; 2521 } 2522 else 2523 delta = 0; 2524 2525 /* Find starting index for this pdGain. */ 2526 if (i != 0) { 2527 ss = boundaries[i - 1] - DB(minpwr[i]) - 2528 overlap + 1 + delta; 2529 } 2530 else if (AR_SREV_9280_10_OR_LATER(sc)) 2531 ss = -DB(minpwr[i]); 2532 else 2533 ss = 0; 2534 2535 /* Compute Vpd table for this pdGain. */ 2536 nvpds = DB(maxpwr[i] - minpwr[i]) + 1; 2537 memset(vpd, 0, sizeof(vpd)); 2538 pwr = minpwr[i]; 2539 for (j = 0; j < nvpds; j++) { 2540 /* Get lower and higher Vpd. */ 2541 lovpd = ar5008_get_vpd(pwr, lopier->pwr[i], 2542 lopier->vpd[i], nicepts); 2543 hivpd = ar5008_get_vpd(pwr, hipier->pwr[i], 2544 hipier->vpd[i], nicepts); 2545 2546 /* Interpolate the final Vpd. */ 2547 vpd[j] = athn_interpolate(fbin, 2548 lopier->fbin, lovpd, hipier->fbin, hivpd); 2549 2550 pwr += 2; /* In half dB. */ 2551 } 2552 2553 /* Extrapolate data for ss < 0. */ 2554 if (vpd[1] > vpd[0]) 2555 vpdstep = vpd[1] - vpd[0]; 2556 else 2557 vpdstep = 1; 2558 while (ss < 0 && npdadcs < AR_NUM_PDADC_VALUES - 1) { 2559 val = vpd[0] + ss * vpdstep; 2560 pdadcs[npdadcs++] = MAX(val, 0); 2561 ss++; 2562 } 2563 2564 tgtidx = boundaries[i] + overlap - DB(minpwr[i]); 2565 maxidx = MIN(tgtidx, nvpds); 2566 while (ss < maxidx && npdadcs < AR_NUM_PDADC_VALUES - 1) 2567 pdadcs[npdadcs++] = vpd[ss++]; 2568 2569 if (tgtidx < maxidx) 2570 continue; 2571 2572 /* Extrapolate data for maxidx <= ss <= tgtidx. */ 2573 if (vpd[nvpds - 1] > vpd[nvpds - 2]) 2574 vpdstep = vpd[nvpds - 1] - vpd[nvpds - 2]; 2575 else 2576 vpdstep = 1; 2577 while (ss <= tgtidx && npdadcs < AR_NUM_PDADC_VALUES - 1) { 2578 val = vpd[nvpds - 1] + (ss - maxidx + 1) * vpdstep; 2579 pdadcs[npdadcs++] = MIN(val, 255); 2580 ss++; 2581 } 2582 } 2583 2584 /* Fill remaining PDADC and boundaries entries. */ 2585 if (AR_SREV_9285(sc)) 2586 boundary = AR9285_PD_GAIN_BOUNDARY_DEFAULT; 2587 else /* Fill with latest. */ 2588 boundary = boundaries[nxpdgains - 1]; 2589 2590 for (; nxpdgains < AR_PD_GAINS_IN_MASK; nxpdgains++) 2591 boundaries[nxpdgains] = boundary; 2592 2593 for (; npdadcs < AR_NUM_PDADC_VALUES; npdadcs++) 2594 pdadcs[npdadcs] = pdadcs[npdadcs - 1]; 2595 #undef DB 2596 } 2597 2598 PUBLIC void 2599 ar5008_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c, 2600 uint8_t ctl, const struct ar_cal_target_power_leg *tgt, int nchans, 2601 uint8_t tpow[4]) 2602 { 2603 uint8_t fbin; 2604 int i, lo, hi; 2605 2606 /* Find interval (lower and upper indices). */ 2607 fbin = athn_chan2fbin(c); 2608 for (i = 0; i < nchans; i++) { 2609 if (tgt[i].bChannel == AR_BCHAN_UNUSED || 2610 tgt[i].bChannel > fbin) 2611 break; 2612 } 2613 hi = i; 2614 lo = hi - 1; 2615 if (lo == -1) 2616 lo = hi; 2617 else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED) 2618 hi = lo; 2619 2620 /* Interpolate values. */ 2621 for (i = 0; i < 4; i++) { 2622 tpow[i] = athn_interpolate(fbin, 2623 tgt[lo].bChannel, tgt[lo].tPow2x[i], 2624 tgt[hi].bChannel, tgt[hi].tPow2x[i]); 2625 } 2626 /* XXX Apply conformance testing limit. */ 2627 } 2628 2629 #ifndef IEEE80211_NO_HT 2630 PUBLIC void 2631 ar5008_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c, 2632 uint8_t ctl, const struct ar_cal_target_power_ht *tgt, int nchans, 2633 uint8_t tpow[8]) 2634 { 2635 uint8_t fbin; 2636 int i, lo, hi; 2637 2638 /* Find interval (lower and upper indices). */ 2639 fbin = athn_chan2fbin(c); 2640 for (i = 0; i < nchans; i++) { 2641 if (tgt[i].bChannel == AR_BCHAN_UNUSED || 2642 tgt[i].bChannel > fbin) 2643 break; 2644 } 2645 hi = i; 2646 lo = hi - 1; 2647 if (lo == -1) 2648 lo = hi; 2649 else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED) 2650 hi = lo; 2651 2652 /* Interpolate values. */ 2653 for (i = 0; i < 8; i++) { 2654 tpow[i] = athn_interpolate(fbin, 2655 tgt[lo].bChannel, tgt[lo].tPow2x[i], 2656 tgt[hi].bChannel, tgt[hi].tPow2x[i]); 2657 } 2658 /* XXX Apply conformance testing limit. */ 2659 } 2660 #endif 2661 2662 /* 2663 * Adaptive noise immunity. 2664 */ 2665 Static void 2666 ar5008_set_noise_immunity_level(struct athn_softc *sc, int level) 2667 { 2668 int high = level == 4; 2669 uint32_t reg; 2670 2671 reg = AR_READ(sc, AR_PHY_DESIRED_SZ); 2672 reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55); 2673 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); 2674 2675 reg = AR_READ(sc, AR_PHY_AGC_CTL1); 2676 reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_LOW, high ? -70 : -64); 2677 reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_HIGH, high ? -12 : -14); 2678 AR_WRITE(sc, AR_PHY_AGC_CTL1, reg); 2679 2680 reg = AR_READ(sc, AR_PHY_FIND_SIG); 2681 reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78); 2682 AR_WRITE(sc, AR_PHY_FIND_SIG, reg); 2683 2684 AR_WRITE_BARRIER(sc); 2685 } 2686 2687 Static void 2688 ar5008_enable_ofdm_weak_signal(struct athn_softc *sc) 2689 { 2690 uint32_t reg; 2691 2692 reg = AR_READ(sc, AR_PHY_SFCORR_LOW); 2693 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50); 2694 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40); 2695 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48); 2696 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); 2697 2698 reg = AR_READ(sc, AR_PHY_SFCORR); 2699 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77); 2700 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64); 2701 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16); 2702 AR_WRITE(sc, AR_PHY_SFCORR, reg); 2703 2704 reg = AR_READ(sc, AR_PHY_SFCORR_EXT); 2705 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50); 2706 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40); 2707 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77); 2708 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64); 2709 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); 2710 2711 AR_SETBITS(sc, AR_PHY_SFCORR_LOW, 2712 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 2713 AR_WRITE_BARRIER(sc); 2714 } 2715 2716 Static void 2717 ar5008_disable_ofdm_weak_signal(struct athn_softc *sc) 2718 { 2719 uint32_t reg; 2720 2721 reg = AR_READ(sc, AR_PHY_SFCORR_LOW); 2722 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127); 2723 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127); 2724 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63); 2725 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); 2726 2727 reg = AR_READ(sc, AR_PHY_SFCORR); 2728 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127); 2729 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127); 2730 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31); 2731 AR_WRITE(sc, AR_PHY_SFCORR, reg); 2732 2733 reg = AR_READ(sc, AR_PHY_SFCORR_EXT); 2734 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127); 2735 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127); 2736 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127); 2737 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127); 2738 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); 2739 2740 AR_CLRBITS(sc, AR_PHY_SFCORR_LOW, 2741 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); 2742 AR_WRITE_BARRIER(sc); 2743 } 2744 2745 Static void 2746 ar5008_set_cck_weak_signal(struct athn_softc *sc, int high) 2747 { 2748 uint32_t reg; 2749 2750 reg = AR_READ(sc, AR_PHY_CCK_DETECT); 2751 reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8); 2752 AR_WRITE(sc, AR_PHY_CCK_DETECT, reg); 2753 AR_WRITE_BARRIER(sc); 2754 } 2755 2756 Static void 2757 ar5008_set_firstep_level(struct athn_softc *sc, int level) 2758 { 2759 uint32_t reg; 2760 2761 reg = AR_READ(sc, AR_PHY_FIND_SIG); 2762 reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4); 2763 AR_WRITE(sc, AR_PHY_FIND_SIG, reg); 2764 AR_WRITE_BARRIER(sc); 2765 } 2766 2767 Static void 2768 ar5008_set_spur_immunity_level(struct athn_softc *sc, int level) 2769 { 2770 uint32_t reg; 2771 2772 reg = AR_READ(sc, AR_PHY_TIMING5); 2773 reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2); 2774 AR_WRITE(sc, AR_PHY_TIMING5, reg); 2775 AR_WRITE_BARRIER(sc); 2776 } 2777