1 /* $NetBSD: an.c,v 1.40 2006/02/20 16:50:37 thorpej Exp $ */ 2 /* 3 * Copyright (c) 1997, 1998, 1999 4 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 * 33 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $ 34 */ 35 /* 36 * Copyright (c) 2004, 2005 David Young. All rights reserved. 37 * Copyright (c) 2004, 2005 OJC Technologies. All rights reserved. 38 * Copyright (c) 2004, 2005 Dayton Data Center Services, LLC. All 39 * rights reserved. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the author nor the names of any co-contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL David Young AND CONTRIBUTORS 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 63 * THE POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 /* 67 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD. 68 * 69 * Written by Bill Paul <wpaul@ctr.columbia.edu> 70 * Electrical Engineering Department 71 * Columbia University, New York City 72 */ 73 74 /* 75 * Ported to NetBSD from FreeBSD by Atsushi Onoe at the San Diego 76 * IETF meeting. 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: an.c,v 1.40 2006/02/20 16:50:37 thorpej Exp $"); 81 82 #include "bpfilter.h" 83 84 #include <sys/param.h> 85 #include <sys/callout.h> 86 #include <sys/sysctl.h> 87 #include <sys/systm.h> 88 #include <sys/sockio.h> 89 #include <sys/mbuf.h> 90 #include <sys/kernel.h> 91 #include <sys/ucred.h> 92 #include <sys/socket.h> 93 #include <sys/device.h> 94 #include <sys/proc.h> 95 #include <sys/md4.h> 96 #include <sys/endian.h> 97 98 #include <machine/bus.h> 99 100 #include <net/if.h> 101 #include <net/if_dl.h> 102 #include <net/if_ether.h> 103 #include <net/if_llc.h> 104 #include <net/if_media.h> 105 #include <net/if_types.h> 106 107 #include <net80211/ieee80211_netbsd.h> 108 #include <net80211/ieee80211_var.h> 109 #include <net80211/ieee80211_radiotap.h> 110 111 #if NBPFILTER > 0 112 #include <net/bpf.h> 113 #include <net/bpfdesc.h> 114 #endif 115 116 #include <dev/ic/anreg.h> 117 #include <dev/ic/anvar.h> 118 119 static int an_reset(struct an_softc *); 120 static void an_wait(struct an_softc *); 121 static int an_init(struct ifnet *); 122 static void an_stop(struct ifnet *, int); 123 static void an_start(struct ifnet *); 124 static void an_watchdog(struct ifnet *); 125 static int an_ioctl(struct ifnet *, u_long, caddr_t); 126 static int an_media_change(struct ifnet *); 127 static void an_media_status(struct ifnet *, struct ifmediareq *); 128 129 static int an_set_nwkey(struct an_softc *, struct ieee80211_nwkey *); 130 static int an_set_nwkey_wep(struct an_softc *, struct ieee80211_nwkey *); 131 static int an_set_nwkey_eap(struct an_softc *, struct ieee80211_nwkey *); 132 static int an_get_nwkey(struct an_softc *, struct ieee80211_nwkey *); 133 static int an_write_wepkey(struct an_softc *, int, struct an_wepkey *, 134 int); 135 136 static void an_rx_intr(struct an_softc *); 137 static void an_tx_intr(struct an_softc *, int); 138 static void an_linkstat_intr(struct an_softc *); 139 140 static int an_cmd(struct an_softc *, int, int); 141 static int an_seek_bap(struct an_softc *, int, int); 142 static int an_read_bap(struct an_softc *, int, int, void *, int); 143 static int an_write_bap(struct an_softc *, int, int, void *, int); 144 static int an_mwrite_bap(struct an_softc *, int, int, struct mbuf *, int); 145 static int an_read_rid(struct an_softc *, int, void *, int *); 146 static int an_write_rid(struct an_softc *, int, void *, int); 147 148 static int an_alloc_fid(struct an_softc *, int, int *); 149 150 static int an_newstate(struct ieee80211com *, enum ieee80211_state, int); 151 152 #ifdef AN_DEBUG 153 int an_debug = 0; 154 155 #define DPRINTF(X) if (an_debug) printf X 156 #define DPRINTF2(X) if (an_debug > 1) printf X 157 static int an_sysctl_verify(SYSCTLFN_PROTO, int lower, int upper); 158 static int an_sysctl_verify_debug(SYSCTLFN_PROTO); 159 #else 160 #define DPRINTF(X) 161 #define DPRINTF2(X) 162 #endif 163 164 int 165 an_attach(struct an_softc *sc) 166 { 167 struct ieee80211com *ic = &sc->sc_ic; 168 struct ifnet *ifp = &sc->sc_if; 169 int i, s; 170 struct an_rid_wepkey *akey; 171 int buflen, kid, rid; 172 int chan, chan_min, chan_max; 173 174 s = splnet(); 175 sc->sc_invalid = 0; 176 177 an_wait(sc); 178 if (an_reset(sc) != 0) { 179 sc->sc_invalid = 1; 180 splx(s); 181 return 1; 182 } 183 184 /* Load factory config */ 185 if (an_cmd(sc, AN_CMD_READCFG, 0) != 0) { 186 splx(s); 187 aprint_error("%s: failed to load config data\n", 188 sc->sc_dev.dv_xname); 189 return 1; 190 } 191 192 /* Read the current configuration */ 193 buflen = sizeof(sc->sc_config); 194 if (an_read_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, &buflen) != 0) { 195 splx(s); 196 aprint_error("%s: read config failed\n", sc->sc_dev.dv_xname); 197 return 1; 198 } 199 200 /* Read the card capabilities */ 201 buflen = sizeof(sc->sc_caps); 202 if (an_read_rid(sc, AN_RID_CAPABILITIES, &sc->sc_caps, &buflen) != 0) { 203 splx(s); 204 aprint_error("%s: read caps failed\n", sc->sc_dev.dv_xname); 205 return 1; 206 } 207 208 #ifdef AN_DEBUG 209 if (an_debug) { 210 static const int dumprid[] = { 211 AN_RID_GENCONFIG, AN_RID_CAPABILITIES, AN_RID_SSIDLIST, 212 AN_RID_APLIST, AN_RID_STATUS, AN_RID_ENCAP 213 }; 214 215 for (rid = 0; rid < sizeof(dumprid)/sizeof(dumprid[0]); rid++) { 216 buflen = sizeof(sc->sc_buf); 217 if (an_read_rid(sc, dumprid[rid], &sc->sc_buf, &buflen) 218 != 0) 219 continue; 220 printf("%04x (%d):\n", dumprid[rid], buflen); 221 for (i = 0; i < (buflen + 1) / 2; i++) 222 printf(" %04x", sc->sc_buf.sc_val[i]); 223 printf("\n"); 224 } 225 } 226 #endif 227 228 /* Read WEP settings from persistent memory */ 229 akey = &sc->sc_buf.sc_wepkey; 230 buflen = sizeof(struct an_rid_wepkey); 231 rid = AN_RID_WEP_VOLATILE; /* first persistent key */ 232 while (an_read_rid(sc, rid, akey, &buflen) == 0) { 233 kid = le16toh(akey->an_key_index); 234 DPRINTF(("an_attach: wep rid=0x%x len=%d(%d) index=0x%04x " 235 "mac[0]=%02x keylen=%d\n", 236 rid, buflen, sizeof(*akey), kid, 237 akey->an_mac_addr[0], le16toh(akey->an_key_len))); 238 if (kid == 0xffff) { 239 sc->sc_tx_perskey = akey->an_mac_addr[0]; 240 sc->sc_tx_key = -1; 241 break; 242 } 243 if (kid >= IEEE80211_WEP_NKID) 244 break; 245 sc->sc_perskeylen[kid] = le16toh(akey->an_key_len); 246 sc->sc_wepkeys[kid].an_wep_keylen = -1; 247 rid = AN_RID_WEP_PERSISTENT; /* for next key */ 248 buflen = sizeof(struct an_rid_wepkey); 249 } 250 251 aprint_normal("%s: %s %s (firmware %s)\n", sc->sc_dev.dv_xname, 252 sc->sc_caps.an_manufname, sc->sc_caps.an_prodname, 253 sc->sc_caps.an_prodvers); 254 255 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 256 257 ifp->if_softc = sc; 258 ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_SIMPLEX | 259 IFF_MULTICAST | IFF_ALLMULTI; 260 ifp->if_ioctl = an_ioctl; 261 ifp->if_start = an_start; 262 ifp->if_init = an_init; 263 ifp->if_stop = an_stop; 264 ifp->if_watchdog = an_watchdog; 265 IFQ_SET_READY(&ifp->if_snd); 266 267 ic->ic_ifp = ifp; 268 ic->ic_phytype = IEEE80211_T_DS; 269 ic->ic_opmode = IEEE80211_M_STA; 270 ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_PMGT | IEEE80211_C_IBSS | 271 IEEE80211_C_MONITOR; 272 ic->ic_state = IEEE80211_S_INIT; 273 IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr); 274 275 switch (le16toh(sc->sc_caps.an_regdomain)) { 276 default: 277 case AN_REGDOMAIN_USA: 278 case AN_REGDOMAIN_CANADA: 279 chan_min = 1; chan_max = 11; break; 280 case AN_REGDOMAIN_EUROPE: 281 case AN_REGDOMAIN_AUSTRALIA: 282 chan_min = 1; chan_max = 13; break; 283 case AN_REGDOMAIN_JAPAN: 284 chan_min = 14; chan_max = 14; break; 285 case AN_REGDOMAIN_SPAIN: 286 chan_min = 10; chan_max = 11; break; 287 case AN_REGDOMAIN_FRANCE: 288 chan_min = 10; chan_max = 13; break; 289 case AN_REGDOMAIN_JAPANWIDE: 290 chan_min = 1; chan_max = 14; break; 291 } 292 293 for (chan = chan_min; chan <= chan_max; chan++) { 294 ic->ic_channels[chan].ic_freq = 295 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 296 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; 297 } 298 ic->ic_ibss_chan = &ic->ic_channels[chan_min]; 299 300 aprint_normal("%s: 802.11 address: %s, channel: %d-%d\n", 301 ifp->if_xname, ether_sprintf(ic->ic_myaddr), chan_min, chan_max); 302 303 /* Find supported rate */ 304 for (i = 0; i < sizeof(sc->sc_caps.an_rates); i++) { 305 if (sc->sc_caps.an_rates[i] == 0) 306 continue; 307 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ 308 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates++] = 309 sc->sc_caps.an_rates[i]; 310 } 311 312 /* 313 * Call MI attach routine. 314 */ 315 if_attach(ifp); 316 ieee80211_ifattach(ic); 317 318 sc->sc_newstate = ic->ic_newstate; 319 ic->ic_newstate = an_newstate; 320 321 ieee80211_media_init(ic, an_media_change, an_media_status); 322 323 /* 324 * radiotap BPF device 325 */ 326 #if NBPFILTER > 0 327 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 328 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 329 #endif 330 331 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); 332 sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu); 333 sc->sc_rxtap.ar_ihdr.it_present = AN_RX_RADIOTAP_PRESENT; 334 335 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); 336 sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu); 337 sc->sc_txtap.at_ihdr.it_present = AN_TX_RADIOTAP_PRESENT; 338 339 sc->sc_attached = 1; 340 splx(s); 341 342 ieee80211_announce(ic); 343 return 0; 344 } 345 346 #ifdef AN_DEBUG 347 /* 348 * Setup sysctl(3) MIB, hw.an.* 349 * 350 * TBD condition CTLFLAG_PERMANENT on being an LKM or not 351 */ 352 SYSCTL_SETUP(sysctl_an, "sysctl an(4) subtree setup") 353 { 354 int rc; 355 const struct sysctlnode *cnode, *rnode; 356 357 if ((rc = sysctl_createv(clog, 0, NULL, &rnode, 358 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, 359 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) 360 goto err; 361 362 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode, 363 CTLFLAG_PERMANENT, CTLTYPE_NODE, "an", 364 "Cisco/Aironet 802.11 controls", 365 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0) 366 goto err; 367 368 /* control debugging printfs */ 369 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 370 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 371 "debug", SYSCTL_DESCR("Enable Cisco/Aironet debugging output"), 372 an_sysctl_verify_debug, 0, &an_debug, 0, 373 CTL_CREATE, CTL_EOL)) != 0) 374 goto err; 375 376 return; 377 err: 378 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 379 } 380 381 static int 382 an_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper) 383 { 384 int error, t; 385 struct sysctlnode node; 386 387 node = *rnode; 388 t = *(int*)rnode->sysctl_data; 389 node.sysctl_data = &t; 390 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 391 if (error || newp == NULL) 392 return (error); 393 394 if (t < lower || t > upper) 395 return (EINVAL); 396 397 *(int*)rnode->sysctl_data = t; 398 399 return (0); 400 } 401 402 static int 403 an_sysctl_verify_debug(SYSCTLFN_ARGS) 404 { 405 return an_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 2); 406 } 407 #endif /* AN_DEBUG */ 408 409 int 410 an_detach(struct an_softc *sc) 411 { 412 struct ieee80211com *ic = &sc->sc_ic; 413 struct ifnet *ifp = &sc->sc_if; 414 int s; 415 416 if (!sc->sc_attached) 417 return 0; 418 419 s = splnet(); 420 sc->sc_invalid = 1; 421 an_stop(ifp, 1); 422 ieee80211_ifdetach(ic); 423 if_detach(ifp); 424 splx(s); 425 return 0; 426 } 427 428 int 429 an_activate(struct device *self, enum devact act) 430 { 431 struct an_softc *sc = (struct an_softc *)self; 432 int s, error = 0; 433 434 s = splnet(); 435 switch (act) { 436 case DVACT_ACTIVATE: 437 error = EOPNOTSUPP; 438 break; 439 440 case DVACT_DEACTIVATE: 441 sc->sc_invalid = 1; 442 if_deactivate(&sc->sc_if); 443 break; 444 } 445 splx(s); 446 447 return error; 448 } 449 450 void 451 an_power(int why, void *arg) 452 { 453 int s; 454 struct an_softc *sc = arg; 455 struct ifnet *ifp = &sc->sc_if; 456 457 s = splnet(); 458 switch (why) { 459 case PWR_SUSPEND: 460 case PWR_STANDBY: 461 an_stop(ifp, 1); 462 break; 463 case PWR_RESUME: 464 if (ifp->if_flags & IFF_UP) { 465 an_init(ifp); 466 (void)an_intr(sc); 467 } 468 break; 469 case PWR_SOFTSUSPEND: 470 case PWR_SOFTSTANDBY: 471 case PWR_SOFTRESUME: 472 break; 473 } 474 splx(s); 475 } 476 477 void 478 an_shutdown(struct an_softc *sc) 479 { 480 481 if (sc->sc_attached) 482 an_stop(&sc->sc_if, 1); 483 } 484 485 int 486 an_intr(void *arg) 487 { 488 struct an_softc *sc = arg; 489 struct ifnet *ifp = &sc->sc_if; 490 int i; 491 u_int16_t status; 492 493 if (!sc->sc_enabled || sc->sc_invalid || 494 !device_is_active(&sc->sc_dev) || 495 (ifp->if_flags & IFF_RUNNING) == 0) 496 return 0; 497 498 if ((ifp->if_flags & IFF_UP) == 0) { 499 CSR_WRITE_2(sc, AN_INT_EN, 0); 500 CSR_WRITE_2(sc, AN_EVENT_ACK, ~0); 501 return 1; 502 } 503 504 /* maximum 10 loops per interrupt */ 505 for (i = 0; i < 10; i++) { 506 if (!sc->sc_enabled || sc->sc_invalid) 507 return 1; 508 if (CSR_READ_2(sc, AN_SW0) != AN_MAGIC) { 509 DPRINTF(("an_intr: magic number changed: %x\n", 510 CSR_READ_2(sc, AN_SW0))); 511 sc->sc_invalid = 1; 512 return 1; 513 } 514 status = CSR_READ_2(sc, AN_EVENT_STAT); 515 CSR_WRITE_2(sc, AN_EVENT_ACK, status & ~(AN_INTRS)); 516 if ((status & AN_INTRS) == 0) 517 break; 518 519 if (status & AN_EV_RX) 520 an_rx_intr(sc); 521 522 if (status & (AN_EV_TX | AN_EV_TX_EXC)) 523 an_tx_intr(sc, status); 524 525 if (status & AN_EV_LINKSTAT) 526 an_linkstat_intr(sc); 527 528 if ((ifp->if_flags & IFF_OACTIVE) == 0 && 529 sc->sc_ic.ic_state == IEEE80211_S_RUN && 530 !IFQ_IS_EMPTY(&ifp->if_snd)) 531 an_start(ifp); 532 } 533 534 return 1; 535 } 536 537 static int 538 an_init(struct ifnet *ifp) 539 { 540 struct an_softc *sc = ifp->if_softc; 541 struct ieee80211com *ic = &sc->sc_ic; 542 int i, error, fid; 543 544 DPRINTF(("an_init: enabled %d\n", sc->sc_enabled)); 545 if (!sc->sc_enabled) { 546 if (sc->sc_enable) 547 (*sc->sc_enable)(sc); 548 an_wait(sc); 549 sc->sc_enabled = 1; 550 } else { 551 an_stop(ifp, 0); 552 if ((error = an_reset(sc)) != 0) { 553 printf("%s: failed to reset\n", ifp->if_xname); 554 an_stop(ifp, 1); 555 return error; 556 } 557 } 558 CSR_WRITE_2(sc, AN_SW0, AN_MAGIC); 559 560 /* Allocate the TX buffers */ 561 for (i = 0; i < AN_TX_RING_CNT; i++) { 562 if ((error = an_alloc_fid(sc, AN_TX_MAX_LEN, &fid)) != 0) { 563 printf("%s: failed to allocate nic memory\n", 564 ifp->if_xname); 565 an_stop(ifp, 1); 566 return error; 567 } 568 DPRINTF2(("an_init: txbuf %d allocated %x\n", i, fid)); 569 sc->sc_txd[i].d_fid = fid; 570 sc->sc_txd[i].d_inuse = 0; 571 } 572 sc->sc_txcur = sc->sc_txnext = 0; 573 574 IEEE80211_ADDR_COPY(sc->sc_config.an_macaddr, ic->ic_myaddr); 575 sc->sc_config.an_scanmode = htole16(AN_SCANMODE_ACTIVE); 576 sc->sc_config.an_authtype = htole16(AN_AUTHTYPE_OPEN); /*XXX*/ 577 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 578 sc->sc_config.an_authtype |= 579 htole16(AN_AUTHTYPE_PRIVACY_IN_USE); 580 if (sc->sc_use_leap) 581 sc->sc_config.an_authtype |= 582 htole16(AN_AUTHTYPE_LEAP); 583 } 584 sc->sc_config.an_listen_interval = htole16(ic->ic_lintval); 585 sc->sc_config.an_beacon_period = htole16(ic->ic_lintval); 586 if (ic->ic_flags & IEEE80211_F_PMGTON) 587 sc->sc_config.an_psave_mode = htole16(AN_PSAVE_PSP); 588 else 589 sc->sc_config.an_psave_mode = htole16(AN_PSAVE_CAM); 590 sc->sc_config.an_ds_channel = 591 htole16(ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 592 593 switch (ic->ic_opmode) { 594 case IEEE80211_M_STA: 595 sc->sc_config.an_opmode = 596 htole16(AN_OPMODE_INFRASTRUCTURE_STATION); 597 sc->sc_config.an_rxmode = htole16(AN_RXMODE_BC_MC_ADDR); 598 break; 599 case IEEE80211_M_IBSS: 600 sc->sc_config.an_opmode = htole16(AN_OPMODE_IBSS_ADHOC); 601 sc->sc_config.an_rxmode = htole16(AN_RXMODE_BC_MC_ADDR); 602 break; 603 case IEEE80211_M_MONITOR: 604 sc->sc_config.an_opmode = 605 htole16(AN_OPMODE_INFRASTRUCTURE_STATION); 606 sc->sc_config.an_rxmode = 607 htole16(AN_RXMODE_80211_MONITOR_ANYBSS); 608 sc->sc_config.an_authtype = htole16(AN_AUTHTYPE_NONE); 609 if (ic->ic_flags & IEEE80211_F_PRIVACY) 610 sc->sc_config.an_authtype |= 611 htole16(AN_AUTHTYPE_PRIVACY_IN_USE | 612 AN_AUTHTYPE_ALLOW_UNENCRYPTED); 613 break; 614 default: 615 printf("%s: bad opmode %d\n", ifp->if_xname, ic->ic_opmode); 616 an_stop(ifp, 1); 617 return EIO; 618 } 619 sc->sc_config.an_rxmode |= htole16(AN_RXMODE_NO_8023_HEADER); 620 621 /* Set the ssid list */ 622 memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_ssidlist)); 623 sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid_len = 624 htole16(ic->ic_des_esslen); 625 if (ic->ic_des_esslen) 626 memcpy(sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid, 627 ic->ic_des_essid, ic->ic_des_esslen); 628 if (an_write_rid(sc, AN_RID_SSIDLIST, &sc->sc_buf, 629 sizeof(sc->sc_buf.sc_ssidlist)) != 0) { 630 printf("%s: failed to write ssid list\n", ifp->if_xname); 631 an_stop(ifp, 1); 632 return error; 633 } 634 635 /* Set the AP list */ 636 memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_aplist)); 637 (void)an_write_rid(sc, AN_RID_APLIST, &sc->sc_buf, 638 sizeof(sc->sc_buf.sc_aplist)); 639 640 /* Set the encapsulation */ 641 for (i = 0; i < AN_ENCAP_NENTS; i++) { 642 sc->sc_buf.sc_encap.an_entry[i].an_ethertype = htole16(0); 643 sc->sc_buf.sc_encap.an_entry[i].an_action = 644 htole16(AN_RXENCAP_RFC1024 | AN_TXENCAP_RFC1024); 645 } 646 (void)an_write_rid(sc, AN_RID_ENCAP, &sc->sc_buf, 647 sizeof(sc->sc_buf.sc_encap)); 648 649 /* Set the WEP Keys */ 650 if (ic->ic_flags & IEEE80211_F_PRIVACY) 651 an_write_wepkey(sc, AN_RID_WEP_VOLATILE, sc->sc_wepkeys, 652 sc->sc_tx_key); 653 654 /* Set the configuration */ 655 #ifdef AN_DEBUG 656 if (an_debug) { 657 printf("write config:\n"); 658 for (i = 0; i < sizeof(sc->sc_config) / 2; i++) 659 printf(" %04x", ((u_int16_t *)&sc->sc_config)[i]); 660 printf("\n"); 661 } 662 #endif 663 if (an_write_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, 664 sizeof(sc->sc_config)) != 0) { 665 printf("%s: failed to write config\n", ifp->if_xname); 666 an_stop(ifp, 1); 667 return error; 668 } 669 670 /* Enable the MAC */ 671 if (an_cmd(sc, AN_CMD_ENABLE, 0)) { 672 printf("%s: failed to enable MAC\n", sc->sc_dev.dv_xname); 673 an_stop(ifp, 1); 674 return ENXIO; 675 } 676 if (ifp->if_flags & IFF_PROMISC) 677 an_cmd(sc, AN_CMD_SET_MODE, 0xffff); 678 679 ifp->if_flags |= IFF_RUNNING; 680 ifp->if_flags &= ~IFF_OACTIVE; 681 ic->ic_state = IEEE80211_S_INIT; 682 if (ic->ic_opmode == IEEE80211_M_MONITOR) 683 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 684 685 /* enable interrupts */ 686 CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS); 687 return 0; 688 } 689 690 static void 691 an_stop(struct ifnet *ifp, int disable) 692 { 693 struct an_softc *sc = ifp->if_softc; 694 int i, s; 695 696 if (!sc->sc_enabled) 697 return; 698 699 DPRINTF(("an_stop: disable %d\n", disable)); 700 701 s = splnet(); 702 ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1); 703 if (!sc->sc_invalid) { 704 an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0); 705 CSR_WRITE_2(sc, AN_INT_EN, 0); 706 an_cmd(sc, AN_CMD_DISABLE, 0); 707 708 for (i = 0; i < AN_TX_RING_CNT; i++) 709 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->sc_txd[i].d_fid); 710 } 711 712 sc->sc_tx_timer = 0; 713 ifp->if_timer = 0; 714 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); 715 716 if (disable) { 717 if (sc->sc_disable) 718 (*sc->sc_disable)(sc); 719 sc->sc_enabled = 0; 720 } 721 splx(s); 722 } 723 724 static void 725 an_start(struct ifnet *ifp) 726 { 727 struct an_softc *sc = (struct an_softc *)ifp->if_softc; 728 struct ieee80211com *ic = &sc->sc_ic; 729 struct ieee80211_node *ni; 730 struct ieee80211_frame *wh; 731 struct an_txframe frmhdr; 732 struct ether_header *eh; 733 struct mbuf *m; 734 u_int16_t len; 735 int cur, fid; 736 737 if (!sc->sc_enabled || sc->sc_invalid) { 738 DPRINTF(("an_start: noop: enabled %d invalid %d\n", 739 sc->sc_enabled, sc->sc_invalid)); 740 return; 741 } 742 743 memset(&frmhdr, 0, sizeof(frmhdr)); 744 cur = sc->sc_txnext; 745 for (;;) { 746 if (ic->ic_state != IEEE80211_S_RUN) { 747 DPRINTF(("an_start: not running %d\n", ic->ic_state)); 748 break; 749 } 750 IFQ_POLL(&ifp->if_snd, m); 751 if (m == NULL) { 752 DPRINTF2(("an_start: no pending mbuf\n")); 753 break; 754 } 755 if (sc->sc_txd[cur].d_inuse) { 756 DPRINTF2(("an_start: %x/%d busy\n", 757 sc->sc_txd[cur].d_fid, cur)); 758 ifp->if_flags |= IFF_OACTIVE; 759 break; 760 } 761 IFQ_DEQUEUE(&ifp->if_snd, m); 762 ifp->if_opackets++; 763 #if NBPFILTER > 0 764 if (ifp->if_bpf) 765 bpf_mtap(ifp->if_bpf, m); 766 #endif 767 eh = mtod(m, struct ether_header *); 768 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 769 if (ni == NULL) { 770 /* NB: ieee80211_find_txnode does stat+msg */ 771 goto bad; 772 } 773 if ((m = ieee80211_encap(ic, m, ni)) == NULL) 774 goto bad; 775 ieee80211_free_node(ni); 776 #if NBPFILTER > 0 777 if (ic->ic_rawbpf) 778 bpf_mtap(ic->ic_rawbpf, m); 779 #endif 780 781 wh = mtod(m, struct ieee80211_frame *); 782 if (ic->ic_flags & IEEE80211_F_PRIVACY) 783 wh->i_fc[1] |= IEEE80211_FC1_WEP; 784 m_copydata(m, 0, sizeof(struct ieee80211_frame), 785 (caddr_t)&frmhdr.an_whdr); 786 787 /* insert payload length in front of llc/snap */ 788 len = htons(m->m_pkthdr.len - sizeof(struct ieee80211_frame)); 789 m_adj(m, sizeof(struct ieee80211_frame) - sizeof(len)); 790 if (mtod(m, u_long) & 0x01) 791 memcpy(mtod(m, caddr_t), &len, sizeof(len)); 792 else 793 *mtod(m, u_int16_t *) = len; 794 795 /* 796 * XXX Aironet firmware apparently convert the packet 797 * with longer than 1500 bytes in length into LLC/SNAP. 798 * If we have 1500 bytes in ethernet payload, it is 799 * 1508 bytes including LLC/SNAP and will be inserted 800 * additional LLC/SNAP header with 1501-1508 in its 801 * ethertype !! 802 * So we skip LLC/SNAP header and force firmware to 803 * convert it to LLC/SNAP again. 804 */ 805 m_adj(m, sizeof(struct llc)); 806 807 frmhdr.an_tx_ctl = htole16(AN_TXCTL_80211); 808 frmhdr.an_tx_payload_len = htole16(m->m_pkthdr.len); 809 frmhdr.an_gaplen = htole16(AN_TXGAP_802_11); 810 811 if (ic->ic_fixed_rate != -1) 812 frmhdr.an_tx_rate = 813 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ 814 ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 815 else 816 frmhdr.an_tx_rate = 0; 817 818 /* XXX radiotap for tx must be completed */ 819 #if NBPFILTER > 0 820 if (sc->sc_drvbpf) { 821 struct an_tx_radiotap_header *tap = &sc->sc_txtap; 822 //tap->at_rate = frmhdr.an_tx_rate; 823 tap->at_rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_bss->ni_txrate]; 824 tap->at_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 825 tap->at_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 826 /* TBD tap->wt_flags */ 827 bpf_mtap2(sc->sc_drvbpf, tap, tap->at_ihdr.it_len, m); 828 } 829 #endif 830 831 #ifdef AN_DEBUG 832 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == 833 (IFF_DEBUG|IFF_LINK2)) { 834 ieee80211_dump_pkt((u_int8_t *)&frmhdr.an_whdr, 835 sizeof(struct ieee80211_frame), -1, 0); 836 printf(" txctl 0x%x plen %u\n", 837 le16toh(frmhdr.an_tx_ctl), 838 le16toh(frmhdr.an_tx_payload_len)); 839 } 840 #endif 841 if (sizeof(frmhdr) + AN_TXGAP_802_11 + sizeof(len) + 842 m->m_pkthdr.len > AN_TX_MAX_LEN) 843 goto bad; 844 845 fid = sc->sc_txd[cur].d_fid; 846 if (an_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) 847 goto bad; 848 /* dummy write to avoid seek. */ 849 an_write_bap(sc, fid, -1, &frmhdr, AN_TXGAP_802_11); 850 an_mwrite_bap(sc, fid, -1, m, m->m_pkthdr.len); 851 m_freem(m); 852 853 DPRINTF2(("an_start: send %d byte via %x/%d\n", 854 ntohs(len) + sizeof(struct ieee80211_frame), 855 fid, cur)); 856 sc->sc_txd[cur].d_inuse = 1; 857 if (an_cmd(sc, AN_CMD_TX, fid)) { 858 printf("%s: xmit failed\n", ifp->if_xname); 859 sc->sc_txd[cur].d_inuse = 0; 860 continue; 861 } 862 sc->sc_tx_timer = 5; 863 ifp->if_timer = 1; 864 AN_INC(cur, AN_TX_RING_CNT); 865 sc->sc_txnext = cur; 866 continue; 867 bad: 868 ifp->if_oerrors++; 869 m_freem(m); 870 } 871 } 872 873 static int 874 an_reset(struct an_softc *sc) 875 { 876 877 DPRINTF(("an_reset\n")); 878 879 if (!sc->sc_enabled) 880 return ENXIO; 881 882 an_cmd(sc, AN_CMD_ENABLE, 0); 883 an_cmd(sc, AN_CMD_FW_RESTART, 0); 884 an_cmd(sc, AN_CMD_NOOP2, 0); 885 886 if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) { 887 printf("%s: reset failed\n", sc->sc_dev.dv_xname); 888 return ETIMEDOUT; 889 } 890 891 an_cmd(sc, AN_CMD_DISABLE, 0); 892 return 0; 893 } 894 895 static void 896 an_watchdog(struct ifnet *ifp) 897 { 898 struct an_softc *sc = ifp->if_softc; 899 900 if (!sc->sc_enabled) 901 return; 902 903 if (sc->sc_tx_timer) { 904 if (--sc->sc_tx_timer == 0) { 905 printf("%s: device timeout\n", ifp->if_xname); 906 ifp->if_oerrors++; 907 an_init(ifp); 908 return; 909 } 910 ifp->if_timer = 1; 911 } 912 ieee80211_watchdog(&sc->sc_ic); 913 } 914 915 static int 916 an_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 917 { 918 struct an_softc *sc = ifp->if_softc; 919 int s, error = 0; 920 921 if (!device_is_active(&sc->sc_dev)) 922 return ENXIO; 923 924 s = splnet(); 925 926 switch (command) { 927 case SIOCSIFFLAGS: 928 if (ifp->if_flags & IFF_UP) { 929 if (sc->sc_enabled) { 930 /* 931 * To avoid rescanning another access point, 932 * do not call an_init() here. Instead, only 933 * reflect promisc mode settings. 934 */ 935 error = an_cmd(sc, AN_CMD_SET_MODE, 936 (ifp->if_flags & IFF_PROMISC) ? 0xffff : 0); 937 } else 938 error = an_init(ifp); 939 } else if (sc->sc_enabled) 940 an_stop(ifp, 1); 941 break; 942 case SIOCADDMULTI: 943 case SIOCDELMULTI: 944 error = ether_ioctl(ifp, command, data); 945 if (error == ENETRESET) { 946 /* we don't have multicast filter. */ 947 error = 0; 948 } 949 break; 950 case SIOCS80211NWKEY: 951 error = an_set_nwkey(sc, (struct ieee80211_nwkey *)data); 952 break; 953 case SIOCG80211NWKEY: 954 error = an_get_nwkey(sc, (struct ieee80211_nwkey *)data); 955 break; 956 default: 957 error = ieee80211_ioctl(&sc->sc_ic, command, data); 958 break; 959 } 960 if (error == ENETRESET) { 961 if (sc->sc_enabled) 962 error = an_init(ifp); 963 else 964 error = 0; 965 } 966 splx(s); 967 return error; 968 } 969 970 /* TBD factor with ieee80211_media_change */ 971 static int 972 an_media_change(struct ifnet *ifp) 973 { 974 struct an_softc *sc = ifp->if_softc; 975 struct ieee80211com *ic = &sc->sc_ic; 976 struct ifmedia_entry *ime; 977 enum ieee80211_opmode newmode; 978 int i, rate, error = 0; 979 980 ime = ic->ic_media.ifm_cur; 981 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) { 982 i = -1; 983 } else { 984 struct ieee80211_rateset *rs = 985 &ic->ic_sup_rates[IEEE80211_MODE_11B]; 986 rate = ieee80211_media2rate(ime->ifm_media); 987 if (rate == 0) 988 return EINVAL; 989 for (i = 0; i < rs->rs_nrates; i++) { 990 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate) 991 break; 992 } 993 if (i == rs->rs_nrates) 994 return EINVAL; 995 } 996 if (ic->ic_fixed_rate != i) { 997 ic->ic_fixed_rate = i; 998 error = ENETRESET; 999 } 1000 1001 if (ime->ifm_media & IFM_IEEE80211_ADHOC) 1002 newmode = IEEE80211_M_IBSS; 1003 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) 1004 newmode = IEEE80211_M_HOSTAP; 1005 else if (ime->ifm_media & IFM_IEEE80211_MONITOR) 1006 newmode = IEEE80211_M_MONITOR; 1007 else 1008 newmode = IEEE80211_M_STA; 1009 if (ic->ic_opmode != newmode) { 1010 ic->ic_opmode = newmode; 1011 error = ENETRESET; 1012 } 1013 if (error == ENETRESET) { 1014 if (sc->sc_enabled) 1015 error = an_init(ifp); 1016 else 1017 error = 0; 1018 } 1019 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); 1020 1021 return error; 1022 } 1023 1024 static void 1025 an_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1026 { 1027 struct an_softc *sc = ifp->if_softc; 1028 struct ieee80211com *ic = &sc->sc_ic; 1029 int rate, buflen; 1030 1031 if (sc->sc_enabled == 0) { 1032 imr->ifm_active = IFM_IEEE80211 | IFM_NONE; 1033 imr->ifm_status = 0; 1034 return; 1035 } 1036 1037 imr->ifm_status = IFM_AVALID; 1038 imr->ifm_active = IFM_IEEE80211; 1039 if (ic->ic_state == IEEE80211_S_RUN) 1040 imr->ifm_status |= IFM_ACTIVE; 1041 buflen = sizeof(sc->sc_buf); 1042 if (ic->ic_fixed_rate != -1) 1043 rate = ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ 1044 ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1045 else if (an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen) != 0) 1046 rate = 0; 1047 else 1048 rate = le16toh(sc->sc_buf.sc_status.an_current_tx_rate); 1049 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 1050 switch (ic->ic_opmode) { 1051 case IEEE80211_M_STA: 1052 break; 1053 case IEEE80211_M_IBSS: 1054 imr->ifm_active |= IFM_IEEE80211_ADHOC; 1055 break; 1056 case IEEE80211_M_HOSTAP: 1057 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 1058 break; 1059 case IEEE80211_M_MONITOR: 1060 imr->ifm_active |= IFM_IEEE80211_MONITOR; 1061 break; 1062 default: 1063 break; 1064 } 1065 } 1066 1067 static int 1068 an_set_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1069 { 1070 int error; 1071 struct ieee80211com *ic = &sc->sc_ic; 1072 u_int16_t prevauth; 1073 1074 error = 0; 1075 prevauth = sc->sc_config.an_authtype; 1076 1077 switch (nwkey->i_wepon) { 1078 case IEEE80211_NWKEY_OPEN: 1079 sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN; 1080 ic->ic_flags &= ~IEEE80211_F_PRIVACY; 1081 break; 1082 1083 case IEEE80211_NWKEY_WEP: 1084 case IEEE80211_NWKEY_WEP | IEEE80211_NWKEY_PERSIST: 1085 error = an_set_nwkey_wep(sc, nwkey); 1086 if (error == 0 || error == ENETRESET) { 1087 sc->sc_config.an_authtype = 1088 AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE; 1089 ic->ic_flags |= IEEE80211_F_PRIVACY; 1090 } 1091 break; 1092 1093 case IEEE80211_NWKEY_EAP: 1094 error = an_set_nwkey_eap(sc, nwkey); 1095 if (error == 0 || error == ENETRESET) { 1096 sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN | 1097 AN_AUTHTYPE_PRIVACY_IN_USE | AN_AUTHTYPE_LEAP; 1098 ic->ic_flags |= IEEE80211_F_PRIVACY; 1099 } 1100 break; 1101 default: 1102 error = EINVAL; 1103 break; 1104 } 1105 if (error == 0 && prevauth != sc->sc_config.an_authtype) 1106 error = ENETRESET; 1107 return error; 1108 } 1109 1110 static int 1111 an_set_nwkey_wep(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1112 { 1113 int i, txkey, anysetkey, needreset, error; 1114 struct an_wepkey keys[IEEE80211_WEP_NKID]; 1115 1116 error = 0; 1117 memset(keys, 0, sizeof(keys)); 1118 anysetkey = needreset = 0; 1119 1120 /* load argument and sanity check */ 1121 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1122 keys[i].an_wep_keylen = nwkey->i_key[i].i_keylen; 1123 if (keys[i].an_wep_keylen < 0) 1124 continue; 1125 if (keys[i].an_wep_keylen != 0 && 1126 keys[i].an_wep_keylen < IEEE80211_WEP_KEYLEN) 1127 return EINVAL; 1128 if (keys[i].an_wep_keylen > sizeof(keys[i].an_wep_key)) 1129 return EINVAL; 1130 if ((error = copyin(nwkey->i_key[i].i_keydat, 1131 keys[i].an_wep_key, keys[i].an_wep_keylen)) != 0) 1132 return error; 1133 anysetkey++; 1134 } 1135 txkey = nwkey->i_defkid - 1; 1136 if (txkey >= 0) { 1137 if (txkey >= IEEE80211_WEP_NKID) 1138 return EINVAL; 1139 /* default key must have a valid value */ 1140 if (keys[txkey].an_wep_keylen == 0 || 1141 (keys[txkey].an_wep_keylen < 0 && 1142 sc->sc_perskeylen[txkey] == 0)) 1143 return EINVAL; 1144 anysetkey++; 1145 } 1146 DPRINTF(("an_set_nwkey_wep: %s: %sold(%d:%d,%d,%d,%d) " 1147 "pers(%d:%d,%d,%d,%d) new(%d:%d,%d,%d,%d)\n", 1148 sc->sc_dev.dv_xname, 1149 ((nwkey->i_wepon & IEEE80211_NWKEY_PERSIST) ? "persist: " : ""), 1150 sc->sc_tx_key, 1151 sc->sc_wepkeys[0].an_wep_keylen, sc->sc_wepkeys[1].an_wep_keylen, 1152 sc->sc_wepkeys[2].an_wep_keylen, sc->sc_wepkeys[3].an_wep_keylen, 1153 sc->sc_tx_perskey, 1154 sc->sc_perskeylen[0], sc->sc_perskeylen[1], 1155 sc->sc_perskeylen[2], sc->sc_perskeylen[3], 1156 txkey, 1157 keys[0].an_wep_keylen, keys[1].an_wep_keylen, 1158 keys[2].an_wep_keylen, keys[3].an_wep_keylen)); 1159 if (!(nwkey->i_wepon & IEEE80211_NWKEY_PERSIST)) { 1160 /* set temporary keys */ 1161 sc->sc_tx_key = txkey; 1162 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1163 if (keys[i].an_wep_keylen < 0) 1164 continue; 1165 memcpy(&sc->sc_wepkeys[i], &keys[i], sizeof(keys[i])); 1166 } 1167 } else { 1168 /* set persist keys */ 1169 if (anysetkey) { 1170 /* prepare to write nvram */ 1171 if (!sc->sc_enabled) { 1172 if (sc->sc_enable) 1173 (*sc->sc_enable)(sc); 1174 an_wait(sc); 1175 sc->sc_enabled = 1; 1176 error = an_write_wepkey(sc, 1177 AN_RID_WEP_PERSISTENT, keys, txkey); 1178 if (sc->sc_disable) 1179 (*sc->sc_disable)(sc); 1180 sc->sc_enabled = 0; 1181 } else { 1182 an_cmd(sc, AN_CMD_DISABLE, 0); 1183 error = an_write_wepkey(sc, 1184 AN_RID_WEP_PERSISTENT, keys, txkey); 1185 an_cmd(sc, AN_CMD_ENABLE, 0); 1186 } 1187 if (error) 1188 return error; 1189 } 1190 if (txkey >= 0) 1191 sc->sc_tx_perskey = txkey; 1192 if (sc->sc_tx_key >= 0) { 1193 sc->sc_tx_key = -1; 1194 needreset++; 1195 } 1196 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1197 if (sc->sc_wepkeys[i].an_wep_keylen >= 0) { 1198 memset(&sc->sc_wepkeys[i].an_wep_key, 0, 1199 sizeof(sc->sc_wepkeys[i].an_wep_key)); 1200 sc->sc_wepkeys[i].an_wep_keylen = -1; 1201 needreset++; 1202 } 1203 if (keys[i].an_wep_keylen >= 0) 1204 sc->sc_perskeylen[i] = keys[i].an_wep_keylen; 1205 } 1206 } 1207 if (needreset) { 1208 /* firmware restart to reload persistent key */ 1209 an_reset(sc); 1210 } 1211 if (anysetkey || needreset) 1212 error = ENETRESET; 1213 return error; 1214 } 1215 1216 static int 1217 an_set_nwkey_eap(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1218 { 1219 int i, error, len; 1220 struct ifnet *ifp = &sc->sc_if; 1221 struct an_rid_leapkey *key; 1222 u_int16_t unibuf[sizeof(key->an_key)]; 1223 static const int leap_rid[] = { AN_RID_LEAP_PASS, AN_RID_LEAP_USER }; 1224 MD4_CTX ctx; 1225 1226 error = 0; 1227 1228 if (nwkey->i_key[0].i_keydat == NULL && 1229 nwkey->i_key[1].i_keydat == NULL) 1230 return 0; 1231 if (!sc->sc_enabled) 1232 return ENXIO; 1233 an_cmd(sc, AN_CMD_DISABLE, 0); 1234 key = &sc->sc_buf.sc_leapkey; 1235 for (i = 0; i < 2; i++) { 1236 if (nwkey->i_key[i].i_keydat == NULL) 1237 continue; 1238 len = nwkey->i_key[i].i_keylen; 1239 if (len > sizeof(key->an_key)) 1240 return EINVAL; 1241 memset(key, 0, sizeof(*key)); 1242 key->an_key_len = htole16(len); 1243 if ((error = copyin(nwkey->i_key[i].i_keydat, key->an_key, 1244 len)) != 0) 1245 return error; 1246 if (i == 1) { 1247 /* 1248 * Cisco seems to use PasswordHash and PasswordHashHash 1249 * in RFC-2759 (MS-CHAP-V2). 1250 */ 1251 memset(unibuf, 0, sizeof(unibuf)); 1252 /* XXX: convert password to unicode */ 1253 for (i = 0; i < len; i++) 1254 unibuf[i] = key->an_key[i]; 1255 /* set PasswordHash */ 1256 MD4Init(&ctx); 1257 MD4Update(&ctx, (u_int8_t *)unibuf, len * 2); 1258 MD4Final(key->an_key, &ctx); 1259 /* set PasswordHashHash */ 1260 MD4Init(&ctx); 1261 MD4Update(&ctx, key->an_key, 16); 1262 MD4Final(key->an_key + 16, &ctx); 1263 key->an_key_len = htole16(32); 1264 } 1265 if ((error = an_write_rid(sc, leap_rid[i], key, 1266 sizeof(*key))) != 0) { 1267 printf("%s: LEAP set failed\n", ifp->if_xname); 1268 return error; 1269 } 1270 } 1271 error = an_cmd(sc, AN_CMD_ENABLE, 0); 1272 if (error) 1273 printf("%s: an_set_nwkey: failed to enable MAC\n", 1274 ifp->if_xname); 1275 else 1276 error = ENETRESET; 1277 return error; 1278 } 1279 1280 static int 1281 an_get_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1282 { 1283 int i, error; 1284 1285 error = 0; 1286 if (sc->sc_config.an_authtype & AN_AUTHTYPE_LEAP) 1287 nwkey->i_wepon = IEEE80211_NWKEY_EAP; 1288 else if (sc->sc_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) 1289 nwkey->i_wepon = IEEE80211_NWKEY_WEP; 1290 else 1291 nwkey->i_wepon = IEEE80211_NWKEY_OPEN; 1292 if (sc->sc_tx_key == -1) 1293 nwkey->i_defkid = sc->sc_tx_perskey + 1; 1294 else 1295 nwkey->i_defkid = sc->sc_tx_key + 1; 1296 if (nwkey->i_key[0].i_keydat == NULL) 1297 return 0; 1298 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1299 if (nwkey->i_key[i].i_keydat == NULL) 1300 continue; 1301 /* do not show any keys to non-root user */ 1302 if ((error = suser(curproc->p_ucred, &curproc->p_acflag)) != 0) 1303 break; 1304 nwkey->i_key[i].i_keylen = sc->sc_wepkeys[i].an_wep_keylen; 1305 if (nwkey->i_key[i].i_keylen < 0) { 1306 if (sc->sc_perskeylen[i] == 0) 1307 nwkey->i_key[i].i_keylen = 0; 1308 continue; 1309 } 1310 if ((error = copyout(sc->sc_wepkeys[i].an_wep_key, 1311 nwkey->i_key[i].i_keydat, 1312 sc->sc_wepkeys[i].an_wep_keylen)) != 0) 1313 break; 1314 } 1315 return error; 1316 } 1317 1318 static int 1319 an_write_wepkey(struct an_softc *sc, int type, struct an_wepkey *keys, int kid) 1320 { 1321 int i, error; 1322 struct an_rid_wepkey *akey; 1323 1324 error = 0; 1325 akey = &sc->sc_buf.sc_wepkey; 1326 memset(akey, 0, sizeof(struct an_rid_wepkey)); 1327 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1328 if (keys[i].an_wep_keylen < 0 || 1329 keys[i].an_wep_keylen > sizeof(akey->an_key)) 1330 continue; 1331 akey->an_key_len = htole16(keys[i].an_wep_keylen); 1332 akey->an_key_index = htole16(i); 1333 akey->an_mac_addr[0] = 1; /* default mac */ 1334 memcpy(akey->an_key, keys[i].an_wep_key, keys[i].an_wep_keylen); 1335 if ((error = an_write_rid(sc, type, akey, sizeof(*akey))) != 0) 1336 return error; 1337 } 1338 if (kid >= 0) { 1339 akey->an_key_index = htole16(0xffff); 1340 akey->an_mac_addr[0] = kid; 1341 akey->an_key_len = htole16(0); 1342 memset(akey->an_key, 0, sizeof(akey->an_key)); 1343 error = an_write_rid(sc, type, akey, sizeof(*akey)); 1344 } 1345 return error; 1346 } 1347 1348 #ifdef AN_DEBUG 1349 static void 1350 an_dump_pkt(const char *devname, struct mbuf *m) 1351 { 1352 int col, col0, i; 1353 uint8_t *pkt = mtod(m, uint8_t *); 1354 const char *delim = ""; 1355 int delimw = 0; 1356 1357 printf("%s: pkt ", devname); 1358 col = col0 = strlen(devname) + strlen(": pkt "); 1359 for (i = 0; i < m->m_len; i++) { 1360 printf("%s%02x", delim, pkt[i]); 1361 delim = ":"; 1362 delimw = 1; 1363 col += delimw + 2; 1364 if (col >= 72) { 1365 printf("\n%*s", col0, ""); 1366 col = col0; 1367 delim = ""; 1368 delimw = 0; 1369 } 1370 } 1371 if (col != 0) 1372 printf("\n"); 1373 } 1374 #endif /* AN_DEBUG */ 1375 1376 /* 1377 * Low level functions 1378 */ 1379 1380 static void 1381 an_rx_intr(struct an_softc *sc) 1382 { 1383 struct ieee80211com *ic = &sc->sc_ic; 1384 struct ifnet *ifp = &sc->sc_if; 1385 struct ieee80211_frame_min *wh; 1386 struct ieee80211_node *ni; 1387 struct an_rxframe frmhdr; 1388 struct mbuf *m; 1389 u_int16_t status; 1390 int fid, gaplen, len, off; 1391 uint8_t *gap; 1392 1393 fid = CSR_READ_2(sc, AN_RX_FID); 1394 1395 /* First read in the frame header */ 1396 if (an_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1397 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1398 ifp->if_ierrors++; 1399 DPRINTF(("an_rx_intr: read fid %x failed\n", fid)); 1400 return; 1401 } 1402 1403 #ifdef AN_DEBUG 1404 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) { 1405 ieee80211_dump_pkt((u_int8_t *)&frmhdr.an_whdr, 1406 sizeof(struct ieee80211_frame), frmhdr.an_rx_rate, 1407 frmhdr.an_rx_signal_strength); 1408 printf(" time 0x%x status 0x%x plen %u chan %u" 1409 " plcp %02x %02x %02x %02x gap %u\n", 1410 le32toh(frmhdr.an_rx_time), le16toh(frmhdr.an_rx_status), 1411 le16toh(frmhdr.an_rx_payload_len), frmhdr.an_rx_chan, 1412 frmhdr.an_plcp_hdr[0], frmhdr.an_plcp_hdr[1], 1413 frmhdr.an_plcp_hdr[2], frmhdr.an_plcp_hdr[3], 1414 le16toh(frmhdr.an_gaplen)); 1415 } 1416 #endif 1417 1418 status = le16toh(frmhdr.an_rx_status); 1419 if ((status & AN_STAT_ERRSTAT) != 0 && 1420 ic->ic_opmode != IEEE80211_M_MONITOR) { 1421 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1422 ifp->if_ierrors++; 1423 DPRINTF(("an_rx_intr: fid %x status %x\n", fid, status)); 1424 return; 1425 } 1426 1427 /* the payload length field includes a 16-bit "mystery field" */ 1428 len = le16toh(frmhdr.an_rx_payload_len) - sizeof(uint16_t); 1429 off = ALIGN(sizeof(struct ieee80211_frame)); 1430 1431 if (off + len > MCLBYTES) { 1432 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1433 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1434 ifp->if_ierrors++; 1435 DPRINTF(("an_rx_intr: oversized packet %d\n", len)); 1436 return; 1437 } 1438 len = 0; 1439 } 1440 1441 MGETHDR(m, M_DONTWAIT, MT_DATA); 1442 if (m == NULL) { 1443 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1444 ifp->if_ierrors++; 1445 DPRINTF(("an_rx_intr: MGET failed\n")); 1446 return; 1447 } 1448 if (off + len + AN_GAPLEN_MAX > MHLEN) { 1449 MCLGET(m, M_DONTWAIT); 1450 if ((m->m_flags & M_EXT) == 0) { 1451 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1452 m_freem(m); 1453 ifp->if_ierrors++; 1454 DPRINTF(("an_rx_intr: MCLGET failed\n")); 1455 return; 1456 } 1457 } 1458 m->m_data += off - sizeof(struct ieee80211_frame); 1459 1460 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1461 gaplen = le16toh(frmhdr.an_gaplen); 1462 if (gaplen > AN_GAPLEN_MAX) { 1463 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1464 m_freem(m); 1465 ifp->if_ierrors++; 1466 DPRINTF(("%s: gap too long\n", __func__)); 1467 return; 1468 } 1469 /* 1470 * We don't need the 16-bit mystery field (payload length?), 1471 * so read it into the region reserved for the 802.11 header. 1472 * 1473 * When Cisco Aironet 350 cards w/ firmware version 5 or 1474 * greater operate with certain Cisco 350 APs, 1475 * the "gap" is filled with the SNAP header. Read 1476 * it in after the 802.11 header. 1477 */ 1478 gap = m->m_data + sizeof(struct ieee80211_frame) - 1479 sizeof(uint16_t); 1480 an_read_bap(sc, fid, -1, gap, gaplen + sizeof(u_int16_t)); 1481 #ifdef AN_DEBUG 1482 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == 1483 (IFF_DEBUG|IFF_LINK2)) { 1484 int i; 1485 printf(" gap&len"); 1486 for (i = 0; i < gaplen + sizeof(u_int16_t); i++) 1487 printf(" %02x", gap[i]); 1488 printf("\n"); 1489 } 1490 #endif 1491 } else 1492 gaplen = 0; 1493 1494 an_read_bap(sc, fid, -1, 1495 m->m_data + sizeof(struct ieee80211_frame) + gaplen, len); 1496 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + gaplen + 1497 len; 1498 1499 memcpy(m->m_data, &frmhdr.an_whdr, sizeof(struct ieee80211_frame)); 1500 m->m_pkthdr.rcvif = ifp; 1501 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1502 1503 #if NBPFILTER > 0 1504 if (sc->sc_drvbpf) { 1505 struct an_rx_radiotap_header *tap = &sc->sc_rxtap; 1506 1507 tap->ar_rate = frmhdr.an_rx_rate; 1508 tap->ar_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1509 tap->ar_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1510 tap->ar_antsignal = frmhdr.an_rx_signal_strength; 1511 if ((le16toh(frmhdr.an_rx_status) & AN_STAT_BADCRC) || 1512 (le16toh(frmhdr.an_rx_status) & AN_STAT_ERRSTAT) || 1513 (le16toh(frmhdr.an_rx_status) & AN_STAT_UNDECRYPTABLE)) 1514 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS; 1515 1516 bpf_mtap2(sc->sc_drvbpf, tap, tap->ar_ihdr.it_len, m); 1517 } 1518 #endif 1519 wh = mtod(m, struct ieee80211_frame_min *); 1520 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1521 /* 1522 * WEP is decrypted by hardware. Clear WEP bit 1523 * header for ieee80211_input(). 1524 */ 1525 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1526 } 1527 1528 #ifdef AN_DEBUG 1529 if (an_debug > 1) 1530 an_dump_pkt(sc->sc_dev.dv_xname, m); 1531 #endif /* AN_DEBUG */ 1532 1533 ni = ieee80211_find_rxnode(ic, wh); 1534 ieee80211_input(ic, m, ni, frmhdr.an_rx_signal_strength, 1535 le32toh(frmhdr.an_rx_time)); 1536 ieee80211_free_node(ni); 1537 } 1538 1539 static void 1540 an_tx_intr(struct an_softc *sc, int status) 1541 { 1542 struct ifnet *ifp = &sc->sc_if; 1543 int cur, fid; 1544 1545 sc->sc_tx_timer = 0; 1546 ifp->if_flags &= ~IFF_OACTIVE; 1547 1548 fid = CSR_READ_2(sc, AN_TX_CMP_FID); 1549 CSR_WRITE_2(sc, AN_EVENT_ACK, status & (AN_EV_TX | AN_EV_TX_EXC)); 1550 1551 if (status & AN_EV_TX_EXC) 1552 ifp->if_oerrors++; 1553 else 1554 ifp->if_opackets++; 1555 1556 cur = sc->sc_txcur; 1557 if (sc->sc_txd[cur].d_fid == fid) { 1558 sc->sc_txd[cur].d_inuse = 0; 1559 DPRINTF2(("an_tx_intr: sent %x/%d\n", fid, cur)); 1560 AN_INC(cur, AN_TX_RING_CNT); 1561 sc->sc_txcur = cur; 1562 } else { 1563 for (cur = 0; cur < AN_TX_RING_CNT; cur++) { 1564 if (fid == sc->sc_txd[cur].d_fid) { 1565 sc->sc_txd[cur].d_inuse = 0; 1566 break; 1567 } 1568 } 1569 if (ifp->if_flags & IFF_DEBUG) 1570 printf("%s: tx mismatch: " 1571 "expected %x(%d), actual %x(%d)\n", 1572 sc->sc_dev.dv_xname, 1573 sc->sc_txd[sc->sc_txcur].d_fid, sc->sc_txcur, 1574 fid, cur); 1575 } 1576 1577 return; 1578 } 1579 1580 static void 1581 an_linkstat_intr(struct an_softc *sc) 1582 { 1583 struct ieee80211com *ic = &sc->sc_ic; 1584 u_int16_t status; 1585 1586 status = CSR_READ_2(sc, AN_LINKSTAT); 1587 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT); 1588 DPRINTF(("an_linkstat_intr: status 0x%x\n", status)); 1589 1590 if (status == AN_LINKSTAT_ASSOCIATED) { 1591 if (ic->ic_state != IEEE80211_S_RUN || 1592 ic->ic_opmode == IEEE80211_M_IBSS) 1593 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1594 } else { 1595 if (ic->ic_opmode == IEEE80211_M_STA) 1596 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1597 } 1598 } 1599 1600 /* Must be called at proper protection level! */ 1601 static int 1602 an_cmd(struct an_softc *sc, int cmd, int val) 1603 { 1604 int i, status; 1605 1606 /* make sure that previous command completed */ 1607 if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) { 1608 if (sc->sc_if.if_flags & IFF_DEBUG) 1609 printf("%s: command 0x%x busy\n", sc->sc_dev.dv_xname, 1610 CSR_READ_2(sc, AN_COMMAND)); 1611 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); 1612 } 1613 1614 CSR_WRITE_2(sc, AN_PARAM0, val); 1615 CSR_WRITE_2(sc, AN_PARAM1, 0); 1616 CSR_WRITE_2(sc, AN_PARAM2, 0); 1617 CSR_WRITE_2(sc, AN_COMMAND, cmd); 1618 1619 if (cmd == AN_CMD_FW_RESTART) { 1620 /* XXX: should sleep here */ 1621 DELAY(100*1000); 1622 } 1623 1624 for (i = 0; i < AN_TIMEOUT; i++) { 1625 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD) 1626 break; 1627 DELAY(10); 1628 } 1629 1630 status = CSR_READ_2(sc, AN_STATUS); 1631 1632 /* clear stuck command busy if necessary */ 1633 if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) 1634 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); 1635 1636 /* Ack the command */ 1637 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); 1638 1639 if (i == AN_TIMEOUT) { 1640 if (sc->sc_if.if_flags & IFF_DEBUG) 1641 printf("%s: command 0x%x param 0x%x timeout\n", 1642 sc->sc_dev.dv_xname, cmd, val); 1643 return ETIMEDOUT; 1644 } 1645 if (status & AN_STAT_CMD_RESULT) { 1646 if (sc->sc_if.if_flags & IFF_DEBUG) 1647 printf("%s: command 0x%x param 0x%x status 0x%x " 1648 "resp 0x%x 0x%x 0x%x\n", 1649 sc->sc_dev.dv_xname, cmd, val, status, 1650 CSR_READ_2(sc, AN_RESP0), CSR_READ_2(sc, AN_RESP1), 1651 CSR_READ_2(sc, AN_RESP2)); 1652 return EIO; 1653 } 1654 1655 return 0; 1656 } 1657 1658 1659 /* 1660 * Wait for firmware come up after power enabled. 1661 */ 1662 static void 1663 an_wait(struct an_softc *sc) 1664 { 1665 int i; 1666 1667 CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_NOOP2); 1668 for (i = 0; i < 3*hz; i++) { 1669 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD) 1670 break; 1671 (void)tsleep(sc, PWAIT, "anatch", 1); 1672 } 1673 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); 1674 } 1675 1676 static int 1677 an_seek_bap(struct an_softc *sc, int id, int off) 1678 { 1679 int i, status; 1680 1681 CSR_WRITE_2(sc, AN_SEL0, id); 1682 CSR_WRITE_2(sc, AN_OFF0, off); 1683 1684 for (i = 0; ; i++) { 1685 status = CSR_READ_2(sc, AN_OFF0); 1686 if ((status & AN_OFF_BUSY) == 0) 1687 break; 1688 if (i == AN_TIMEOUT) { 1689 printf("%s: timeout in an_seek_bap to 0x%x/0x%x\n", 1690 sc->sc_dev.dv_xname, id, off); 1691 sc->sc_bap_off = AN_OFF_ERR; /* invalidate */ 1692 return ETIMEDOUT; 1693 } 1694 DELAY(10); 1695 } 1696 if (status & AN_OFF_ERR) { 1697 printf("%s: failed in an_seek_bap to 0x%x/0x%x\n", 1698 sc->sc_dev.dv_xname, id, off); 1699 sc->sc_bap_off = AN_OFF_ERR; /* invalidate */ 1700 return EIO; 1701 } 1702 sc->sc_bap_id = id; 1703 sc->sc_bap_off = off; 1704 return 0; 1705 } 1706 1707 static int 1708 an_read_bap(struct an_softc *sc, int id, int off, void *buf, int buflen) 1709 { 1710 int error, cnt; 1711 1712 if (buflen == 0) 1713 return 0; 1714 if (off == -1) 1715 off = sc->sc_bap_off; 1716 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 1717 if ((error = an_seek_bap(sc, id, off)) != 0) 1718 return EIO; 1719 } 1720 1721 cnt = (buflen + 1) / 2; 1722 CSR_READ_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt); 1723 sc->sc_bap_off += cnt * 2; 1724 return 0; 1725 } 1726 1727 static int 1728 an_write_bap(struct an_softc *sc, int id, int off, void *buf, int buflen) 1729 { 1730 int error, cnt; 1731 1732 if (buflen == 0) 1733 return 0; 1734 if (off == -1) 1735 off = sc->sc_bap_off; 1736 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 1737 if ((error = an_seek_bap(sc, id, off)) != 0) 1738 return EIO; 1739 } 1740 1741 cnt = (buflen + 1) / 2; 1742 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt); 1743 sc->sc_bap_off += cnt * 2; 1744 return 0; 1745 } 1746 1747 static int 1748 an_mwrite_bap(struct an_softc *sc, int id, int off, struct mbuf *m, int totlen) 1749 { 1750 int error, len, cnt; 1751 1752 if (off == -1) 1753 off = sc->sc_bap_off; 1754 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 1755 if ((error = an_seek_bap(sc, id, off)) != 0) 1756 return EIO; 1757 } 1758 1759 for (len = 0; m != NULL; m = m->m_next) { 1760 if (m->m_len == 0) 1761 continue; 1762 len = min(m->m_len, totlen); 1763 1764 if ((mtod(m, u_long) & 0x1) || (len & 0x1)) { 1765 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_buf.sc_txbuf); 1766 cnt = (totlen + 1) / 2; 1767 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, 1768 sc->sc_buf.sc_val, cnt); 1769 off += cnt * 2; 1770 break; 1771 } 1772 cnt = len / 2; 1773 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, mtod(m, u_int16_t *), 1774 cnt); 1775 off += len; 1776 totlen -= len; 1777 } 1778 sc->sc_bap_off = off; 1779 return 0; 1780 } 1781 1782 static int 1783 an_alloc_fid(struct an_softc *sc, int len, int *idp) 1784 { 1785 int i; 1786 1787 if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) { 1788 printf("%s: failed to allocate %d bytes on NIC\n", 1789 sc->sc_dev.dv_xname, len); 1790 return ENOMEM; 1791 } 1792 1793 for (i = 0; i < AN_TIMEOUT; i++) { 1794 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC) 1795 break; 1796 if (i == AN_TIMEOUT) { 1797 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname); 1798 return ETIMEDOUT; 1799 } 1800 DELAY(10); 1801 } 1802 1803 *idp = CSR_READ_2(sc, AN_ALLOC_FID); 1804 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC); 1805 return 0; 1806 } 1807 1808 static int 1809 an_read_rid(struct an_softc *sc, int rid, void *buf, int *buflenp) 1810 { 1811 int error; 1812 u_int16_t len; 1813 1814 /* Tell the NIC to enter record read mode. */ 1815 error = an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_READ, rid); 1816 if (error) 1817 return error; 1818 1819 /* length in byte, including length itself */ 1820 error = an_read_bap(sc, rid, 0, &len, sizeof(len)); 1821 if (error) 1822 return error; 1823 1824 len = le16toh(len) - 2; 1825 if (*buflenp < len) { 1826 printf("%s: record buffer is too small, " 1827 "rid=%x, size=%d, len=%d\n", 1828 sc->sc_dev.dv_xname, rid, *buflenp, len); 1829 return ENOSPC; 1830 } 1831 *buflenp = len; 1832 return an_read_bap(sc, rid, sizeof(len), buf, len); 1833 } 1834 1835 static int 1836 an_write_rid(struct an_softc *sc, int rid, void *buf, int buflen) 1837 { 1838 int error; 1839 u_int16_t len; 1840 1841 /* length in byte, including length itself */ 1842 len = htole16(buflen + 2); 1843 1844 error = an_write_bap(sc, rid, 0, &len, sizeof(len)); 1845 if (error) 1846 return error; 1847 error = an_write_bap(sc, rid, sizeof(len), buf, buflen); 1848 if (error) 1849 return error; 1850 1851 return an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_WRITE, rid); 1852 } 1853 1854 static int 1855 an_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1856 { 1857 struct an_softc *sc = (struct an_softc *)ic->ic_ifp->if_softc; 1858 struct ieee80211_node *ni = ic->ic_bss; 1859 enum ieee80211_state ostate; 1860 int buflen; 1861 1862 ostate = ic->ic_state; 1863 DPRINTF(("an_newstate: %s -> %s\n", ieee80211_state_name[ostate], 1864 ieee80211_state_name[nstate])); 1865 1866 switch (nstate) { 1867 case IEEE80211_S_INIT: 1868 ic->ic_flags &= ~IEEE80211_F_IBSSON; 1869 return (*sc->sc_newstate)(ic, nstate, arg); 1870 1871 case IEEE80211_S_SCAN: 1872 case IEEE80211_S_AUTH: 1873 case IEEE80211_S_ASSOC: 1874 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */ 1875 return 0; 1876 1877 case IEEE80211_S_RUN: 1878 buflen = sizeof(sc->sc_buf); 1879 an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen); 1880 IEEE80211_ADDR_COPY(ni->ni_bssid, 1881 sc->sc_buf.sc_status.an_cur_bssid); 1882 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid); 1883 ni->ni_chan = &ic->ic_channels[ 1884 le16toh(sc->sc_buf.sc_status.an_cur_channel)]; 1885 ni->ni_esslen = le16toh(sc->sc_buf.sc_status.an_ssidlen); 1886 if (ni->ni_esslen > IEEE80211_NWID_LEN) 1887 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ 1888 memcpy(ni->ni_essid, sc->sc_buf.sc_status.an_ssid, 1889 ni->ni_esslen); 1890 ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B]; /*XXX*/ 1891 if (ic->ic_ifp->if_flags & IFF_DEBUG) { 1892 printf("%s: ", sc->sc_dev.dv_xname); 1893 if (ic->ic_opmode == IEEE80211_M_STA) 1894 printf("associated "); 1895 else 1896 printf("synchronized "); 1897 printf("with %s ssid ", ether_sprintf(ni->ni_bssid)); 1898 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 1899 printf(" channel %u start %uMb\n", 1900 le16toh(sc->sc_buf.sc_status.an_cur_channel), 1901 le16toh(sc->sc_buf.sc_status.an_current_tx_rate)/2); 1902 } 1903 break; 1904 1905 default: 1906 break; 1907 } 1908 return (*sc->sc_newstate)(ic, nstate, arg); 1909 } 1910