1 /* $NetBSD: an.c,v 1.54 2008/11/12 12:36:11 ad Exp $ */ 2 /* 3 * Copyright (c) 1997, 1998, 1999 4 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 * 33 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.12 2000/11/13 23:04:12 wpaul Exp $ 34 */ 35 /* 36 * Copyright (c) 2004, 2005 David Young. All rights reserved. 37 * Copyright (c) 2004, 2005 OJC Technologies. All rights reserved. 38 * Copyright (c) 2004, 2005 Dayton Data Center Services, LLC. All 39 * rights reserved. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the author nor the names of any co-contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY David Young AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL David Young AND CONTRIBUTORS 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 63 * THE POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 /* 67 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD. 68 * 69 * Written by Bill Paul <wpaul@ctr.columbia.edu> 70 * Electrical Engineering Department 71 * Columbia University, New York City 72 */ 73 74 /* 75 * Ported to NetBSD from FreeBSD by Atsushi Onoe at the San Diego 76 * IETF meeting. 77 */ 78 79 #include <sys/cdefs.h> 80 __KERNEL_RCSID(0, "$NetBSD: an.c,v 1.54 2008/11/12 12:36:11 ad Exp $"); 81 82 #include "bpfilter.h" 83 84 #include <sys/param.h> 85 #include <sys/callout.h> 86 #include <sys/sysctl.h> 87 #include <sys/systm.h> 88 #include <sys/sockio.h> 89 #include <sys/mbuf.h> 90 #include <sys/kernel.h> 91 #include <sys/ucred.h> 92 #include <sys/socket.h> 93 #include <sys/device.h> 94 #include <sys/proc.h> 95 #include <sys/md4.h> 96 #include <sys/endian.h> 97 #include <sys/kauth.h> 98 99 #include <sys/bus.h> 100 101 #include <net/if.h> 102 #include <net/if_dl.h> 103 #include <net/if_ether.h> 104 #include <net/if_llc.h> 105 #include <net/if_media.h> 106 #include <net/if_types.h> 107 108 #include <net80211/ieee80211_netbsd.h> 109 #include <net80211/ieee80211_var.h> 110 #include <net80211/ieee80211_radiotap.h> 111 112 #if NBPFILTER > 0 113 #include <net/bpf.h> 114 #include <net/bpfdesc.h> 115 #endif 116 117 #include <dev/ic/anreg.h> 118 #include <dev/ic/anvar.h> 119 120 static int an_reset(struct an_softc *); 121 static void an_wait(struct an_softc *); 122 static int an_init(struct ifnet *); 123 static void an_stop(struct ifnet *, int); 124 static void an_start(struct ifnet *); 125 static void an_watchdog(struct ifnet *); 126 static int an_ioctl(struct ifnet *, u_long, void *); 127 static int an_media_change(struct ifnet *); 128 static void an_media_status(struct ifnet *, struct ifmediareq *); 129 130 static int an_set_nwkey(struct an_softc *, struct ieee80211_nwkey *); 131 static int an_set_nwkey_wep(struct an_softc *, struct ieee80211_nwkey *); 132 static int an_set_nwkey_eap(struct an_softc *, struct ieee80211_nwkey *); 133 static int an_get_nwkey(struct an_softc *, struct ieee80211_nwkey *); 134 static int an_write_wepkey(struct an_softc *, int, struct an_wepkey *, 135 int); 136 137 static void an_rx_intr(struct an_softc *); 138 static void an_tx_intr(struct an_softc *, int); 139 static void an_linkstat_intr(struct an_softc *); 140 141 static int an_cmd(struct an_softc *, int, int); 142 static int an_seek_bap(struct an_softc *, int, int); 143 static int an_read_bap(struct an_softc *, int, int, void *, int); 144 static int an_write_bap(struct an_softc *, int, int, void *, int); 145 static int an_mwrite_bap(struct an_softc *, int, int, struct mbuf *, int); 146 static int an_read_rid(struct an_softc *, int, void *, int *); 147 static int an_write_rid(struct an_softc *, int, void *, int); 148 149 static int an_alloc_fid(struct an_softc *, int, int *); 150 151 static int an_newstate(struct ieee80211com *, enum ieee80211_state, int); 152 153 #ifdef AN_DEBUG 154 int an_debug = 0; 155 156 #define DPRINTF(X) if (an_debug) printf X 157 #define DPRINTF2(X) if (an_debug > 1) printf X 158 static int an_sysctl_verify(SYSCTLFN_PROTO, int lower, int upper); 159 static int an_sysctl_verify_debug(SYSCTLFN_PROTO); 160 #else 161 #define DPRINTF(X) 162 #define DPRINTF2(X) 163 #endif 164 165 int 166 an_attach(struct an_softc *sc) 167 { 168 struct ieee80211com *ic = &sc->sc_ic; 169 struct ifnet *ifp = &sc->sc_if; 170 int i, s; 171 struct an_rid_wepkey *akey; 172 int buflen, kid, rid; 173 int chan, chan_min, chan_max; 174 175 s = splnet(); 176 sc->sc_invalid = 0; 177 178 an_wait(sc); 179 if (an_reset(sc) != 0) { 180 sc->sc_invalid = 1; 181 splx(s); 182 return 1; 183 } 184 185 /* Load factory config */ 186 if (an_cmd(sc, AN_CMD_READCFG, 0) != 0) { 187 splx(s); 188 aprint_error_dev(sc->sc_dev, "failed to load config data\n"); 189 return 1; 190 } 191 192 /* Read the current configuration */ 193 buflen = sizeof(sc->sc_config); 194 if (an_read_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, &buflen) != 0) { 195 splx(s); 196 aprint_error_dev(sc->sc_dev, "read config failed\n"); 197 return 1; 198 } 199 200 /* Read the card capabilities */ 201 buflen = sizeof(sc->sc_caps); 202 if (an_read_rid(sc, AN_RID_CAPABILITIES, &sc->sc_caps, &buflen) != 0) { 203 splx(s); 204 aprint_error_dev(sc->sc_dev, "read caps failed\n"); 205 return 1; 206 } 207 208 #ifdef AN_DEBUG 209 if (an_debug) { 210 static const int dumprid[] = { 211 AN_RID_GENCONFIG, AN_RID_CAPABILITIES, AN_RID_SSIDLIST, 212 AN_RID_APLIST, AN_RID_STATUS, AN_RID_ENCAP 213 }; 214 215 for (rid = 0; rid < sizeof(dumprid)/sizeof(dumprid[0]); rid++) { 216 buflen = sizeof(sc->sc_buf); 217 if (an_read_rid(sc, dumprid[rid], &sc->sc_buf, &buflen) 218 != 0) 219 continue; 220 printf("%04x (%d):\n", dumprid[rid], buflen); 221 for (i = 0; i < (buflen + 1) / 2; i++) 222 printf(" %04x", sc->sc_buf.sc_val[i]); 223 printf("\n"); 224 } 225 } 226 #endif 227 228 /* Read WEP settings from persistent memory */ 229 akey = &sc->sc_buf.sc_wepkey; 230 buflen = sizeof(struct an_rid_wepkey); 231 rid = AN_RID_WEP_VOLATILE; /* first persistent key */ 232 while (an_read_rid(sc, rid, akey, &buflen) == 0) { 233 kid = le16toh(akey->an_key_index); 234 DPRINTF(("an_attach: wep rid=0x%x len=%d(%zu) index=0x%04x " 235 "mac[0]=%02x keylen=%d\n", 236 rid, buflen, sizeof(*akey), kid, 237 akey->an_mac_addr[0], le16toh(akey->an_key_len))); 238 if (kid == 0xffff) { 239 sc->sc_tx_perskey = akey->an_mac_addr[0]; 240 sc->sc_tx_key = -1; 241 break; 242 } 243 if (kid >= IEEE80211_WEP_NKID) 244 break; 245 sc->sc_perskeylen[kid] = le16toh(akey->an_key_len); 246 sc->sc_wepkeys[kid].an_wep_keylen = -1; 247 rid = AN_RID_WEP_PERSISTENT; /* for next key */ 248 buflen = sizeof(struct an_rid_wepkey); 249 } 250 251 aprint_normal_dev(sc->sc_dev, "%s %s (firmware %s)\n", 252 sc->sc_caps.an_manufname, sc->sc_caps.an_prodname, 253 sc->sc_caps.an_prodvers); 254 255 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 256 257 ifp->if_softc = sc; 258 ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_SIMPLEX | 259 IFF_MULTICAST | IFF_ALLMULTI; 260 ifp->if_ioctl = an_ioctl; 261 ifp->if_start = an_start; 262 ifp->if_init = an_init; 263 ifp->if_stop = an_stop; 264 ifp->if_watchdog = an_watchdog; 265 IFQ_SET_READY(&ifp->if_snd); 266 267 ic->ic_ifp = ifp; 268 ic->ic_phytype = IEEE80211_T_DS; 269 ic->ic_opmode = IEEE80211_M_STA; 270 ic->ic_caps = IEEE80211_C_WEP | IEEE80211_C_PMGT | IEEE80211_C_IBSS | 271 IEEE80211_C_MONITOR; 272 ic->ic_state = IEEE80211_S_INIT; 273 IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_caps.an_oemaddr); 274 275 switch (le16toh(sc->sc_caps.an_regdomain)) { 276 default: 277 case AN_REGDOMAIN_USA: 278 case AN_REGDOMAIN_CANADA: 279 chan_min = 1; chan_max = 11; break; 280 case AN_REGDOMAIN_EUROPE: 281 case AN_REGDOMAIN_AUSTRALIA: 282 chan_min = 1; chan_max = 13; break; 283 case AN_REGDOMAIN_JAPAN: 284 chan_min = 14; chan_max = 14; break; 285 case AN_REGDOMAIN_SPAIN: 286 chan_min = 10; chan_max = 11; break; 287 case AN_REGDOMAIN_FRANCE: 288 chan_min = 10; chan_max = 13; break; 289 case AN_REGDOMAIN_JAPANWIDE: 290 chan_min = 1; chan_max = 14; break; 291 } 292 293 for (chan = chan_min; chan <= chan_max; chan++) { 294 ic->ic_channels[chan].ic_freq = 295 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 296 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; 297 } 298 ic->ic_ibss_chan = &ic->ic_channels[chan_min]; 299 300 aprint_normal("%s: 802.11 address: %s, channel: %d-%d\n", 301 ifp->if_xname, ether_sprintf(ic->ic_myaddr), chan_min, chan_max); 302 303 /* Find supported rate */ 304 for (i = 0; i < sizeof(sc->sc_caps.an_rates); i++) { 305 if (sc->sc_caps.an_rates[i] == 0) 306 continue; 307 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ 308 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates++] = 309 sc->sc_caps.an_rates[i]; 310 } 311 312 /* 313 * Call MI attach routine. 314 */ 315 if_attach(ifp); 316 ieee80211_ifattach(ic); 317 318 sc->sc_newstate = ic->ic_newstate; 319 ic->ic_newstate = an_newstate; 320 321 ieee80211_media_init(ic, an_media_change, an_media_status); 322 323 /* 324 * radiotap BPF device 325 */ 326 #if NBPFILTER > 0 327 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 328 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 329 #endif 330 331 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); 332 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu)); 333 sc->sc_rxtap.ar_ihdr.it_present = htole32(AN_RX_RADIOTAP_PRESENT); 334 335 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); 336 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu)); 337 sc->sc_txtap.at_ihdr.it_present = htole32(AN_TX_RADIOTAP_PRESENT); 338 339 sc->sc_attached = 1; 340 splx(s); 341 342 ieee80211_announce(ic); 343 return 0; 344 } 345 346 #ifdef AN_DEBUG 347 /* 348 * Setup sysctl(3) MIB, hw.an.* 349 * 350 * TBD condition CTLFLAG_PERMANENT on being a module or not 351 */ 352 SYSCTL_SETUP(sysctl_an, "sysctl an(4) subtree setup") 353 { 354 int rc; 355 const struct sysctlnode *cnode, *rnode; 356 357 if ((rc = sysctl_createv(clog, 0, NULL, &rnode, 358 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, 359 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) 360 goto err; 361 362 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode, 363 CTLFLAG_PERMANENT, CTLTYPE_NODE, "an", 364 "Cisco/Aironet 802.11 controls", 365 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0) 366 goto err; 367 368 /* control debugging printfs */ 369 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 370 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 371 "debug", SYSCTL_DESCR("Enable Cisco/Aironet debugging output"), 372 an_sysctl_verify_debug, 0, &an_debug, 0, 373 CTL_CREATE, CTL_EOL)) != 0) 374 goto err; 375 376 return; 377 err: 378 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 379 } 380 381 static int 382 an_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper) 383 { 384 int error, t; 385 struct sysctlnode node; 386 387 node = *rnode; 388 t = *(int*)rnode->sysctl_data; 389 node.sysctl_data = &t; 390 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 391 if (error || newp == NULL) 392 return (error); 393 394 if (t < lower || t > upper) 395 return (EINVAL); 396 397 *(int*)rnode->sysctl_data = t; 398 399 return (0); 400 } 401 402 static int 403 an_sysctl_verify_debug(SYSCTLFN_ARGS) 404 { 405 return an_sysctl_verify(SYSCTLFN_CALL(rnode), 0, 2); 406 } 407 #endif /* AN_DEBUG */ 408 409 int 410 an_detach(struct an_softc *sc) 411 { 412 struct ieee80211com *ic = &sc->sc_ic; 413 struct ifnet *ifp = &sc->sc_if; 414 int s; 415 416 if (!sc->sc_attached) 417 return 0; 418 419 s = splnet(); 420 sc->sc_invalid = 1; 421 an_stop(ifp, 1); 422 ieee80211_ifdetach(ic); 423 if_detach(ifp); 424 splx(s); 425 return 0; 426 } 427 428 int 429 an_activate(struct device *self, enum devact act) 430 { 431 struct an_softc *sc = (struct an_softc *)self; 432 int s, error = 0; 433 434 s = splnet(); 435 switch (act) { 436 case DVACT_ACTIVATE: 437 error = EOPNOTSUPP; 438 break; 439 440 case DVACT_DEACTIVATE: 441 sc->sc_invalid = 1; 442 if_deactivate(&sc->sc_if); 443 break; 444 } 445 splx(s); 446 447 return error; 448 } 449 450 int 451 an_intr(void *arg) 452 { 453 struct an_softc *sc = arg; 454 struct ifnet *ifp = &sc->sc_if; 455 int i; 456 u_int16_t status; 457 458 if (!sc->sc_enabled || sc->sc_invalid || 459 !device_is_active(sc->sc_dev) || 460 (ifp->if_flags & IFF_RUNNING) == 0) 461 return 0; 462 463 if ((ifp->if_flags & IFF_UP) == 0) { 464 CSR_WRITE_2(sc, AN_INT_EN, 0); 465 CSR_WRITE_2(sc, AN_EVENT_ACK, ~0); 466 return 1; 467 } 468 469 /* maximum 10 loops per interrupt */ 470 for (i = 0; i < 10; i++) { 471 if (!sc->sc_enabled || sc->sc_invalid) 472 return 1; 473 if (CSR_READ_2(sc, AN_SW0) != AN_MAGIC) { 474 DPRINTF(("an_intr: magic number changed: %x\n", 475 CSR_READ_2(sc, AN_SW0))); 476 sc->sc_invalid = 1; 477 return 1; 478 } 479 status = CSR_READ_2(sc, AN_EVENT_STAT); 480 CSR_WRITE_2(sc, AN_EVENT_ACK, status & ~(AN_INTRS)); 481 if ((status & AN_INTRS) == 0) 482 break; 483 484 if (status & AN_EV_RX) 485 an_rx_intr(sc); 486 487 if (status & (AN_EV_TX | AN_EV_TX_EXC)) 488 an_tx_intr(sc, status); 489 490 if (status & AN_EV_LINKSTAT) 491 an_linkstat_intr(sc); 492 493 if ((ifp->if_flags & IFF_OACTIVE) == 0 && 494 sc->sc_ic.ic_state == IEEE80211_S_RUN && 495 !IFQ_IS_EMPTY(&ifp->if_snd)) 496 an_start(ifp); 497 } 498 499 return 1; 500 } 501 502 static int 503 an_init(struct ifnet *ifp) 504 { 505 struct an_softc *sc = ifp->if_softc; 506 struct ieee80211com *ic = &sc->sc_ic; 507 int i, error, fid; 508 509 DPRINTF(("an_init: enabled %d\n", sc->sc_enabled)); 510 if (!sc->sc_enabled) { 511 if (sc->sc_enable) 512 (*sc->sc_enable)(sc); 513 an_wait(sc); 514 sc->sc_enabled = 1; 515 } else { 516 an_stop(ifp, 0); 517 if ((error = an_reset(sc)) != 0) { 518 printf("%s: failed to reset\n", ifp->if_xname); 519 an_stop(ifp, 1); 520 return error; 521 } 522 } 523 CSR_WRITE_2(sc, AN_SW0, AN_MAGIC); 524 525 /* Allocate the TX buffers */ 526 for (i = 0; i < AN_TX_RING_CNT; i++) { 527 if ((error = an_alloc_fid(sc, AN_TX_MAX_LEN, &fid)) != 0) { 528 printf("%s: failed to allocate nic memory\n", 529 ifp->if_xname); 530 an_stop(ifp, 1); 531 return error; 532 } 533 DPRINTF2(("an_init: txbuf %d allocated %x\n", i, fid)); 534 sc->sc_txd[i].d_fid = fid; 535 sc->sc_txd[i].d_inuse = 0; 536 } 537 sc->sc_txcur = sc->sc_txnext = 0; 538 539 IEEE80211_ADDR_COPY(sc->sc_config.an_macaddr, ic->ic_myaddr); 540 sc->sc_config.an_scanmode = htole16(AN_SCANMODE_ACTIVE); 541 sc->sc_config.an_authtype = htole16(AN_AUTHTYPE_OPEN); /*XXX*/ 542 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 543 sc->sc_config.an_authtype |= 544 htole16(AN_AUTHTYPE_PRIVACY_IN_USE); 545 if (sc->sc_use_leap) 546 sc->sc_config.an_authtype |= 547 htole16(AN_AUTHTYPE_LEAP); 548 } 549 sc->sc_config.an_listen_interval = htole16(ic->ic_lintval); 550 sc->sc_config.an_beacon_period = htole16(ic->ic_lintval); 551 if (ic->ic_flags & IEEE80211_F_PMGTON) 552 sc->sc_config.an_psave_mode = htole16(AN_PSAVE_PSP); 553 else 554 sc->sc_config.an_psave_mode = htole16(AN_PSAVE_CAM); 555 sc->sc_config.an_ds_channel = 556 htole16(ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 557 558 switch (ic->ic_opmode) { 559 case IEEE80211_M_STA: 560 sc->sc_config.an_opmode = 561 htole16(AN_OPMODE_INFRASTRUCTURE_STATION); 562 sc->sc_config.an_rxmode = htole16(AN_RXMODE_BC_MC_ADDR); 563 break; 564 case IEEE80211_M_IBSS: 565 sc->sc_config.an_opmode = htole16(AN_OPMODE_IBSS_ADHOC); 566 sc->sc_config.an_rxmode = htole16(AN_RXMODE_BC_MC_ADDR); 567 break; 568 case IEEE80211_M_MONITOR: 569 sc->sc_config.an_opmode = 570 htole16(AN_OPMODE_INFRASTRUCTURE_STATION); 571 sc->sc_config.an_rxmode = 572 htole16(AN_RXMODE_80211_MONITOR_ANYBSS); 573 sc->sc_config.an_authtype = htole16(AN_AUTHTYPE_NONE); 574 if (ic->ic_flags & IEEE80211_F_PRIVACY) 575 sc->sc_config.an_authtype |= 576 htole16(AN_AUTHTYPE_PRIVACY_IN_USE | 577 AN_AUTHTYPE_ALLOW_UNENCRYPTED); 578 break; 579 default: 580 printf("%s: bad opmode %d\n", ifp->if_xname, ic->ic_opmode); 581 an_stop(ifp, 1); 582 return EIO; 583 } 584 sc->sc_config.an_rxmode |= htole16(AN_RXMODE_NO_8023_HEADER); 585 586 /* Set the ssid list */ 587 memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_ssidlist)); 588 sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid_len = 589 htole16(ic->ic_des_esslen); 590 if (ic->ic_des_esslen) 591 memcpy(sc->sc_buf.sc_ssidlist.an_entry[0].an_ssid, 592 ic->ic_des_essid, ic->ic_des_esslen); 593 if (an_write_rid(sc, AN_RID_SSIDLIST, &sc->sc_buf, 594 sizeof(sc->sc_buf.sc_ssidlist)) != 0) { 595 printf("%s: failed to write ssid list\n", ifp->if_xname); 596 an_stop(ifp, 1); 597 return error; 598 } 599 600 /* Set the AP list */ 601 memset(&sc->sc_buf, 0, sizeof(sc->sc_buf.sc_aplist)); 602 (void)an_write_rid(sc, AN_RID_APLIST, &sc->sc_buf, 603 sizeof(sc->sc_buf.sc_aplist)); 604 605 /* Set the encapsulation */ 606 for (i = 0; i < AN_ENCAP_NENTS; i++) { 607 sc->sc_buf.sc_encap.an_entry[i].an_ethertype = htole16(0); 608 sc->sc_buf.sc_encap.an_entry[i].an_action = 609 htole16(AN_RXENCAP_RFC1024 | AN_TXENCAP_RFC1024); 610 } 611 (void)an_write_rid(sc, AN_RID_ENCAP, &sc->sc_buf, 612 sizeof(sc->sc_buf.sc_encap)); 613 614 /* Set the WEP Keys */ 615 if (ic->ic_flags & IEEE80211_F_PRIVACY) 616 an_write_wepkey(sc, AN_RID_WEP_VOLATILE, sc->sc_wepkeys, 617 sc->sc_tx_key); 618 619 /* Set the configuration */ 620 #ifdef AN_DEBUG 621 if (an_debug) { 622 printf("write config:\n"); 623 for (i = 0; i < sizeof(sc->sc_config) / 2; i++) 624 printf(" %04x", ((u_int16_t *)&sc->sc_config)[i]); 625 printf("\n"); 626 } 627 #endif 628 if (an_write_rid(sc, AN_RID_GENCONFIG, &sc->sc_config, 629 sizeof(sc->sc_config)) != 0) { 630 printf("%s: failed to write config\n", ifp->if_xname); 631 an_stop(ifp, 1); 632 return error; 633 } 634 635 /* Enable the MAC */ 636 if (an_cmd(sc, AN_CMD_ENABLE, 0)) { 637 aprint_error_dev(sc->sc_dev, "failed to enable MAC\n"); 638 an_stop(ifp, 1); 639 return ENXIO; 640 } 641 if (ifp->if_flags & IFF_PROMISC) 642 an_cmd(sc, AN_CMD_SET_MODE, 0xffff); 643 644 ifp->if_flags |= IFF_RUNNING; 645 ifp->if_flags &= ~IFF_OACTIVE; 646 ic->ic_state = IEEE80211_S_INIT; 647 if (ic->ic_opmode == IEEE80211_M_MONITOR) 648 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 649 650 /* enable interrupts */ 651 CSR_WRITE_2(sc, AN_INT_EN, AN_INTRS); 652 return 0; 653 } 654 655 static void 656 an_stop(struct ifnet *ifp, int disable) 657 { 658 struct an_softc *sc = ifp->if_softc; 659 int i, s; 660 661 if (!sc->sc_enabled) 662 return; 663 664 DPRINTF(("an_stop: disable %d\n", disable)); 665 666 s = splnet(); 667 ieee80211_new_state(&sc->sc_ic, IEEE80211_S_INIT, -1); 668 if (!sc->sc_invalid) { 669 an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0); 670 CSR_WRITE_2(sc, AN_INT_EN, 0); 671 an_cmd(sc, AN_CMD_DISABLE, 0); 672 673 for (i = 0; i < AN_TX_RING_CNT; i++) 674 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->sc_txd[i].d_fid); 675 } 676 677 sc->sc_tx_timer = 0; 678 ifp->if_timer = 0; 679 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); 680 681 if (disable) { 682 if (sc->sc_disable) 683 (*sc->sc_disable)(sc); 684 sc->sc_enabled = 0; 685 } 686 splx(s); 687 } 688 689 static void 690 an_start(struct ifnet *ifp) 691 { 692 struct an_softc *sc = (struct an_softc *)ifp->if_softc; 693 struct ieee80211com *ic = &sc->sc_ic; 694 struct ieee80211_node *ni; 695 struct ieee80211_frame *wh; 696 struct an_txframe frmhdr; 697 struct ether_header *eh; 698 struct mbuf *m; 699 u_int16_t len; 700 int cur, fid; 701 702 if (!sc->sc_enabled || sc->sc_invalid) { 703 DPRINTF(("an_start: noop: enabled %d invalid %d\n", 704 sc->sc_enabled, sc->sc_invalid)); 705 return; 706 } 707 708 memset(&frmhdr, 0, sizeof(frmhdr)); 709 cur = sc->sc_txnext; 710 for (;;) { 711 if (ic->ic_state != IEEE80211_S_RUN) { 712 DPRINTF(("an_start: not running %d\n", ic->ic_state)); 713 break; 714 } 715 IFQ_POLL(&ifp->if_snd, m); 716 if (m == NULL) { 717 DPRINTF2(("an_start: no pending mbuf\n")); 718 break; 719 } 720 if (sc->sc_txd[cur].d_inuse) { 721 DPRINTF2(("an_start: %x/%d busy\n", 722 sc->sc_txd[cur].d_fid, cur)); 723 ifp->if_flags |= IFF_OACTIVE; 724 break; 725 } 726 IFQ_DEQUEUE(&ifp->if_snd, m); 727 ifp->if_opackets++; 728 #if NBPFILTER > 0 729 if (ifp->if_bpf) 730 bpf_mtap(ifp->if_bpf, m); 731 #endif 732 eh = mtod(m, struct ether_header *); 733 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 734 if (ni == NULL) { 735 /* NB: ieee80211_find_txnode does stat+msg */ 736 goto bad; 737 } 738 if ((m = ieee80211_encap(ic, m, ni)) == NULL) 739 goto bad; 740 ieee80211_free_node(ni); 741 #if NBPFILTER > 0 742 if (ic->ic_rawbpf) 743 bpf_mtap(ic->ic_rawbpf, m); 744 #endif 745 746 wh = mtod(m, struct ieee80211_frame *); 747 if (ic->ic_flags & IEEE80211_F_PRIVACY) 748 wh->i_fc[1] |= IEEE80211_FC1_WEP; 749 m_copydata(m, 0, sizeof(struct ieee80211_frame), 750 (void *)&frmhdr.an_whdr); 751 752 /* insert payload length in front of llc/snap */ 753 len = htons(m->m_pkthdr.len - sizeof(struct ieee80211_frame)); 754 m_adj(m, sizeof(struct ieee80211_frame) - sizeof(len)); 755 if (mtod(m, u_long) & 0x01) 756 memcpy(mtod(m, void *), &len, sizeof(len)); 757 else 758 *mtod(m, u_int16_t *) = len; 759 760 /* 761 * XXX Aironet firmware apparently convert the packet 762 * with longer than 1500 bytes in length into LLC/SNAP. 763 * If we have 1500 bytes in ethernet payload, it is 764 * 1508 bytes including LLC/SNAP and will be inserted 765 * additional LLC/SNAP header with 1501-1508 in its 766 * ethertype !! 767 * So we skip LLC/SNAP header and force firmware to 768 * convert it to LLC/SNAP again. 769 */ 770 m_adj(m, sizeof(struct llc)); 771 772 frmhdr.an_tx_ctl = htole16(AN_TXCTL_80211); 773 frmhdr.an_tx_payload_len = htole16(m->m_pkthdr.len); 774 frmhdr.an_gaplen = htole16(AN_TXGAP_802_11); 775 776 if (ic->ic_fixed_rate != -1) 777 frmhdr.an_tx_rate = 778 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ 779 ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 780 else 781 frmhdr.an_tx_rate = 0; 782 783 /* XXX radiotap for tx must be completed */ 784 #if NBPFILTER > 0 785 if (sc->sc_drvbpf) { 786 struct an_tx_radiotap_header *tap = &sc->sc_txtap; 787 tap->at_rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_bss->ni_txrate]; 788 tap->at_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 789 tap->at_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 790 /* TBD tap->wt_flags */ 791 bpf_mtap2(sc->sc_drvbpf, tap, tap->at_ihdr.it_len, m); 792 } 793 #endif 794 795 #ifdef AN_DEBUG 796 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == 797 (IFF_DEBUG|IFF_LINK2)) { 798 ieee80211_dump_pkt((u_int8_t *)&frmhdr.an_whdr, 799 sizeof(struct ieee80211_frame), -1, 0); 800 printf(" txctl 0x%x plen %u\n", 801 le16toh(frmhdr.an_tx_ctl), 802 le16toh(frmhdr.an_tx_payload_len)); 803 } 804 #endif 805 if (sizeof(frmhdr) + AN_TXGAP_802_11 + sizeof(len) + 806 m->m_pkthdr.len > AN_TX_MAX_LEN) 807 goto bad; 808 809 fid = sc->sc_txd[cur].d_fid; 810 if (an_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) 811 goto bad; 812 /* dummy write to avoid seek. */ 813 an_write_bap(sc, fid, -1, &frmhdr, AN_TXGAP_802_11); 814 an_mwrite_bap(sc, fid, -1, m, m->m_pkthdr.len); 815 m_freem(m); 816 817 DPRINTF2(("an_start: send %zu byte via %x/%d\n", 818 ntohs(len) + sizeof(struct ieee80211_frame), 819 fid, cur)); 820 sc->sc_txd[cur].d_inuse = 1; 821 if (an_cmd(sc, AN_CMD_TX, fid)) { 822 printf("%s: xmit failed\n", ifp->if_xname); 823 sc->sc_txd[cur].d_inuse = 0; 824 continue; 825 } 826 sc->sc_tx_timer = 5; 827 ifp->if_timer = 1; 828 AN_INC(cur, AN_TX_RING_CNT); 829 sc->sc_txnext = cur; 830 continue; 831 bad: 832 ifp->if_oerrors++; 833 m_freem(m); 834 } 835 } 836 837 static int 838 an_reset(struct an_softc *sc) 839 { 840 841 DPRINTF(("an_reset\n")); 842 843 if (!sc->sc_enabled) 844 return ENXIO; 845 846 an_cmd(sc, AN_CMD_ENABLE, 0); 847 an_cmd(sc, AN_CMD_FW_RESTART, 0); 848 an_cmd(sc, AN_CMD_NOOP2, 0); 849 850 if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT) { 851 aprint_error_dev(sc->sc_dev, "reset failed\n"); 852 return ETIMEDOUT; 853 } 854 855 an_cmd(sc, AN_CMD_DISABLE, 0); 856 return 0; 857 } 858 859 static void 860 an_watchdog(struct ifnet *ifp) 861 { 862 struct an_softc *sc = ifp->if_softc; 863 864 if (!sc->sc_enabled) 865 return; 866 867 if (sc->sc_tx_timer) { 868 if (--sc->sc_tx_timer == 0) { 869 printf("%s: device timeout\n", ifp->if_xname); 870 ifp->if_oerrors++; 871 an_init(ifp); 872 return; 873 } 874 ifp->if_timer = 1; 875 } 876 ieee80211_watchdog(&sc->sc_ic); 877 } 878 879 static int 880 an_ioctl(struct ifnet *ifp, u_long command, void *data) 881 { 882 struct an_softc *sc = ifp->if_softc; 883 int s, error = 0; 884 885 if (!device_is_active(sc->sc_dev)) 886 return ENXIO; 887 888 s = splnet(); 889 890 switch (command) { 891 case SIOCSIFFLAGS: 892 if ((error = ifioctl_common(ifp, command, data)) != 0) 893 break; 894 if (ifp->if_flags & IFF_UP) { 895 if (sc->sc_enabled) { 896 /* 897 * To avoid rescanning another access point, 898 * do not call an_init() here. Instead, only 899 * reflect promisc mode settings. 900 */ 901 error = an_cmd(sc, AN_CMD_SET_MODE, 902 (ifp->if_flags & IFF_PROMISC) ? 0xffff : 0); 903 } else 904 error = an_init(ifp); 905 } else if (sc->sc_enabled) 906 an_stop(ifp, 1); 907 break; 908 case SIOCADDMULTI: 909 case SIOCDELMULTI: 910 error = ether_ioctl(ifp, command, data); 911 if (error == ENETRESET) { 912 /* we don't have multicast filter. */ 913 error = 0; 914 } 915 break; 916 case SIOCS80211NWKEY: 917 error = an_set_nwkey(sc, (struct ieee80211_nwkey *)data); 918 break; 919 case SIOCG80211NWKEY: 920 error = an_get_nwkey(sc, (struct ieee80211_nwkey *)data); 921 break; 922 default: 923 error = ieee80211_ioctl(&sc->sc_ic, command, data); 924 break; 925 } 926 if (error == ENETRESET) { 927 if (sc->sc_enabled) 928 error = an_init(ifp); 929 else 930 error = 0; 931 } 932 splx(s); 933 return error; 934 } 935 936 /* TBD factor with ieee80211_media_change */ 937 static int 938 an_media_change(struct ifnet *ifp) 939 { 940 struct an_softc *sc = ifp->if_softc; 941 struct ieee80211com *ic = &sc->sc_ic; 942 struct ifmedia_entry *ime; 943 enum ieee80211_opmode newmode; 944 int i, rate, error = 0; 945 946 ime = ic->ic_media.ifm_cur; 947 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) { 948 i = -1; 949 } else { 950 struct ieee80211_rateset *rs = 951 &ic->ic_sup_rates[IEEE80211_MODE_11B]; 952 rate = ieee80211_media2rate(ime->ifm_media); 953 if (rate == 0) 954 return EINVAL; 955 for (i = 0; i < rs->rs_nrates; i++) { 956 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate) 957 break; 958 } 959 if (i == rs->rs_nrates) 960 return EINVAL; 961 } 962 if (ic->ic_fixed_rate != i) { 963 ic->ic_fixed_rate = i; 964 error = ENETRESET; 965 } 966 967 if (ime->ifm_media & IFM_IEEE80211_ADHOC) 968 newmode = IEEE80211_M_IBSS; 969 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) 970 newmode = IEEE80211_M_HOSTAP; 971 else if (ime->ifm_media & IFM_IEEE80211_MONITOR) 972 newmode = IEEE80211_M_MONITOR; 973 else 974 newmode = IEEE80211_M_STA; 975 if (ic->ic_opmode != newmode) { 976 ic->ic_opmode = newmode; 977 error = ENETRESET; 978 } 979 if (error == ENETRESET) { 980 if (sc->sc_enabled) 981 error = an_init(ifp); 982 else 983 error = 0; 984 } 985 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); 986 987 return error; 988 } 989 990 static void 991 an_media_status(struct ifnet *ifp, struct ifmediareq *imr) 992 { 993 struct an_softc *sc = ifp->if_softc; 994 struct ieee80211com *ic = &sc->sc_ic; 995 int rate, buflen; 996 997 if (sc->sc_enabled == 0) { 998 imr->ifm_active = IFM_IEEE80211 | IFM_NONE; 999 imr->ifm_status = 0; 1000 return; 1001 } 1002 1003 imr->ifm_status = IFM_AVALID; 1004 imr->ifm_active = IFM_IEEE80211; 1005 if (ic->ic_state == IEEE80211_S_RUN) 1006 imr->ifm_status |= IFM_ACTIVE; 1007 buflen = sizeof(sc->sc_buf); 1008 if (ic->ic_fixed_rate != -1) 1009 rate = ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[ 1010 ic->ic_fixed_rate] & IEEE80211_RATE_VAL; 1011 else if (an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen) != 0) 1012 rate = 0; 1013 else 1014 rate = le16toh(sc->sc_buf.sc_status.an_current_tx_rate); 1015 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 1016 switch (ic->ic_opmode) { 1017 case IEEE80211_M_STA: 1018 break; 1019 case IEEE80211_M_IBSS: 1020 imr->ifm_active |= IFM_IEEE80211_ADHOC; 1021 break; 1022 case IEEE80211_M_HOSTAP: 1023 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 1024 break; 1025 case IEEE80211_M_MONITOR: 1026 imr->ifm_active |= IFM_IEEE80211_MONITOR; 1027 break; 1028 default: 1029 break; 1030 } 1031 } 1032 1033 static int 1034 an_set_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1035 { 1036 int error; 1037 struct ieee80211com *ic = &sc->sc_ic; 1038 u_int16_t prevauth; 1039 1040 error = 0; 1041 prevauth = sc->sc_config.an_authtype; 1042 1043 switch (nwkey->i_wepon) { 1044 case IEEE80211_NWKEY_OPEN: 1045 sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN; 1046 ic->ic_flags &= ~IEEE80211_F_PRIVACY; 1047 break; 1048 1049 case IEEE80211_NWKEY_WEP: 1050 case IEEE80211_NWKEY_WEP | IEEE80211_NWKEY_PERSIST: 1051 error = an_set_nwkey_wep(sc, nwkey); 1052 if (error == 0 || error == ENETRESET) { 1053 sc->sc_config.an_authtype = 1054 AN_AUTHTYPE_OPEN | AN_AUTHTYPE_PRIVACY_IN_USE; 1055 ic->ic_flags |= IEEE80211_F_PRIVACY; 1056 } 1057 break; 1058 1059 case IEEE80211_NWKEY_EAP: 1060 error = an_set_nwkey_eap(sc, nwkey); 1061 if (error == 0 || error == ENETRESET) { 1062 sc->sc_config.an_authtype = AN_AUTHTYPE_OPEN | 1063 AN_AUTHTYPE_PRIVACY_IN_USE | AN_AUTHTYPE_LEAP; 1064 ic->ic_flags |= IEEE80211_F_PRIVACY; 1065 } 1066 break; 1067 default: 1068 error = EINVAL; 1069 break; 1070 } 1071 if (error == 0 && prevauth != sc->sc_config.an_authtype) 1072 error = ENETRESET; 1073 return error; 1074 } 1075 1076 static int 1077 an_set_nwkey_wep(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1078 { 1079 int i, txkey, anysetkey, needreset, error; 1080 struct an_wepkey keys[IEEE80211_WEP_NKID]; 1081 1082 error = 0; 1083 memset(keys, 0, sizeof(keys)); 1084 anysetkey = needreset = 0; 1085 1086 /* load argument and sanity check */ 1087 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1088 keys[i].an_wep_keylen = nwkey->i_key[i].i_keylen; 1089 if (keys[i].an_wep_keylen < 0) 1090 continue; 1091 if (keys[i].an_wep_keylen != 0 && 1092 keys[i].an_wep_keylen < IEEE80211_WEP_KEYLEN) 1093 return EINVAL; 1094 if (keys[i].an_wep_keylen > sizeof(keys[i].an_wep_key)) 1095 return EINVAL; 1096 if ((error = copyin(nwkey->i_key[i].i_keydat, 1097 keys[i].an_wep_key, keys[i].an_wep_keylen)) != 0) 1098 return error; 1099 anysetkey++; 1100 } 1101 txkey = nwkey->i_defkid - 1; 1102 if (txkey >= 0) { 1103 if (txkey >= IEEE80211_WEP_NKID) 1104 return EINVAL; 1105 /* default key must have a valid value */ 1106 if (keys[txkey].an_wep_keylen == 0 || 1107 (keys[txkey].an_wep_keylen < 0 && 1108 sc->sc_perskeylen[txkey] == 0)) 1109 return EINVAL; 1110 anysetkey++; 1111 } 1112 DPRINTF(("an_set_nwkey_wep: %s: %sold(%d:%d,%d,%d,%d) " 1113 "pers(%d:%d,%d,%d,%d) new(%d:%d,%d,%d,%d)\n", 1114 device_xname(sc->sc_dev), 1115 ((nwkey->i_wepon & IEEE80211_NWKEY_PERSIST) ? "persist: " : ""), 1116 sc->sc_tx_key, 1117 sc->sc_wepkeys[0].an_wep_keylen, sc->sc_wepkeys[1].an_wep_keylen, 1118 sc->sc_wepkeys[2].an_wep_keylen, sc->sc_wepkeys[3].an_wep_keylen, 1119 sc->sc_tx_perskey, 1120 sc->sc_perskeylen[0], sc->sc_perskeylen[1], 1121 sc->sc_perskeylen[2], sc->sc_perskeylen[3], 1122 txkey, 1123 keys[0].an_wep_keylen, keys[1].an_wep_keylen, 1124 keys[2].an_wep_keylen, keys[3].an_wep_keylen)); 1125 if (!(nwkey->i_wepon & IEEE80211_NWKEY_PERSIST)) { 1126 /* set temporary keys */ 1127 sc->sc_tx_key = txkey; 1128 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1129 if (keys[i].an_wep_keylen < 0) 1130 continue; 1131 memcpy(&sc->sc_wepkeys[i], &keys[i], sizeof(keys[i])); 1132 } 1133 } else { 1134 /* set persist keys */ 1135 if (anysetkey) { 1136 /* prepare to write nvram */ 1137 if (!sc->sc_enabled) { 1138 if (sc->sc_enable) 1139 (*sc->sc_enable)(sc); 1140 an_wait(sc); 1141 sc->sc_enabled = 1; 1142 error = an_write_wepkey(sc, 1143 AN_RID_WEP_PERSISTENT, keys, txkey); 1144 if (sc->sc_disable) 1145 (*sc->sc_disable)(sc); 1146 sc->sc_enabled = 0; 1147 } else { 1148 an_cmd(sc, AN_CMD_DISABLE, 0); 1149 error = an_write_wepkey(sc, 1150 AN_RID_WEP_PERSISTENT, keys, txkey); 1151 an_cmd(sc, AN_CMD_ENABLE, 0); 1152 } 1153 if (error) 1154 return error; 1155 } 1156 if (txkey >= 0) 1157 sc->sc_tx_perskey = txkey; 1158 if (sc->sc_tx_key >= 0) { 1159 sc->sc_tx_key = -1; 1160 needreset++; 1161 } 1162 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1163 if (sc->sc_wepkeys[i].an_wep_keylen >= 0) { 1164 memset(&sc->sc_wepkeys[i].an_wep_key, 0, 1165 sizeof(sc->sc_wepkeys[i].an_wep_key)); 1166 sc->sc_wepkeys[i].an_wep_keylen = -1; 1167 needreset++; 1168 } 1169 if (keys[i].an_wep_keylen >= 0) 1170 sc->sc_perskeylen[i] = keys[i].an_wep_keylen; 1171 } 1172 } 1173 if (needreset) { 1174 /* firmware restart to reload persistent key */ 1175 an_reset(sc); 1176 } 1177 if (anysetkey || needreset) 1178 error = ENETRESET; 1179 return error; 1180 } 1181 1182 static int 1183 an_set_nwkey_eap(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1184 { 1185 int i, error, len; 1186 struct ifnet *ifp = &sc->sc_if; 1187 struct an_rid_leapkey *key; 1188 u_int16_t unibuf[sizeof(key->an_key)]; 1189 static const int leap_rid[] = { AN_RID_LEAP_PASS, AN_RID_LEAP_USER }; 1190 MD4_CTX ctx; 1191 1192 error = 0; 1193 1194 if (nwkey->i_key[0].i_keydat == NULL && 1195 nwkey->i_key[1].i_keydat == NULL) 1196 return 0; 1197 if (!sc->sc_enabled) 1198 return ENXIO; 1199 an_cmd(sc, AN_CMD_DISABLE, 0); 1200 key = &sc->sc_buf.sc_leapkey; 1201 for (i = 0; i < 2; i++) { 1202 if (nwkey->i_key[i].i_keydat == NULL) 1203 continue; 1204 len = nwkey->i_key[i].i_keylen; 1205 if (len > sizeof(key->an_key)) 1206 return EINVAL; 1207 memset(key, 0, sizeof(*key)); 1208 key->an_key_len = htole16(len); 1209 if ((error = copyin(nwkey->i_key[i].i_keydat, key->an_key, 1210 len)) != 0) 1211 return error; 1212 if (i == 1) { 1213 /* 1214 * Cisco seems to use PasswordHash and PasswordHashHash 1215 * in RFC-2759 (MS-CHAP-V2). 1216 */ 1217 memset(unibuf, 0, sizeof(unibuf)); 1218 /* XXX: convert password to unicode */ 1219 for (i = 0; i < len; i++) 1220 unibuf[i] = key->an_key[i]; 1221 /* set PasswordHash */ 1222 MD4Init(&ctx); 1223 MD4Update(&ctx, (u_int8_t *)unibuf, len * 2); 1224 MD4Final(key->an_key, &ctx); 1225 /* set PasswordHashHash */ 1226 MD4Init(&ctx); 1227 MD4Update(&ctx, key->an_key, 16); 1228 MD4Final(key->an_key + 16, &ctx); 1229 key->an_key_len = htole16(32); 1230 } 1231 if ((error = an_write_rid(sc, leap_rid[i], key, 1232 sizeof(*key))) != 0) { 1233 printf("%s: LEAP set failed\n", ifp->if_xname); 1234 return error; 1235 } 1236 } 1237 error = an_cmd(sc, AN_CMD_ENABLE, 0); 1238 if (error) 1239 printf("%s: an_set_nwkey: failed to enable MAC\n", 1240 ifp->if_xname); 1241 else 1242 error = ENETRESET; 1243 return error; 1244 } 1245 1246 static int 1247 an_get_nwkey(struct an_softc *sc, struct ieee80211_nwkey *nwkey) 1248 { 1249 int i, error; 1250 1251 error = 0; 1252 if (sc->sc_config.an_authtype & AN_AUTHTYPE_LEAP) 1253 nwkey->i_wepon = IEEE80211_NWKEY_EAP; 1254 else if (sc->sc_config.an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) 1255 nwkey->i_wepon = IEEE80211_NWKEY_WEP; 1256 else 1257 nwkey->i_wepon = IEEE80211_NWKEY_OPEN; 1258 if (sc->sc_tx_key == -1) 1259 nwkey->i_defkid = sc->sc_tx_perskey + 1; 1260 else 1261 nwkey->i_defkid = sc->sc_tx_key + 1; 1262 if (nwkey->i_key[0].i_keydat == NULL) 1263 return 0; 1264 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1265 if (nwkey->i_key[i].i_keydat == NULL) 1266 continue; 1267 /* do not show any keys to non-root user */ 1268 if ((error = kauth_authorize_generic(curlwp->l_cred, 1269 KAUTH_GENERIC_ISSUSER, NULL)) != 0) 1270 break; 1271 nwkey->i_key[i].i_keylen = sc->sc_wepkeys[i].an_wep_keylen; 1272 if (nwkey->i_key[i].i_keylen < 0) { 1273 if (sc->sc_perskeylen[i] == 0) 1274 nwkey->i_key[i].i_keylen = 0; 1275 continue; 1276 } 1277 if ((error = copyout(sc->sc_wepkeys[i].an_wep_key, 1278 nwkey->i_key[i].i_keydat, 1279 sc->sc_wepkeys[i].an_wep_keylen)) != 0) 1280 break; 1281 } 1282 return error; 1283 } 1284 1285 static int 1286 an_write_wepkey(struct an_softc *sc, int type, struct an_wepkey *keys, int kid) 1287 { 1288 int i, error; 1289 struct an_rid_wepkey *akey; 1290 1291 error = 0; 1292 akey = &sc->sc_buf.sc_wepkey; 1293 memset(akey, 0, sizeof(struct an_rid_wepkey)); 1294 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1295 if (keys[i].an_wep_keylen < 0 || 1296 keys[i].an_wep_keylen > sizeof(akey->an_key)) 1297 continue; 1298 akey->an_key_len = htole16(keys[i].an_wep_keylen); 1299 akey->an_key_index = htole16(i); 1300 akey->an_mac_addr[0] = 1; /* default mac */ 1301 memcpy(akey->an_key, keys[i].an_wep_key, keys[i].an_wep_keylen); 1302 if ((error = an_write_rid(sc, type, akey, sizeof(*akey))) != 0) 1303 return error; 1304 } 1305 if (kid >= 0) { 1306 akey->an_key_index = htole16(0xffff); 1307 akey->an_mac_addr[0] = kid; 1308 akey->an_key_len = htole16(0); 1309 memset(akey->an_key, 0, sizeof(akey->an_key)); 1310 error = an_write_rid(sc, type, akey, sizeof(*akey)); 1311 } 1312 return error; 1313 } 1314 1315 #ifdef AN_DEBUG 1316 static void 1317 an_dump_pkt(const char *devname, struct mbuf *m) 1318 { 1319 int col, col0, i; 1320 uint8_t *pkt = mtod(m, uint8_t *); 1321 const char *delim = ""; 1322 int delimw = 0; 1323 1324 printf("%s: pkt ", devname); 1325 col = col0 = strlen(devname) + strlen(": pkt "); 1326 for (i = 0; i < m->m_len; i++) { 1327 printf("%s%02x", delim, pkt[i]); 1328 delim = ":"; 1329 delimw = 1; 1330 col += delimw + 2; 1331 if (col >= 72) { 1332 printf("\n%*s", col0, ""); 1333 col = col0; 1334 delim = ""; 1335 delimw = 0; 1336 } 1337 } 1338 if (col != 0) 1339 printf("\n"); 1340 } 1341 #endif /* AN_DEBUG */ 1342 1343 /* 1344 * Low level functions 1345 */ 1346 1347 static void 1348 an_rx_intr(struct an_softc *sc) 1349 { 1350 struct ieee80211com *ic = &sc->sc_ic; 1351 struct ifnet *ifp = &sc->sc_if; 1352 struct ieee80211_frame_min *wh; 1353 struct ieee80211_node *ni; 1354 struct an_rxframe frmhdr; 1355 struct mbuf *m; 1356 u_int16_t status; 1357 int fid, gaplen, len, off; 1358 uint8_t *gap; 1359 1360 fid = CSR_READ_2(sc, AN_RX_FID); 1361 1362 /* First read in the frame header */ 1363 if (an_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1364 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1365 ifp->if_ierrors++; 1366 DPRINTF(("an_rx_intr: read fid %x failed\n", fid)); 1367 return; 1368 } 1369 1370 #ifdef AN_DEBUG 1371 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) { 1372 ieee80211_dump_pkt((u_int8_t *)&frmhdr.an_whdr, 1373 sizeof(struct ieee80211_frame), frmhdr.an_rx_rate, 1374 frmhdr.an_rx_signal_strength); 1375 printf(" time 0x%x status 0x%x plen %u chan %u" 1376 " plcp %02x %02x %02x %02x gap %u\n", 1377 le32toh(frmhdr.an_rx_time), le16toh(frmhdr.an_rx_status), 1378 le16toh(frmhdr.an_rx_payload_len), frmhdr.an_rx_chan, 1379 frmhdr.an_plcp_hdr[0], frmhdr.an_plcp_hdr[1], 1380 frmhdr.an_plcp_hdr[2], frmhdr.an_plcp_hdr[3], 1381 le16toh(frmhdr.an_gaplen)); 1382 } 1383 #endif 1384 1385 status = le16toh(frmhdr.an_rx_status); 1386 if ((status & AN_STAT_ERRSTAT) != 0 && 1387 ic->ic_opmode != IEEE80211_M_MONITOR) { 1388 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1389 ifp->if_ierrors++; 1390 DPRINTF(("an_rx_intr: fid %x status %x\n", fid, status)); 1391 return; 1392 } 1393 1394 /* the payload length field includes a 16-bit "mystery field" */ 1395 len = le16toh(frmhdr.an_rx_payload_len) - sizeof(uint16_t); 1396 off = ALIGN(sizeof(struct ieee80211_frame)); 1397 1398 if (off + len > MCLBYTES) { 1399 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1400 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1401 ifp->if_ierrors++; 1402 DPRINTF(("an_rx_intr: oversized packet %d\n", len)); 1403 return; 1404 } 1405 len = 0; 1406 } 1407 1408 MGETHDR(m, M_DONTWAIT, MT_DATA); 1409 if (m == NULL) { 1410 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1411 ifp->if_ierrors++; 1412 DPRINTF(("an_rx_intr: MGET failed\n")); 1413 return; 1414 } 1415 if (off + len + AN_GAPLEN_MAX > MHLEN) { 1416 MCLGET(m, M_DONTWAIT); 1417 if ((m->m_flags & M_EXT) == 0) { 1418 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1419 m_freem(m); 1420 ifp->if_ierrors++; 1421 DPRINTF(("an_rx_intr: MCLGET failed\n")); 1422 return; 1423 } 1424 } 1425 m->m_data += off - sizeof(struct ieee80211_frame); 1426 1427 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1428 gaplen = le16toh(frmhdr.an_gaplen); 1429 if (gaplen > AN_GAPLEN_MAX) { 1430 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1431 m_freem(m); 1432 ifp->if_ierrors++; 1433 DPRINTF(("%s: gap too long\n", __func__)); 1434 return; 1435 } 1436 /* 1437 * We don't need the 16-bit mystery field (payload length?), 1438 * so read it into the region reserved for the 802.11 header. 1439 * 1440 * When Cisco Aironet 350 cards w/ firmware version 5 or 1441 * greater operate with certain Cisco 350 APs, 1442 * the "gap" is filled with the SNAP header. Read 1443 * it in after the 802.11 header. 1444 */ 1445 gap = m->m_data + sizeof(struct ieee80211_frame) - 1446 sizeof(uint16_t); 1447 an_read_bap(sc, fid, -1, gap, gaplen + sizeof(u_int16_t)); 1448 #ifdef AN_DEBUG 1449 if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == 1450 (IFF_DEBUG|IFF_LINK2)) { 1451 int i; 1452 printf(" gap&len"); 1453 for (i = 0; i < gaplen + sizeof(u_int16_t); i++) 1454 printf(" %02x", gap[i]); 1455 printf("\n"); 1456 } 1457 #endif 1458 } else 1459 gaplen = 0; 1460 1461 an_read_bap(sc, fid, -1, 1462 m->m_data + sizeof(struct ieee80211_frame) + gaplen, len); 1463 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + gaplen + 1464 len; 1465 1466 memcpy(m->m_data, &frmhdr.an_whdr, sizeof(struct ieee80211_frame)); 1467 m->m_pkthdr.rcvif = ifp; 1468 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_RX); 1469 1470 #if NBPFILTER > 0 1471 if (sc->sc_drvbpf) { 1472 struct an_rx_radiotap_header *tap = &sc->sc_rxtap; 1473 1474 tap->ar_rate = frmhdr.an_rx_rate; 1475 tap->ar_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1476 tap->ar_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1477 tap->ar_antsignal = frmhdr.an_rx_signal_strength; 1478 if ((le16toh(frmhdr.an_rx_status) & AN_STAT_BADCRC) || 1479 (le16toh(frmhdr.an_rx_status) & AN_STAT_ERRSTAT) || 1480 (le16toh(frmhdr.an_rx_status) & AN_STAT_UNDECRYPTABLE)) 1481 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS; 1482 1483 bpf_mtap2(sc->sc_drvbpf, tap, tap->ar_ihdr.it_len, m); 1484 } 1485 #endif 1486 wh = mtod(m, struct ieee80211_frame_min *); 1487 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1488 /* 1489 * WEP is decrypted by hardware. Clear WEP bit 1490 * header for ieee80211_input(). 1491 */ 1492 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1493 } 1494 1495 #ifdef AN_DEBUG 1496 if (an_debug > 1) 1497 an_dump_pkt(device_xname(sc->sc_dev), m); 1498 #endif /* AN_DEBUG */ 1499 1500 ni = ieee80211_find_rxnode(ic, wh); 1501 ieee80211_input(ic, m, ni, frmhdr.an_rx_signal_strength, 1502 le32toh(frmhdr.an_rx_time)); 1503 ieee80211_free_node(ni); 1504 } 1505 1506 static void 1507 an_tx_intr(struct an_softc *sc, int status) 1508 { 1509 struct ifnet *ifp = &sc->sc_if; 1510 int cur, fid; 1511 1512 sc->sc_tx_timer = 0; 1513 ifp->if_flags &= ~IFF_OACTIVE; 1514 1515 fid = CSR_READ_2(sc, AN_TX_CMP_FID); 1516 CSR_WRITE_2(sc, AN_EVENT_ACK, status & (AN_EV_TX | AN_EV_TX_EXC)); 1517 1518 if (status & AN_EV_TX_EXC) 1519 ifp->if_oerrors++; 1520 else 1521 ifp->if_opackets++; 1522 1523 cur = sc->sc_txcur; 1524 if (sc->sc_txd[cur].d_fid == fid) { 1525 sc->sc_txd[cur].d_inuse = 0; 1526 DPRINTF2(("an_tx_intr: sent %x/%d\n", fid, cur)); 1527 AN_INC(cur, AN_TX_RING_CNT); 1528 sc->sc_txcur = cur; 1529 } else { 1530 for (cur = 0; cur < AN_TX_RING_CNT; cur++) { 1531 if (fid == sc->sc_txd[cur].d_fid) { 1532 sc->sc_txd[cur].d_inuse = 0; 1533 break; 1534 } 1535 } 1536 if (ifp->if_flags & IFF_DEBUG) 1537 printf("%s: tx mismatch: " 1538 "expected %x(%d), actual %x(%d)\n", 1539 device_xname(sc->sc_dev), 1540 sc->sc_txd[sc->sc_txcur].d_fid, sc->sc_txcur, 1541 fid, cur); 1542 } 1543 1544 return; 1545 } 1546 1547 static void 1548 an_linkstat_intr(struct an_softc *sc) 1549 { 1550 struct ieee80211com *ic = &sc->sc_ic; 1551 u_int16_t status; 1552 1553 status = CSR_READ_2(sc, AN_LINKSTAT); 1554 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_LINKSTAT); 1555 DPRINTF(("an_linkstat_intr: status 0x%x\n", status)); 1556 1557 if (status == AN_LINKSTAT_ASSOCIATED) { 1558 if (ic->ic_state != IEEE80211_S_RUN || 1559 ic->ic_opmode == IEEE80211_M_IBSS) 1560 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1561 } else { 1562 if (ic->ic_opmode == IEEE80211_M_STA) 1563 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1564 } 1565 } 1566 1567 /* Must be called at proper protection level! */ 1568 static int 1569 an_cmd(struct an_softc *sc, int cmd, int val) 1570 { 1571 int i, status; 1572 1573 /* make sure that previous command completed */ 1574 if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) { 1575 if (sc->sc_if.if_flags & IFF_DEBUG) 1576 printf("%s: command 0x%x busy\n", device_xname(sc->sc_dev), 1577 CSR_READ_2(sc, AN_COMMAND)); 1578 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); 1579 } 1580 1581 CSR_WRITE_2(sc, AN_PARAM0, val); 1582 CSR_WRITE_2(sc, AN_PARAM1, 0); 1583 CSR_WRITE_2(sc, AN_PARAM2, 0); 1584 CSR_WRITE_2(sc, AN_COMMAND, cmd); 1585 1586 if (cmd == AN_CMD_FW_RESTART) { 1587 /* XXX: should sleep here */ 1588 DELAY(100*1000); 1589 } 1590 1591 for (i = 0; i < AN_TIMEOUT; i++) { 1592 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD) 1593 break; 1594 DELAY(10); 1595 } 1596 1597 status = CSR_READ_2(sc, AN_STATUS); 1598 1599 /* clear stuck command busy if necessary */ 1600 if (CSR_READ_2(sc, AN_COMMAND) & AN_CMD_BUSY) 1601 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CLR_STUCK_BUSY); 1602 1603 /* Ack the command */ 1604 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); 1605 1606 if (i == AN_TIMEOUT) { 1607 if (sc->sc_if.if_flags & IFF_DEBUG) 1608 printf("%s: command 0x%x param 0x%x timeout\n", 1609 device_xname(sc->sc_dev), cmd, val); 1610 return ETIMEDOUT; 1611 } 1612 if (status & AN_STAT_CMD_RESULT) { 1613 if (sc->sc_if.if_flags & IFF_DEBUG) 1614 printf("%s: command 0x%x param 0x%x status 0x%x " 1615 "resp 0x%x 0x%x 0x%x\n", 1616 device_xname(sc->sc_dev), cmd, val, status, 1617 CSR_READ_2(sc, AN_RESP0), CSR_READ_2(sc, AN_RESP1), 1618 CSR_READ_2(sc, AN_RESP2)); 1619 return EIO; 1620 } 1621 1622 return 0; 1623 } 1624 1625 1626 /* 1627 * Wait for firmware come up after power enabled. 1628 */ 1629 static void 1630 an_wait(struct an_softc *sc) 1631 { 1632 int i; 1633 1634 CSR_WRITE_2(sc, AN_COMMAND, AN_CMD_NOOP2); 1635 for (i = 0; i < 3*hz; i++) { 1636 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_CMD) 1637 break; 1638 (void)tsleep(sc, PWAIT, "anatch", 1); 1639 } 1640 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_CMD); 1641 } 1642 1643 static int 1644 an_seek_bap(struct an_softc *sc, int id, int off) 1645 { 1646 int i, status; 1647 1648 CSR_WRITE_2(sc, AN_SEL0, id); 1649 CSR_WRITE_2(sc, AN_OFF0, off); 1650 1651 for (i = 0; ; i++) { 1652 status = CSR_READ_2(sc, AN_OFF0); 1653 if ((status & AN_OFF_BUSY) == 0) 1654 break; 1655 if (i == AN_TIMEOUT) { 1656 printf("%s: timeout in an_seek_bap to 0x%x/0x%x\n", 1657 device_xname(sc->sc_dev), id, off); 1658 sc->sc_bap_off = AN_OFF_ERR; /* invalidate */ 1659 return ETIMEDOUT; 1660 } 1661 DELAY(10); 1662 } 1663 if (status & AN_OFF_ERR) { 1664 aprint_error_dev(sc->sc_dev, "failed in an_seek_bap to 0x%x/0x%x\n", 1665 id, off); 1666 sc->sc_bap_off = AN_OFF_ERR; /* invalidate */ 1667 return EIO; 1668 } 1669 sc->sc_bap_id = id; 1670 sc->sc_bap_off = off; 1671 return 0; 1672 } 1673 1674 static int 1675 an_read_bap(struct an_softc *sc, int id, int off, void *buf, int buflen) 1676 { 1677 int error, cnt; 1678 1679 if (buflen == 0) 1680 return 0; 1681 if (off == -1) 1682 off = sc->sc_bap_off; 1683 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 1684 if ((error = an_seek_bap(sc, id, off)) != 0) 1685 return EIO; 1686 } 1687 1688 cnt = (buflen + 1) / 2; 1689 CSR_READ_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt); 1690 sc->sc_bap_off += cnt * 2; 1691 return 0; 1692 } 1693 1694 static int 1695 an_write_bap(struct an_softc *sc, int id, int off, void *buf, int buflen) 1696 { 1697 int error, cnt; 1698 1699 if (buflen == 0) 1700 return 0; 1701 if (off == -1) 1702 off = sc->sc_bap_off; 1703 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 1704 if ((error = an_seek_bap(sc, id, off)) != 0) 1705 return EIO; 1706 } 1707 1708 cnt = (buflen + 1) / 2; 1709 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, (u_int16_t *)buf, cnt); 1710 sc->sc_bap_off += cnt * 2; 1711 return 0; 1712 } 1713 1714 static int 1715 an_mwrite_bap(struct an_softc *sc, int id, int off, struct mbuf *m, int totlen) 1716 { 1717 int error, len, cnt; 1718 1719 if (off == -1) 1720 off = sc->sc_bap_off; 1721 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 1722 if ((error = an_seek_bap(sc, id, off)) != 0) 1723 return EIO; 1724 } 1725 1726 for (len = 0; m != NULL; m = m->m_next) { 1727 if (m->m_len == 0) 1728 continue; 1729 len = min(m->m_len, totlen); 1730 1731 if ((mtod(m, u_long) & 0x1) || (len & 0x1)) { 1732 m_copydata(m, 0, totlen, (void *)&sc->sc_buf.sc_txbuf); 1733 cnt = (totlen + 1) / 2; 1734 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, 1735 sc->sc_buf.sc_val, cnt); 1736 off += cnt * 2; 1737 break; 1738 } 1739 cnt = len / 2; 1740 CSR_WRITE_MULTI_STREAM_2(sc, AN_DATA0, mtod(m, u_int16_t *), 1741 cnt); 1742 off += len; 1743 totlen -= len; 1744 } 1745 sc->sc_bap_off = off; 1746 return 0; 1747 } 1748 1749 static int 1750 an_alloc_fid(struct an_softc *sc, int len, int *idp) 1751 { 1752 int i; 1753 1754 if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) { 1755 aprint_error_dev(sc->sc_dev, "failed to allocate %d bytes on NIC\n", 1756 len); 1757 return ENOMEM; 1758 } 1759 1760 for (i = 0; i < AN_TIMEOUT; i++) { 1761 if (CSR_READ_2(sc, AN_EVENT_STAT) & AN_EV_ALLOC) 1762 break; 1763 if (i == AN_TIMEOUT) { 1764 printf("%s: timeout in alloc\n", device_xname(sc->sc_dev)); 1765 return ETIMEDOUT; 1766 } 1767 DELAY(10); 1768 } 1769 1770 *idp = CSR_READ_2(sc, AN_ALLOC_FID); 1771 CSR_WRITE_2(sc, AN_EVENT_ACK, AN_EV_ALLOC); 1772 return 0; 1773 } 1774 1775 static int 1776 an_read_rid(struct an_softc *sc, int rid, void *buf, int *buflenp) 1777 { 1778 int error; 1779 u_int16_t len; 1780 1781 /* Tell the NIC to enter record read mode. */ 1782 error = an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_READ, rid); 1783 if (error) 1784 return error; 1785 1786 /* length in byte, including length itself */ 1787 error = an_read_bap(sc, rid, 0, &len, sizeof(len)); 1788 if (error) 1789 return error; 1790 1791 len = le16toh(len) - 2; 1792 if (*buflenp < len) { 1793 aprint_error_dev(sc->sc_dev, "record buffer is too small, " 1794 "rid=%x, size=%d, len=%d\n", 1795 rid, *buflenp, len); 1796 return ENOSPC; 1797 } 1798 *buflenp = len; 1799 return an_read_bap(sc, rid, sizeof(len), buf, len); 1800 } 1801 1802 static int 1803 an_write_rid(struct an_softc *sc, int rid, void *buf, int buflen) 1804 { 1805 int error; 1806 u_int16_t len; 1807 1808 /* length in byte, including length itself */ 1809 len = htole16(buflen + 2); 1810 1811 error = an_write_bap(sc, rid, 0, &len, sizeof(len)); 1812 if (error) 1813 return error; 1814 error = an_write_bap(sc, rid, sizeof(len), buf, buflen); 1815 if (error) 1816 return error; 1817 1818 return an_cmd(sc, AN_CMD_ACCESS | AN_ACCESS_WRITE, rid); 1819 } 1820 1821 static int 1822 an_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 1823 { 1824 struct an_softc *sc = (struct an_softc *)ic->ic_ifp->if_softc; 1825 struct ieee80211_node *ni = ic->ic_bss; 1826 enum ieee80211_state ostate; 1827 int buflen; 1828 1829 ostate = ic->ic_state; 1830 DPRINTF(("an_newstate: %s -> %s\n", ieee80211_state_name[ostate], 1831 ieee80211_state_name[nstate])); 1832 1833 switch (nstate) { 1834 case IEEE80211_S_INIT: 1835 ic->ic_flags &= ~IEEE80211_F_IBSSON; 1836 return (*sc->sc_newstate)(ic, nstate, arg); 1837 1838 case IEEE80211_S_SCAN: 1839 case IEEE80211_S_AUTH: 1840 case IEEE80211_S_ASSOC: 1841 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */ 1842 return 0; 1843 1844 case IEEE80211_S_RUN: 1845 buflen = sizeof(sc->sc_buf); 1846 an_read_rid(sc, AN_RID_STATUS, &sc->sc_buf, &buflen); 1847 IEEE80211_ADDR_COPY(ni->ni_bssid, 1848 sc->sc_buf.sc_status.an_cur_bssid); 1849 IEEE80211_ADDR_COPY(ni->ni_macaddr, ni->ni_bssid); 1850 ni->ni_chan = &ic->ic_channels[ 1851 le16toh(sc->sc_buf.sc_status.an_cur_channel)]; 1852 ni->ni_esslen = le16toh(sc->sc_buf.sc_status.an_ssidlen); 1853 if (ni->ni_esslen > IEEE80211_NWID_LEN) 1854 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ 1855 memcpy(ni->ni_essid, sc->sc_buf.sc_status.an_ssid, 1856 ni->ni_esslen); 1857 ni->ni_rates = ic->ic_sup_rates[IEEE80211_MODE_11B]; /*XXX*/ 1858 if (ic->ic_ifp->if_flags & IFF_DEBUG) { 1859 printf("%s: ", device_xname(sc->sc_dev)); 1860 if (ic->ic_opmode == IEEE80211_M_STA) 1861 printf("associated "); 1862 else 1863 printf("synchronized "); 1864 printf("with %s ssid ", ether_sprintf(ni->ni_bssid)); 1865 ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); 1866 printf(" channel %u start %uMb\n", 1867 le16toh(sc->sc_buf.sc_status.an_cur_channel), 1868 le16toh(sc->sc_buf.sc_status.an_current_tx_rate)/2); 1869 } 1870 break; 1871 1872 default: 1873 break; 1874 } 1875 return (*sc->sc_newstate)(ic, nstate, arg); 1876 } 1877