xref: /netbsd-src/sys/dev/ic/adwlib.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /* $NetBSD: adwlib.c,v 1.36 2006/05/21 23:56:09 christos Exp $        */
2 
3 /*
4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5  *
6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * Author: Baldassare Dante Profeta <dante@mclink.it>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 /*
40  * Ported from:
41  */
42 /*
43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44  *
45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
46  * All Rights Reserved.
47  *
48  * Redistribution and use in source and binary forms, with or without
49  * modification, are permitted provided that redistributions of source
50  * code retain the above copyright notice and this comment without
51  * modification.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.36 2006/05/21 23:56:09 christos Exp $");
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/queue.h>
62 #include <sys/device.h>
63 
64 #include <machine/bus.h>
65 #include <machine/intr.h>
66 
67 #include <dev/scsipi/scsi_all.h>
68 #include <dev/scsipi/scsipi_all.h>
69 #include <dev/scsipi/scsiconf.h>
70 
71 #include <dev/pci/pcidevs.h>
72 
73 #include <uvm/uvm_extern.h>
74 
75 #include <dev/ic/adwlib.h>
76 #include <dev/ic/adwmcode.h>
77 #include <dev/ic/adw.h>
78 
79 
80 /* Static Functions */
81 
82 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
83 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
84 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
85 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
86 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
87 
88 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
89      							ADW_EEPROM *);
90 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
91 					                 ADW_EEPROM *);
92 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
93 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
94 
95 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
96 
97 static void AdwSleepMilliSecond(u_int32_t);
98 static void AdwDelayMicroSecond(u_int32_t);
99 
100 
101 /*
102  * EEPROM Configuration.
103  *
104  * All drivers should use this structure to set the default EEPROM
105  * configuration. The BIOS now uses this structure when it is built.
106  * Additional structure information can be found in adwlib.h where
107  * the structure is defined.
108  */
109 const static ADW_EEPROM adw_3550_Default_EEPROM = {
110 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
111 	0x0000,			/* 01 cfg_msw */
112 	0xFFFF,			/* 02 disc_enable */
113 	0xFFFF,			/* 03 wdtr_able */
114 	{ 0xFFFF },		/* 04 sdtr_able */
115 	0xFFFF,			/* 05 start_motor */
116 	0xFFFF,			/* 06 tagqng_able */
117 	0xFFFF,			/* 07 bios_scan */
118 	0,			/* 08 scam_tolerant */
119 	7,			/* 09 adapter_scsi_id */
120 	0,			/*    bios_boot_delay */
121 	3,			/* 10 scsi_reset_delay */
122 	0,			/*    bios_id_lun */
123 	0,			/* 11 termination */
124 	0,			/*    reserved1 */
125 	0xFFE7,			/* 12 bios_ctrl */
126 	{ 0xFFFF },		/* 13 ultra_able */
127 	{ 0 },			/* 14 reserved2 */
128 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
129 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
130 	0,			/* 16 dvc_cntl */
131 	{ 0 },			/* 17 bug_fix */
132 	{ 0,0,0 },		/* 18-20 serial_number[3] */
133 	0,			/* 21 check_sum */
134 	{			/* 22-29 oem_name[16] */
135 	  0,0,0,0,0,0,0,0,
136 	  0,0,0,0,0,0,0,0
137 	},
138 	0,			/* 30 dvc_err_code */
139 	0,			/* 31 adv_err_code */
140 	0,			/* 32 adv_err_addr */
141 	0,			/* 33 saved_dvc_err_code */
142 	0,			/* 34 saved_adv_err_code */
143 	0			/* 35 saved_adv_err_addr */
144 };
145 
146 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
147 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
148 	0x0000,			/* 01 cfg_msw */
149 	0xFFFF,			/* 02 disc_enable */
150 	0xFFFF,			/* 03 wdtr_able */
151 	{ 0x4444 },		/* 04 sdtr_speed1 */
152 	0xFFFF,			/* 05 start_motor */
153 	0xFFFF,			/* 06 tagqng_able */
154 	0xFFFF,			/* 07 bios_scan */
155 	0,			/* 08 scam_tolerant */
156 	7,			/* 09 adapter_scsi_id */
157 	0,			/*    bios_boot_delay */
158 	3,			/* 10 scsi_reset_delay */
159 	0,			/*    bios_id_lun */
160 	0,			/* 11 termination_se */
161 	0,			/*    termination_lvd */
162 	0xFFE7,			/* 12 bios_ctrl */
163 	{ 0x4444 },		/* 13 sdtr_speed2 */
164 	{ 0x4444 },		/* 14 sdtr_speed3 */
165 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
166 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
167 	0,			/* 16 dvc_cntl */
168 	{ 0x4444 },		/* 17 sdtr_speed4 */
169 	{ 0,0,0 },		/* 18-20 serial_number[3] */
170 	0,			/* 21 check_sum */
171 	{			/* 22-29 oem_name[16] */
172 	  0,0,0,0,0,0,0,0,
173 	  0,0,0,0,0,0,0,0
174 	},
175 	0,			/* 30 dvc_err_code */
176 	0,			/* 31 adv_err_code */
177 	0,			/* 32 adv_err_addr */
178 	0,			/* 33 saved_dvc_err_code */
179 	0,			/* 34 saved_adv_err_code */
180 	0,			/* 35 saved_adv_err_addr */
181 	{			/* 36-55 reserved1[16] */
182 	  0,0,0,0,0,0,0,0,0,0,
183 	  0,0,0,0,0,0,0,0,0,0
184 	},
185 	0,			/* 56 cisptr_lsw */
186 	0,			/* 57 cisprt_msw */
187 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
188 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
189 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
190 };
191 
192 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
193 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
194 	0x0000,			/* 01 cfg_msw */
195 	0xFFFF,			/* 02 disc_enable */
196 	0xFFFF,			/* 03 wdtr_able */
197 	{ 0x5555 },		/* 04 sdtr_speed1 */
198 	0xFFFF,			/* 05 start_motor */
199 	0xFFFF,			/* 06 tagqng_able */
200 	0xFFFF,			/* 07 bios_scan */
201 	0,			/* 08 scam_tolerant */
202 	7,			/* 09 adapter_scsi_id */
203 	0,			/*    bios_boot_delay */
204 	3,			/* 10 scsi_reset_delay */
205 	0,			/*    bios_id_lun */
206 	0,			/* 11 termination_se */
207 	0,			/*    termination_lvd */
208 	0xFFE7,			/* 12 bios_ctrl */
209 	{ 0x5555 },		/* 13 sdtr_speed2 */
210 	{ 0x5555 },		/* 14 sdtr_speed3 */
211 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
212 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
213 	0,			/* 16 dvc_cntl */
214 	{ 0x5555 },		/* 17 sdtr_speed4 */
215 	{ 0,0,0 },		/* 18-20 serial_number[3] */
216 	0,			/* 21 check_sum */
217 	{			/* 22-29 oem_name[16] */
218 	  0,0,0,0,0,0,0,0,
219 	  0,0,0,0,0,0,0,0
220 	},
221 	0,			/* 30 dvc_err_code */
222 	0,			/* 31 adv_err_code */
223 	0,			/* 32 adv_err_addr */
224 	0,			/* 33 saved_dvc_err_code */
225 	0,			/* 34 saved_adv_err_code */
226 	0,			/* 35 saved_adv_err_addr */
227 	{			/* 36-55 reserved1[16] */
228 	  0,0,0,0,0,0,0,0,0,0,
229 	  0,0,0,0,0,0,0,0,0,0
230 	},
231 	0,			/* 56 cisptr_lsw */
232 	0,			/* 57 cisprt_msw */
233 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
234 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
235 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
236 };
237 
238 
239 /*
240  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
241  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
242  * all of this is done.
243  *
244  * For a non-fatal error return a warning code. If there are no warnings
245  * then 0 is returned.
246  *
247  * Note: Chip is stopped on entry.
248  */
249 int
250 AdwInitFromEEPROM(sc)
251 ADW_SOFTC      *sc;
252 {
253 	bus_space_tag_t iot = sc->sc_iot;
254 	bus_space_handle_t ioh = sc->sc_ioh;
255 	ADW_EEPROM		eep_config;
256 	u_int16_t		warn_code;
257 	u_int16_t		sdtr_speed = 0;
258 	u_int8_t		tid, termination;
259 	int			i, j;
260 
261 
262 	warn_code = 0;
263 
264 	/*
265 	 * Read the board's EEPROM configuration.
266 	 *
267 	 * Set default values if a bad checksum is found.
268 	 *
269 	 * XXX - Don't handle big-endian access to EEPROM yet.
270 	 */
271 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
272 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
273 
274 		/*
275 		 * Set EEPROM default values.
276 		 */
277 		switch(sc->chip_type) {
278 		case ADW_CHIP_ASC3550:
279 			eep_config = adw_3550_Default_EEPROM;
280 			break;
281 		case ADW_CHIP_ASC38C0800:
282 			eep_config = adw_38C0800_Default_EEPROM;
283 			break;
284 		case ADW_CHIP_ASC38C1600:
285 			eep_config = adw_38C1600_Default_EEPROM;
286 
287 #if 0
288 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
289 #endif
290 			if (sc->cfg.pci_slot_info != 0) {
291 				u_int8_t lsw_msb;
292 
293 				lsw_msb = eep_config.cfg_lsw >> 8;
294 				/*
295 				 * Set Function 1 EEPROM Word 0 MSB
296 				 *
297 				 * Clear the BIOS_ENABLE (bit 14) and
298 				 * INTAB (bit 11) EEPROM bits.
299 				 *
300 				 * Disable Bit 14 (BIOS_ENABLE) to fix
301 				 * SPARC Ultra 60 and old Mac system booting
302 				 * problem. The Expansion ROM must
303 				 * be disabled in Function 1 for these systems.
304 				 */
305 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
306 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
307 				/*
308 				 * Set the INTAB (bit 11) if the GPIO 0 input
309 				 * indicates the Function 1 interrupt line is
310 				 * wired to INTA.
311 				 *
312 				 * Set/Clear Bit 11 (INTAB) from
313 				 * the GPIO bit 0 input:
314 				 *   1 - Function 1 intr line wired to INT A.
315 				 *   0 - Function 1 intr line wired to INT B.
316 				 *
317 				 * Note: Adapter boards always have Function 0
318 				 * wired to INTA.
319 				 * Put all 5 GPIO bits in input mode and then
320 				 * read their input values.
321 				 */
322 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
323 							IOPB_GPIO_CNTL, 0);
324 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
325 						IOPB_GPIO_DATA) & 0x01) {
326 					/*
327 					 * Function 1 interrupt wired to INTA;
328 					 * Set EEPROM bit.
329 					 */
330 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
331 							 & 0xFF;
332 				 }
333 				 eep_config.cfg_lsw &= 0x00FF;
334 				 eep_config.cfg_lsw |= lsw_msb << 8;
335 			}
336 			break;
337 		}
338 
339 		/*
340 		 * Assume the 6 byte board serial number that was read
341 		 * from EEPROM is correct even if the EEPROM checksum
342 		 * failed.
343 		 */
344 		for (i=2, j=1; i>=0; i--, j++) {
345 		eep_config.serial_number[i] =
346 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
347 		}
348 
349 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
350 	}
351 	/*
352 	 * Set sc and sc->cfg variables from the EEPROM configuration
353 	 * that was read.
354 	 *
355 	 * This is the mapping of EEPROM fields to Adw Library fields.
356 	 */
357 	sc->wdtr_able = eep_config.wdtr_able;
358 	if (sc->chip_type == ADW_CHIP_ASC3550) {
359 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
360 		sc->ultra_able = eep_config.sdtr2.ultra_able;
361 	} else {
362 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
363 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
364 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
365 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
366 	}
367 	sc->ppr_able = 0;
368 	sc->tagqng_able = eep_config.tagqng_able;
369 	sc->cfg.disc_enable = eep_config.disc_enable;
370 	sc->max_host_qng = eep_config.max_host_qng;
371 	sc->max_dvc_qng = eep_config.max_dvc_qng;
372 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
373 	sc->start_motor = eep_config.start_motor;
374 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
375 	sc->bios_ctrl = eep_config.bios_ctrl;
376 	sc->no_scam = eep_config.scam_tolerant;
377 	sc->cfg.serial1 = eep_config.serial_number[0];
378 	sc->cfg.serial2 = eep_config.serial_number[1];
379 	sc->cfg.serial3 = eep_config.serial_number[2];
380 
381 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
382 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
383 		sc->sdtr_able = 0;
384 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
385 			if (tid == 0) {
386 				sdtr_speed = sc->sdtr_speed1;
387 			} else if (tid == 4) {
388 				sdtr_speed = sc->sdtr_speed2;
389 			} else if (tid == 8) {
390 				sdtr_speed = sc->sdtr_speed3;
391 			} else if (tid == 12) {
392 				sdtr_speed = sc->sdtr_speed4;
393 			}
394 			if (sdtr_speed & ADW_MAX_TID) {
395 				sc->sdtr_able |= (1 << tid);
396 			}
397 			sdtr_speed >>= 4;
398 		}
399 	}
400 
401 	/*
402 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
403 	 * maximum queuing (max. 63, min. 4).
404 	 */
405 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
406 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
407 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
408 	{
409 		/* If the value is zero, assume it is uninitialized. */
410 		if (eep_config.max_host_qng == 0) {
411 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
412 		} else {
413 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
414 		}
415 	}
416 
417 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
418 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
419 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
420 		/* If the value is zero, assume it is uninitialized. */
421 		if (eep_config.max_dvc_qng == 0) {
422 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
423 		} else {
424 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
425 		}
426 	}
427 
428 	/*
429 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
430 	 * set 'max_dvc_qng' to 'max_host_qng'.
431 	 */
432 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
433 		eep_config.max_dvc_qng = eep_config.max_host_qng;
434 	}
435 
436 	/*
437 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
438 	 * values based on possibly adjusted EEPROM values.
439 	 */
440 	sc->max_host_qng = eep_config.max_host_qng;
441 	sc->max_dvc_qng = eep_config.max_dvc_qng;
442 
443 
444 	/*
445 	 * If the EEPROM 'termination' field is set to automatic (0), then set
446 	 * the ADV_DVC_CFG 'termination' field to automatic also.
447 	 *
448 	 * If the termination is specified with a non-zero 'termination'
449 	 * value check that a legal value is set and set the ADV_DVC_CFG
450 	 * 'termination' field appropriately.
451 	 */
452 
453 	switch(sc->chip_type) {
454 	case ADW_CHIP_ASC3550:
455 		sc->cfg.termination = 0;	/* auto termination */
456 		switch(eep_config.termination_se) {
457 		case 3:
458 			/* Enable manual control with low on / high on. */
459 			sc->cfg.termination |= ADW_TERM_CTL_L;
460 		case 2:
461 			/* Enable manual control with low off / high on. */
462 			sc->cfg.termination |= ADW_TERM_CTL_H;
463 		case 1:
464 			/* Enable manual control with low off / high off. */
465 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
466 		case 0:
467 			break;
468 		default:
469 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
470 		}
471 		break;
472 
473 	case ADW_CHIP_ASC38C0800:
474 	case ADW_CHIP_ASC38C1600:
475 		switch(eep_config.termination_se) {
476 		case 0:
477 			/* auto termination for SE */
478 			termination = 0;
479 			break;
480 		case 1:
481 			/* Enable manual control with low off / high off. */
482 			termination = 0;
483 			break;
484 		case 2:
485 			/* Enable manual control with low off / high on. */
486 			termination = ADW_TERM_SE_HI;
487 			break;
488 		case 3:
489 			/* Enable manual control with low on / high on. */
490 			termination = ADW_TERM_SE;
491 			break;
492 		default:
493 			/*
494 			 * The EEPROM 'termination_se' field contains a
495 			 * bad value. Use automatic termination instead.
496 			 */
497 			termination = 0;
498 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
499 		}
500 
501 		switch(eep_config.termination_lvd) {
502 		case 0:
503 			/* auto termination for LVD */
504 			sc->cfg.termination = termination;
505 			break;
506 		case 1:
507 			/* Enable manual control with low off / high off. */
508 			sc->cfg.termination = termination;
509 			break;
510 		case 2:
511 			/* Enable manual control with low off / high on. */
512 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
513 			break;
514 		case 3:
515 			/* Enable manual control with low on / high on. */
516 			sc->cfg.termination = termination | ADW_TERM_LVD;
517 			break;
518 		default:
519 			/*
520 			 * The EEPROM 'termination_lvd' field contains a
521 			 * bad value. Use automatic termination instead.
522 			 */
523 			sc->cfg.termination = termination;
524 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
525 		}
526 		break;
527 	}
528 
529 	return warn_code;
530 }
531 
532 
533 /*
534  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
535  *
536  * On failure return the error code.
537  */
538 int
539 AdwInitDriver(sc)
540 ADW_SOFTC      *sc;
541 {
542 	bus_space_tag_t iot = sc->sc_iot;
543 	bus_space_handle_t ioh = sc->sc_ioh;
544 	u_int16_t	error_code;
545 	int		word;
546 	int		i;
547 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
548 								0x40-0x8F. */
549 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
550 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
551 	u_int8_t	tid;
552 
553 
554 	error_code = 0;
555 
556 	/*
557 	 * Save the RISC memory BIOS region before writing the microcode.
558 	 * The BIOS may already be loaded and using its RISC LRAM region
559 	 * so its region must be saved and restored.
560 	 *
561 	 * Note: This code makes the assumption, which is currently true,
562 	 * that a chip reset does not clear RISC LRAM.
563 	 */
564 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
565 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
566 	}
567 
568 	/*
569 	 * Save current per TID negotiated values.
570 	 */
571 	switch (sc->chip_type) {
572 	case ADW_CHIP_ASC3550:
573 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
574 
575 			u_int16_t  bios_version, major, minor;
576 
577 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
578 					ADW_MC_BIOSMEM) / 2];
579 			major = (bios_version  >> 12) & 0xF;
580 			minor = (bios_version  >> 8) & 0xF;
581 			if (major < 3 || (major == 3 && minor == 1)) {
582 			    /*
583 			     * BIOS 3.1 and earlier location of
584 			     * 'wdtr_able' variable.
585 			     */
586 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
587 			} else {
588 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
589 					    wdtr_able);
590 			}
591 		}
592 		break;
593 
594 	case ADW_CHIP_ASC38C1600:
595 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
596 		/* FALLTHROUGH */
597 	case ADW_CHIP_ASC38C0800:
598 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
599 		break;
600 	}
601 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
602 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
603 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
604 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
605 			max_cmd[tid]);
606 	}
607 
608 	/*
609 	 * Perform a RAM Built-In Self Test
610 	 */
611 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
612 		return error_code;
613 	}
614 
615 	/*
616 	 * Load the Microcode
617 	 */
618 	;
619 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
620 		return error_code;
621 	}
622 
623 	/*
624 	 * Read microcode version and date.
625 	 */
626 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
627 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
628 
629 	/*
630 	 * If the PCI Configuration Command Register "Parity Error Response
631 	 * Control" Bit was clear (0), then set the microcode variable
632 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
633 	 * to ignore DMA parity errors.
634 	 */
635 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
636 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
637 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
638 					word | CONTROL_FLAG_IGNORE_PERR);
639 	}
640 
641 	switch (sc->chip_type) {
642 	case ADW_CHIP_ASC3550:
643 		/*
644 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
645 		 * FIFO threshold of 128 bytes.
646 		 * This register is only accessible to the host.
647 		 */
648 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
649 				START_CTL_EMFU | READ_CMD_MRM);
650 		break;
651 
652 	case ADW_CHIP_ASC38C0800:
653 		/*
654 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
655 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
656 		 * cable detection and then we are able to read C_DET[3:0].
657 		 *
658 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
659 		 * Microcode Default Value' section below.
660 		 */
661 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
662 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
663 				| ADW_DIS_TERM_DRV);
664 
665 		/*
666 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
667 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
668 		 *
669 		 * Note: ASC-38C0800 FIFO threshold has been changed to
670 		 * 256 bytes.
671 		 *
672 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
673 		 */
674 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
675 						BC_THRESH_ENB | FIFO_THRESH_80B
676 						| START_CTL_TH | READ_CMD_MRM);
677 		break;
678 
679 	case ADW_CHIP_ASC38C1600:
680 		/*
681 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
682 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
683 		 * cable detection and then we are able to read C_DET[3:0].
684 		 *
685 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
686 		 * Microcode Default Value' section below.
687 		 */
688 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
689 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
690 				| ADW_DIS_TERM_DRV);
691 
692 		/*
693 		 * If the BIOS control flag AIPP (Asynchronous Information
694 		 * Phase Protection) disable bit is not set, then set the
695 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
696 		 * enable AIPP checking and encoding.
697 		 */
698 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
699 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
700 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
701 					word | CONTROL_FLAG_ENABLE_AIPP);
702 		}
703 
704 		/*
705 		 * For ASC-38C1600 use DMA_CFG0 default values:
706 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
707 		 */
708 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
709 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
710 		break;
711 	}
712 
713 	/*
714 	 * Microcode operating variables for WDTR, SDTR, and command tag
715 	 * queuing will be set in AdvInquiryHandling() based on what a
716 	 * device reports it is capable of in Inquiry byte 7.
717 	 *
718 	 * If SCSI Bus Resets have been disabled, then directly set
719 	 * SDTR and WDTR from the EEPROM configuration. This will allow
720 	 * the BIOS and warm boot to work without a SCSI bus hang on
721 	 * the Inquiry caused by host and target mismatched DTR values.
722 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
723 	 * be assumed to be in Asynchronous, Narrow mode.
724 	 */
725 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
726 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
727 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
728 	}
729 
730 	/*
731 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
732 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
733 	 * bitmask. These values determine the maximum SDTR speed negotiated
734 	 * with a device.
735 	 *
736 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
737 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
738 	 * without determining here whether the device supports SDTR.
739 	 */
740 	switch (sc->chip_type) {
741 	case ADW_CHIP_ASC3550:
742 		word = 0;
743 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
744 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
745 				/* Set Ultra speed for TID 'tid'. */
746 				word |= (0x3 << (4 * (tid % 4)));
747 			} else {
748 				/* Set Fast speed for TID 'tid'. */
749 				word |= (0x2 << (4 * (tid % 4)));
750 			}
751 			/* Check if done with sdtr_speed1. */
752 			if (tid == 3) {
753 				ADW_WRITE_WORD_LRAM(iot, ioh,
754 						ADW_MC_SDTR_SPEED1, word);
755 				word = 0;
756 			/* Check if done with sdtr_speed2. */
757 			} else if (tid == 7) {
758 				ADW_WRITE_WORD_LRAM(iot, ioh,
759 						ADW_MC_SDTR_SPEED2, word);
760 				word = 0;
761 			/* Check if done with sdtr_speed3. */
762 			} else if (tid == 11) {
763 				ADW_WRITE_WORD_LRAM(iot, ioh,
764 						ADW_MC_SDTR_SPEED3, word);
765 				word = 0;
766 			/* Check if done with sdtr_speed4. */
767 			} else if (tid == 15) {
768 				ADW_WRITE_WORD_LRAM(iot, ioh,
769 						ADW_MC_SDTR_SPEED4, word);
770 				/* End of loop. */
771 			}
772 		}
773 
774 		/*
775 		 * Set microcode operating variable for the
776 		 * disconnect per TID bitmask.
777 		 */
778 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
779 							sc->cfg.disc_enable);
780 		break;
781 
782 	case ADW_CHIP_ASC38C0800:
783 		/* FALLTHROUGH */
784 	case ADW_CHIP_ASC38C1600:
785 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
786 							sc->cfg.disc_enable);
787 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
788 							sc->sdtr_speed1);
789 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
790 							sc->sdtr_speed2);
791 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
792 							sc->sdtr_speed3);
793 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
794 							sc->sdtr_speed4);
795 		break;
796 	}
797 
798 
799 	/*
800 	 * Set SCSI_CFG0 Microcode Default Value.
801 	 *
802 	 * The microcode will set the SCSI_CFG0 register using this value
803 	 * after it is started below.
804 	 */
805 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
806 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
807 		ADW_OUR_ID_EN | sc->chip_scsi_id);
808 
809 
810 	switch(sc->chip_type) {
811 	case ADW_CHIP_ASC3550:
812 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
813 		break;
814 
815 	case ADW_CHIP_ASC38C0800:
816 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
817 		break;
818 
819 	case ADW_CHIP_ASC38C1600:
820 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
821 		break;
822 	}
823 	if(error_code) {
824 		return error_code;
825 	}
826 
827 	/*
828 	 * Set SEL_MASK Microcode Default Value
829 	 *
830 	 * The microcode will set the SEL_MASK register using this value
831 	 * after it is started below.
832 	 */
833 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
834 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
835 
836 	/*
837 	 * Create and Initialize Host->RISC Carrier lists
838 	 */
839 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
840 						sc->sc_control->carriers);
841 
842 	/*
843 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
844 	 */
845 
846 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
847 		return ADW_IERR_NO_CARRIER;
848 	}
849 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
850 			ASC_GET_CARRP(sc->icq_sp->next_ba));
851 
852 	/*
853 	 * The first command issued will be placed in the stopper carrier.
854 	 */
855 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
856 
857 	/*
858 	 * Set RISC ICQ physical address start value.
859 	 */
860 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
861 
862 	/*
863 	 * Initialize the COMMA register to the same value otherwise
864 	 * the RISC will prematurely detect a command is available.
865 	 */
866 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
867 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
868 						le32toh(sc->icq_sp->carr_ba));
869 	}
870 
871 	/*
872 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
873 	 */
874 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
875 		return ADW_IERR_NO_CARRIER;
876 	}
877 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
878 			ASC_GET_CARRP(sc->irq_sp->next_ba));
879 
880 	/*
881 	 * The first command completed by the RISC will be placed in
882 	 * the stopper.
883 	 *
884 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
885 	 * completed the RISC will set the ASC_RQ_DONE bit.
886 	 */
887 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
888 
889 	/*
890 	 * Set RISC IRQ physical address start value.
891 	 */
892 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
893 	sc->carr_pending_cnt = 0;
894 
895 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
896 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
897 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
898 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
899 
900 	/* finally, finally, gentlemen, start your engine */
901 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
902 
903 	/*
904 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
905 	 * Resets should be performed. The RISC has to be running
906 	 * to issue a SCSI Bus Reset.
907 	 */
908 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
909 	{
910 		/*
911 		 * If the BIOS Signature is present in memory, restore the
912 		 * BIOS Handshake Configuration Table and do not perform
913 		 * a SCSI Bus Reset.
914 		 */
915 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
916 				0x55AA) {
917 			/*
918 			 * Restore per TID negotiated values.
919 			 */
920 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
921 					wdtr_able);
922 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
923 					sdtr_able);
924 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
925 					tagqng_able);
926 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
927 				ADW_WRITE_BYTE_LRAM(iot, ioh,
928 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
929 						max_cmd[tid]);
930 			}
931 		} else {
932 			if (AdwResetCCB(sc) != ADW_TRUE) {
933 				error_code = ADW_WARN_BUSRESET_ERROR;
934 			}
935 		}
936 	}
937 
938 	return error_code;
939 }
940 
941 
942 int
943 AdwRamSelfTest(iot, ioh, chip_type)
944 	bus_space_tag_t iot;
945 	bus_space_handle_t ioh;
946 	u_int8_t chip_type;
947 {
948 	int		i;
949 	u_int8_t	byte;
950 
951 
952 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
953 	    (chip_type == ADW_CHIP_ASC38C1600)) {
954 		/*
955 		 * RAM BIST (RAM Built-In Self Test)
956 		 *
957 		 * Address : I/O base + offset 0x38h register (byte).
958 		 * Function: Bit 7-6(RW) : RAM mode
959 		 *			    Normal Mode   : 0x00
960 		 *			    Pre-test Mode : 0x40
961 		 *			    RAM Test Mode : 0x80
962 		 *	     Bit 5	 : unused
963 		 *	     Bit 4(RO)   : Done bit
964 		 *	     Bit 3-0(RO) : Status
965 		 *			    Host Error    : 0x08
966 		 *			    Int_RAM Error : 0x04
967 		 *			    RISC Error    : 0x02
968 		 *			    SCSI Error    : 0x01
969 		 *			    No Error	  : 0x00
970 		 *
971 		 * Note: RAM BIST code should be put right here, before loading
972 		 * the microcode and after saving the RISC memory BIOS region.
973 		 */
974 
975 		/*
976 		 * LRAM Pre-test
977 		 *
978 		 * Write PRE_TEST_MODE (0x40) to register and wait for
979 		 * 10 milliseconds.
980 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
981 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
982 		 * If cannot reset to NORMAL_MODE, return an error too.
983 		 */
984 		for (i = 0; i < 2; i++) {
985 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
986 					PRE_TEST_MODE);
987 			 /* Wait for 10ms before reading back. */
988 			AdwSleepMilliSecond(10);
989 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
990 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
991 					PRE_TEST_VALUE) {
992 				return ADW_IERR_BIST_PRE_TEST;
993 			}
994 
995 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
996 								NORMAL_MODE);
997 			/* Wait for 10ms before reading back. */
998 			AdwSleepMilliSecond(10);
999 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1000 			    != NORMAL_VALUE) {
1001 				return ADW_IERR_BIST_PRE_TEST;
1002 			}
1003 		}
1004 
1005 		/*
1006 		 * LRAM Test - It takes about 1.5 ms to run through the test.
1007 		 *
1008 		 * Write RAM_TEST_MODE (0x80) to register and wait for
1009 		 * 10 milliseconds.
1010 		 * If Done bit not set or Status not 0, save register byte,
1011 		 * set the err_code, and return an error.
1012 		 */
1013 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1014 		/* Wait for 10ms before checking status. */
1015 		AdwSleepMilliSecond(10);
1016 
1017 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1018 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1019 			/* Get here if Done bit not set or Status not 0. */
1020 			return ADW_IERR_BIST_RAM_TEST;
1021 		}
1022 
1023 		/* We need to reset back to normal mode after LRAM test passes*/
1024 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 
1031 int
1032 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1033 	bus_space_tag_t iot;
1034 	bus_space_handle_t ioh;
1035 	u_int16_t *bios_mem;
1036 	u_int8_t chip_type;
1037 {
1038 	const u_int8_t	*mcode_data;
1039 	u_int32_t	 mcode_chksum;
1040 	u_int16_t	 mcode_size;
1041 	u_int32_t	sum;
1042 	u_int16_t	code_sum;
1043 	int		begin_addr;
1044 	int		end_addr;
1045 	int		word;
1046 	int		adw_memsize;
1047 	int		adw_mcode_expanded_size;
1048 	int		i, j;
1049 
1050 
1051 	switch(chip_type) {
1052 	case ADW_CHIP_ASC3550:
1053 		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1054 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1055 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1056 		adw_memsize = ADW_3550_MEMSIZE;
1057 		break;
1058 
1059 	case ADW_CHIP_ASC38C0800:
1060 		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1061 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1062 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1063 		adw_memsize = ADW_38C0800_MEMSIZE;
1064 		break;
1065 
1066 	case ADW_CHIP_ASC38C1600:
1067 		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1068 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1069 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1070 		adw_memsize = ADW_38C1600_MEMSIZE;
1071 		break;
1072 
1073 	default:
1074 		return (EINVAL);
1075 	}
1076 
1077 	/*
1078 	 * Write the microcode image to RISC memory starting at address 0.
1079 	 */
1080 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1081 
1082 	/* Assume the following compressed format of the microcode buffer:
1083 	 *
1084 	 *  254 word (508 byte) table indexed by byte code followed
1085 	 *  by the following byte codes:
1086 	 *
1087 	 *    1-Byte Code:
1088 	 *	00: Emit word 0 in table.
1089 	 *	01: Emit word 1 in table.
1090 	 *	.
1091 	 *	FD: Emit word 253 in table.
1092 	 *
1093 	 *    Multi-Byte Code:
1094 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1095 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1096 	 */
1097 	word = 0;
1098 	for (i = 253 * 2; i < mcode_size; i++) {
1099 		if (mcode_data[i] == 0xff) {
1100 			for (j = 0; j < mcode_data[i + 1]; j++) {
1101 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1102 				  (((u_int16_t)mcode_data[i + 3] << 8) |
1103 				  mcode_data[i + 2]));
1104 				word++;
1105 			}
1106 			i += 3;
1107 		} else if (mcode_data[i] == 0xfe) {
1108 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1109 			    (((u_int16_t)mcode_data[i + 2] << 8) |
1110 			    mcode_data[i + 1]));
1111 			i += 2;
1112 			word++;
1113 		} else {
1114 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1115 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1116 			 mcode_data[mcode_data[i] * 2]));
1117 			word++;
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * Set 'word' for later use to clear the rest of memory and save
1123 	 * the expanded mcode size.
1124 	 */
1125 	word *= 2;
1126 	adw_mcode_expanded_size = word;
1127 
1128 	/*
1129 	 * Clear the rest of the Internal RAM.
1130 	 */
1131 	for (; word < adw_memsize; word += 2) {
1132 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1133 	}
1134 
1135 	/*
1136 	 * Verify the microcode checksum.
1137 	 */
1138 	sum = 0;
1139 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1140 
1141 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1142 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1143 	}
1144 
1145 	if (sum != mcode_chksum) {
1146 		return ADW_IERR_MCODE_CHKSUM;
1147 	}
1148 
1149 	/*
1150 	 * Restore the RISC memory BIOS region.
1151 	 */
1152 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1153 		if(chip_type == ADW_CHIP_ASC3550) {
1154 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1155 								bios_mem[i]);
1156 		} else {
1157 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1158 								bios_mem[i]);
1159 		}
1160 	}
1161 
1162 	/*
1163 	 * Calculate and write the microcode code checksum to the microcode
1164 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1165 	 */
1166 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1167 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1168 	code_sum = 0;
1169 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1170 	for (word = begin_addr; word < end_addr; word += 2) {
1171 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1172 	}
1173 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1174 
1175 	/*
1176 	 * Set the chip type.
1177 	 */
1178 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1179 
1180 	return 0;
1181 }
1182 
1183 
1184 int
1185 AdwASC3550Cabling(iot, ioh, cfg)
1186 	bus_space_tag_t iot;
1187 	bus_space_handle_t ioh;
1188 	ADW_DVC_CFG *cfg;
1189 {
1190 	u_int16_t	scsi_cfg1;
1191 
1192 
1193 	/*
1194 	 * Determine SCSI_CFG1 Microcode Default Value.
1195 	 *
1196 	 * The microcode will set the SCSI_CFG1 register using this value
1197 	 * after it is started below.
1198 	 */
1199 
1200 	/* Read current SCSI_CFG1 Register value. */
1201 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1202 
1203 	/*
1204 	 * If all three connectors are in use in ASC3550, return an error.
1205 	 */
1206 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1207 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1208 		return ADW_IERR_ILLEGAL_CONNECTION;
1209 	}
1210 
1211 	/*
1212 	 * If the cable is reversed all of the SCSI_CTRL register signals
1213 	 * will be set. Check for and return an error if this condition is
1214 	 * found.
1215 	 */
1216 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1217 		return ADW_IERR_REVERSED_CABLE;
1218 	}
1219 
1220 	/*
1221 	 * If this is a differential board and a single-ended device
1222 	 * is attached to one of the connectors, return an error.
1223 	 */
1224 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1225 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1226 		return ADW_IERR_SINGLE_END_DEVICE;
1227 	}
1228 
1229 	/*
1230 	 * If automatic termination control is enabled, then set the
1231 	 * termination value based on a table listed in a_condor.h.
1232 	 *
1233 	 * If manual termination was specified with an EEPROM setting
1234 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
1235 	 * is ready to be 'ored' into SCSI_CFG1.
1236 	 */
1237 	if (cfg->termination == 0) {
1238 		/*
1239 		 * The software always controls termination by setting
1240 		 * TERM_CTL_SEL.
1241 		 * If TERM_CTL_SEL were set to 0, the hardware would set
1242 		 * termination.
1243 		 */
1244 		cfg->termination |= ADW_TERM_CTL_SEL;
1245 
1246 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1247 			/* TERM_CTL_H: on, TERM_CTL_L: on */
1248 			case 0x3: case 0x7: case 0xB:
1249 			case 0xD: case 0xE: case 0xF:
1250 				cfg->termination |=
1251 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1252 				break;
1253 
1254 			/* TERM_CTL_H: on, TERM_CTL_L: off */
1255 			case 0x1: case 0x5: case 0x9:
1256 			case 0xA: case 0xC:
1257 				cfg->termination |= ADW_TERM_CTL_H;
1258 				break;
1259 
1260 			/* TERM_CTL_H: off, TERM_CTL_L: off */
1261 			case 0x2: case 0x6:
1262 				break;
1263 		}
1264 	}
1265 
1266 	/*
1267 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1268 	 */
1269 	scsi_cfg1 &= ~ADW_TERM_CTL;
1270 
1271 	/*
1272 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1273 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1274 	 * referenced, because the hardware internally inverts
1275 	 * the Termination High and Low bits if TERM_POL is set.
1276 	 */
1277 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1278 
1279 	/*
1280 	 * Set SCSI_CFG1 Microcode Default Value
1281 	 *
1282 	 * Set filter value and possibly modified termination control
1283 	 * bits in the Microcode SCSI_CFG1 Register Value.
1284 	 *
1285 	 * The microcode will set the SCSI_CFG1 register using this value
1286 	 * after it is started below.
1287 	 */
1288 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1289 						ADW_FLTR_DISABLE | scsi_cfg1);
1290 
1291 	/*
1292 	 * Set MEM_CFG Microcode Default Value
1293 	 *
1294 	 * The microcode will set the MEM_CFG register using this value
1295 	 * after it is started below.
1296 	 *
1297 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1298 	 * are defined.
1299 	 *
1300 	 * ASC-3550 has 8KB internal memory.
1301 	 */
1302 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1303 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1304 
1305 	return 0;
1306 }
1307 
1308 
1309 int
1310 AdwASC38C0800Cabling(iot, ioh, cfg)
1311 	bus_space_tag_t iot;
1312 	bus_space_handle_t ioh;
1313 	ADW_DVC_CFG *cfg;
1314 {
1315 	u_int16_t	scsi_cfg1;
1316 
1317 
1318 	/*
1319 	 * Determine SCSI_CFG1 Microcode Default Value.
1320 	 *
1321 	 * The microcode will set the SCSI_CFG1 register using this value
1322 	 * after it is started below.
1323 	 */
1324 
1325 	/* Read current SCSI_CFG1 Register value. */
1326 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1327 
1328 	/*
1329 	 * If the cable is reversed all of the SCSI_CTRL register signals
1330 	 * will be set. Check for and return an error if this condition is
1331 	 * found.
1332 	 */
1333 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1334 		return ADW_IERR_REVERSED_CABLE;
1335 	}
1336 
1337 	/*
1338 	 * All kind of combinations of devices attached to one of four
1339 	 * connectors are acceptable except HVD device attached.
1340 	 * For example, LVD device can be attached to SE connector while
1341 	 * SE device attached to LVD connector.
1342 	 * If LVD device attached to SE connector, it only runs up to
1343 	 * Ultra speed.
1344 	 *
1345 	 * If an HVD device is attached to one of LVD connectors, return
1346 	 * an error.
1347 	 * However, there is no way to detect HVD device attached to
1348 	 * SE connectors.
1349 	 */
1350 	if (scsi_cfg1 & ADW_HVD) {
1351 		return ADW_IERR_HVD_DEVICE;
1352 	}
1353 
1354 	/*
1355 	 * If either SE or LVD automatic termination control is enabled, then
1356 	 * set the termination value based on a table listed in a_condor.h.
1357 	 *
1358 	 * If manual termination was specified with an EEPROM setting then
1359 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1360 	 * to be 'ored' into SCSI_CFG1.
1361 	 */
1362 	if ((cfg->termination & ADW_TERM_SE) == 0) {
1363 		/* SE automatic termination control is enabled. */
1364 		switch(scsi_cfg1 & ADW_C_DET_SE) {
1365 			/* TERM_SE_HI: on, TERM_SE_LO: on */
1366 			case 0x1: case 0x2: case 0x3:
1367 				cfg->termination |= ADW_TERM_SE;
1368 				break;
1369 
1370 			/* TERM_SE_HI: on, TERM_SE_LO: off */
1371 			case 0x0:
1372 				cfg->termination |= ADW_TERM_SE_HI;
1373 				break;
1374 		}
1375 	}
1376 
1377 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
1378 		/* LVD automatic termination control is enabled. */
1379 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
1380 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
1381 			case 0x4: case 0x8: case 0xC:
1382 				cfg->termination |= ADW_TERM_LVD;
1383 				break;
1384 
1385 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
1386 			case 0x0:
1387 				break;
1388 		}
1389 	}
1390 
1391 	/*
1392 	 * Clear any set TERM_SE and TERM_LVD bits.
1393 	 */
1394 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1395 
1396 	/*
1397 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1398 	 */
1399 	scsi_cfg1 |= (~cfg->termination & 0xF0);
1400 
1401 	/*
1402 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1403 	 * HVD/LVD/SE bits and set possibly modified termination control bits
1404 	 * in the Microcode SCSI_CFG1 Register Value.
1405 	 */
1406 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1407 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1408 
1409 	/*
1410 	 * Set SCSI_CFG1 Microcode Default Value
1411 	 *
1412 	 * Set possibly modified termination control and reset DIS_TERM_DRV
1413 	 * bits in the Microcode SCSI_CFG1 Register Value.
1414 	 *
1415 	 * The microcode will set the SCSI_CFG1 register using this value
1416 	 * after it is started below.
1417 	 */
1418 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1419 
1420 	/*
1421 	 * Set MEM_CFG Microcode Default Value
1422 	 *
1423 	 * The microcode will set the MEM_CFG register using this value
1424 	 * after it is started below.
1425 	 *
1426 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1427 	 * are defined.
1428 	 *
1429 	 * ASC-38C0800 has 16KB internal memory.
1430 	 */
1431 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1432 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1433 
1434 	return 0;
1435 }
1436 
1437 
1438 int
1439 AdwASC38C1600Cabling(iot, ioh, cfg)
1440 	bus_space_tag_t iot;
1441 	bus_space_handle_t ioh;
1442 	ADW_DVC_CFG *cfg;
1443 {
1444 	u_int16_t	scsi_cfg1;
1445 
1446 
1447 	/*
1448 	 * Determine SCSI_CFG1 Microcode Default Value.
1449 	 *
1450 	 * The microcode will set the SCSI_CFG1 register using this value
1451 	 * after it is started below.
1452 	 * Each ASC-38C1600 function has only two cable detect bits.
1453 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1454 	 */
1455 
1456 	/* Read current SCSI_CFG1 Register value. */
1457 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1458 
1459 	/*
1460 	 * If the cable is reversed all of the SCSI_CTRL register signals
1461 	 * will be set. Check for and return an error if this condition is
1462 	 * found.
1463 	 */
1464 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1465 		return ADW_IERR_REVERSED_CABLE;
1466 	}
1467 
1468 	/*
1469 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
1470 	 * cannot be connected to either connector. An LVD device or SE device
1471 	 * may be connected to either connector. If an SE device is connected,
1472 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
1473 	 *
1474 	 * If an HVD device is attached, return an error.
1475 	 */
1476 	if (scsi_cfg1 & ADW_HVD) {
1477 		return ADW_IERR_HVD_DEVICE;
1478 	}
1479 
1480 	/*
1481 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
1482 	 * termination because there are two connectors for each function.
1483 	 * Each function may use either LVD or SE mode.
1484 	 * Corresponding the SE automatic termination control EEPROM bits are
1485 	 * used for each function.
1486 	 * Each function has its own EEPROM. If SE automatic control is enabled
1487 	 * for the function, then set the termination value based on a table
1488 	 * listed in adwlib.h.
1489 	 *
1490 	 * If manual termination is specified in the EEPROM for the function,
1491 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1492 	 * ready to be 'ored' into SCSI_CFG1.
1493 	 */
1494 	if ((cfg->termination & ADW_TERM_SE) == 0) {
1495 		/* SE automatic termination control is enabled. */
1496 		switch(scsi_cfg1 & ADW_C_DET_SE) {
1497 			/* TERM_SE_HI: on, TERM_SE_LO: on */
1498 			case 0x1: case 0x2: case 0x3:
1499 				cfg->termination |= ADW_TERM_SE;
1500 				break;
1501 
1502 			case 0x0:
1503 #if 0
1504 	/* !!!!TODO!!!! */
1505 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1506 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1507 				}
1508 				else
1509 #endif
1510 				{
1511 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1512 					cfg->termination |= ADW_TERM_SE_HI;
1513 				}
1514 				break;
1515 			}
1516 	}
1517 
1518 	/*
1519 	 * Clear any set TERM_SE bits.
1520 	 */
1521 	scsi_cfg1 &= ~ADW_TERM_SE;
1522 
1523 	/*
1524 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1525 	 */
1526 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1527 
1528 	/*
1529 	 * Clear Big Endian and Terminator Polarity bits and set possibly
1530 	 * modified termination control bits in the Microcode SCSI_CFG1
1531 	 * Register Value.
1532 	 */
1533 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1534 
1535 	/*
1536 	 * Set SCSI_CFG1 Microcode Default Value
1537 	 *
1538 	 * Set possibly modified termination control bits in the Microcode
1539 	 * SCSI_CFG1 Register Value.
1540 	 *
1541 	 * The microcode will set the SCSI_CFG1 register using this value
1542 	 * after it is started below.
1543 	 */
1544 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1545 
1546 	/*
1547 	 * Set MEM_CFG Microcode Default Value
1548 	 *
1549 	 * The microcode will set the MEM_CFG register using this value
1550 	 * after it is started below.
1551 	 *
1552 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1553 	 * are defined.
1554 	 *
1555 	 * ASC-38C1600 has 32KB internal memory.
1556 	 */
1557 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1558 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1559 
1560 	return 0;
1561 }
1562 
1563 
1564 /*
1565  * Read EEPROM configuration into the specified buffer.
1566  *
1567  * Return a checksum based on the EEPROM configuration read.
1568  */
1569 static u_int16_t
1570 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1571 	bus_space_tag_t		iot;
1572 	bus_space_handle_t	ioh;
1573 	ADW_EEPROM		*cfg_buf;
1574 {
1575 	u_int16_t	       wval, chksum;
1576 	u_int16_t	       *wbuf;
1577 	int		    eep_addr;
1578 
1579 
1580 	wbuf = (u_int16_t *) cfg_buf;
1581 	chksum = 0;
1582 
1583 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1584 		eep_addr < ASC_EEP_DVC_CFG_END;
1585 		eep_addr++, wbuf++) {
1586 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
1587 		chksum += wval;
1588 		*wbuf = wval;
1589 	}
1590 
1591 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1592 	wbuf++;
1593 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1594 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
1595 			eep_addr++, wbuf++) {
1596 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1597 	}
1598 
1599 	return chksum;
1600 }
1601 
1602 
1603 /*
1604  * Read the EEPROM from specified location
1605  */
1606 static u_int16_t
1607 AdwReadEEPWord(iot, ioh, eep_word_addr)
1608 	bus_space_tag_t		iot;
1609 	bus_space_handle_t	ioh;
1610 	int			eep_word_addr;
1611 {
1612 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1613 		ASC_EEP_CMD_READ | eep_word_addr);
1614 	AdwWaitEEPCmd(iot, ioh);
1615 
1616 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1617 }
1618 
1619 
1620 /*
1621  * Wait for EEPROM command to complete
1622  */
1623 static void
1624 AdwWaitEEPCmd(iot, ioh)
1625 	bus_space_tag_t		iot;
1626 	bus_space_handle_t	ioh;
1627 {
1628 	int eep_delay_ms;
1629 
1630 
1631 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1632 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1633 				ASC_EEP_CMD_DONE) {
1634 			break;
1635 		}
1636 		AdwSleepMilliSecond(1);
1637 	}
1638 
1639 	(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1640 }
1641 
1642 
1643 /*
1644  * Write the EEPROM from 'cfg_buf'.
1645  */
1646 static void
1647 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1648 	bus_space_tag_t		iot;
1649 	bus_space_handle_t	ioh;
1650 	ADW_EEPROM		*cfg_buf;
1651 {
1652 	u_int16_t *wbuf;
1653 	u_int16_t addr, chksum;
1654 
1655 
1656 	wbuf = (u_int16_t *) cfg_buf;
1657 	chksum = 0;
1658 
1659 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1660 	AdwWaitEEPCmd(iot, ioh);
1661 
1662 	/*
1663 	 * Write EEPROM from word 0 to word 20
1664 	 */
1665 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
1666 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1667 		chksum += *wbuf;
1668 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1669 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1670 				ASC_EEP_CMD_WRITE | addr);
1671 		AdwWaitEEPCmd(iot, ioh);
1672 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1673 	}
1674 
1675 	/*
1676 	 * Write EEPROM checksum at word 21
1677 	 */
1678 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1679 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1680 			ASC_EEP_CMD_WRITE | addr);
1681 	AdwWaitEEPCmd(iot, ioh);
1682 	wbuf++;        /* skip over check_sum */
1683 
1684 	/*
1685 	 * Write EEPROM OEM name at words 22 to 29
1686 	 */
1687 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
1688 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1689 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1690 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1691 				ASC_EEP_CMD_WRITE | addr);
1692 		AdwWaitEEPCmd(iot, ioh);
1693 	}
1694 
1695 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1696 			ASC_EEP_CMD_WRITE_DISABLE);
1697 	AdwWaitEEPCmd(iot, ioh);
1698 
1699 	return;
1700 }
1701 
1702 
1703 /*
1704  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1705  *
1706  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1707  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
1708  *   RISC to notify it a new command is ready to be executed.
1709  *
1710  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1711  * set to SCSI_MAX_RETRY.
1712  *
1713  * Return:
1714  *      ADW_SUCCESS(1) - The request was successfully queued.
1715  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
1716  *                       request completes.
1717  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
1718  *                       host IC error.
1719  */
1720 int
1721 AdwExeScsiQueue(sc, scsiq)
1722 ADW_SOFTC	*sc;
1723 ADW_SCSI_REQ_Q	*scsiq;
1724 {
1725 	bus_space_tag_t iot = sc->sc_iot;
1726 	bus_space_handle_t ioh = sc->sc_ioh;
1727 	ADW_CCB		*ccb;
1728 	u_int32_t	req_paddr;
1729 	ADW_CARRIER	*new_carrp;
1730 
1731 	/*
1732 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1733 	 */
1734 	if (scsiq->target_id > ADW_MAX_TID) {
1735 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1736 		scsiq->done_status = QD_WITH_ERROR;
1737 		return ADW_ERROR;
1738 	}
1739 
1740 	/*
1741 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1742 	 */
1743 
1744 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1745 
1746 	/*
1747 	 * Allocate a carrier and initialize fields.
1748 	 */
1749 	if ((new_carrp = sc->carr_freelist) == NULL) {
1750 		return ADW_BUSY;
1751 	}
1752 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1753 			ASC_GET_CARRP(new_carrp->next_ba));
1754 	sc->carr_pending_cnt++;
1755 
1756 	/*
1757 	 * Set the carrier to be a stopper by setting 'next_ba'
1758 	 * to the stopper value. The current stopper will be changed
1759 	 * below to point to the new stopper.
1760 	 */
1761 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1762 
1763 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1764 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1765 
1766 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1767 	scsiq->scsiq_rptr = htole32(req_paddr);
1768 
1769 	/*
1770 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1771 	 * order during initialization.
1772 	 */
1773 	scsiq->carr_ba = sc->icq_sp->carr_ba;
1774 	scsiq->carr_va = sc->icq_sp->carr_ba;
1775 
1776 	/*
1777 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1778 	 * the microcode. The newly allocated stopper will become the new
1779 	 * stopper.
1780 	 */
1781 	sc->icq_sp->areq_ba = htole32(req_paddr);
1782 
1783 	/*
1784 	 * Set the 'next_ba' pointer for the old stopper to be the
1785 	 * physical address of the new stopper. The RISC can only
1786 	 * follow physical addresses.
1787 	 */
1788 	sc->icq_sp->next_ba = new_carrp->carr_ba;
1789 
1790 #if ADW_DEBUG
1791 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1792 			sc->icq_sp->carr_id,
1793 			sc->icq_sp->carr_ba,
1794 			sc->icq_sp->areq_ba,
1795 			sc->icq_sp->next_ba);
1796 #endif
1797 	/*
1798 	 * Set the host adapter stopper pointer to point to the new carrier.
1799 	 */
1800 	sc->icq_sp = new_carrp;
1801 
1802 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
1803 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
1804 		/*
1805 		 * Tickle the RISC to tell it to read its Command Queue Head
1806 		 * pointer.
1807 		 */
1808 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1809 		if (sc->chip_type == ADW_CHIP_ASC3550) {
1810 			/*
1811 			 * Clear the tickle value. In the ASC-3550 the RISC flag
1812 			 * command 'clr_tickle_a' does not work unless the host
1813 			 * value is cleared.
1814 			 */
1815 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1816 					ADW_TICKLE_NOP);
1817 		}
1818 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1819 		/*
1820 		 * Notify the RISC a carrier is ready by writing the physical
1821 		 * address of the new carrier stopper to the COMMA register.
1822 		 */
1823 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1824 				le32toh(new_carrp->carr_ba));
1825 	}
1826 
1827 	/*
1828 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1829 	 */
1830 
1831 	return ADW_SUCCESS;
1832 }
1833 
1834 
1835 void
1836 AdwResetChip(iot, ioh)
1837 	bus_space_tag_t iot;
1838 	bus_space_handle_t ioh;
1839 {
1840 
1841 	/*
1842 	 * Reset Chip.
1843 	 */
1844 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1845 			ADW_CTRL_REG_CMD_RESET);
1846 	AdwSleepMilliSecond(100);
1847 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1848 			ADW_CTRL_REG_CMD_WR_IO_REG);
1849 }
1850 
1851 
1852 /*
1853  * Reset SCSI Bus and purge all outstanding requests.
1854  *
1855  * Return Value:
1856  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
1857  *      ADW_FALSE(0) -  Microcode command failed.
1858  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1859  *                      may be hung which requires driver recovery.
1860  */
1861 int
1862 AdwResetCCB(sc)
1863 ADW_SOFTC	*sc;
1864 {
1865 	int	    status;
1866 
1867 	/*
1868 	 * Send the SCSI Bus Reset idle start idle command which asserts
1869 	 * the SCSI Bus Reset signal.
1870 	 */
1871 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1872 	if (status != ADW_TRUE) {
1873 		return status;
1874 	}
1875 
1876 	/*
1877 	 * Delay for the specified SCSI Bus Reset hold time.
1878 	 *
1879 	 * The hold time delay is done on the host because the RISC has no
1880 	 * microsecond accurate timer.
1881 	 */
1882 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1883 
1884 	/*
1885 	 * Send the SCSI Bus Reset end idle command which de-asserts
1886 	 * the SCSI Bus Reset signal and purges any pending requests.
1887 	 */
1888 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1889 	if (status != ADW_TRUE) {
1890 		return status;
1891 	}
1892 
1893 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1894 
1895 	return status;
1896 }
1897 
1898 
1899 /*
1900  * Reset chip and SCSI Bus.
1901  *
1902  * Return Value:
1903  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
1904  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
1905  */
1906 int
1907 AdwResetSCSIBus(sc)
1908 ADW_SOFTC	*sc;
1909 {
1910 	bus_space_tag_t iot = sc->sc_iot;
1911 	bus_space_handle_t ioh = sc->sc_ioh;
1912 	int		status;
1913 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
1914 	u_int16_t	ppr_able = 0; /* XXX: gcc */
1915 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
1916 	u_int16_t	bios_sig;
1917 
1918 
1919 	/*
1920 	 * Save current per TID negotiated values.
1921 	 */
1922 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1923 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1924 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1925 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1926 	}
1927 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1928 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1929 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1930 			max_cmd[tid]);
1931 	}
1932 
1933 	/*
1934 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1935 	 * by clearing the BIOS signature word.
1936 	 * The initialization functions assumes a SCSI Bus Reset is not
1937 	 * needed if the BIOS signature word is present.
1938 	 */
1939 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1940 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1941 
1942 	/*
1943 	 * Stop chip and reset it.
1944 	 */
1945 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1946 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1947 			ADW_CTRL_REG_CMD_RESET);
1948 	AdwSleepMilliSecond(100);
1949 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1950 			ADW_CTRL_REG_CMD_WR_IO_REG);
1951 
1952 	/*
1953 	 * Reset Adv Library error code, if any, and try
1954 	 * re-initializing the chip.
1955 	 * Then translate initialization return value to status value.
1956 	 */
1957 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1958 
1959 	/*
1960 	 * Restore the BIOS signature word.
1961 	 */
1962 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1963 
1964 	/*
1965 	 * Restore per TID negotiated values.
1966 	 */
1967 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1968 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1969 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1970 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1971 	}
1972 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1973 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1974 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1975 			max_cmd[tid]);
1976 	}
1977 
1978 	return status;
1979 }
1980 
1981 
1982 /*
1983  * Adv Library Interrupt Service Routine
1984  *
1985  *  This function is called by a driver's interrupt service routine.
1986  *  The function disables and re-enables interrupts.
1987  *
1988  *  When a microcode idle command is completed, the ADV_DVC_VAR
1989  *  'idle_cmd_done' field is set to ADW_TRUE.
1990  *
1991  *  Note: AdwISR() can be called when interrupts are disabled or even
1992  *  when there is no hardware interrupt condition present. It will
1993  *  always check for completed idle commands and microcode requests.
1994  *  This is an important feature that shouldn't be changed because it
1995  *  allows commands to be completed from polling mode loops.
1996  *
1997  * Return:
1998  *   ADW_TRUE(1) - interrupt was pending
1999  *   ADW_FALSE(0) - no interrupt was pending
2000  */
2001 int
2002 AdwISR(sc)
2003 ADW_SOFTC	*sc;
2004 {
2005 	bus_space_tag_t iot = sc->sc_iot;
2006 	bus_space_handle_t ioh = sc->sc_ioh;
2007 	u_int8_t	int_stat;
2008 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
2009 	u_int32_t	irq_next_pa;
2010 	ADW_SCSI_REQ_Q	*scsiq;
2011 	ADW_CCB		*ccb;
2012 	int		s;
2013 
2014 
2015 	s = splbio();
2016 
2017 	/* Reading the register clears the interrupt. */
2018 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2019 
2020 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2021 	     ADW_INTR_STATUS_INTRC)) == 0) {
2022 		splx(s);
2023 		return ADW_FALSE;
2024 	}
2025 
2026 	/*
2027 	 * Notify the driver of an asynchronous microcode condition by
2028 	 * calling the ADV_DVC_VAR.async_callback function. The function
2029 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2030 	 */
2031 	if (int_stat & ADW_INTR_STATUS_INTRB) {
2032 		u_int8_t intrb_code;
2033 
2034 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2035 
2036 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
2037 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
2038 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2039 				sc->carr_pending_cnt != 0) {
2040 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
2041 					IOPB_TICKLE, ADW_TICKLE_A);
2042 				if (sc->chip_type == ADW_CHIP_ASC3550) {
2043 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
2044 						IOPB_TICKLE, ADW_TICKLE_NOP);
2045 				}
2046 			}
2047 		}
2048 
2049 		if (sc->async_callback != 0) {
2050 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2051 		}
2052 	}
2053 
2054 	/*
2055 	 * Check if the IRQ stopper carrier contains a completed request.
2056 	 */
2057 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2058 	{
2059 #if ADW_DEBUG
2060 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2061 				sc->irq_sp->carr_id,
2062 				sc->irq_sp->carr_ba,
2063 				sc->irq_sp->areq_ba,
2064 				sc->irq_sp->next_ba);
2065 #endif
2066 		/*
2067 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2068 		 * structure.
2069 		 * The RISC will have set 'areq_ba' to a virtual address.
2070 		 *
2071 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2072 		 * field to the carrier ADV_CARR_T.areq_ba field.
2073 		 * The conversion below complements the conversion of
2074 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2075 		 */
2076 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2077 		scsiq = &ccb->scsiq;
2078 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2079 
2080 		/*
2081 		 * Request finished with good status and the queue was not
2082 		 * DMAed to host memory by the firmware. Set all status fields
2083 		 * to indicate good status.
2084 		 */
2085 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2086 			scsiq->done_status = QD_NO_ERROR;
2087 			scsiq->host_status = scsiq->scsi_status = 0;
2088 			scsiq->data_cnt = 0L;
2089 		}
2090 
2091 		/*
2092 		 * Advance the stopper pointer to the next carrier
2093 		 * ignoring the lower four bits. Free the previous
2094 		 * stopper carrier.
2095 		 */
2096 		free_carrp = sc->irq_sp;
2097 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2098 
2099 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
2100 					: sc->carr_freelist->carr_ba;
2101 		sc->carr_freelist = free_carrp;
2102 		sc->carr_pending_cnt--;
2103 
2104 		/*
2105 		 * Clear request microcode control flag.
2106 		 */
2107 		scsiq->cntl = 0;
2108 
2109 		/*
2110 		 * Check Condition handling
2111 		 */
2112 		/*
2113 		 * If the command that completed was a SCSI INQUIRY and
2114 		 * LUN 0 was sent the command, then process the INQUIRY
2115 		 * command information for the device.
2116 		 */
2117 		if (scsiq->done_status == QD_NO_ERROR &&
2118 		    scsiq->cdb[0] == INQUIRY &&
2119 		    scsiq->target_lun == 0) {
2120 			AdwInquiryHandling(sc, scsiq);
2121 		}
2122 
2123 		/*
2124 		 * Notify the driver of the completed request by passing
2125 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
2126 		 */
2127 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2128 		/*
2129 		 * Note: After the driver callback function is called, 'scsiq'
2130 		 * can no longer be referenced.
2131 		 *
2132 		 * Fall through and continue processing other completed
2133 		 * requests...
2134 		 */
2135 	}
2136 
2137 	splx(s);
2138 
2139 	return ADW_TRUE;
2140 }
2141 
2142 
2143 /*
2144  * Send an idle command to the chip and wait for completion.
2145  *
2146  * Command completion is polled for once per microsecond.
2147  *
2148  * The function can be called from anywhere including an interrupt handler.
2149  * But the function is not re-entrant, so it uses the splbio/splx()
2150  * functions to prevent reentrancy.
2151  *
2152  * Return Values:
2153  *   ADW_TRUE - command completed successfully
2154  *   ADW_FALSE - command failed
2155  *   ADW_ERROR - command timed out
2156  */
2157 int
2158 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2159 ADW_SOFTC      *sc;
2160 u_int16_t       idle_cmd;
2161 u_int32_t       idle_cmd_parameter;
2162 {
2163 	bus_space_tag_t iot = sc->sc_iot;
2164 	bus_space_handle_t ioh = sc->sc_ioh;
2165 	u_int16_t	result;
2166 	u_int32_t	i, j, s;
2167 
2168 	s = splbio();
2169 
2170 	/*
2171 	 * Clear the idle command status which is set by the microcode
2172 	 * to a non-zero value to indicate when the command is completed.
2173 	 */
2174 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2175 
2176 	/*
2177 	 * Write the idle command value after the idle command parameter
2178 	 * has been written to avoid a race condition. If the order is not
2179 	 * followed, the microcode may process the idle command before the
2180 	 * parameters have been written to LRAM.
2181 	 */
2182 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2183 			idle_cmd_parameter);
2184 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2185 
2186 	/*
2187 	 * Tickle the RISC to tell it to process the idle command.
2188 	 */
2189 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2190 	if (sc->chip_type == ADW_CHIP_ASC3550) {
2191 		/*
2192 		 * Clear the tickle value. In the ASC-3550 the RISC flag
2193 		 * command 'clr_tickle_b' does not work unless the host
2194 		 * value is cleared.
2195 		 */
2196 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2197 	}
2198 
2199 	/* Wait for up to 100 millisecond for the idle command to timeout. */
2200 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2201 		/* Poll once each microsecond for command completion. */
2202 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2203 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2204 									result);
2205 			if (result != 0) {
2206 				splx(s);
2207 				return result;
2208 			}
2209 			AdwDelayMicroSecond(1);
2210 		}
2211 	}
2212 
2213 	splx(s);
2214 	return ADW_ERROR;
2215 }
2216 
2217 
2218 /*
2219  * Inquiry Information Byte 7 Handling
2220  *
2221  * Handle SCSI Inquiry Command information for a device by setting
2222  * microcode operating variables that affect WDTR, SDTR, and Tag
2223  * Queuing.
2224  */
2225 static void
2226 AdwInquiryHandling(sc, scsiq)
2227 ADW_SOFTC	*sc;
2228 ADW_SCSI_REQ_Q *scsiq;
2229 {
2230 #ifndef FAILSAFE
2231 	bus_space_tag_t iot = sc->sc_iot;
2232 	bus_space_handle_t ioh = sc->sc_ioh;
2233 	u_int8_t		tid;
2234 	struct scsipi_inquiry_data *inq;
2235 	u_int16_t		tidmask;
2236 	u_int16_t		cfg_word;
2237 
2238 
2239 	/*
2240 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2241 	 * to be available.
2242 	 *
2243 	 * If less than 8 bytes of INQUIRY information were requested or less
2244 	 * than 8 bytes were transferred, then return. cdb[4] is the request
2245 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2246 	 * microcode to the transfer residual count.
2247 	 */
2248 
2249 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2250 		return;
2251 	}
2252 
2253 	tid = scsiq->target_id;
2254 
2255 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2256 
2257 	/*
2258 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2259 	 */
2260 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2261 	    ((inq->version & SID_ANSII) < 2)) {
2262 		return;
2263 	} else {
2264 		/*
2265 		 * INQUIRY Byte 7 Handling
2266 		 *
2267 		 * Use a device's INQUIRY byte 7 to determine whether it
2268 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
2269 		 * is enabled in the EEPROM and the device supports the
2270 		 * feature, then enable it in the microcode.
2271 		 */
2272 
2273 		tidmask = ADW_TID_TO_TIDMASK(tid);
2274 
2275 		/*
2276 		 * Wide Transfers
2277 		 *
2278 		 * If the EEPROM enabled WDTR for the device and the device
2279 		 * supports wide bus (16 bit) transfers, then turn on the
2280 		 * device's 'wdtr_able' bit and write the new value to the
2281 		 * microcode.
2282 		 */
2283 #ifdef SCSI_ADW_WDTR_DISABLE
2284 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2285 #endif /* SCSI_ADW_WDTR_DISABLE */
2286 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2287 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2288 					cfg_word);
2289 			if ((cfg_word & tidmask) == 0) {
2290 				cfg_word |= tidmask;
2291 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2292 						cfg_word);
2293 
2294 				/*
2295 				 * Clear the microcode "SDTR negotiation" and
2296 				 * "WDTR negotiation" done indicators for the
2297 				 * target to cause it to negotiate with the new
2298 				 * setting set above.
2299 				 * WDTR when accepted causes the target to enter
2300 				 * asynchronous mode, so SDTR must be negotiated
2301 				 */
2302 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2303 						cfg_word);
2304 				cfg_word &= ~tidmask;
2305 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2306 						cfg_word);
2307 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2308 						cfg_word);
2309 				cfg_word &= ~tidmask;
2310 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2311 						cfg_word);
2312 			}
2313 		}
2314 
2315 		/*
2316 		 * Synchronous Transfers
2317 		 *
2318 		 * If the EEPROM enabled SDTR for the device and the device
2319 		 * supports synchronous transfers, then turn on the device's
2320 		 * 'sdtr_able' bit. Write the new value to the microcode.
2321 		 */
2322 #ifdef SCSI_ADW_SDTR_DISABLE
2323 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2324 #endif /* SCSI_ADW_SDTR_DISABLE */
2325 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2326 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2327 			if ((cfg_word & tidmask) == 0) {
2328 				cfg_word |= tidmask;
2329 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2330 						cfg_word);
2331 
2332 				/*
2333 				 * Clear the microcode "SDTR negotiation"
2334 				 * done indicator for the target to cause it
2335 				 * to negotiate with the new setting set above.
2336 				 */
2337 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2338 						cfg_word);
2339 				cfg_word &= ~tidmask;
2340 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2341 						cfg_word);
2342 			}
2343 		}
2344 		/*
2345 		 * If the Inquiry data included enough space for the SPI-3
2346 		 * Clocking field, then check if DT mode is supported.
2347 		 */
2348 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2349 		   (scsiq->cdb[4] >= 57 ||
2350 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2351 			/*
2352 			 * PPR (Parallel Protocol Request) Capable
2353 			 *
2354 			 * If the device supports DT mode, then it must be
2355 			 * PPR capable.
2356 			 * The PPR message will be used in place of the SDTR
2357 			 * and WDTR messages to negotiate synchronous speed
2358 			 * and offset, transfer width, and protocol options.
2359 			 */
2360 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2361 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2362 						sc->ppr_able);
2363 				sc->ppr_able |= tidmask;
2364 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2365 						sc->ppr_able);
2366 			}
2367 		}
2368 
2369 		/*
2370 		 * If the EEPROM enabled Tag Queuing for the device and the
2371 		 * device supports Tag Queueing, then turn on the device's
2372 		 * 'tagqng_enable' bit in the microcode and set the microcode
2373 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2374 		 * value.
2375 		 *
2376 		 * Tag Queuing is disabled for the BIOS which runs in polled
2377 		 * mode and would see no benefit from Tag Queuing. Also by
2378 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2379 		 * bugs will at least work with the BIOS.
2380 		 */
2381 #ifdef SCSI_ADW_TAGQ_DISABLE
2382 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2383 #endif /* SCSI_ADW_TAGQ_DISABLE */
2384 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2385 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2386 					cfg_word);
2387 			cfg_word |= tidmask;
2388 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2389 					cfg_word);
2390 
2391 			ADW_WRITE_BYTE_LRAM(iot, ioh,
2392 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
2393 					sc->max_dvc_qng);
2394 		}
2395 	}
2396 #endif /* FAILSAFE */
2397 }
2398 
2399 
2400 static void
2401 AdwSleepMilliSecond(n)
2402 u_int32_t	n;
2403 {
2404 
2405 	DELAY(n * 1000);
2406 }
2407 
2408 
2409 static void
2410 AdwDelayMicroSecond(n)
2411 u_int32_t	n;
2412 {
2413 
2414 	DELAY(n);
2415 }
2416 
2417