xref: /netbsd-src/sys/dev/ic/adwlib.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /* $NetBSD: adwlib.c,v 1.44 2019/12/15 16:48:27 tsutsui Exp $        */
2 
3 /*
4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5  *
6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * Author: Baldassare Dante Profeta <dante@mclink.it>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 /*
33  * Ported from:
34  */
35 /*
36  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
37  *
38  * Copyright (c) 1995-2000 Advanced System Products, Inc.
39  * All Rights Reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that redistributions of source
43  * code retain the above copyright notice and this comment without
44  * modification.
45  */
46 
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.44 2019/12/15 16:48:27 tsutsui Exp $");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/queue.h>
55 #include <sys/device.h>
56 
57 #include <sys/bus.h>
58 #include <sys/intr.h>
59 
60 #include <dev/scsipi/scsi_all.h>
61 #include <dev/scsipi/scsipi_all.h>
62 #include <dev/scsipi/scsiconf.h>
63 
64 #include <dev/pci/pcidevs.h>
65 
66 #include <dev/ic/adwlib.h>
67 #include <dev/ic/adwmcode.h>
68 #include <dev/ic/adw.h>
69 
70 
71 /* Static Functions */
72 
73 int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
74 int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
75 int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
76 int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
77 int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
78 
79 static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
80      							ADW_EEPROM *);
81 static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
82 					                 ADW_EEPROM *);
83 static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
84 static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
85 
86 static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
87 
88 static void AdwSleepMilliSecond(u_int32_t);
89 static void AdwDelayMicroSecond(u_int32_t);
90 
91 
92 /*
93  * EEPROM Configuration.
94  *
95  * All drivers should use this structure to set the default EEPROM
96  * configuration. The BIOS now uses this structure when it is built.
97  * Additional structure information can be found in adwlib.h where
98  * the structure is defined.
99  */
100 static const ADW_EEPROM adw_3550_Default_EEPROM = {
101 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
102 	0x0000,			/* 01 cfg_msw */
103 	0xFFFF,			/* 02 disc_enable */
104 	0xFFFF,			/* 03 wdtr_able */
105 	{ 0xFFFF },		/* 04 sdtr_able */
106 	0xFFFF,			/* 05 start_motor */
107 	0xFFFF,			/* 06 tagqng_able */
108 	0xFFFF,			/* 07 bios_scan */
109 	0,			/* 08 scam_tolerant */
110 	7,			/* 09 adapter_scsi_id */
111 	0,			/*    bios_boot_delay */
112 	3,			/* 10 scsi_reset_delay */
113 	0,			/*    bios_id_lun */
114 	0,			/* 11 termination */
115 	0,			/*    reserved1 */
116 	0xFFE7,			/* 12 bios_ctrl */
117 	{ 0xFFFF },		/* 13 ultra_able */
118 	{ 0 },			/* 14 reserved2 */
119 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
120 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
121 	0,			/* 16 dvc_cntl */
122 	{ 0 },			/* 17 bug_fix */
123 	{ 0,0,0 },		/* 18-20 serial_number[3] */
124 	0,			/* 21 check_sum */
125 	{			/* 22-29 oem_name[16] */
126 	  0,0,0,0,0,0,0,0,
127 	  0,0,0,0,0,0,0,0
128 	},
129 	0,			/* 30 dvc_err_code */
130 	0,			/* 31 adv_err_code */
131 	0,			/* 32 adv_err_addr */
132 	0,			/* 33 saved_dvc_err_code */
133 	0,			/* 34 saved_adv_err_code */
134 	0,			/* 35 saved_adv_err_addr */
135 	{			/* 36-55 reserved1[16] */
136 	  0,0,0,0,0,0,0,0,0,0,
137 	  0,0,0,0,0,0,0,0,0,0
138 	},
139 	0,			/* 56 cisptr_lsw */
140 	0,			/* 57 cisprt_msw */
141 	0,			/* 58 subsysvid */
142 	0,			/* 59 subsysid */
143 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
144 };
145 
146 static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
147 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
148 	0x0000,			/* 01 cfg_msw */
149 	0xFFFF,			/* 02 disc_enable */
150 	0xFFFF,			/* 03 wdtr_able */
151 	{ 0x4444 },		/* 04 sdtr_speed1 */
152 	0xFFFF,			/* 05 start_motor */
153 	0xFFFF,			/* 06 tagqng_able */
154 	0xFFFF,			/* 07 bios_scan */
155 	0,			/* 08 scam_tolerant */
156 	7,			/* 09 adapter_scsi_id */
157 	0,			/*    bios_boot_delay */
158 	3,			/* 10 scsi_reset_delay */
159 	0,			/*    bios_id_lun */
160 	0,			/* 11 termination_se */
161 	0,			/*    termination_lvd */
162 	0xFFE7,			/* 12 bios_ctrl */
163 	{ 0x4444 },		/* 13 sdtr_speed2 */
164 	{ 0x4444 },		/* 14 sdtr_speed3 */
165 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
166 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
167 	0,			/* 16 dvc_cntl */
168 	{ 0x4444 },		/* 17 sdtr_speed4 */
169 	{ 0,0,0 },		/* 18-20 serial_number[3] */
170 	0,			/* 21 check_sum */
171 	{			/* 22-29 oem_name[16] */
172 	  0,0,0,0,0,0,0,0,
173 	  0,0,0,0,0,0,0,0
174 	},
175 	0,			/* 30 dvc_err_code */
176 	0,			/* 31 adv_err_code */
177 	0,			/* 32 adv_err_addr */
178 	0,			/* 33 saved_dvc_err_code */
179 	0,			/* 34 saved_adv_err_code */
180 	0,			/* 35 saved_adv_err_addr */
181 	{			/* 36-55 reserved1[16] */
182 	  0,0,0,0,0,0,0,0,0,0,
183 	  0,0,0,0,0,0,0,0,0,0
184 	},
185 	0,			/* 56 cisptr_lsw */
186 	0,			/* 57 cisprt_msw */
187 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
188 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
189 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
190 };
191 
192 static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
193 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
194 	0x0000,			/* 01 cfg_msw */
195 	0xFFFF,			/* 02 disc_enable */
196 	0xFFFF,			/* 03 wdtr_able */
197 	{ 0x5555 },		/* 04 sdtr_speed1 */
198 	0xFFFF,			/* 05 start_motor */
199 	0xFFFF,			/* 06 tagqng_able */
200 	0xFFFF,			/* 07 bios_scan */
201 	0,			/* 08 scam_tolerant */
202 	7,			/* 09 adapter_scsi_id */
203 	0,			/*    bios_boot_delay */
204 	3,			/* 10 scsi_reset_delay */
205 	0,			/*    bios_id_lun */
206 	0,			/* 11 termination_se */
207 	0,			/*    termination_lvd */
208 	0xFFE7,			/* 12 bios_ctrl */
209 	{ 0x5555 },		/* 13 sdtr_speed2 */
210 	{ 0x5555 },		/* 14 sdtr_speed3 */
211 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
212 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
213 	0,			/* 16 dvc_cntl */
214 	{ 0x5555 },		/* 17 sdtr_speed4 */
215 	{ 0,0,0 },		/* 18-20 serial_number[3] */
216 	0,			/* 21 check_sum */
217 	{			/* 22-29 oem_name[16] */
218 	  0,0,0,0,0,0,0,0,
219 	  0,0,0,0,0,0,0,0
220 	},
221 	0,			/* 30 dvc_err_code */
222 	0,			/* 31 adv_err_code */
223 	0,			/* 32 adv_err_addr */
224 	0,			/* 33 saved_dvc_err_code */
225 	0,			/* 34 saved_adv_err_code */
226 	0,			/* 35 saved_adv_err_addr */
227 	{			/* 36-55 reserved1[16] */
228 	  0,0,0,0,0,0,0,0,0,0,
229 	  0,0,0,0,0,0,0,0,0,0
230 	},
231 	0,			/* 56 cisptr_lsw */
232 	0,			/* 57 cisprt_msw */
233 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
234 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
235 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
236 };
237 
238 
239 /*
240  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
241  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
242  * all of this is done.
243  *
244  * For a non-fatal error return a warning code. If there are no warnings
245  * then 0 is returned.
246  *
247  * Note: Chip is stopped on entry.
248  */
249 int
250 AdwInitFromEEPROM(ADW_SOFTC *sc)
251 {
252 	bus_space_tag_t iot = sc->sc_iot;
253 	bus_space_handle_t ioh = sc->sc_ioh;
254 	ADW_EEPROM		eep_config;
255 	u_int16_t		warn_code;
256 	u_int16_t		sdtr_speed = 0;
257 	u_int8_t		tid, termination;
258 	int			i, j;
259 
260 
261 	warn_code = 0;
262 
263 	/*
264 	 * Read the board's EEPROM configuration.
265 	 *
266 	 * Set default values if a bad checksum is found.
267 	 *
268 	 * XXX - Don't handle big-endian access to EEPROM yet.
269 	 */
270 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
271 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
272 
273 		/*
274 		 * Set EEPROM default values.
275 		 */
276 		switch(sc->chip_type) {
277 		case ADW_CHIP_ASC3550:
278 			eep_config = adw_3550_Default_EEPROM;
279 			break;
280 		case ADW_CHIP_ASC38C0800:
281 			eep_config = adw_38C0800_Default_EEPROM;
282 			break;
283 		case ADW_CHIP_ASC38C1600:
284 			eep_config = adw_38C1600_Default_EEPROM;
285 
286 #if 0
287 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
288 #endif
289 			if (sc->cfg.pci_slot_info != 0) {
290 				u_int8_t lsw_msb;
291 
292 				lsw_msb = eep_config.cfg_lsw >> 8;
293 				/*
294 				 * Set Function 1 EEPROM Word 0 MSB
295 				 *
296 				 * Clear the BIOS_ENABLE (bit 14) and
297 				 * INTAB (bit 11) EEPROM bits.
298 				 *
299 				 * Disable Bit 14 (BIOS_ENABLE) to fix
300 				 * SPARC Ultra 60 and old Mac system booting
301 				 * problem. The Expansion ROM must
302 				 * be disabled in Function 1 for these systems.
303 				 */
304 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
305 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
306 				/*
307 				 * Set the INTAB (bit 11) if the GPIO 0 input
308 				 * indicates the Function 1 interrupt line is
309 				 * wired to INTA.
310 				 *
311 				 * Set/Clear Bit 11 (INTAB) from
312 				 * the GPIO bit 0 input:
313 				 *   1 - Function 1 intr line wired to INT A.
314 				 *   0 - Function 1 intr line wired to INT B.
315 				 *
316 				 * Note: Adapter boards always have Function 0
317 				 * wired to INTA.
318 				 * Put all 5 GPIO bits in input mode and then
319 				 * read their input values.
320 				 */
321 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
322 							IOPB_GPIO_CNTL, 0);
323 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
324 						IOPB_GPIO_DATA) & 0x01) {
325 					/*
326 					 * Function 1 interrupt wired to INTA;
327 					 * Set EEPROM bit.
328 					 */
329 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
330 							 & 0xFF;
331 				 }
332 				 eep_config.cfg_lsw &= 0x00FF;
333 				 eep_config.cfg_lsw |= lsw_msb << 8;
334 			}
335 			break;
336 		}
337 
338 		/*
339 		 * Assume the 6 byte board serial number that was read
340 		 * from EEPROM is correct even if the EEPROM checksum
341 		 * failed.
342 		 */
343 		for (i=2, j=1; i>=0; i--, j++) {
344 		eep_config.serial_number[i] =
345 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
346 		}
347 
348 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
349 	}
350 	/*
351 	 * Set sc and sc->cfg variables from the EEPROM configuration
352 	 * that was read.
353 	 *
354 	 * This is the mapping of EEPROM fields to Adw Library fields.
355 	 */
356 	sc->wdtr_able = eep_config.wdtr_able;
357 	if (sc->chip_type == ADW_CHIP_ASC3550) {
358 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
359 		sc->ultra_able = eep_config.sdtr2.ultra_able;
360 	} else {
361 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
362 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
363 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
364 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
365 	}
366 	sc->ppr_able = 0;
367 	sc->tagqng_able = eep_config.tagqng_able;
368 	sc->cfg.disc_enable = eep_config.disc_enable;
369 	sc->max_host_qng = eep_config.max_host_qng;
370 	sc->max_dvc_qng = eep_config.max_dvc_qng;
371 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
372 	sc->start_motor = eep_config.start_motor;
373 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
374 	sc->bios_ctrl = eep_config.bios_ctrl;
375 	sc->no_scam = eep_config.scam_tolerant;
376 	sc->cfg.serial1 = eep_config.serial_number[0];
377 	sc->cfg.serial2 = eep_config.serial_number[1];
378 	sc->cfg.serial3 = eep_config.serial_number[2];
379 
380 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
381 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
382 		sc->sdtr_able = 0;
383 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
384 			if (tid == 0) {
385 				sdtr_speed = sc->sdtr_speed1;
386 			} else if (tid == 4) {
387 				sdtr_speed = sc->sdtr_speed2;
388 			} else if (tid == 8) {
389 				sdtr_speed = sc->sdtr_speed3;
390 			} else if (tid == 12) {
391 				sdtr_speed = sc->sdtr_speed4;
392 			}
393 			if (sdtr_speed & ADW_MAX_TID) {
394 				sc->sdtr_able |= (1 << tid);
395 			}
396 			sdtr_speed >>= 4;
397 		}
398 	}
399 
400 	/*
401 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
402 	 * maximum queuing (max. 63, min. 4).
403 	 */
404 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
405 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
406 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
407 	{
408 		/* If the value is zero, assume it is uninitialized. */
409 		if (eep_config.max_host_qng == 0) {
410 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
411 		} else {
412 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
413 		}
414 	}
415 
416 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
417 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
418 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
419 		/* If the value is zero, assume it is uninitialized. */
420 		if (eep_config.max_dvc_qng == 0) {
421 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
422 		} else {
423 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
424 		}
425 	}
426 
427 	/*
428 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
429 	 * set 'max_dvc_qng' to 'max_host_qng'.
430 	 */
431 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
432 		eep_config.max_dvc_qng = eep_config.max_host_qng;
433 	}
434 
435 	/*
436 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
437 	 * values based on possibly adjusted EEPROM values.
438 	 */
439 	sc->max_host_qng = eep_config.max_host_qng;
440 	sc->max_dvc_qng = eep_config.max_dvc_qng;
441 
442 
443 	/*
444 	 * If the EEPROM 'termination' field is set to automatic (0), then set
445 	 * the ADV_DVC_CFG 'termination' field to automatic also.
446 	 *
447 	 * If the termination is specified with a non-zero 'termination'
448 	 * value check that a legal value is set and set the ADV_DVC_CFG
449 	 * 'termination' field appropriately.
450 	 */
451 
452 	switch(sc->chip_type) {
453 	case ADW_CHIP_ASC3550:
454 		sc->cfg.termination = 0;	/* auto termination */
455 		switch(eep_config.termination_se) {
456 		case 3:
457 			/* Enable manual control with low on / high on. */
458 			sc->cfg.termination |= ADW_TERM_CTL_L;
459 			/* FALLTHROUGH */
460 		case 2:
461 			/* Enable manual control with low off / high on. */
462 			sc->cfg.termination |= ADW_TERM_CTL_H;
463 			/* FALLTHROUGH */
464 		case 1:
465 			/* Enable manual control with low off / high off. */
466 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
467 			/* FALLTHROUGH */
468 		case 0:
469 			break;
470 		default:
471 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
472 		}
473 		break;
474 
475 	case ADW_CHIP_ASC38C0800:
476 	case ADW_CHIP_ASC38C1600:
477 		switch(eep_config.termination_se) {
478 		case 0:
479 			/* auto termination for SE */
480 			termination = 0;
481 			break;
482 		case 1:
483 			/* Enable manual control with low off / high off. */
484 			termination = 0;
485 			break;
486 		case 2:
487 			/* Enable manual control with low off / high on. */
488 			termination = ADW_TERM_SE_HI;
489 			break;
490 		case 3:
491 			/* Enable manual control with low on / high on. */
492 			termination = ADW_TERM_SE;
493 			break;
494 		default:
495 			/*
496 			 * The EEPROM 'termination_se' field contains a
497 			 * bad value. Use automatic termination instead.
498 			 */
499 			termination = 0;
500 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
501 		}
502 
503 		switch(eep_config.termination_lvd) {
504 		case 0:
505 			/* auto termination for LVD */
506 			sc->cfg.termination = termination;
507 			break;
508 		case 1:
509 			/* Enable manual control with low off / high off. */
510 			sc->cfg.termination = termination;
511 			break;
512 		case 2:
513 			/* Enable manual control with low off / high on. */
514 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
515 			break;
516 		case 3:
517 			/* Enable manual control with low on / high on. */
518 			sc->cfg.termination = termination | ADW_TERM_LVD;
519 			break;
520 		default:
521 			/*
522 			 * The EEPROM 'termination_lvd' field contains a
523 			 * bad value. Use automatic termination instead.
524 			 */
525 			sc->cfg.termination = termination;
526 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
527 		}
528 		break;
529 	}
530 
531 	return warn_code;
532 }
533 
534 
535 /*
536  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
537  *
538  * On failure return the error code.
539  */
540 int
541 AdwInitDriver(ADW_SOFTC *sc)
542 {
543 	bus_space_tag_t iot = sc->sc_iot;
544 	bus_space_handle_t ioh = sc->sc_ioh;
545 	u_int16_t	error_code;
546 	int		word;
547 	int		i;
548 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
549 								0x40-0x8F. */
550 	u_int16_t	wdtr_able = 0, sdtr_able, /* ppr_able, */ tagqng_able;
551 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
552 	u_int8_t	tid;
553 
554 
555 	error_code = 0;
556 
557 	/*
558 	 * Save the RISC memory BIOS region before writing the microcode.
559 	 * The BIOS may already be loaded and using its RISC LRAM region
560 	 * so its region must be saved and restored.
561 	 *
562 	 * Note: This code makes the assumption, which is currently true,
563 	 * that a chip reset does not clear RISC LRAM.
564 	 */
565 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
566 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
567 	}
568 
569 	/*
570 	 * Save current per TID negotiated values.
571 	 */
572 	switch (sc->chip_type) {
573 	case ADW_CHIP_ASC3550:
574 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
575 
576 			u_int16_t  bios_version, major, minor;
577 
578 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
579 					ADW_MC_BIOSMEM) / 2];
580 			major = (bios_version  >> 12) & 0xF;
581 			minor = (bios_version  >> 8) & 0xF;
582 			if (major < 3 || (major == 3 && minor == 1)) {
583 			    /*
584 			     * BIOS 3.1 and earlier location of
585 			     * 'wdtr_able' variable.
586 			     */
587 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
588 			} else {
589 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
590 					    wdtr_able);
591 			}
592 		}
593 		break;
594 
595 	case ADW_CHIP_ASC38C1600:
596 		/* ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able); */
597 		/* FALLTHROUGH */
598 	case ADW_CHIP_ASC38C0800:
599 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
600 		break;
601 	}
602 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
603 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
604 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
605 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
606 			max_cmd[tid]);
607 	}
608 
609 	/*
610 	 * Perform a RAM Built-In Self Test
611 	 */
612 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
613 		return error_code;
614 	}
615 
616 	/*
617 	 * Load the Microcode
618 	 */
619 	;
620 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
621 		return error_code;
622 	}
623 
624 	/*
625 	 * Read microcode version and date.
626 	 */
627 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
628 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
629 
630 	/*
631 	 * If the PCI Configuration Command Register "Parity Error Response
632 	 * Control" Bit was clear (0), then set the microcode variable
633 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
634 	 * to ignore DMA parity errors.
635 	 */
636 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
637 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
638 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
639 					word | CONTROL_FLAG_IGNORE_PERR);
640 	}
641 
642 	switch (sc->chip_type) {
643 	case ADW_CHIP_ASC3550:
644 		/*
645 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
646 		 * FIFO threshold of 128 bytes.
647 		 * This register is only accessible to the host.
648 		 */
649 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
650 				START_CTL_EMFU | READ_CMD_MRM);
651 		break;
652 
653 	case ADW_CHIP_ASC38C0800:
654 		/*
655 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
656 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
657 		 * cable detection and then we are able to read C_DET[3:0].
658 		 *
659 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
660 		 * Microcode Default Value' section below.
661 		 */
662 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
663 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
664 				| ADW_DIS_TERM_DRV);
665 
666 		/*
667 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
668 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
669 		 *
670 		 * Note: ASC-38C0800 FIFO threshold has been changed to
671 		 * 256 bytes.
672 		 *
673 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
674 		 */
675 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
676 						BC_THRESH_ENB | FIFO_THRESH_80B
677 						| START_CTL_TH | READ_CMD_MRM);
678 		break;
679 
680 	case ADW_CHIP_ASC38C1600:
681 		/*
682 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
683 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
684 		 * cable detection and then we are able to read C_DET[3:0].
685 		 *
686 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
687 		 * Microcode Default Value' section below.
688 		 */
689 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
690 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
691 				| ADW_DIS_TERM_DRV);
692 
693 		/*
694 		 * If the BIOS control flag AIPP (Asynchronous Information
695 		 * Phase Protection) disable bit is not set, then set the
696 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
697 		 * enable AIPP checking and encoding.
698 		 */
699 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
700 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
701 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
702 					word | CONTROL_FLAG_ENABLE_AIPP);
703 		}
704 
705 		/*
706 		 * For ASC-38C1600 use DMA_CFG0 default values:
707 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
708 		 */
709 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
710 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
711 		break;
712 	}
713 
714 	/*
715 	 * Microcode operating variables for WDTR, SDTR, and command tag
716 	 * queuing will be set in AdvInquiryHandling() based on what a
717 	 * device reports it is capable of in Inquiry byte 7.
718 	 *
719 	 * If SCSI Bus Resets have been disabled, then directly set
720 	 * SDTR and WDTR from the EEPROM configuration. This will allow
721 	 * the BIOS and warm boot to work without a SCSI bus hang on
722 	 * the Inquiry caused by host and target mismatched DTR values.
723 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
724 	 * be assumed to be in Asynchronous, Narrow mode.
725 	 */
726 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
727 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
728 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
729 	}
730 
731 	/*
732 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
733 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
734 	 * bitmask. These values determine the maximum SDTR speed negotiated
735 	 * with a device.
736 	 *
737 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
738 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
739 	 * without determining here whether the device supports SDTR.
740 	 */
741 	switch (sc->chip_type) {
742 	case ADW_CHIP_ASC3550:
743 		word = 0;
744 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
745 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
746 				/* Set Ultra speed for TID 'tid'. */
747 				word |= (0x3 << (4 * (tid % 4)));
748 			} else {
749 				/* Set Fast speed for TID 'tid'. */
750 				word |= (0x2 << (4 * (tid % 4)));
751 			}
752 			/* Check if done with sdtr_speed1. */
753 			if (tid == 3) {
754 				ADW_WRITE_WORD_LRAM(iot, ioh,
755 						ADW_MC_SDTR_SPEED1, word);
756 				word = 0;
757 			/* Check if done with sdtr_speed2. */
758 			} else if (tid == 7) {
759 				ADW_WRITE_WORD_LRAM(iot, ioh,
760 						ADW_MC_SDTR_SPEED2, word);
761 				word = 0;
762 			/* Check if done with sdtr_speed3. */
763 			} else if (tid == 11) {
764 				ADW_WRITE_WORD_LRAM(iot, ioh,
765 						ADW_MC_SDTR_SPEED3, word);
766 				word = 0;
767 			/* Check if done with sdtr_speed4. */
768 			} else if (tid == 15) {
769 				ADW_WRITE_WORD_LRAM(iot, ioh,
770 						ADW_MC_SDTR_SPEED4, word);
771 				/* End of loop. */
772 			}
773 		}
774 
775 		/*
776 		 * Set microcode operating variable for the
777 		 * disconnect per TID bitmask.
778 		 */
779 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
780 							sc->cfg.disc_enable);
781 		break;
782 
783 	case ADW_CHIP_ASC38C0800:
784 		/* FALLTHROUGH */
785 	case ADW_CHIP_ASC38C1600:
786 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
787 							sc->cfg.disc_enable);
788 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
789 							sc->sdtr_speed1);
790 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
791 							sc->sdtr_speed2);
792 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
793 							sc->sdtr_speed3);
794 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
795 							sc->sdtr_speed4);
796 		break;
797 	}
798 
799 
800 	/*
801 	 * Set SCSI_CFG0 Microcode Default Value.
802 	 *
803 	 * The microcode will set the SCSI_CFG0 register using this value
804 	 * after it is started below.
805 	 */
806 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
807 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
808 		ADW_OUR_ID_EN | sc->chip_scsi_id);
809 
810 
811 	switch(sc->chip_type) {
812 	case ADW_CHIP_ASC3550:
813 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
814 		break;
815 
816 	case ADW_CHIP_ASC38C0800:
817 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
818 		break;
819 
820 	case ADW_CHIP_ASC38C1600:
821 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
822 		break;
823 	}
824 	if(error_code) {
825 		return error_code;
826 	}
827 
828 	/*
829 	 * Set SEL_MASK Microcode Default Value
830 	 *
831 	 * The microcode will set the SEL_MASK register using this value
832 	 * after it is started below.
833 	 */
834 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
835 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
836 
837 	/*
838 	 * Create and Initialize Host->RISC Carrier lists
839 	 */
840 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
841 						sc->sc_control->carriers);
842 
843 	/*
844 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
845 	 */
846 
847 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
848 		return ADW_IERR_NO_CARRIER;
849 	}
850 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
851 			ASC_GET_CARRP(sc->icq_sp->next_ba));
852 
853 	/*
854 	 * The first command issued will be placed in the stopper carrier.
855 	 */
856 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
857 
858 	/*
859 	 * Set RISC ICQ physical address start value.
860 	 */
861 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
862 
863 	/*
864 	 * Initialize the COMMA register to the same value otherwise
865 	 * the RISC will prematurely detect a command is available.
866 	 */
867 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
868 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
869 						le32toh(sc->icq_sp->carr_ba));
870 	}
871 
872 	/*
873 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
874 	 */
875 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
876 		return ADW_IERR_NO_CARRIER;
877 	}
878 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
879 			ASC_GET_CARRP(sc->irq_sp->next_ba));
880 
881 	/*
882 	 * The first command completed by the RISC will be placed in
883 	 * the stopper.
884 	 *
885 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
886 	 * completed the RISC will set the ASC_RQ_DONE bit.
887 	 */
888 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
889 
890 	/*
891 	 * Set RISC IRQ physical address start value.
892 	 */
893 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
894 	sc->carr_pending_cnt = 0;
895 
896 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
897 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
898 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
899 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
900 
901 	/* finally, finally, gentlemen, start your engine */
902 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
903 
904 	/*
905 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
906 	 * Resets should be performed. The RISC has to be running
907 	 * to issue a SCSI Bus Reset.
908 	 */
909 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
910 	{
911 		/*
912 		 * If the BIOS Signature is present in memory, restore the
913 		 * BIOS Handshake Configuration Table and do not perform
914 		 * a SCSI Bus Reset.
915 		 */
916 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
917 				0x55AA) {
918 			/*
919 			 * Restore per TID negotiated values.
920 			 */
921 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
922 					wdtr_able);
923 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
924 					sdtr_able);
925 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
926 					tagqng_able);
927 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
928 				ADW_WRITE_BYTE_LRAM(iot, ioh,
929 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
930 						max_cmd[tid]);
931 			}
932 		} else {
933 			if (AdwResetCCB(sc) != ADW_TRUE) {
934 				error_code = ADW_WARN_BUSRESET_ERROR;
935 			}
936 		}
937 	}
938 
939 	return error_code;
940 }
941 
942 
943 int
944 AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
945 {
946 	int		i;
947 	u_int8_t	byte;
948 
949 
950 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
951 	    (chip_type == ADW_CHIP_ASC38C1600)) {
952 		/*
953 		 * RAM BIST (RAM Built-In Self Test)
954 		 *
955 		 * Address : I/O base + offset 0x38h register (byte).
956 		 * Function: Bit 7-6(RW) : RAM mode
957 		 *			    Normal Mode   : 0x00
958 		 *			    Pre-test Mode : 0x40
959 		 *			    RAM Test Mode : 0x80
960 		 *	     Bit 5	 : unused
961 		 *	     Bit 4(RO)   : Done bit
962 		 *	     Bit 3-0(RO) : Status
963 		 *			    Host Error    : 0x08
964 		 *			    Int_RAM Error : 0x04
965 		 *			    RISC Error    : 0x02
966 		 *			    SCSI Error    : 0x01
967 		 *			    No Error	  : 0x00
968 		 *
969 		 * Note: RAM BIST code should be put right here, before loading
970 		 * the microcode and after saving the RISC memory BIOS region.
971 		 */
972 
973 		/*
974 		 * LRAM Pre-test
975 		 *
976 		 * Write PRE_TEST_MODE (0x40) to register and wait for
977 		 * 10 milliseconds.
978 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
979 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
980 		 * If cannot reset to NORMAL_MODE, return an error too.
981 		 */
982 		for (i = 0; i < 2; i++) {
983 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
984 					PRE_TEST_MODE);
985 			 /* Wait for 10ms before reading back. */
986 			AdwSleepMilliSecond(10);
987 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
988 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
989 					PRE_TEST_VALUE) {
990 				return ADW_IERR_BIST_PRE_TEST;
991 			}
992 
993 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
994 								NORMAL_MODE);
995 			/* Wait for 10ms before reading back. */
996 			AdwSleepMilliSecond(10);
997 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
998 			    != NORMAL_VALUE) {
999 				return ADW_IERR_BIST_PRE_TEST;
1000 			}
1001 		}
1002 
1003 		/*
1004 		 * LRAM Test - It takes about 1.5 ms to run through the test.
1005 		 *
1006 		 * Write RAM_TEST_MODE (0x80) to register and wait for
1007 		 * 10 milliseconds.
1008 		 * If Done bit not set or Status not 0, save register byte,
1009 		 * set the err_code, and return an error.
1010 		 */
1011 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1012 		/* Wait for 10ms before checking status. */
1013 		AdwSleepMilliSecond(10);
1014 
1015 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1016 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1017 			/* Get here if Done bit not set or Status not 0. */
1018 			return ADW_IERR_BIST_RAM_TEST;
1019 		}
1020 
1021 		/* We need to reset back to normal mode after LRAM test passes*/
1022 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 
1029 int
1030 AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
1031 {
1032 	const u_int8_t	*mcode_data;
1033 	u_int32_t	 mcode_chksum;
1034 	u_int16_t	 mcode_size;
1035 	u_int32_t	sum;
1036 	u_int16_t	code_sum;
1037 	int		begin_addr;
1038 	int		end_addr;
1039 	int		word;
1040 	int		adw_memsize;
1041 	int		adw_mcode_expanded_size;
1042 	int		i, j;
1043 
1044 
1045 	switch(chip_type) {
1046 	case ADW_CHIP_ASC3550:
1047 		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1048 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1049 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1050 		adw_memsize = ADW_3550_MEMSIZE;
1051 		break;
1052 
1053 	case ADW_CHIP_ASC38C0800:
1054 		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1055 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1056 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1057 		adw_memsize = ADW_38C0800_MEMSIZE;
1058 		break;
1059 
1060 	case ADW_CHIP_ASC38C1600:
1061 		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1062 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1063 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1064 		adw_memsize = ADW_38C1600_MEMSIZE;
1065 		break;
1066 
1067 	default:
1068 		return (EINVAL);
1069 	}
1070 
1071 	/*
1072 	 * Write the microcode image to RISC memory starting at address 0.
1073 	 */
1074 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1075 
1076 	/* Assume the following compressed format of the microcode buffer:
1077 	 *
1078 	 *  254 word (508 byte) table indexed by byte code followed
1079 	 *  by the following byte codes:
1080 	 *
1081 	 *    1-Byte Code:
1082 	 *	00: Emit word 0 in table.
1083 	 *	01: Emit word 1 in table.
1084 	 *	.
1085 	 *	FD: Emit word 253 in table.
1086 	 *
1087 	 *    Multi-Byte Code:
1088 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1089 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1090 	 */
1091 	word = 0;
1092 	for (i = 253 * 2; i < mcode_size; i++) {
1093 		if (mcode_data[i] == 0xff) {
1094 			for (j = 0; j < mcode_data[i + 1]; j++) {
1095 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1096 				  (((u_int16_t)mcode_data[i + 3] << 8) |
1097 				  mcode_data[i + 2]));
1098 				word++;
1099 			}
1100 			i += 3;
1101 		} else if (mcode_data[i] == 0xfe) {
1102 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1103 			    (((u_int16_t)mcode_data[i + 2] << 8) |
1104 			    mcode_data[i + 1]));
1105 			i += 2;
1106 			word++;
1107 		} else {
1108 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1109 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1110 			 mcode_data[mcode_data[i] * 2]));
1111 			word++;
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * Set 'word' for later use to clear the rest of memory and save
1117 	 * the expanded mcode size.
1118 	 */
1119 	word *= 2;
1120 	adw_mcode_expanded_size = word;
1121 
1122 	/*
1123 	 * Clear the rest of the Internal RAM.
1124 	 */
1125 	for (; word < adw_memsize; word += 2) {
1126 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1127 	}
1128 
1129 	/*
1130 	 * Verify the microcode checksum.
1131 	 */
1132 	sum = 0;
1133 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1134 
1135 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1136 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1137 	}
1138 
1139 	if (sum != mcode_chksum) {
1140 		return ADW_IERR_MCODE_CHKSUM;
1141 	}
1142 
1143 	/*
1144 	 * Restore the RISC memory BIOS region.
1145 	 */
1146 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1147 		if(chip_type == ADW_CHIP_ASC3550) {
1148 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1149 								bios_mem[i]);
1150 		} else {
1151 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1152 								bios_mem[i]);
1153 		}
1154 	}
1155 
1156 	/*
1157 	 * Calculate and write the microcode code checksum to the microcode
1158 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1159 	 */
1160 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1161 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1162 	code_sum = 0;
1163 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1164 	for (word = begin_addr; word < end_addr; word += 2) {
1165 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1166 	}
1167 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1168 
1169 	/*
1170 	 * Set the chip type.
1171 	 */
1172 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1173 
1174 	return 0;
1175 }
1176 
1177 
1178 int
1179 AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1180 {
1181 	u_int16_t	scsi_cfg1;
1182 
1183 
1184 	/*
1185 	 * Determine SCSI_CFG1 Microcode Default Value.
1186 	 *
1187 	 * The microcode will set the SCSI_CFG1 register using this value
1188 	 * after it is started below.
1189 	 */
1190 
1191 	/* Read current SCSI_CFG1 Register value. */
1192 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1193 
1194 	/*
1195 	 * If all three connectors are in use in ASC3550, return an error.
1196 	 */
1197 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1198 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1199 		return ADW_IERR_ILLEGAL_CONNECTION;
1200 	}
1201 
1202 	/*
1203 	 * If the cable is reversed all of the SCSI_CTRL register signals
1204 	 * will be set. Check for and return an error if this condition is
1205 	 * found.
1206 	 */
1207 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1208 		return ADW_IERR_REVERSED_CABLE;
1209 	}
1210 
1211 	/*
1212 	 * If this is a differential board and a single-ended device
1213 	 * is attached to one of the connectors, return an error.
1214 	 */
1215 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1216 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1217 		return ADW_IERR_SINGLE_END_DEVICE;
1218 	}
1219 
1220 	/*
1221 	 * If automatic termination control is enabled, then set the
1222 	 * termination value based on a table listed in a_condor.h.
1223 	 *
1224 	 * If manual termination was specified with an EEPROM setting
1225 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
1226 	 * is ready to be 'ored' into SCSI_CFG1.
1227 	 */
1228 	if (cfg->termination == 0) {
1229 		/*
1230 		 * The software always controls termination by setting
1231 		 * TERM_CTL_SEL.
1232 		 * If TERM_CTL_SEL were set to 0, the hardware would set
1233 		 * termination.
1234 		 */
1235 		cfg->termination |= ADW_TERM_CTL_SEL;
1236 
1237 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1238 			/* TERM_CTL_H: on, TERM_CTL_L: on */
1239 			case 0x3: case 0x7: case 0xB:
1240 			case 0xD: case 0xE: case 0xF:
1241 				cfg->termination |=
1242 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1243 				break;
1244 
1245 			/* TERM_CTL_H: on, TERM_CTL_L: off */
1246 			case 0x1: case 0x5: case 0x9:
1247 			case 0xA: case 0xC:
1248 				cfg->termination |= ADW_TERM_CTL_H;
1249 				break;
1250 
1251 			/* TERM_CTL_H: off, TERM_CTL_L: off */
1252 			case 0x2: case 0x6:
1253 				break;
1254 		}
1255 	}
1256 
1257 	/*
1258 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1259 	 */
1260 	scsi_cfg1 &= ~ADW_TERM_CTL;
1261 
1262 	/*
1263 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1264 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1265 	 * referenced, because the hardware internally inverts
1266 	 * the Termination High and Low bits if TERM_POL is set.
1267 	 */
1268 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1269 
1270 	/*
1271 	 * Set SCSI_CFG1 Microcode Default Value
1272 	 *
1273 	 * Set filter value and possibly modified termination control
1274 	 * bits in the Microcode SCSI_CFG1 Register Value.
1275 	 *
1276 	 * The microcode will set the SCSI_CFG1 register using this value
1277 	 * after it is started below.
1278 	 */
1279 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1280 						ADW_FLTR_DISABLE | scsi_cfg1);
1281 
1282 	/*
1283 	 * Set MEM_CFG Microcode Default Value
1284 	 *
1285 	 * The microcode will set the MEM_CFG register using this value
1286 	 * after it is started below.
1287 	 *
1288 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1289 	 * are defined.
1290 	 *
1291 	 * ASC-3550 has 8KB internal memory.
1292 	 */
1293 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1294 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1295 
1296 	return 0;
1297 }
1298 
1299 
1300 int
1301 AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1302 {
1303 	u_int16_t	scsi_cfg1;
1304 
1305 
1306 	/*
1307 	 * Determine SCSI_CFG1 Microcode Default Value.
1308 	 *
1309 	 * The microcode will set the SCSI_CFG1 register using this value
1310 	 * after it is started below.
1311 	 */
1312 
1313 	/* Read current SCSI_CFG1 Register value. */
1314 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1315 
1316 	/*
1317 	 * If the cable is reversed all of the SCSI_CTRL register signals
1318 	 * will be set. Check for and return an error if this condition is
1319 	 * found.
1320 	 */
1321 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1322 		return ADW_IERR_REVERSED_CABLE;
1323 	}
1324 
1325 	/*
1326 	 * All kind of combinations of devices attached to one of four
1327 	 * connectors are acceptable except HVD device attached.
1328 	 * For example, LVD device can be attached to SE connector while
1329 	 * SE device attached to LVD connector.
1330 	 * If LVD device attached to SE connector, it only runs up to
1331 	 * Ultra speed.
1332 	 *
1333 	 * If an HVD device is attached to one of LVD connectors, return
1334 	 * an error.
1335 	 * However, there is no way to detect HVD device attached to
1336 	 * SE connectors.
1337 	 */
1338 	if (scsi_cfg1 & ADW_HVD) {
1339 		return ADW_IERR_HVD_DEVICE;
1340 	}
1341 
1342 	/*
1343 	 * If either SE or LVD automatic termination control is enabled, then
1344 	 * set the termination value based on a table listed in a_condor.h.
1345 	 *
1346 	 * If manual termination was specified with an EEPROM setting then
1347 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1348 	 * to be 'ored' into SCSI_CFG1.
1349 	 */
1350 	if ((cfg->termination & ADW_TERM_SE) == 0) {
1351 		/* SE automatic termination control is enabled. */
1352 		switch(scsi_cfg1 & ADW_C_DET_SE) {
1353 			/* TERM_SE_HI: on, TERM_SE_LO: on */
1354 			case 0x1: case 0x2: case 0x3:
1355 				cfg->termination |= ADW_TERM_SE;
1356 				break;
1357 
1358 			/* TERM_SE_HI: on, TERM_SE_LO: off */
1359 			case 0x0:
1360 				cfg->termination |= ADW_TERM_SE_HI;
1361 				break;
1362 		}
1363 	}
1364 
1365 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
1366 		/* LVD automatic termination control is enabled. */
1367 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
1368 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
1369 			case 0x4: case 0x8: case 0xC:
1370 				cfg->termination |= ADW_TERM_LVD;
1371 				break;
1372 
1373 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
1374 			case 0x0:
1375 				break;
1376 		}
1377 	}
1378 
1379 	/*
1380 	 * Clear any set TERM_SE and TERM_LVD bits.
1381 	 */
1382 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1383 
1384 	/*
1385 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1386 	 */
1387 	scsi_cfg1 |= (~cfg->termination & 0xF0);
1388 
1389 	/*
1390 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1391 	 * HVD/LVD/SE bits and set possibly modified termination control bits
1392 	 * in the Microcode SCSI_CFG1 Register Value.
1393 	 */
1394 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1395 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1396 
1397 	/*
1398 	 * Set SCSI_CFG1 Microcode Default Value
1399 	 *
1400 	 * Set possibly modified termination control and reset DIS_TERM_DRV
1401 	 * bits in the Microcode SCSI_CFG1 Register Value.
1402 	 *
1403 	 * The microcode will set the SCSI_CFG1 register using this value
1404 	 * after it is started below.
1405 	 */
1406 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1407 
1408 	/*
1409 	 * Set MEM_CFG Microcode Default Value
1410 	 *
1411 	 * The microcode will set the MEM_CFG register using this value
1412 	 * after it is started below.
1413 	 *
1414 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1415 	 * are defined.
1416 	 *
1417 	 * ASC-38C0800 has 16KB internal memory.
1418 	 */
1419 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1420 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1421 
1422 	return 0;
1423 }
1424 
1425 
1426 int
1427 AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
1428 {
1429 	u_int16_t	scsi_cfg1;
1430 
1431 
1432 	/*
1433 	 * Determine SCSI_CFG1 Microcode Default Value.
1434 	 *
1435 	 * The microcode will set the SCSI_CFG1 register using this value
1436 	 * after it is started below.
1437 	 * Each ASC-38C1600 function has only two cable detect bits.
1438 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1439 	 */
1440 
1441 	/* Read current SCSI_CFG1 Register value. */
1442 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1443 
1444 	/*
1445 	 * If the cable is reversed all of the SCSI_CTRL register signals
1446 	 * will be set. Check for and return an error if this condition is
1447 	 * found.
1448 	 */
1449 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1450 		return ADW_IERR_REVERSED_CABLE;
1451 	}
1452 
1453 	/*
1454 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
1455 	 * cannot be connected to either connector. An LVD device or SE device
1456 	 * may be connected to either connector. If an SE device is connected,
1457 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
1458 	 *
1459 	 * If an HVD device is attached, return an error.
1460 	 */
1461 	if (scsi_cfg1 & ADW_HVD) {
1462 		return ADW_IERR_HVD_DEVICE;
1463 	}
1464 
1465 	/*
1466 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
1467 	 * termination because there are two connectors for each function.
1468 	 * Each function may use either LVD or SE mode.
1469 	 * Corresponding the SE automatic termination control EEPROM bits are
1470 	 * used for each function.
1471 	 * Each function has its own EEPROM. If SE automatic control is enabled
1472 	 * for the function, then set the termination value based on a table
1473 	 * listed in adwlib.h.
1474 	 *
1475 	 * If manual termination is specified in the EEPROM for the function,
1476 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1477 	 * ready to be 'ored' into SCSI_CFG1.
1478 	 */
1479 	if ((cfg->termination & ADW_TERM_SE) == 0) {
1480 		/* SE automatic termination control is enabled. */
1481 		switch(scsi_cfg1 & ADW_C_DET_SE) {
1482 			/* TERM_SE_HI: on, TERM_SE_LO: on */
1483 			case 0x1: case 0x2: case 0x3:
1484 				cfg->termination |= ADW_TERM_SE;
1485 				break;
1486 
1487 			case 0x0:
1488 #if 0
1489 	/* !!!!TODO!!!! */
1490 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1491 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1492 				}
1493 				else
1494 #endif
1495 				{
1496 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1497 					cfg->termination |= ADW_TERM_SE_HI;
1498 				}
1499 				break;
1500 			}
1501 	}
1502 
1503 	/*
1504 	 * Clear any set TERM_SE bits.
1505 	 */
1506 	scsi_cfg1 &= ~ADW_TERM_SE;
1507 
1508 	/*
1509 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1510 	 */
1511 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1512 
1513 	/*
1514 	 * Clear Big Endian and Terminator Polarity bits and set possibly
1515 	 * modified termination control bits in the Microcode SCSI_CFG1
1516 	 * Register Value.
1517 	 */
1518 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1519 
1520 	/*
1521 	 * Set SCSI_CFG1 Microcode Default Value
1522 	 *
1523 	 * Set possibly modified termination control bits in the Microcode
1524 	 * SCSI_CFG1 Register Value.
1525 	 *
1526 	 * The microcode will set the SCSI_CFG1 register using this value
1527 	 * after it is started below.
1528 	 */
1529 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1530 
1531 	/*
1532 	 * Set MEM_CFG Microcode Default Value
1533 	 *
1534 	 * The microcode will set the MEM_CFG register using this value
1535 	 * after it is started below.
1536 	 *
1537 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1538 	 * are defined.
1539 	 *
1540 	 * ASC-38C1600 has 32KB internal memory.
1541 	 */
1542 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1543 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1544 
1545 	return 0;
1546 }
1547 
1548 
1549 /*
1550  * Read EEPROM configuration into the specified buffer.
1551  *
1552  * Return a checksum based on the EEPROM configuration read.
1553  */
1554 static u_int16_t
1555 AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
1556 {
1557 	u_int16_t	       wval, chksum;
1558 	u_int16_t	       *wbuf;
1559 	int		    eep_addr;
1560 
1561 
1562 	wbuf = (u_int16_t *) cfg_buf;
1563 	chksum = 0;
1564 
1565 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1566 		eep_addr < ASC_EEP_DVC_CFG_END;
1567 		eep_addr++, wbuf++) {
1568 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
1569 		chksum += wval;
1570 		*wbuf = wval;
1571 	}
1572 
1573 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1574 	wbuf++;
1575 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1576 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
1577 			eep_addr++, wbuf++) {
1578 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1579 	}
1580 
1581 	return chksum;
1582 }
1583 
1584 
1585 /*
1586  * Read the EEPROM from specified location
1587  */
1588 static u_int16_t
1589 AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
1590 {
1591 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1592 		ASC_EEP_CMD_READ | eep_word_addr);
1593 	AdwWaitEEPCmd(iot, ioh);
1594 
1595 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1596 }
1597 
1598 
1599 /*
1600  * Wait for EEPROM command to complete
1601  */
1602 static void
1603 AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
1604 {
1605 	int eep_delay_ms;
1606 
1607 
1608 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1609 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1610 				ASC_EEP_CMD_DONE) {
1611 			break;
1612 		}
1613 		AdwSleepMilliSecond(1);
1614 	}
1615 
1616 	(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1617 }
1618 
1619 
1620 /*
1621  * Write the EEPROM from 'cfg_buf'.
1622  */
1623 static void
1624 AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
1625 {
1626 	u_int16_t *wbuf;
1627 	u_int16_t addr, chksum;
1628 
1629 
1630 	wbuf = (u_int16_t *) cfg_buf;
1631 	chksum = 0;
1632 
1633 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1634 	AdwWaitEEPCmd(iot, ioh);
1635 
1636 	/*
1637 	 * Write EEPROM from word 0 to word 20
1638 	 */
1639 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
1640 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1641 		chksum += *wbuf;
1642 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1643 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1644 				ASC_EEP_CMD_WRITE | addr);
1645 		AdwWaitEEPCmd(iot, ioh);
1646 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1647 	}
1648 
1649 	/*
1650 	 * Write EEPROM checksum at word 21
1651 	 */
1652 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1653 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1654 			ASC_EEP_CMD_WRITE | addr);
1655 	AdwWaitEEPCmd(iot, ioh);
1656 	wbuf++;        /* skip over check_sum */
1657 
1658 	/*
1659 	 * Write EEPROM OEM name at words 22 to 29
1660 	 */
1661 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
1662 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1663 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1664 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1665 				ASC_EEP_CMD_WRITE | addr);
1666 		AdwWaitEEPCmd(iot, ioh);
1667 	}
1668 
1669 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1670 			ASC_EEP_CMD_WRITE_DISABLE);
1671 	AdwWaitEEPCmd(iot, ioh);
1672 
1673 	return;
1674 }
1675 
1676 
1677 /*
1678  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1679  *
1680  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1681  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
1682  *   RISC to notify it a new command is ready to be executed.
1683  *
1684  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1685  * set to SCSI_MAX_RETRY.
1686  *
1687  * Return:
1688  *      ADW_SUCCESS(1) - The request was successfully queued.
1689  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
1690  *                       request completes.
1691  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
1692  *                       host IC error.
1693  */
1694 int
1695 AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
1696 {
1697 	bus_space_tag_t iot = sc->sc_iot;
1698 	bus_space_handle_t ioh = sc->sc_ioh;
1699 	ADW_CCB		*ccb;
1700 	u_int32_t	req_paddr;
1701 	ADW_CARRIER	*new_carrp;
1702 
1703 	/*
1704 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1705 	 */
1706 	if (scsiq->target_id > ADW_MAX_TID) {
1707 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1708 		scsiq->done_status = QD_WITH_ERROR;
1709 		return ADW_ERROR;
1710 	}
1711 
1712 	/*
1713 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1714 	 */
1715 
1716 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1717 
1718 	/*
1719 	 * Allocate a carrier and initialize fields.
1720 	 */
1721 	if ((new_carrp = sc->carr_freelist) == NULL) {
1722 		return ADW_BUSY;
1723 	}
1724 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1725 			ASC_GET_CARRP(new_carrp->next_ba));
1726 	sc->carr_pending_cnt++;
1727 
1728 	/*
1729 	 * Set the carrier to be a stopper by setting 'next_ba'
1730 	 * to the stopper value. The current stopper will be changed
1731 	 * below to point to the new stopper.
1732 	 */
1733 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1734 
1735 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1736 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1737 
1738 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1739 	scsiq->scsiq_rptr = htole32(req_paddr);
1740 
1741 	/*
1742 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1743 	 * order during initialization.
1744 	 */
1745 	scsiq->carr_ba = sc->icq_sp->carr_ba;
1746 	scsiq->carr_va = sc->icq_sp->carr_ba;
1747 
1748 	/*
1749 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1750 	 * the microcode. The newly allocated stopper will become the new
1751 	 * stopper.
1752 	 */
1753 	sc->icq_sp->areq_ba = htole32(req_paddr);
1754 
1755 	/*
1756 	 * Set the 'next_ba' pointer for the old stopper to be the
1757 	 * physical address of the new stopper. The RISC can only
1758 	 * follow physical addresses.
1759 	 */
1760 	sc->icq_sp->next_ba = new_carrp->carr_ba;
1761 
1762 #if ADW_DEBUG
1763 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1764 			sc->icq_sp->carr_id,
1765 			sc->icq_sp->carr_ba,
1766 			sc->icq_sp->areq_ba,
1767 			sc->icq_sp->next_ba);
1768 #endif
1769 	/*
1770 	 * Set the host adapter stopper pointer to point to the new carrier.
1771 	 */
1772 	sc->icq_sp = new_carrp;
1773 
1774 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
1775 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
1776 		/*
1777 		 * Tickle the RISC to tell it to read its Command Queue Head
1778 		 * pointer.
1779 		 */
1780 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1781 		if (sc->chip_type == ADW_CHIP_ASC3550) {
1782 			/*
1783 			 * Clear the tickle value. In the ASC-3550 the RISC flag
1784 			 * command 'clr_tickle_a' does not work unless the host
1785 			 * value is cleared.
1786 			 */
1787 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1788 					ADW_TICKLE_NOP);
1789 		}
1790 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1791 		/*
1792 		 * Notify the RISC a carrier is ready by writing the physical
1793 		 * address of the new carrier stopper to the COMMA register.
1794 		 */
1795 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1796 				le32toh(new_carrp->carr_ba));
1797 	}
1798 
1799 	/*
1800 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1801 	 */
1802 
1803 	return ADW_SUCCESS;
1804 }
1805 
1806 
1807 void
1808 AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
1809 {
1810 
1811 	/*
1812 	 * Reset Chip.
1813 	 */
1814 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1815 			ADW_CTRL_REG_CMD_RESET);
1816 	AdwSleepMilliSecond(100);
1817 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1818 			ADW_CTRL_REG_CMD_WR_IO_REG);
1819 }
1820 
1821 
1822 /*
1823  * Reset SCSI Bus and purge all outstanding requests.
1824  *
1825  * Return Value:
1826  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
1827  *      ADW_FALSE(0) -  Microcode command failed.
1828  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1829  *                      may be hung which requires driver recovery.
1830  */
1831 int
1832 AdwResetCCB(ADW_SOFTC *sc)
1833 {
1834 	int	    status;
1835 
1836 	/*
1837 	 * Send the SCSI Bus Reset idle start idle command which asserts
1838 	 * the SCSI Bus Reset signal.
1839 	 */
1840 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1841 	if (status != ADW_TRUE) {
1842 		return status;
1843 	}
1844 
1845 	/*
1846 	 * Delay for the specified SCSI Bus Reset hold time.
1847 	 *
1848 	 * The hold time delay is done on the host because the RISC has no
1849 	 * microsecond accurate timer.
1850 	 */
1851 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1852 
1853 	/*
1854 	 * Send the SCSI Bus Reset end idle command which de-asserts
1855 	 * the SCSI Bus Reset signal and purges any pending requests.
1856 	 */
1857 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1858 	if (status != ADW_TRUE) {
1859 		return status;
1860 	}
1861 
1862 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1863 
1864 	return status;
1865 }
1866 
1867 
1868 /*
1869  * Reset chip and SCSI Bus.
1870  *
1871  * Return Value:
1872  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
1873  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
1874  */
1875 int
1876 AdwResetSCSIBus(ADW_SOFTC *sc)
1877 {
1878 	bus_space_tag_t iot = sc->sc_iot;
1879 	bus_space_handle_t ioh = sc->sc_ioh;
1880 	int		status;
1881 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
1882 	u_int16_t	ppr_able = 0; /* XXX: gcc */
1883 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
1884 	u_int16_t	bios_sig;
1885 
1886 
1887 	/*
1888 	 * Save current per TID negotiated values.
1889 	 */
1890 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1891 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1892 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1893 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1894 	}
1895 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1896 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1897 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1898 			max_cmd[tid]);
1899 	}
1900 
1901 	/*
1902 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1903 	 * by clearing the BIOS signature word.
1904 	 * The initialization functions assumes a SCSI Bus Reset is not
1905 	 * needed if the BIOS signature word is present.
1906 	 */
1907 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1908 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1909 
1910 	/*
1911 	 * Stop chip and reset it.
1912 	 */
1913 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1914 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1915 			ADW_CTRL_REG_CMD_RESET);
1916 	AdwSleepMilliSecond(100);
1917 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1918 			ADW_CTRL_REG_CMD_WR_IO_REG);
1919 
1920 	/*
1921 	 * Reset Adv Library error code, if any, and try
1922 	 * re-initializing the chip.
1923 	 * Then translate initialization return value to status value.
1924 	 */
1925 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1926 
1927 	/*
1928 	 * Restore the BIOS signature word.
1929 	 */
1930 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1931 
1932 	/*
1933 	 * Restore per TID negotiated values.
1934 	 */
1935 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1936 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1937 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1938 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1939 	}
1940 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1941 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1942 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1943 			max_cmd[tid]);
1944 	}
1945 
1946 	return status;
1947 }
1948 
1949 
1950 /*
1951  * Adv Library Interrupt Service Routine
1952  *
1953  *  This function is called by a driver's interrupt service routine.
1954  *  The function disables and re-enables interrupts.
1955  *
1956  *  When a microcode idle command is completed, the ADV_DVC_VAR
1957  *  'idle_cmd_done' field is set to ADW_TRUE.
1958  *
1959  *  Note: AdwISR() can be called when interrupts are disabled or even
1960  *  when there is no hardware interrupt condition present. It will
1961  *  always check for completed idle commands and microcode requests.
1962  *  This is an important feature that shouldn't be changed because it
1963  *  allows commands to be completed from polling mode loops.
1964  *
1965  * Return:
1966  *   ADW_TRUE(1) - interrupt was pending
1967  *   ADW_FALSE(0) - no interrupt was pending
1968  */
1969 int
1970 AdwISR(ADW_SOFTC *sc)
1971 {
1972 	bus_space_tag_t iot = sc->sc_iot;
1973 	bus_space_handle_t ioh = sc->sc_ioh;
1974 	u_int8_t	int_stat;
1975 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
1976 	u_int32_t	irq_next_pa;
1977 	ADW_SCSI_REQ_Q	*scsiq;
1978 	ADW_CCB		*ccb;
1979 	int		s;
1980 
1981 
1982 	s = splbio();
1983 
1984 	/* Reading the register clears the interrupt. */
1985 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
1986 
1987 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
1988 	     ADW_INTR_STATUS_INTRC)) == 0) {
1989 		splx(s);
1990 		return ADW_FALSE;
1991 	}
1992 
1993 	/*
1994 	 * Notify the driver of an asynchronous microcode condition by
1995 	 * calling the ADV_DVC_VAR.async_callback function. The function
1996 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
1997 	 */
1998 	if (int_stat & ADW_INTR_STATUS_INTRB) {
1999 		u_int8_t intrb_code;
2000 
2001 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2002 
2003 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
2004 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
2005 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2006 				sc->carr_pending_cnt != 0) {
2007 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
2008 					IOPB_TICKLE, ADW_TICKLE_A);
2009 				if (sc->chip_type == ADW_CHIP_ASC3550) {
2010 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
2011 						IOPB_TICKLE, ADW_TICKLE_NOP);
2012 				}
2013 			}
2014 		}
2015 
2016 		if (sc->async_callback != 0) {
2017 			(*sc->async_callback)(sc, intrb_code);
2018 		}
2019 	}
2020 
2021 	/*
2022 	 * Check if the IRQ stopper carrier contains a completed request.
2023 	 */
2024 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2025 	{
2026 #if ADW_DEBUG
2027 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2028 				sc->irq_sp->carr_id,
2029 				sc->irq_sp->carr_ba,
2030 				sc->irq_sp->areq_ba,
2031 				sc->irq_sp->next_ba);
2032 #endif
2033 		/*
2034 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2035 		 * structure.
2036 		 * The RISC will have set 'areq_ba' to a virtual address.
2037 		 *
2038 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2039 		 * field to the carrier ADV_CARR_T.areq_ba field.
2040 		 * The conversion below complements the conversion of
2041 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2042 		 */
2043 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2044 		scsiq = &ccb->scsiq;
2045 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2046 
2047 		/*
2048 		 * Request finished with good status and the queue was not
2049 		 * DMAed to host memory by the firmware. Set all status fields
2050 		 * to indicate good status.
2051 		 */
2052 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2053 			scsiq->done_status = QD_NO_ERROR;
2054 			scsiq->host_status = scsiq->scsi_status = 0;
2055 			scsiq->data_cnt = 0L;
2056 		}
2057 
2058 		/*
2059 		 * Advance the stopper pointer to the next carrier
2060 		 * ignoring the lower four bits. Free the previous
2061 		 * stopper carrier.
2062 		 */
2063 		free_carrp = sc->irq_sp;
2064 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2065 
2066 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
2067 					: sc->carr_freelist->carr_ba;
2068 		sc->carr_freelist = free_carrp;
2069 		sc->carr_pending_cnt--;
2070 
2071 		/*
2072 		 * Clear request microcode control flag.
2073 		 */
2074 		scsiq->cntl = 0;
2075 
2076 		/*
2077 		 * Check Condition handling
2078 		 */
2079 		/*
2080 		 * If the command that completed was a SCSI INQUIRY and
2081 		 * LUN 0 was sent the command, then process the INQUIRY
2082 		 * command information for the device.
2083 		 */
2084 		if (scsiq->done_status == QD_NO_ERROR &&
2085 		    scsiq->cdb[0] == INQUIRY &&
2086 		    scsiq->target_lun == 0) {
2087 			AdwInquiryHandling(sc, scsiq);
2088 		}
2089 
2090 		/*
2091 		 * Notify the driver of the completed request by passing
2092 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
2093 		 */
2094 		(*sc->isr_callback)(sc, scsiq);
2095 		/*
2096 		 * Note: After the driver callback function is called, 'scsiq'
2097 		 * can no longer be referenced.
2098 		 *
2099 		 * Fall through and continue processing other completed
2100 		 * requests...
2101 		 */
2102 	}
2103 
2104 	splx(s);
2105 
2106 	return ADW_TRUE;
2107 }
2108 
2109 
2110 /*
2111  * Send an idle command to the chip and wait for completion.
2112  *
2113  * Command completion is polled for once per microsecond.
2114  *
2115  * The function can be called from anywhere including an interrupt handler.
2116  * But the function is not re-entrant, so it uses the splbio/splx()
2117  * functions to prevent reentrancy.
2118  *
2119  * Return Values:
2120  *   ADW_TRUE - command completed successfully
2121  *   ADW_FALSE - command failed
2122  *   ADW_ERROR - command timed out
2123  */
2124 int
2125 AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
2126 {
2127 	bus_space_tag_t iot = sc->sc_iot;
2128 	bus_space_handle_t ioh = sc->sc_ioh;
2129 	u_int16_t	result;
2130 	u_int32_t	i, j, s;
2131 
2132 	s = splbio();
2133 
2134 	/*
2135 	 * Clear the idle command status which is set by the microcode
2136 	 * to a non-zero value to indicate when the command is completed.
2137 	 */
2138 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2139 
2140 	/*
2141 	 * Write the idle command value after the idle command parameter
2142 	 * has been written to avoid a race condition. If the order is not
2143 	 * followed, the microcode may process the idle command before the
2144 	 * parameters have been written to LRAM.
2145 	 */
2146 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2147 			idle_cmd_parameter);
2148 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2149 
2150 	/*
2151 	 * Tickle the RISC to tell it to process the idle command.
2152 	 */
2153 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2154 	if (sc->chip_type == ADW_CHIP_ASC3550) {
2155 		/*
2156 		 * Clear the tickle value. In the ASC-3550 the RISC flag
2157 		 * command 'clr_tickle_b' does not work unless the host
2158 		 * value is cleared.
2159 		 */
2160 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2161 	}
2162 
2163 	/* Wait for up to 100 millisecond for the idle command to timeout. */
2164 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2165 		/* Poll once each microsecond for command completion. */
2166 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2167 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2168 									result);
2169 			if (result != 0) {
2170 				splx(s);
2171 				return result;
2172 			}
2173 			AdwDelayMicroSecond(1);
2174 		}
2175 	}
2176 
2177 	splx(s);
2178 	return ADW_ERROR;
2179 }
2180 
2181 
2182 /*
2183  * Inquiry Information Byte 7 Handling
2184  *
2185  * Handle SCSI Inquiry Command information for a device by setting
2186  * microcode operating variables that affect WDTR, SDTR, and Tag
2187  * Queuing.
2188  */
2189 static void
2190 AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
2191 {
2192 #ifndef FAILSAFE
2193 	bus_space_tag_t iot = sc->sc_iot;
2194 	bus_space_handle_t ioh = sc->sc_ioh;
2195 	u_int8_t		tid;
2196 	struct scsipi_inquiry_data *inq;
2197 	u_int16_t		tidmask;
2198 	u_int16_t		cfg_word;
2199 
2200 
2201 	/*
2202 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2203 	 * to be available.
2204 	 *
2205 	 * If less than 8 bytes of INQUIRY information were requested or less
2206 	 * than 8 bytes were transferred, then return. cdb[4] is the request
2207 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2208 	 * microcode to the transfer residual count.
2209 	 */
2210 
2211 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2212 		return;
2213 	}
2214 
2215 	tid = scsiq->target_id;
2216 
2217 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2218 
2219 	/*
2220 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2221 	 */
2222 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2223 	    ((inq->version & SID_ANSII) < 2)) {
2224 		return;
2225 	} else {
2226 		/*
2227 		 * INQUIRY Byte 7 Handling
2228 		 *
2229 		 * Use a device's INQUIRY byte 7 to determine whether it
2230 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
2231 		 * is enabled in the EEPROM and the device supports the
2232 		 * feature, then enable it in the microcode.
2233 		 */
2234 
2235 		tidmask = ADW_TID_TO_TIDMASK(tid);
2236 
2237 		/*
2238 		 * Wide Transfers
2239 		 *
2240 		 * If the EEPROM enabled WDTR for the device and the device
2241 		 * supports wide bus (16 bit) transfers, then turn on the
2242 		 * device's 'wdtr_able' bit and write the new value to the
2243 		 * microcode.
2244 		 */
2245 #ifdef SCSI_ADW_WDTR_DISABLE
2246 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2247 #endif /* SCSI_ADW_WDTR_DISABLE */
2248 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2249 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2250 					cfg_word);
2251 			if ((cfg_word & tidmask) == 0) {
2252 				cfg_word |= tidmask;
2253 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2254 						cfg_word);
2255 
2256 				/*
2257 				 * Clear the microcode "SDTR negotiation" and
2258 				 * "WDTR negotiation" done indicators for the
2259 				 * target to cause it to negotiate with the new
2260 				 * setting set above.
2261 				 * WDTR when accepted causes the target to enter
2262 				 * asynchronous mode, so SDTR must be negotiated
2263 				 */
2264 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2265 						cfg_word);
2266 				cfg_word &= ~tidmask;
2267 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2268 						cfg_word);
2269 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2270 						cfg_word);
2271 				cfg_word &= ~tidmask;
2272 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2273 						cfg_word);
2274 			}
2275 		}
2276 
2277 		/*
2278 		 * Synchronous Transfers
2279 		 *
2280 		 * If the EEPROM enabled SDTR for the device and the device
2281 		 * supports synchronous transfers, then turn on the device's
2282 		 * 'sdtr_able' bit. Write the new value to the microcode.
2283 		 */
2284 #ifdef SCSI_ADW_SDTR_DISABLE
2285 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2286 #endif /* SCSI_ADW_SDTR_DISABLE */
2287 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2288 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2289 			if ((cfg_word & tidmask) == 0) {
2290 				cfg_word |= tidmask;
2291 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2292 						cfg_word);
2293 
2294 				/*
2295 				 * Clear the microcode "SDTR negotiation"
2296 				 * done indicator for the target to cause it
2297 				 * to negotiate with the new setting set above.
2298 				 */
2299 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2300 						cfg_word);
2301 				cfg_word &= ~tidmask;
2302 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2303 						cfg_word);
2304 			}
2305 		}
2306 		/*
2307 		 * If the Inquiry data included enough space for the SPI-3
2308 		 * Clocking field, then check if DT mode is supported.
2309 		 */
2310 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2311 		   (scsiq->cdb[4] >= 57 ||
2312 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2313 			/*
2314 			 * PPR (Parallel Protocol Request) Capable
2315 			 *
2316 			 * If the device supports DT mode, then it must be
2317 			 * PPR capable.
2318 			 * The PPR message will be used in place of the SDTR
2319 			 * and WDTR messages to negotiate synchronous speed
2320 			 * and offset, transfer width, and protocol options.
2321 			 */
2322 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2323 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2324 						sc->ppr_able);
2325 				sc->ppr_able |= tidmask;
2326 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2327 						sc->ppr_able);
2328 			}
2329 		}
2330 
2331 		/*
2332 		 * If the EEPROM enabled Tag Queuing for the device and the
2333 		 * device supports Tag Queueing, then turn on the device's
2334 		 * 'tagqng_enable' bit in the microcode and set the microcode
2335 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2336 		 * value.
2337 		 *
2338 		 * Tag Queuing is disabled for the BIOS which runs in polled
2339 		 * mode and would see no benefit from Tag Queuing. Also by
2340 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2341 		 * bugs will at least work with the BIOS.
2342 		 */
2343 #ifdef SCSI_ADW_TAGQ_DISABLE
2344 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2345 #endif /* SCSI_ADW_TAGQ_DISABLE */
2346 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2347 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2348 					cfg_word);
2349 			cfg_word |= tidmask;
2350 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2351 					cfg_word);
2352 
2353 			ADW_WRITE_BYTE_LRAM(iot, ioh,
2354 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
2355 					sc->max_dvc_qng);
2356 		}
2357 	}
2358 #endif /* FAILSAFE */
2359 }
2360 
2361 
2362 static void
2363 AdwSleepMilliSecond(u_int32_t n)
2364 {
2365 
2366 	DELAY(n * 1000);
2367 }
2368 
2369 
2370 static void
2371 AdwDelayMicroSecond(u_int32_t n)
2372 {
2373 
2374 	DELAY(n);
2375 }
2376 
2377