xref: /netbsd-src/sys/dev/ic/adwlib.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /* $NetBSD: adwlib.c,v 1.21 2001/04/30 03:43:09 lukem Exp $        */
2 
3 /*
4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5  *
6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * Author: Baldassare Dante Profeta <dante@mclink.it>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 /*
40  * Ported from:
41  */
42 /*
43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44  *
45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
46  * All Rights Reserved.
47  *
48  * Redistribution and use in source and binary forms, with or without
49  * modification, are permitted provided that redistributions of source
50  * code retain the above copyright notice and this comment without
51  * modification.
52  */
53 
54 #include <sys/types.h>
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/malloc.h>
58 #include <sys/kernel.h>
59 #include <sys/queue.h>
60 #include <sys/device.h>
61 
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 
65 #include <dev/scsipi/scsi_all.h>
66 #include <dev/scsipi/scsipi_all.h>
67 #include <dev/scsipi/scsiconf.h>
68 
69 #include <dev/pci/pcidevs.h>
70 
71 #include <uvm/uvm_extern.h>
72 
73 #include <dev/ic/adwlib.h>
74 #include <dev/ic/adwmcode.h>
75 #include <dev/ic/adw.h>
76 
77 
78 /* Static Functions */
79 
80 int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
81 int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
82 								u_int8_t));
83 int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
84 int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
85 								ADW_DVC_CFG *));
86 int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
87 								ADW_DVC_CFG *));
88 
89 static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
90      							ADW_EEPROM *));
91 static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
92 					                 ADW_EEPROM *));
93 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
94 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
95 
96 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
97 
98 static void AdwSleepMilliSecond __P((u_int32_t));
99 static void AdwDelayMicroSecond __P((u_int32_t));
100 
101 
102 /*
103  * EEPROM Configuration.
104  *
105  * All drivers should use this structure to set the default EEPROM
106  * configuration. The BIOS now uses this structure when it is built.
107  * Additional structure information can be found in adwlib.h where
108  * the structure is defined.
109  */
110 const static ADW_EEPROM adw_3550_Default_EEPROM = {
111 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
112 	0x0000,			/* 01 cfg_msw */
113 	0xFFFF,			/* 02 disc_enable */
114 	0xFFFF,			/* 03 wdtr_able */
115 	{ 0xFFFF },		/* 04 sdtr_able */
116 	0xFFFF,			/* 05 start_motor */
117 	0xFFFF,			/* 06 tagqng_able */
118 	0xFFFF,			/* 07 bios_scan */
119 	0,			/* 08 scam_tolerant */
120 	7,			/* 09 adapter_scsi_id */
121 	0,			/*    bios_boot_delay */
122 	3,			/* 10 scsi_reset_delay */
123 	0,			/*    bios_id_lun */
124 	0,			/* 11 termination */
125 	0,			/*    reserved1 */
126 	0xFFE7,			/* 12 bios_ctrl */
127 	{ 0xFFFF },		/* 13 ultra_able */
128 	{ 0 },			/* 14 reserved2 */
129 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
130 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
131 	0,			/* 16 dvc_cntl */
132 	{ 0 },			/* 17 bug_fix */
133 	{ 0,0,0 },		/* 18-20 serial_number[3] */
134 	0,			/* 21 check_sum */
135 	{			/* 22-29 oem_name[16] */
136 	  0,0,0,0,0,0,0,0,
137 	  0,0,0,0,0,0,0,0
138 	},
139 	0,			/* 30 dvc_err_code */
140 	0,			/* 31 adv_err_code */
141 	0,			/* 32 adv_err_addr */
142 	0,			/* 33 saved_dvc_err_code */
143 	0,			/* 34 saved_adv_err_code */
144 	0			/* 35 saved_adv_err_addr */
145 };
146 
147 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
148 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
149 	0x0000,			/* 01 cfg_msw */
150 	0xFFFF,			/* 02 disc_enable */
151 	0xFFFF,			/* 03 wdtr_able */
152 	{ 0x4444 },		/* 04 sdtr_speed1 */
153 	0xFFFF,			/* 05 start_motor */
154 	0xFFFF,			/* 06 tagqng_able */
155 	0xFFFF,			/* 07 bios_scan */
156 	0,			/* 08 scam_tolerant */
157 	7,			/* 09 adapter_scsi_id */
158 	0,			/*    bios_boot_delay */
159 	3,			/* 10 scsi_reset_delay */
160 	0,			/*    bios_id_lun */
161 	0,			/* 11 termination_se */
162 	0,			/*    termination_lvd */
163 	0xFFE7,			/* 12 bios_ctrl */
164 	{ 0x4444 },		/* 13 sdtr_speed2 */
165 	{ 0x4444 },		/* 14 sdtr_speed3 */
166 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
167 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
168 	0,			/* 16 dvc_cntl */
169 	{ 0x4444 },		/* 17 sdtr_speed4 */
170 	{ 0,0,0 },		/* 18-20 serial_number[3] */
171 	0,			/* 21 check_sum */
172 	{			/* 22-29 oem_name[16] */
173 	  0,0,0,0,0,0,0,0,
174 	  0,0,0,0,0,0,0,0
175 	},
176 	0,			/* 30 dvc_err_code */
177 	0,			/* 31 adv_err_code */
178 	0,			/* 32 adv_err_addr */
179 	0,			/* 33 saved_dvc_err_code */
180 	0,			/* 34 saved_adv_err_code */
181 	0,			/* 35 saved_adv_err_addr */
182 	{			/* 36-55 reserved1[16] */
183 	  0,0,0,0,0,0,0,0,0,0,
184 	  0,0,0,0,0,0,0,0,0,0
185 	},
186 	0,			/* 56 cisptr_lsw */
187 	0,			/* 57 cisprt_msw */
188 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
189 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
190 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
191 };
192 
193 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
194 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
195 	0x0000,			/* 01 cfg_msw */
196 	0xFFFF,			/* 02 disc_enable */
197 	0xFFFF,			/* 03 wdtr_able */
198 	{ 0x5555 },		/* 04 sdtr_speed1 */
199 	0xFFFF,			/* 05 start_motor */
200 	0xFFFF,			/* 06 tagqng_able */
201 	0xFFFF,			/* 07 bios_scan */
202 	0,			/* 08 scam_tolerant */
203 	7,			/* 09 adapter_scsi_id */
204 	0,			/*    bios_boot_delay */
205 	3,			/* 10 scsi_reset_delay */
206 	0,			/*    bios_id_lun */
207 	0,			/* 11 termination_se */
208 	0,			/*    termination_lvd */
209 	0xFFE7,			/* 12 bios_ctrl */
210 	{ 0x5555 },		/* 13 sdtr_speed2 */
211 	{ 0x5555 },		/* 14 sdtr_speed3 */
212 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
213 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
214 	0,			/* 16 dvc_cntl */
215 	{ 0x5555 },		/* 17 sdtr_speed4 */
216 	{ 0,0,0 },		/* 18-20 serial_number[3] */
217 	0,			/* 21 check_sum */
218 	{			/* 22-29 oem_name[16] */
219 	  0,0,0,0,0,0,0,0,
220 	  0,0,0,0,0,0,0,0
221 	},
222 	0,			/* 30 dvc_err_code */
223 	0,			/* 31 adv_err_code */
224 	0,			/* 32 adv_err_addr */
225 	0,			/* 33 saved_dvc_err_code */
226 	0,			/* 34 saved_adv_err_code */
227 	0,			/* 35 saved_adv_err_addr */
228 	{			/* 36-55 reserved1[16] */
229 	  0,0,0,0,0,0,0,0,0,0,
230 	  0,0,0,0,0,0,0,0,0,0
231 	},
232 	0,			/* 56 cisptr_lsw */
233 	0,			/* 57 cisprt_msw */
234 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
235 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
236 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
237 };
238 
239 
240 /*
241  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
242  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
243  * all of this is done.
244  *
245  * For a non-fatal error return a warning code. If there are no warnings
246  * then 0 is returned.
247  *
248  * Note: Chip is stopped on entry.
249  */
250 int
251 AdwInitFromEEPROM(sc)
252 ADW_SOFTC      *sc;
253 {
254 	bus_space_tag_t iot = sc->sc_iot;
255 	bus_space_handle_t ioh = sc->sc_ioh;
256 	ADW_EEPROM		eep_config;
257 	u_int16_t		warn_code;
258 	u_int16_t		sdtr_speed = 0;
259 	u_int8_t		tid, termination;
260 	int			i, j;
261 
262 
263 	warn_code = 0;
264 
265 	/*
266 	 * Read the board's EEPROM configuration.
267 	 *
268 	 * Set default values if a bad checksum is found.
269 	 *
270 	 * XXX - Don't handle big-endian access to EEPROM yet.
271 	 */
272 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
273 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
274 
275 		/*
276 		 * Set EEPROM default values.
277 		 */
278 		switch(sc->chip_type) {
279 		case ADW_CHIP_ASC3550:
280 			eep_config = adw_3550_Default_EEPROM;
281 			break;
282 		case ADW_CHIP_ASC38C0800:
283 			eep_config = adw_38C0800_Default_EEPROM;
284 			break;
285 		case ADW_CHIP_ASC38C1600:
286 			eep_config = adw_38C1600_Default_EEPROM;
287 
288 #if 0
289 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
290 #endif
291 			if (sc->cfg.pci_slot_info != 0) {
292 				u_int8_t lsw_msb;
293 
294 				lsw_msb = eep_config.cfg_lsw >> 8;
295 				/*
296 				 * Set Function 1 EEPROM Word 0 MSB
297 				 *
298 				 * Clear the BIOS_ENABLE (bit 14) and
299 				 * INTAB (bit 11) EEPROM bits.
300 				 *
301 				 * Disable Bit 14 (BIOS_ENABLE) to fix
302 				 * SPARC Ultra 60 and old Mac system booting
303 				 * problem. The Expansion ROM must
304 				 * be disabled in Function 1 for these systems.
305 				 */
306 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
307 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
308 				/*
309 				 * Set the INTAB (bit 11) if the GPIO 0 input
310 				 * indicates the Function 1 interrupt line is
311 				 * wired to INTA.
312 				 *
313 				 * Set/Clear Bit 11 (INTAB) from
314 				 * the GPIO bit 0 input:
315 				 *   1 - Function 1 intr line wired to INT A.
316 				 *   0 - Function 1 intr line wired to INT B.
317 				 *
318 				 * Note: Adapter boards always have Function 0
319 				 * wired to INTA.
320 				 * Put all 5 GPIO bits in input mode and then
321 				 * read their input values.
322 				 */
323 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
324 							IOPB_GPIO_CNTL, 0);
325 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
326 						IOPB_GPIO_DATA) & 0x01) {
327 					/*
328 					 * Function 1 interrupt wired to INTA;
329 					 * Set EEPROM bit.
330 					 */
331 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
332 							 & 0xFF;
333 				 }
334 				 eep_config.cfg_lsw &= 0x00FF;
335 				 eep_config.cfg_lsw |= lsw_msb << 8;
336 			}
337 			break;
338 		}
339 
340 		/*
341 		 * Assume the 6 byte board serial number that was read
342 		 * from EEPROM is correct even if the EEPROM checksum
343 		 * failed.
344 		 */
345 		for (i=2, j=1; i>=0; i--, j++) {
346 		eep_config.serial_number[i] =
347 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
348 		}
349 
350 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
351 	}
352 	/*
353 	 * Set sc and sc->cfg variables from the EEPROM configuration
354 	 * that was read.
355 	 *
356 	 * This is the mapping of EEPROM fields to Adw Library fields.
357 	 */
358 	sc->wdtr_able = eep_config.wdtr_able;
359 	if (sc->chip_type == ADW_CHIP_ASC3550) {
360 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
361 		sc->ultra_able = eep_config.sdtr2.ultra_able;
362 	} else {
363 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
364 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
365 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
366 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
367 	}
368 	sc->ppr_able = 0;
369 	sc->tagqng_able = eep_config.tagqng_able;
370 	sc->cfg.disc_enable = eep_config.disc_enable;
371 	sc->max_host_qng = eep_config.max_host_qng;
372 	sc->max_dvc_qng = eep_config.max_dvc_qng;
373 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
374 	sc->start_motor = eep_config.start_motor;
375 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
376 	sc->bios_ctrl = eep_config.bios_ctrl;
377 	sc->no_scam = eep_config.scam_tolerant;
378 	sc->cfg.serial1 = eep_config.serial_number[0];
379 	sc->cfg.serial2 = eep_config.serial_number[1];
380 	sc->cfg.serial3 = eep_config.serial_number[2];
381 
382 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
383 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
384 		sc->sdtr_able = 0;
385 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
386 			if (tid == 0) {
387 				sdtr_speed = sc->sdtr_speed1;
388 			} else if (tid == 4) {
389 				sdtr_speed = sc->sdtr_speed2;
390 			} else if (tid == 8) {
391 				sdtr_speed = sc->sdtr_speed3;
392 			} else if (tid == 12) {
393 				sdtr_speed = sc->sdtr_speed4;
394 			}
395 			if (sdtr_speed & ADW_MAX_TID) {
396 				sc->sdtr_able |= (1 << tid);
397 			}
398 			sdtr_speed >>= 4;
399 		}
400 	}
401 
402 	/*
403 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
404 	 * maximum queuing (max. 63, min. 4).
405 	 */
406 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
407 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
408 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
409 	{
410 		/* If the value is zero, assume it is uninitialized. */
411 		if (eep_config.max_host_qng == 0) {
412 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
413 		} else {
414 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
415 		}
416 	}
417 
418 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
419 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
420 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
421 		/* If the value is zero, assume it is uninitialized. */
422 		if (eep_config.max_dvc_qng == 0) {
423 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
424 		} else {
425 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
426 		}
427 	}
428 
429 	/*
430 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
431 	 * set 'max_dvc_qng' to 'max_host_qng'.
432 	 */
433 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
434 		eep_config.max_dvc_qng = eep_config.max_host_qng;
435 	}
436 
437 	/*
438 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
439 	 * values based on possibly adjusted EEPROM values.
440 	 */
441 	sc->max_host_qng = eep_config.max_host_qng;
442 	sc->max_dvc_qng = eep_config.max_dvc_qng;
443 
444 
445 	/*
446 	 * If the EEPROM 'termination' field is set to automatic (0), then set
447 	 * the ADV_DVC_CFG 'termination' field to automatic also.
448 	 *
449 	 * If the termination is specified with a non-zero 'termination'
450 	 * value check that a legal value is set and set the ADV_DVC_CFG
451 	 * 'termination' field appropriately.
452 	 */
453 
454 	switch(sc->chip_type) {
455 	case ADW_CHIP_ASC3550:
456 		sc->cfg.termination = 0;	/* auto termination */
457 		switch(eep_config.termination_se) {
458 		case 3:
459 			/* Enable manual control with low on / high on. */
460 			sc->cfg.termination |= ADW_TERM_CTL_L;
461 		case 2:
462 			/* Enable manual control with low off / high on. */
463 			sc->cfg.termination |= ADW_TERM_CTL_H;
464 		case 1:
465 			/* Enable manual control with low off / high off. */
466 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
467 		case 0:
468 			break;
469 		default:
470 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
471 		}
472 		break;
473 
474 	case ADW_CHIP_ASC38C0800:
475 	case ADW_CHIP_ASC38C1600:
476 		switch(eep_config.termination_se) {
477 		case 0:
478 			/* auto termination for SE */
479 			termination = 0;
480 			break;
481 		case 1:
482 			/* Enable manual control with low off / high off. */
483 			termination = 0;
484 			break;
485 		case 2:
486 			/* Enable manual control with low off / high on. */
487 			termination = ADW_TERM_SE_HI;
488 			break;
489 		case 3:
490 			/* Enable manual control with low on / high on. */
491 			termination = ADW_TERM_SE;
492 			break;
493 		default:
494 			/*
495 			 * The EEPROM 'termination_se' field contains a
496 			 * bad value. Use automatic termination instead.
497 			 */
498 			termination = 0;
499 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
500 		}
501 
502 		switch(eep_config.termination_lvd) {
503 		case 0:
504 			/* auto termination for LVD */
505 			sc->cfg.termination = termination;
506 			break;
507 		case 1:
508 			/* Enable manual control with low off / high off. */
509 			sc->cfg.termination = termination;
510 			break;
511 		case 2:
512 			/* Enable manual control with low off / high on. */
513 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
514 			break;
515 		case 3:
516 			/* Enable manual control with low on / high on. */
517 			sc->cfg.termination = termination | ADW_TERM_LVD;
518 			break;
519 		default:
520 			/*
521 			 * The EEPROM 'termination_lvd' field contains a
522 			 * bad value. Use automatic termination instead.
523 			 */
524 			sc->cfg.termination = termination;
525 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
526 		}
527 		break;
528 	}
529 
530 	return warn_code;
531 }
532 
533 
534 /*
535  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
536  *
537  * On failure return the error code.
538  */
539 int
540 AdwInitDriver(sc)
541 ADW_SOFTC      *sc;
542 {
543 	bus_space_tag_t iot = sc->sc_iot;
544 	bus_space_handle_t ioh = sc->sc_ioh;
545 	u_int16_t	error_code;
546 	int		word;
547 	int		i;
548 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
549 								0x40-0x8F. */
550 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
551 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
552 	u_int8_t	tid;
553 
554 
555 	error_code = 0;
556 
557 	/*
558 	 * Save the RISC memory BIOS region before writing the microcode.
559 	 * The BIOS may already be loaded and using its RISC LRAM region
560 	 * so its region must be saved and restored.
561 	 *
562 	 * Note: This code makes the assumption, which is currently true,
563 	 * that a chip reset does not clear RISC LRAM.
564 	 */
565 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
566 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
567 	}
568 
569 	/*
570 	 * Save current per TID negotiated values.
571 	 */
572 	switch (sc->chip_type) {
573 	case ADW_CHIP_ASC3550:
574 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
575 
576 			u_int16_t  bios_version, major, minor;
577 
578 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
579 					ADW_MC_BIOSMEM) / 2];
580 			major = (bios_version  >> 12) & 0xF;
581 			minor = (bios_version  >> 8) & 0xF;
582 			if (major < 3 || (major == 3 && minor == 1)) {
583 			    /*
584 			     * BIOS 3.1 and earlier location of
585 			     * 'wdtr_able' variable.
586 			     */
587 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
588 			} else {
589 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
590 					    wdtr_able);
591 			}
592 		}
593 		break;
594 
595 	case ADW_CHIP_ASC38C1600:
596 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
597 		/* FALLTHROUGH */
598 	case ADW_CHIP_ASC38C0800:
599 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
600 		break;
601 	}
602 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
603 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
604 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
605 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
606 			max_cmd[tid]);
607 	}
608 
609 	/*
610 	 * Perform a RAM Built-In Self Test
611 	 */
612 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
613 		return error_code;
614 	}
615 
616 	/*
617 	 * Load the Microcode
618 	 */
619 	;
620 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
621 		return error_code;
622 	}
623 
624 	/*
625 	 * Read microcode version and date.
626 	 */
627 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
628 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
629 
630 	/*
631 	 * If the PCI Configuration Command Register "Parity Error Response
632 	 * Control" Bit was clear (0), then set the microcode variable
633 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
634 	 * to ignore DMA parity errors.
635 	 */
636 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
637 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
638 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
639 					word | CONTROL_FLAG_IGNORE_PERR);
640 	}
641 
642 	switch (sc->chip_type) {
643 	case ADW_CHIP_ASC3550:
644 		/*
645 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
646 		 * FIFO threshold of 128 bytes.
647 		 * This register is only accessible to the host.
648 		 */
649 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
650 				START_CTL_EMFU | READ_CMD_MRM);
651 		break;
652 
653 	case ADW_CHIP_ASC38C0800:
654 		/*
655 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
656 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
657 		 * cable detection and then we are able to read C_DET[3:0].
658 		 *
659 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
660 		 * Microcode Default Value' section below.
661 		 */
662 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
663 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
664 				| ADW_DIS_TERM_DRV);
665 
666 		/*
667 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
668 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
669 		 *
670 		 * Note: ASC-38C0800 FIFO threshold has been changed to
671 		 * 256 bytes.
672 		 *
673 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
674 		 */
675 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
676 						BC_THRESH_ENB | FIFO_THRESH_80B
677 						| START_CTL_TH | READ_CMD_MRM);
678 		break;
679 
680 	case ADW_CHIP_ASC38C1600:
681 		/*
682 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
683 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
684 		 * cable detection and then we are able to read C_DET[3:0].
685 		 *
686 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
687 		 * Microcode Default Value' section below.
688 		 */
689 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
690 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
691 				| ADW_DIS_TERM_DRV);
692 
693 		/*
694 		 * If the BIOS control flag AIPP (Asynchronous Information
695 		 * Phase Protection) disable bit is not set, then set the
696 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
697 		 * enable AIPP checking and encoding.
698 		 */
699 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
700 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
701 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
702 					word | CONTROL_FLAG_ENABLE_AIPP);
703 		}
704 
705 		/*
706 		 * For ASC-38C1600 use DMA_CFG0 default values:
707 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
708 		 */
709 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
710 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
711 		break;
712 	}
713 
714 	/*
715 	 * Microcode operating variables for WDTR, SDTR, and command tag
716 	 * queuing will be set in AdvInquiryHandling() based on what a
717 	 * device reports it is capable of in Inquiry byte 7.
718 	 *
719 	 * If SCSI Bus Resets have been disabled, then directly set
720 	 * SDTR and WDTR from the EEPROM configuration. This will allow
721 	 * the BIOS and warm boot to work without a SCSI bus hang on
722 	 * the Inquiry caused by host and target mismatched DTR values.
723 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
724 	 * be assumed to be in Asynchronous, Narrow mode.
725 	 */
726 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
727 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
728 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
729 	}
730 
731 	/*
732 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
733 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
734 	 * bitmask. These values determine the maximum SDTR speed negotiated
735 	 * with a device.
736 	 *
737 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
738 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
739 	 * without determining here whether the device supports SDTR.
740 	 */
741 	switch (sc->chip_type) {
742 	case ADW_CHIP_ASC3550:
743 		word = 0;
744 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
745 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
746 				/* Set Ultra speed for TID 'tid'. */
747 				word |= (0x3 << (4 * (tid % 4)));
748 			} else {
749 				/* Set Fast speed for TID 'tid'. */
750 				word |= (0x2 << (4 * (tid % 4)));
751 			}
752 			/* Check if done with sdtr_speed1. */
753 			if (tid == 3) {
754 				ADW_WRITE_WORD_LRAM(iot, ioh,
755 						ADW_MC_SDTR_SPEED1, word);
756 				word = 0;
757 			/* Check if done with sdtr_speed2. */
758 			} else if (tid == 7) {
759 				ADW_WRITE_WORD_LRAM(iot, ioh,
760 						ADW_MC_SDTR_SPEED2, word);
761 				word = 0;
762 			/* Check if done with sdtr_speed3. */
763 			} else if (tid == 11) {
764 				ADW_WRITE_WORD_LRAM(iot, ioh,
765 						ADW_MC_SDTR_SPEED3, word);
766 				word = 0;
767 			/* Check if done with sdtr_speed4. */
768 			} else if (tid == 15) {
769 				ADW_WRITE_WORD_LRAM(iot, ioh,
770 						ADW_MC_SDTR_SPEED4, word);
771 				/* End of loop. */
772 			}
773 		}
774 
775 		/*
776 		 * Set microcode operating variable for the
777 		 * disconnect per TID bitmask.
778 		 */
779 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
780 							sc->cfg.disc_enable);
781 		break;
782 
783 	case ADW_CHIP_ASC38C0800:
784 		/* FALLTHROUGH */
785 	case ADW_CHIP_ASC38C1600:
786 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
787 							sc->cfg.disc_enable);
788 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
789 							sc->sdtr_speed1);
790 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
791 							sc->sdtr_speed2);
792 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
793 							sc->sdtr_speed3);
794 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
795 							sc->sdtr_speed4);
796 		break;
797 	}
798 
799 
800 	/*
801 	 * Set SCSI_CFG0 Microcode Default Value.
802 	 *
803 	 * The microcode will set the SCSI_CFG0 register using this value
804 	 * after it is started below.
805 	 */
806 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
807 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
808 		ADW_OUR_ID_EN | sc->chip_scsi_id);
809 
810 
811 	switch(sc->chip_type) {
812 	case ADW_CHIP_ASC3550:
813 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
814 		break;
815 
816 	case ADW_CHIP_ASC38C0800:
817 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
818 		break;
819 
820 	case ADW_CHIP_ASC38C1600:
821 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
822 		break;
823 	}
824 	if(error_code) {
825 		return error_code;
826 	}
827 
828 	/*
829 	 * Set SEL_MASK Microcode Default Value
830 	 *
831 	 * The microcode will set the SEL_MASK register using this value
832 	 * after it is started below.
833 	 */
834 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
835 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
836 
837 	/*
838 	 * Create and Initialize Host->RISC Carrier lists
839 	 */
840 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
841 						sc->sc_control->carriers);
842 
843 	/*
844 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
845 	 */
846 
847 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
848 		return ADW_IERR_NO_CARRIER;
849 	}
850 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
851 			ASC_GET_CARRP(sc->icq_sp->next_ba));
852 
853 	/*
854 	 * The first command issued will be placed in the stopper carrier.
855 	 */
856 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
857 
858 	/*
859 	 * Set RISC ICQ physical address start value.
860 	 */
861 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
862 
863 	/*
864 	 * Initialize the COMMA register to the same value otherwise
865 	 * the RISC will prematurely detect a command is available.
866 	 */
867 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
868 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
869 							sc->icq_sp->carr_ba);
870 	}
871 
872 	/*
873 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
874 	 */
875 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
876 		return ADW_IERR_NO_CARRIER;
877 	}
878 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
879 			ASC_GET_CARRP(sc->irq_sp->next_ba));
880 
881 	/*
882 	 * The first command completed by the RISC will be placed in
883 	 * the stopper.
884 	 *
885 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
886 	 * completed the RISC will set the ASC_RQ_DONE bit.
887 	 */
888 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
889 
890 	/*
891 	 * Set RISC IRQ physical address start value.
892 	 */
893 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
894 	sc->carr_pending_cnt = 0;
895 
896 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
897 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
898 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
899 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
900 
901 	/* finally, finally, gentlemen, start your engine */
902 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
903 
904 	/*
905 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
906 	 * Resets should be performed. The RISC has to be running
907 	 * to issue a SCSI Bus Reset.
908 	 */
909 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
910 	{
911 		/*
912 		 * If the BIOS Signature is present in memory, restore the
913 		 * BIOS Handshake Configuration Table and do not perform
914 		 * a SCSI Bus Reset.
915 		 */
916 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
917 				0x55AA) {
918 			/*
919 			 * Restore per TID negotiated values.
920 			 */
921 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
922 					wdtr_able);
923 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
924 					sdtr_able);
925 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
926 					tagqng_able);
927 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
928 				ADW_WRITE_BYTE_LRAM(iot, ioh,
929 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
930 						max_cmd[tid]);
931 			}
932 		} else {
933 			if (AdwResetCCB(sc) != ADW_TRUE) {
934 				error_code = ADW_WARN_BUSRESET_ERROR;
935 			}
936 		}
937 	}
938 
939 	return error_code;
940 }
941 
942 
943 int
944 AdwRamSelfTest(iot, ioh, chip_type)
945 	bus_space_tag_t iot;
946 	bus_space_handle_t ioh;
947 	u_int8_t chip_type;
948 {
949 	int		i;
950 	u_int8_t	byte;
951 
952 
953 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
954 	    (chip_type == ADW_CHIP_ASC38C1600)) {
955 		/*
956 		 * RAM BIST (RAM Built-In Self Test)
957 		 *
958 		 * Address : I/O base + offset 0x38h register (byte).
959 		 * Function: Bit 7-6(RW) : RAM mode
960 		 *			    Normal Mode   : 0x00
961 		 *			    Pre-test Mode : 0x40
962 		 *			    RAM Test Mode : 0x80
963 		 *	     Bit 5	 : unused
964 		 *	     Bit 4(RO)   : Done bit
965 		 *	     Bit 3-0(RO) : Status
966 		 *			    Host Error    : 0x08
967 		 *			    Int_RAM Error : 0x04
968 		 *			    RISC Error    : 0x02
969 		 *			    SCSI Error    : 0x01
970 		 *			    No Error	  : 0x00
971 		 *
972 		 * Note: RAM BIST code should be put right here, before loading
973 		 * the microcode and after saving the RISC memory BIOS region.
974 		 */
975 
976 		/*
977 		 * LRAM Pre-test
978 		 *
979 		 * Write PRE_TEST_MODE (0x40) to register and wait for
980 		 * 10 milliseconds.
981 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
982 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
983 		 * If cannot reset to NORMAL_MODE, return an error too.
984 		 */
985 		for (i = 0; i < 2; i++) {
986 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
987 					PRE_TEST_MODE);
988 			 /* Wait for 10ms before reading back. */
989 			AdwSleepMilliSecond(10);
990 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
991 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
992 					PRE_TEST_VALUE) {
993 				return ADW_IERR_BIST_PRE_TEST;
994 			}
995 
996 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
997 								NORMAL_MODE);
998 			/* Wait for 10ms before reading back. */
999 			AdwSleepMilliSecond(10);
1000 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1001 			    != NORMAL_VALUE) {
1002 				return ADW_IERR_BIST_PRE_TEST;
1003 			}
1004 		}
1005 
1006 		/*
1007 		 * LRAM Test - It takes about 1.5 ms to run through the test.
1008 		 *
1009 		 * Write RAM_TEST_MODE (0x80) to register and wait for
1010 		 * 10 milliseconds.
1011 		 * If Done bit not set or Status not 0, save register byte,
1012 		 * set the err_code, and return an error.
1013 		 */
1014 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1015 		/* Wait for 10ms before checking status. */
1016 		AdwSleepMilliSecond(10);
1017 
1018 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1019 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1020 			/* Get here if Done bit not set or Status not 0. */
1021 			return ADW_IERR_BIST_RAM_TEST;
1022 		}
1023 
1024 		/* We need to reset back to normal mode after LRAM test passes*/
1025 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 
1032 int
1033 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1034 	bus_space_tag_t iot;
1035 	bus_space_handle_t ioh;
1036 	u_int16_t *bios_mem;
1037 	u_int8_t chip_type;
1038 {
1039 	u_int8_t	*mcode_data;
1040 	u_int32_t	 mcode_chksum;
1041 	u_int16_t	 mcode_size;
1042 	u_int32_t	sum;
1043 	u_int16_t	code_sum;
1044 	int		begin_addr;
1045 	int		end_addr;
1046 	int		word;
1047 	int		adw_memsize;
1048 	int		adw_mcode_expanded_size;
1049 	int		i, j;
1050 
1051 
1052 	switch(chip_type) {
1053 	case ADW_CHIP_ASC3550:
1054 		mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1055 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1056 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1057 		adw_memsize = ADW_3550_MEMSIZE;
1058 		break;
1059 
1060 	case ADW_CHIP_ASC38C0800:
1061 		mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1062 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1063 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1064 		adw_memsize = ADW_38C0800_MEMSIZE;
1065 		break;
1066 
1067 	case ADW_CHIP_ASC38C1600:
1068 		mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1069 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1070 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1071 		adw_memsize = ADW_38C1600_MEMSIZE;
1072 		break;
1073 	}
1074 
1075 	/*
1076 	 * Write the microcode image to RISC memory starting at address 0.
1077 	 */
1078 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1079 
1080 	/* Assume the following compressed format of the microcode buffer:
1081 	 *
1082 	 *  254 word (508 byte) table indexed by byte code followed
1083 	 *  by the following byte codes:
1084 	 *
1085 	 *    1-Byte Code:
1086 	 *	00: Emit word 0 in table.
1087 	 *	01: Emit word 1 in table.
1088 	 *	.
1089 	 *	FD: Emit word 253 in table.
1090 	 *
1091 	 *    Multi-Byte Code:
1092 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1093 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1094 	 */
1095 	word = 0;
1096 	for (i = 253 * 2; i < mcode_size; i++) {
1097 		if (mcode_data[i] == 0xff) {
1098 			for (j = 0; j < mcode_data[i + 1]; j++) {
1099 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1100 				  (((u_int16_t)mcode_data[i + 3] << 8) |
1101 				  mcode_data[i + 2]));
1102 				word++;
1103 			}
1104 			i += 3;
1105 		} else if (mcode_data[i] == 0xfe) {
1106 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1107 			    (((u_int16_t)mcode_data[i + 2] << 8) |
1108 			    mcode_data[i + 1]));
1109 			i += 2;
1110 			word++;
1111 		} else {
1112 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1113 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1114 			 mcode_data[mcode_data[i] * 2]));
1115 			word++;
1116 		}
1117 	}
1118 
1119 	/*
1120 	 * Set 'word' for later use to clear the rest of memory and save
1121 	 * the expanded mcode size.
1122 	 */
1123 	word *= 2;
1124 	adw_mcode_expanded_size = word;
1125 
1126 	/*
1127 	 * Clear the rest of the Internal RAM.
1128 	 */
1129 	for (; word < adw_memsize; word += 2) {
1130 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1131 	}
1132 
1133 	/*
1134 	 * Verify the microcode checksum.
1135 	 */
1136 	sum = 0;
1137 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1138 
1139 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1140 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1141 	}
1142 
1143 	if (sum != mcode_chksum) {
1144 		return ADW_IERR_MCODE_CHKSUM;
1145 	}
1146 
1147 	/*
1148 	 * Restore the RISC memory BIOS region.
1149 	 */
1150 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1151 		if(chip_type == ADW_CHIP_ASC3550) {
1152 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1153 								bios_mem[i]);
1154 		} else {
1155 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1156 								bios_mem[i]);
1157 		}
1158 	}
1159 
1160 	/*
1161 	 * Calculate and write the microcode code checksum to the microcode
1162 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1163 	 */
1164 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1165 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1166 	code_sum = 0;
1167 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1168 	for (word = begin_addr; word < end_addr; word += 2) {
1169 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1170 	}
1171 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1172 
1173 	/*
1174 	 * Set the chip type.
1175 	 */
1176 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1177 
1178 	return 0;
1179 }
1180 
1181 
1182 int
1183 AdwASC3550Cabling(iot, ioh, cfg)
1184 	bus_space_tag_t iot;
1185 	bus_space_handle_t ioh;
1186 	ADW_DVC_CFG *cfg;
1187 {
1188 	u_int16_t	scsi_cfg1;
1189 
1190 
1191 	/*
1192 	 * Determine SCSI_CFG1 Microcode Default Value.
1193 	 *
1194 	 * The microcode will set the SCSI_CFG1 register using this value
1195 	 * after it is started below.
1196 	 */
1197 
1198 	/* Read current SCSI_CFG1 Register value. */
1199 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1200 
1201 	/*
1202 	 * If all three connectors are in use in ASC3550, return an error.
1203 	 */
1204 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1205 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1206 		return ADW_IERR_ILLEGAL_CONNECTION;
1207 	}
1208 
1209 	/*
1210 	 * If the cable is reversed all of the SCSI_CTRL register signals
1211 	 * will be set. Check for and return an error if this condition is
1212 	 * found.
1213 	 */
1214 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1215 		return ADW_IERR_REVERSED_CABLE;
1216 	}
1217 
1218 	/*
1219 	 * If this is a differential board and a single-ended device
1220 	 * is attached to one of the connectors, return an error.
1221 	 */
1222 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1223 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1224 		return ADW_IERR_SINGLE_END_DEVICE;
1225 	}
1226 
1227 	/*
1228 	 * If automatic termination control is enabled, then set the
1229 	 * termination value based on a table listed in a_condor.h.
1230 	 *
1231 	 * If manual termination was specified with an EEPROM setting
1232 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
1233 	 * is ready to be 'ored' into SCSI_CFG1.
1234 	 */
1235 	if (cfg->termination == 0) {
1236 		/*
1237 		 * The software always controls termination by setting
1238 		 * TERM_CTL_SEL.
1239 		 * If TERM_CTL_SEL were set to 0, the hardware would set
1240 		 * termination.
1241 		 */
1242 		cfg->termination |= ADW_TERM_CTL_SEL;
1243 
1244 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1245 			/* TERM_CTL_H: on, TERM_CTL_L: on */
1246 			case 0x3: case 0x7: case 0xB:
1247 			case 0xD: case 0xE: case 0xF:
1248 				cfg->termination |=
1249 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1250 				break;
1251 
1252 			/* TERM_CTL_H: on, TERM_CTL_L: off */
1253 			case 0x1: case 0x5: case 0x9:
1254 			case 0xA: case 0xC:
1255 				cfg->termination |= ADW_TERM_CTL_H;
1256 				break;
1257 
1258 			/* TERM_CTL_H: off, TERM_CTL_L: off */
1259 			case 0x2: case 0x6:
1260 				break;
1261 		}
1262 	}
1263 
1264 	/*
1265 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1266 	 */
1267 	scsi_cfg1 &= ~ADW_TERM_CTL;
1268 
1269 	/*
1270 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1271 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1272 	 * referenced, because the hardware internally inverts
1273 	 * the Termination High and Low bits if TERM_POL is set.
1274 	 */
1275 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1276 
1277 	/*
1278 	 * Set SCSI_CFG1 Microcode Default Value
1279 	 *
1280 	 * Set filter value and possibly modified termination control
1281 	 * bits in the Microcode SCSI_CFG1 Register Value.
1282 	 *
1283 	 * The microcode will set the SCSI_CFG1 register using this value
1284 	 * after it is started below.
1285 	 */
1286 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1287 						ADW_FLTR_DISABLE | scsi_cfg1);
1288 
1289 	/*
1290 	 * Set MEM_CFG Microcode Default Value
1291 	 *
1292 	 * The microcode will set the MEM_CFG register using this value
1293 	 * after it is started below.
1294 	 *
1295 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1296 	 * are defined.
1297 	 *
1298 	 * ASC-3550 has 8KB internal memory.
1299 	 */
1300 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1301 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1302 
1303 	return 0;
1304 }
1305 
1306 
1307 int
1308 AdwASC38C0800Cabling(iot, ioh, cfg)
1309 	bus_space_tag_t iot;
1310 	bus_space_handle_t ioh;
1311 	ADW_DVC_CFG *cfg;
1312 {
1313 	u_int16_t	scsi_cfg1;
1314 
1315 
1316 	/*
1317 	 * Determine SCSI_CFG1 Microcode Default Value.
1318 	 *
1319 	 * The microcode will set the SCSI_CFG1 register using this value
1320 	 * after it is started below.
1321 	 */
1322 
1323 	/* Read current SCSI_CFG1 Register value. */
1324 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1325 
1326 	/*
1327 	 * If the cable is reversed all of the SCSI_CTRL register signals
1328 	 * will be set. Check for and return an error if this condition is
1329 	 * found.
1330 	 */
1331 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1332 		return ADW_IERR_REVERSED_CABLE;
1333 	}
1334 
1335 	/*
1336 	 * All kind of combinations of devices attached to one of four
1337 	 * connectors are acceptable except HVD device attached.
1338 	 * For example, LVD device can be attached to SE connector while
1339 	 * SE device attached to LVD connector.
1340 	 * If LVD device attached to SE connector, it only runs up to
1341 	 * Ultra speed.
1342 	 *
1343 	 * If an HVD device is attached to one of LVD connectors, return
1344 	 * an error.
1345 	 * However, there is no way to detect HVD device attached to
1346 	 * SE connectors.
1347 	 */
1348 	if (scsi_cfg1 & ADW_HVD) {
1349 		return ADW_IERR_HVD_DEVICE;
1350 	}
1351 
1352 	/*
1353 	 * If either SE or LVD automatic termination control is enabled, then
1354 	 * set the termination value based on a table listed in a_condor.h.
1355 	 *
1356 	 * If manual termination was specified with an EEPROM setting then
1357 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1358 	 * to be 'ored' into SCSI_CFG1.
1359 	 */
1360 	if ((cfg->termination & ADW_TERM_SE) == 0) {
1361 		/* SE automatic termination control is enabled. */
1362 		switch(scsi_cfg1 & ADW_C_DET_SE) {
1363 			/* TERM_SE_HI: on, TERM_SE_LO: on */
1364 			case 0x1: case 0x2: case 0x3:
1365 				cfg->termination |= ADW_TERM_SE;
1366 				break;
1367 
1368 			/* TERM_SE_HI: on, TERM_SE_LO: off */
1369 			case 0x0:
1370 				cfg->termination |= ADW_TERM_SE_HI;
1371 				break;
1372 		}
1373 	}
1374 
1375 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
1376 		/* LVD automatic termination control is enabled. */
1377 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
1378 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
1379 			case 0x4: case 0x8: case 0xC:
1380 				cfg->termination |= ADW_TERM_LVD;
1381 				break;
1382 
1383 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
1384 			case 0x0:
1385 				break;
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * Clear any set TERM_SE and TERM_LVD bits.
1391 	 */
1392 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1393 
1394 	/*
1395 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1396 	 */
1397 	scsi_cfg1 |= (~cfg->termination & 0xF0);
1398 
1399 	/*
1400 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1401 	 * HVD/LVD/SE bits and set possibly modified termination control bits
1402 	 * in the Microcode SCSI_CFG1 Register Value.
1403 	 */
1404 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1405 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1406 
1407 	/*
1408 	 * Set SCSI_CFG1 Microcode Default Value
1409 	 *
1410 	 * Set possibly modified termination control and reset DIS_TERM_DRV
1411 	 * bits in the Microcode SCSI_CFG1 Register Value.
1412 	 *
1413 	 * The microcode will set the SCSI_CFG1 register using this value
1414 	 * after it is started below.
1415 	 */
1416 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1417 
1418 	/*
1419 	 * Set MEM_CFG Microcode Default Value
1420 	 *
1421 	 * The microcode will set the MEM_CFG register using this value
1422 	 * after it is started below.
1423 	 *
1424 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1425 	 * are defined.
1426 	 *
1427 	 * ASC-38C0800 has 16KB internal memory.
1428 	 */
1429 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1430 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1431 
1432 	return 0;
1433 }
1434 
1435 
1436 int
1437 AdwASC38C1600Cabling(iot, ioh, cfg)
1438 	bus_space_tag_t iot;
1439 	bus_space_handle_t ioh;
1440 	ADW_DVC_CFG *cfg;
1441 {
1442 	u_int16_t	scsi_cfg1;
1443 
1444 
1445 	/*
1446 	 * Determine SCSI_CFG1 Microcode Default Value.
1447 	 *
1448 	 * The microcode will set the SCSI_CFG1 register using this value
1449 	 * after it is started below.
1450 	 * Each ASC-38C1600 function has only two cable detect bits.
1451 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1452 	 */
1453 
1454 	/* Read current SCSI_CFG1 Register value. */
1455 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1456 
1457 	/*
1458 	 * If the cable is reversed all of the SCSI_CTRL register signals
1459 	 * will be set. Check for and return an error if this condition is
1460 	 * found.
1461 	 */
1462 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1463 		return ADW_IERR_REVERSED_CABLE;
1464 	}
1465 
1466 	/*
1467 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
1468 	 * can not be connected to either connector. An LVD device or SE device
1469 	 * may be connected to either connecor. If an SE device is connected,
1470 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
1471 	 *
1472 	 * If an HVD device is attached, return an error.
1473 	 */
1474 	if (scsi_cfg1 & ADW_HVD) {
1475 		return ADW_IERR_HVD_DEVICE;
1476 	}
1477 
1478 	/*
1479 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
1480 	 * termination because there are two connectors for each function.
1481 	 * Each function may use either LVD or SE mode.
1482 	 * Corresponding the SE automatic termination control EEPROM bits are
1483 	 * used for each function.
1484 	 * Each function has its own EEPROM. If SE automatic control is enabled
1485 	 * for the function, then set the termination value based on a table
1486 	 * listed in adwlib.h.
1487 	 *
1488 	 * If manual termination is specified in the EEPROM for the function,
1489 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1490 	 * ready to be 'ored' into SCSI_CFG1.
1491 	 */
1492 	if ((cfg->termination & ADW_TERM_SE) == 0) {
1493 		/* SE automatic termination control is enabled. */
1494 		switch(scsi_cfg1 & ADW_C_DET_SE) {
1495 			/* TERM_SE_HI: on, TERM_SE_LO: on */
1496 			case 0x1: case 0x2: case 0x3:
1497 				cfg->termination |= ADW_TERM_SE;
1498 				break;
1499 
1500 			case 0x0:
1501 #if 0
1502 	/* !!!!TODO!!!! */
1503 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1504 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1505 				}
1506 				else
1507 #endif
1508 				{
1509 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1510 					cfg->termination |= ADW_TERM_SE_HI;
1511 				}
1512 				break;
1513 			}
1514 	}
1515 
1516 	/*
1517 	 * Clear any set TERM_SE bits.
1518 	 */
1519 	scsi_cfg1 &= ~ADW_TERM_SE;
1520 
1521 	/*
1522 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1523 	 */
1524 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1525 
1526 	/*
1527 	 * Clear Big Endian and Terminator Polarity bits and set possibly
1528 	 * modified termination control bits in the Microcode SCSI_CFG1
1529 	 * Register Value.
1530 	 */
1531 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1532 
1533 	/*
1534 	 * Set SCSI_CFG1 Microcode Default Value
1535 	 *
1536 	 * Set possibly modified termination control bits in the Microcode
1537 	 * SCSI_CFG1 Register Value.
1538 	 *
1539 	 * The microcode will set the SCSI_CFG1 register using this value
1540 	 * after it is started below.
1541 	 */
1542 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1543 
1544 	/*
1545 	 * Set MEM_CFG Microcode Default Value
1546 	 *
1547 	 * The microcode will set the MEM_CFG register using this value
1548 	 * after it is started below.
1549 	 *
1550 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1551 	 * are defined.
1552 	 *
1553 	 * ASC-38C1600 has 32KB internal memory.
1554 	 */
1555 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1556 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1557 
1558 	return 0;
1559 }
1560 
1561 
1562 /*
1563  * Read EEPROM configuration into the specified buffer.
1564  *
1565  * Return a checksum based on the EEPROM configuration read.
1566  */
1567 static u_int16_t
1568 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1569 	bus_space_tag_t		iot;
1570 	bus_space_handle_t	ioh;
1571 	ADW_EEPROM		*cfg_buf;
1572 {
1573 	u_int16_t	       wval, chksum;
1574 	u_int16_t	       *wbuf;
1575 	int		    eep_addr;
1576 
1577 
1578 	wbuf = (u_int16_t *) cfg_buf;
1579 	chksum = 0;
1580 
1581 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1582 		eep_addr < ASC_EEP_DVC_CFG_END;
1583 		eep_addr++, wbuf++) {
1584 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
1585 		chksum += wval;
1586 		*wbuf = wval;
1587 	}
1588 
1589 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1590 	wbuf++;
1591 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1592 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
1593 			eep_addr++, wbuf++) {
1594 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1595 	}
1596 
1597 	return chksum;
1598 }
1599 
1600 
1601 /*
1602  * Read the EEPROM from specified location
1603  */
1604 static u_int16_t
1605 AdwReadEEPWord(iot, ioh, eep_word_addr)
1606 	bus_space_tag_t		iot;
1607 	bus_space_handle_t	ioh;
1608 	int			eep_word_addr;
1609 {
1610 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1611 		ASC_EEP_CMD_READ | eep_word_addr);
1612 	AdwWaitEEPCmd(iot, ioh);
1613 
1614 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1615 }
1616 
1617 
1618 /*
1619  * Wait for EEPROM command to complete
1620  */
1621 static void
1622 AdwWaitEEPCmd(iot, ioh)
1623 	bus_space_tag_t		iot;
1624 	bus_space_handle_t	ioh;
1625 {
1626 	int eep_delay_ms;
1627 
1628 
1629 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1630 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1631 				ASC_EEP_CMD_DONE) {
1632 			break;
1633 		}
1634 		AdwSleepMilliSecond(1);
1635 	}
1636 
1637 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1638 }
1639 
1640 
1641 /*
1642  * Write the EEPROM from 'cfg_buf'.
1643  */
1644 static void
1645 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1646 	bus_space_tag_t		iot;
1647 	bus_space_handle_t	ioh;
1648 	ADW_EEPROM		*cfg_buf;
1649 {
1650 	u_int16_t *wbuf;
1651 	u_int16_t addr, chksum;
1652 
1653 
1654 	wbuf = (u_int16_t *) cfg_buf;
1655 	chksum = 0;
1656 
1657 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1658 	AdwWaitEEPCmd(iot, ioh);
1659 
1660 	/*
1661 	 * Write EEPROM from word 0 to word 20
1662 	 */
1663 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
1664 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1665 		chksum += *wbuf;
1666 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1667 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1668 				ASC_EEP_CMD_WRITE | addr);
1669 		AdwWaitEEPCmd(iot, ioh);
1670 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1671 	}
1672 
1673 	/*
1674 	 * Write EEPROM checksum at word 21
1675 	 */
1676 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1677 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1678 			ASC_EEP_CMD_WRITE | addr);
1679 	AdwWaitEEPCmd(iot, ioh);
1680 	wbuf++;        /* skip over check_sum */
1681 
1682 	/*
1683 	 * Write EEPROM OEM name at words 22 to 29
1684 	 */
1685 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
1686 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1687 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1688 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1689 				ASC_EEP_CMD_WRITE | addr);
1690 		AdwWaitEEPCmd(iot, ioh);
1691 	}
1692 
1693 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1694 			ASC_EEP_CMD_WRITE_DISABLE);
1695 	AdwWaitEEPCmd(iot, ioh);
1696 
1697 	return;
1698 }
1699 
1700 
1701 /*
1702  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1703  *
1704  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1705  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
1706  *   RISC to notify it a new command is ready to be executed.
1707  *
1708  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1709  * set to SCSI_MAX_RETRY.
1710  *
1711  * Return:
1712  *      ADW_SUCCESS(1) - The request was successfully queued.
1713  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
1714  *                       request completes.
1715  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
1716  *                       host IC error.
1717  */
1718 int
1719 AdwExeScsiQueue(sc, scsiq)
1720 ADW_SOFTC	*sc;
1721 ADW_SCSI_REQ_Q	*scsiq;
1722 {
1723 	bus_space_tag_t iot = sc->sc_iot;
1724 	bus_space_handle_t ioh = sc->sc_ioh;
1725 	ADW_CCB		*ccb;
1726 	long		req_size;
1727 	u_int32_t	req_paddr;
1728 	ADW_CARRIER	*new_carrp;
1729 
1730 	/*
1731 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1732 	 */
1733 	if (scsiq->target_id > ADW_MAX_TID) {
1734 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1735 		scsiq->done_status = QD_WITH_ERROR;
1736 		return ADW_ERROR;
1737 	}
1738 
1739 	/*
1740 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1741 	 */
1742 
1743 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1744 
1745 	/*
1746 	 * Allocate a carrier and initialize fields.
1747 	 */
1748 	if ((new_carrp = sc->carr_freelist) == NULL) {
1749 		return ADW_BUSY;
1750 	}
1751 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1752 			ASC_GET_CARRP(new_carrp->next_ba));
1753 	sc->carr_pending_cnt++;
1754 
1755 	/*
1756 	 * Set the carrier to be a stopper by setting 'next_ba'
1757 	 * to the stopper value. The current stopper will be changed
1758 	 * below to point to the new stopper.
1759 	 */
1760 	new_carrp->next_ba = ASC_CQ_STOPPER;
1761 
1762 	req_size = sizeof(ADW_SCSI_REQ_Q);
1763 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1764 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1765 
1766 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1767 	scsiq->scsiq_rptr = req_paddr;
1768 
1769 	/*
1770 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1771 	 * order during initialization.
1772 	 */
1773 	scsiq->carr_ba = sc->icq_sp->carr_ba;
1774 	scsiq->carr_va = sc->icq_sp->carr_ba;
1775 
1776 	/*
1777 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1778 	 * the microcode. The newly allocated stopper will become the new
1779 	 * stopper.
1780 	 */
1781 	sc->icq_sp->areq_ba = req_paddr;
1782 
1783 	/*
1784 	 * Set the 'next_ba' pointer for the old stopper to be the
1785 	 * physical address of the new stopper. The RISC can only
1786 	 * follow physical addresses.
1787 	 */
1788 	sc->icq_sp->next_ba = new_carrp->carr_ba;
1789 
1790 #if ADW_DEBUG
1791 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1792 			sc->icq_sp->carr_id,
1793 			sc->icq_sp->carr_ba,
1794 			sc->icq_sp->areq_ba,
1795 			sc->icq_sp->next_ba);
1796 #endif
1797 	/*
1798 	 * Set the host adapter stopper pointer to point to the new carrier.
1799 	 */
1800 	sc->icq_sp = new_carrp;
1801 
1802 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
1803 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
1804 		/*
1805 		 * Tickle the RISC to tell it to read its Command Queue Head
1806 		 * pointer.
1807 		 */
1808 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1809 		if (sc->chip_type == ADW_CHIP_ASC3550) {
1810 			/*
1811 			 * Clear the tickle value. In the ASC-3550 the RISC flag
1812 			 * command 'clr_tickle_a' does not work unless the host
1813 			 * value is cleared.
1814 			 */
1815 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1816 					ADW_TICKLE_NOP);
1817 		}
1818 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1819 		/*
1820 		 * Notify the RISC a carrier is ready by writing the physical
1821 		 * address of the new carrier stopper to the COMMA register.
1822 		 */
1823 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1824 				new_carrp->carr_ba);
1825 	}
1826 
1827 	/*
1828 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1829 	 */
1830 
1831 	return ADW_SUCCESS;
1832 }
1833 
1834 
1835 void
1836 AdwResetChip(iot, ioh)
1837 	bus_space_tag_t iot;
1838 	bus_space_handle_t ioh;
1839 {
1840 
1841 	/*
1842 	 * Reset Chip.
1843 	 */
1844 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1845 			ADW_CTRL_REG_CMD_RESET);
1846 	AdwSleepMilliSecond(100);
1847 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1848 			ADW_CTRL_REG_CMD_WR_IO_REG);
1849 }
1850 
1851 
1852 /*
1853  * Reset SCSI Bus and purge all outstanding requests.
1854  *
1855  * Return Value:
1856  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
1857  *      ADW_FALSE(0) -  Microcode command failed.
1858  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1859  *                      may be hung which requires driver recovery.
1860  */
1861 int
1862 AdwResetCCB(sc)
1863 ADW_SOFTC	*sc;
1864 {
1865 	int	    status;
1866 
1867 	/*
1868 	 * Send the SCSI Bus Reset idle start idle command which asserts
1869 	 * the SCSI Bus Reset signal.
1870 	 */
1871 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1872 	if (status != ADW_TRUE) {
1873 		return status;
1874 	}
1875 
1876 	/*
1877 	 * Delay for the specified SCSI Bus Reset hold time.
1878 	 *
1879 	 * The hold time delay is done on the host because the RISC has no
1880 	 * microsecond accurate timer.
1881 	 */
1882 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1883 
1884 	/*
1885 	 * Send the SCSI Bus Reset end idle command which de-asserts
1886 	 * the SCSI Bus Reset signal and purges any pending requests.
1887 	 */
1888 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1889 	if (status != ADW_TRUE) {
1890 		return status;
1891 	}
1892 
1893 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1894 
1895 	return status;
1896 }
1897 
1898 
1899 /*
1900  * Reset chip and SCSI Bus.
1901  *
1902  * Return Value:
1903  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
1904  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
1905  */
1906 int
1907 AdwResetSCSIBus(sc)
1908 ADW_SOFTC	*sc;
1909 {
1910 	bus_space_tag_t iot = sc->sc_iot;
1911 	bus_space_handle_t ioh = sc->sc_ioh;
1912 	int		status;
1913 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
1914 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
1915 	u_int16_t	bios_sig;
1916 
1917 
1918 	/*
1919 	 * Save current per TID negotiated values.
1920 	 */
1921 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1922 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1923 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1924 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1925 	}
1926 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1927 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1928 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1929 			max_cmd[tid]);
1930 	}
1931 
1932 	/*
1933 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1934 	 * by clearing the BIOS signature word.
1935 	 * The initialization functions assumes a SCSI Bus Reset is not
1936 	 * needed if the BIOS signature word is present.
1937 	 */
1938 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1939 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1940 
1941 	/*
1942 	 * Stop chip and reset it.
1943 	 */
1944 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1945 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1946 			ADW_CTRL_REG_CMD_RESET);
1947 	AdwSleepMilliSecond(100);
1948 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1949 			ADW_CTRL_REG_CMD_WR_IO_REG);
1950 
1951 	/*
1952 	 * Reset Adv Library error code, if any, and try
1953 	 * re-initializing the chip.
1954 	 * Then translate initialization return value to status value.
1955 	 */
1956 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1957 
1958 	/*
1959 	 * Restore the BIOS signature word.
1960 	 */
1961 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1962 
1963 	/*
1964 	 * Restore per TID negotiated values.
1965 	 */
1966 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1967 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1968 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1969 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1970 	}
1971 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1972 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1973 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1974 			max_cmd[tid]);
1975 	}
1976 
1977 	return status;
1978 }
1979 
1980 
1981 /*
1982  * Adv Library Interrupt Service Routine
1983  *
1984  *  This function is called by a driver's interrupt service routine.
1985  *  The function disables and re-enables interrupts.
1986  *
1987  *  When a microcode idle command is completed, the ADV_DVC_VAR
1988  *  'idle_cmd_done' field is set to ADW_TRUE.
1989  *
1990  *  Note: AdwISR() can be called when interrupts are disabled or even
1991  *  when there is no hardware interrupt condition present. It will
1992  *  always check for completed idle commands and microcode requests.
1993  *  This is an important feature that shouldn't be changed because it
1994  *  allows commands to be completed from polling mode loops.
1995  *
1996  * Return:
1997  *   ADW_TRUE(1) - interrupt was pending
1998  *   ADW_FALSE(0) - no interrupt was pending
1999  */
2000 int
2001 AdwISR(sc)
2002 ADW_SOFTC	*sc;
2003 {
2004 	bus_space_tag_t iot = sc->sc_iot;
2005 	bus_space_handle_t ioh = sc->sc_ioh;
2006 	u_int8_t	int_stat;
2007 	u_int16_t	target_bit;
2008 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
2009 	u_int32_t	irq_next_pa;
2010 	ADW_SCSI_REQ_Q	*scsiq;
2011 	ADW_CCB		*ccb;
2012 	int		s;
2013 
2014 
2015 	s = splbio();
2016 
2017 	/* Reading the register clears the interrupt. */
2018 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2019 
2020 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2021 	     ADW_INTR_STATUS_INTRC)) == 0) {
2022 		splx(s);
2023 		return ADW_FALSE;
2024 	}
2025 
2026 	/*
2027 	 * Notify the driver of an asynchronous microcode condition by
2028 	 * calling the ADV_DVC_VAR.async_callback function. The function
2029 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2030 	 */
2031 	if (int_stat & ADW_INTR_STATUS_INTRB) {
2032 		u_int8_t intrb_code;
2033 
2034 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2035 
2036 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
2037 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
2038 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2039 				sc->carr_pending_cnt != 0) {
2040 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
2041 					IOPB_TICKLE, ADW_TICKLE_A);
2042 				if (sc->chip_type == ADW_CHIP_ASC3550) {
2043 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
2044 						IOPB_TICKLE, ADW_TICKLE_NOP);
2045 				}
2046 			}
2047 		}
2048 
2049 		if (sc->async_callback != 0) {
2050 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2051 		}
2052 	}
2053 
2054 	/*
2055 	 * Check if the IRQ stopper carrier contains a completed request.
2056 	 */
2057 	while (((irq_next_pa = sc->irq_sp->next_ba) & ASC_RQ_DONE) != 0)
2058 	{
2059 #if ADW_DEBUG
2060 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2061 				sc->irq_sp->carr_id,
2062 				sc->irq_sp->carr_ba,
2063 				sc->irq_sp->areq_ba,
2064 				sc->irq_sp->next_ba);
2065 #endif
2066 		/*
2067 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2068 		 * structure.
2069 		 * The RISC will have set 'areq_ba' to a virtual address.
2070 		 *
2071 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2072 		 * field to the carrier ADV_CARR_T.areq_ba field.
2073 		 * The conversion below complements the conversion of
2074 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2075 		 */
2076 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2077 		scsiq = &ccb->scsiq;
2078 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2079 
2080 		/*
2081 		 * Request finished with good status and the queue was not
2082 		 * DMAed to host memory by the firmware. Set all status fields
2083 		 * to indicate good status.
2084 		 */
2085 		if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
2086 			scsiq->done_status = QD_NO_ERROR;
2087 			scsiq->host_status = scsiq->scsi_status = 0;
2088 			scsiq->data_cnt = 0L;
2089 		}
2090 
2091 		/*
2092 		 * Advance the stopper pointer to the next carrier
2093 		 * ignoring the lower four bits. Free the previous
2094 		 * stopper carrier.
2095 		 */
2096 		free_carrp = sc->irq_sp;
2097 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2098 
2099 		free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
2100 					: sc->carr_freelist->carr_ba;
2101 		sc->carr_freelist = free_carrp;
2102 		sc->carr_pending_cnt--;
2103 
2104 
2105 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
2106 
2107 		/*
2108 		 * Clear request microcode control flag.
2109 		 */
2110 		scsiq->cntl = 0;
2111 
2112 		/*
2113 		 * Check Condition handling
2114 		 */
2115 		/*
2116 		 * If the command that completed was a SCSI INQUIRY and
2117 		 * LUN 0 was sent the command, then process the INQUIRY
2118 		 * command information for the device.
2119 		 */
2120 		if (scsiq->done_status == QD_NO_ERROR &&
2121 		    scsiq->cdb[0] == INQUIRY &&
2122 		    scsiq->target_lun == 0) {
2123 			AdwInquiryHandling(sc, scsiq);
2124 		}
2125 
2126 		/*
2127 		 * Notify the driver of the completed request by passing
2128 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
2129 		 */
2130 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2131 		/*
2132 		 * Note: After the driver callback function is called, 'scsiq'
2133 		 * can no longer be referenced.
2134 		 *
2135 		 * Fall through and continue processing other completed
2136 		 * requests...
2137 		 */
2138 	}
2139 
2140 	splx(s);
2141 
2142 	return ADW_TRUE;
2143 }
2144 
2145 
2146 /*
2147  * Send an idle command to the chip and wait for completion.
2148  *
2149  * Command completion is polled for once per microsecond.
2150  *
2151  * The function can be called from anywhere including an interrupt handler.
2152  * But the function is not re-entrant, so it uses the splbio/splx()
2153  * functions to prevent reentrancy.
2154  *
2155  * Return Values:
2156  *   ADW_TRUE - command completed successfully
2157  *   ADW_FALSE - command failed
2158  *   ADW_ERROR - command timed out
2159  */
2160 int
2161 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2162 ADW_SOFTC      *sc;
2163 u_int16_t       idle_cmd;
2164 u_int32_t       idle_cmd_parameter;
2165 {
2166 	bus_space_tag_t iot = sc->sc_iot;
2167 	bus_space_handle_t ioh = sc->sc_ioh;
2168 	u_int16_t	result;
2169 	u_int32_t	i, j, s;
2170 
2171 	s = splbio();
2172 
2173 	/*
2174 	 * Clear the idle command status which is set by the microcode
2175 	 * to a non-zero value to indicate when the command is completed.
2176 	 */
2177 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2178 
2179 	/*
2180 	 * Write the idle command value after the idle command parameter
2181 	 * has been written to avoid a race condition. If the order is not
2182 	 * followed, the microcode may process the idle command before the
2183 	 * parameters have been written to LRAM.
2184 	 */
2185 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2186 			idle_cmd_parameter);
2187 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2188 
2189 	/*
2190 	 * Tickle the RISC to tell it to process the idle command.
2191 	 */
2192 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2193 	if (sc->chip_type == ADW_CHIP_ASC3550) {
2194 		/*
2195 		 * Clear the tickle value. In the ASC-3550 the RISC flag
2196 		 * command 'clr_tickle_b' does not work unless the host
2197 		 * value is cleared.
2198 		 */
2199 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2200 	}
2201 
2202 	/* Wait for up to 100 millisecond for the idle command to timeout. */
2203 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2204 		/* Poll once each microsecond for command completion. */
2205 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2206 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2207 									result);
2208 			if (result != 0) {
2209 				splx(s);
2210 				return result;
2211 			}
2212 			AdwDelayMicroSecond(1);
2213 		}
2214 	}
2215 
2216 	splx(s);
2217 	return ADW_ERROR;
2218 }
2219 
2220 
2221 /*
2222  * Inquiry Information Byte 7 Handling
2223  *
2224  * Handle SCSI Inquiry Command information for a device by setting
2225  * microcode operating variables that affect WDTR, SDTR, and Tag
2226  * Queuing.
2227  */
2228 static void
2229 AdwInquiryHandling(sc, scsiq)
2230 ADW_SOFTC	*sc;
2231 ADW_SCSI_REQ_Q *scsiq;
2232 {
2233 #ifndef FAILSAFE
2234 	bus_space_tag_t iot = sc->sc_iot;
2235 	bus_space_handle_t ioh = sc->sc_ioh;
2236 	u_int8_t		tid;
2237 	struct scsipi_inquiry_data *inq;
2238 	u_int16_t		tidmask;
2239 	u_int16_t		cfg_word;
2240 
2241 
2242 	/*
2243 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2244 	 * to be available.
2245 	 *
2246 	 * If less than 8 bytes of INQUIRY information were requested or less
2247 	 * than 8 bytes were transferred, then return. cdb[4] is the request
2248 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2249 	 * microcode to the transfer residual count.
2250 	 */
2251 
2252 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2253 		return;
2254 	}
2255 
2256 	tid = scsiq->target_id;
2257 
2258 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2259 
2260 	/*
2261 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2262 	 */
2263 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2264 	    ((inq->version & SID_ANSII) < 2)) {
2265 		return;
2266 	} else {
2267 		/*
2268 		 * INQUIRY Byte 7 Handling
2269 		 *
2270 		 * Use a device's INQUIRY byte 7 to determine whether it
2271 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
2272 		 * is enabled in the EEPROM and the device supports the
2273 		 * feature, then enable it in the microcode.
2274 		 */
2275 
2276 		tidmask = ADW_TID_TO_TIDMASK(tid);
2277 
2278 		/*
2279 		 * Wide Transfers
2280 		 *
2281 		 * If the EEPROM enabled WDTR for the device and the device
2282 		 * supports wide bus (16 bit) transfers, then turn on the
2283 		 * device's 'wdtr_able' bit and write the new value to the
2284 		 * microcode.
2285 		 */
2286 #ifdef SCSI_ADW_WDTR_DISABLE
2287 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2288 #endif /* SCSI_ADW_WDTR_DISABLE */
2289 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2290 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2291 					cfg_word);
2292 			if ((cfg_word & tidmask) == 0) {
2293 				cfg_word |= tidmask;
2294 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2295 						cfg_word);
2296 
2297 				/*
2298 				 * Clear the microcode "SDTR negotiation" and
2299 				 * "WDTR negotiation" done indicators for the
2300 				 * target to cause it to negotiate with the new
2301 				 * setting set above.
2302 				 * WDTR when accepted causes the target to enter
2303 				 * asynchronous mode, so SDTR must be negotiated
2304 				 */
2305 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2306 						cfg_word);
2307 				cfg_word &= ~tidmask;
2308 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2309 						cfg_word);
2310 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2311 						cfg_word);
2312 				cfg_word &= ~tidmask;
2313 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2314 						cfg_word);
2315 			}
2316 		}
2317 
2318 		/*
2319 		 * Synchronous Transfers
2320 		 *
2321 		 * If the EEPROM enabled SDTR for the device and the device
2322 		 * supports synchronous transfers, then turn on the device's
2323 		 * 'sdtr_able' bit. Write the new value to the microcode.
2324 		 */
2325 #ifdef SCSI_ADW_SDTR_DISABLE
2326 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2327 #endif /* SCSI_ADW_SDTR_DISABLE */
2328 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2329 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2330 			if ((cfg_word & tidmask) == 0) {
2331 				cfg_word |= tidmask;
2332 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2333 						cfg_word);
2334 
2335 				/*
2336 				 * Clear the microcode "SDTR negotiation"
2337 				 * done indicator for the target to cause it
2338 				 * to negotiate with the new setting set above.
2339 				 */
2340 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2341 						cfg_word);
2342 				cfg_word &= ~tidmask;
2343 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2344 						cfg_word);
2345 			}
2346 		}
2347 		/*
2348 		 * If the Inquiry data included enough space for the SPI-3
2349 		 * Clocking field, then check if DT mode is supported.
2350 		 */
2351 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2352 		   (scsiq->cdb[4] >= 57 ||
2353 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2354 			/*
2355 			 * PPR (Parallel Protocol Request) Capable
2356 			 *
2357 			 * If the device supports DT mode, then it must be
2358 			 * PPR capable.
2359 			 * The PPR message will be used in place of the SDTR
2360 			 * and WDTR messages to negotiate synchronous speed
2361 			 * and offset, transfer width, and protocol options.
2362 			 */
2363 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2364 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2365 						sc->ppr_able);
2366 				sc->ppr_able |= tidmask;
2367 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2368 						sc->ppr_able);
2369 			}
2370 		}
2371 
2372 		/*
2373 		 * If the EEPROM enabled Tag Queuing for the device and the
2374 		 * device supports Tag Queueing, then turn on the device's
2375 		 * 'tagqng_enable' bit in the microcode and set the microcode
2376 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2377 		 * value.
2378 		 *
2379 		 * Tag Queuing is disabled for the BIOS which runs in polled
2380 		 * mode and would see no benefit from Tag Queuing. Also by
2381 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2382 		 * bugs will at least work with the BIOS.
2383 		 */
2384 #ifdef SCSI_ADW_TAGQ_DISABLE
2385 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2386 #endif /* SCSI_ADW_TAGQ_DISABLE */
2387 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2388 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2389 					cfg_word);
2390 			cfg_word |= tidmask;
2391 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2392 					cfg_word);
2393 
2394 			ADW_WRITE_BYTE_LRAM(iot, ioh,
2395 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
2396 					sc->max_dvc_qng);
2397 		}
2398 	}
2399 #endif /* FAILSAFE */
2400 }
2401 
2402 
2403 static void
2404 AdwSleepMilliSecond(n)
2405 u_int32_t	n;
2406 {
2407 
2408 	DELAY(n * 1000);
2409 }
2410 
2411 
2412 static void
2413 AdwDelayMicroSecond(n)
2414 u_int32_t	n;
2415 {
2416 
2417 	DELAY(n);
2418 }
2419 
2420