xref: /netbsd-src/sys/dev/ic/adwlib.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /* $NetBSD: adwlib.c,v 1.31 2003/11/02 11:07:44 wiz Exp $        */
2 
3 /*
4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5  *
6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * Author: Baldassare Dante Profeta <dante@mclink.it>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *        This product includes software developed by the NetBSD
22  *        Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 /*
40  * Ported from:
41  */
42 /*
43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44  *
45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
46  * All Rights Reserved.
47  *
48  * Redistribution and use in source and binary forms, with or without
49  * modification, are permitted provided that redistributions of source
50  * code retain the above copyright notice and this comment without
51  * modification.
52  */
53 
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.31 2003/11/02 11:07:44 wiz Exp $");
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/malloc.h>
60 #include <sys/kernel.h>
61 #include <sys/queue.h>
62 #include <sys/device.h>
63 
64 #include <machine/bus.h>
65 #include <machine/intr.h>
66 
67 #include <dev/scsipi/scsi_all.h>
68 #include <dev/scsipi/scsipi_all.h>
69 #include <dev/scsipi/scsiconf.h>
70 
71 #include <dev/pci/pcidevs.h>
72 
73 #include <uvm/uvm_extern.h>
74 
75 #include <dev/ic/adwlib.h>
76 #include <dev/ic/adwmcode.h>
77 #include <dev/ic/adw.h>
78 
79 
80 /* Static Functions */
81 
82 int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
83 int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
84 								u_int8_t));
85 int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
86 int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
87 								ADW_DVC_CFG *));
88 int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
89 								ADW_DVC_CFG *));
90 
91 static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
92      							ADW_EEPROM *));
93 static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
94 					                 ADW_EEPROM *));
95 static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
96 static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
97 
98 static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
99 
100 static void AdwSleepMilliSecond __P((u_int32_t));
101 static void AdwDelayMicroSecond __P((u_int32_t));
102 
103 
104 /*
105  * EEPROM Configuration.
106  *
107  * All drivers should use this structure to set the default EEPROM
108  * configuration. The BIOS now uses this structure when it is built.
109  * Additional structure information can be found in adwlib.h where
110  * the structure is defined.
111  */
112 const static ADW_EEPROM adw_3550_Default_EEPROM = {
113 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
114 	0x0000,			/* 01 cfg_msw */
115 	0xFFFF,			/* 02 disc_enable */
116 	0xFFFF,			/* 03 wdtr_able */
117 	{ 0xFFFF },		/* 04 sdtr_able */
118 	0xFFFF,			/* 05 start_motor */
119 	0xFFFF,			/* 06 tagqng_able */
120 	0xFFFF,			/* 07 bios_scan */
121 	0,			/* 08 scam_tolerant */
122 	7,			/* 09 adapter_scsi_id */
123 	0,			/*    bios_boot_delay */
124 	3,			/* 10 scsi_reset_delay */
125 	0,			/*    bios_id_lun */
126 	0,			/* 11 termination */
127 	0,			/*    reserved1 */
128 	0xFFE7,			/* 12 bios_ctrl */
129 	{ 0xFFFF },		/* 13 ultra_able */
130 	{ 0 },			/* 14 reserved2 */
131 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
132 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
133 	0,			/* 16 dvc_cntl */
134 	{ 0 },			/* 17 bug_fix */
135 	{ 0,0,0 },		/* 18-20 serial_number[3] */
136 	0,			/* 21 check_sum */
137 	{			/* 22-29 oem_name[16] */
138 	  0,0,0,0,0,0,0,0,
139 	  0,0,0,0,0,0,0,0
140 	},
141 	0,			/* 30 dvc_err_code */
142 	0,			/* 31 adv_err_code */
143 	0,			/* 32 adv_err_addr */
144 	0,			/* 33 saved_dvc_err_code */
145 	0,			/* 34 saved_adv_err_code */
146 	0			/* 35 saved_adv_err_addr */
147 };
148 
149 const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
150 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
151 	0x0000,			/* 01 cfg_msw */
152 	0xFFFF,			/* 02 disc_enable */
153 	0xFFFF,			/* 03 wdtr_able */
154 	{ 0x4444 },		/* 04 sdtr_speed1 */
155 	0xFFFF,			/* 05 start_motor */
156 	0xFFFF,			/* 06 tagqng_able */
157 	0xFFFF,			/* 07 bios_scan */
158 	0,			/* 08 scam_tolerant */
159 	7,			/* 09 adapter_scsi_id */
160 	0,			/*    bios_boot_delay */
161 	3,			/* 10 scsi_reset_delay */
162 	0,			/*    bios_id_lun */
163 	0,			/* 11 termination_se */
164 	0,			/*    termination_lvd */
165 	0xFFE7,			/* 12 bios_ctrl */
166 	{ 0x4444 },		/* 13 sdtr_speed2 */
167 	{ 0x4444 },		/* 14 sdtr_speed3 */
168 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
169 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
170 	0,			/* 16 dvc_cntl */
171 	{ 0x4444 },		/* 17 sdtr_speed4 */
172 	{ 0,0,0 },		/* 18-20 serial_number[3] */
173 	0,			/* 21 check_sum */
174 	{			/* 22-29 oem_name[16] */
175 	  0,0,0,0,0,0,0,0,
176 	  0,0,0,0,0,0,0,0
177 	},
178 	0,			/* 30 dvc_err_code */
179 	0,			/* 31 adv_err_code */
180 	0,			/* 32 adv_err_addr */
181 	0,			/* 33 saved_dvc_err_code */
182 	0,			/* 34 saved_adv_err_code */
183 	0,			/* 35 saved_adv_err_addr */
184 	{			/* 36-55 reserved1[16] */
185 	  0,0,0,0,0,0,0,0,0,0,
186 	  0,0,0,0,0,0,0,0,0,0
187 	},
188 	0,			/* 56 cisptr_lsw */
189 	0,			/* 57 cisprt_msw */
190 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
191 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
192 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
193 };
194 
195 const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
196 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
197 	0x0000,			/* 01 cfg_msw */
198 	0xFFFF,			/* 02 disc_enable */
199 	0xFFFF,			/* 03 wdtr_able */
200 	{ 0x5555 },		/* 04 sdtr_speed1 */
201 	0xFFFF,			/* 05 start_motor */
202 	0xFFFF,			/* 06 tagqng_able */
203 	0xFFFF,			/* 07 bios_scan */
204 	0,			/* 08 scam_tolerant */
205 	7,			/* 09 adapter_scsi_id */
206 	0,			/*    bios_boot_delay */
207 	3,			/* 10 scsi_reset_delay */
208 	0,			/*    bios_id_lun */
209 	0,			/* 11 termination_se */
210 	0,			/*    termination_lvd */
211 	0xFFE7,			/* 12 bios_ctrl */
212 	{ 0x5555 },		/* 13 sdtr_speed2 */
213 	{ 0x5555 },		/* 14 sdtr_speed3 */
214 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
215 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
216 	0,			/* 16 dvc_cntl */
217 	{ 0x5555 },		/* 17 sdtr_speed4 */
218 	{ 0,0,0 },		/* 18-20 serial_number[3] */
219 	0,			/* 21 check_sum */
220 	{			/* 22-29 oem_name[16] */
221 	  0,0,0,0,0,0,0,0,
222 	  0,0,0,0,0,0,0,0
223 	},
224 	0,			/* 30 dvc_err_code */
225 	0,			/* 31 adv_err_code */
226 	0,			/* 32 adv_err_addr */
227 	0,			/* 33 saved_dvc_err_code */
228 	0,			/* 34 saved_adv_err_code */
229 	0,			/* 35 saved_adv_err_addr */
230 	{			/* 36-55 reserved1[16] */
231 	  0,0,0,0,0,0,0,0,0,0,
232 	  0,0,0,0,0,0,0,0,0,0
233 	},
234 	0,			/* 56 cisptr_lsw */
235 	0,			/* 57 cisprt_msw */
236 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
237 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
238 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
239 };
240 
241 
242 /*
243  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
244  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
245  * all of this is done.
246  *
247  * For a non-fatal error return a warning code. If there are no warnings
248  * then 0 is returned.
249  *
250  * Note: Chip is stopped on entry.
251  */
252 int
253 AdwInitFromEEPROM(sc)
254 ADW_SOFTC      *sc;
255 {
256 	bus_space_tag_t iot = sc->sc_iot;
257 	bus_space_handle_t ioh = sc->sc_ioh;
258 	ADW_EEPROM		eep_config;
259 	u_int16_t		warn_code;
260 	u_int16_t		sdtr_speed = 0;
261 	u_int8_t		tid, termination;
262 	int			i, j;
263 
264 
265 	warn_code = 0;
266 
267 	/*
268 	 * Read the board's EEPROM configuration.
269 	 *
270 	 * Set default values if a bad checksum is found.
271 	 *
272 	 * XXX - Don't handle big-endian access to EEPROM yet.
273 	 */
274 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
275 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
276 
277 		/*
278 		 * Set EEPROM default values.
279 		 */
280 		switch(sc->chip_type) {
281 		case ADW_CHIP_ASC3550:
282 			eep_config = adw_3550_Default_EEPROM;
283 			break;
284 		case ADW_CHIP_ASC38C0800:
285 			eep_config = adw_38C0800_Default_EEPROM;
286 			break;
287 		case ADW_CHIP_ASC38C1600:
288 			eep_config = adw_38C1600_Default_EEPROM;
289 
290 #if 0
291 XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
292 #endif
293 			if (sc->cfg.pci_slot_info != 0) {
294 				u_int8_t lsw_msb;
295 
296 				lsw_msb = eep_config.cfg_lsw >> 8;
297 				/*
298 				 * Set Function 1 EEPROM Word 0 MSB
299 				 *
300 				 * Clear the BIOS_ENABLE (bit 14) and
301 				 * INTAB (bit 11) EEPROM bits.
302 				 *
303 				 * Disable Bit 14 (BIOS_ENABLE) to fix
304 				 * SPARC Ultra 60 and old Mac system booting
305 				 * problem. The Expansion ROM must
306 				 * be disabled in Function 1 for these systems.
307 				 */
308 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
309 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
310 				/*
311 				 * Set the INTAB (bit 11) if the GPIO 0 input
312 				 * indicates the Function 1 interrupt line is
313 				 * wired to INTA.
314 				 *
315 				 * Set/Clear Bit 11 (INTAB) from
316 				 * the GPIO bit 0 input:
317 				 *   1 - Function 1 intr line wired to INT A.
318 				 *   0 - Function 1 intr line wired to INT B.
319 				 *
320 				 * Note: Adapter boards always have Function 0
321 				 * wired to INTA.
322 				 * Put all 5 GPIO bits in input mode and then
323 				 * read their input values.
324 				 */
325 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
326 							IOPB_GPIO_CNTL, 0);
327 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
328 						IOPB_GPIO_DATA) & 0x01) {
329 					/*
330 					 * Function 1 interrupt wired to INTA;
331 					 * Set EEPROM bit.
332 					 */
333 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
334 							 & 0xFF;
335 				 }
336 				 eep_config.cfg_lsw &= 0x00FF;
337 				 eep_config.cfg_lsw |= lsw_msb << 8;
338 			}
339 			break;
340 		}
341 
342 		/*
343 		 * Assume the 6 byte board serial number that was read
344 		 * from EEPROM is correct even if the EEPROM checksum
345 		 * failed.
346 		 */
347 		for (i=2, j=1; i>=0; i--, j++) {
348 		eep_config.serial_number[i] =
349 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
350 		}
351 
352 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
353 	}
354 	/*
355 	 * Set sc and sc->cfg variables from the EEPROM configuration
356 	 * that was read.
357 	 *
358 	 * This is the mapping of EEPROM fields to Adw Library fields.
359 	 */
360 	sc->wdtr_able = eep_config.wdtr_able;
361 	if (sc->chip_type == ADW_CHIP_ASC3550) {
362 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
363 		sc->ultra_able = eep_config.sdtr2.ultra_able;
364 	} else {
365 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
366 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
367 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
368 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
369 	}
370 	sc->ppr_able = 0;
371 	sc->tagqng_able = eep_config.tagqng_able;
372 	sc->cfg.disc_enable = eep_config.disc_enable;
373 	sc->max_host_qng = eep_config.max_host_qng;
374 	sc->max_dvc_qng = eep_config.max_dvc_qng;
375 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
376 	sc->start_motor = eep_config.start_motor;
377 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
378 	sc->bios_ctrl = eep_config.bios_ctrl;
379 	sc->no_scam = eep_config.scam_tolerant;
380 	sc->cfg.serial1 = eep_config.serial_number[0];
381 	sc->cfg.serial2 = eep_config.serial_number[1];
382 	sc->cfg.serial3 = eep_config.serial_number[2];
383 
384 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
385 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
386 		sc->sdtr_able = 0;
387 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
388 			if (tid == 0) {
389 				sdtr_speed = sc->sdtr_speed1;
390 			} else if (tid == 4) {
391 				sdtr_speed = sc->sdtr_speed2;
392 			} else if (tid == 8) {
393 				sdtr_speed = sc->sdtr_speed3;
394 			} else if (tid == 12) {
395 				sdtr_speed = sc->sdtr_speed4;
396 			}
397 			if (sdtr_speed & ADW_MAX_TID) {
398 				sc->sdtr_able |= (1 << tid);
399 			}
400 			sdtr_speed >>= 4;
401 		}
402 	}
403 
404 	/*
405 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
406 	 * maximum queuing (max. 63, min. 4).
407 	 */
408 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
409 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
410 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
411 	{
412 		/* If the value is zero, assume it is uninitialized. */
413 		if (eep_config.max_host_qng == 0) {
414 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
415 		} else {
416 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
417 		}
418 	}
419 
420 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
421 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
422 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
423 		/* If the value is zero, assume it is uninitialized. */
424 		if (eep_config.max_dvc_qng == 0) {
425 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
426 		} else {
427 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
428 		}
429 	}
430 
431 	/*
432 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
433 	 * set 'max_dvc_qng' to 'max_host_qng'.
434 	 */
435 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
436 		eep_config.max_dvc_qng = eep_config.max_host_qng;
437 	}
438 
439 	/*
440 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
441 	 * values based on possibly adjusted EEPROM values.
442 	 */
443 	sc->max_host_qng = eep_config.max_host_qng;
444 	sc->max_dvc_qng = eep_config.max_dvc_qng;
445 
446 
447 	/*
448 	 * If the EEPROM 'termination' field is set to automatic (0), then set
449 	 * the ADV_DVC_CFG 'termination' field to automatic also.
450 	 *
451 	 * If the termination is specified with a non-zero 'termination'
452 	 * value check that a legal value is set and set the ADV_DVC_CFG
453 	 * 'termination' field appropriately.
454 	 */
455 
456 	switch(sc->chip_type) {
457 	case ADW_CHIP_ASC3550:
458 		sc->cfg.termination = 0;	/* auto termination */
459 		switch(eep_config.termination_se) {
460 		case 3:
461 			/* Enable manual control with low on / high on. */
462 			sc->cfg.termination |= ADW_TERM_CTL_L;
463 		case 2:
464 			/* Enable manual control with low off / high on. */
465 			sc->cfg.termination |= ADW_TERM_CTL_H;
466 		case 1:
467 			/* Enable manual control with low off / high off. */
468 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
469 		case 0:
470 			break;
471 		default:
472 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
473 		}
474 		break;
475 
476 	case ADW_CHIP_ASC38C0800:
477 	case ADW_CHIP_ASC38C1600:
478 		switch(eep_config.termination_se) {
479 		case 0:
480 			/* auto termination for SE */
481 			termination = 0;
482 			break;
483 		case 1:
484 			/* Enable manual control with low off / high off. */
485 			termination = 0;
486 			break;
487 		case 2:
488 			/* Enable manual control with low off / high on. */
489 			termination = ADW_TERM_SE_HI;
490 			break;
491 		case 3:
492 			/* Enable manual control with low on / high on. */
493 			termination = ADW_TERM_SE;
494 			break;
495 		default:
496 			/*
497 			 * The EEPROM 'termination_se' field contains a
498 			 * bad value. Use automatic termination instead.
499 			 */
500 			termination = 0;
501 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
502 		}
503 
504 		switch(eep_config.termination_lvd) {
505 		case 0:
506 			/* auto termination for LVD */
507 			sc->cfg.termination = termination;
508 			break;
509 		case 1:
510 			/* Enable manual control with low off / high off. */
511 			sc->cfg.termination = termination;
512 			break;
513 		case 2:
514 			/* Enable manual control with low off / high on. */
515 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
516 			break;
517 		case 3:
518 			/* Enable manual control with low on / high on. */
519 			sc->cfg.termination = termination | ADW_TERM_LVD;
520 			break;
521 		default:
522 			/*
523 			 * The EEPROM 'termination_lvd' field contains a
524 			 * bad value. Use automatic termination instead.
525 			 */
526 			sc->cfg.termination = termination;
527 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
528 		}
529 		break;
530 	}
531 
532 	return warn_code;
533 }
534 
535 
536 /*
537  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
538  *
539  * On failure return the error code.
540  */
541 int
542 AdwInitDriver(sc)
543 ADW_SOFTC      *sc;
544 {
545 	bus_space_tag_t iot = sc->sc_iot;
546 	bus_space_handle_t ioh = sc->sc_ioh;
547 	u_int16_t	error_code;
548 	int		word;
549 	int		i;
550 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
551 								0x40-0x8F. */
552 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
553 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
554 	u_int8_t	tid;
555 
556 
557 	error_code = 0;
558 
559 	/*
560 	 * Save the RISC memory BIOS region before writing the microcode.
561 	 * The BIOS may already be loaded and using its RISC LRAM region
562 	 * so its region must be saved and restored.
563 	 *
564 	 * Note: This code makes the assumption, which is currently true,
565 	 * that a chip reset does not clear RISC LRAM.
566 	 */
567 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
568 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
569 	}
570 
571 	/*
572 	 * Save current per TID negotiated values.
573 	 */
574 	switch (sc->chip_type) {
575 	case ADW_CHIP_ASC3550:
576 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
577 
578 			u_int16_t  bios_version, major, minor;
579 
580 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
581 					ADW_MC_BIOSMEM) / 2];
582 			major = (bios_version  >> 12) & 0xF;
583 			minor = (bios_version  >> 8) & 0xF;
584 			if (major < 3 || (major == 3 && minor == 1)) {
585 			    /*
586 			     * BIOS 3.1 and earlier location of
587 			     * 'wdtr_able' variable.
588 			     */
589 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
590 			} else {
591 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
592 					    wdtr_able);
593 			}
594 		}
595 		break;
596 
597 	case ADW_CHIP_ASC38C1600:
598 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
599 		/* FALLTHROUGH */
600 	case ADW_CHIP_ASC38C0800:
601 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
602 		break;
603 	}
604 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
605 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
606 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
607 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
608 			max_cmd[tid]);
609 	}
610 
611 	/*
612 	 * Perform a RAM Built-In Self Test
613 	 */
614 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
615 		return error_code;
616 	}
617 
618 	/*
619 	 * Load the Microcode
620 	 */
621 	;
622 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
623 		return error_code;
624 	}
625 
626 	/*
627 	 * Read microcode version and date.
628 	 */
629 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
630 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
631 
632 	/*
633 	 * If the PCI Configuration Command Register "Parity Error Response
634 	 * Control" Bit was clear (0), then set the microcode variable
635 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
636 	 * to ignore DMA parity errors.
637 	 */
638 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
639 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
640 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
641 					word | CONTROL_FLAG_IGNORE_PERR);
642 	}
643 
644 	switch (sc->chip_type) {
645 	case ADW_CHIP_ASC3550:
646 		/*
647 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
648 		 * FIFO threshold of 128 bytes.
649 		 * This register is only accessible to the host.
650 		 */
651 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
652 				START_CTL_EMFU | READ_CMD_MRM);
653 		break;
654 
655 	case ADW_CHIP_ASC38C0800:
656 		/*
657 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
658 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
659 		 * cable detection and then we are able to read C_DET[3:0].
660 		 *
661 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
662 		 * Microcode Default Value' section below.
663 		 */
664 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
665 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
666 				| ADW_DIS_TERM_DRV);
667 
668 		/*
669 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
670 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
671 		 *
672 		 * Note: ASC-38C0800 FIFO threshold has been changed to
673 		 * 256 bytes.
674 		 *
675 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
676 		 */
677 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
678 						BC_THRESH_ENB | FIFO_THRESH_80B
679 						| START_CTL_TH | READ_CMD_MRM);
680 		break;
681 
682 	case ADW_CHIP_ASC38C1600:
683 		/*
684 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
685 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
686 		 * cable detection and then we are able to read C_DET[3:0].
687 		 *
688 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
689 		 * Microcode Default Value' section below.
690 		 */
691 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
692 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
693 				| ADW_DIS_TERM_DRV);
694 
695 		/*
696 		 * If the BIOS control flag AIPP (Asynchronous Information
697 		 * Phase Protection) disable bit is not set, then set the
698 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
699 		 * enable AIPP checking and encoding.
700 		 */
701 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
702 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
703 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
704 					word | CONTROL_FLAG_ENABLE_AIPP);
705 		}
706 
707 		/*
708 		 * For ASC-38C1600 use DMA_CFG0 default values:
709 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
710 		 */
711 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
712 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
713 		break;
714 	}
715 
716 	/*
717 	 * Microcode operating variables for WDTR, SDTR, and command tag
718 	 * queuing will be set in AdvInquiryHandling() based on what a
719 	 * device reports it is capable of in Inquiry byte 7.
720 	 *
721 	 * If SCSI Bus Resets have been disabled, then directly set
722 	 * SDTR and WDTR from the EEPROM configuration. This will allow
723 	 * the BIOS and warm boot to work without a SCSI bus hang on
724 	 * the Inquiry caused by host and target mismatched DTR values.
725 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
726 	 * be assumed to be in Asynchronous, Narrow mode.
727 	 */
728 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
729 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
730 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
731 	}
732 
733 	/*
734 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
735 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
736 	 * bitmask. These values determine the maximum SDTR speed negotiated
737 	 * with a device.
738 	 *
739 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
740 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
741 	 * without determining here whether the device supports SDTR.
742 	 */
743 	switch (sc->chip_type) {
744 	case ADW_CHIP_ASC3550:
745 		word = 0;
746 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
747 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
748 				/* Set Ultra speed for TID 'tid'. */
749 				word |= (0x3 << (4 * (tid % 4)));
750 			} else {
751 				/* Set Fast speed for TID 'tid'. */
752 				word |= (0x2 << (4 * (tid % 4)));
753 			}
754 			/* Check if done with sdtr_speed1. */
755 			if (tid == 3) {
756 				ADW_WRITE_WORD_LRAM(iot, ioh,
757 						ADW_MC_SDTR_SPEED1, word);
758 				word = 0;
759 			/* Check if done with sdtr_speed2. */
760 			} else if (tid == 7) {
761 				ADW_WRITE_WORD_LRAM(iot, ioh,
762 						ADW_MC_SDTR_SPEED2, word);
763 				word = 0;
764 			/* Check if done with sdtr_speed3. */
765 			} else if (tid == 11) {
766 				ADW_WRITE_WORD_LRAM(iot, ioh,
767 						ADW_MC_SDTR_SPEED3, word);
768 				word = 0;
769 			/* Check if done with sdtr_speed4. */
770 			} else if (tid == 15) {
771 				ADW_WRITE_WORD_LRAM(iot, ioh,
772 						ADW_MC_SDTR_SPEED4, word);
773 				/* End of loop. */
774 			}
775 		}
776 
777 		/*
778 		 * Set microcode operating variable for the
779 		 * disconnect per TID bitmask.
780 		 */
781 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
782 							sc->cfg.disc_enable);
783 		break;
784 
785 	case ADW_CHIP_ASC38C0800:
786 		/* FALLTHROUGH */
787 	case ADW_CHIP_ASC38C1600:
788 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
789 							sc->cfg.disc_enable);
790 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
791 							sc->sdtr_speed1);
792 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
793 							sc->sdtr_speed2);
794 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
795 							sc->sdtr_speed3);
796 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
797 							sc->sdtr_speed4);
798 		break;
799 	}
800 
801 
802 	/*
803 	 * Set SCSI_CFG0 Microcode Default Value.
804 	 *
805 	 * The microcode will set the SCSI_CFG0 register using this value
806 	 * after it is started below.
807 	 */
808 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
809 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
810 		ADW_OUR_ID_EN | sc->chip_scsi_id);
811 
812 
813 	switch(sc->chip_type) {
814 	case ADW_CHIP_ASC3550:
815 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
816 		break;
817 
818 	case ADW_CHIP_ASC38C0800:
819 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
820 		break;
821 
822 	case ADW_CHIP_ASC38C1600:
823 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
824 		break;
825 	}
826 	if(error_code) {
827 		return error_code;
828 	}
829 
830 	/*
831 	 * Set SEL_MASK Microcode Default Value
832 	 *
833 	 * The microcode will set the SEL_MASK register using this value
834 	 * after it is started below.
835 	 */
836 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
837 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
838 
839 	/*
840 	 * Create and Initialize Host->RISC Carrier lists
841 	 */
842 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
843 						sc->sc_control->carriers);
844 
845 	/*
846 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
847 	 */
848 
849 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
850 		return ADW_IERR_NO_CARRIER;
851 	}
852 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
853 			ASC_GET_CARRP(sc->icq_sp->next_ba));
854 
855 	/*
856 	 * The first command issued will be placed in the stopper carrier.
857 	 */
858 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
859 
860 	/*
861 	 * Set RISC ICQ physical address start value.
862 	 */
863 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
864 
865 	/*
866 	 * Initialize the COMMA register to the same value otherwise
867 	 * the RISC will prematurely detect a command is available.
868 	 */
869 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
870 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
871 						le32toh(sc->icq_sp->carr_ba));
872 	}
873 
874 	/*
875 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
876 	 */
877 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
878 		return ADW_IERR_NO_CARRIER;
879 	}
880 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
881 			ASC_GET_CARRP(sc->irq_sp->next_ba));
882 
883 	/*
884 	 * The first command completed by the RISC will be placed in
885 	 * the stopper.
886 	 *
887 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
888 	 * completed the RISC will set the ASC_RQ_DONE bit.
889 	 */
890 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
891 
892 	/*
893 	 * Set RISC IRQ physical address start value.
894 	 */
895 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
896 	sc->carr_pending_cnt = 0;
897 
898 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
899 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
900 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
901 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
902 
903 	/* finally, finally, gentlemen, start your engine */
904 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
905 
906 	/*
907 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
908 	 * Resets should be performed. The RISC has to be running
909 	 * to issue a SCSI Bus Reset.
910 	 */
911 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
912 	{
913 		/*
914 		 * If the BIOS Signature is present in memory, restore the
915 		 * BIOS Handshake Configuration Table and do not perform
916 		 * a SCSI Bus Reset.
917 		 */
918 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
919 				0x55AA) {
920 			/*
921 			 * Restore per TID negotiated values.
922 			 */
923 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
924 					wdtr_able);
925 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
926 					sdtr_able);
927 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
928 					tagqng_able);
929 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
930 				ADW_WRITE_BYTE_LRAM(iot, ioh,
931 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
932 						max_cmd[tid]);
933 			}
934 		} else {
935 			if (AdwResetCCB(sc) != ADW_TRUE) {
936 				error_code = ADW_WARN_BUSRESET_ERROR;
937 			}
938 		}
939 	}
940 
941 	return error_code;
942 }
943 
944 
945 int
946 AdwRamSelfTest(iot, ioh, chip_type)
947 	bus_space_tag_t iot;
948 	bus_space_handle_t ioh;
949 	u_int8_t chip_type;
950 {
951 	int		i;
952 	u_int8_t	byte;
953 
954 
955 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
956 	    (chip_type == ADW_CHIP_ASC38C1600)) {
957 		/*
958 		 * RAM BIST (RAM Built-In Self Test)
959 		 *
960 		 * Address : I/O base + offset 0x38h register (byte).
961 		 * Function: Bit 7-6(RW) : RAM mode
962 		 *			    Normal Mode   : 0x00
963 		 *			    Pre-test Mode : 0x40
964 		 *			    RAM Test Mode : 0x80
965 		 *	     Bit 5	 : unused
966 		 *	     Bit 4(RO)   : Done bit
967 		 *	     Bit 3-0(RO) : Status
968 		 *			    Host Error    : 0x08
969 		 *			    Int_RAM Error : 0x04
970 		 *			    RISC Error    : 0x02
971 		 *			    SCSI Error    : 0x01
972 		 *			    No Error	  : 0x00
973 		 *
974 		 * Note: RAM BIST code should be put right here, before loading
975 		 * the microcode and after saving the RISC memory BIOS region.
976 		 */
977 
978 		/*
979 		 * LRAM Pre-test
980 		 *
981 		 * Write PRE_TEST_MODE (0x40) to register and wait for
982 		 * 10 milliseconds.
983 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
984 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
985 		 * If cannot reset to NORMAL_MODE, return an error too.
986 		 */
987 		for (i = 0; i < 2; i++) {
988 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
989 					PRE_TEST_MODE);
990 			 /* Wait for 10ms before reading back. */
991 			AdwSleepMilliSecond(10);
992 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
993 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
994 					PRE_TEST_VALUE) {
995 				return ADW_IERR_BIST_PRE_TEST;
996 			}
997 
998 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
999 								NORMAL_MODE);
1000 			/* Wait for 10ms before reading back. */
1001 			AdwSleepMilliSecond(10);
1002 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1003 			    != NORMAL_VALUE) {
1004 				return ADW_IERR_BIST_PRE_TEST;
1005 			}
1006 		}
1007 
1008 		/*
1009 		 * LRAM Test - It takes about 1.5 ms to run through the test.
1010 		 *
1011 		 * Write RAM_TEST_MODE (0x80) to register and wait for
1012 		 * 10 milliseconds.
1013 		 * If Done bit not set or Status not 0, save register byte,
1014 		 * set the err_code, and return an error.
1015 		 */
1016 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1017 		/* Wait for 10ms before checking status. */
1018 		AdwSleepMilliSecond(10);
1019 
1020 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1021 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1022 			/* Get here if Done bit not set or Status not 0. */
1023 			return ADW_IERR_BIST_RAM_TEST;
1024 		}
1025 
1026 		/* We need to reset back to normal mode after LRAM test passes*/
1027 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 
1034 int
1035 AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1036 	bus_space_tag_t iot;
1037 	bus_space_handle_t ioh;
1038 	u_int16_t *bios_mem;
1039 	u_int8_t chip_type;
1040 {
1041 	u_int8_t	*mcode_data;
1042 	u_int32_t	 mcode_chksum;
1043 	u_int16_t	 mcode_size;
1044 	u_int32_t	sum;
1045 	u_int16_t	code_sum;
1046 	int		begin_addr;
1047 	int		end_addr;
1048 	int		word;
1049 	int		adw_memsize;
1050 	int		adw_mcode_expanded_size;
1051 	int		i, j;
1052 
1053 
1054 	switch(chip_type) {
1055 	case ADW_CHIP_ASC3550:
1056 		mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1057 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1058 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1059 		adw_memsize = ADW_3550_MEMSIZE;
1060 		break;
1061 
1062 	case ADW_CHIP_ASC38C0800:
1063 		mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1064 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1065 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1066 		adw_memsize = ADW_38C0800_MEMSIZE;
1067 		break;
1068 
1069 	case ADW_CHIP_ASC38C1600:
1070 		mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1071 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1072 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1073 		adw_memsize = ADW_38C1600_MEMSIZE;
1074 		break;
1075 
1076 	default:
1077 		return (EINVAL);
1078 	}
1079 
1080 	/*
1081 	 * Write the microcode image to RISC memory starting at address 0.
1082 	 */
1083 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1084 
1085 	/* Assume the following compressed format of the microcode buffer:
1086 	 *
1087 	 *  254 word (508 byte) table indexed by byte code followed
1088 	 *  by the following byte codes:
1089 	 *
1090 	 *    1-Byte Code:
1091 	 *	00: Emit word 0 in table.
1092 	 *	01: Emit word 1 in table.
1093 	 *	.
1094 	 *	FD: Emit word 253 in table.
1095 	 *
1096 	 *    Multi-Byte Code:
1097 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1098 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1099 	 */
1100 	word = 0;
1101 	for (i = 253 * 2; i < mcode_size; i++) {
1102 		if (mcode_data[i] == 0xff) {
1103 			for (j = 0; j < mcode_data[i + 1]; j++) {
1104 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1105 				  (((u_int16_t)mcode_data[i + 3] << 8) |
1106 				  mcode_data[i + 2]));
1107 				word++;
1108 			}
1109 			i += 3;
1110 		} else if (mcode_data[i] == 0xfe) {
1111 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1112 			    (((u_int16_t)mcode_data[i + 2] << 8) |
1113 			    mcode_data[i + 1]));
1114 			i += 2;
1115 			word++;
1116 		} else {
1117 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1118 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1119 			 mcode_data[mcode_data[i] * 2]));
1120 			word++;
1121 		}
1122 	}
1123 
1124 	/*
1125 	 * Set 'word' for later use to clear the rest of memory and save
1126 	 * the expanded mcode size.
1127 	 */
1128 	word *= 2;
1129 	adw_mcode_expanded_size = word;
1130 
1131 	/*
1132 	 * Clear the rest of the Internal RAM.
1133 	 */
1134 	for (; word < adw_memsize; word += 2) {
1135 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1136 	}
1137 
1138 	/*
1139 	 * Verify the microcode checksum.
1140 	 */
1141 	sum = 0;
1142 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1143 
1144 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1145 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1146 	}
1147 
1148 	if (sum != mcode_chksum) {
1149 		return ADW_IERR_MCODE_CHKSUM;
1150 	}
1151 
1152 	/*
1153 	 * Restore the RISC memory BIOS region.
1154 	 */
1155 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1156 		if(chip_type == ADW_CHIP_ASC3550) {
1157 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1158 								bios_mem[i]);
1159 		} else {
1160 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1161 								bios_mem[i]);
1162 		}
1163 	}
1164 
1165 	/*
1166 	 * Calculate and write the microcode code checksum to the microcode
1167 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1168 	 */
1169 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1170 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1171 	code_sum = 0;
1172 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1173 	for (word = begin_addr; word < end_addr; word += 2) {
1174 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1175 	}
1176 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1177 
1178 	/*
1179 	 * Set the chip type.
1180 	 */
1181 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1182 
1183 	return 0;
1184 }
1185 
1186 
1187 int
1188 AdwASC3550Cabling(iot, ioh, cfg)
1189 	bus_space_tag_t iot;
1190 	bus_space_handle_t ioh;
1191 	ADW_DVC_CFG *cfg;
1192 {
1193 	u_int16_t	scsi_cfg1;
1194 
1195 
1196 	/*
1197 	 * Determine SCSI_CFG1 Microcode Default Value.
1198 	 *
1199 	 * The microcode will set the SCSI_CFG1 register using this value
1200 	 * after it is started below.
1201 	 */
1202 
1203 	/* Read current SCSI_CFG1 Register value. */
1204 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1205 
1206 	/*
1207 	 * If all three connectors are in use in ASC3550, return an error.
1208 	 */
1209 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1210 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1211 		return ADW_IERR_ILLEGAL_CONNECTION;
1212 	}
1213 
1214 	/*
1215 	 * If the cable is reversed all of the SCSI_CTRL register signals
1216 	 * will be set. Check for and return an error if this condition is
1217 	 * found.
1218 	 */
1219 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1220 		return ADW_IERR_REVERSED_CABLE;
1221 	}
1222 
1223 	/*
1224 	 * If this is a differential board and a single-ended device
1225 	 * is attached to one of the connectors, return an error.
1226 	 */
1227 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1228 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1229 		return ADW_IERR_SINGLE_END_DEVICE;
1230 	}
1231 
1232 	/*
1233 	 * If automatic termination control is enabled, then set the
1234 	 * termination value based on a table listed in a_condor.h.
1235 	 *
1236 	 * If manual termination was specified with an EEPROM setting
1237 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
1238 	 * is ready to be 'ored' into SCSI_CFG1.
1239 	 */
1240 	if (cfg->termination == 0) {
1241 		/*
1242 		 * The software always controls termination by setting
1243 		 * TERM_CTL_SEL.
1244 		 * If TERM_CTL_SEL were set to 0, the hardware would set
1245 		 * termination.
1246 		 */
1247 		cfg->termination |= ADW_TERM_CTL_SEL;
1248 
1249 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1250 			/* TERM_CTL_H: on, TERM_CTL_L: on */
1251 			case 0x3: case 0x7: case 0xB:
1252 			case 0xD: case 0xE: case 0xF:
1253 				cfg->termination |=
1254 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1255 				break;
1256 
1257 			/* TERM_CTL_H: on, TERM_CTL_L: off */
1258 			case 0x1: case 0x5: case 0x9:
1259 			case 0xA: case 0xC:
1260 				cfg->termination |= ADW_TERM_CTL_H;
1261 				break;
1262 
1263 			/* TERM_CTL_H: off, TERM_CTL_L: off */
1264 			case 0x2: case 0x6:
1265 				break;
1266 		}
1267 	}
1268 
1269 	/*
1270 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1271 	 */
1272 	scsi_cfg1 &= ~ADW_TERM_CTL;
1273 
1274 	/*
1275 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1276 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1277 	 * referenced, because the hardware internally inverts
1278 	 * the Termination High and Low bits if TERM_POL is set.
1279 	 */
1280 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1281 
1282 	/*
1283 	 * Set SCSI_CFG1 Microcode Default Value
1284 	 *
1285 	 * Set filter value and possibly modified termination control
1286 	 * bits in the Microcode SCSI_CFG1 Register Value.
1287 	 *
1288 	 * The microcode will set the SCSI_CFG1 register using this value
1289 	 * after it is started below.
1290 	 */
1291 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1292 						ADW_FLTR_DISABLE | scsi_cfg1);
1293 
1294 	/*
1295 	 * Set MEM_CFG Microcode Default Value
1296 	 *
1297 	 * The microcode will set the MEM_CFG register using this value
1298 	 * after it is started below.
1299 	 *
1300 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1301 	 * are defined.
1302 	 *
1303 	 * ASC-3550 has 8KB internal memory.
1304 	 */
1305 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1306 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1307 
1308 	return 0;
1309 }
1310 
1311 
1312 int
1313 AdwASC38C0800Cabling(iot, ioh, cfg)
1314 	bus_space_tag_t iot;
1315 	bus_space_handle_t ioh;
1316 	ADW_DVC_CFG *cfg;
1317 {
1318 	u_int16_t	scsi_cfg1;
1319 
1320 
1321 	/*
1322 	 * Determine SCSI_CFG1 Microcode Default Value.
1323 	 *
1324 	 * The microcode will set the SCSI_CFG1 register using this value
1325 	 * after it is started below.
1326 	 */
1327 
1328 	/* Read current SCSI_CFG1 Register value. */
1329 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1330 
1331 	/*
1332 	 * If the cable is reversed all of the SCSI_CTRL register signals
1333 	 * will be set. Check for and return an error if this condition is
1334 	 * found.
1335 	 */
1336 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1337 		return ADW_IERR_REVERSED_CABLE;
1338 	}
1339 
1340 	/*
1341 	 * All kind of combinations of devices attached to one of four
1342 	 * connectors are acceptable except HVD device attached.
1343 	 * For example, LVD device can be attached to SE connector while
1344 	 * SE device attached to LVD connector.
1345 	 * If LVD device attached to SE connector, it only runs up to
1346 	 * Ultra speed.
1347 	 *
1348 	 * If an HVD device is attached to one of LVD connectors, return
1349 	 * an error.
1350 	 * However, there is no way to detect HVD device attached to
1351 	 * SE connectors.
1352 	 */
1353 	if (scsi_cfg1 & ADW_HVD) {
1354 		return ADW_IERR_HVD_DEVICE;
1355 	}
1356 
1357 	/*
1358 	 * If either SE or LVD automatic termination control is enabled, then
1359 	 * set the termination value based on a table listed in a_condor.h.
1360 	 *
1361 	 * If manual termination was specified with an EEPROM setting then
1362 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1363 	 * to be 'ored' into SCSI_CFG1.
1364 	 */
1365 	if ((cfg->termination & ADW_TERM_SE) == 0) {
1366 		/* SE automatic termination control is enabled. */
1367 		switch(scsi_cfg1 & ADW_C_DET_SE) {
1368 			/* TERM_SE_HI: on, TERM_SE_LO: on */
1369 			case 0x1: case 0x2: case 0x3:
1370 				cfg->termination |= ADW_TERM_SE;
1371 				break;
1372 
1373 			/* TERM_SE_HI: on, TERM_SE_LO: off */
1374 			case 0x0:
1375 				cfg->termination |= ADW_TERM_SE_HI;
1376 				break;
1377 		}
1378 	}
1379 
1380 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
1381 		/* LVD automatic termination control is enabled. */
1382 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
1383 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
1384 			case 0x4: case 0x8: case 0xC:
1385 				cfg->termination |= ADW_TERM_LVD;
1386 				break;
1387 
1388 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
1389 			case 0x0:
1390 				break;
1391 		}
1392 	}
1393 
1394 	/*
1395 	 * Clear any set TERM_SE and TERM_LVD bits.
1396 	 */
1397 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1398 
1399 	/*
1400 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1401 	 */
1402 	scsi_cfg1 |= (~cfg->termination & 0xF0);
1403 
1404 	/*
1405 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1406 	 * HVD/LVD/SE bits and set possibly modified termination control bits
1407 	 * in the Microcode SCSI_CFG1 Register Value.
1408 	 */
1409 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1410 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1411 
1412 	/*
1413 	 * Set SCSI_CFG1 Microcode Default Value
1414 	 *
1415 	 * Set possibly modified termination control and reset DIS_TERM_DRV
1416 	 * bits in the Microcode SCSI_CFG1 Register Value.
1417 	 *
1418 	 * The microcode will set the SCSI_CFG1 register using this value
1419 	 * after it is started below.
1420 	 */
1421 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1422 
1423 	/*
1424 	 * Set MEM_CFG Microcode Default Value
1425 	 *
1426 	 * The microcode will set the MEM_CFG register using this value
1427 	 * after it is started below.
1428 	 *
1429 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1430 	 * are defined.
1431 	 *
1432 	 * ASC-38C0800 has 16KB internal memory.
1433 	 */
1434 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1435 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1436 
1437 	return 0;
1438 }
1439 
1440 
1441 int
1442 AdwASC38C1600Cabling(iot, ioh, cfg)
1443 	bus_space_tag_t iot;
1444 	bus_space_handle_t ioh;
1445 	ADW_DVC_CFG *cfg;
1446 {
1447 	u_int16_t	scsi_cfg1;
1448 
1449 
1450 	/*
1451 	 * Determine SCSI_CFG1 Microcode Default Value.
1452 	 *
1453 	 * The microcode will set the SCSI_CFG1 register using this value
1454 	 * after it is started below.
1455 	 * Each ASC-38C1600 function has only two cable detect bits.
1456 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1457 	 */
1458 
1459 	/* Read current SCSI_CFG1 Register value. */
1460 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1461 
1462 	/*
1463 	 * If the cable is reversed all of the SCSI_CTRL register signals
1464 	 * will be set. Check for and return an error if this condition is
1465 	 * found.
1466 	 */
1467 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1468 		return ADW_IERR_REVERSED_CABLE;
1469 	}
1470 
1471 	/*
1472 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
1473 	 * cannot be connected to either connector. An LVD device or SE device
1474 	 * may be connected to either connector. If an SE device is connected,
1475 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
1476 	 *
1477 	 * If an HVD device is attached, return an error.
1478 	 */
1479 	if (scsi_cfg1 & ADW_HVD) {
1480 		return ADW_IERR_HVD_DEVICE;
1481 	}
1482 
1483 	/*
1484 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
1485 	 * termination because there are two connectors for each function.
1486 	 * Each function may use either LVD or SE mode.
1487 	 * Corresponding the SE automatic termination control EEPROM bits are
1488 	 * used for each function.
1489 	 * Each function has its own EEPROM. If SE automatic control is enabled
1490 	 * for the function, then set the termination value based on a table
1491 	 * listed in adwlib.h.
1492 	 *
1493 	 * If manual termination is specified in the EEPROM for the function,
1494 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
1495 	 * ready to be 'ored' into SCSI_CFG1.
1496 	 */
1497 	if ((cfg->termination & ADW_TERM_SE) == 0) {
1498 		/* SE automatic termination control is enabled. */
1499 		switch(scsi_cfg1 & ADW_C_DET_SE) {
1500 			/* TERM_SE_HI: on, TERM_SE_LO: on */
1501 			case 0x1: case 0x2: case 0x3:
1502 				cfg->termination |= ADW_TERM_SE;
1503 				break;
1504 
1505 			case 0x0:
1506 #if 0
1507 	/* !!!!TODO!!!! */
1508 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1509 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1510 				}
1511 				else
1512 #endif
1513 				{
1514 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1515 					cfg->termination |= ADW_TERM_SE_HI;
1516 				}
1517 				break;
1518 			}
1519 	}
1520 
1521 	/*
1522 	 * Clear any set TERM_SE bits.
1523 	 */
1524 	scsi_cfg1 &= ~ADW_TERM_SE;
1525 
1526 	/*
1527 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1528 	 */
1529 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1530 
1531 	/*
1532 	 * Clear Big Endian and Terminator Polarity bits and set possibly
1533 	 * modified termination control bits in the Microcode SCSI_CFG1
1534 	 * Register Value.
1535 	 */
1536 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1537 
1538 	/*
1539 	 * Set SCSI_CFG1 Microcode Default Value
1540 	 *
1541 	 * Set possibly modified termination control bits in the Microcode
1542 	 * SCSI_CFG1 Register Value.
1543 	 *
1544 	 * The microcode will set the SCSI_CFG1 register using this value
1545 	 * after it is started below.
1546 	 */
1547 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1548 
1549 	/*
1550 	 * Set MEM_CFG Microcode Default Value
1551 	 *
1552 	 * The microcode will set the MEM_CFG register using this value
1553 	 * after it is started below.
1554 	 *
1555 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1556 	 * are defined.
1557 	 *
1558 	 * ASC-38C1600 has 32KB internal memory.
1559 	 */
1560 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1561 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1562 
1563 	return 0;
1564 }
1565 
1566 
1567 /*
1568  * Read EEPROM configuration into the specified buffer.
1569  *
1570  * Return a checksum based on the EEPROM configuration read.
1571  */
1572 static u_int16_t
1573 AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1574 	bus_space_tag_t		iot;
1575 	bus_space_handle_t	ioh;
1576 	ADW_EEPROM		*cfg_buf;
1577 {
1578 	u_int16_t	       wval, chksum;
1579 	u_int16_t	       *wbuf;
1580 	int		    eep_addr;
1581 
1582 
1583 	wbuf = (u_int16_t *) cfg_buf;
1584 	chksum = 0;
1585 
1586 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1587 		eep_addr < ASC_EEP_DVC_CFG_END;
1588 		eep_addr++, wbuf++) {
1589 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
1590 		chksum += wval;
1591 		*wbuf = wval;
1592 	}
1593 
1594 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1595 	wbuf++;
1596 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1597 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
1598 			eep_addr++, wbuf++) {
1599 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1600 	}
1601 
1602 	return chksum;
1603 }
1604 
1605 
1606 /*
1607  * Read the EEPROM from specified location
1608  */
1609 static u_int16_t
1610 AdwReadEEPWord(iot, ioh, eep_word_addr)
1611 	bus_space_tag_t		iot;
1612 	bus_space_handle_t	ioh;
1613 	int			eep_word_addr;
1614 {
1615 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1616 		ASC_EEP_CMD_READ | eep_word_addr);
1617 	AdwWaitEEPCmd(iot, ioh);
1618 
1619 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1620 }
1621 
1622 
1623 /*
1624  * Wait for EEPROM command to complete
1625  */
1626 static void
1627 AdwWaitEEPCmd(iot, ioh)
1628 	bus_space_tag_t		iot;
1629 	bus_space_handle_t	ioh;
1630 {
1631 	int eep_delay_ms;
1632 
1633 
1634 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1635 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1636 				ASC_EEP_CMD_DONE) {
1637 			break;
1638 		}
1639 		AdwSleepMilliSecond(1);
1640 	}
1641 
1642 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1643 }
1644 
1645 
1646 /*
1647  * Write the EEPROM from 'cfg_buf'.
1648  */
1649 static void
1650 AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1651 	bus_space_tag_t		iot;
1652 	bus_space_handle_t	ioh;
1653 	ADW_EEPROM		*cfg_buf;
1654 {
1655 	u_int16_t *wbuf;
1656 	u_int16_t addr, chksum;
1657 
1658 
1659 	wbuf = (u_int16_t *) cfg_buf;
1660 	chksum = 0;
1661 
1662 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1663 	AdwWaitEEPCmd(iot, ioh);
1664 
1665 	/*
1666 	 * Write EEPROM from word 0 to word 20
1667 	 */
1668 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
1669 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1670 		chksum += *wbuf;
1671 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1672 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1673 				ASC_EEP_CMD_WRITE | addr);
1674 		AdwWaitEEPCmd(iot, ioh);
1675 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1676 	}
1677 
1678 	/*
1679 	 * Write EEPROM checksum at word 21
1680 	 */
1681 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1682 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1683 			ASC_EEP_CMD_WRITE | addr);
1684 	AdwWaitEEPCmd(iot, ioh);
1685 	wbuf++;        /* skip over check_sum */
1686 
1687 	/*
1688 	 * Write EEPROM OEM name at words 22 to 29
1689 	 */
1690 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
1691 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1692 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1693 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1694 				ASC_EEP_CMD_WRITE | addr);
1695 		AdwWaitEEPCmd(iot, ioh);
1696 	}
1697 
1698 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1699 			ASC_EEP_CMD_WRITE_DISABLE);
1700 	AdwWaitEEPCmd(iot, ioh);
1701 
1702 	return;
1703 }
1704 
1705 
1706 /*
1707  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1708  *
1709  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1710  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
1711  *   RISC to notify it a new command is ready to be executed.
1712  *
1713  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1714  * set to SCSI_MAX_RETRY.
1715  *
1716  * Return:
1717  *      ADW_SUCCESS(1) - The request was successfully queued.
1718  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
1719  *                       request completes.
1720  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
1721  *                       host IC error.
1722  */
1723 int
1724 AdwExeScsiQueue(sc, scsiq)
1725 ADW_SOFTC	*sc;
1726 ADW_SCSI_REQ_Q	*scsiq;
1727 {
1728 	bus_space_tag_t iot = sc->sc_iot;
1729 	bus_space_handle_t ioh = sc->sc_ioh;
1730 	ADW_CCB		*ccb;
1731 	u_int32_t	req_paddr;
1732 	ADW_CARRIER	*new_carrp;
1733 
1734 	/*
1735 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1736 	 */
1737 	if (scsiq->target_id > ADW_MAX_TID) {
1738 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1739 		scsiq->done_status = QD_WITH_ERROR;
1740 		return ADW_ERROR;
1741 	}
1742 
1743 	/*
1744 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1745 	 */
1746 
1747 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1748 
1749 	/*
1750 	 * Allocate a carrier and initialize fields.
1751 	 */
1752 	if ((new_carrp = sc->carr_freelist) == NULL) {
1753 		return ADW_BUSY;
1754 	}
1755 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1756 			ASC_GET_CARRP(new_carrp->next_ba));
1757 	sc->carr_pending_cnt++;
1758 
1759 	/*
1760 	 * Set the carrier to be a stopper by setting 'next_ba'
1761 	 * to the stopper value. The current stopper will be changed
1762 	 * below to point to the new stopper.
1763 	 */
1764 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1765 
1766 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1767 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1768 
1769 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1770 	scsiq->scsiq_rptr = htole32(req_paddr);
1771 
1772 	/*
1773 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1774 	 * order during initialization.
1775 	 */
1776 	scsiq->carr_ba = sc->icq_sp->carr_ba;
1777 	scsiq->carr_va = sc->icq_sp->carr_ba;
1778 
1779 	/*
1780 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1781 	 * the microcode. The newly allocated stopper will become the new
1782 	 * stopper.
1783 	 */
1784 	sc->icq_sp->areq_ba = htole32(req_paddr);
1785 
1786 	/*
1787 	 * Set the 'next_ba' pointer for the old stopper to be the
1788 	 * physical address of the new stopper. The RISC can only
1789 	 * follow physical addresses.
1790 	 */
1791 	sc->icq_sp->next_ba = new_carrp->carr_ba;
1792 
1793 #if ADW_DEBUG
1794 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1795 			sc->icq_sp->carr_id,
1796 			sc->icq_sp->carr_ba,
1797 			sc->icq_sp->areq_ba,
1798 			sc->icq_sp->next_ba);
1799 #endif
1800 	/*
1801 	 * Set the host adapter stopper pointer to point to the new carrier.
1802 	 */
1803 	sc->icq_sp = new_carrp;
1804 
1805 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
1806 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
1807 		/*
1808 		 * Tickle the RISC to tell it to read its Command Queue Head
1809 		 * pointer.
1810 		 */
1811 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1812 		if (sc->chip_type == ADW_CHIP_ASC3550) {
1813 			/*
1814 			 * Clear the tickle value. In the ASC-3550 the RISC flag
1815 			 * command 'clr_tickle_a' does not work unless the host
1816 			 * value is cleared.
1817 			 */
1818 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1819 					ADW_TICKLE_NOP);
1820 		}
1821 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1822 		/*
1823 		 * Notify the RISC a carrier is ready by writing the physical
1824 		 * address of the new carrier stopper to the COMMA register.
1825 		 */
1826 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1827 				le32toh(new_carrp->carr_ba));
1828 	}
1829 
1830 	/*
1831 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1832 	 */
1833 
1834 	return ADW_SUCCESS;
1835 }
1836 
1837 
1838 void
1839 AdwResetChip(iot, ioh)
1840 	bus_space_tag_t iot;
1841 	bus_space_handle_t ioh;
1842 {
1843 
1844 	/*
1845 	 * Reset Chip.
1846 	 */
1847 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1848 			ADW_CTRL_REG_CMD_RESET);
1849 	AdwSleepMilliSecond(100);
1850 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1851 			ADW_CTRL_REG_CMD_WR_IO_REG);
1852 }
1853 
1854 
1855 /*
1856  * Reset SCSI Bus and purge all outstanding requests.
1857  *
1858  * Return Value:
1859  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
1860  *      ADW_FALSE(0) -  Microcode command failed.
1861  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1862  *                      may be hung which requires driver recovery.
1863  */
1864 int
1865 AdwResetCCB(sc)
1866 ADW_SOFTC	*sc;
1867 {
1868 	int	    status;
1869 
1870 	/*
1871 	 * Send the SCSI Bus Reset idle start idle command which asserts
1872 	 * the SCSI Bus Reset signal.
1873 	 */
1874 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1875 	if (status != ADW_TRUE) {
1876 		return status;
1877 	}
1878 
1879 	/*
1880 	 * Delay for the specified SCSI Bus Reset hold time.
1881 	 *
1882 	 * The hold time delay is done on the host because the RISC has no
1883 	 * microsecond accurate timer.
1884 	 */
1885 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1886 
1887 	/*
1888 	 * Send the SCSI Bus Reset end idle command which de-asserts
1889 	 * the SCSI Bus Reset signal and purges any pending requests.
1890 	 */
1891 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1892 	if (status != ADW_TRUE) {
1893 		return status;
1894 	}
1895 
1896 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1897 
1898 	return status;
1899 }
1900 
1901 
1902 /*
1903  * Reset chip and SCSI Bus.
1904  *
1905  * Return Value:
1906  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
1907  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
1908  */
1909 int
1910 AdwResetSCSIBus(sc)
1911 ADW_SOFTC	*sc;
1912 {
1913 	bus_space_tag_t iot = sc->sc_iot;
1914 	bus_space_handle_t ioh = sc->sc_ioh;
1915 	int		status;
1916 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
1917 	u_int16_t	ppr_able = 0; /* XXX: gcc */
1918 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
1919 	u_int16_t	bios_sig;
1920 
1921 
1922 	/*
1923 	 * Save current per TID negotiated values.
1924 	 */
1925 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1926 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1927 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1928 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1929 	}
1930 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1931 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1932 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1933 			max_cmd[tid]);
1934 	}
1935 
1936 	/*
1937 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1938 	 * by clearing the BIOS signature word.
1939 	 * The initialization functions assumes a SCSI Bus Reset is not
1940 	 * needed if the BIOS signature word is present.
1941 	 */
1942 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1943 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1944 
1945 	/*
1946 	 * Stop chip and reset it.
1947 	 */
1948 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1949 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1950 			ADW_CTRL_REG_CMD_RESET);
1951 	AdwSleepMilliSecond(100);
1952 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1953 			ADW_CTRL_REG_CMD_WR_IO_REG);
1954 
1955 	/*
1956 	 * Reset Adv Library error code, if any, and try
1957 	 * re-initializing the chip.
1958 	 * Then translate initialization return value to status value.
1959 	 */
1960 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1961 
1962 	/*
1963 	 * Restore the BIOS signature word.
1964 	 */
1965 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1966 
1967 	/*
1968 	 * Restore per TID negotiated values.
1969 	 */
1970 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1971 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1972 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1973 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1974 	}
1975 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1976 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1977 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1978 			max_cmd[tid]);
1979 	}
1980 
1981 	return status;
1982 }
1983 
1984 
1985 /*
1986  * Adv Library Interrupt Service Routine
1987  *
1988  *  This function is called by a driver's interrupt service routine.
1989  *  The function disables and re-enables interrupts.
1990  *
1991  *  When a microcode idle command is completed, the ADV_DVC_VAR
1992  *  'idle_cmd_done' field is set to ADW_TRUE.
1993  *
1994  *  Note: AdwISR() can be called when interrupts are disabled or even
1995  *  when there is no hardware interrupt condition present. It will
1996  *  always check for completed idle commands and microcode requests.
1997  *  This is an important feature that shouldn't be changed because it
1998  *  allows commands to be completed from polling mode loops.
1999  *
2000  * Return:
2001  *   ADW_TRUE(1) - interrupt was pending
2002  *   ADW_FALSE(0) - no interrupt was pending
2003  */
2004 int
2005 AdwISR(sc)
2006 ADW_SOFTC	*sc;
2007 {
2008 	bus_space_tag_t iot = sc->sc_iot;
2009 	bus_space_handle_t ioh = sc->sc_ioh;
2010 	u_int8_t	int_stat;
2011 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
2012 	u_int32_t	irq_next_pa;
2013 	ADW_SCSI_REQ_Q	*scsiq;
2014 	ADW_CCB		*ccb;
2015 	int		s;
2016 
2017 
2018 	s = splbio();
2019 
2020 	/* Reading the register clears the interrupt. */
2021 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2022 
2023 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2024 	     ADW_INTR_STATUS_INTRC)) == 0) {
2025 		splx(s);
2026 		return ADW_FALSE;
2027 	}
2028 
2029 	/*
2030 	 * Notify the driver of an asynchronous microcode condition by
2031 	 * calling the ADV_DVC_VAR.async_callback function. The function
2032 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
2033 	 */
2034 	if (int_stat & ADW_INTR_STATUS_INTRB) {
2035 		u_int8_t intrb_code;
2036 
2037 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2038 
2039 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
2040 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
2041 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2042 				sc->carr_pending_cnt != 0) {
2043 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
2044 					IOPB_TICKLE, ADW_TICKLE_A);
2045 				if (sc->chip_type == ADW_CHIP_ASC3550) {
2046 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
2047 						IOPB_TICKLE, ADW_TICKLE_NOP);
2048 				}
2049 			}
2050 		}
2051 
2052 		if (sc->async_callback != 0) {
2053 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2054 		}
2055 	}
2056 
2057 	/*
2058 	 * Check if the IRQ stopper carrier contains a completed request.
2059 	 */
2060 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2061 	{
2062 #if ADW_DEBUG
2063 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2064 				sc->irq_sp->carr_id,
2065 				sc->irq_sp->carr_ba,
2066 				sc->irq_sp->areq_ba,
2067 				sc->irq_sp->next_ba);
2068 #endif
2069 		/*
2070 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2071 		 * structure.
2072 		 * The RISC will have set 'areq_ba' to a virtual address.
2073 		 *
2074 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2075 		 * field to the carrier ADV_CARR_T.areq_ba field.
2076 		 * The conversion below complements the conversion of
2077 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2078 		 */
2079 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2080 		scsiq = &ccb->scsiq;
2081 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2082 
2083 		/*
2084 		 * Request finished with good status and the queue was not
2085 		 * DMAed to host memory by the firmware. Set all status fields
2086 		 * to indicate good status.
2087 		 */
2088 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2089 			scsiq->done_status = QD_NO_ERROR;
2090 			scsiq->host_status = scsiq->scsi_status = 0;
2091 			scsiq->data_cnt = 0L;
2092 		}
2093 
2094 		/*
2095 		 * Advance the stopper pointer to the next carrier
2096 		 * ignoring the lower four bits. Free the previous
2097 		 * stopper carrier.
2098 		 */
2099 		free_carrp = sc->irq_sp;
2100 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2101 
2102 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
2103 					: sc->carr_freelist->carr_ba;
2104 		sc->carr_freelist = free_carrp;
2105 		sc->carr_pending_cnt--;
2106 
2107 		/*
2108 		 * Clear request microcode control flag.
2109 		 */
2110 		scsiq->cntl = 0;
2111 
2112 		/*
2113 		 * Check Condition handling
2114 		 */
2115 		/*
2116 		 * If the command that completed was a SCSI INQUIRY and
2117 		 * LUN 0 was sent the command, then process the INQUIRY
2118 		 * command information for the device.
2119 		 */
2120 		if (scsiq->done_status == QD_NO_ERROR &&
2121 		    scsiq->cdb[0] == INQUIRY &&
2122 		    scsiq->target_lun == 0) {
2123 			AdwInquiryHandling(sc, scsiq);
2124 		}
2125 
2126 		/*
2127 		 * Notify the driver of the completed request by passing
2128 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
2129 		 */
2130 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2131 		/*
2132 		 * Note: After the driver callback function is called, 'scsiq'
2133 		 * can no longer be referenced.
2134 		 *
2135 		 * Fall through and continue processing other completed
2136 		 * requests...
2137 		 */
2138 	}
2139 
2140 	splx(s);
2141 
2142 	return ADW_TRUE;
2143 }
2144 
2145 
2146 /*
2147  * Send an idle command to the chip and wait for completion.
2148  *
2149  * Command completion is polled for once per microsecond.
2150  *
2151  * The function can be called from anywhere including an interrupt handler.
2152  * But the function is not re-entrant, so it uses the splbio/splx()
2153  * functions to prevent reentrancy.
2154  *
2155  * Return Values:
2156  *   ADW_TRUE - command completed successfully
2157  *   ADW_FALSE - command failed
2158  *   ADW_ERROR - command timed out
2159  */
2160 int
2161 AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2162 ADW_SOFTC      *sc;
2163 u_int16_t       idle_cmd;
2164 u_int32_t       idle_cmd_parameter;
2165 {
2166 	bus_space_tag_t iot = sc->sc_iot;
2167 	bus_space_handle_t ioh = sc->sc_ioh;
2168 	u_int16_t	result;
2169 	u_int32_t	i, j, s;
2170 
2171 	s = splbio();
2172 
2173 	/*
2174 	 * Clear the idle command status which is set by the microcode
2175 	 * to a non-zero value to indicate when the command is completed.
2176 	 */
2177 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2178 
2179 	/*
2180 	 * Write the idle command value after the idle command parameter
2181 	 * has been written to avoid a race condition. If the order is not
2182 	 * followed, the microcode may process the idle command before the
2183 	 * parameters have been written to LRAM.
2184 	 */
2185 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2186 			idle_cmd_parameter);
2187 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2188 
2189 	/*
2190 	 * Tickle the RISC to tell it to process the idle command.
2191 	 */
2192 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2193 	if (sc->chip_type == ADW_CHIP_ASC3550) {
2194 		/*
2195 		 * Clear the tickle value. In the ASC-3550 the RISC flag
2196 		 * command 'clr_tickle_b' does not work unless the host
2197 		 * value is cleared.
2198 		 */
2199 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2200 	}
2201 
2202 	/* Wait for up to 100 millisecond for the idle command to timeout. */
2203 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2204 		/* Poll once each microsecond for command completion. */
2205 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2206 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2207 									result);
2208 			if (result != 0) {
2209 				splx(s);
2210 				return result;
2211 			}
2212 			AdwDelayMicroSecond(1);
2213 		}
2214 	}
2215 
2216 	splx(s);
2217 	return ADW_ERROR;
2218 }
2219 
2220 
2221 /*
2222  * Inquiry Information Byte 7 Handling
2223  *
2224  * Handle SCSI Inquiry Command information for a device by setting
2225  * microcode operating variables that affect WDTR, SDTR, and Tag
2226  * Queuing.
2227  */
2228 static void
2229 AdwInquiryHandling(sc, scsiq)
2230 ADW_SOFTC	*sc;
2231 ADW_SCSI_REQ_Q *scsiq;
2232 {
2233 #ifndef FAILSAFE
2234 	bus_space_tag_t iot = sc->sc_iot;
2235 	bus_space_handle_t ioh = sc->sc_ioh;
2236 	u_int8_t		tid;
2237 	struct scsipi_inquiry_data *inq;
2238 	u_int16_t		tidmask;
2239 	u_int16_t		cfg_word;
2240 
2241 
2242 	/*
2243 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2244 	 * to be available.
2245 	 *
2246 	 * If less than 8 bytes of INQUIRY information were requested or less
2247 	 * than 8 bytes were transferred, then return. cdb[4] is the request
2248 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2249 	 * microcode to the transfer residual count.
2250 	 */
2251 
2252 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2253 		return;
2254 	}
2255 
2256 	tid = scsiq->target_id;
2257 
2258 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2259 
2260 	/*
2261 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2262 	 */
2263 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2264 	    ((inq->version & SID_ANSII) < 2)) {
2265 		return;
2266 	} else {
2267 		/*
2268 		 * INQUIRY Byte 7 Handling
2269 		 *
2270 		 * Use a device's INQUIRY byte 7 to determine whether it
2271 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
2272 		 * is enabled in the EEPROM and the device supports the
2273 		 * feature, then enable it in the microcode.
2274 		 */
2275 
2276 		tidmask = ADW_TID_TO_TIDMASK(tid);
2277 
2278 		/*
2279 		 * Wide Transfers
2280 		 *
2281 		 * If the EEPROM enabled WDTR for the device and the device
2282 		 * supports wide bus (16 bit) transfers, then turn on the
2283 		 * device's 'wdtr_able' bit and write the new value to the
2284 		 * microcode.
2285 		 */
2286 #ifdef SCSI_ADW_WDTR_DISABLE
2287 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2288 #endif /* SCSI_ADW_WDTR_DISABLE */
2289 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2290 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2291 					cfg_word);
2292 			if ((cfg_word & tidmask) == 0) {
2293 				cfg_word |= tidmask;
2294 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2295 						cfg_word);
2296 
2297 				/*
2298 				 * Clear the microcode "SDTR negotiation" and
2299 				 * "WDTR negotiation" done indicators for the
2300 				 * target to cause it to negotiate with the new
2301 				 * setting set above.
2302 				 * WDTR when accepted causes the target to enter
2303 				 * asynchronous mode, so SDTR must be negotiated
2304 				 */
2305 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2306 						cfg_word);
2307 				cfg_word &= ~tidmask;
2308 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2309 						cfg_word);
2310 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2311 						cfg_word);
2312 				cfg_word &= ~tidmask;
2313 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2314 						cfg_word);
2315 			}
2316 		}
2317 
2318 		/*
2319 		 * Synchronous Transfers
2320 		 *
2321 		 * If the EEPROM enabled SDTR for the device and the device
2322 		 * supports synchronous transfers, then turn on the device's
2323 		 * 'sdtr_able' bit. Write the new value to the microcode.
2324 		 */
2325 #ifdef SCSI_ADW_SDTR_DISABLE
2326 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2327 #endif /* SCSI_ADW_SDTR_DISABLE */
2328 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2329 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2330 			if ((cfg_word & tidmask) == 0) {
2331 				cfg_word |= tidmask;
2332 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2333 						cfg_word);
2334 
2335 				/*
2336 				 * Clear the microcode "SDTR negotiation"
2337 				 * done indicator for the target to cause it
2338 				 * to negotiate with the new setting set above.
2339 				 */
2340 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2341 						cfg_word);
2342 				cfg_word &= ~tidmask;
2343 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2344 						cfg_word);
2345 			}
2346 		}
2347 		/*
2348 		 * If the Inquiry data included enough space for the SPI-3
2349 		 * Clocking field, then check if DT mode is supported.
2350 		 */
2351 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2352 		   (scsiq->cdb[4] >= 57 ||
2353 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2354 			/*
2355 			 * PPR (Parallel Protocol Request) Capable
2356 			 *
2357 			 * If the device supports DT mode, then it must be
2358 			 * PPR capable.
2359 			 * The PPR message will be used in place of the SDTR
2360 			 * and WDTR messages to negotiate synchronous speed
2361 			 * and offset, transfer width, and protocol options.
2362 			 */
2363 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2364 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2365 						sc->ppr_able);
2366 				sc->ppr_able |= tidmask;
2367 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2368 						sc->ppr_able);
2369 			}
2370 		}
2371 
2372 		/*
2373 		 * If the EEPROM enabled Tag Queuing for the device and the
2374 		 * device supports Tag Queueing, then turn on the device's
2375 		 * 'tagqng_enable' bit in the microcode and set the microcode
2376 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2377 		 * value.
2378 		 *
2379 		 * Tag Queuing is disabled for the BIOS which runs in polled
2380 		 * mode and would see no benefit from Tag Queuing. Also by
2381 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
2382 		 * bugs will at least work with the BIOS.
2383 		 */
2384 #ifdef SCSI_ADW_TAGQ_DISABLE
2385 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2386 #endif /* SCSI_ADW_TAGQ_DISABLE */
2387 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2388 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2389 					cfg_word);
2390 			cfg_word |= tidmask;
2391 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2392 					cfg_word);
2393 
2394 			ADW_WRITE_BYTE_LRAM(iot, ioh,
2395 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
2396 					sc->max_dvc_qng);
2397 		}
2398 	}
2399 #endif /* FAILSAFE */
2400 }
2401 
2402 
2403 static void
2404 AdwSleepMilliSecond(n)
2405 u_int32_t	n;
2406 {
2407 
2408 	DELAY(n * 1000);
2409 }
2410 
2411 
2412 static void
2413 AdwDelayMicroSecond(n)
2414 u_int32_t	n;
2415 {
2416 
2417 	DELAY(n);
2418 }
2419 
2420