1 /* $NetBSD: ds1307.c,v 1.31 2018/12/20 21:36:53 macallan Exp $ */ 2 3 /* 4 * Copyright (c) 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.31 2018/12/20 21:36:53 macallan Exp $"); 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/device.h> 44 #include <sys/kernel.h> 45 #include <sys/fcntl.h> 46 #include <sys/uio.h> 47 #include <sys/conf.h> 48 #include <sys/event.h> 49 50 #include <dev/clock_subr.h> 51 52 #include <dev/i2c/i2cvar.h> 53 #include <dev/i2c/ds1307reg.h> 54 #include <dev/sysmon/sysmonvar.h> 55 56 #include "ioconf.h" 57 #include "opt_dsrtc.h" 58 59 struct dsrtc_model { 60 const i2c_addr_t *dm_valid_addrs; 61 uint16_t dm_model; 62 uint8_t dm_ch_reg; 63 uint8_t dm_ch_value; 64 uint8_t dm_vbaten_reg; 65 uint8_t dm_vbaten_value; 66 uint8_t dm_rtc_start; 67 uint8_t dm_rtc_size; 68 uint8_t dm_nvram_start; 69 uint8_t dm_nvram_size; 70 uint8_t dm_flags; 71 #define DSRTC_FLAG_CLOCK_HOLD 0x01 72 #define DSRTC_FLAG_BCD 0x02 73 #define DSRTC_FLAG_TEMP 0x04 74 #define DSRTC_FLAG_VBATEN 0x08 75 #define DSRTC_FLAG_YEAR_START_2K 0x10 76 #define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20 77 }; 78 79 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 }; 80 static const struct dsrtc_model ds1307_model = { 81 .dm_valid_addrs = ds1307_valid_addrs, 82 .dm_model = 1307, 83 .dm_ch_reg = DSXXXX_SECONDS, 84 .dm_ch_value = DS1307_SECONDS_CH, 85 .dm_rtc_start = DS1307_RTC_START, 86 .dm_rtc_size = DS1307_RTC_SIZE, 87 .dm_nvram_start = DS1307_NVRAM_START, 88 .dm_nvram_size = DS1307_NVRAM_SIZE, 89 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD, 90 }; 91 92 static const struct dsrtc_model ds1339_model = { 93 .dm_valid_addrs = ds1307_valid_addrs, 94 .dm_model = 1339, 95 .dm_rtc_start = DS1339_RTC_START, 96 .dm_rtc_size = DS1339_RTC_SIZE, 97 .dm_flags = DSRTC_FLAG_BCD, 98 }; 99 100 static const struct dsrtc_model ds1340_model = { 101 .dm_valid_addrs = ds1307_valid_addrs, 102 .dm_model = 1340, 103 .dm_ch_reg = DSXXXX_SECONDS, 104 .dm_ch_value = DS1340_SECONDS_EOSC, 105 .dm_rtc_start = DS1340_RTC_START, 106 .dm_rtc_size = DS1340_RTC_SIZE, 107 .dm_flags = DSRTC_FLAG_BCD, 108 }; 109 110 static const struct dsrtc_model ds1672_model = { 111 .dm_valid_addrs = ds1307_valid_addrs, 112 .dm_model = 1672, 113 .dm_rtc_start = DS1672_RTC_START, 114 .dm_rtc_size = DS1672_RTC_SIZE, 115 .dm_ch_reg = DS1672_CONTROL, 116 .dm_ch_value = DS1672_CONTROL_CH, 117 .dm_flags = 0, 118 }; 119 120 static const struct dsrtc_model ds3231_model = { 121 .dm_valid_addrs = ds1307_valid_addrs, 122 .dm_model = 3231, 123 .dm_rtc_start = DS3232_RTC_START, 124 .dm_rtc_size = DS3232_RTC_SIZE, 125 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP, 126 }; 127 128 static const struct dsrtc_model ds3232_model = { 129 .dm_valid_addrs = ds1307_valid_addrs, 130 .dm_model = 3232, 131 .dm_rtc_start = DS3232_RTC_START, 132 .dm_rtc_size = DS3232_RTC_SIZE, 133 .dm_nvram_start = DS3232_NVRAM_START, 134 .dm_nvram_size = DS3232_NVRAM_SIZE, 135 /* 136 * XXX 137 * the DS3232 likely has the temperature sensor too but I can't 138 * easily verify or test that right now 139 */ 140 .dm_flags = DSRTC_FLAG_BCD, 141 }; 142 143 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 }; 144 static const struct dsrtc_model mcp7940_model = { 145 .dm_valid_addrs = mcp7940_valid_addrs, 146 .dm_model = 7940, 147 .dm_rtc_start = DS1307_RTC_START, 148 .dm_rtc_size = DS1307_RTC_SIZE, 149 .dm_ch_reg = DSXXXX_SECONDS, 150 .dm_ch_value = DS1307_SECONDS_CH, 151 .dm_vbaten_reg = DSXXXX_DAY, 152 .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN, 153 .dm_nvram_start = MCP7940_NVRAM_START, 154 .dm_nvram_size = MCP7940_NVRAM_SIZE, 155 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD | 156 DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED, 157 }; 158 159 static const struct device_compatible_entry compat_data[] = { 160 { "dallas,ds1307", (uintptr_t)&ds1307_model }, 161 { "maxim,ds1307", (uintptr_t)&ds1307_model }, 162 163 { "dallas,ds1339", (uintptr_t)&ds1339_model }, 164 { "maxim,ds1339", (uintptr_t)&ds1339_model }, 165 166 { "dallas,ds1340", (uintptr_t)&ds1340_model }, 167 { "maxim,ds1340", (uintptr_t)&ds1340_model }, 168 169 { "dallas,ds1672", (uintptr_t)&ds1672_model }, 170 { "maxim,ds1672", (uintptr_t)&ds1672_model }, 171 172 { "dallas,ds3231", (uintptr_t)&ds3231_model }, 173 { "maxim,ds3231", (uintptr_t)&ds3231_model }, 174 175 { "dallas,ds3232", (uintptr_t)&ds3232_model }, 176 { "maxim,ds3232", (uintptr_t)&ds3232_model }, 177 178 { "microchip,mcp7940", (uintptr_t)&mcp7940_model }, 179 180 { NULL, 0 } 181 }; 182 183 struct dsrtc_softc { 184 device_t sc_dev; 185 i2c_tag_t sc_tag; 186 uint8_t sc_address; 187 bool sc_open; 188 struct dsrtc_model sc_model; 189 struct todr_chip_handle sc_todr; 190 struct sysmon_envsys *sc_sme; 191 envsys_data_t sc_sensor; 192 }; 193 194 static void dsrtc_attach(device_t, device_t, void *); 195 static int dsrtc_match(device_t, cfdata_t, void *); 196 197 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc), 198 dsrtc_match, dsrtc_attach, NULL, NULL); 199 200 dev_type_open(dsrtc_open); 201 dev_type_close(dsrtc_close); 202 dev_type_read(dsrtc_read); 203 dev_type_write(dsrtc_write); 204 205 const struct cdevsw dsrtc_cdevsw = { 206 .d_open = dsrtc_open, 207 .d_close = dsrtc_close, 208 .d_read = dsrtc_read, 209 .d_write = dsrtc_write, 210 .d_ioctl = noioctl, 211 .d_stop = nostop, 212 .d_tty = notty, 213 .d_poll = nopoll, 214 .d_mmap = nommap, 215 .d_kqfilter = nokqfilter, 216 .d_discard = nodiscard, 217 .d_flag = D_OTHER 218 }; 219 220 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *); 221 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *); 222 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *); 223 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *); 224 225 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *); 226 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *); 227 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *); 228 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t); 229 230 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *); 231 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *); 232 233 static const struct dsrtc_model * 234 dsrtc_model_by_number(u_int model) 235 { 236 const struct device_compatible_entry *dce; 237 const struct dsrtc_model *dm; 238 239 /* no model given, assume it's a DS1307 */ 240 if (model == 0) 241 return &ds1307_model; 242 243 for (dce = compat_data; dce->compat != NULL; dce++) { 244 dm = (void *)dce->data; 245 if (dm->dm_model == model) 246 return dm; 247 } 248 return NULL; 249 } 250 251 static const struct dsrtc_model * 252 dsrtc_model_by_compat(const struct i2c_attach_args *ia) 253 { 254 const struct dsrtc_model *dm = NULL; 255 const struct device_compatible_entry *dce; 256 257 if (iic_compatible_match(ia, compat_data, &dce)) 258 dm = (void *)dce->data; 259 260 return dm; 261 } 262 263 static bool 264 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr) 265 { 266 267 for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) { 268 if (addr == dm->dm_valid_addrs[i]) 269 return true; 270 } 271 return false; 272 } 273 274 static int 275 dsrtc_match(device_t parent, cfdata_t cf, void *arg) 276 { 277 struct i2c_attach_args *ia = arg; 278 const struct dsrtc_model *dm; 279 int match_result; 280 281 if (iic_use_direct_match(ia, cf, compat_data, &match_result)) 282 return match_result; 283 284 dm = dsrtc_model_by_number(cf->cf_flags & 0xffff); 285 if (dm == NULL) 286 return 0; 287 288 if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr)) 289 return I2C_MATCH_ADDRESS_ONLY; 290 291 return 0; 292 } 293 294 static void 295 dsrtc_attach(device_t parent, device_t self, void *arg) 296 { 297 struct dsrtc_softc *sc = device_private(self); 298 struct i2c_attach_args *ia = arg; 299 const struct dsrtc_model *dm; 300 prop_dictionary_t dict = device_properties(self); 301 bool base_2k = FALSE; 302 303 if ((dm = dsrtc_model_by_compat(ia)) == NULL) 304 dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags); 305 306 if (dm == NULL) { 307 aprint_error(": unable to determine model!\n"); 308 return; 309 } 310 311 aprint_naive(": Real-time Clock%s\n", 312 dm->dm_nvram_size > 0 ? "/NVRAM" : ""); 313 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model, 314 dm->dm_nvram_size > 0 ? "/NVRAM" : ""); 315 316 sc->sc_tag = ia->ia_tag; 317 sc->sc_address = ia->ia_addr; 318 sc->sc_model = *dm; 319 sc->sc_dev = self; 320 sc->sc_open = 0; 321 sc->sc_todr.cookie = sc; 322 323 if (dm->dm_flags & DSRTC_FLAG_BCD) { 324 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms; 325 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms; 326 } else { 327 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval; 328 sc->sc_todr.todr_settime = dsrtc_settime_timeval; 329 } 330 sc->sc_todr.todr_setwen = NULL; 331 332 #ifdef DSRTC_YEAR_START_2K 333 sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K; 334 #endif 335 336 prop_dictionary_get_bool(dict, "base_year_is_2000", &base_2k); 337 if (base_2k) sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K; 338 339 340 todr_attach(&sc->sc_todr); 341 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) { 342 int error; 343 344 sc->sc_sme = sysmon_envsys_create(); 345 sc->sc_sme->sme_name = device_xname(self); 346 sc->sc_sme->sme_cookie = sc; 347 sc->sc_sme->sme_refresh = dsrtc_refresh; 348 349 sc->sc_sensor.units = ENVSYS_STEMP; 350 sc->sc_sensor.state = ENVSYS_SINVALID; 351 sc->sc_sensor.flags = 0; 352 (void)strlcpy(sc->sc_sensor.desc, "temperature", 353 sizeof(sc->sc_sensor.desc)); 354 355 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) { 356 aprint_error_dev(self, "unable to attach sensor\n"); 357 goto bad; 358 } 359 360 error = sysmon_envsys_register(sc->sc_sme); 361 if (error) { 362 aprint_error_dev(self, 363 "error %d registering with sysmon\n", error); 364 goto bad; 365 } 366 } 367 return; 368 bad: 369 sysmon_envsys_destroy(sc->sc_sme); 370 } 371 372 /*ARGSUSED*/ 373 int 374 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l) 375 { 376 struct dsrtc_softc *sc; 377 378 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) 379 return ENXIO; 380 381 /* XXX: Locking */ 382 if (sc->sc_open) 383 return EBUSY; 384 385 sc->sc_open = true; 386 return 0; 387 } 388 389 /*ARGSUSED*/ 390 int 391 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l) 392 { 393 struct dsrtc_softc *sc; 394 395 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) 396 return ENXIO; 397 398 sc->sc_open = false; 399 return 0; 400 } 401 402 /*ARGSUSED*/ 403 int 404 dsrtc_read(dev_t dev, struct uio *uio, int flags) 405 { 406 struct dsrtc_softc *sc; 407 int error; 408 409 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) 410 return ENXIO; 411 412 const struct dsrtc_model * const dm = &sc->sc_model; 413 if (uio->uio_offset >= dm->dm_nvram_size) 414 return EINVAL; 415 416 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) 417 return error; 418 419 KASSERT(uio->uio_offset >= 0); 420 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) { 421 uint8_t ch, cmd; 422 const u_int a = uio->uio_offset; 423 cmd = a + dm->dm_nvram_start; 424 if ((error = iic_exec(sc->sc_tag, 425 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP, 426 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) { 427 iic_release_bus(sc->sc_tag, 0); 428 aprint_error_dev(sc->sc_dev, 429 "%s: read failed at 0x%x: %d\n", 430 __func__, a, error); 431 return error; 432 } 433 if ((error = uiomove(&ch, 1, uio)) != 0) { 434 iic_release_bus(sc->sc_tag, 0); 435 return error; 436 } 437 } 438 439 iic_release_bus(sc->sc_tag, 0); 440 441 return 0; 442 } 443 444 /*ARGSUSED*/ 445 int 446 dsrtc_write(dev_t dev, struct uio *uio, int flags) 447 { 448 struct dsrtc_softc *sc; 449 int error; 450 451 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) 452 return ENXIO; 453 454 const struct dsrtc_model * const dm = &sc->sc_model; 455 if (uio->uio_offset >= dm->dm_nvram_size) 456 return EINVAL; 457 458 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) 459 return error; 460 461 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) { 462 uint8_t cmdbuf[2]; 463 const u_int a = (int)uio->uio_offset; 464 cmdbuf[0] = a + dm->dm_nvram_start; 465 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0) 466 break; 467 468 if ((error = iic_exec(sc->sc_tag, 469 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP, 470 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) { 471 aprint_error_dev(sc->sc_dev, 472 "%s: write failed at 0x%x: %d\n", 473 __func__, a, error); 474 break; 475 } 476 } 477 478 iic_release_bus(sc->sc_tag, 0); 479 480 return error; 481 } 482 483 static int 484 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt) 485 { 486 struct dsrtc_softc *sc = ch->cookie; 487 struct clock_ymdhms check; 488 int retries; 489 490 memset(dt, 0, sizeof(*dt)); 491 memset(&check, 0, sizeof(check)); 492 493 /* 494 * Since we don't support Burst Read, we have to read the clock twice 495 * until we get two consecutive identical results. 496 */ 497 retries = 5; 498 do { 499 dsrtc_clock_read_ymdhms(sc, dt); 500 dsrtc_clock_read_ymdhms(sc, &check); 501 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries); 502 503 return 0; 504 } 505 506 static int 507 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt) 508 { 509 struct dsrtc_softc *sc = ch->cookie; 510 511 if (dsrtc_clock_write_ymdhms(sc, dt) == 0) 512 return -1; 513 514 return 0; 515 } 516 517 static int 518 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt) 519 { 520 struct dsrtc_model * const dm = &sc->sc_model; 521 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1]; 522 int error; 523 524 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size); 525 526 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { 527 aprint_error_dev(sc->sc_dev, 528 "%s: failed to acquire I2C bus: %d\n", 529 __func__, error); 530 return 0; 531 } 532 533 /* Read each RTC register in order. */ 534 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) { 535 cmdbuf[0] = dm->dm_rtc_start + i; 536 537 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, 538 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL); 539 } 540 541 /* Done with I2C */ 542 iic_release_bus(sc->sc_tag, I2C_F_POLL); 543 544 if (error != 0) { 545 aprint_error_dev(sc->sc_dev, 546 "%s: failed to read rtc at 0x%x: %d\n", 547 __func__, cmdbuf[0], error); 548 return 0; 549 } 550 551 /* 552 * Convert the RTC's register values into something useable 553 */ 554 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK); 555 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK); 556 557 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) { 558 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] & 559 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */ 560 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM) 561 dt->dt_hour += 12; 562 } else 563 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] & 564 DSXXXX_HOURS_24MASK); 565 566 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK); 567 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK); 568 569 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */ 570 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) 571 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000; 572 else { 573 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR; 574 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY) 575 dt->dt_year += 100; 576 } 577 578 return 1; 579 } 580 581 static int 582 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt) 583 { 584 struct dsrtc_model * const dm = &sc->sc_model; 585 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2]; 586 int error, offset; 587 588 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size); 589 590 /* 591 * Convert our time representation into something the DSXXXX 592 * can understand. 593 */ 594 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec); 595 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min); 596 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */ 597 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day); 598 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday); 599 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon); 600 601 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) { 602 offset = 2000; 603 } else { 604 offset = POSIX_BASE_YEAR; 605 } 606 607 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - offset) % 100); 608 if (dt->dt_year - offset >= 100) 609 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY; 610 611 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { 612 aprint_error_dev(sc->sc_dev, 613 "%s: failed to acquire I2C bus: %d\n", 614 __func__, error); 615 return 0; 616 } 617 618 /* Stop the clock */ 619 cmdbuf[0] = dm->dm_ch_reg; 620 621 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address, 622 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) { 623 iic_release_bus(sc->sc_tag, I2C_F_POLL); 624 aprint_error_dev(sc->sc_dev, 625 "%s: failed to read Hold Clock: %d\n", 626 __func__, error); 627 return 0; 628 } 629 630 if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED) 631 cmdbuf[1] &= ~dm->dm_ch_value; 632 else 633 cmdbuf[1] |= dm->dm_ch_value; 634 635 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address, 636 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) { 637 iic_release_bus(sc->sc_tag, I2C_F_POLL); 638 aprint_error_dev(sc->sc_dev, 639 "%s: failed to write Hold Clock: %d\n", 640 __func__, error); 641 return 0; 642 } 643 644 /* 645 * Write registers in reverse order. The last write (to the Seconds 646 * register) will undo the Clock Hold, above. 647 */ 648 uint8_t op = I2C_OP_WRITE; 649 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) { 650 cmdbuf[0] = dm->dm_rtc_start + i; 651 if ((dm->dm_flags & DSRTC_FLAG_VBATEN) && 652 dm->dm_rtc_start + i == dm->dm_vbaten_reg) 653 bcd[i] |= dm->dm_vbaten_value; 654 if (dm->dm_rtc_start + i == dm->dm_ch_reg) { 655 op = I2C_OP_WRITE_WITH_STOP; 656 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED) 657 bcd[i] |= dm->dm_ch_value; 658 } 659 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address, 660 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) { 661 iic_release_bus(sc->sc_tag, I2C_F_POLL); 662 aprint_error_dev(sc->sc_dev, 663 "%s: failed to write rtc at 0x%x: %d\n", 664 __func__, i, error); 665 /* XXX: Clock Hold is likely still asserted! */ 666 return 0; 667 } 668 } 669 /* 670 * If the clock hold register isn't the same register as seconds, 671 * we need to reeanble the clock. 672 */ 673 if (op != I2C_OP_WRITE_WITH_STOP) { 674 cmdbuf[0] = dm->dm_ch_reg; 675 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED) 676 cmdbuf[1] |= dm->dm_ch_value; 677 else 678 cmdbuf[1] &= ~dm->dm_ch_value; 679 680 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, 681 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 682 I2C_F_POLL)) != 0) { 683 iic_release_bus(sc->sc_tag, I2C_F_POLL); 684 aprint_error_dev(sc->sc_dev, 685 "%s: failed to Hold Clock: %d\n", 686 __func__, error); 687 return 0; 688 } 689 } 690 691 iic_release_bus(sc->sc_tag, I2C_F_POLL); 692 693 return 1; 694 } 695 696 static int 697 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv) 698 { 699 struct dsrtc_softc *sc = ch->cookie; 700 struct timeval check; 701 int retries; 702 703 memset(tv, 0, sizeof(*tv)); 704 memset(&check, 0, sizeof(check)); 705 706 /* 707 * Since we don't support Burst Read, we have to read the clock twice 708 * until we get two consecutive identical results. 709 */ 710 retries = 5; 711 do { 712 dsrtc_clock_read_timeval(sc, &tv->tv_sec); 713 dsrtc_clock_read_timeval(sc, &check.tv_sec); 714 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries); 715 716 return 0; 717 } 718 719 static int 720 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv) 721 { 722 struct dsrtc_softc *sc = ch->cookie; 723 724 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0) 725 return -1; 726 727 return 0; 728 } 729 730 /* 731 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use 732 * it, since some I2C controllers don't support anything other than single-byte 733 * transfers. 734 */ 735 static int 736 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp) 737 { 738 const struct dsrtc_model * const dm = &sc->sc_model; 739 uint8_t buf[4]; 740 int error; 741 742 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { 743 aprint_error_dev(sc->sc_dev, 744 "%s: failed to acquire I2C bus: %d\n", 745 __func__, error); 746 return 0; 747 } 748 749 /* read all registers: */ 750 uint8_t reg = dm->dm_rtc_start; 751 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, 752 ®, 1, buf, 4, I2C_F_POLL); 753 754 /* Done with I2C */ 755 iic_release_bus(sc->sc_tag, I2C_F_POLL); 756 757 if (error != 0) { 758 aprint_error_dev(sc->sc_dev, 759 "%s: failed to read rtc at 0x%x: %d\n", 760 __func__, reg, error); 761 return 0; 762 } 763 764 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; 765 *tp = v; 766 767 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n", 768 __func__, v); 769 770 return 1; 771 } 772 773 static int 774 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t) 775 { 776 const struct dsrtc_model * const dm = &sc->sc_model; 777 size_t buflen = dm->dm_rtc_size + 2; 778 uint8_t buf[buflen]; 779 int error; 780 781 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0); 782 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4); 783 784 buf[0] = dm->dm_rtc_start; 785 buf[1] = (t >> 0) & 0xff; 786 buf[2] = (t >> 8) & 0xff; 787 buf[3] = (t >> 16) & 0xff; 788 buf[4] = (t >> 24) & 0xff; 789 buf[5] = 0; 790 791 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { 792 aprint_error_dev(sc->sc_dev, 793 "%s: failed to acquire I2C bus: %d\n", 794 __func__, error); 795 return 0; 796 } 797 798 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address, 799 &buf, buflen, NULL, 0, I2C_F_POLL); 800 801 /* Done with I2C */ 802 iic_release_bus(sc->sc_tag, I2C_F_POLL); 803 804 /* send data */ 805 if (error != 0) { 806 aprint_error_dev(sc->sc_dev, 807 "%s: failed to set time: %d\n", 808 __func__, error); 809 return 0; 810 } 811 812 return 1; 813 } 814 815 static int 816 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp) 817 { 818 int error, tc; 819 uint8_t reg = DS3232_TEMP_MSB; 820 uint8_t buf[2]; 821 822 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0) 823 return ENOTSUP; 824 825 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { 826 aprint_error_dev(sc->sc_dev, 827 "%s: failed to acquire I2C bus: %d\n", 828 __func__, error); 829 return 0; 830 } 831 832 /* read temperature registers: */ 833 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, 834 ®, 1, buf, 2, I2C_F_POLL); 835 836 /* Done with I2C */ 837 iic_release_bus(sc->sc_tag, I2C_F_POLL); 838 839 if (error != 0) { 840 aprint_error_dev(sc->sc_dev, 841 "%s: failed to read temperature: %d\n", 842 __func__, error); 843 return 0; 844 } 845 846 /* convert to microkelvin */ 847 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000; 848 *temp = tc + 273150000; 849 return 1; 850 } 851 852 static void 853 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 854 { 855 struct dsrtc_softc *sc = sme->sme_cookie; 856 uint32_t temp = 0; /* XXX gcc */ 857 858 if (dsrtc_read_temp(sc, &temp) == 0) { 859 edata->state = ENVSYS_SINVALID; 860 return; 861 } 862 863 edata->value_cur = temp; 864 865 edata->state = ENVSYS_SVALID; 866 } 867