xref: /netbsd-src/sys/dev/i2c/dbcool.c (revision a7e090f70e491979434963c9a27df4020fe0a18b)
1 /*	$NetBSD: dbcool.c,v 1.20 2010/03/20 19:04:51 pgoyette Exp $ */
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Goyette
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * a driver for the dbCool(tm) family of environmental controllers
34  *
35  * Data sheets for the various supported chips are available at
36  *
37  *	http://www.onsemi.com/pub/Collateral/ADM1027-D.PDF
38  *	http://www.onsemi.com/pub/Collateral/ADM1030-D.PDF
39  *	http://www.onsemi.com/pub/Collateral/ADT7463-D.PDF
40  *	http://www.onsemi.com/pub/Collateral/ADT7466.PDF
41  *	http://www.onsemi.com/pub/Collateral/ADT7467-D.PDF
42  *	http://www.onsemi.com/pub/Collateral/ADT7468-D.PDF
43  *	http://www.onsemi.com/pub/Collateral/ADT7473-D.PDF
44  *	http://www.onsemi.com/pub/Collateral/ADT7475-D.PDF
45  *	http://www.onsemi.com/pub/Collateral/ADT7476-D.PDF
46  *	http://www.onsemi.com/pub/Collateral/ADT7490-D.PDF
47  *
48  * (URLs are correct as of October 5, 2008)
49  */
50 
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: dbcool.c,v 1.20 2010/03/20 19:04:51 pgoyette Exp $");
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/device.h>
58 #include <sys/malloc.h>
59 #include <sys/sysctl.h>
60 
61 #include <uvm/uvm_extern.h>
62 
63 #include <dev/i2c/dbcool_var.h>
64 #include <dev/i2c/dbcool_reg.h>
65 
66 /* Config interface */
67 static int dbcool_match(device_t, cfdata_t, void *);
68 static void dbcool_attach(device_t, device_t, void *);
69 static int dbcool_detach(device_t, int);
70 
71 /* Device attributes */
72 static int dbcool_supply_voltage(struct dbcool_softc *);
73 static bool dbcool_islocked(struct dbcool_softc *);
74 
75 /* Sensor read functions */
76 static void dbcool_refresh(struct sysmon_envsys *, envsys_data_t *);
77 static int dbcool_read_rpm(struct dbcool_softc *, uint8_t);
78 static int dbcool_read_temp(struct dbcool_softc *, uint8_t, bool);
79 static int dbcool_read_volt(struct dbcool_softc *, uint8_t, int, bool);
80 
81 /* Sensor get/set limit functions */
82 static void dbcool_get_limits(struct sysmon_envsys *, envsys_data_t *,
83 			      sysmon_envsys_lim_t *, uint32_t *);
84 static void dbcool_get_temp_limits(struct dbcool_softc *, int,
85 				   sysmon_envsys_lim_t *, uint32_t *);
86 static void dbcool_get_volt_limits(struct dbcool_softc *, int,
87 				   sysmon_envsys_lim_t *, uint32_t *);
88 static void dbcool_get_fan_limits(struct dbcool_softc *, int,
89 				  sysmon_envsys_lim_t *, uint32_t *);
90 
91 static void dbcool_set_limits(struct sysmon_envsys *, envsys_data_t *,
92 			      sysmon_envsys_lim_t *, uint32_t *);
93 static void dbcool_set_temp_limits(struct dbcool_softc *, int,
94 				   sysmon_envsys_lim_t *, uint32_t *);
95 static void dbcool_set_volt_limits(struct dbcool_softc *, int,
96 				   sysmon_envsys_lim_t *, uint32_t *);
97 static void dbcool_set_fan_limits(struct dbcool_softc *, int,
98 				  sysmon_envsys_lim_t *, uint32_t *);
99 
100 /* SYSCTL Helpers */
101 static int sysctl_dbcool_temp(SYSCTLFN_PROTO);
102 static int sysctl_adm1030_temp(SYSCTLFN_PROTO);
103 static int sysctl_adm1030_trange(SYSCTLFN_PROTO);
104 static int sysctl_dbcool_duty(SYSCTLFN_PROTO);
105 static int sysctl_dbcool_behavior(SYSCTLFN_PROTO);
106 static int sysctl_dbcool_slope(SYSCTLFN_PROTO);
107 static int sysctl_dbcool_thyst(SYSCTLFN_PROTO);
108 
109 /* Set-up subroutines */
110 static void dbcool_setup_controllers(struct dbcool_softc *);
111 static int  dbcool_setup_sensors(struct dbcool_softc *);
112 static int  dbcool_attach_sensor(struct dbcool_softc *, int);
113 static int  dbcool_attach_temp_control(struct dbcool_softc *, int,
114 	struct chip_id *);
115 
116 #ifdef DBCOOL_DEBUG
117 static int sysctl_dbcool_reg_select(SYSCTLFN_PROTO);
118 static int sysctl_dbcool_reg_access(SYSCTLFN_PROTO);
119 #endif /* DBCOOL_DEBUG */
120 
121 /*
122  * Descriptions for SYSCTL entries
123  */
124 struct dbc_sysctl_info {
125 	const char *name;
126 	const char *desc;
127 	bool lockable;
128 	int (*helper)(SYSCTLFN_PROTO);
129 };
130 
131 static struct dbc_sysctl_info dbc_sysctl_table[] = {
132 	/*
133 	 * The first several entries must remain in the same order as the
134 	 * corresponding entries in enum dbc_pwm_params
135 	 */
136 	{ "behavior",		"operating behavior and temp selector",
137 		true, sysctl_dbcool_behavior },
138 	{ "min_duty",		"minimum fan controller PWM duty cycle",
139 		true, sysctl_dbcool_duty },
140 	{ "max_duty",		"maximum fan controller PWM duty cycle",
141 		true, sysctl_dbcool_duty },
142 	{ "cur_duty",		"current fan controller PWM duty cycle",
143 		false, sysctl_dbcool_duty },
144 
145 	/*
146 	 * The rest of these should be in the order in which they
147 	 * are to be stored in the sysctl tree;  the table index is
148 	 * used as the high-order bits of the sysctl_num to maintain
149 	 * the sequence.
150 	 *
151 	 * If you rearrange the order of these items, be sure to
152 	 * update the sysctl_index in the XXX_sensor_table[] for
153 	 * the various chips!
154 	 */
155 	{ "Trange",		"temp slope/range to reach 100% duty cycle",
156 		true, sysctl_dbcool_slope },
157 	{ "Tmin",		"temp at which to start fan controller",
158 		true, sysctl_dbcool_temp },
159 	{ "Ttherm",		"temp at which THERM is asserted",
160 		true, sysctl_dbcool_temp },
161 	{ "Thyst",		"temp hysteresis for stopping fan controller",
162 		true, sysctl_dbcool_thyst },
163 	{ "Tmin",		"temp at which to start fan controller",
164 		true, sysctl_adm1030_temp },
165 	{ "Trange",		"temp slope/range to reach 100% duty cycle",
166 		true, sysctl_adm1030_trange },
167 };
168 
169 static const char *dbc_sensor_names[] = {
170 	"l_temp",  "r1_temp", "r2_temp", "Vccp",   "Vcc",    "fan1",
171 	"fan2",    "fan3",    "fan4",    "AIN1",   "AIN2",   "V2dot5",
172 	"V5",      "V12",     "Vtt",     "Imon",   "VID"
173 };
174 
175 /*
176  * Following table derived from product data-sheets
177  */
178 static int64_t nominal_voltages[] = {
179 	-1,		/* Vcc can be either 3.3 or 5.0V
180 			   at 3/4 scale                  */
181 	 2249939,	/* Vccp         2.25V 3/4 scale  */
182 	 2497436,	/* 2.5VIN       2.5V  3/4 scale  */
183 	 5002466,	/* 5VIN         5V    3/4 scale  */
184 	12000000,	/* 12VIN       12V    3/4 scale  */
185 	 1690809,	/* Vtt, Imon    2.25V full scale */
186 	 1689600,	/* AIN1, AIN2   2.25V full scale */
187 	       0
188 };
189 
190 /*
191  * Sensor-type, { val-reg, hilim-reg, lolim-reg}, name-idx, sysctl-table-idx,
192  *	nom-voltage-index
193  */
194 struct dbcool_sensor ADT7490_sensor_table[] = {
195 	{ DBC_TEMP, {	DBCOOL_LOCAL_TEMP,
196 			DBCOOL_LOCAL_HIGHLIM,
197 			DBCOOL_LOCAL_LOWLIM },		0, 0, 0 },
198 	{ DBC_TEMP, {	DBCOOL_REMOTE1_TEMP,
199 			DBCOOL_REMOTE1_HIGHLIM,
200 			DBCOOL_REMOTE1_LOWLIM },	1, 0, 0 },
201 	{ DBC_TEMP, {	DBCOOL_REMOTE2_TEMP,
202 			DBCOOL_REMOTE2_HIGHLIM,
203 			DBCOOL_REMOTE2_LOWLIM },	2, 0, 0 },
204 	{ DBC_VOLT, {	DBCOOL_VCCP,
205 			DBCOOL_VCCP_HIGHLIM,
206 			DBCOOL_VCCP_LOWLIM },		3, 0, 1 },
207 	{ DBC_VOLT, {	DBCOOL_VCC,
208 			DBCOOL_VCC_HIGHLIM,
209 			DBCOOL_VCC_LOWLIM },		4, 0, 0 },
210 	{ DBC_VOLT, {	DBCOOL_25VIN,
211 			DBCOOL_25VIN_HIGHLIM,
212 			DBCOOL_25VIN_LOWLIM },		11, 0, 2 },
213 	{ DBC_VOLT, {	DBCOOL_5VIN,
214 			DBCOOL_5VIN_HIGHLIM,
215 			DBCOOL_5VIN_LOWLIM },		12, 0, 3 },
216 	{ DBC_VOLT, {	DBCOOL_12VIN,
217 			DBCOOL_12VIN_HIGHLIM,
218 			DBCOOL_12VIN_LOWLIM },		13, 0, 4 },
219 	{ DBC_VOLT, {	DBCOOL_VTT,
220 			DBCOOL_VTT_HIGHLIM,
221 			DBCOOL_VTT_LOWLIM },		14, 0, 5 },
222 	{ DBC_VOLT, {	DBCOOL_IMON,
223 			DBCOOL_IMON_HIGHLIM,
224 			DBCOOL_IMON_LOWLIM },		15, 0, 5 },
225 	{ DBC_FAN,  {	DBCOOL_FAN1_TACH_LSB,
226 			DBCOOL_NO_REG,
227 			DBCOOL_TACH1_MIN_LSB },		5, 0, 0 },
228 	{ DBC_FAN,  {	DBCOOL_FAN2_TACH_LSB,
229 			DBCOOL_NO_REG,
230 			DBCOOL_TACH2_MIN_LSB },		6, 0, 0 },
231 	{ DBC_FAN,  {	DBCOOL_FAN3_TACH_LSB,
232 			DBCOOL_NO_REG,
233 			DBCOOL_TACH3_MIN_LSB },		7, 0, 0 },
234 	{ DBC_FAN,  {	DBCOOL_FAN4_TACH_LSB,
235 			DBCOOL_NO_REG,
236 			DBCOOL_TACH4_MIN_LSB },		8, 0, 0 },
237 	{ DBC_VID,  {	DBCOOL_VID_REG,
238 			DBCOOL_NO_REG,
239 			DBCOOL_NO_REG },		16, 0, 0 },
240 	{ DBC_CTL,  {	DBCOOL_LOCAL_TMIN,
241 			DBCOOL_NO_REG,
242 			DBCOOL_NO_REG },		0, 5, 0 },
243 	{ DBC_CTL,  {	DBCOOL_LOCAL_TTHRESH,
244 			DBCOOL_NO_REG,
245 			DBCOOL_NO_REG },		0, 6, 0 },
246 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST | 0x80,
247 			DBCOOL_NO_REG,
248 			DBCOOL_NO_REG },		0, 7, 0 },
249 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TMIN,
250 			DBCOOL_NO_REG,
251 			DBCOOL_NO_REG },		1, 5, 0 },
252 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TTHRESH,
253 			DBCOOL_NO_REG,
254 			DBCOOL_NO_REG },		1, 6, 0 },
255 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST,
256 			DBCOOL_NO_REG,
257 			DBCOOL_NO_REG },		1, 7, 0 },
258 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TMIN,
259 			DBCOOL_NO_REG,
260 			DBCOOL_NO_REG },		2, 5, 0 },
261 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TTHRESH,
262 			DBCOOL_NO_REG,
263 			DBCOOL_NO_REG },		2, 6, 0 },
264 	{ DBC_CTL,  {	DBCOOL_R2_TMIN_HYST,
265 			DBCOOL_NO_REG,
266 			DBCOOL_NO_REG },		2, 7, 0 },
267 	{ DBC_EOF,  { 0, 0, 0 }, 0, 0, 0 }
268 };
269 
270 struct dbcool_sensor ADT7476_sensor_table[] = {
271 	{ DBC_TEMP, {	DBCOOL_LOCAL_TEMP,
272 			DBCOOL_LOCAL_HIGHLIM,
273 			DBCOOL_LOCAL_LOWLIM },		0, 0, 0 },
274 	{ DBC_TEMP, {	DBCOOL_REMOTE1_TEMP,
275 			DBCOOL_REMOTE1_HIGHLIM,
276 			DBCOOL_REMOTE1_LOWLIM },	1, 0, 0 },
277 	{ DBC_TEMP, {	DBCOOL_REMOTE2_TEMP,
278 			DBCOOL_REMOTE2_HIGHLIM,
279 			DBCOOL_REMOTE2_LOWLIM },	2, 0, 0 },
280 	{ DBC_VOLT, {	DBCOOL_VCCP,
281 			DBCOOL_VCCP_HIGHLIM,
282 			DBCOOL_VCCP_LOWLIM },		3, 0, 1 },
283 	{ DBC_VOLT, {	DBCOOL_VCC,
284 			DBCOOL_VCC_HIGHLIM,
285 			DBCOOL_VCC_LOWLIM },		4, 0, 0 },
286 	{ DBC_VOLT, {	DBCOOL_25VIN,
287 			DBCOOL_25VIN_HIGHLIM,
288 			DBCOOL_25VIN_LOWLIM },		11, 0, 2 },
289 	{ DBC_VOLT, {	DBCOOL_5VIN,
290 			DBCOOL_5VIN_HIGHLIM,
291 			DBCOOL_5VIN_LOWLIM },		12, 0, 3 },
292 	{ DBC_VOLT, {	DBCOOL_12VIN,
293 			DBCOOL_12VIN_HIGHLIM,
294 			DBCOOL_12VIN_LOWLIM },		13, 0, 4 },
295 	{ DBC_FAN,  {	DBCOOL_FAN1_TACH_LSB,
296 			DBCOOL_NO_REG,
297 			DBCOOL_TACH1_MIN_LSB },		5, 0, 0 },
298 	{ DBC_FAN,  {	DBCOOL_FAN2_TACH_LSB,
299 			DBCOOL_NO_REG,
300 			DBCOOL_TACH2_MIN_LSB },		6, 0, 0 },
301 	{ DBC_FAN,  {	DBCOOL_FAN3_TACH_LSB,
302 			DBCOOL_NO_REG,
303 			DBCOOL_TACH3_MIN_LSB },		7, 0, 0 },
304 	{ DBC_FAN,  {	DBCOOL_FAN4_TACH_LSB,
305 			DBCOOL_NO_REG,
306 			DBCOOL_TACH4_MIN_LSB },		8, 0, 0 },
307 	{ DBC_VID,  {	DBCOOL_VID_REG,
308 			DBCOOL_NO_REG,
309 			DBCOOL_NO_REG },		16, 0, 0 },
310 	{ DBC_CTL,  {	DBCOOL_LOCAL_TMIN,
311 			DBCOOL_NO_REG,
312 			DBCOOL_NO_REG },		0, 5, 0 },
313 	{ DBC_CTL,  {	DBCOOL_LOCAL_TTHRESH,
314 			DBCOOL_NO_REG,
315 			DBCOOL_NO_REG },		0, 6, 0 },
316 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST | 0x80,
317 			DBCOOL_NO_REG,
318 			DBCOOL_NO_REG },		0, 7, 0 },
319 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TMIN,
320 			DBCOOL_NO_REG,
321 			DBCOOL_NO_REG },		1, 5, 0 },
322 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TTHRESH,
323 			DBCOOL_NO_REG,
324 			DBCOOL_NO_REG },		1, 6, 0 },
325 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST,
326 			DBCOOL_NO_REG,
327 			DBCOOL_NO_REG },		1, 7, 0 },
328 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TMIN,
329 			DBCOOL_NO_REG,
330 			DBCOOL_NO_REG },		2, 5, 0 },
331 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TTHRESH,
332 			DBCOOL_NO_REG,
333 			DBCOOL_NO_REG },		2, 6, 0 },
334 	{ DBC_CTL,  {	DBCOOL_R2_TMIN_HYST,
335 			DBCOOL_NO_REG,
336 			DBCOOL_NO_REG },		2, 7, 0 },
337 	{ DBC_EOF,  { 0, 0, 0 }, 0, 0, 0 }
338 };
339 
340 struct dbcool_sensor ADT7475_sensor_table[] = {
341 	{ DBC_TEMP, {	DBCOOL_LOCAL_TEMP,
342 			DBCOOL_LOCAL_HIGHLIM,
343 			DBCOOL_LOCAL_LOWLIM },		0, 0, 0 },
344 	{ DBC_TEMP, {	DBCOOL_REMOTE1_TEMP,
345 			DBCOOL_REMOTE1_HIGHLIM,
346 			DBCOOL_REMOTE1_LOWLIM },	1, 0, 0 },
347 	{ DBC_TEMP, {	DBCOOL_REMOTE2_TEMP,
348 			DBCOOL_REMOTE2_HIGHLIM,
349 			DBCOOL_REMOTE2_LOWLIM },	2, 0, 0 },
350 	{ DBC_VOLT, {	DBCOOL_VCCP,
351 			DBCOOL_VCCP_HIGHLIM,
352 			DBCOOL_VCCP_LOWLIM },		3, 0, 1 },
353 	{ DBC_VOLT, {	DBCOOL_VCC,
354 			DBCOOL_VCC_HIGHLIM,
355 			DBCOOL_VCC_LOWLIM },		4, 0, 0 },
356 	{ DBC_FAN,  {	DBCOOL_FAN1_TACH_LSB,
357 			DBCOOL_NO_REG,
358 			DBCOOL_TACH1_MIN_LSB },		5, 0, 0 },
359 	{ DBC_FAN,  {	DBCOOL_FAN2_TACH_LSB,
360 			DBCOOL_NO_REG,
361 			DBCOOL_TACH2_MIN_LSB },		6, 0, 0 },
362 	{ DBC_FAN,  {	DBCOOL_FAN3_TACH_LSB,
363 			DBCOOL_NO_REG,
364 			DBCOOL_TACH3_MIN_LSB },		7, 0, 0 },
365 	{ DBC_FAN,  {	DBCOOL_FAN4_TACH_LSB,
366 			DBCOOL_NO_REG,
367 			DBCOOL_TACH4_MIN_LSB },		8, 0, 0 },
368 	{ DBC_CTL,  {	DBCOOL_LOCAL_TMIN,
369 			DBCOOL_NO_REG,
370 			DBCOOL_NO_REG },		0, 5, 0 },
371 	{ DBC_CTL,  {	DBCOOL_LOCAL_TTHRESH,
372 			DBCOOL_NO_REG,
373 			DBCOOL_NO_REG },		0, 6, 0 },
374 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST | 0x80,
375 			DBCOOL_NO_REG,
376 			DBCOOL_NO_REG },		0, 7, 0 },
377 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TMIN,
378 			DBCOOL_NO_REG,
379 			DBCOOL_NO_REG },		1, 5, 0 },
380 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TTHRESH,
381 			DBCOOL_NO_REG,
382 			DBCOOL_NO_REG },		1, 6, 0 },
383 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST,
384 			DBCOOL_NO_REG,
385 			DBCOOL_NO_REG },		1, 7, 0 },
386 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TMIN,
387 			DBCOOL_NO_REG,
388 			DBCOOL_NO_REG },		2, 5, 0 },
389 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TTHRESH,
390 			DBCOOL_NO_REG,
391 			DBCOOL_NO_REG },		2, 6, 0 },
392 	{ DBC_CTL,  {	DBCOOL_R2_TMIN_HYST,
393 			DBCOOL_NO_REG,
394 			DBCOOL_NO_REG },		2, 7, 0 },
395 	{ DBC_EOF,  { 0, 0, 0 }, 0, 0, 0 }
396 };
397 
398 /*
399  * The registers of dbcool_power_control must be in the same order as
400  * in enum dbc_pwm_params
401  */
402 struct dbcool_power_control ADT7475_power_table[] = {
403 	{ { DBCOOL_PWM1_CTL, DBCOOL_PWM1_MINDUTY,
404 	    DBCOOL_PWM1_MAXDUTY, DBCOOL_PWM1_CURDUTY },
405 		"fan_control_1" },
406 	{ { DBCOOL_PWM2_CTL, DBCOOL_PWM2_MINDUTY,
407 	    DBCOOL_PWM2_MAXDUTY, DBCOOL_PWM2_CURDUTY },
408 		"fan_control_2" },
409 	{ { DBCOOL_PWM3_CTL, DBCOOL_PWM3_MINDUTY,
410 	    DBCOOL_PWM3_MAXDUTY, DBCOOL_PWM3_CURDUTY },
411 		"fan_control_3" },
412 	{ { 0, 0, 0, 0 }, NULL }
413 };
414 
415 struct dbcool_sensor ADT7466_sensor_table[] = {
416 	{ DBC_TEMP, {	DBCOOL_ADT7466_LCL_TEMP_MSB,
417 			DBCOOL_ADT7466_LCL_TEMP_HILIM,
418 			DBCOOL_ADT7466_LCL_TEMP_LOLIM }, 0,  0, 0 },
419 	{ DBC_TEMP, {	DBCOOL_ADT7466_REM_TEMP_MSB,
420 			DBCOOL_ADT7466_REM_TEMP_HILIM,
421 			DBCOOL_ADT7466_REM_TEMP_LOLIM }, 1,  0, 0 },
422 	{ DBC_VOLT, {	DBCOOL_ADT7466_VCC,
423 			DBCOOL_ADT7466_VCC_HILIM,
424 			DBCOOL_ADT7466_VCC_LOLIM },	4,  0, 0 },
425 	{ DBC_VOLT, {	DBCOOL_ADT7466_AIN1,
426 			DBCOOL_ADT7466_AIN1_HILIM,
427 			DBCOOL_ADT7466_AIN1_LOLIM },	9,  0, 6 },
428 	{ DBC_VOLT, {	DBCOOL_ADT7466_AIN2,
429 			DBCOOL_ADT7466_AIN2_HILIM,
430 			DBCOOL_ADT7466_AIN2_LOLIM },	10, 0, 6 },
431 	{ DBC_FAN,  {	DBCOOL_ADT7466_FANA_LSB,
432 			DBCOOL_NO_REG,
433 			DBCOOL_ADT7466_FANA_LOLIM_LSB }, 5,  0, 0 },
434 	{ DBC_FAN,  {	DBCOOL_ADT7466_FANB_LSB,
435 			DBCOOL_NO_REG,
436 			DBCOOL_ADT7466_FANB_LOLIM_LSB }, 6,  0, 0 },
437 	{ DBC_EOF,  { 0, 0, 0 }, 0, 0, 0 }
438 };
439 
440 struct dbcool_sensor ADM1027_sensor_table[] = {
441 	{ DBC_TEMP, {	DBCOOL_LOCAL_TEMP,
442 			DBCOOL_LOCAL_HIGHLIM,
443 			DBCOOL_LOCAL_LOWLIM },		0, 0, 0 },
444 	{ DBC_TEMP, {	DBCOOL_REMOTE1_TEMP,
445 			DBCOOL_REMOTE1_HIGHLIM,
446 			DBCOOL_REMOTE1_LOWLIM },	1, 0, 0 },
447 	{ DBC_TEMP, {	DBCOOL_REMOTE2_TEMP,
448 			DBCOOL_REMOTE2_HIGHLIM,
449 			DBCOOL_REMOTE2_LOWLIM },	2, 0, 0 },
450 	{ DBC_VOLT, {	DBCOOL_VCCP,
451 			DBCOOL_VCCP_HIGHLIM,
452 			DBCOOL_VCCP_LOWLIM },		3, 0, 1 },
453 	{ DBC_VOLT, {	DBCOOL_VCC,
454 			DBCOOL_VCC_HIGHLIM,
455 			DBCOOL_VCC_LOWLIM },		4, 0, 0 },
456 	{ DBC_VOLT, {	DBCOOL_25VIN,
457 			DBCOOL_25VIN_HIGHLIM,
458 			DBCOOL_25VIN_LOWLIM },		11, 0, 2 },
459 	{ DBC_VOLT, {	DBCOOL_5VIN,
460 			DBCOOL_5VIN_HIGHLIM,
461 			DBCOOL_5VIN_LOWLIM },		12, 0, 3 },
462 	{ DBC_VOLT, {	DBCOOL_12VIN,
463 			DBCOOL_12VIN_HIGHLIM,
464 			DBCOOL_12VIN_LOWLIM },		13, 0, 4 },
465 	{ DBC_FAN,  {	DBCOOL_FAN1_TACH_LSB,
466 			DBCOOL_NO_REG,
467 			DBCOOL_TACH1_MIN_LSB },		5, 0, 0 },
468 	{ DBC_FAN,  {	DBCOOL_FAN2_TACH_LSB,
469 			DBCOOL_NO_REG,
470 			DBCOOL_TACH2_MIN_LSB },		6, 0, 0 },
471 	{ DBC_FAN,  {	DBCOOL_FAN3_TACH_LSB,
472 			DBCOOL_NO_REG,
473 			DBCOOL_TACH3_MIN_LSB },		7, 0, 0 },
474 	{ DBC_FAN,  {	DBCOOL_FAN4_TACH_LSB,
475 			DBCOOL_NO_REG,
476 			DBCOOL_TACH4_MIN_LSB },		8, 0, 0 },
477 	{ DBC_VID,  {	DBCOOL_VID_REG,
478 			DBCOOL_NO_REG,
479 			DBCOOL_NO_REG },		16, 0, 0 },
480 	{ DBC_CTL,  {	DBCOOL_LOCAL_TMIN,
481 			DBCOOL_NO_REG,
482 			DBCOOL_NO_REG },		0, 5, 0 },
483 	{ DBC_CTL,  {	DBCOOL_LOCAL_TTHRESH,
484 			DBCOOL_NO_REG,
485 			DBCOOL_NO_REG },		0, 6, 0 },
486 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST | 0x80,
487 			DBCOOL_NO_REG,
488 			DBCOOL_NO_REG },		0, 7, 0 },
489 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TMIN,
490 			DBCOOL_NO_REG,
491 			DBCOOL_NO_REG },		1, 5, 0 },
492 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TTHRESH,
493 			DBCOOL_NO_REG,
494 			DBCOOL_NO_REG },		1, 6, 0 },
495 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST,
496 			DBCOOL_NO_REG,
497 			DBCOOL_NO_REG },		1, 7, 0 },
498 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TMIN,
499 			DBCOOL_NO_REG,
500 			DBCOOL_NO_REG },		2, 5, 0 },
501 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TTHRESH,
502 			DBCOOL_NO_REG,
503 			DBCOOL_NO_REG },		2, 6, 0 },
504 	{ DBC_CTL,  {	DBCOOL_R2_TMIN_HYST,
505 			DBCOOL_NO_REG,
506 			DBCOOL_NO_REG },		2, 7, 0 },
507 	{ DBC_EOF,  { 0, 0, 0 }, 0, 0, 0 }
508 };
509 
510 struct dbcool_sensor ADM1030_sensor_table[] = {
511 	{ DBC_TEMP, {	DBCOOL_ADM1030_L_TEMP,
512 			DBCOOL_ADM1030_L_HI_LIM,
513 			DBCOOL_ADM1030_L_LO_LIM },	0,  0, 0 },
514 	{ DBC_TEMP, {	DBCOOL_ADM1030_R_TEMP,
515 			DBCOOL_ADM1030_R_HI_LIM,
516 			DBCOOL_ADM1030_R_LO_LIM },	1,  0, 0 },
517 	{ DBC_FAN,  {	DBCOOL_ADM1030_FAN_TACH,
518 			DBCOOL_NO_REG,
519 			DBCOOL_ADM1030_FAN_LO_LIM },	5,  0, 0 },
520 	{ DBC_CTL,  {	DBCOOL_ADM1030_L_TMIN,
521 			DBCOOL_NO_REG,
522 			DBCOOL_NO_REG },		0,  8, 0 },
523 	{ DBC_CTL,  {	DBCOOL_ADM1030_L_TTHRESH,
524 			DBCOOL_NO_REG,
525 			DBCOOL_NO_REG },		0,  9, 0 },
526 	{ DBC_CTL,  {	DBCOOL_ADM1030_L_TTHRESH,
527 			DBCOOL_NO_REG,
528 			DBCOOL_NO_REG },		0,  6, 0 },
529 	{ DBC_CTL,  {	DBCOOL_ADM1030_R_TMIN,
530 			DBCOOL_NO_REG,
531 			DBCOOL_NO_REG },		1,  8, 0 },
532 	{ DBC_CTL,  {	DBCOOL_ADM1030_L_TTHRESH,
533 			DBCOOL_NO_REG,
534 			DBCOOL_NO_REG },		1,  9, 0 },
535 	{ DBC_CTL,  {	DBCOOL_ADM1030_R_TTHRESH,
536 			DBCOOL_NO_REG,
537 			DBCOOL_NO_REG },		1,  6, 0 },
538 	{ DBC_EOF,  {0, 0, 0 }, 0, 0, 0 }
539 };
540 
541 struct dbcool_power_control ADM1030_power_table[] = {
542 	{ { DBCOOL_ADM1030_CFG1,  DBCOOL_NO_REG, DBCOOL_NO_REG,
543 	    DBCOOL_ADM1030_FAN_SPEED_CFG },
544 	  "fan_control_1" },
545 	{ { 0, 0, 0, 0 }, NULL }
546 };
547 
548 struct chip_id chip_table[] = {
549 	{ DBCOOL_COMPANYID, ADT7490_DEVICEID, ADT7490_REV_ID,
550 		ADT7490_sensor_table, ADT7475_power_table,
551 		DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_PECI,
552 		90000 * 60, "ADT7490" },
553 	{ DBCOOL_COMPANYID, ADT7476_DEVICEID, 0xff,
554 		ADT7476_sensor_table, ADT7475_power_table,
555 		DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY,
556 		90000 * 60, "ADT7476" },
557 	{ DBCOOL_COMPANYID, ADT7475_DEVICEID, 0xff,
558 		ADT7475_sensor_table, ADT7475_power_table,
559 		DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
560 		90000 * 60, "ADT7475" },
561 	{ DBCOOL_COMPANYID, ADT7473_DEVICEID, ADT7473_REV_ID1,
562 		ADT7475_sensor_table, ADT7475_power_table,
563 		DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
564 		90000 * 60, "ADT7460/ADT7463" },
565 	{ DBCOOL_COMPANYID, ADT7473_DEVICEID, ADT7473_REV_ID2,
566 		ADT7475_sensor_table, ADT7475_power_table,
567 		DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
568 		90000 * 60, "ADT7463-1" },
569 	{ DBCOOL_COMPANYID, ADT7468_DEVICEID, 0xff,
570 		ADT7476_sensor_table, ADT7475_power_table,
571 		DBCFLAG_TEMPOFFSET  | DBCFLAG_MULTI_VCC | DBCFLAG_HAS_MAXDUTY |
572 		    DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN,
573 		90000 * 60, "ADT7467/ADT7468" },
574 	{ DBCOOL_COMPANYID, ADT7466_DEVICEID, 0xff,
575 		ADT7466_sensor_table, NULL,
576 		DBCFLAG_ADT7466 | DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_SHDN,
577 		82000 * 60, "ADT7466" },
578 	{ DBCOOL_COMPANYID, ADT7463_DEVICEID, ADT7463_REV_ID1,
579 		ADM1027_sensor_table, ADT7475_power_table,
580 		DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN,
581 		90000 * 60, "ADT7463" },
582 	{ DBCOOL_COMPANYID, ADT7463_DEVICEID, ADT7463_REV_ID2,
583 		ADM1027_sensor_table, ADT7475_power_table,
584 		DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN |
585 		    DBCFLAG_HAS_VID_SEL,
586 		90000 * 60, "ADT7463" },
587 	{ DBCOOL_COMPANYID, ADM1027_DEVICEID, ADM1027_REV_ID,
588 		ADM1027_sensor_table, ADT7475_power_table,
589 		DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER,
590 		90000 * 60, "ADM1027" },
591 	{ DBCOOL_COMPANYID, ADM1030_DEVICEID, 0xff,
592 		ADM1030_sensor_table, ADM1030_power_table,
593 		DBCFLAG_ADM1030 | DBCFLAG_NO_READBYTE,
594 		11250 * 60, "ADM1030" },
595 	{ 0, 0, 0, NULL, NULL, 0, 0, NULL }
596 };
597 
598 static const char *behavior[] = {
599 	"remote1",	"local",	"remote2",	"full-speed",
600 	"disabled",	"local+remote2","all-temps",	"manual"
601 };
602 
603 static char dbcool_cur_behav[16];
604 
605 CFATTACH_DECL_NEW(dbcool, sizeof(struct dbcool_softc),
606     dbcool_match, dbcool_attach, dbcool_detach, NULL);
607 
608 int
609 dbcool_match(device_t parent, cfdata_t cf, void *aux)
610 {
611 	struct i2c_attach_args *ia = aux;
612 	struct dbcool_chipset dc;
613 	dc.dc_tag = ia->ia_tag;
614 	dc.dc_addr = ia->ia_addr;
615 	dc.dc_chip = NULL;
616 	dc.dc_readreg = dbcool_readreg;
617 	dc.dc_writereg = dbcool_writereg;
618 
619 	/* no probing if we attach to iic, but verify chip id  and address */
620 	if ((ia->ia_addr & DBCOOL_ADDRMASK) != DBCOOL_ADDR)
621 		return 0;
622 	if (dbcool_chip_ident(&dc) >= 0)
623 		return 1;
624 
625 	return 0;
626 }
627 
628 void
629 dbcool_attach(device_t parent, device_t self, void *aux)
630 {
631 	struct dbcool_softc *sc = device_private(self);
632 	struct i2c_attach_args *args = aux;
633 	uint8_t ver;
634 
635 	sc->sc_dc.dc_addr = args->ia_addr;
636 	sc->sc_dc.dc_tag = args->ia_tag;
637 	sc->sc_dc.dc_chip = NULL;
638 	sc->sc_dc.dc_readreg = dbcool_readreg;
639 	sc->sc_dc.dc_writereg = dbcool_writereg;
640 	(void)dbcool_chip_ident(&sc->sc_dc);
641 	sc->sc_dev = self;
642 
643 	aprint_naive("\n");
644 	aprint_normal("\n");
645 
646 	ver = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_REVISION_REG);
647 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_4BIT_VER)
648 		aprint_normal_dev(self, "%s dBCool(tm) Controller "
649 			"(rev 0x%02x, stepping 0x%02x)\n", sc->sc_dc.dc_chip->name,
650 			ver >> 4, ver & 0x0f);
651 	else
652 		aprint_normal_dev(self, "%s dBCool(tm) Controller "
653 			"(rev 0x%04x)\n", sc->sc_dc.dc_chip->name, ver);
654 
655 	dbcool_setup(self);
656 
657 	if (!pmf_device_register(self, dbcool_pmf_suspend, dbcool_pmf_resume))
658 		aprint_error_dev(self, "couldn't establish power handler\n");
659 }
660 
661 static int
662 dbcool_detach(device_t self, int flags)
663 {
664 	struct dbcool_softc *sc = device_private(self);
665 
666 	sysmon_envsys_unregister(sc->sc_sme);
667 	sc->sc_sme = NULL;
668 	return 0;
669 }
670 
671 /* On suspend, we save the state of the SHDN bit, then set it */
672 bool dbcool_pmf_suspend(device_t dev, const pmf_qual_t *qual)
673 {
674 	struct dbcool_softc *sc = device_private(dev);
675 	uint8_t reg, bit, cfg;
676 
677 	if ((sc->sc_dc.dc_chip->flags && DBCFLAG_HAS_SHDN) == 0)
678 		return true;
679 
680 	if (sc->sc_dc.dc_chip->flags && DBCFLAG_ADT7466) {
681 		reg = DBCOOL_ADT7466_CONFIG2;
682 		bit = DBCOOL_ADT7466_CFG2_SHDN;
683 	} else {
684 		reg = DBCOOL_CONFIG2_REG;
685 		bit = DBCOOL_CFG2_SHDN;
686 	}
687 	cfg = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
688 	sc->sc_suspend = cfg & bit;
689 	cfg |= bit;
690 	sc->sc_dc.dc_writereg(&sc->sc_dc, reg, cfg);
691 
692 	return true;
693 }
694 
695 /* On resume, we restore the previous state of the SHDN bit */
696 bool dbcool_pmf_resume(device_t dev, const pmf_qual_t *qual)
697 {
698 	struct dbcool_softc *sc = device_private(dev);
699 	uint8_t reg, bit, cfg;
700 
701 	if ((sc->sc_dc.dc_chip->flags && DBCFLAG_HAS_SHDN) == 0)
702 		return true;
703 
704 	if (sc->sc_dc.dc_chip->flags && DBCFLAG_ADT7466) {
705 		reg = DBCOOL_ADT7466_CONFIG2;
706 		bit = DBCOOL_ADT7466_CFG2_SHDN;
707 	} else {
708 		reg = DBCOOL_CONFIG2_REG;
709 		bit = DBCOOL_CFG2_SHDN;
710 	}
711 	cfg = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
712 	cfg &= ~sc->sc_suspend;
713 	sc->sc_dc.dc_writereg(&sc->sc_dc, reg, cfg);
714 
715 	return true;
716 
717 }
718 
719 uint8_t
720 dbcool_readreg(struct dbcool_chipset *dc, uint8_t reg)
721 {
722 	uint8_t data = 0;
723 
724 	if (iic_acquire_bus(dc->dc_tag, 0) != 0)
725 		return data;
726 
727 	if (dc->dc_chip == NULL || dc->dc_chip->flags & DBCFLAG_NO_READBYTE) {
728 		/* ADM1027 doesn't support i2c read_byte protocol */
729 		if (iic_smbus_send_byte(dc->dc_tag, dc->dc_addr, reg, 0) != 0)
730 			goto bad;
731 		(void)iic_smbus_receive_byte(dc->dc_tag, dc->dc_addr, &data, 0);
732 	} else
733 		(void)iic_smbus_read_byte(dc->dc_tag, dc->dc_addr, reg, &data,
734 					  0);
735 
736 bad:
737 	iic_release_bus(dc->dc_tag, 0);
738 	return data;
739 }
740 
741 void
742 dbcool_writereg(struct dbcool_chipset *dc, uint8_t reg, uint8_t val)
743 {
744 	if (iic_acquire_bus(dc->dc_tag, 0) != 0)
745 		return;
746 
747 	(void)iic_smbus_write_byte(dc->dc_tag, dc->dc_addr, reg, val, 0);
748 
749 	iic_release_bus(dc->dc_tag, 0);
750 }
751 
752 static bool
753 dbcool_islocked(struct dbcool_softc *sc)
754 {
755 	uint8_t cfg_reg;
756 
757 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
758 		return 0;
759 
760 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466)
761 		cfg_reg = DBCOOL_ADT7466_CONFIG1;
762 	else
763 		cfg_reg = DBCOOL_CONFIG1_REG;
764 
765 	if (sc->sc_dc.dc_readreg(&sc->sc_dc, cfg_reg) & DBCOOL_CFG1_LOCK)
766 		return 1;
767 	else
768 		return 0;
769 }
770 
771 static int
772 dbcool_read_temp(struct dbcool_softc *sc, uint8_t reg, bool extres)
773 {
774 	uint8_t	t1, t2, t3, val, ext = 0;
775 	int temp;
776 
777 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466) {
778 		/*
779 		 * ADT7466 temps are in strange location
780 		 */
781 		ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADT7466_CONFIG1);
782 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
783 		if (extres)
784 			ext = sc->sc_dc.dc_readreg(&sc->sc_dc, reg + 1);
785 	} else if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
786 		/*
787 		 * ADM1030 temps are in their own special place, too
788 		 */
789 		if (extres) {
790 			ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_TEMP_EXTRES);
791 			if (reg == DBCOOL_ADM1030_L_TEMP)
792 				ext >>= 6;
793 			else
794 				ext >>= 1;
795 			ext &= 0x03;
796 		}
797 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
798 	} else if (extres) {
799 		ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES2_REG);
800 
801 		/* Read all msb regs to unlatch them */
802 		t1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_12VIN);
803 		t1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_REMOTE1_TEMP);
804 		t2 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_REMOTE2_TEMP);
805 		t3 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_LOCAL_TEMP);
806 		switch (reg) {
807 		case DBCOOL_REMOTE1_TEMP:
808 			val = t1;
809 			ext >>= 2;
810 			break;
811 		case DBCOOL_LOCAL_TEMP:
812 			val = t3;
813 			ext >>= 4;
814 			break;
815 		case DBCOOL_REMOTE2_TEMP:
816 			val = t2;
817 			ext >>= 6;
818 			break;
819 		default:
820 			val = 0;
821 			break;
822 		}
823 		ext &= 0x03;
824 	}
825 	else
826 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
827 
828 	/* Check for invalid temp values */
829 	if ((sc->sc_temp_offset == 0 && val == 0x80) ||
830 	    (sc->sc_temp_offset != 0 && val == 0))
831 		return 0;
832 
833 	/* If using offset mode, adjust, else treat as signed */
834 	if (sc->sc_temp_offset) {
835 		temp = val;
836 		temp -= sc->sc_temp_offset;
837 	} else
838 		temp = (int8_t)val;
839 
840 	/* Convert degC to uK and include extended precision bits */
841 	temp *= 1000000;
842 	temp +=  250000 * (int)ext;
843 	temp += 273150000U;
844 
845 	return temp;
846 }
847 
848 static int
849 dbcool_read_rpm(struct dbcool_softc *sc, uint8_t reg)
850 {
851 	int rpm;
852 	uint8_t rpm_lo, rpm_hi;
853 
854 	rpm_lo = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
855 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
856 		rpm_hi = (rpm_lo == 0xff)?0xff:0x0;
857 	else
858 		rpm_hi = sc->sc_dc.dc_readreg(&sc->sc_dc, reg + 1);
859 
860 	rpm = (rpm_hi << 8) | rpm_lo;
861 	if (rpm == 0xffff)
862 		return 0;	/* 0xffff indicates stalled/failed fan */
863 
864 	return (sc->sc_dc.dc_chip->rpm_dividend / rpm);
865 }
866 
867 /* Provide chip's supply voltage, in microvolts */
868 static int
869 dbcool_supply_voltage(struct dbcool_softc *sc)
870 {
871 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_MULTI_VCC) {
872 		if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_CONFIG1_REG) & DBCOOL_CFG1_Vcc)
873 			return 5002500;
874 		else
875 			return 3300000;
876 	} else if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466) {
877 		if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADT7466_CONFIG1) &
878 			    DBCOOL_ADT7466_CFG1_Vcc)
879 			return 5000000;
880 		else
881 			return 3300000;
882 	} else
883 		return 3300000;
884 }
885 
886 /*
887  * Nominal voltages are calculated in microvolts
888  */
889 static int
890 dbcool_read_volt(struct dbcool_softc *sc, uint8_t reg, int nom_idx, bool extres)
891 {
892 	uint8_t ext = 0, v1, v2, v3, v4, val;
893 	int64_t ret;
894 	int64_t nom;
895 
896 	nom = nominal_voltages[nom_idx];
897 	if (nom < 0)
898 		nom = sc->sc_supply_voltage;
899 
900 	/* ADT7466 voltages are in strange locations with only 8-bits */
901 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466)
902 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
903 	else
904 	/*
905 	 * It's a "normal" dbCool chip - check for regs that
906 	 * share extended resolution bits since we have to
907 	 * read all the MSB registers to unlatch them.
908 	 */
909 	if (!extres)
910 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
911 	else if (reg == DBCOOL_12VIN) {
912 		ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES2_REG) && 0x03;
913 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
914 		(void)dbcool_read_temp(sc, DBCOOL_LOCAL_TEMP, true);
915 	} else if (reg == DBCOOL_VTT || reg == DBCOOL_IMON) {
916 		ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES_VTT_IMON);
917 		v1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_IMON);
918 		v2 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VTT);
919 		if (reg == DBCOOL_IMON) {
920 			val = v1;
921 			ext >>= 6;
922 		} else
923 			val = v2;
924 			ext >>= 4;
925 		ext &= 0x0f;
926 	} else {
927 		ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES1_REG);
928 		v1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_25VIN);
929 		v2 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VCCP);
930 		v3 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VCC);
931 		v4 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_5VIN);
932 
933 		switch (reg) {
934 		case DBCOOL_25VIN:
935 			val = v1;
936 			break;
937 		case DBCOOL_VCCP:
938 			val = v2;
939 			ext >>= 2;
940 			break;
941 		case DBCOOL_VCC:
942 			val = v3;
943 			ext >>= 4;
944 			break;
945 		case DBCOOL_5VIN:
946 			val = v4;
947 			ext >>= 6;
948 			break;
949 		default:
950 			val = nom = 0;
951 		}
952 		ext &= 0x03;
953 	}
954 
955 	/*
956 	 * Scale the nominal value by the 10-bit fraction
957 	 *
958 	 * Returned value is in microvolts.
959 	 */
960 	ret = val;
961 	ret <<= 2;
962 	ret |= ext;
963 	ret = (ret * nom) / 0x300;
964 
965 	return ret;
966 }
967 
968 SYSCTL_SETUP(sysctl_dbcoolsetup, "sysctl dBCool subtree setup")
969 {
970 	sysctl_createv(NULL, 0, NULL, NULL,
971 		       CTLFLAG_PERMANENT,
972 		       CTLTYPE_NODE, "hw", NULL,
973 		       NULL, 0, NULL, 0,
974 		       CTL_HW, CTL_EOL);
975 }
976 
977 static int
978 sysctl_dbcool_temp(SYSCTLFN_ARGS)
979 {
980 	struct sysctlnode node;
981 	struct dbcool_softc *sc;
982 	int reg, error;
983 	uint8_t chipreg;
984 	uint8_t newreg;
985 
986 	node = *rnode;
987 	sc = (struct dbcool_softc *)node.sysctl_data;
988 	chipreg = node.sysctl_num & 0xff;
989 
990 	if (sc->sc_temp_offset) {
991 		reg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
992 		reg -= sc->sc_temp_offset;
993 	} else
994 		reg = (int8_t)sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
995 
996 	node.sysctl_data = &reg;
997 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
998 
999 	if (error || newp == NULL)
1000 		return error;
1001 
1002 	/* We were asked to update the value - sanity check before writing */
1003 	if (*(int *)node.sysctl_data < -64 ||
1004 	    *(int *)node.sysctl_data > 127 + sc->sc_temp_offset)
1005 		return EINVAL;
1006 
1007 	newreg = *(int *)node.sysctl_data;
1008 	newreg += sc->sc_temp_offset;
1009 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1010 	return 0;
1011 }
1012 
1013 static int
1014 sysctl_adm1030_temp(SYSCTLFN_ARGS)
1015 {
1016 	struct sysctlnode node;
1017 	struct dbcool_softc *sc;
1018 	int reg, error;
1019 	uint8_t chipreg, oldreg, newreg;
1020 
1021 	node = *rnode;
1022 	sc = (struct dbcool_softc *)node.sysctl_data;
1023 	chipreg = node.sysctl_num & 0xff;
1024 
1025 	oldreg = (int8_t)sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1026 	reg = (oldreg >> 1) & ~0x03;
1027 
1028 	node.sysctl_data = &reg;
1029 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1030 
1031 	if (error || newp == NULL)
1032 		return error;
1033 
1034 	/* We were asked to update the value - sanity check before writing */
1035 	if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 127)
1036 		return EINVAL;
1037 
1038 	newreg = *(int *)node.sysctl_data;
1039 	newreg &= ~0x03;
1040 	newreg <<= 1;
1041 	newreg |= (oldreg & 0x07);
1042 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1043 	return 0;
1044 }
1045 
1046 static int
1047 sysctl_adm1030_trange(SYSCTLFN_ARGS)
1048 {
1049 	struct sysctlnode node;
1050 	struct dbcool_softc *sc;
1051 	int reg, error, newval;
1052 	uint8_t chipreg, oldreg, newreg;
1053 
1054 	node = *rnode;
1055 	sc = (struct dbcool_softc *)node.sysctl_data;
1056 	chipreg = node.sysctl_num & 0xff;
1057 
1058 	oldreg = (int8_t)sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1059 	reg = oldreg & 0x07;
1060 
1061 	node.sysctl_data = &reg;
1062 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1063 
1064 	if (error || newp == NULL)
1065 		return error;
1066 
1067 	/* We were asked to update the value - sanity check before writing */
1068 	newval = *(int *)node.sysctl_data;
1069 
1070 	if (newval == 5)
1071 		newreg = 0;
1072 	else if (newval == 10)
1073 		newreg = 1;
1074 	else if (newval == 20)
1075 		newreg = 2;
1076 	else if (newval == 40)
1077 		newreg = 3;
1078 	else if (newval == 80)
1079 		newreg = 4;
1080 	else
1081 		return EINVAL;
1082 
1083 	newreg |= (oldreg & ~0x07);
1084 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1085 	return 0;
1086 }
1087 
1088 static int
1089 sysctl_dbcool_duty(SYSCTLFN_ARGS)
1090 {
1091 	struct sysctlnode node;
1092 	struct dbcool_softc *sc;
1093 	int reg, error;
1094 	uint8_t chipreg, oldreg, newreg;
1095 
1096 	node = *rnode;
1097 	sc = (struct dbcool_softc *)node.sysctl_data;
1098 	chipreg = node.sysctl_num & 0xff;
1099 
1100 	oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1101 	reg = (uint32_t)oldreg;
1102 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
1103 		reg = ((reg & 0x0f) * 100) / 15;
1104 	else
1105 		reg = (reg * 100) / 255;
1106 	node.sysctl_data = &reg;
1107 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1108 
1109 	if (error || newp == NULL)
1110 		return error;
1111 
1112 	/* We were asked to update the value - sanity check before writing */
1113 	if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 100)
1114 		return EINVAL;
1115 
1116 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
1117 		newreg = *(uint8_t *)(node.sysctl_data) * 15 / 100;
1118 		newreg |= oldreg & 0xf0;
1119 	} else
1120 		newreg = *(uint8_t *)(node.sysctl_data) * 255 / 100;
1121 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1122 	return 0;
1123 }
1124 
1125 static int
1126 sysctl_dbcool_behavior(SYSCTLFN_ARGS)
1127 {
1128 	struct sysctlnode node;
1129 	struct dbcool_softc *sc;
1130 	int i, reg, error;
1131 	uint8_t chipreg, oldreg, newreg;
1132 
1133 	node = *rnode;
1134 	sc = (struct dbcool_softc *)node.sysctl_data;
1135 	chipreg = node.sysctl_num & 0xff;
1136 
1137 	oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1138 
1139 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
1140 		if ((sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_CFG2) & 1) == 0)
1141 			reg = 4;
1142 		else if ((oldreg & 0x80) == 0)
1143 			reg = 7;
1144 		else if ((oldreg & 0x60) == 0)
1145 			reg = 4;
1146 		else
1147 			reg = 6;
1148 	} else
1149 		reg = (oldreg >> 5) & 0x07;
1150 
1151 	strlcpy(dbcool_cur_behav, behavior[reg], sizeof(dbcool_cur_behav));
1152 	node.sysctl_data = dbcool_cur_behav;
1153 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1154 
1155 	if (error || newp == NULL)
1156 		return error;
1157 
1158 	/* We were asked to update the value - convert string to value */
1159 	newreg = __arraycount(behavior);
1160 	for (i = 0; i < __arraycount(behavior); i++)
1161 		if (strcmp(node.sysctl_data, behavior[i]) == 0)
1162 			break;
1163 	if (i >= __arraycount(behavior))
1164 		return EINVAL;
1165 
1166 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
1167 		/*
1168 		 * ADM1030 splits fan controller behavior across two
1169 		 * registers.  We also do not support Auto-Filter mode
1170 		 * nor do we support Manual-RPM-feedback.
1171 		 */
1172 		if (newreg == 4) {
1173 			oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_CFG2);
1174 			oldreg &= ~0x01;
1175 			sc->sc_dc.dc_writereg(&sc->sc_dc, DBCOOL_ADM1030_CFG2, oldreg);
1176 		} else {
1177 			if (newreg == 0)
1178 				newreg = 4;
1179 			else if (newreg == 6)
1180 				newreg = 7;
1181 			else if (newreg == 7)
1182 				newreg = 0;
1183 			else
1184 				return EINVAL;
1185 			newreg <<= 5;
1186 			newreg |= (oldreg & 0x1f);
1187 			sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1188 			oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_CFG2) | 1;
1189 			sc->sc_dc.dc_writereg(&sc->sc_dc, DBCOOL_ADM1030_CFG2, oldreg);
1190 		}
1191 	} else {
1192 		newreg = (sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg) & 0x1f) | (i << 5);
1193 		sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1194 	}
1195 	return 0;
1196 }
1197 
1198 static int
1199 sysctl_dbcool_slope(SYSCTLFN_ARGS)
1200 {
1201 	struct sysctlnode node;
1202 	struct dbcool_softc *sc;
1203 	int reg, error;
1204 	uint8_t chipreg;
1205 	uint8_t newreg;
1206 
1207 	node = *rnode;
1208 	sc = (struct dbcool_softc *)node.sysctl_data;
1209 	chipreg = node.sysctl_num & 0xff;
1210 
1211 	reg = (sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg) >> 4) & 0x0f;
1212 	node.sysctl_data = &reg;
1213 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1214 
1215 	if (error || newp == NULL)
1216 		return error;
1217 
1218 	/* We were asked to update the value - sanity check before writing */
1219 	if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 0x0f)
1220 		return EINVAL;
1221 
1222 	newreg = (sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg) & 0x0f) |
1223 		  (*(int *)node.sysctl_data << 4);
1224 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1225 	return 0;
1226 }
1227 
1228 static int
1229 sysctl_dbcool_thyst(SYSCTLFN_ARGS)
1230 {
1231 	struct sysctlnode node;
1232 	struct dbcool_softc *sc;
1233 	int reg, error;
1234 	uint8_t chipreg;
1235 	uint8_t newreg, newhyst;
1236 
1237 	node = *rnode;
1238 	sc = (struct dbcool_softc *)node.sysctl_data;
1239 	chipreg = node.sysctl_num & 0x7f;
1240 
1241 	/* retrieve 4-bit value */
1242 	newreg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1243 	if ((node.sysctl_num & 0x80) == 0)
1244 		reg = newreg >> 4;
1245 	else
1246 		reg = newreg;
1247 	reg = reg & 0x0f;
1248 
1249 	node.sysctl_data = &reg;
1250 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1251 
1252 	if (error || newp == NULL)
1253 		return error;
1254 
1255 	/* We were asked to update the value - sanity check before writing */
1256 	newhyst = *(int *)node.sysctl_data;
1257 	if (newhyst > 0x0f)
1258 		return EINVAL;
1259 
1260 	/* Insert new value into field and update register */
1261 	if ((node.sysctl_num & 0x80) == 0) {
1262 		newreg &= 0x0f;
1263 		newreg |= (newhyst << 4);
1264 	} else {
1265 		newreg &= 0xf0;
1266 		newreg |= newhyst;
1267 	}
1268 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1269 	return 0;
1270 }
1271 
1272 #ifdef DBCOOL_DEBUG
1273 
1274 /*
1275  * These routines can be used for debugging.  reg_select is used to
1276  * select any arbitrary register in the device.  reg_access is used
1277  * to read (and optionally update) the selected register.
1278  *
1279  * No attempt is made to validate the data passed.  If you use these
1280  * routines, you are assumed to know what you're doing!
1281  *
1282  * Caveat user
1283  */
1284 static int
1285 sysctl_dbcool_reg_select(SYSCTLFN_ARGS)
1286 {
1287 	struct sysctlnode node;
1288 	struct dbcool_softc *sc;
1289 	int reg, error;
1290 
1291 	node = *rnode;
1292 	sc = (struct dbcool_softc *)node.sysctl_data;
1293 
1294 	reg = sc->sc_user_reg;
1295 	node.sysctl_data = &reg;
1296 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1297 
1298 	if (error || newp == NULL)
1299 		return error;
1300 
1301 	sc->sc_user_reg = *(int *)node.sysctl_data;
1302 	return 0;
1303 }
1304 
1305 static int
1306 sysctl_dbcool_reg_access(SYSCTLFN_ARGS)
1307 {
1308 	struct sysctlnode node;
1309 	struct dbcool_softc *sc;
1310 	int reg, error;
1311 	uint8_t chipreg;
1312 	uint8_t newreg;
1313 
1314 	node = *rnode;
1315 	sc = (struct dbcool_softc *)node.sysctl_data;
1316 	chipreg = sc->sc_user_reg;
1317 
1318 	reg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1319 	node.sysctl_data = &reg;
1320 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1321 
1322 	if (error || newp == NULL)
1323 		return error;
1324 
1325 	newreg = *(int *)node.sysctl_data;
1326 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1327 	return 0;
1328 }
1329 #endif /* DBCOOL_DEBUG */
1330 
1331 /*
1332  * Encode an index number and register number for use as a sysctl_num
1333  * so we can select the correct device register later.
1334  */
1335 #define	DBC_PWM_SYSCTL(seq, reg)	((seq << 8) | reg)
1336 
1337 void
1338 dbcool_setup(device_t self)
1339 {
1340 	struct dbcool_softc *sc = device_private(self);
1341 	const struct sysctlnode *me = NULL;
1342 #ifdef DBCOOL_DEBUG
1343 	struct sysctlnode *node = NULL;
1344 #endif
1345 	uint8_t cfg_val, cfg_reg;
1346 	int ret, error;
1347 
1348 	/*
1349 	 * Some chips are capable of reporting an extended temperature range
1350 	 * by default.  On these models, config register 5 bit 0 can be set
1351 	 * to 1 for compatability with other chips that report 2s complement.
1352 	 */
1353 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466) {
1354 		if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADT7466_CONFIG1) & 0x80)
1355 			sc->sc_temp_offset = 64;
1356 		else
1357 			sc->sc_temp_offset = 0;
1358 	} else if (sc->sc_dc.dc_chip->flags & DBCFLAG_TEMPOFFSET) {
1359 		if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_CONFIG5_REG) &
1360 			    DBCOOL_CFG5_TWOSCOMP)
1361 			sc->sc_temp_offset = 0;
1362 		else
1363 			sc->sc_temp_offset = 64;
1364 	} else
1365 		sc->sc_temp_offset = 0;
1366 
1367 	/* Determine Vcc for this chip */
1368 	sc->sc_supply_voltage = dbcool_supply_voltage(sc);
1369 
1370 	ret = sysctl_createv(NULL, 0, NULL, &me,
1371 	       CTLFLAG_READWRITE,
1372 	       CTLTYPE_NODE, device_xname(self), NULL,
1373 	       NULL, 0, NULL, 0,
1374 	       CTL_HW, CTL_CREATE, CTL_EOL);
1375 	if (ret == 0)
1376 		sc->sc_root_sysctl_num = me->sysctl_num;
1377 	else
1378 		sc->sc_root_sysctl_num = 0;
1379 
1380 	aprint_debug_dev(self,
1381 		"Supply voltage %"PRId64".%06"PRId64"V, %s temp range\n",
1382 		sc->sc_supply_voltage / 1000000,
1383 		sc->sc_supply_voltage % 1000000,
1384 		sc->sc_temp_offset ? "extended" : "normal");
1385 
1386 	/* Create the sensors for this device */
1387 	sc->sc_sme = sysmon_envsys_create();
1388 	if (dbcool_setup_sensors(sc))
1389 		goto out;
1390 
1391 	if (sc->sc_root_sysctl_num != 0) {
1392 		/* If supported, create sysctl tree for fan PWM controllers */
1393 		if (sc->sc_dc.dc_chip->power != NULL)
1394 			dbcool_setup_controllers(sc);
1395 
1396 #ifdef DBCOOL_DEBUG
1397 		ret = sysctl_createv(NULL, 0, NULL,
1398 			(const struct sysctlnode **)&node,
1399 			CTLFLAG_READWRITE, CTLTYPE_INT, "reg_select", NULL,
1400 			sysctl_dbcool_reg_select,
1401 			0, sc, sizeof(int),
1402 			CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
1403 		if (node != NULL)
1404 			node->sysctl_data = sc;
1405 
1406 		ret = sysctl_createv(NULL, 0, NULL,
1407 			(const struct sysctlnode **)&node,
1408 			CTLFLAG_READWRITE, CTLTYPE_INT, "reg_access", NULL,
1409 			sysctl_dbcool_reg_access,
1410 			0, sc, sizeof(int),
1411 			CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
1412 		if (node != NULL)
1413 			node->sysctl_data = sc;
1414 #endif /* DBCOOL_DEBUG */
1415 	}
1416 
1417 	/*
1418 	 * Read and rewrite config register to activate device
1419 	 */
1420 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
1421 		cfg_reg = DBCOOL_ADM1030_CFG1;
1422 	else if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466)
1423 		cfg_reg = DBCOOL_ADT7466_CONFIG1;
1424 	else
1425 		cfg_reg = DBCOOL_CONFIG1_REG;
1426 	cfg_val = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_CONFIG1_REG);
1427 	if ((cfg_val & DBCOOL_CFG1_START) == 0) {
1428 		cfg_val |= DBCOOL_CFG1_START;
1429 		sc->sc_dc.dc_writereg(&sc->sc_dc, cfg_reg, cfg_val);
1430 	}
1431 	if (dbcool_islocked(sc))
1432 		aprint_normal_dev(self, "configuration locked\n");
1433 
1434 	sc->sc_sme->sme_name = device_xname(self);
1435 	sc->sc_sme->sme_cookie = sc;
1436 	sc->sc_sme->sme_refresh = dbcool_refresh;
1437 	sc->sc_sme->sme_set_limits = dbcool_set_limits;
1438 	sc->sc_sme->sme_get_limits = dbcool_get_limits;
1439 
1440 	if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
1441 		aprint_error_dev(self,
1442 		    "unable to register with sysmon (%d)\n", error);
1443 		goto out;
1444 	}
1445 
1446 	return;
1447 
1448 out:
1449 	sysmon_envsys_destroy(sc->sc_sme);
1450 }
1451 
1452 static int
1453 dbcool_setup_sensors(struct dbcool_softc *sc)
1454 {
1455 	int i;
1456 	int error = 0;
1457 	uint8_t	vid_reg, vid_val;
1458 	struct chip_id *chip = sc->sc_dc.dc_chip;
1459 
1460 	for (i=0; chip->table[i].type != DBC_EOF; i++) {
1461 		if (i < DBCOOL_MAXSENSORS)
1462 			sc->sc_sysctl_num[i] = -1;
1463 		else if (chip->table[i].type != DBC_CTL) {
1464 			aprint_normal_dev(sc->sc_dev, "chip table too big!\n");
1465 			break;
1466 		}
1467 		switch (chip->table[i].type) {
1468 		case DBC_TEMP:
1469 			sc->sc_sensor[i].units = ENVSYS_STEMP;
1470 			sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
1471 			error = dbcool_attach_sensor(sc, i);
1472 			break;
1473 		case DBC_VOLT:
1474 			/*
1475 			 * If 12V-In pin has been reconfigured as 6th bit
1476 			 * of VID code, don't create a 12V-In sensor
1477 			 */
1478 			if ((chip->flags & DBCFLAG_HAS_VID_SEL) &&
1479 			    (chip->table[i].reg.val_reg == DBCOOL_12VIN) &&
1480 			    (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VID_REG) &
1481 					0x80))
1482 				break;
1483 
1484 			sc->sc_sensor[i].units = ENVSYS_SVOLTS_DC;
1485 			sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
1486 			error = dbcool_attach_sensor(sc, i);
1487 			break;
1488 		case DBC_FAN:
1489 			sc->sc_sensor[i].units = ENVSYS_SFANRPM;
1490 			sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
1491 			error = dbcool_attach_sensor(sc, i);
1492 			break;
1493 		case DBC_VID:
1494 			sc->sc_sensor[i].units = ENVSYS_INTEGER;
1495 			sc->sc_sensor[i].flags |= ENVSYS_FMONNOTSUPP;
1496 
1497 			/* retrieve 5- or 6-bit value */
1498 			vid_reg = chip->table[i].reg.val_reg;
1499 			vid_val = sc->sc_dc.dc_readreg(&sc->sc_dc, vid_reg);
1500 			if (chip->flags & DBCFLAG_HAS_VID_SEL)
1501 				vid_val &= 0x3f;
1502 			else
1503 				vid_val &= 0x1f;
1504 			sc->sc_sensor[i].value_cur = vid_val;
1505 
1506 			error = dbcool_attach_sensor(sc, i);
1507 			break;
1508 		case DBC_CTL:
1509 			error = dbcool_attach_temp_control(sc, i, chip);
1510 			if (error) {
1511 				aprint_error_dev(sc->sc_dev,
1512 						"attach index %d failed %d\n",
1513 						i, error);
1514 				error = 0;
1515 			}
1516 			break;
1517 		default:
1518 			aprint_error_dev(sc->sc_dev,
1519 				"sensor_table index %d has bad type %d\n",
1520 				i, chip->table[i].type);
1521 			break;
1522 		}
1523 		if (error)
1524 			break;
1525 	}
1526 	return error;
1527 }
1528 
1529 static int
1530 dbcool_attach_sensor(struct dbcool_softc *sc, int idx)
1531 {
1532 	int name_index;
1533 	int error = 0;
1534 
1535 	name_index = sc->sc_dc.dc_chip->table[idx].name_index;
1536 	strlcpy(sc->sc_sensor[idx].desc, dbc_sensor_names[name_index],
1537 		sizeof(sc->sc_sensor[idx].desc));
1538 	sc->sc_regs[idx] = &sc->sc_dc.dc_chip->table[idx].reg;
1539 	sc->sc_nom_volt[idx] = sc->sc_dc.dc_chip->table[idx].nom_volt_index;
1540 
1541 	error = sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[idx]);
1542 	return error;
1543 }
1544 
1545 static int
1546 dbcool_attach_temp_control(struct dbcool_softc *sc, int idx,
1547 			   struct chip_id *chip)
1548 {
1549 	const struct sysctlnode *me2 = NULL;
1550 	struct sysctlnode *node = NULL;
1551 	int j, ret, sysctl_index, rw_flag;
1552 	uint8_t	sysctl_reg;
1553 	char name[SYSCTL_NAMELEN];
1554 
1555 	/* Search for the corresponding temp sensor */
1556 	for (j = 0; j < idx; j++) {
1557 		if (j >= DBCOOL_MAXSENSORS || chip->table[j].type != DBC_TEMP)
1558 			continue;
1559 		if (chip->table[j].name_index == chip->table[idx].name_index)
1560 			break;
1561 	}
1562 	if (j >= idx)	/* Temp sensor not found */
1563 		return ENOENT;
1564 
1565 	/* create sysctl node for the sensor if not one already there */
1566 	if (sc->sc_sysctl_num[j] == -1) {
1567 		ret = sysctl_createv(NULL, 0, NULL, &me2, CTLFLAG_READWRITE,
1568 				     CTLTYPE_NODE, sc->sc_sensor[j].desc, NULL,
1569 				     NULL, 0, NULL, 0,
1570 				     CTL_HW, sc->sc_root_sysctl_num, CTL_CREATE,
1571 					CTL_EOL);
1572 		if (me2 != NULL)
1573 			sc->sc_sysctl_num[j] = me2->sysctl_num;
1574 		else
1575 			return ret;
1576 	}
1577 	/* add sysctl leaf node for this control variable */
1578 	sysctl_index = chip->table[idx].sysctl_index;
1579 	sysctl_reg = chip->table[idx].reg.val_reg;
1580 	strlcpy(name, dbc_sysctl_table[sysctl_index].name, sizeof(name));
1581 	if (dbc_sysctl_table[sysctl_index].lockable && dbcool_islocked(sc))
1582 		rw_flag = CTLFLAG_READONLY | CTLFLAG_OWNDESC;
1583 	else
1584 		rw_flag = CTLFLAG_READWRITE | CTLFLAG_OWNDESC;
1585 	ret = sysctl_createv(NULL, 0, NULL,
1586 			     (const struct sysctlnode **)&node, rw_flag,
1587 			     CTLTYPE_INT, name,
1588 			     dbc_sysctl_table[sysctl_index].desc,
1589 			     dbc_sysctl_table[sysctl_index].helper,
1590 			     0, sc, sizeof(int),
1591 			     CTL_HW, sc->sc_root_sysctl_num,
1592 				sc->sc_sysctl_num[j],
1593 				DBC_PWM_SYSCTL(idx, sysctl_reg), CTL_EOL);
1594 	if (node != NULL)
1595 		node->sysctl_data = sc;
1596 
1597 	return ret;
1598 }
1599 
1600 static void
1601 dbcool_setup_controllers(struct dbcool_softc *sc)
1602 {
1603 	int i, j, ret, rw_flag;
1604 	uint8_t sysctl_reg;
1605 	struct chip_id *chip = sc->sc_dc.dc_chip;
1606 	const struct sysctlnode *me2 = NULL;
1607 	struct sysctlnode *node = NULL;
1608 	char name[SYSCTL_NAMELEN];
1609 
1610 	for (i = 0; chip->power[i].desc != NULL; i++) {
1611 		snprintf(name, sizeof(name), "fan_ctl_%d", i);
1612 		ret = sysctl_createv(NULL, 0, NULL, &me2,
1613 		       CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
1614 		       CTLTYPE_NODE, name, NULL,
1615 		       NULL, 0, NULL, 0,
1616 		       CTL_HW, sc->sc_root_sysctl_num, CTL_CREATE, CTL_EOL);
1617 
1618 		for (j = DBC_PWM_BEHAVIOR; j < DBC_PWM_LAST_PARAM; j++) {
1619 			if (j == DBC_PWM_MAX_DUTY &&
1620 			    (chip->flags & DBCFLAG_HAS_MAXDUTY) == 0)
1621 				continue;
1622 			sysctl_reg = chip->power[i].power_regs[j];
1623 			if (sysctl_reg == DBCOOL_NO_REG)
1624 				continue;
1625 			strlcpy(name, dbc_sysctl_table[j].name, sizeof(name));
1626 			if (dbc_sysctl_table[j].lockable && dbcool_islocked(sc))
1627 				rw_flag = CTLFLAG_READONLY | CTLFLAG_OWNDESC;
1628 			else
1629 				rw_flag = CTLFLAG_READWRITE | CTLFLAG_OWNDESC;
1630 			ret = sysctl_createv(NULL, 0, NULL,
1631 				(const struct sysctlnode **)&node, rw_flag,
1632 				(j == DBC_PWM_BEHAVIOR)?
1633 					CTLTYPE_STRING:CTLTYPE_INT,
1634 				name,
1635 				dbc_sysctl_table[j].desc,
1636 				dbc_sysctl_table[j].helper,
1637 				0, sc,
1638 				( j == DBC_PWM_BEHAVIOR)?
1639 					sizeof(dbcool_cur_behav): sizeof(int),
1640 				CTL_HW, sc->sc_root_sysctl_num, me2->sysctl_num,
1641 				DBC_PWM_SYSCTL(j, sysctl_reg), CTL_EOL);
1642 			if (node != NULL)
1643 				node->sysctl_data = sc;
1644 		}
1645 	}
1646 }
1647 
1648 static void
1649 dbcool_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1650 {
1651 	struct dbcool_softc *sc=sme->sme_cookie;
1652 	int i, nom_volt_idx, cur;
1653 	struct reg_list *reg;
1654 
1655 	i = edata->sensor;
1656 	reg = sc->sc_regs[i];
1657 
1658 	edata->state = ENVSYS_SVALID;
1659 	switch (edata->units)
1660 	{
1661 		case ENVSYS_STEMP:
1662 			cur = dbcool_read_temp(sc, reg->val_reg, true);
1663 			break;
1664 		case ENVSYS_SVOLTS_DC:
1665 			nom_volt_idx = sc->sc_nom_volt[i];
1666 			cur = dbcool_read_volt(sc, reg->val_reg, nom_volt_idx,
1667 						true);
1668 			break;
1669 		case ENVSYS_SFANRPM:
1670 			cur = dbcool_read_rpm(sc, reg->val_reg);
1671 			break;
1672 		case ENVSYS_INTEGER:
1673 			return;
1674 		default:
1675 			edata->state = ENVSYS_SINVALID;
1676 			return;
1677 	}
1678 
1679 	if (cur == 0 && (edata->units != ENVSYS_SFANRPM))
1680 		edata->state = ENVSYS_SINVALID;
1681 
1682 	/*
1683 	 * If fan is "stalled" but has no low limit, treat
1684 	 * it as though the fan is not installed.
1685 	 */
1686 	else if (edata->units == ENVSYS_SFANRPM && cur == 0 &&
1687 			!(edata->upropset & (PROP_CRITMIN | PROP_WARNMIN)))
1688 		edata->state = ENVSYS_SINVALID;
1689 
1690 	edata->value_cur = cur;
1691 }
1692 
1693 int
1694 dbcool_chip_ident(struct dbcool_chipset *dc)
1695 {
1696 	/* verify this is a supported dbCool chip */
1697 	uint8_t c_id, d_id, r_id;
1698 	int i;
1699 
1700 	c_id = dc->dc_readreg(dc, DBCOOL_COMPANYID_REG);
1701 	d_id = dc->dc_readreg(dc, DBCOOL_DEVICEID_REG);
1702 	r_id = dc->dc_readreg(dc, DBCOOL_REVISION_REG);
1703 
1704 	for (i = 0; chip_table[i].company != 0; i++)
1705 		if ((c_id == chip_table[i].company) &&
1706 		    (d_id == chip_table[i].device ||
1707 		    chip_table[i].device == 0xff) &&
1708 		    (r_id == chip_table[i].rev ||
1709 		    chip_table[i].rev == 0xff)) {
1710 			dc->dc_chip = &chip_table[i];
1711 			return i;
1712 		}
1713 
1714 	aprint_verbose("dbcool_chip_ident: addr 0x%02x c_id 0x%02x d_id 0x%02x"
1715 			" r_id 0x%02x: No match.\n", dc->dc_addr, c_id, d_id,
1716 			r_id);
1717 
1718 	return -1;
1719 }
1720 
1721 /*
1722  * Retrieve sensor limits from the chip registers
1723  */
1724 static void
1725 dbcool_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1726 		  sysmon_envsys_lim_t *limits, uint32_t *props)
1727 {
1728 	int index = edata->sensor;
1729 	struct dbcool_softc *sc = sme->sme_cookie;
1730 
1731 	*props &= ~(PROP_CRITMIN | PROP_CRITMAX);
1732 	switch (edata->units) {
1733 	    case ENVSYS_STEMP:
1734 		dbcool_get_temp_limits(sc, index, limits, props);
1735 		break;
1736 	    case ENVSYS_SVOLTS_DC:
1737 		dbcool_get_volt_limits(sc, index, limits, props);
1738 		break;
1739 	    case ENVSYS_SFANRPM:
1740 		dbcool_get_fan_limits(sc, index, limits, props);
1741 
1742 	    /* FALLTHROUGH */
1743 	    default:
1744 		break;
1745 	}
1746 	*props &= ~PROP_DRIVER_LIMITS;
1747 
1748 	/* If both limits provided, make sure they're sane */
1749 	if ((*props & PROP_CRITMIN) &&
1750 	    (*props & PROP_CRITMAX) &&
1751 	    (limits->sel_critmin >= limits->sel_critmax))
1752 		*props &= ~(PROP_CRITMIN | PROP_CRITMAX);
1753 }
1754 
1755 static void
1756 dbcool_get_temp_limits(struct dbcool_softc *sc, int idx,
1757 		       sysmon_envsys_lim_t *lims, uint32_t *props)
1758 {
1759 	struct reg_list *reg = sc->sc_regs[idx];
1760 	uint8_t	lo_lim, hi_lim;
1761 
1762 	lo_lim = sc->sc_dc.dc_readreg(&sc->sc_dc, reg->lo_lim_reg);
1763 	hi_lim = sc->sc_dc.dc_readreg(&sc->sc_dc, reg->hi_lim_reg);
1764 
1765 	if (sc->sc_temp_offset) {
1766 		if (lo_lim > 0x01) {
1767 			lims->sel_critmin = lo_lim - sc->sc_temp_offset;
1768 			*props |= PROP_CRITMIN;
1769 		}
1770 		if (hi_lim != 0xff) {
1771 			lims->sel_critmax = hi_lim - sc->sc_temp_offset;
1772 			*props |= PROP_CRITMAX;
1773 		}
1774 	} else {
1775 		if (lo_lim != 0x80 && lo_lim != 0x81) {
1776 			lims->sel_critmin = (int8_t)lo_lim;
1777 			*props |= PROP_CRITMIN;
1778 		}
1779 
1780 		if (hi_lim != 0x7f) {
1781 			lims->sel_critmax = (int8_t)hi_lim;
1782 			*props |= PROP_CRITMAX;
1783 		}
1784 	}
1785 
1786 	/* Convert temp limits to microKelvin */
1787 	lims->sel_critmin *= 1000000;
1788 	lims->sel_critmin += 273150000;
1789 	lims->sel_critmax *= 1000000;
1790 	lims->sel_critmax += 273150000;
1791 }
1792 
1793 static void
1794 dbcool_get_volt_limits(struct dbcool_softc *sc, int idx,
1795 		       sysmon_envsys_lim_t *lims, uint32_t *props)
1796 {
1797 	struct reg_list *reg = sc->sc_regs[idx];
1798 	int64_t limit;
1799 	int nom;
1800 
1801 	nom = nominal_voltages[sc->sc_dc.dc_chip->table[idx].nom_volt_index];
1802 	if (nom < 0)
1803 		nom = dbcool_supply_voltage(sc);
1804 	nom *= 1000000;		/* scale for microvolts */
1805 
1806 	limit = sc->sc_dc.dc_readreg(&sc->sc_dc, reg->lo_lim_reg);
1807 	if (limit != 0x00 && limit != 0xff) {
1808 		limit *= nom;
1809 		limit /= 0xc0;
1810 		lims->sel_critmin = limit;
1811 		*props |= PROP_CRITMIN;
1812 	}
1813 	limit = sc->sc_dc.dc_readreg(&sc->sc_dc, reg->hi_lim_reg);
1814 	if (limit != 0x00 && limit != 0xff) {
1815 		limit *= nom;
1816 		limit /= 0xc0;
1817 		lims->sel_critmax = limit;
1818 		*props |= PROP_CRITMAX;
1819 	}
1820 }
1821 
1822 static void
1823 dbcool_get_fan_limits(struct dbcool_softc *sc, int idx,
1824 		      sysmon_envsys_lim_t *lims, uint32_t *props)
1825 {
1826 	struct reg_list *reg = sc->sc_regs[idx];
1827 	int32_t	limit;
1828 
1829 	limit = dbcool_read_rpm(sc, reg->lo_lim_reg);
1830 	if (limit) {
1831 		lims->sel_critmin = limit;
1832 		*props |= PROP_CRITMIN;
1833 	}
1834 }
1835 
1836 /*
1837  * Update sensor limits in the chip registers
1838  */
1839 static void
1840 dbcool_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1841 		  sysmon_envsys_lim_t *limits, uint32_t *props)
1842 {
1843 	int index = edata->sensor;
1844 	struct dbcool_softc *sc = sme->sme_cookie;
1845 
1846 	switch (edata->units) {
1847 	    case ENVSYS_STEMP:
1848 		dbcool_set_temp_limits(sc, index, limits, props);
1849 		break;
1850 	    case ENVSYS_SVOLTS_DC:
1851 		dbcool_set_volt_limits(sc, index, limits, props);
1852 		break;
1853 	    case ENVSYS_SFANRPM:
1854 		dbcool_set_fan_limits(sc, index, limits, props);
1855 
1856 	    /* FALLTHROUGH */
1857 	    default:
1858 		break;
1859 	}
1860 	*props &= ~PROP_DRIVER_LIMITS;
1861 }
1862 
1863 static void
1864 dbcool_set_temp_limits(struct dbcool_softc *sc, int idx,
1865 		       sysmon_envsys_lim_t *lims, uint32_t *props)
1866 {
1867 	struct reg_list *reg = sc->sc_regs[idx];
1868 	int32_t	limit;
1869 
1870 	if (*props & PROP_CRITMIN) {
1871 		limit = lims->sel_critmin - 273150000;
1872 		limit /= 1000000;
1873 		if (sc->sc_temp_offset) {
1874 			limit += sc->sc_temp_offset;
1875 			if (limit < 0)
1876 				limit = 0;
1877 			else if (limit > 255)
1878 				limit = 255;
1879 		} else {
1880 			if (limit < -127)
1881 				limit = -127;
1882 			else if (limit > 127)
1883 				limit = 127;
1884 		}
1885 	} else
1886 		if (sc->sc_temp_offset)
1887 			limit = 0x00;
1888 		else
1889 			limit = 0x80;
1890 	sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg, (uint8_t)limit);
1891 
1892 	if (*props & PROP_CRITMAX) {
1893 		limit = lims->sel_critmax - 273150000;
1894 		limit /= 1000000;
1895 		if (sc->sc_temp_offset) {
1896 			limit += sc->sc_temp_offset;
1897 			if (limit < 0)
1898 				limit = 0;
1899 			else if (limit > 255)
1900 				limit = 255;
1901 		} else {
1902 			if (limit < -127)
1903 				limit = -127;
1904 			else if (limit > 127)
1905 				limit = 127;
1906 		}
1907 	} else
1908 		if (sc->sc_temp_offset)
1909 			limit = 0xff;
1910 		else
1911 			limit = 0x7f;
1912 	sc->sc_dc.dc_writereg(&sc->sc_dc, reg->hi_lim_reg, (uint8_t)limit);
1913 }
1914 
1915 static void
1916 dbcool_set_volt_limits(struct dbcool_softc *sc, int idx,
1917 		       sysmon_envsys_lim_t *lims, uint32_t *props)
1918 {
1919 	struct reg_list *reg = sc->sc_regs[idx];
1920 	int64_t limit;
1921 	int nom;
1922 
1923 	nom = nominal_voltages[sc->sc_dc.dc_chip->table[idx].nom_volt_index];
1924 	if (nom < 0)
1925 		nom = dbcool_supply_voltage(sc);
1926 	nom *= 1000000;		/* scale for microvolts */
1927 
1928 	if (*props & PROP_CRITMIN) {
1929 		limit = lims->sel_critmin;
1930 		limit *= 0xc0;
1931 		limit /= nom;
1932 		if (limit > 0xff)
1933 			limit = 0xff;
1934 		else if (limit < 0)
1935 			limit = 0;
1936 	} else
1937 		limit = 0;
1938 	sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg, limit);
1939 
1940 	if (*props & PROP_CRITMAX) {
1941 		limit = lims->sel_critmax;
1942 		limit *= 0xc0;
1943 		limit /= nom;
1944 		if (limit > 0xff)
1945 			limit = 0xff;
1946 		else if (limit < 0)
1947 			limit = 0;
1948 	} else
1949 		limit = 0xff;
1950 	sc->sc_dc.dc_writereg(&sc->sc_dc, reg->hi_lim_reg, limit);
1951 }
1952 
1953 static void
1954 dbcool_set_fan_limits(struct dbcool_softc *sc, int idx,
1955 		      sysmon_envsys_lim_t *lims, uint32_t *props)
1956 {
1957 	struct reg_list *reg = sc->sc_regs[idx];
1958 	int32_t	limit, dividend;
1959 
1960 	if (*props & PROP_CRITMIN) {
1961 		limit = lims->sel_critmin;
1962 		if (limit == 0)
1963 			limit = 0xffff;
1964 		else {
1965 			if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
1966 				dividend = 11250 * 60;
1967 			else
1968 				dividend = 90000 * 60;
1969 			limit = limit / dividend;
1970 			if (limit > 0xffff)
1971 				limit = 0xffff;
1972 		}
1973 	} else
1974 		limit = 0xffff;
1975 	sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg, limit & 0xff);
1976 	limit >>= 8;
1977 	sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg + 1, limit & 0xff);
1978 }
1979