xref: /netbsd-src/sys/dev/i2c/dbcool.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: dbcool.c,v 1.14 2010/01/08 20:04:31 dyoung Exp $ */
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Paul Goyette
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * a driver for the dbCool(tm) family of environmental controllers
34  *
35  * Data sheets for the various supported chips are available at
36  *
37  *	http://www.onsemi.com/pub/Collateral/ADM1027-D.PDF
38  *	http://www.onsemi.com/pub/Collateral/ADM1030-D.PDF
39  *	http://www.onsemi.com/pub/Collateral/ADT7463-D.PDF
40  *	http://www.onsemi.com/pub/Collateral/ADT7466.PDF
41  *	http://www.onsemi.com/pub/Collateral/ADT7467-D.PDF
42  *	http://www.onsemi.com/pub/Collateral/ADT7468-D.PDF
43  *	http://www.onsemi.com/pub/Collateral/ADT7473-D.PDF
44  *	http://www.onsemi.com/pub/Collateral/ADT7475-D.PDF
45  *	http://www.onsemi.com/pub/Collateral/ADT7476-D.PDF
46  *	http://www.onsemi.com/pub/Collateral/ADT7490-D.PDF
47  *
48  * (URLs are correct as of October 5, 2008)
49  */
50 
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: dbcool.c,v 1.14 2010/01/08 20:04:31 dyoung Exp $");
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/kernel.h>
57 #include <sys/device.h>
58 #include <sys/malloc.h>
59 #include <sys/sysctl.h>
60 
61 #include <uvm/uvm_extern.h>
62 
63 #include <dev/i2c/dbcool_var.h>
64 #include <dev/i2c/dbcool_reg.h>
65 
66 /* Config interface */
67 static int dbcool_match(device_t, cfdata_t, void *);
68 static void dbcool_attach(device_t, device_t, void *);
69 static int dbcool_detach(device_t, int);
70 
71 /* Device attributes */
72 static int dbcool_supply_voltage(struct dbcool_softc *);
73 static bool dbcool_islocked(struct dbcool_softc *);
74 
75 /* Sensor read functions */
76 static void dbcool_refresh(struct sysmon_envsys *, envsys_data_t *);
77 static int dbcool_read_rpm(struct dbcool_softc *, uint8_t);
78 static int dbcool_read_temp(struct dbcool_softc *, uint8_t, bool);
79 static int dbcool_read_volt(struct dbcool_softc *, uint8_t, int, bool);
80 
81 /* SYSCTL Helpers */
82 static int sysctl_dbcool_temp(SYSCTLFN_PROTO);
83 static int sysctl_adm1030_temp(SYSCTLFN_PROTO);
84 static int sysctl_adm1030_trange(SYSCTLFN_PROTO);
85 static int sysctl_dbcool_duty(SYSCTLFN_PROTO);
86 static int sysctl_dbcool_behavior(SYSCTLFN_PROTO);
87 static int sysctl_dbcool_slope(SYSCTLFN_PROTO);
88 static int sysctl_dbcool_volt_limit(SYSCTLFN_PROTO);
89 static int sysctl_dbcool_temp_limit(SYSCTLFN_PROTO);
90 static int sysctl_dbcool_fan_limit(SYSCTLFN_PROTO);
91 static int sysctl_dbcool_thyst(SYSCTLFN_PROTO);
92 static int sysctl_dbcool_vid(SYSCTLFN_PROTO);
93 
94 /* Set-up subroutines */
95 static void dbcool_setup_controllers(struct dbcool_softc *,
96 	const struct sysctlnode *, int, int);
97 static int dbcool_setup_sensors(struct dbcool_softc *,
98 	const struct sysctlnode *, int, int);
99 static int dbcool_attach_sensor(struct dbcool_softc *,
100 	const struct sysctlnode *, int, int (*)(SYSCTLFN_PROTO));
101 
102 #ifdef DBCOOL_DEBUG
103 static int sysctl_dbcool_reg_select(SYSCTLFN_PROTO);
104 static int sysctl_dbcool_reg_access(SYSCTLFN_PROTO);
105 #endif /* DBCOOL_DEBUG */
106 
107 /*
108  * Descriptions for SYSCTL entries
109  */
110 struct dbc_sysctl_info {
111 	const char *name;
112 	const char *desc;
113 	bool lockable;
114 	int (*helper)(SYSCTLFN_PROTO);
115 };
116 
117 static struct dbc_sysctl_info dbc_sysctl_table[] = {
118 	/*
119 	 * The first several entries must remain in the same order as the
120 	 * corresponding entries in enum dbc_pwm_params
121 	 */
122 	{ "behavior",		"operating behavior and temp selector",
123 		true, sysctl_dbcool_behavior },
124 	{ "min_duty",		"minimum fan controller PWM duty cycle",
125 		true, sysctl_dbcool_duty },
126 	{ "max_duty",		"maximum fan controller PWM duty cycle",
127 		true, sysctl_dbcool_duty },
128 	{ "cur_duty",		"current fan controller PWM duty cycle",
129 		false, sysctl_dbcool_duty },
130 
131 	/*
132 	 * The rest of these should be in the order in which they
133 	 * are to be stored in the sysctl tree;  the table index is
134 	 * used as the high-order bits of the sysctl_num to maintain
135 	 * the sequence.
136 	 *
137 	 * If you rearrange the order of these items, be sure to
138 	 * update the sysctl_index in the XXX_sensor_table[] for
139 	 * the various chips!
140 	 */
141 	{ "Trange",		"temp slope/range to reach 100% duty cycle",
142 		true, sysctl_dbcool_slope },
143 	{ "Tmin",		"temp at which to start fan controller",
144 		true, sysctl_dbcool_temp },
145 	{ "Ttherm",		"temp at which THERM is asserted",
146 		true, sysctl_dbcool_temp },
147 	{ "Thyst",		"temp hysteresis for stopping fan controller",
148 		true, sysctl_dbcool_thyst },
149 	{ "Tmin",		"temp at which to start fan controller",
150 		true, sysctl_adm1030_temp },
151 	{ "Trange",		"temp slope/range to reach 100% duty cycle",
152 		true, sysctl_adm1030_trange },
153 };
154 
155 static const char *dbc_sensor_names[] = {
156 	"l_temp",  "r1_temp", "r2_temp", "Vccp",   "Vcc",    "fan1",
157 	"fan2",    "fan3",    "fan4",    "AIN1",   "AIN2",   "V2dot5",
158 	"V5",      "V12",     "Vtt",     "Imon"
159 };
160 
161 /*
162  * Following table derived from product data-sheets
163  */
164 static int64_t nominal_voltages[] = {
165 	-1,		/* Vcc can be either 3.3 or 5.0V
166 			   at 3/4 scale                  */
167 	 2249939,	/* Vccp         2.25V 3/4 scale  */
168 	 2497436,	/* 2.5VIN       2.5V  3/4 scale  */
169 	 5002466,	/* 5VIN         5V    3/4 scale  */
170 	12000000,	/* 12VIN       12V    3/4 scale  */
171 	 1690809,	/* Vtt, Imon    2.25V full scale */
172 	 1689600,	/* AIN1, AIN2   2.25V full scale */
173 	       0
174 };
175 
176 /*
177  * Sensor-type, { val-reg, hilim-reg, lolim-reg}, name-idx, sysctl-table-idx,
178  *	nom-voltage-index
179  */
180 struct dbcool_sensor ADT7490_sensor_table[] = {
181 	{ DBC_TEMP, {	DBCOOL_LOCAL_TEMP,
182 			DBCOOL_LOCAL_HIGHLIM,
183 			DBCOOL_LOCAL_LOWLIM },		0, 0, 0 },
184 	{ DBC_TEMP, {	DBCOOL_REMOTE1_TEMP,
185 			DBCOOL_REMOTE1_HIGHLIM,
186 			DBCOOL_REMOTE1_LOWLIM },	1, 0, 0 },
187 	{ DBC_TEMP, {	DBCOOL_REMOTE2_TEMP,
188 			DBCOOL_REMOTE2_HIGHLIM,
189 			DBCOOL_REMOTE2_LOWLIM },	2, 0, 0 },
190 	{ DBC_VOLT, {	DBCOOL_VCCP,
191 			DBCOOL_VCCP_HIGHLIM,
192 			DBCOOL_VCCP_LOWLIM },		3, 0, 1 },
193 	{ DBC_VOLT, {	DBCOOL_VCC,
194 			DBCOOL_VCC_HIGHLIM,
195 			DBCOOL_VCC_LOWLIM },		4, 0, 0 },
196 	{ DBC_VOLT, {	DBCOOL_25VIN,
197 			DBCOOL_25VIN_HIGHLIM,
198 			DBCOOL_25VIN_LOWLIM },		11, 0, 2 },
199 	{ DBC_VOLT, {	DBCOOL_5VIN,
200 			DBCOOL_5VIN_HIGHLIM,
201 			DBCOOL_5VIN_LOWLIM },		12, 0, 3 },
202 	{ DBC_VOLT, {	DBCOOL_12VIN,
203 			DBCOOL_12VIN_HIGHLIM,
204 			DBCOOL_12VIN_LOWLIM },		13, 0, 4 },
205 	{ DBC_VOLT, {	DBCOOL_VTT,
206 			DBCOOL_VTT_HIGHLIM,
207 			DBCOOL_VTT_LOWLIM },		14, 0, 5 },
208 	{ DBC_VOLT, {	DBCOOL_IMON,
209 			DBCOOL_IMON_HIGHLIM,
210 			DBCOOL_IMON_LOWLIM },		15, 0, 5 },
211 	{ DBC_FAN,  {	DBCOOL_FAN1_TACH_LSB,
212 			DBCOOL_NO_REG,
213 			DBCOOL_TACH1_MIN_LSB },		5, 0, 0 },
214 	{ DBC_FAN,  {	DBCOOL_FAN2_TACH_LSB,
215 			DBCOOL_NO_REG,
216 			DBCOOL_TACH2_MIN_LSB },		6, 0, 0 },
217 	{ DBC_FAN,  {	DBCOOL_FAN3_TACH_LSB,
218 			DBCOOL_NO_REG,
219 			DBCOOL_TACH3_MIN_LSB },		7, 0, 0 },
220 	{ DBC_FAN,  {	DBCOOL_FAN4_TACH_LSB,
221 			DBCOOL_NO_REG,
222 			DBCOOL_TACH4_MIN_LSB },		8, 0, 0 },
223 	{ DBC_CTL,  {	DBCOOL_LOCAL_TMIN,
224 			DBCOOL_NO_REG,
225 			DBCOOL_NO_REG },		0, 5, 0 },
226 	{ DBC_CTL,  {	DBCOOL_LOCAL_TTHRESH,
227 			DBCOOL_NO_REG,
228 			DBCOOL_NO_REG },		0, 6, 0 },
229 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST | 0x80,
230 			DBCOOL_NO_REG,
231 			DBCOOL_NO_REG },		0, 7, 0 },
232 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TMIN,
233 			DBCOOL_NO_REG,
234 			DBCOOL_NO_REG },		1, 5, 0 },
235 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TTHRESH,
236 			DBCOOL_NO_REG,
237 			DBCOOL_NO_REG },		1, 6, 0 },
238 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST,
239 			DBCOOL_NO_REG,
240 			DBCOOL_NO_REG },		1, 7, 0 },
241 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TMIN,
242 			DBCOOL_NO_REG,
243 			DBCOOL_NO_REG },		2, 5, 0 },
244 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TTHRESH,
245 			DBCOOL_NO_REG,
246 			DBCOOL_NO_REG },		2, 6, 0 },
247 	{ DBC_CTL,  {	DBCOOL_R2_TMIN_HYST,
248 			DBCOOL_NO_REG,
249 			DBCOOL_NO_REG },		2, 7, 0 },
250 	{ DBC_EOF,  { 0, 0, 0 }, 0, 0, 0 }
251 };
252 
253 struct dbcool_sensor ADT7476_sensor_table[] = {
254 	{ DBC_TEMP, {	DBCOOL_LOCAL_TEMP,
255 			DBCOOL_LOCAL_HIGHLIM,
256 			DBCOOL_LOCAL_LOWLIM },		0, 0, 0 },
257 	{ DBC_TEMP, {	DBCOOL_REMOTE1_TEMP,
258 			DBCOOL_REMOTE1_HIGHLIM,
259 			DBCOOL_REMOTE1_LOWLIM },	1, 0, 0 },
260 	{ DBC_TEMP, {	DBCOOL_REMOTE2_TEMP,
261 			DBCOOL_REMOTE2_HIGHLIM,
262 			DBCOOL_REMOTE2_LOWLIM },	2, 0, 0 },
263 	{ DBC_VOLT, {	DBCOOL_VCCP,
264 			DBCOOL_VCCP_HIGHLIM,
265 			DBCOOL_VCCP_LOWLIM },		3, 0, 1 },
266 	{ DBC_VOLT, {	DBCOOL_VCC,
267 			DBCOOL_VCC_HIGHLIM,
268 			DBCOOL_VCC_LOWLIM },		4, 0, 0 },
269 	{ DBC_VOLT, {	DBCOOL_25VIN,
270 			DBCOOL_25VIN_HIGHLIM,
271 			DBCOOL_25VIN_LOWLIM },		11, 0, 2 },
272 	{ DBC_VOLT, {	DBCOOL_5VIN,
273 			DBCOOL_5VIN_HIGHLIM,
274 			DBCOOL_5VIN_LOWLIM },		12, 0, 3 },
275 	{ DBC_VOLT, {	DBCOOL_12VIN,
276 			DBCOOL_12VIN_HIGHLIM,
277 			DBCOOL_12VIN_LOWLIM },		13, 0, 4 },
278 	{ DBC_FAN,  {	DBCOOL_FAN1_TACH_LSB,
279 			DBCOOL_NO_REG,
280 			DBCOOL_TACH1_MIN_LSB },		5, 0, 0 },
281 	{ DBC_FAN,  {	DBCOOL_FAN2_TACH_LSB,
282 			DBCOOL_NO_REG,
283 			DBCOOL_TACH2_MIN_LSB },		6, 0, 0 },
284 	{ DBC_FAN,  {	DBCOOL_FAN3_TACH_LSB,
285 			DBCOOL_NO_REG,
286 			DBCOOL_TACH3_MIN_LSB },		7, 0, 0 },
287 	{ DBC_FAN,  {	DBCOOL_FAN4_TACH_LSB,
288 			DBCOOL_NO_REG,
289 			DBCOOL_TACH4_MIN_LSB },		8, 0, 0 },
290 	{ DBC_CTL,  {	DBCOOL_LOCAL_TMIN,
291 			DBCOOL_NO_REG,
292 			DBCOOL_NO_REG },		0, 5, 0 },
293 	{ DBC_CTL,  {	DBCOOL_LOCAL_TTHRESH,
294 			DBCOOL_NO_REG,
295 			DBCOOL_NO_REG },		0, 6, 0 },
296 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST | 0x80,
297 			DBCOOL_NO_REG,
298 			DBCOOL_NO_REG },		0, 7, 0 },
299 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TMIN,
300 			DBCOOL_NO_REG,
301 			DBCOOL_NO_REG },		1, 5, 0 },
302 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TTHRESH,
303 			DBCOOL_NO_REG,
304 			DBCOOL_NO_REG },		1, 6, 0 },
305 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST,
306 			DBCOOL_NO_REG,
307 			DBCOOL_NO_REG },		1, 7, 0 },
308 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TMIN,
309 			DBCOOL_NO_REG,
310 			DBCOOL_NO_REG },		2, 5, 0 },
311 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TTHRESH,
312 			DBCOOL_NO_REG,
313 			DBCOOL_NO_REG },		2, 6, 0 },
314 	{ DBC_CTL,  {	DBCOOL_R2_TMIN_HYST,
315 			DBCOOL_NO_REG,
316 			DBCOOL_NO_REG },		2, 7, 0 },
317 	{ DBC_EOF,  { 0, 0, 0 }, 0, 0, 0 }
318 };
319 
320 struct dbcool_sensor ADT7475_sensor_table[] = {
321 	{ DBC_TEMP, {	DBCOOL_LOCAL_TEMP,
322 			DBCOOL_LOCAL_HIGHLIM,
323 			DBCOOL_LOCAL_LOWLIM },		0, 0, 0 },
324 	{ DBC_TEMP, {	DBCOOL_REMOTE1_TEMP,
325 			DBCOOL_REMOTE1_HIGHLIM,
326 			DBCOOL_REMOTE1_LOWLIM },	1, 0, 0 },
327 	{ DBC_TEMP, {	DBCOOL_REMOTE2_TEMP,
328 			DBCOOL_REMOTE2_HIGHLIM,
329 			DBCOOL_REMOTE2_LOWLIM },	2, 0, 0 },
330 	{ DBC_VOLT, {	DBCOOL_VCCP,
331 			DBCOOL_VCCP_HIGHLIM,
332 			DBCOOL_VCCP_LOWLIM },		3, 0, 1 },
333 	{ DBC_VOLT, {	DBCOOL_VCC,
334 			DBCOOL_VCC_HIGHLIM,
335 			DBCOOL_VCC_LOWLIM },		4, 0, 0 },
336 	{ DBC_FAN,  {	DBCOOL_FAN1_TACH_LSB,
337 			DBCOOL_NO_REG,
338 			DBCOOL_TACH1_MIN_LSB },		5, 0, 0 },
339 	{ DBC_FAN,  {	DBCOOL_FAN2_TACH_LSB,
340 			DBCOOL_NO_REG,
341 			DBCOOL_TACH2_MIN_LSB },		6, 0, 0 },
342 	{ DBC_FAN,  {	DBCOOL_FAN3_TACH_LSB,
343 			DBCOOL_NO_REG,
344 			DBCOOL_TACH3_MIN_LSB },		7, 0, 0 },
345 	{ DBC_FAN,  {	DBCOOL_FAN4_TACH_LSB,
346 			DBCOOL_NO_REG,
347 			DBCOOL_TACH4_MIN_LSB },		8, 0, 0 },
348 	{ DBC_CTL,  {	DBCOOL_LOCAL_TMIN,
349 			DBCOOL_NO_REG,
350 			DBCOOL_NO_REG },		0, 5, 0 },
351 	{ DBC_CTL,  {	DBCOOL_LOCAL_TTHRESH,
352 			DBCOOL_NO_REG,
353 			DBCOOL_NO_REG },		0, 6, 0 },
354 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST | 0x80,
355 			DBCOOL_NO_REG,
356 			DBCOOL_NO_REG },		0, 7, 0 },
357 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TMIN,
358 			DBCOOL_NO_REG,
359 			DBCOOL_NO_REG },		1, 5, 0 },
360 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TTHRESH,
361 			DBCOOL_NO_REG,
362 			DBCOOL_NO_REG },		1, 6, 0 },
363 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST,
364 			DBCOOL_NO_REG,
365 			DBCOOL_NO_REG },		1, 7, 0 },
366 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TMIN,
367 			DBCOOL_NO_REG,
368 			DBCOOL_NO_REG },		2, 5, 0 },
369 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TTHRESH,
370 			DBCOOL_NO_REG,
371 			DBCOOL_NO_REG },		2, 6, 0 },
372 	{ DBC_CTL,  {	DBCOOL_R2_TMIN_HYST,
373 			DBCOOL_NO_REG,
374 			DBCOOL_NO_REG },		2, 7, 0 },
375 	{ DBC_EOF,  { 0, 0, 0 }, 0, 0, 0 }
376 };
377 
378 /*
379  * The registers of dbcool_power_control must be in the same order as
380  * in enum dbc_pwm_params
381  */
382 struct dbcool_power_control ADT7475_power_table[] = {
383 	{ { DBCOOL_PWM1_CTL, DBCOOL_PWM1_MINDUTY,
384 	    DBCOOL_PWM1_MAXDUTY, DBCOOL_PWM1_CURDUTY },
385 		"fan_control_1" },
386 	{ { DBCOOL_PWM2_CTL, DBCOOL_PWM2_MINDUTY,
387 	    DBCOOL_PWM2_MAXDUTY, DBCOOL_PWM2_CURDUTY },
388 		"fan_control_2" },
389 	{ { DBCOOL_PWM3_CTL, DBCOOL_PWM3_MINDUTY,
390 	    DBCOOL_PWM3_MAXDUTY, DBCOOL_PWM3_CURDUTY },
391 		"fan_control_3" },
392 	{ { 0, 0, 0, 0 }, NULL }
393 };
394 
395 struct dbcool_sensor ADT7466_sensor_table[] = {
396 	{ DBC_TEMP, {	DBCOOL_ADT7466_LCL_TEMP_MSB,
397 			DBCOOL_ADT7466_LCL_TEMP_HILIM,
398 			DBCOOL_ADT7466_LCL_TEMP_LOLIM }, 0,  0, 0 },
399 	{ DBC_TEMP, {	DBCOOL_ADT7466_REM_TEMP_MSB,
400 			DBCOOL_ADT7466_REM_TEMP_HILIM,
401 			DBCOOL_ADT7466_REM_TEMP_LOLIM }, 1,  0, 0 },
402 	{ DBC_VOLT, {	DBCOOL_ADT7466_VCC,
403 			DBCOOL_ADT7466_VCC_HILIM,
404 			DBCOOL_ADT7466_VCC_LOLIM },	4,  0, 0 },
405 	{ DBC_VOLT, {	DBCOOL_ADT7466_AIN1,
406 			DBCOOL_ADT7466_AIN1_HILIM,
407 			DBCOOL_ADT7466_AIN1_LOLIM },	9,  0, 6 },
408 	{ DBC_VOLT, {	DBCOOL_ADT7466_AIN2,
409 			DBCOOL_ADT7466_AIN2_HILIM,
410 			DBCOOL_ADT7466_AIN2_LOLIM },	10, 0, 6 },
411 	{ DBC_FAN,  {	DBCOOL_ADT7466_FANA_LSB,
412 			DBCOOL_NO_REG,
413 			DBCOOL_ADT7466_FANA_LOLIM_LSB }, 5,  0, 0 },
414 	{ DBC_FAN,  {	DBCOOL_ADT7466_FANB_LSB,
415 			DBCOOL_NO_REG,
416 			DBCOOL_ADT7466_FANB_LOLIM_LSB }, 6,  0, 0 },
417 	{ DBC_EOF,  { 0, 0, 0 }, 0, 0, 0 }
418 };
419 
420 struct dbcool_sensor ADM1027_sensor_table[] = {
421 	{ DBC_TEMP, {	DBCOOL_LOCAL_TEMP,
422 			DBCOOL_LOCAL_HIGHLIM,
423 			DBCOOL_LOCAL_LOWLIM },		0, 0, 0 },
424 	{ DBC_TEMP, {	DBCOOL_REMOTE1_TEMP,
425 			DBCOOL_REMOTE1_HIGHLIM,
426 			DBCOOL_REMOTE1_LOWLIM },	1, 0, 0 },
427 	{ DBC_TEMP, {	DBCOOL_REMOTE2_TEMP,
428 			DBCOOL_REMOTE2_HIGHLIM,
429 			DBCOOL_REMOTE2_LOWLIM },	2, 0, 0 },
430 	{ DBC_VOLT, {	DBCOOL_VCCP,
431 			DBCOOL_VCCP_HIGHLIM,
432 			DBCOOL_VCCP_LOWLIM },		3, 0, 1 },
433 	{ DBC_VOLT, {	DBCOOL_VCC,
434 			DBCOOL_VCC_HIGHLIM,
435 			DBCOOL_VCC_LOWLIM },		4, 0, 0 },
436 	{ DBC_VOLT, {	DBCOOL_25VIN,
437 			DBCOOL_25VIN_HIGHLIM,
438 			DBCOOL_25VIN_LOWLIM },		11, 0, 2 },
439 	{ DBC_VOLT, {	DBCOOL_5VIN,
440 			DBCOOL_5VIN_HIGHLIM,
441 			DBCOOL_5VIN_LOWLIM },		12, 0, 3 },
442 	{ DBC_VOLT, {	DBCOOL_12VIN,
443 			DBCOOL_12VIN_HIGHLIM,
444 			DBCOOL_12VIN_LOWLIM },		13, 0, 4 },
445 	{ DBC_FAN,  {	DBCOOL_FAN1_TACH_LSB,
446 			DBCOOL_NO_REG,
447 			DBCOOL_TACH1_MIN_LSB },		5, 0, 0 },
448 	{ DBC_FAN,  {	DBCOOL_FAN2_TACH_LSB,
449 			DBCOOL_NO_REG,
450 			DBCOOL_TACH2_MIN_LSB },		6, 0, 0 },
451 	{ DBC_FAN,  {	DBCOOL_FAN3_TACH_LSB,
452 			DBCOOL_NO_REG,
453 			DBCOOL_TACH3_MIN_LSB },		7, 0, 0 },
454 	{ DBC_FAN,  {	DBCOOL_FAN4_TACH_LSB,
455 			DBCOOL_NO_REG,
456 			DBCOOL_TACH4_MIN_LSB },		8, 0, 0 },
457 	{ DBC_CTL,  {	DBCOOL_LOCAL_TMIN,
458 			DBCOOL_NO_REG,
459 			DBCOOL_NO_REG },		0, 5, 0 },
460 	{ DBC_CTL,  {	DBCOOL_LOCAL_TTHRESH,
461 			DBCOOL_NO_REG,
462 			DBCOOL_NO_REG },		0, 6, 0 },
463 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST | 0x80,
464 			DBCOOL_NO_REG,
465 			DBCOOL_NO_REG },		0, 7, 0 },
466 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TMIN,
467 			DBCOOL_NO_REG,
468 			DBCOOL_NO_REG },		1, 5, 0 },
469 	{ DBC_CTL,  {	DBCOOL_REMOTE1_TTHRESH,
470 			DBCOOL_NO_REG,
471 			DBCOOL_NO_REG },		1, 6, 0 },
472 	{ DBC_CTL,  {	DBCOOL_R1_LCL_TMIN_HYST,
473 			DBCOOL_NO_REG,
474 			DBCOOL_NO_REG },		1, 7, 0 },
475 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TMIN,
476 			DBCOOL_NO_REG,
477 			DBCOOL_NO_REG },		2, 5, 0 },
478 	{ DBC_CTL,  {	DBCOOL_REMOTE2_TTHRESH,
479 			DBCOOL_NO_REG,
480 			DBCOOL_NO_REG },		2, 6, 0 },
481 	{ DBC_CTL,  {	DBCOOL_R2_TMIN_HYST,
482 			DBCOOL_NO_REG,
483 			DBCOOL_NO_REG },		2, 7, 0 },
484 	{ DBC_EOF,  { 0, 0, 0 }, 0, 0, 0 }
485 };
486 
487 struct dbcool_sensor ADM1030_sensor_table[] = {
488 	{ DBC_TEMP, {	DBCOOL_ADM1030_L_TEMP,
489 			DBCOOL_ADM1030_L_HI_LIM,
490 			DBCOOL_ADM1030_L_LO_LIM },	0,  0, 0 },
491 	{ DBC_TEMP, {	DBCOOL_ADM1030_R_TEMP,
492 			DBCOOL_ADM1030_R_HI_LIM,
493 			DBCOOL_ADM1030_R_LO_LIM },	1,  0, 0 },
494 	{ DBC_FAN,  {	DBCOOL_ADM1030_FAN_TACH,
495 			DBCOOL_NO_REG,
496 			DBCOOL_ADM1030_FAN_LO_LIM },	5,  0, 0 },
497 	{ DBC_CTL,  {	DBCOOL_ADM1030_L_TMIN,
498 			DBCOOL_NO_REG,
499 			DBCOOL_NO_REG },		0,  8, 0 },
500 	{ DBC_CTL,  {	DBCOOL_ADM1030_L_TTHRESH,
501 			DBCOOL_NO_REG,
502 			DBCOOL_NO_REG },		0,  9, 0 },
503 	{ DBC_CTL,  {	DBCOOL_ADM1030_L_TTHRESH,
504 			DBCOOL_NO_REG,
505 			DBCOOL_NO_REG },		0,  6, 0 },
506 	{ DBC_CTL,  {	DBCOOL_ADM1030_R_TMIN,
507 			DBCOOL_NO_REG,
508 			DBCOOL_NO_REG },		1,  8, 0 },
509 	{ DBC_CTL,  {	DBCOOL_ADM1030_L_TTHRESH,
510 			DBCOOL_NO_REG,
511 			DBCOOL_NO_REG },		1,  9, 0 },
512 	{ DBC_CTL,  {	DBCOOL_ADM1030_R_TTHRESH,
513 			DBCOOL_NO_REG,
514 			DBCOOL_NO_REG },		1,  6, 0 },
515 	{ DBC_EOF,  {0, 0, 0 }, 0, 0, 0 }
516 };
517 
518 struct dbcool_power_control ADM1030_power_table[] = {
519 	{ { DBCOOL_ADM1030_CFG1,  DBCOOL_NO_REG, DBCOOL_NO_REG,
520 	    DBCOOL_ADM1030_FAN_SPEED_CFG },
521 	  "fan_control_1" },
522 	{ { 0, 0, 0, 0 }, NULL }
523 };
524 
525 struct chip_id chip_table[] = {
526 	{ DBCOOL_COMPANYID, ADT7490_DEVICEID, ADT7490_REV_ID,
527 		ADT7475_sensor_table, ADT7475_power_table,
528 		DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_VID |
529 			DBCFLAG_HAS_PECI,
530 		90000 * 60, "ADT7490" },
531 	{ DBCOOL_COMPANYID, ADT7476_DEVICEID, 0xff,
532 		ADT7476_sensor_table, ADT7475_power_table,
533 		DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_VID,
534 		90000 * 60, "ADT7476" },
535 	{ DBCOOL_COMPANYID, ADT7475_DEVICEID, 0xff,
536 		ADT7475_sensor_table, ADT7475_power_table,
537 		DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
538 		90000 * 60, "ADT7475" },
539 	{ DBCOOL_COMPANYID, ADT7473_DEVICEID, ADT7473_REV_ID1,
540 		ADT7475_sensor_table, ADT7475_power_table,
541 		DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
542 		90000 * 60, "ADT7460/ADT7463" },
543 	{ DBCOOL_COMPANYID, ADT7473_DEVICEID, ADT7473_REV_ID2,
544 		ADT7475_sensor_table, ADT7475_power_table,
545 		DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
546 		90000 * 60, "ADT7463-1" },
547 	{ DBCOOL_COMPANYID, ADT7468_DEVICEID, 0xff,
548 		ADT7476_sensor_table, ADT7475_power_table,
549 		DBCFLAG_TEMPOFFSET  | DBCFLAG_MULTI_VCC | DBCFLAG_HAS_MAXDUTY |
550 		    DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN | DBCFLAG_HAS_VID,
551 		90000 * 60, "ADT7467/ADT7468" },
552 	{ DBCOOL_COMPANYID, ADT7466_DEVICEID, 0xff,
553 		ADT7466_sensor_table, NULL,
554 		DBCFLAG_ADT7466 | DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_SHDN,
555 		82000 * 60, "ADT7466" },
556 	{ DBCOOL_COMPANYID, ADT7463_DEVICEID, ADT7463_REV_ID1,
557 		ADM1027_sensor_table, ADT7475_power_table,
558 		DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN |
559 		    DBCFLAG_ADM1027 | DBCFLAG_HAS_VID,
560 		90000 * 60, "ADT7463" },
561 	{ DBCOOL_COMPANYID, ADT7463_DEVICEID, ADT7463_REV_ID2,
562 		ADM1027_sensor_table, ADT7475_power_table,
563 		DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN |
564 		    DBCFLAG_HAS_VID | DBCFLAG_HAS_VID_SEL,
565 		90000 * 60, "ADT7463" },
566 	{ DBCOOL_COMPANYID, ADM1027_DEVICEID, ADM1027_REV_ID,
567 		ADM1027_sensor_table, ADT7475_power_table,
568 		DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER | DBCFLAG_HAS_VID,
569 		90000 * 60, "ADM1027" },
570 	{ DBCOOL_COMPANYID, ADM1030_DEVICEID, 0xff,
571 		ADM1030_sensor_table, ADM1030_power_table,
572 		DBCFLAG_ADM1030,
573 		11250 * 60, "ADM1030" },
574 	{ 0, 0, 0, NULL, NULL, 0, 0, NULL }
575 };
576 
577 static const char *behavior[] = {
578 	"remote1",	"local",	"remote2",	"full-speed",
579 	"disabled",	"local+remote2","all-temps",	"manual"
580 };
581 
582 static char dbcool_cur_behav[16];
583 
584 CFATTACH_DECL_NEW(dbcool, sizeof(struct dbcool_softc),
585     dbcool_match, dbcool_attach, dbcool_detach, NULL);
586 
587 int
588 dbcool_match(device_t parent, cfdata_t cf, void *aux)
589 {
590 	struct i2c_attach_args *ia = aux;
591 	struct dbcool_chipset dc;
592 	dc.dc_tag = ia->ia_tag;
593 	dc.dc_addr = ia->ia_addr;
594 	dc.dc_chip = NULL;
595 	dc.dc_readreg = dbcool_readreg;
596 	dc.dc_writereg = dbcool_writereg;
597 
598 	/* no probing if we attach to iic, but verify chip id  and address */
599 	if ((ia->ia_addr & DBCOOL_ADDRMASK) != DBCOOL_ADDR)
600 		return 0;
601 	if (dbcool_chip_ident(&dc) >= 0)
602 		return 1;
603 
604 	return 0;
605 }
606 
607 void
608 dbcool_attach(device_t parent, device_t self, void *aux)
609 {
610 	struct dbcool_softc *sc = device_private(self);
611 	struct i2c_attach_args *args = aux;
612 	uint8_t ver;
613 
614 	sc->sc_dc.dc_addr = args->ia_addr;
615 	sc->sc_dc.dc_tag = args->ia_tag;
616 	sc->sc_dc.dc_chip = NULL;
617 	sc->sc_dc.dc_readreg = dbcool_readreg;
618 	sc->sc_dc.dc_writereg = dbcool_writereg;
619 	(void)dbcool_chip_ident(&sc->sc_dc);
620 	sc->sc_dev = self;
621 
622 	aprint_naive("\n");
623 	aprint_normal("\n");
624 
625 	ver = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_REVISION_REG);
626 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_4BIT_VER)
627 		aprint_normal_dev(self, "%s dBCool(tm) Controller "
628 			"(rev 0x%02x, stepping 0x%02x)\n", sc->sc_dc.dc_chip->name,
629 			ver >> 4, ver & 0x0f);
630 	else
631 		aprint_normal_dev(self, "%s dBCool(tm) Controller "
632 			"(rev 0x%04x)\n", sc->sc_dc.dc_chip->name, ver);
633 
634 	dbcool_setup(self);
635 
636 	if (!pmf_device_register(self, dbcool_pmf_suspend, dbcool_pmf_resume))
637 		aprint_error_dev(self, "couldn't establish power handler\n");
638 }
639 
640 static int
641 dbcool_detach(device_t self, int flags)
642 {
643 	struct dbcool_softc *sc = device_private(self);
644 
645 	sysmon_envsys_unregister(sc->sc_sme);
646 	sc->sc_sme = NULL;
647 	return 0;
648 }
649 
650 /* On suspend, we save the state of the SHDN bit, then set it */
651 bool dbcool_pmf_suspend(device_t dev, pmf_qual_t qual)
652 {
653 	struct dbcool_softc *sc = device_private(dev);
654 	uint8_t reg, bit, cfg;
655 
656 	if ((sc->sc_dc.dc_chip->flags && DBCFLAG_HAS_SHDN) == 0)
657 		return true;
658 
659 	if (sc->sc_dc.dc_chip->flags && DBCFLAG_ADT7466) {
660 		reg = DBCOOL_ADT7466_CONFIG2;
661 		bit = DBCOOL_ADT7466_CFG2_SHDN;
662 	} else {
663 		reg = DBCOOL_CONFIG2_REG;
664 		bit = DBCOOL_CFG2_SHDN;
665 	}
666 	cfg = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
667 	sc->sc_suspend = cfg & bit;
668 	cfg |= bit;
669 	sc->sc_dc.dc_writereg(&sc->sc_dc, reg, cfg);
670 
671 	return true;
672 }
673 
674 /* On resume, we restore the previous state of the SHDN bit */
675 bool dbcool_pmf_resume(device_t dev, pmf_qual_t qual)
676 {
677 	struct dbcool_softc *sc = device_private(dev);
678 	uint8_t reg, bit, cfg;
679 
680 	if ((sc->sc_dc.dc_chip->flags && DBCFLAG_HAS_SHDN) == 0)
681 		return true;
682 
683 	if (sc->sc_dc.dc_chip->flags && DBCFLAG_ADT7466) {
684 		reg = DBCOOL_ADT7466_CONFIG2;
685 		bit = DBCOOL_ADT7466_CFG2_SHDN;
686 	} else {
687 		reg = DBCOOL_CONFIG2_REG;
688 		bit = DBCOOL_CFG2_SHDN;
689 	}
690 	cfg = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
691 	cfg &= ~sc->sc_suspend;
692 	sc->sc_dc.dc_writereg(&sc->sc_dc, reg, cfg);
693 
694 	return true;
695 
696 }
697 
698 uint8_t
699 dbcool_readreg(struct dbcool_chipset *dc, uint8_t reg)
700 {
701 	uint8_t data = 0;
702 
703 	if (iic_acquire_bus(dc->dc_tag, 0) != 0)
704 		return data;
705 
706 	if (dc->dc_chip == NULL || dc->dc_chip->flags & DBCFLAG_ADM1027) {
707 		/* ADM1027 doesn't support i2c read_byte protocol */
708 		if (iic_smbus_send_byte(dc->dc_tag, dc->dc_addr, reg, 0) != 0)
709 			goto bad;
710 		(void)iic_smbus_receive_byte(dc->dc_tag, dc->dc_addr, &data, 0);
711 	} else
712 		(void)iic_smbus_read_byte(dc->dc_tag, dc->dc_addr, reg, &data,
713 					  0);
714 
715 bad:
716 	iic_release_bus(dc->dc_tag, 0);
717 	return data;
718 }
719 
720 void
721 dbcool_writereg(struct dbcool_chipset *dc, uint8_t reg, uint8_t val)
722 {
723 	if (iic_acquire_bus(dc->dc_tag, 0) != 0)
724 		return;
725 
726 	(void)iic_smbus_write_byte(dc->dc_tag, dc->dc_addr, reg, val, 0);
727 
728 	iic_release_bus(dc->dc_tag, 0);
729 }
730 
731 static bool
732 dbcool_islocked(struct dbcool_softc *sc)
733 {
734 	uint8_t cfg_reg;
735 
736 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
737 		return 0;
738 
739 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466)
740 		cfg_reg = DBCOOL_ADT7466_CONFIG1;
741 	else
742 		cfg_reg = DBCOOL_CONFIG1_REG;
743 
744 	if (sc->sc_dc.dc_readreg(&sc->sc_dc, cfg_reg) & DBCOOL_CFG1_LOCK)
745 		return 1;
746 	else
747 		return 0;
748 }
749 
750 static int
751 dbcool_read_temp(struct dbcool_softc *sc, uint8_t reg, bool extres)
752 {
753 	uint8_t	t1, t2, t3, val, ext = 0;
754 	int temp;
755 
756 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466) {
757 		/*
758 		 * ADT7466 temps are in strange location
759 		 */
760 		ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADT7466_CONFIG1);
761 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
762 		if (extres)
763 			ext = sc->sc_dc.dc_readreg(&sc->sc_dc, reg + 1);
764 	} else if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
765 		/*
766 		 * ADM1030 temps are in their own special place, too
767 		 */
768 		if (extres) {
769 			ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_TEMP_EXTRES);
770 			if (reg == DBCOOL_ADM1030_L_TEMP)
771 				ext >>= 6;
772 			else
773 				ext >>= 1;
774 			ext &= 0x03;
775 		}
776 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
777 	} else if (extres) {
778 		ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES2_REG);
779 
780 		/* Read all msb regs to unlatch them */
781 		t1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_12VIN);
782 		t1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_REMOTE1_TEMP);
783 		t2 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_REMOTE2_TEMP);
784 		t3 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_LOCAL_TEMP);
785 		switch (reg) {
786 		case DBCOOL_REMOTE1_TEMP:
787 			val = t1;
788 			ext >>= 2;
789 			break;
790 		case DBCOOL_LOCAL_TEMP:
791 			val = t3;
792 			ext >>= 4;
793 			break;
794 		case DBCOOL_REMOTE2_TEMP:
795 			val = t2;
796 			ext >>= 6;
797 			break;
798 		default:
799 			val = 0;
800 			break;
801 		}
802 		ext &= 0x03;
803 	}
804 	else
805 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
806 
807 	/* Check for invalid temp values */
808 	if ((sc->sc_temp_offset == 0 && val == 0x80) ||
809 	    (sc->sc_temp_offset != 0 && val == 0))
810 		return 0;
811 
812 	/* If using offset mode, adjust, else treat as signed */
813 	if (sc->sc_temp_offset) {
814 		temp = val;
815 		temp -= sc->sc_temp_offset;
816 	} else
817 		temp = (int8_t)val;
818 
819 	/* Convert degC to uK and include extended precision bits */
820 	temp *= 1000000;
821 	temp +=  250000 * (int)ext;
822 	temp += 273150000U;
823 
824 	return temp;
825 }
826 
827 static int
828 dbcool_read_rpm(struct dbcool_softc *sc, uint8_t reg)
829 {
830 	int rpm;
831 	uint8_t rpm_lo, rpm_hi;
832 
833 	rpm_lo = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
834 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
835 		rpm_hi = (rpm_lo == 0xff)?0xff:0x0;
836 	else
837 		rpm_hi = sc->sc_dc.dc_readreg(&sc->sc_dc, reg + 1);
838 
839 	rpm = (rpm_hi << 8) | rpm_lo;
840 	if (rpm == 0xffff)
841 		return 0;	/* 0xffff indicates stalled/failed fan */
842 
843 	return (sc->sc_dc.dc_chip->rpm_dividend / rpm);
844 }
845 
846 /* Provide chip's supply voltage, in microvolts */
847 static int
848 dbcool_supply_voltage(struct dbcool_softc *sc)
849 {
850 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_MULTI_VCC) {
851 		if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_CONFIG1_REG) & DBCOOL_CFG1_Vcc)
852 			return 5002500;
853 		else
854 			return 3300000;
855 	} else if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466) {
856 		if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADT7466_CONFIG1) &
857 			    DBCOOL_ADT7466_CFG1_Vcc)
858 			return 5000000;
859 		else
860 			return 3300000;
861 	} else
862 		return 3300000;
863 }
864 
865 /*
866  * Nominal voltages are calculated in microvolts
867  */
868 static int
869 dbcool_read_volt(struct dbcool_softc *sc, uint8_t reg, int nom_idx, bool extres)
870 {
871 	uint8_t ext = 0, v1, v2, v3, v4, val;
872 	int64_t ret;
873 	int64_t nom;
874 
875 	nom = nominal_voltages[nom_idx];
876 	if (nom < 0)
877 		nom = sc->sc_supply_voltage;
878 
879 	/* ADT7466 voltages are in strange locations with only 8-bits */
880 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466)
881 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
882 	else
883 	/*
884 	 * It's a "normal" dbCool chip - check for regs that
885 	 * share extended resolution bits since we have to
886 	 * read all the MSB registers to unlatch them.
887 	 */
888 	if (!extres)
889 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
890 	else if (reg == DBCOOL_12VIN) {
891 		ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES2_REG) && 0x03;
892 		val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
893 		(void)dbcool_read_temp(sc, DBCOOL_LOCAL_TEMP, true);
894 	} else if (reg == DBCOOL_VTT || reg == DBCOOL_IMON) {
895 		ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES_VTT_IMON);
896 		v1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_IMON);
897 		v2 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VTT);
898 		if (reg == DBCOOL_IMON) {
899 			val = v1;
900 			ext >>= 6;
901 		} else
902 			val = v2;
903 			ext >>= 4;
904 		ext &= 0x0f;
905 	} else {
906 		ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES1_REG);
907 		v1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_25VIN);
908 		v2 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VCCP);
909 		v3 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VCC);
910 		v4 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_5VIN);
911 
912 		switch (reg) {
913 		case DBCOOL_25VIN:
914 			val = v1;
915 			break;
916 		case DBCOOL_VCCP:
917 			val = v2;
918 			ext >>= 2;
919 			break;
920 		case DBCOOL_VCC:
921 			val = v3;
922 			ext >>= 4;
923 			break;
924 		case DBCOOL_5VIN:
925 			val = v4;
926 			ext >>= 6;
927 			break;
928 		default:
929 			val = nom = 0;
930 		}
931 		ext &= 0x03;
932 	}
933 
934 	/*
935 	 * Scale the nominal value by the 10-bit fraction
936 	 *
937 	 * Returned value is in microvolts.
938 	 */
939 	ret = val;
940 	ret <<= 2;
941 	ret |= ext;
942 	ret = (ret * nom) / 0x300;
943 
944 	return ret;
945 }
946 
947 SYSCTL_SETUP(sysctl_dbcoolsetup, "sysctl dBCool subtree setup")
948 {
949 	sysctl_createv(NULL, 0, NULL, NULL,
950 		       CTLFLAG_PERMANENT,
951 		       CTLTYPE_NODE, "hw", NULL,
952 		       NULL, 0, NULL, 0,
953 		       CTL_HW, CTL_EOL);
954 }
955 
956 static int
957 sysctl_dbcool_temp(SYSCTLFN_ARGS)
958 {
959 	struct sysctlnode node;
960 	struct dbcool_softc *sc;
961 	int reg, error;
962 	uint8_t chipreg;
963 	uint8_t newreg;
964 
965 	node = *rnode;
966 	sc = (struct dbcool_softc *)node.sysctl_data;
967 	chipreg = node.sysctl_num & 0xff;
968 
969 	if (sc->sc_temp_offset) {
970 		reg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
971 		reg -= sc->sc_temp_offset;
972 	} else
973 		reg = (int8_t)sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
974 
975 	node.sysctl_data = &reg;
976 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
977 
978 	if (error || newp == NULL)
979 		return error;
980 
981 	/* We were asked to update the value - sanity check before writing */
982 	if (*(int *)node.sysctl_data < -64 ||
983 	    *(int *)node.sysctl_data > 127 + sc->sc_temp_offset)
984 		return EINVAL;
985 
986 	newreg = *(int *)node.sysctl_data;
987 	newreg += sc->sc_temp_offset;
988 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
989 	return 0;
990 }
991 
992 static int
993 sysctl_adm1030_temp(SYSCTLFN_ARGS)
994 {
995 	struct sysctlnode node;
996 	struct dbcool_softc *sc;
997 	int reg, error;
998 	uint8_t chipreg, oldreg, newreg;
999 
1000 	node = *rnode;
1001 	sc = (struct dbcool_softc *)node.sysctl_data;
1002 	chipreg = node.sysctl_num & 0xff;
1003 
1004 	oldreg = (int8_t)sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1005 	reg = (oldreg >> 1) & ~0x03;
1006 
1007 	node.sysctl_data = &reg;
1008 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1009 
1010 	if (error || newp == NULL)
1011 		return error;
1012 
1013 	/* We were asked to update the value - sanity check before writing */
1014 	if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 127)
1015 		return EINVAL;
1016 
1017 	newreg = *(int *)node.sysctl_data;
1018 	newreg &= ~0x03;
1019 	newreg <<= 1;
1020 	newreg |= (oldreg & 0x07);
1021 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1022 	return 0;
1023 }
1024 
1025 static int
1026 sysctl_adm1030_trange(SYSCTLFN_ARGS)
1027 {
1028 	struct sysctlnode node;
1029 	struct dbcool_softc *sc;
1030 	int reg, error, newval;
1031 	uint8_t chipreg, oldreg, newreg;
1032 
1033 	node = *rnode;
1034 	sc = (struct dbcool_softc *)node.sysctl_data;
1035 	chipreg = node.sysctl_num & 0xff;
1036 
1037 	oldreg = (int8_t)sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1038 	reg = oldreg & 0x07;
1039 
1040 	node.sysctl_data = &reg;
1041 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1042 
1043 	if (error || newp == NULL)
1044 		return error;
1045 
1046 	/* We were asked to update the value - sanity check before writing */
1047 	newval = *(int *)node.sysctl_data;
1048 
1049 	if (newval == 5)
1050 		newreg = 0;
1051 	else if (newval == 10)
1052 		newreg = 1;
1053 	else if (newval == 20)
1054 		newreg = 2;
1055 	else if (newval == 40)
1056 		newreg = 3;
1057 	else if (newval == 80)
1058 		newreg = 4;
1059 	else
1060 		return EINVAL;
1061 
1062 	newreg |= (oldreg & ~0x07);
1063 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1064 	return 0;
1065 }
1066 
1067 static int
1068 sysctl_dbcool_duty(SYSCTLFN_ARGS)
1069 {
1070 	struct sysctlnode node;
1071 	struct dbcool_softc *sc;
1072 	int reg, error;
1073 	uint8_t chipreg, oldreg, newreg;
1074 
1075 	node = *rnode;
1076 	sc = (struct dbcool_softc *)node.sysctl_data;
1077 	chipreg = node.sysctl_num & 0xff;
1078 
1079 	oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1080 	reg = (uint32_t)oldreg;
1081 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
1082 		reg = ((reg & 0x0f) * 100) / 15;
1083 	else
1084 		reg = (reg * 100) / 255;
1085 	node.sysctl_data = &reg;
1086 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1087 
1088 	if (error || newp == NULL)
1089 		return error;
1090 
1091 	/* We were asked to update the value - sanity check before writing */
1092 	if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 100)
1093 		return EINVAL;
1094 
1095 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
1096 		newreg = *(uint8_t *)(node.sysctl_data) * 15 / 100;
1097 		newreg |= oldreg & 0xf0;
1098 	} else
1099 		newreg = *(uint8_t *)(node.sysctl_data) * 255 / 100;
1100 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1101 	return 0;
1102 }
1103 
1104 static int
1105 sysctl_dbcool_behavior(SYSCTLFN_ARGS)
1106 {
1107 	struct sysctlnode node;
1108 	struct dbcool_softc *sc;
1109 	int i, reg, error;
1110 	uint8_t chipreg, oldreg, newreg;
1111 
1112 	node = *rnode;
1113 	sc = (struct dbcool_softc *)node.sysctl_data;
1114 	chipreg = node.sysctl_num & 0xff;
1115 
1116 	oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1117 
1118 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
1119 		if ((sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_CFG2) & 1) == 0)
1120 			reg = 4;
1121 		else if ((oldreg & 0x80) == 0)
1122 			reg = 7;
1123 		else if ((oldreg & 0x60) == 0)
1124 			reg = 4;
1125 		else
1126 			reg = 6;
1127 	} else
1128 		reg = (oldreg >> 5) & 0x07;
1129 
1130 	strlcpy(dbcool_cur_behav, behavior[reg], sizeof(dbcool_cur_behav));
1131 	node.sysctl_data = dbcool_cur_behav;
1132 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1133 
1134 	if (error || newp == NULL)
1135 		return error;
1136 
1137 	/* We were asked to update the value - convert string to value */
1138 	newreg = __arraycount(behavior);
1139 	for (i = 0; i < __arraycount(behavior); i++)
1140 		if (strcmp(node.sysctl_data, behavior[i]) == 0)
1141 			break;
1142 	if (i >= __arraycount(behavior))
1143 		return EINVAL;
1144 
1145 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
1146 		/*
1147 		 * ADM1030 splits fan controller behavior across two
1148 		 * registers.  We also do not support Auto-Filter mode
1149 		 * nor do we support Manual-RPM-feedback.
1150 		 */
1151 		if (newreg == 4) {
1152 			oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_CFG2);
1153 			oldreg &= ~0x01;
1154 			sc->sc_dc.dc_writereg(&sc->sc_dc, DBCOOL_ADM1030_CFG2, oldreg);
1155 		} else {
1156 			if (newreg == 0)
1157 				newreg = 4;
1158 			else if (newreg == 6)
1159 				newreg = 7;
1160 			else if (newreg == 7)
1161 				newreg = 0;
1162 			else
1163 				return EINVAL;
1164 			newreg <<= 5;
1165 			newreg |= (oldreg & 0x1f);
1166 			sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1167 			oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_CFG2) | 1;
1168 			sc->sc_dc.dc_writereg(&sc->sc_dc, DBCOOL_ADM1030_CFG2, oldreg);
1169 		}
1170 	} else {
1171 		newreg = (sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg) & 0x1f) | (i << 5);
1172 		sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1173 	}
1174 	return 0;
1175 }
1176 
1177 static int
1178 sysctl_dbcool_slope(SYSCTLFN_ARGS)
1179 {
1180 	struct sysctlnode node;
1181 	struct dbcool_softc *sc;
1182 	int reg, error;
1183 	uint8_t chipreg;
1184 	uint8_t newreg;
1185 
1186 	node = *rnode;
1187 	sc = (struct dbcool_softc *)node.sysctl_data;
1188 	chipreg = node.sysctl_num & 0xff;
1189 
1190 	reg = (sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg) >> 4) & 0x0f;
1191 	node.sysctl_data = &reg;
1192 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1193 
1194 	if (error || newp == NULL)
1195 		return error;
1196 
1197 	/* We were asked to update the value - sanity check before writing */
1198 	if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 0x0f)
1199 		return EINVAL;
1200 
1201 	newreg = (sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg) & 0x0f) |
1202 		  (*(int *)node.sysctl_data << 4);
1203 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1204 	return 0;
1205 }
1206 
1207 static int
1208 sysctl_dbcool_volt_limit(SYSCTLFN_ARGS)
1209 {
1210 	struct sysctlnode node;
1211 	struct dbcool_softc *sc;
1212 	int reg, error;
1213 	int nom, sensor_index;
1214 	int64_t val, newval;
1215 	uint8_t chipreg, newreg;
1216 
1217 	node = *rnode;
1218 	sc = (struct dbcool_softc *)node.sysctl_data;
1219 	chipreg = node.sysctl_num & 0xff;
1220 
1221 	/*
1222 	 * Retrieve the nominal value for the voltage sensor
1223 	 */
1224 	sensor_index = (node.sysctl_num >> 8 ) & 0xff;
1225 	nom = nominal_voltages[sc->sc_dc.dc_chip->table[sensor_index].nom_volt_index];
1226 	if (nom < 0)
1227 		nom = dbcool_supply_voltage(sc);
1228 
1229 	/*
1230 	 * Use int64_t for calculation to avoid overflow
1231 	 */
1232 	val =  sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1233 	val *= nom;
1234 	val /= 0xc0;	/* values are scaled so 0xc0 == nominal voltage */
1235 	reg = val;
1236 	node.sysctl_data = &reg;
1237 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1238 
1239 	if (error || newp == NULL)
1240 		return error;
1241 
1242 	/*
1243 	 * We were asked to update the value, so scale it and sanity
1244 	 * check before writing
1245 	 */
1246 	if (nom == 0)
1247 		return EINVAL;
1248 	newval =  *(int *)node.sysctl_data;
1249 	newval *= 0xc0;
1250 	newval /= nom;
1251 	if (newval < 0 || newval > 0xff)
1252 		return EINVAL;
1253 
1254 	newreg = newval;
1255 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1256 	return 0;
1257 }
1258 
1259 static int
1260 sysctl_dbcool_temp_limit(SYSCTLFN_ARGS)
1261 {
1262 	struct sysctlnode node;
1263 	struct dbcool_softc *sc;
1264 	int reg, error, newtemp;
1265 	uint8_t chipreg;
1266 
1267 	node = *rnode;
1268 	sc = (struct dbcool_softc *)node.sysctl_data;
1269 	chipreg = node.sysctl_num & 0xff;
1270 
1271 	/* If using offset mode, adjust, else treat as signed */
1272 	if (sc->sc_temp_offset) {
1273 		reg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1274 		reg -= sc->sc_temp_offset;
1275 	 } else
1276 		reg = (int8_t)sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1277 
1278 	node.sysctl_data = &reg;
1279 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1280 
1281 	if (error || newp == NULL)
1282 		return error;
1283 
1284 	/* We were asked to update the value - sanity check before writing */
1285 	newtemp = *(int *)node.sysctl_data + sc->sc_temp_offset;
1286 	if (newtemp < 0 || newtemp > 0xff)
1287 		return EINVAL;
1288 
1289 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newtemp);
1290 	return 0;
1291 }
1292 
1293 static int
1294 sysctl_dbcool_fan_limit(SYSCTLFN_ARGS)
1295 {
1296 	struct sysctlnode node;
1297 	struct dbcool_softc *sc;
1298 	int reg, error, newrpm, dividend;
1299 	uint8_t chipreg;
1300 	uint8_t newreg;
1301 
1302 	node = *rnode;
1303 	sc = (struct dbcool_softc *)node.sysctl_data;
1304 	chipreg = node.sysctl_num & 0xff;
1305 
1306 	/* retrieve two-byte limit */
1307 	reg = dbcool_read_rpm(sc, chipreg);
1308 
1309 	node.sysctl_data = &reg;
1310 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1311 
1312 	if (error || newp == NULL)
1313 		return error;
1314 
1315 	/*
1316 	 * We were asked to update the value.  Calculate the two-byte
1317 	 * limit and validate it.  Due to the way fan RPM is calculated,
1318 	 * the new value must be at least 83 RPM (331 RPM for ADM1030)!
1319 	 * Allow a value of -1 or 0 to indicate no limit.
1320 	 */
1321 	newrpm = *(int *)node.sysctl_data;
1322 	if (newrpm == 0 || newrpm == -1)
1323 		newrpm = 0xffff;
1324 	else {
1325 		if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
1326 			dividend = 11250 * 60;
1327 		else
1328 			dividend = 90000 * 60;
1329 		newrpm = dividend / newrpm;
1330 		if (newrpm & ~0xffff)
1331 			return EINVAL;
1332 	}
1333 
1334 	/* Update the on-chip registers with new value */
1335 	newreg = newrpm & 0xff;
1336 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1337 	newreg = (newrpm >> 8) & 0xff;
1338 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg + 1, newreg);
1339 	return 0;
1340 }
1341 
1342 static int
1343 sysctl_dbcool_vid(SYSCTLFN_ARGS)
1344 {
1345 	struct sysctlnode node;
1346 	struct dbcool_softc *sc;
1347 	int reg, error;
1348 	uint8_t chipreg, newreg;
1349 
1350 	node = *rnode;
1351 	sc = (struct dbcool_softc *)node.sysctl_data;
1352 	chipreg = node.sysctl_num;
1353 
1354 	/* retrieve 5- or 6-bit value */
1355 	newreg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1356 	if ((sc->sc_dc.dc_chip->flags & DBCFLAG_HAS_VID_SEL) &&
1357 	    (reg & 0x80))
1358 		reg = newreg & 0x3f;
1359 	else
1360 		reg = newreg & 0x1f;
1361 
1362 	node.sysctl_data = &reg;
1363 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1364 
1365 	if (error == 0 && newp != NULL)
1366 		error = EINVAL;
1367 
1368 	return error;
1369 }
1370 
1371 static int
1372 sysctl_dbcool_thyst(SYSCTLFN_ARGS)
1373 {
1374 	struct sysctlnode node;
1375 	struct dbcool_softc *sc;
1376 	int reg, error;
1377 	uint8_t chipreg;
1378 	uint8_t newreg, newhyst;
1379 
1380 	node = *rnode;
1381 	sc = (struct dbcool_softc *)node.sysctl_data;
1382 	chipreg = node.sysctl_num & 0x7f;
1383 
1384 	/* retrieve 4-bit value */
1385 	newreg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1386 	if ((node.sysctl_num & 0x80) == 0)
1387 		reg = newreg >> 4;
1388 	else
1389 		reg = newreg;
1390 	reg = reg & 0x0f;
1391 
1392 	node.sysctl_data = &reg;
1393 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1394 
1395 	if (error || newp == NULL)
1396 		return error;
1397 
1398 	/* We were asked to update the value - sanity check before writing */
1399 	newhyst = *(int *)node.sysctl_data;
1400 	if (newhyst > 0x0f)
1401 		return EINVAL;
1402 
1403 	/* Insert new value into field and update register */
1404 	if ((node.sysctl_num & 0x80) == 0) {
1405 		newreg &= 0x0f;
1406 		newreg |= (newhyst << 4);
1407 	} else {
1408 		newreg &= 0xf0;
1409 		newreg |= newhyst;
1410 	}
1411 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1412 	return 0;
1413 }
1414 
1415 #ifdef DBCOOL_DEBUG
1416 
1417 /*
1418  * These routines can be used for debugging.  reg_select is used to
1419  * select any arbitrary register in the device.  reg_access is used
1420  * to read (and optionally update) the selected register.
1421  *
1422  * No attempt is made to validate the data passed.  If you use these
1423  * routines, you are assumed to know what you're doing!
1424  *
1425  * Caveat user
1426  */
1427 static int
1428 sysctl_dbcool_reg_select(SYSCTLFN_ARGS)
1429 {
1430 	struct sysctlnode node;
1431 	struct dbcool_softc *sc;
1432 	int reg, error;
1433 
1434 	node = *rnode;
1435 	sc = (struct dbcool_softc *)node.sysctl_data;
1436 
1437 	reg = sc->sc_user_reg;
1438 	node.sysctl_data = &reg;
1439 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1440 
1441 	if (error || newp == NULL)
1442 		return error;
1443 
1444 	sc->sc_user_reg = *(int *)node.sysctl_data;
1445 	return 0;
1446 }
1447 
1448 static int
1449 sysctl_dbcool_reg_access(SYSCTLFN_ARGS)
1450 {
1451 	struct sysctlnode node;
1452 	struct dbcool_softc *sc;
1453 	int reg, error;
1454 	uint8_t chipreg;
1455 	uint8_t newreg;
1456 
1457 	node = *rnode;
1458 	sc = (struct dbcool_softc *)node.sysctl_data;
1459 	chipreg = sc->sc_user_reg;
1460 
1461 	reg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1462 	node.sysctl_data = &reg;
1463 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1464 
1465 	if (error || newp == NULL)
1466 		return error;
1467 
1468 	newreg = *(int *)node.sysctl_data;
1469 	sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1470 	return 0;
1471 }
1472 #endif /* DBCOOL_DEBUG */
1473 
1474 /*
1475  * Encode an index number and register number for use as a sysctl_num
1476  * so we can select the correct device register later.
1477  */
1478 #define	DBC_PWM_SYSCTL(seq, reg)	((seq << 8) | reg)
1479 
1480 void
1481 dbcool_setup(device_t self)
1482 {
1483 	struct dbcool_softc *sc = device_private(self);
1484 	const struct sysctlnode *me = NULL;
1485 	struct sysctlnode *node = NULL;
1486 	uint8_t cfg_val, cfg_reg;
1487 	int ro_flag, rw_flag, ret, error;
1488 
1489 	/*
1490 	 * Some chips are capable of reporting an extended temperature range
1491 	 * by default.  On these models, config register 5 bit 0 can be set
1492 	 * to 1 for compatability with other chips that report 2s complement.
1493 	 */
1494 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466) {
1495 		if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADT7466_CONFIG1) & 0x80)
1496 			sc->sc_temp_offset = 64;
1497 		else
1498 			sc->sc_temp_offset = 0;
1499 	} else if (sc->sc_dc.dc_chip->flags & DBCFLAG_TEMPOFFSET) {
1500 		if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_CONFIG5_REG) &
1501 			    DBCOOL_CFG5_TWOSCOMP)
1502 			sc->sc_temp_offset = 0;
1503 		else
1504 			sc->sc_temp_offset = 64;
1505 	} else
1506 		sc->sc_temp_offset = 0;
1507 
1508 	/* Determine Vcc for this chip */
1509 	sc->sc_supply_voltage = dbcool_supply_voltage(sc);
1510 
1511 	sc->sc_sme = sysmon_envsys_create();
1512 
1513 	ro_flag = dbcool_islocked(sc)?CTLFLAG_READONLY:CTLFLAG_READWRITE;
1514 	ro_flag |= CTLFLAG_OWNDESC;
1515 	rw_flag = CTLFLAG_READWRITE | CTLFLAG_OWNDESC;
1516 	ret = sysctl_createv(NULL, 0, NULL, &me,
1517 	       CTLFLAG_READWRITE,
1518 	       CTLTYPE_NODE, device_xname(self), NULL,
1519 	       NULL, 0, NULL, 0,
1520 	       CTL_HW, CTL_CREATE, CTL_EOL);
1521 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_HAS_VID) {
1522 		ret = sysctl_createv(NULL, 0, NULL,
1523 			(const struct sysctlnode **)&node,
1524 			CTLFLAG_READONLY, CTLTYPE_INT, "CPU_VID_bits", NULL,
1525 			sysctl_dbcool_vid,
1526 			0, sc, sizeof(int),
1527 			CTL_HW, me->sysctl_num, DBCOOL_VID_REG, CTL_EOL);
1528 		if (node != NULL)
1529 			node->sysctl_data = sc;
1530 	}
1531 
1532 #ifdef DBCOOL_DEBUG
1533 	ret = sysctl_createv(NULL, 0, NULL,
1534 		(const struct sysctlnode **)&node,
1535 		CTLFLAG_READWRITE, CTLTYPE_INT, "reg_select", NULL,
1536 		sysctl_dbcool_reg_select,
1537 		0, sc, sizeof(int),
1538 		CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
1539 	if (node != NULL)
1540 		node->sysctl_data = sc;
1541 
1542 	ret = sysctl_createv(NULL, 0, NULL,
1543 		(const struct sysctlnode **)&node,
1544 		CTLFLAG_READWRITE, CTLTYPE_INT, "reg_access", NULL,
1545 		sysctl_dbcool_reg_access,
1546 		0, sc, sizeof(int),
1547 		CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
1548 	if (node != NULL)
1549 		node->sysctl_data = sc;
1550 #endif /* DBCOOL_DEBUG */
1551 
1552 	/* Create the sensors for this device */
1553 	if (dbcool_setup_sensors(sc, me, rw_flag, ro_flag))
1554 		goto out;
1555 
1556 	/* If supported, create sysctl tree for fan PWM controllers */
1557 	if (sc->sc_dc.dc_chip->power != NULL)
1558 		dbcool_setup_controllers(sc, me, rw_flag, ro_flag);
1559 
1560 	/*
1561 	 * Read and rewrite config register to activate device
1562 	 */
1563 	if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
1564 		cfg_reg = DBCOOL_ADM1030_CFG1;
1565 	else if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466)
1566 		cfg_reg = DBCOOL_ADT7466_CONFIG1;
1567 	else
1568 		cfg_reg = DBCOOL_CONFIG1_REG;
1569 	cfg_val = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_CONFIG1_REG);
1570 	if ((cfg_val & DBCOOL_CFG1_START) == 0) {
1571 		cfg_val |= DBCOOL_CFG1_START;
1572 		sc->sc_dc.dc_writereg(&sc->sc_dc, cfg_reg, cfg_val);
1573 	}
1574 	if (dbcool_islocked(sc))
1575 		aprint_normal_dev(self, "configuration locked\n");
1576 
1577 	sc->sc_sme->sme_name = device_xname(self);
1578 	sc->sc_sme->sme_cookie = sc;
1579 	sc->sc_sme->sme_refresh = dbcool_refresh;
1580 
1581 	if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
1582 		aprint_error_dev(self,
1583 		    "unable to register with sysmon (%d)\n", error);
1584 		goto out;
1585 	}
1586 
1587 	return;
1588 
1589 out:
1590 	sysmon_envsys_destroy(sc->sc_sme);
1591 }
1592 
1593 static int
1594 dbcool_setup_sensors(struct dbcool_softc *sc, const struct sysctlnode *me,
1595 		     int rw_flag, int ro_flag)
1596 {
1597 	int i, j, ret;
1598 	int error = 0;
1599 	uint8_t	sysctl_reg;
1600 	struct sysctlnode *node = NULL;
1601 	int sysctl_index, sysctl_num;
1602 	char name[SYSCTL_NAMELEN];
1603 
1604 	for (i=0; sc->sc_dc.dc_chip->table[i].type != DBC_EOF; i++) {
1605 		if (i >= DBCOOL_MAXSENSORS &&
1606 		    sc->sc_dc.dc_chip->table[i].type != DBC_CTL) {
1607 			aprint_normal_dev(sc->sc_dev, "chip table too big!\n");
1608 			break;
1609 		}
1610 		switch (sc->sc_dc.dc_chip->table[i].type) {
1611 		case DBC_TEMP:
1612 			sc->sc_sensor[i].units = ENVSYS_STEMP;
1613 			error = dbcool_attach_sensor(sc, me, i,
1614 					sysctl_dbcool_temp_limit);
1615 			break;
1616 		case DBC_VOLT:
1617 			sc->sc_sensor[i].units = ENVSYS_SVOLTS_DC;
1618 			error = dbcool_attach_sensor(sc, me, i,
1619 					sysctl_dbcool_volt_limit);
1620 			break;
1621 		case DBC_FAN:
1622 			sc->sc_sensor[i].units = ENVSYS_SFANRPM;
1623 			error = dbcool_attach_sensor(sc, me, i,
1624 					sysctl_dbcool_fan_limit);
1625 			break;
1626 		case DBC_CTL:
1627 			/*
1628 			 * Search for the corresponding temp sensor
1629 			 * (temp sensors need to be created first!)
1630 			 */
1631 			sysctl_num = -1;
1632 			for (j = 0; j < i; j++) {
1633 				if (j > DBCOOL_MAXSENSORS ||
1634 				    sc->sc_dc.dc_chip->table[j].type != DBC_TEMP)
1635 					continue;
1636 				if (sc->sc_dc.dc_chip->table[j].name_index ==
1637 				    sc->sc_dc.dc_chip->table[i].name_index) {
1638 					sysctl_num = sc->sc_sysctl_num[j];
1639 					break;
1640 				}
1641 			}
1642 			if (sysctl_num == -1)
1643 				break;
1644 			sysctl_index = sc->sc_dc.dc_chip->table[i].sysctl_index;
1645 			sysctl_reg = sc->sc_dc.dc_chip->table[i].reg.val_reg;
1646 			strlcpy(name, dbc_sysctl_table[sysctl_index].name,
1647 			    sizeof(name));
1648 			ret = sysctl_createv(NULL, 0, NULL,
1649 				(const struct sysctlnode **)&node,
1650 				dbc_sysctl_table[sysctl_index].lockable?
1651 					ro_flag:rw_flag,
1652 				CTLTYPE_INT, name,
1653 				dbc_sysctl_table[sysctl_index].desc,
1654 				dbc_sysctl_table[sysctl_index].helper,
1655 				0, sc, sizeof(int),
1656 				CTL_HW, me->sysctl_num, sysctl_num,
1657 				DBC_PWM_SYSCTL(i, sysctl_reg), CTL_EOL);
1658 			if (node != NULL)
1659 				node->sysctl_data = sc;
1660 			break;
1661 		default:
1662 			aprint_error_dev(sc->sc_dev,
1663 				"sensor_table index %d has bad type %d\n",
1664 				i, sc->sc_dc.dc_chip->table[i].type);
1665 			break;
1666 		}
1667 		if (error)
1668 			break;
1669 	}
1670 	return error;
1671 }
1672 
1673 static int
1674 dbcool_attach_sensor(struct dbcool_softc *sc, const struct sysctlnode *me,
1675 		     int idx, int (*helper)(SYSCTLFN_PROTO))
1676 {
1677 	struct sysctlnode *node = NULL;
1678 	const struct sysctlnode *me2 = NULL;
1679 	uint8_t sysctl_reg;
1680 	int name_index;
1681 	int ret;
1682 	int error = 0;
1683 
1684 	name_index = sc->sc_dc.dc_chip->table[idx].name_index;
1685 	strlcpy(sc->sc_sensor[idx].desc, dbc_sensor_names[name_index],
1686 		sizeof(sc->sc_sensor[idx].desc));
1687 	sc->sc_regs[idx] = &sc->sc_dc.dc_chip->table[idx].reg;
1688 	sc->sc_nom_volt[idx] = sc->sc_dc.dc_chip->table[idx].nom_volt_index;
1689 
1690 	sc->sc_sensor[idx].flags |= ENVSYS_FMONLIMITS;
1691 
1692 	error = sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[idx]);
1693 	if (error)
1694 		return error;
1695 
1696 	/*
1697 	 * create sysctl node for the sensor, and the nodes for
1698 	 * the sensor's high and low limit values
1699 	 */
1700 	ret = sysctl_createv(NULL, 0, NULL, &me2, CTLFLAG_READWRITE,
1701 			CTLTYPE_NODE, sc->sc_sensor[idx].desc, NULL,
1702 			NULL, 0, NULL, 0,
1703 			CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
1704 	if (me2 == NULL)
1705 		return 0;
1706 
1707 	sc->sc_sysctl_num[idx] = me2->sysctl_num;
1708 
1709 	/* create sysctl node for the low limit */
1710 	sysctl_reg = sc->sc_regs[idx]->lo_lim_reg;
1711 	ret = sysctl_createv(NULL, 0, NULL,
1712 			(const struct sysctlnode **)&node,
1713 			CTLFLAG_READWRITE,
1714 			CTLTYPE_INT, "low_lim", NULL, helper, 0, sc, 0,
1715 			CTL_HW, me->sysctl_num, me2->sysctl_num,
1716 			DBC_PWM_SYSCTL(idx, sysctl_reg), CTL_EOL);
1717 	if (node != NULL)
1718 		node->sysctl_data = sc;
1719 
1720 	/* Fans do not have a high limit */
1721 	if (sc->sc_dc.dc_chip->table[idx].type == DBC_FAN)
1722 		return 0;
1723 
1724 	sysctl_reg = sc->sc_regs[idx]->hi_lim_reg;
1725 	ret = sysctl_createv(NULL, 0, NULL,
1726 			(const struct sysctlnode **)&node,
1727 			CTLFLAG_READWRITE,
1728 			CTLTYPE_INT, "hi_lim", NULL, helper, 0, sc, 0,
1729 			CTL_HW, me->sysctl_num, me2->sysctl_num,
1730 			DBC_PWM_SYSCTL(idx, sysctl_reg), CTL_EOL);
1731 	if (node != NULL)
1732 		node->sysctl_data = sc;
1733 
1734 	return 0;
1735 }
1736 
1737 static void
1738 dbcool_setup_controllers(struct dbcool_softc *sc, const struct sysctlnode *me,
1739 			 int rw_flag, int ro_flag)
1740 {
1741 	int i, j, ret;
1742 	uint8_t sysctl_reg;
1743 	const struct sysctlnode *me2 = NULL;
1744 	struct sysctlnode *node = NULL;
1745 	char name[SYSCTL_NAMELEN];
1746 
1747 	for (i = 0; sc->sc_dc.dc_chip->power[i].desc != NULL; i++) {
1748 		snprintf(name, sizeof(name), "fan_ctl_%d", i);
1749 		ret = sysctl_createv(NULL, 0, NULL, &me2,
1750 		       rw_flag,
1751 		       CTLTYPE_NODE, name, NULL,
1752 		       NULL, 0, NULL, 0,
1753 		       CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
1754 
1755 		for (j = DBC_PWM_BEHAVIOR; j < DBC_PWM_LAST_PARAM; j++) {
1756 			if (j == DBC_PWM_MAX_DUTY &&
1757 			    (sc->sc_dc.dc_chip->flags & DBCFLAG_HAS_MAXDUTY) == 0)
1758 				continue;
1759 			sysctl_reg = sc->sc_dc.dc_chip->power[i].power_regs[j];
1760 			if (sysctl_reg == DBCOOL_NO_REG)
1761 				continue;
1762 			strlcpy(name, dbc_sysctl_table[j].name, sizeof(name));
1763 			ret = sysctl_createv(NULL, 0, NULL,
1764 				(const struct sysctlnode **)&node,
1765 				(dbc_sysctl_table[j].lockable)?ro_flag:rw_flag,
1766 				(j == DBC_PWM_BEHAVIOR)?
1767 					CTLTYPE_STRING:CTLTYPE_INT,
1768 				name,
1769 				dbc_sysctl_table[j].desc,
1770 				dbc_sysctl_table[j].helper,
1771 				0, sc,
1772 				( j == DBC_PWM_BEHAVIOR)?
1773 					sizeof(dbcool_cur_behav): sizeof(int),
1774 				CTL_HW, me->sysctl_num, me2->sysctl_num,
1775 				DBC_PWM_SYSCTL(j, sysctl_reg), CTL_EOL);
1776 			if (node != NULL)
1777 				node->sysctl_data = sc;
1778 		}
1779 	}
1780 }
1781 
1782 static void
1783 dbcool_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1784 {
1785 	struct dbcool_softc *sc=sme->sme_cookie;
1786 	int i, nom_volt_idx;
1787 	int cur, hi, low;
1788 	struct reg_list *reg;
1789 
1790 	i = edata->sensor;
1791 	reg = sc->sc_regs[i];
1792 	switch (edata->units)
1793 	{
1794 		case ENVSYS_STEMP:
1795 			cur = dbcool_read_temp(sc, reg->val_reg, true);
1796 			low = dbcool_read_temp(sc, reg->lo_lim_reg, false);
1797 			hi  = dbcool_read_temp(sc, reg->hi_lim_reg, false);
1798 			break;
1799 		case ENVSYS_SVOLTS_DC:
1800 			nom_volt_idx = sc->sc_nom_volt[i];
1801 			cur = dbcool_read_volt(sc, reg->val_reg, nom_volt_idx,
1802 						true);
1803 			low = dbcool_read_volt(sc, reg->lo_lim_reg,
1804 						nom_volt_idx, false);
1805 			hi  = dbcool_read_volt(sc, reg->hi_lim_reg,
1806 						nom_volt_idx, false);
1807 			break;
1808 		case ENVSYS_SFANRPM:
1809 			cur = dbcool_read_rpm(sc, reg->val_reg);
1810 			low = dbcool_read_rpm(sc, reg->lo_lim_reg);
1811 			hi  = 1 << 16;
1812 			break;
1813 		default:
1814 			edata->state = ENVSYS_SINVALID;
1815 			return;
1816 	}
1817 
1818 	if (cur == 0 && edata->units != ENVSYS_SFANRPM)
1819 		edata->state = ENVSYS_SINVALID;
1820 
1821 	/* Make sure limits are sensible */
1822 	else if (hi <= low)
1823 		edata->state = ENVSYS_SVALID;
1824 
1825 	/*
1826 	 * If fan is "stalled" but has no low limit, treat
1827 	 * it as though the fan is not installed.
1828 	 */
1829 	else if (edata->units == ENVSYS_SFANRPM && cur == 0 &&
1830 			(low == 0 || low == -1))
1831 		edata->state = ENVSYS_SINVALID;
1832 
1833 	/*
1834 	 * Compare current value against the limits
1835 	 */
1836 	else if (cur < low)
1837 		edata->state = ENVSYS_SCRITUNDER;
1838 	else if (cur > hi)
1839 		edata->state = ENVSYS_SCRITOVER;
1840 	else
1841 		edata->state = ENVSYS_SVALID;
1842 
1843 	edata->value_cur = cur;
1844 }
1845 
1846 int
1847 dbcool_chip_ident(struct dbcool_chipset *dc)
1848 {
1849 	/* verify this is a supported dbCool chip */
1850 	uint8_t c_id, d_id, r_id;
1851 	int i;
1852 
1853 	c_id = dc->dc_readreg(dc, DBCOOL_COMPANYID_REG);
1854 	d_id = dc->dc_readreg(dc, DBCOOL_DEVICEID_REG);
1855 	r_id = dc->dc_readreg(dc, DBCOOL_REVISION_REG);
1856 
1857 	for (i = 0; chip_table[i].company != 0; i++)
1858 		if ((c_id == chip_table[i].company) &&
1859 		    (d_id == chip_table[i].device ||
1860 		    chip_table[i].device == 0xff) &&
1861 		    (r_id == chip_table[i].rev ||
1862 		    chip_table[i].rev == 0xff)) {
1863 			dc->dc_chip = &chip_table[i];
1864 			return i;
1865 		}
1866 
1867 	aprint_verbose("dbcool_chip_ident: addr 0x%02x c_id 0x%02x d_id 0x%02x"
1868 			" r_id 0x%02x: No match.\n", dc->dc_addr, c_id, d_id,
1869 			r_id);
1870 
1871 	return -1;
1872 }
1873