xref: /netbsd-src/sys/dev/fdt/cpufreq_dt.c (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /* $NetBSD: cpufreq_dt.c,v 1.3 2017/12/16 16:41:18 jmcneill Exp $ */
2 
3 /*-
4  * Copyright (c) 2015-2017 Jared McNeill <jmcneill@invisible.ca>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.3 2017/12/16 16:41:18 jmcneill Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/device.h>
35 #include <sys/kmem.h>
36 #include <sys/bus.h>
37 #include <sys/atomic.h>
38 #include <sys/xcall.h>
39 #include <sys/sysctl.h>
40 
41 #include <dev/fdt/fdtvar.h>
42 
43 struct cpufreq_dt_opp {
44 	u_int		freq_khz;
45 	u_int		voltage_uv;
46 };
47 
48 struct cpufreq_dt_softc {
49 	device_t		sc_dev;
50 	int			sc_phandle;
51 	struct clk		*sc_clk;
52 	struct fdtbus_regulator	*sc_supply;
53 
54 	struct cpufreq_dt_opp	*sc_opp;
55 	ssize_t			sc_nopp;
56 	int			sc_latency;
57 
58 	u_int			sc_freq_target;
59 	bool			sc_freq_throttle;
60 
61 	u_int			sc_busy;
62 
63 	char			*sc_freq_available;
64 	int			sc_node_target;
65 	int			sc_node_current;
66 	int			sc_node_available;
67 };
68 
69 static void
70 cpufreq_dt_change_cb(void *arg1, void *arg2)
71 {
72 #if notyet
73 	struct cpu_info *ci = curcpu();
74 	ci->ci_data.cpu_cc_freq = cpufreq_get_rate() * 1000000;
75 #endif
76 }
77 
78 static int
79 cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
80 {
81 	struct cpufreq_dt_opp *opp = NULL;
82 	u_int old_rate, new_rate, old_uv, new_uv;
83 	uint64_t xc;
84 	int error;
85 	ssize_t n;
86 
87 	for (n = 0; n < sc->sc_nopp; n++)
88 		if (sc->sc_opp[n].freq_khz == freq_khz) {
89 			opp = &sc->sc_opp[n];
90 			break;
91 		}
92 	if (opp == NULL)
93 		return EINVAL;
94 
95 	old_rate = clk_get_rate(sc->sc_clk);
96 	new_rate = freq_khz * 1000;
97 	new_uv = opp->voltage_uv;
98 
99 	if (old_rate == new_rate)
100 		return 0;
101 
102 	if (sc->sc_supply != NULL) {
103 		error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
104 		if (error != 0)
105 			return error;
106 
107 		if (new_uv > old_uv) {
108 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
109 			    new_uv, new_uv);
110 			if (error != 0)
111 				return error;
112 		}
113 	}
114 
115 	error = clk_set_rate(sc->sc_clk, new_rate);
116 	if (error != 0)
117 		return error;
118 
119 	if (sc->sc_supply != NULL) {
120 		if (new_uv < old_uv) {
121 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
122 			    new_uv, new_uv);
123 			if (error != 0)
124 				return error;
125 		}
126 	}
127 
128 	if (error == 0) {
129 		xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
130 		xc_wait(xc);
131 
132 		pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
133 	}
134 
135 	return 0;
136 }
137 
138 static void
139 cpufreq_dt_throttle_enable(device_t dev)
140 {
141 	struct cpufreq_dt_softc * const sc = device_private(dev);
142 
143 	if (sc->sc_freq_throttle)
144 		return;
145 
146 	const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;
147 
148 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
149 		kpause("throttle", false, 1, NULL);
150 
151 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
152 		aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
153 		    freq_khz / 1000, freq_khz % 1000);
154 		sc->sc_freq_throttle = true;
155 		if (sc->sc_freq_target == 0)
156 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
157 	}
158 
159 	atomic_dec_uint(&sc->sc_busy);
160 }
161 
162 static void
163 cpufreq_dt_throttle_disable(device_t dev)
164 {
165 	struct cpufreq_dt_softc * const sc = device_private(dev);
166 
167 	if (!sc->sc_freq_throttle)
168 		return;
169 
170 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
171 		kpause("throttle", false, 1, NULL);
172 
173 	const u_int freq_khz = sc->sc_freq_target * 1000;
174 
175 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
176 		aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
177 		    freq_khz / 1000, freq_khz % 1000);
178 		sc->sc_freq_throttle = false;
179 	}
180 
181 	atomic_dec_uint(&sc->sc_busy);
182 }
183 
184 static int
185 cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
186 {
187 	struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
188 	struct sysctlnode node;
189 	u_int fq, oldfq = 0;
190 	int error, n;
191 
192 	node = *rnode;
193 	node.sysctl_data = &fq;
194 
195 	if (rnode->sysctl_num == sc->sc_node_target) {
196 		if (sc->sc_freq_target == 0)
197 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
198 		fq = sc->sc_freq_target;
199 	} else
200 		fq = clk_get_rate(sc->sc_clk) / 1000000;
201 
202 	if (rnode->sysctl_num == sc->sc_node_target)
203 		oldfq = fq;
204 
205 	if (sc->sc_freq_target == 0)
206 		sc->sc_freq_target = fq;
207 
208 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
209 	if (error || newp == NULL)
210 		return error;
211 
212 	if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
213 		return 0;
214 
215 	for (n = 0; n < sc->sc_nopp; n++)
216 		if (sc->sc_opp[n].freq_khz / 1000 == fq)
217 			break;
218 	if (n == sc->sc_nopp)
219 		return EINVAL;
220 
221 	if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
222 		return EBUSY;
223 
224 	sc->sc_freq_target = fq;
225 
226 	if (sc->sc_freq_throttle)
227 		error = 0;
228 	else
229 		error = cpufreq_dt_set_rate(sc, fq * 1000);
230 
231 	atomic_dec_uint(&sc->sc_busy);
232 
233 	return error;
234 }
235 
236 static void
237 cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
238 {
239 	const struct sysctlnode *node, *cpunode, *freqnode;
240 	struct sysctllog *cpufreq_log = NULL;
241 	int error, i;
242 
243 	sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
244 	for (i = 0; i < sc->sc_nopp; i++) {
245 		char buf[6];
246 		snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
247 		strcat(sc->sc_freq_available, buf);
248 	}
249 
250 	error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
251 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
252 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
253 	if (error)
254 		goto sysctl_failed;
255 	error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
256 	    0, CTLTYPE_NODE, "cpu", NULL,
257 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
258 	if (error)
259 		goto sysctl_failed;
260 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &freqnode,
261 	    0, CTLTYPE_NODE, "frequency", NULL,
262 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
263 	if (error)
264 		goto sysctl_failed;
265 
266 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
267 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
268 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
269 	    CTL_CREATE, CTL_EOL);
270 	if (error)
271 		goto sysctl_failed;
272 	sc->sc_node_target = node->sysctl_num;
273 
274 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
275 	    CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
276 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
277 	    CTL_CREATE, CTL_EOL);
278 	if (error)
279 		goto sysctl_failed;
280 	sc->sc_node_current = node->sysctl_num;
281 
282 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
283 	    0, CTLTYPE_STRING, "available", NULL,
284 	    NULL, 0, sc->sc_freq_available, 0,
285 	    CTL_CREATE, CTL_EOL);
286 	if (error)
287 		goto sysctl_failed;
288 	sc->sc_node_available = node->sysctl_num;
289 
290 	return;
291 
292 sysctl_failed:
293 	aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
294 	sysctl_teardown(&cpufreq_log);
295 }
296 
297 static int
298 cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
299 {
300 	const int phandle = sc->sc_phandle;
301 	const u_int *opp;
302 	int len, i;
303 	u_int lat;
304 
305 	if (of_hasprop(phandle, "cpu-supply")) {
306 		sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
307 		if (sc->sc_supply == NULL) {
308 			aprint_error_dev(sc->sc_dev,
309 			    "couldn't acquire cpu-supply\n");
310 			return ENXIO;
311 		}
312 	}
313 	sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
314 	if (sc->sc_clk == NULL) {
315 		aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
316 		return ENXIO;
317 	}
318 
319 	opp = fdtbus_get_prop(phandle, "operating-points", &len);
320 	if (len < 8)
321 		return ENXIO;
322 
323 	sc->sc_nopp = len / 8;
324 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
325 	for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
326 		sc->sc_opp[i].freq_khz = be32toh(opp[0]);
327 		sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
328 
329 		aprint_verbose_dev(sc->sc_dev, "%u.%03u MHz, %u uV\n",
330 		    sc->sc_opp[i].freq_khz / 1000,
331 		    sc->sc_opp[i].freq_khz % 1000,
332 		    sc->sc_opp[i].voltage_uv);
333 	}
334 
335 	if (of_getprop_uint32(phandle, "clock-latency", &lat) == 0)
336 		sc->sc_latency = lat;
337 	else
338 		sc->sc_latency = -1;
339 
340 	return 0;
341 }
342 
343 static int
344 cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
345 {
346 	struct fdt_attach_args * const faa = aux;
347 	const int phandle = faa->faa_phandle;
348 	bus_addr_t addr;
349 
350 	if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
351 		return 0;
352 	/* Generic DT cpufreq driver properties must be defined under /cpus/cpu@0 */
353 	if (addr != 0)
354 		return 0;
355 
356 	if (!of_hasprop(phandle, "operating-points") ||
357 	    !of_hasprop(phandle, "clocks"))
358 		return 0;
359 
360 	return 1;
361 }
362 
363 static void
364 cpufreq_dt_init(device_t self)
365 {
366 	struct cpufreq_dt_softc * const sc = device_private(self);
367 	int error;
368 
369 	if ((error = cpufreq_dt_parse(sc)) != 0)
370 		return;
371 
372 	cpufreq_dt_init_sysctl(sc);
373 }
374 
375 static void
376 cpufreq_dt_attach(device_t parent, device_t self, void *aux)
377 {
378 	struct cpufreq_dt_softc * const sc = device_private(self);
379 	struct fdt_attach_args * const faa = aux;
380 
381 	sc->sc_dev = self;
382 	sc->sc_phandle = faa->faa_phandle;
383 
384 	aprint_naive("\n");
385 	aprint_normal("\n");
386 
387 	pmf_event_register(self, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
388 	pmf_event_register(self, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);
389 
390 	config_interrupts(self, cpufreq_dt_init);
391 }
392 
393 CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
394     cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);
395