xref: /netbsd-src/sys/dev/fdt/cpufreq_dt.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /* $NetBSD: cpufreq_dt.c,v 1.2 2017/10/05 01:28:01 jmcneill Exp $ */
2 
3 /*-
4  * Copyright (c) 2015-2017 Jared McNeill <jmcneill@invisible.ca>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.2 2017/10/05 01:28:01 jmcneill Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/device.h>
35 #include <sys/kmem.h>
36 #include <sys/bus.h>
37 #include <sys/atomic.h>
38 #include <sys/xcall.h>
39 #include <sys/sysctl.h>
40 
41 #include <dev/fdt/fdtvar.h>
42 
43 struct cpufreq_dt_opp {
44 	u_int		freq_khz;
45 	u_int		voltage_uv;
46 };
47 
48 struct cpufreq_dt_softc {
49 	device_t		sc_dev;
50 	int			sc_phandle;
51 	struct clk		*sc_clk;
52 	struct fdtbus_regulator	*sc_supply;
53 
54 	struct cpufreq_dt_opp	*sc_opp;
55 	ssize_t			sc_nopp;
56 	int			sc_latency;
57 
58 	u_int			sc_freq_target;
59 	bool			sc_freq_throttle;
60 
61 	u_int			sc_busy;
62 
63 	char			*sc_freq_available;
64 	int			sc_node_target;
65 	int			sc_node_current;
66 	int			sc_node_available;
67 };
68 
69 static void
70 cpufreq_dt_change_cb(void *arg1, void *arg2)
71 {
72 #if notyet
73 	struct cpu_info *ci = curcpu();
74 	ci->ci_data.cpu_cc_freq = cpufreq_get_rate() * 1000000;
75 #endif
76 }
77 
78 static int
79 cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
80 {
81 	struct cpufreq_dt_opp *opp = NULL;
82 	u_int old_rate, new_rate, old_uv, new_uv;
83 	uint64_t xc;
84 	int error;
85 	ssize_t n;
86 
87 	for (n = 0; n < sc->sc_nopp; n++)
88 		if (sc->sc_opp[n].freq_khz == freq_khz) {
89 			opp = &sc->sc_opp[n];
90 			break;
91 		}
92 	if (opp == NULL)
93 		return EINVAL;
94 
95 	old_rate = clk_get_rate(sc->sc_clk);
96 	new_rate = freq_khz * 1000;
97 
98 	if (old_rate == new_rate)
99 		return 0;
100 
101 	error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
102 	if (error != 0)
103 		return error;
104 	new_uv = opp->voltage_uv;
105 
106 	if (new_uv > old_uv) {
107 		error = fdtbus_regulator_set_voltage(sc->sc_supply,
108 		    new_uv, new_uv);
109 		if (error != 0)
110 			return error;
111 	}
112 
113 	error = clk_set_rate(sc->sc_clk, new_rate);
114 	if (error != 0)
115 		return error;
116 
117 	if (new_uv < old_uv) {
118 		error = fdtbus_regulator_set_voltage(sc->sc_supply,
119 		    new_uv, new_uv);
120 		if (error != 0)
121 			return error;
122 	}
123 
124 	if (error == 0) {
125 		xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
126 		xc_wait(xc);
127 
128 		pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
129 	}
130 
131 	return 0;
132 }
133 
134 static void
135 cpufreq_dt_throttle_enable(device_t dev)
136 {
137 	struct cpufreq_dt_softc * const sc = device_private(dev);
138 
139 	if (sc->sc_freq_throttle)
140 		return;
141 
142 	const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;
143 
144 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
145 		kpause("throttle", false, 1, NULL);
146 
147 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
148 		aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
149 		    freq_khz / 1000, freq_khz % 1000);
150 		sc->sc_freq_throttle = true;
151 		if (sc->sc_freq_target == 0)
152 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
153 	}
154 
155 	atomic_dec_uint(&sc->sc_busy);
156 }
157 
158 static void
159 cpufreq_dt_throttle_disable(device_t dev)
160 {
161 	struct cpufreq_dt_softc * const sc = device_private(dev);
162 
163 	if (!sc->sc_freq_throttle)
164 		return;
165 
166 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
167 		kpause("throttle", false, 1, NULL);
168 
169 	const u_int freq_khz = sc->sc_freq_target * 1000;
170 
171 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
172 		aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
173 		    freq_khz / 1000, freq_khz % 1000);
174 		sc->sc_freq_throttle = false;
175 	}
176 
177 	atomic_dec_uint(&sc->sc_busy);
178 }
179 
180 static int
181 cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
182 {
183 	struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
184 	struct sysctlnode node;
185 	u_int fq, oldfq = 0;
186 	int error, n;
187 
188 	node = *rnode;
189 	node.sysctl_data = &fq;
190 
191 	if (rnode->sysctl_num == sc->sc_node_target) {
192 		if (sc->sc_freq_target == 0)
193 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
194 		fq = sc->sc_freq_target;
195 	} else
196 		fq = clk_get_rate(sc->sc_clk) / 1000000;
197 
198 	if (rnode->sysctl_num == sc->sc_node_target)
199 		oldfq = fq;
200 
201 	if (sc->sc_freq_target == 0)
202 		sc->sc_freq_target = fq;
203 
204 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
205 	if (error || newp == NULL)
206 		return error;
207 
208 	if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
209 		return 0;
210 
211 	for (n = 0; n < sc->sc_nopp; n++)
212 		if (sc->sc_opp[n].freq_khz / 1000 == fq)
213 			break;
214 	if (n == sc->sc_nopp)
215 		return EINVAL;
216 
217 	if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
218 		return EBUSY;
219 
220 	sc->sc_freq_target = fq;
221 
222 	if (sc->sc_freq_throttle)
223 		error = 0;
224 	else
225 		error = cpufreq_dt_set_rate(sc, fq * 1000);
226 
227 	atomic_dec_uint(&sc->sc_busy);
228 
229 	return error;
230 }
231 
232 static void
233 cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
234 {
235 	const struct sysctlnode *node, *cpunode, *freqnode;
236 	struct sysctllog *cpufreq_log = NULL;
237 	int error, i;
238 
239 	sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
240 	for (i = 0; i < sc->sc_nopp; i++) {
241 		char buf[6];
242 		snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
243 		strcat(sc->sc_freq_available, buf);
244 	}
245 
246 	error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
247 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
248 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
249 	if (error)
250 		goto sysctl_failed;
251 	error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
252 	    0, CTLTYPE_NODE, "cpu", NULL,
253 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
254 	if (error)
255 		goto sysctl_failed;
256 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &freqnode,
257 	    0, CTLTYPE_NODE, "frequency", NULL,
258 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
259 	if (error)
260 		goto sysctl_failed;
261 
262 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
263 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
264 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
265 	    CTL_CREATE, CTL_EOL);
266 	if (error)
267 		goto sysctl_failed;
268 	sc->sc_node_target = node->sysctl_num;
269 
270 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
271 	    CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
272 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
273 	    CTL_CREATE, CTL_EOL);
274 	if (error)
275 		goto sysctl_failed;
276 	sc->sc_node_current = node->sysctl_num;
277 
278 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
279 	    0, CTLTYPE_STRING, "available", NULL,
280 	    NULL, 0, sc->sc_freq_available, 0,
281 	    CTL_CREATE, CTL_EOL);
282 	if (error)
283 		goto sysctl_failed;
284 	sc->sc_node_available = node->sysctl_num;
285 
286 	return;
287 
288 sysctl_failed:
289 	aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
290 	sysctl_teardown(&cpufreq_log);
291 }
292 
293 static int
294 cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
295 {
296 	const int phandle = sc->sc_phandle;
297 	const u_int *opp;
298 	int len, i;
299 	u_int lat;
300 
301 	sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
302 	if (sc->sc_supply == NULL) {
303 		aprint_error_dev(sc->sc_dev, "couldn't acquire cpu-supply\n");
304 		return ENXIO;
305 	}
306 	sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
307 	if (sc->sc_clk == NULL) {
308 		aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
309 		return ENXIO;
310 	}
311 
312 	opp = fdtbus_get_prop(phandle, "operating-points", &len);
313 	if (len < 8)
314 		return ENXIO;
315 
316 	sc->sc_nopp = len / 8;
317 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
318 	for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
319 		sc->sc_opp[i].freq_khz = be32toh(opp[0]);
320 		sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
321 
322 		aprint_verbose_dev(sc->sc_dev, "%u.%03u MHz, %u uV\n",
323 		    sc->sc_opp[i].freq_khz / 1000,
324 		    sc->sc_opp[i].freq_khz % 1000,
325 		    sc->sc_opp[i].voltage_uv);
326 	}
327 
328 	if (of_getprop_uint32(phandle, "clock-latency", &lat) == 0)
329 		sc->sc_latency = lat;
330 	else
331 		sc->sc_latency = -1;
332 
333 	return 0;
334 }
335 
336 static int
337 cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
338 {
339 	struct fdt_attach_args * const faa = aux;
340 	const int phandle = faa->faa_phandle;
341 	bus_addr_t addr;
342 
343 	if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
344 		return 0;
345 	/* Generic DT cpufreq driver properties must be defined under /cpus/cpu@0 */
346 	if (addr != 0)
347 		return 0;
348 
349 	if (!of_hasprop(phandle, "operating-points") ||
350 	    !of_hasprop(phandle, "clocks") ||
351 	    !of_hasprop(phandle, "cpu-supply"))
352 		return 0;
353 
354 	return 1;
355 }
356 
357 static void
358 cpufreq_dt_init(device_t self)
359 {
360 	struct cpufreq_dt_softc * const sc = device_private(self);
361 	int error;
362 
363 	if ((error = cpufreq_dt_parse(sc)) != 0)
364 		return;
365 
366 	cpufreq_dt_init_sysctl(sc);
367 }
368 
369 static void
370 cpufreq_dt_attach(device_t parent, device_t self, void *aux)
371 {
372 	struct cpufreq_dt_softc * const sc = device_private(self);
373 	struct fdt_attach_args * const faa = aux;
374 
375 	sc->sc_dev = self;
376 	sc->sc_phandle = faa->faa_phandle;
377 
378 	aprint_naive("\n");
379 	aprint_normal("\n");
380 
381 	pmf_event_register(self, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
382 	pmf_event_register(self, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);
383 
384 	config_interrupts(self, cpufreq_dt_init);
385 }
386 
387 CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
388     cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);
389