1 /* $NetBSD: dk.c,v 1.48 2009/08/06 16:00:49 haad Exp $ */ 2 3 /*- 4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.48 2009/08/06 16:00:49 haad Exp $"); 34 35 #include "opt_dkwedge.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/proc.h> 40 #include <sys/errno.h> 41 #include <sys/pool.h> 42 #include <sys/ioctl.h> 43 #include <sys/disklabel.h> 44 #include <sys/disk.h> 45 #include <sys/fcntl.h> 46 #include <sys/buf.h> 47 #include <sys/bufq.h> 48 #include <sys/vnode.h> 49 #include <sys/stat.h> 50 #include <sys/conf.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/malloc.h> 54 #include <sys/device.h> 55 #include <sys/kauth.h> 56 57 #include <miscfs/specfs/specdev.h> 58 59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures"); 60 61 typedef enum { 62 DKW_STATE_LARVAL = 0, 63 DKW_STATE_RUNNING = 1, 64 DKW_STATE_DYING = 2, 65 DKW_STATE_DEAD = 666 66 } dkwedge_state_t; 67 68 struct dkwedge_softc { 69 struct device *sc_dev; /* pointer to our pseudo-device */ 70 struct cfdata sc_cfdata; /* our cfdata structure */ 71 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */ 72 73 dkwedge_state_t sc_state; /* state this wedge is in */ 74 75 struct disk *sc_parent; /* parent disk */ 76 daddr_t sc_offset; /* LBA offset of wedge in parent */ 77 uint64_t sc_size; /* size of wedge in blocks */ 78 char sc_ptype[32]; /* partition type */ 79 dev_t sc_pdev; /* cached parent's dev_t */ 80 /* link on parent's wedge list */ 81 LIST_ENTRY(dkwedge_softc) sc_plink; 82 83 struct disk sc_dk; /* our own disk structure */ 84 struct bufq_state *sc_bufq; /* buffer queue */ 85 struct callout sc_restart_ch; /* callout to restart I/O */ 86 87 u_int sc_iopend; /* I/Os pending */ 88 int sc_flags; /* flags (splbio) */ 89 }; 90 91 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */ 92 93 static void dkstart(struct dkwedge_softc *); 94 static void dkiodone(struct buf *); 95 static void dkrestart(void *); 96 97 static int dklastclose(struct dkwedge_softc *); 98 static int dkwedge_detach(device_t, int); 99 100 static dev_type_open(dkopen); 101 static dev_type_close(dkclose); 102 static dev_type_read(dkread); 103 static dev_type_write(dkwrite); 104 static dev_type_ioctl(dkioctl); 105 static dev_type_strategy(dkstrategy); 106 static dev_type_dump(dkdump); 107 static dev_type_size(dksize); 108 109 const struct bdevsw dk_bdevsw = { 110 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK 111 }; 112 113 const struct cdevsw dk_cdevsw = { 114 dkopen, dkclose, dkread, dkwrite, dkioctl, 115 nostop, notty, nopoll, nommap, nokqfilter, D_DISK 116 }; 117 118 static struct dkwedge_softc **dkwedges; 119 static u_int ndkwedges; 120 static krwlock_t dkwedges_lock; 121 122 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods; 123 static krwlock_t dkwedge_discovery_methods_lock; 124 125 /* 126 * dkwedge_match: 127 * 128 * Autoconfiguration match function for pseudo-device glue. 129 */ 130 static int 131 dkwedge_match(device_t parent, cfdata_t match, 132 void *aux) 133 { 134 135 /* Pseudo-device; always present. */ 136 return (1); 137 } 138 139 /* 140 * dkwedge_attach: 141 * 142 * Autoconfiguration attach function for pseudo-device glue. 143 */ 144 static void 145 dkwedge_attach(device_t parent, device_t self, 146 void *aux) 147 { 148 149 if (!pmf_device_register(self, NULL, NULL)) 150 aprint_error_dev(self, "couldn't establish power handler\n"); 151 } 152 153 CFDRIVER_DECL(dk, DV_DISK, NULL); 154 CFATTACH_DECL3_NEW(dk, 0, 155 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL, 156 DVF_DETACH_SHUTDOWN); 157 158 /* 159 * dkwedge_wait_drain: 160 * 161 * Wait for I/O on the wedge to drain. 162 * NOTE: Must be called at splbio()! 163 */ 164 static void 165 dkwedge_wait_drain(struct dkwedge_softc *sc) 166 { 167 168 while (sc->sc_iopend != 0) { 169 sc->sc_flags |= DK_F_WAIT_DRAIN; 170 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0); 171 } 172 } 173 174 /* 175 * dkwedge_compute_pdev: 176 * 177 * Compute the parent disk's dev_t. 178 */ 179 static int 180 dkwedge_compute_pdev(const char *pname, dev_t *pdevp) 181 { 182 const char *name, *cp; 183 int punit, pmaj; 184 char devname[16]; 185 186 name = pname; 187 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1) 188 return (ENODEV); 189 190 name += strlen(devname); 191 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++) 192 punit = (punit * 10) + (*cp - '0'); 193 if (cp == name) { 194 /* Invalid parent disk name. */ 195 return (ENODEV); 196 } 197 198 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART); 199 200 return (0); 201 } 202 203 /* 204 * dkwedge_array_expand: 205 * 206 * Expand the dkwedges array. 207 */ 208 static void 209 dkwedge_array_expand(void) 210 { 211 int newcnt = ndkwedges + 16; 212 struct dkwedge_softc **newarray, **oldarray; 213 214 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE, 215 M_WAITOK|M_ZERO); 216 if ((oldarray = dkwedges) != NULL) 217 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray)); 218 dkwedges = newarray; 219 ndkwedges = newcnt; 220 if (oldarray != NULL) 221 free(oldarray, M_DKWEDGE); 222 } 223 224 static void 225 dkgetproperties(struct disk *disk, struct dkwedge_info *dkw) 226 { 227 prop_dictionary_t disk_info, odisk_info, geom; 228 229 disk_info = prop_dictionary_create(); 230 231 prop_dictionary_set_cstring_nocopy(disk_info, "type", "ESDI"); 232 233 geom = prop_dictionary_create(); 234 235 prop_dictionary_set_uint64(geom, "sectors-per-unit", dkw->dkw_size); 236 237 prop_dictionary_set_uint32(geom, "sector-size", 238 DEV_BSIZE /* XXX 512? */); 239 240 prop_dictionary_set_uint32(geom, "sectors-per-track", 32); 241 242 prop_dictionary_set_uint32(geom, "tracks-per-cylinder", 64); 243 244 prop_dictionary_set_uint32(geom, "cylinders-per-unit", dkw->dkw_size / 2048); 245 246 prop_dictionary_set(disk_info, "geometry", geom); 247 prop_object_release(geom); 248 249 odisk_info = disk->dk_info; 250 251 disk->dk_info = disk_info; 252 253 if (odisk_info != NULL) 254 prop_object_release(odisk_info); 255 } 256 257 /* 258 * dkwedge_add: [exported function] 259 * 260 * Add a disk wedge based on the provided information. 261 * 262 * The incoming dkw_devname[] is ignored, instead being 263 * filled in and returned to the caller. 264 */ 265 int 266 dkwedge_add(struct dkwedge_info *dkw) 267 { 268 struct dkwedge_softc *sc, *lsc; 269 struct disk *pdk; 270 u_int unit; 271 int error; 272 dev_t pdev; 273 274 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0'; 275 pdk = disk_find(dkw->dkw_parent); 276 if (pdk == NULL) 277 return (ENODEV); 278 279 error = dkwedge_compute_pdev(pdk->dk_name, &pdev); 280 if (error) 281 return (error); 282 283 if (dkw->dkw_offset < 0) 284 return (EINVAL); 285 286 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO); 287 sc->sc_state = DKW_STATE_LARVAL; 288 sc->sc_parent = pdk; 289 sc->sc_pdev = pdev; 290 sc->sc_offset = dkw->dkw_offset; 291 sc->sc_size = dkw->dkw_size; 292 293 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname)); 294 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0'; 295 296 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype)); 297 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0'; 298 299 bufq_alloc(&sc->sc_bufq, "fcfs", 0); 300 301 callout_init(&sc->sc_restart_ch, 0); 302 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc); 303 304 /* 305 * Wedge will be added; increment the wedge count for the parent. 306 * Only allow this to happend if RAW_PART is the only thing open. 307 */ 308 mutex_enter(&pdk->dk_openlock); 309 if (pdk->dk_openmask & ~(1 << RAW_PART)) 310 error = EBUSY; 311 else { 312 /* Check for wedge overlap. */ 313 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) { 314 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1; 315 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1; 316 317 if (sc->sc_offset >= lsc->sc_offset && 318 sc->sc_offset <= llastblk) { 319 /* Overlaps the tail of the exsiting wedge. */ 320 break; 321 } 322 if (lastblk >= lsc->sc_offset && 323 lastblk <= llastblk) { 324 /* Overlaps the head of the existing wedge. */ 325 break; 326 } 327 } 328 if (lsc != NULL) 329 error = EINVAL; 330 else { 331 pdk->dk_nwedges++; 332 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink); 333 } 334 } 335 mutex_exit(&pdk->dk_openlock); 336 if (error) { 337 bufq_free(sc->sc_bufq); 338 free(sc, M_DKWEDGE); 339 return (error); 340 } 341 342 /* Fill in our cfdata for the pseudo-device glue. */ 343 sc->sc_cfdata.cf_name = dk_cd.cd_name; 344 sc->sc_cfdata.cf_atname = dk_ca.ca_name; 345 /* sc->sc_cfdata.cf_unit set below */ 346 sc->sc_cfdata.cf_fstate = FSTATE_STAR; 347 348 /* Insert the larval wedge into the array. */ 349 rw_enter(&dkwedges_lock, RW_WRITER); 350 for (error = 0;;) { 351 struct dkwedge_softc **scpp; 352 353 /* 354 * Check for a duplicate wname while searching for 355 * a slot. 356 */ 357 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) { 358 if (dkwedges[unit] == NULL) { 359 if (scpp == NULL) { 360 scpp = &dkwedges[unit]; 361 sc->sc_cfdata.cf_unit = unit; 362 } 363 } else { 364 /* XXX Unicode. */ 365 if (strcmp(dkwedges[unit]->sc_wname, 366 sc->sc_wname) == 0) { 367 error = EEXIST; 368 break; 369 } 370 } 371 } 372 if (error) 373 break; 374 KASSERT(unit == ndkwedges); 375 if (scpp == NULL) 376 dkwedge_array_expand(); 377 else { 378 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]); 379 *scpp = sc; 380 break; 381 } 382 } 383 rw_exit(&dkwedges_lock); 384 if (error) { 385 mutex_enter(&pdk->dk_openlock); 386 pdk->dk_nwedges--; 387 LIST_REMOVE(sc, sc_plink); 388 mutex_exit(&pdk->dk_openlock); 389 390 bufq_free(sc->sc_bufq); 391 free(sc, M_DKWEDGE); 392 return (error); 393 } 394 395 /* 396 * Now that we know the unit #, attach a pseudo-device for 397 * this wedge instance. This will provide us with the 398 * "struct device" necessary for glue to other parts of the 399 * system. 400 * 401 * This should never fail, unless we're almost totally out of 402 * memory. 403 */ 404 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) { 405 aprint_error("%s%u: unable to attach pseudo-device\n", 406 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit); 407 408 rw_enter(&dkwedges_lock, RW_WRITER); 409 dkwedges[sc->sc_cfdata.cf_unit] = NULL; 410 rw_exit(&dkwedges_lock); 411 412 mutex_enter(&pdk->dk_openlock); 413 pdk->dk_nwedges--; 414 LIST_REMOVE(sc, sc_plink); 415 mutex_exit(&pdk->dk_openlock); 416 417 bufq_free(sc->sc_bufq); 418 free(sc, M_DKWEDGE); 419 return (ENOMEM); 420 } 421 422 /* Return the devname to the caller. */ 423 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev), 424 sizeof(dkw->dkw_devname)); 425 426 /* 427 * XXX Really ought to make the disk_attach() and the changing 428 * of state to RUNNING atomic. 429 */ 430 431 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL); 432 dkgetproperties(&sc->sc_dk, dkw); 433 disk_attach(&sc->sc_dk); 434 435 /* Disk wedge is ready for use! */ 436 sc->sc_state = DKW_STATE_RUNNING; 437 438 /* Announce our arrival. */ 439 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name, 440 sc->sc_wname); /* XXX Unicode */ 441 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n", 442 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype); 443 444 return (0); 445 } 446 447 /* 448 * dkwedge_find: 449 * 450 * Lookup a disk wedge based on the provided information. 451 * NOTE: We look up the wedge based on the wedge devname, 452 * not wname. 453 * 454 * Return NULL if the wedge is not found, otherwise return 455 * the wedge's softc. Assign the wedge's unit number to unitp 456 * if unitp is not NULL. 457 */ 458 static struct dkwedge_softc * 459 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp) 460 { 461 struct dkwedge_softc *sc = NULL; 462 u_int unit; 463 464 /* Find our softc. */ 465 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0'; 466 rw_enter(&dkwedges_lock, RW_READER); 467 for (unit = 0; unit < ndkwedges; unit++) { 468 if ((sc = dkwedges[unit]) != NULL && 469 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 && 470 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) { 471 break; 472 } 473 } 474 rw_exit(&dkwedges_lock); 475 if (unit == ndkwedges) 476 return NULL; 477 478 if (unitp != NULL) 479 *unitp = unit; 480 481 return sc; 482 } 483 484 /* 485 * dkwedge_del: [exported function] 486 * 487 * Delete a disk wedge based on the provided information. 488 * NOTE: We look up the wedge based on the wedge devname, 489 * not wname. 490 */ 491 int 492 dkwedge_del(struct dkwedge_info *dkw) 493 { 494 struct dkwedge_softc *sc = NULL; 495 496 /* Find our softc. */ 497 if ((sc = dkwedge_find(dkw, NULL)) == NULL) 498 return (ESRCH); 499 500 return config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET); 501 } 502 503 static int 504 dkwedge_begindetach(struct dkwedge_softc *sc, int flags) 505 { 506 struct disk *dk = &sc->sc_dk; 507 int rc; 508 509 rc = 0; 510 mutex_enter(&dk->dk_openlock); 511 mutex_enter(&sc->sc_parent->dk_rawlock); 512 if (dk->dk_openmask == 0) 513 ; /* nothing to do */ 514 else if ((flags & DETACH_FORCE) == 0) 515 rc = EBUSY; 516 else 517 rc = dklastclose(sc); 518 mutex_exit(&sc->sc_parent->dk_rawlock); 519 mutex_exit(&dk->dk_openlock); 520 521 return rc; 522 } 523 524 /* 525 * dkwedge_detach: 526 * 527 * Autoconfiguration detach function for pseudo-device glue. 528 */ 529 static int 530 dkwedge_detach(device_t self, int flags) 531 { 532 struct dkwedge_softc *sc = NULL; 533 u_int unit; 534 int bmaj, cmaj, rc, s; 535 536 rw_enter(&dkwedges_lock, RW_WRITER); 537 for (unit = 0; unit < ndkwedges; unit++) { 538 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self) 539 break; 540 } 541 if (unit == ndkwedges) 542 rc = ENXIO; 543 else if ((rc = dkwedge_begindetach(sc, flags)) == 0) { 544 /* Mark the wedge as dying. */ 545 sc->sc_state = DKW_STATE_DYING; 546 } 547 rw_exit(&dkwedges_lock); 548 549 if (rc != 0) 550 return rc; 551 552 pmf_device_deregister(self); 553 554 /* Locate the wedge major numbers. */ 555 bmaj = bdevsw_lookup_major(&dk_bdevsw); 556 cmaj = cdevsw_lookup_major(&dk_cdevsw); 557 558 /* Kill any pending restart. */ 559 callout_stop(&sc->sc_restart_ch); 560 561 /* 562 * dkstart() will kill any queued buffers now that the 563 * state of the wedge is not RUNNING. Once we've done 564 * that, wait for any other pending I/O to complete. 565 */ 566 s = splbio(); 567 dkstart(sc); 568 dkwedge_wait_drain(sc); 569 splx(s); 570 571 /* Nuke the vnodes for any open instances. */ 572 vdevgone(bmaj, unit, unit, VBLK); 573 vdevgone(cmaj, unit, unit, VCHR); 574 575 /* Clean up the parent. */ 576 mutex_enter(&sc->sc_dk.dk_openlock); 577 mutex_enter(&sc->sc_parent->dk_rawlock); 578 if (sc->sc_dk.dk_openmask) { 579 if (sc->sc_parent->dk_rawopens-- == 1) { 580 KASSERT(sc->sc_parent->dk_rawvp != NULL); 581 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE, 582 NOCRED); 583 sc->sc_parent->dk_rawvp = NULL; 584 } 585 sc->sc_dk.dk_openmask = 0; 586 } 587 mutex_exit(&sc->sc_parent->dk_rawlock); 588 mutex_exit(&sc->sc_dk.dk_openlock); 589 590 /* Announce our departure. */ 591 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev), 592 sc->sc_parent->dk_name, 593 sc->sc_wname); /* XXX Unicode */ 594 595 mutex_enter(&sc->sc_parent->dk_openlock); 596 sc->sc_parent->dk_nwedges--; 597 LIST_REMOVE(sc, sc_plink); 598 mutex_exit(&sc->sc_parent->dk_openlock); 599 600 /* Delete our buffer queue. */ 601 bufq_free(sc->sc_bufq); 602 603 /* Detach from the disk list. */ 604 disk_detach(&sc->sc_dk); 605 disk_destroy(&sc->sc_dk); 606 607 /* Poof. */ 608 rw_enter(&dkwedges_lock, RW_WRITER); 609 dkwedges[unit] = NULL; 610 sc->sc_state = DKW_STATE_DEAD; 611 rw_exit(&dkwedges_lock); 612 613 free(sc, M_DKWEDGE); 614 615 return 0; 616 } 617 618 /* 619 * dkwedge_delall: [exported function] 620 * 621 * Delete all of the wedges on the specified disk. Used when 622 * a disk is being detached. 623 */ 624 void 625 dkwedge_delall(struct disk *pdk) 626 { 627 struct dkwedge_info dkw; 628 struct dkwedge_softc *sc; 629 630 for (;;) { 631 mutex_enter(&pdk->dk_openlock); 632 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) { 633 KASSERT(pdk->dk_nwedges == 0); 634 mutex_exit(&pdk->dk_openlock); 635 return; 636 } 637 strcpy(dkw.dkw_parent, pdk->dk_name); 638 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev), 639 sizeof(dkw.dkw_devname)); 640 mutex_exit(&pdk->dk_openlock); 641 (void) dkwedge_del(&dkw); 642 } 643 } 644 645 /* 646 * dkwedge_list: [exported function] 647 * 648 * List all of the wedges on a particular disk. 649 * If p == NULL, the buffer is in kernel space. Otherwise, it is 650 * in user space of the specified process. 651 */ 652 int 653 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l) 654 { 655 struct uio uio; 656 struct iovec iov; 657 struct dkwedge_softc *sc; 658 struct dkwedge_info dkw; 659 struct vmspace *vm; 660 int error = 0; 661 662 iov.iov_base = dkwl->dkwl_buf; 663 iov.iov_len = dkwl->dkwl_bufsize; 664 665 uio.uio_iov = &iov; 666 uio.uio_iovcnt = 1; 667 uio.uio_offset = 0; 668 uio.uio_resid = dkwl->dkwl_bufsize; 669 uio.uio_rw = UIO_READ; 670 if (l == NULL) { 671 UIO_SETUP_SYSSPACE(&uio); 672 } else { 673 error = proc_vmspace_getref(l->l_proc, &vm); 674 if (error) { 675 return error; 676 } 677 uio.uio_vmspace = vm; 678 } 679 680 dkwl->dkwl_ncopied = 0; 681 682 mutex_enter(&pdk->dk_openlock); 683 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) { 684 if (uio.uio_resid < sizeof(dkw)) 685 break; 686 687 if (sc->sc_state != DKW_STATE_RUNNING) 688 continue; 689 690 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev), 691 sizeof(dkw.dkw_devname)); 692 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname)); 693 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0'; 694 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name); 695 dkw.dkw_offset = sc->sc_offset; 696 dkw.dkw_size = sc->sc_size; 697 strcpy(dkw.dkw_ptype, sc->sc_ptype); 698 699 error = uiomove(&dkw, sizeof(dkw), &uio); 700 if (error) 701 break; 702 dkwl->dkwl_ncopied++; 703 } 704 dkwl->dkwl_nwedges = pdk->dk_nwedges; 705 mutex_exit(&pdk->dk_openlock); 706 707 if (l != NULL) { 708 uvmspace_free(vm); 709 } 710 711 return (error); 712 } 713 714 device_t 715 dkwedge_find_by_wname(const char *wname) 716 { 717 device_t dv = NULL; 718 struct dkwedge_softc *sc; 719 int i; 720 721 rw_enter(&dkwedges_lock, RW_WRITER); 722 for (i = 0; i < ndkwedges; i++) { 723 if ((sc = dkwedges[i]) == NULL) 724 continue; 725 if (strcmp(sc->sc_wname, wname) == 0) { 726 if (dv != NULL) { 727 printf( 728 "WARNING: double match for wedge name %s " 729 "(%s, %s)\n", wname, device_xname(dv), 730 device_xname(sc->sc_dev)); 731 continue; 732 } 733 dv = sc->sc_dev; 734 } 735 } 736 rw_exit(&dkwedges_lock); 737 return dv; 738 } 739 740 void 741 dkwedge_print_wnames(void) 742 { 743 struct dkwedge_softc *sc; 744 int i; 745 746 rw_enter(&dkwedges_lock, RW_WRITER); 747 for (i = 0; i < ndkwedges; i++) { 748 if ((sc = dkwedges[i]) == NULL) 749 continue; 750 printf(" wedge:%s", sc->sc_wname); 751 } 752 rw_exit(&dkwedges_lock); 753 } 754 755 /* 756 * dkwedge_set_bootwedge 757 * 758 * Set the booted_wedge global based on the specified parent name 759 * and offset/length. 760 */ 761 void 762 dkwedge_set_bootwedge(device_t parent, daddr_t startblk, uint64_t nblks) 763 { 764 struct dkwedge_softc *sc; 765 int i; 766 767 rw_enter(&dkwedges_lock, RW_WRITER); 768 for (i = 0; i < ndkwedges; i++) { 769 if ((sc = dkwedges[i]) == NULL) 770 continue; 771 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 && 772 sc->sc_offset == startblk && 773 sc->sc_size == nblks) { 774 if (booted_wedge) { 775 printf("WARNING: double match for boot wedge " 776 "(%s, %s)\n", 777 device_xname(booted_wedge), 778 device_xname(sc->sc_dev)); 779 continue; 780 } 781 booted_device = parent; 782 booted_wedge = sc->sc_dev; 783 booted_partition = 0; 784 } 785 } 786 /* 787 * XXX What if we don't find one? Should we create a special 788 * XXX root wedge? 789 */ 790 rw_exit(&dkwedges_lock); 791 } 792 793 /* 794 * We need a dummy object to stuff into the dkwedge discovery method link 795 * set to ensure that there is always at least one object in the set. 796 */ 797 static struct dkwedge_discovery_method dummy_discovery_method; 798 __link_set_add_bss(dkwedge_methods, dummy_discovery_method); 799 800 /* 801 * dkwedge_init: 802 * 803 * Initialize the disk wedge subsystem. 804 */ 805 void 806 dkwedge_init(void) 807 { 808 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method); 809 struct dkwedge_discovery_method * const *ddmp; 810 struct dkwedge_discovery_method *lddm, *ddm; 811 812 rw_init(&dkwedges_lock); 813 rw_init(&dkwedge_discovery_methods_lock); 814 815 if (config_cfdriver_attach(&dk_cd) != 0) 816 panic("dkwedge: unable to attach cfdriver"); 817 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0) 818 panic("dkwedge: unable to attach cfattach"); 819 820 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER); 821 822 LIST_INIT(&dkwedge_discovery_methods); 823 824 __link_set_foreach(ddmp, dkwedge_methods) { 825 ddm = *ddmp; 826 if (ddm == &dummy_discovery_method) 827 continue; 828 if (LIST_EMPTY(&dkwedge_discovery_methods)) { 829 LIST_INSERT_HEAD(&dkwedge_discovery_methods, 830 ddm, ddm_list); 831 continue; 832 } 833 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) { 834 if (ddm->ddm_priority == lddm->ddm_priority) { 835 aprint_error("dk-method-%s: method \"%s\" " 836 "already exists at priority %d\n", 837 ddm->ddm_name, lddm->ddm_name, 838 lddm->ddm_priority); 839 /* Not inserted. */ 840 break; 841 } 842 if (ddm->ddm_priority < lddm->ddm_priority) { 843 /* Higher priority; insert before. */ 844 LIST_INSERT_BEFORE(lddm, ddm, ddm_list); 845 break; 846 } 847 if (LIST_NEXT(lddm, ddm_list) == NULL) { 848 /* Last one; insert after. */ 849 KASSERT(lddm->ddm_priority < ddm->ddm_priority); 850 LIST_INSERT_AFTER(lddm, ddm, ddm_list); 851 break; 852 } 853 } 854 } 855 856 rw_exit(&dkwedge_discovery_methods_lock); 857 } 858 859 #ifdef DKWEDGE_AUTODISCOVER 860 int dkwedge_autodiscover = 1; 861 #else 862 int dkwedge_autodiscover = 0; 863 #endif 864 865 /* 866 * dkwedge_discover: [exported function] 867 * 868 * Discover the wedges on a newly attached disk. 869 */ 870 void 871 dkwedge_discover(struct disk *pdk) 872 { 873 struct dkwedge_discovery_method *ddm; 874 struct vnode *vp; 875 int error; 876 dev_t pdev; 877 878 /* 879 * Require people playing with wedges to enable this explicitly. 880 */ 881 if (dkwedge_autodiscover == 0) 882 return; 883 884 rw_enter(&dkwedge_discovery_methods_lock, RW_READER); 885 886 error = dkwedge_compute_pdev(pdk->dk_name, &pdev); 887 if (error) { 888 aprint_error("%s: unable to compute pdev, error = %d\n", 889 pdk->dk_name, error); 890 goto out; 891 } 892 893 error = bdevvp(pdev, &vp); 894 if (error) { 895 aprint_error("%s: unable to find vnode for pdev, error = %d\n", 896 pdk->dk_name, error); 897 goto out; 898 } 899 900 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 901 if (error) { 902 aprint_error("%s: unable to lock vnode for pdev, error = %d\n", 903 pdk->dk_name, error); 904 vrele(vp); 905 goto out; 906 } 907 908 error = VOP_OPEN(vp, FREAD, NOCRED); 909 if (error) { 910 aprint_error("%s: unable to open device, error = %d\n", 911 pdk->dk_name, error); 912 vput(vp); 913 goto out; 914 } 915 VOP_UNLOCK(vp, 0); 916 917 /* 918 * For each supported partition map type, look to see if 919 * this map type exists. If so, parse it and add the 920 * corresponding wedges. 921 */ 922 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) { 923 error = (*ddm->ddm_discover)(pdk, vp); 924 if (error == 0) { 925 /* Successfully created wedges; we're done. */ 926 break; 927 } 928 } 929 930 error = vn_close(vp, FREAD, NOCRED); 931 if (error) { 932 aprint_error("%s: unable to close device, error = %d\n", 933 pdk->dk_name, error); 934 /* We'll just assume the vnode has been cleaned up. */ 935 } 936 out: 937 rw_exit(&dkwedge_discovery_methods_lock); 938 } 939 940 /* 941 * dkwedge_read: 942 * 943 * Read some data from the specified disk, used for 944 * partition discovery. 945 */ 946 int 947 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno, 948 void *tbuf, size_t len) 949 { 950 struct buf *bp; 951 int result; 952 953 bp = getiobuf(vp, true); 954 955 bp->b_dev = vp->v_rdev; 956 bp->b_blkno = blkno; 957 bp->b_bcount = len; 958 bp->b_resid = len; 959 bp->b_flags = B_READ; 960 bp->b_data = tbuf; 961 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */ 962 963 VOP_STRATEGY(vp, bp); 964 result = biowait(bp); 965 putiobuf(bp); 966 967 return result; 968 } 969 970 /* 971 * dkwedge_lookup: 972 * 973 * Look up a dkwedge_softc based on the provided dev_t. 974 */ 975 static struct dkwedge_softc * 976 dkwedge_lookup(dev_t dev) 977 { 978 int unit = minor(dev); 979 980 if (unit >= ndkwedges) 981 return (NULL); 982 983 KASSERT(dkwedges != NULL); 984 985 return (dkwedges[unit]); 986 } 987 988 /* 989 * dkopen: [devsw entry point] 990 * 991 * Open a wedge. 992 */ 993 static int 994 dkopen(dev_t dev, int flags, int fmt, struct lwp *l) 995 { 996 struct dkwedge_softc *sc = dkwedge_lookup(dev); 997 struct vnode *vp; 998 int error = 0; 999 1000 if (sc == NULL) 1001 return (ENODEV); 1002 1003 if (sc->sc_state != DKW_STATE_RUNNING) 1004 return (ENXIO); 1005 1006 /* 1007 * We go through a complicated little dance to only open the parent 1008 * vnode once per wedge, no matter how many times the wedge is 1009 * opened. The reason? We see one dkopen() per open call, but 1010 * only dkclose() on the last close. 1011 */ 1012 mutex_enter(&sc->sc_dk.dk_openlock); 1013 mutex_enter(&sc->sc_parent->dk_rawlock); 1014 if (sc->sc_dk.dk_openmask == 0) { 1015 if (sc->sc_parent->dk_rawopens == 0) { 1016 KASSERT(sc->sc_parent->dk_rawvp == NULL); 1017 error = bdevvp(sc->sc_pdev, &vp); 1018 if (error) 1019 goto popen_fail; 1020 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1021 if (error) { 1022 vrele(vp); 1023 goto popen_fail; 1024 } 1025 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED); 1026 if (error) { 1027 vput(vp); 1028 goto popen_fail; 1029 } 1030 /* VOP_OPEN() doesn't do this for us. */ 1031 mutex_enter(&vp->v_interlock); 1032 vp->v_writecount++; 1033 mutex_exit(&vp->v_interlock); 1034 VOP_UNLOCK(vp, 0); 1035 sc->sc_parent->dk_rawvp = vp; 1036 } 1037 sc->sc_parent->dk_rawopens++; 1038 } 1039 if (fmt == S_IFCHR) 1040 sc->sc_dk.dk_copenmask |= 1; 1041 else 1042 sc->sc_dk.dk_bopenmask |= 1; 1043 sc->sc_dk.dk_openmask = 1044 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; 1045 1046 popen_fail: 1047 mutex_exit(&sc->sc_parent->dk_rawlock); 1048 mutex_exit(&sc->sc_dk.dk_openlock); 1049 return (error); 1050 } 1051 1052 /* 1053 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock. 1054 */ 1055 static int 1056 dklastclose(struct dkwedge_softc *sc) 1057 { 1058 int error = 0; 1059 1060 if (sc->sc_parent->dk_rawopens-- == 1) { 1061 KASSERT(sc->sc_parent->dk_rawvp != NULL); 1062 error = vn_close(sc->sc_parent->dk_rawvp, 1063 FREAD | FWRITE, NOCRED); 1064 sc->sc_parent->dk_rawvp = NULL; 1065 } 1066 return error; 1067 } 1068 1069 /* 1070 * dkclose: [devsw entry point] 1071 * 1072 * Close a wedge. 1073 */ 1074 static int 1075 dkclose(dev_t dev, int flags, int fmt, struct lwp *l) 1076 { 1077 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1078 int error = 0; 1079 1080 KASSERT(sc->sc_dk.dk_openmask != 0); 1081 1082 mutex_enter(&sc->sc_dk.dk_openlock); 1083 mutex_enter(&sc->sc_parent->dk_rawlock); 1084 1085 if (fmt == S_IFCHR) 1086 sc->sc_dk.dk_copenmask &= ~1; 1087 else 1088 sc->sc_dk.dk_bopenmask &= ~1; 1089 sc->sc_dk.dk_openmask = 1090 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; 1091 1092 if (sc->sc_dk.dk_openmask == 0) 1093 error = dklastclose(sc); 1094 1095 mutex_exit(&sc->sc_parent->dk_rawlock); 1096 mutex_exit(&sc->sc_dk.dk_openlock); 1097 1098 return (error); 1099 } 1100 1101 /* 1102 * dkstragegy: [devsw entry point] 1103 * 1104 * Perform I/O based on the wedge I/O strategy. 1105 */ 1106 static void 1107 dkstrategy(struct buf *bp) 1108 { 1109 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev); 1110 int s; 1111 1112 if (sc->sc_state != DKW_STATE_RUNNING) { 1113 bp->b_error = ENXIO; 1114 goto done; 1115 } 1116 1117 /* If it's an empty transfer, wake up the top half now. */ 1118 if (bp->b_bcount == 0) 1119 goto done; 1120 1121 /* Make sure it's in-range. */ 1122 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0) 1123 goto done; 1124 1125 /* Translate it to the parent's raw LBA. */ 1126 bp->b_rawblkno = bp->b_blkno + sc->sc_offset; 1127 1128 /* Place it in the queue and start I/O on the unit. */ 1129 s = splbio(); 1130 sc->sc_iopend++; 1131 bufq_put(sc->sc_bufq, bp); 1132 dkstart(sc); 1133 splx(s); 1134 return; 1135 1136 done: 1137 bp->b_resid = bp->b_bcount; 1138 biodone(bp); 1139 } 1140 1141 /* 1142 * dkstart: 1143 * 1144 * Start I/O that has been enqueued on the wedge. 1145 * NOTE: Must be called at splbio()! 1146 */ 1147 static void 1148 dkstart(struct dkwedge_softc *sc) 1149 { 1150 struct vnode *vp; 1151 struct buf *bp, *nbp; 1152 1153 /* Do as much work as has been enqueued. */ 1154 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) { 1155 if (sc->sc_state != DKW_STATE_RUNNING) { 1156 (void) bufq_get(sc->sc_bufq); 1157 if (sc->sc_iopend-- == 1 && 1158 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) { 1159 sc->sc_flags &= ~DK_F_WAIT_DRAIN; 1160 wakeup(&sc->sc_iopend); 1161 } 1162 bp->b_error = ENXIO; 1163 bp->b_resid = bp->b_bcount; 1164 biodone(bp); 1165 } 1166 1167 /* Instrumentation. */ 1168 disk_busy(&sc->sc_dk); 1169 1170 nbp = getiobuf(sc->sc_parent->dk_rawvp, false); 1171 if (nbp == NULL) { 1172 /* 1173 * No resources to run this request; leave the 1174 * buffer queued up, and schedule a timer to 1175 * restart the queue in 1/2 a second. 1176 */ 1177 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ); 1178 callout_schedule(&sc->sc_restart_ch, hz / 2); 1179 return; 1180 } 1181 1182 (void) bufq_get(sc->sc_bufq); 1183 1184 nbp->b_data = bp->b_data; 1185 nbp->b_flags = bp->b_flags; 1186 nbp->b_oflags = bp->b_oflags; 1187 nbp->b_cflags = bp->b_cflags; 1188 nbp->b_iodone = dkiodone; 1189 nbp->b_proc = bp->b_proc; 1190 nbp->b_blkno = bp->b_rawblkno; 1191 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev; 1192 nbp->b_bcount = bp->b_bcount; 1193 nbp->b_private = bp; 1194 BIO_COPYPRIO(nbp, bp); 1195 1196 vp = nbp->b_vp; 1197 if ((nbp->b_flags & B_READ) == 0) { 1198 mutex_enter(&vp->v_interlock); 1199 vp->v_numoutput++; 1200 mutex_exit(&vp->v_interlock); 1201 } 1202 VOP_STRATEGY(vp, nbp); 1203 } 1204 } 1205 1206 /* 1207 * dkiodone: 1208 * 1209 * I/O to a wedge has completed; alert the top half. 1210 * NOTE: Must be called at splbio()! 1211 */ 1212 static void 1213 dkiodone(struct buf *bp) 1214 { 1215 struct buf *obp = bp->b_private; 1216 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev); 1217 1218 if (bp->b_error != 0) 1219 obp->b_error = bp->b_error; 1220 obp->b_resid = bp->b_resid; 1221 putiobuf(bp); 1222 1223 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) { 1224 sc->sc_flags &= ~DK_F_WAIT_DRAIN; 1225 wakeup(&sc->sc_iopend); 1226 } 1227 1228 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid, 1229 obp->b_flags & B_READ); 1230 1231 biodone(obp); 1232 1233 /* Kick the queue in case there is more work we can do. */ 1234 dkstart(sc); 1235 } 1236 1237 /* 1238 * dkrestart: 1239 * 1240 * Restart the work queue after it was stalled due to 1241 * a resource shortage. Invoked via a callout. 1242 */ 1243 static void 1244 dkrestart(void *v) 1245 { 1246 struct dkwedge_softc *sc = v; 1247 int s; 1248 1249 s = splbio(); 1250 dkstart(sc); 1251 splx(s); 1252 } 1253 1254 /* 1255 * dkread: [devsw entry point] 1256 * 1257 * Read from a wedge. 1258 */ 1259 static int 1260 dkread(dev_t dev, struct uio *uio, int flags) 1261 { 1262 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1263 1264 if (sc->sc_state != DKW_STATE_RUNNING) 1265 return (ENXIO); 1266 1267 return (physio(dkstrategy, NULL, dev, B_READ, 1268 sc->sc_parent->dk_driver->d_minphys, uio)); 1269 } 1270 1271 /* 1272 * dkwrite: [devsw entry point] 1273 * 1274 * Write to a wedge. 1275 */ 1276 static int 1277 dkwrite(dev_t dev, struct uio *uio, int flags) 1278 { 1279 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1280 1281 if (sc->sc_state != DKW_STATE_RUNNING) 1282 return (ENXIO); 1283 1284 return (physio(dkstrategy, NULL, dev, B_WRITE, 1285 sc->sc_parent->dk_driver->d_minphys, uio)); 1286 } 1287 1288 /* 1289 * dkioctl: [devsw entry point] 1290 * 1291 * Perform an ioctl request on a wedge. 1292 */ 1293 static int 1294 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 1295 { 1296 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1297 int error = 0; 1298 1299 if (sc->sc_state != DKW_STATE_RUNNING) 1300 return (ENXIO); 1301 1302 error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l); 1303 if (error != EPASSTHROUGH) 1304 return (error); 1305 1306 error = 0; 1307 1308 switch (cmd) { 1309 case DIOCCACHESYNC: 1310 /* 1311 * XXX Do we really need to care about having a writable 1312 * file descriptor here? 1313 */ 1314 if ((flag & FWRITE) == 0) 1315 error = EBADF; 1316 else 1317 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, 1318 cmd, data, flag, 1319 l != NULL ? l->l_cred : NOCRED); 1320 break; 1321 case DIOCGWEDGEINFO: 1322 { 1323 struct dkwedge_info *dkw = (void *) data; 1324 1325 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev), 1326 sizeof(dkw->dkw_devname)); 1327 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname)); 1328 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0'; 1329 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name); 1330 dkw->dkw_offset = sc->sc_offset; 1331 dkw->dkw_size = sc->sc_size; 1332 strcpy(dkw->dkw_ptype, sc->sc_ptype); 1333 1334 break; 1335 } 1336 1337 default: 1338 error = ENOTTY; 1339 } 1340 1341 return (error); 1342 } 1343 1344 /* 1345 * dksize: [devsw entry point] 1346 * 1347 * Query the size of a wedge for the purpose of performing a dump 1348 * or for swapping to. 1349 */ 1350 static int 1351 dksize(dev_t dev) 1352 { 1353 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1354 int rv = -1; 1355 1356 if (sc == NULL) 1357 return (-1); 1358 1359 if (sc->sc_state != DKW_STATE_RUNNING) 1360 return (ENXIO); 1361 1362 mutex_enter(&sc->sc_dk.dk_openlock); 1363 mutex_enter(&sc->sc_parent->dk_rawlock); 1364 1365 /* Our content type is static, no need to open the device. */ 1366 1367 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) { 1368 /* Saturate if we are larger than INT_MAX. */ 1369 if (sc->sc_size > INT_MAX) 1370 rv = INT_MAX; 1371 else 1372 rv = (int) sc->sc_size; 1373 } 1374 1375 mutex_exit(&sc->sc_parent->dk_rawlock); 1376 mutex_exit(&sc->sc_dk.dk_openlock); 1377 1378 return (rv); 1379 } 1380 1381 /* 1382 * dkdump: [devsw entry point] 1383 * 1384 * Perform a crash dump to a wedge. 1385 */ 1386 static int 1387 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size) 1388 { 1389 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1390 const struct bdevsw *bdev; 1391 int rv = 0; 1392 1393 if (sc == NULL) 1394 return (-1); 1395 1396 if (sc->sc_state != DKW_STATE_RUNNING) 1397 return (ENXIO); 1398 1399 mutex_enter(&sc->sc_dk.dk_openlock); 1400 mutex_enter(&sc->sc_parent->dk_rawlock); 1401 1402 /* Our content type is static, no need to open the device. */ 1403 1404 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) { 1405 rv = ENXIO; 1406 goto out; 1407 } 1408 if (size % DEV_BSIZE != 0) { 1409 rv = EINVAL; 1410 goto out; 1411 } 1412 if (blkno + size / DEV_BSIZE > sc->sc_size) { 1413 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > " 1414 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno, 1415 size / DEV_BSIZE, sc->sc_size); 1416 rv = EINVAL; 1417 goto out; 1418 } 1419 1420 bdev = bdevsw_lookup(sc->sc_pdev); 1421 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size); 1422 1423 out: 1424 mutex_exit(&sc->sc_parent->dk_rawlock); 1425 mutex_exit(&sc->sc_dk.dk_openlock); 1426 1427 return rv; 1428 } 1429