1 /* $NetBSD: dk.c,v 1.91 2016/05/29 13:11:21 mlelstv Exp $ */ 2 3 /*- 4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.91 2016/05/29 13:11:21 mlelstv Exp $"); 34 35 #ifdef _KERNEL_OPT 36 #include "opt_dkwedge.h" 37 #endif 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/proc.h> 42 #include <sys/errno.h> 43 #include <sys/pool.h> 44 #include <sys/ioctl.h> 45 #include <sys/disklabel.h> 46 #include <sys/disk.h> 47 #include <sys/fcntl.h> 48 #include <sys/buf.h> 49 #include <sys/bufq.h> 50 #include <sys/vnode.h> 51 #include <sys/stat.h> 52 #include <sys/conf.h> 53 #include <sys/callout.h> 54 #include <sys/kernel.h> 55 #include <sys/malloc.h> 56 #include <sys/device.h> 57 #include <sys/kauth.h> 58 59 #include <miscfs/specfs/specdev.h> 60 61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures"); 62 63 typedef enum { 64 DKW_STATE_LARVAL = 0, 65 DKW_STATE_RUNNING = 1, 66 DKW_STATE_DYING = 2, 67 DKW_STATE_DEAD = 666 68 } dkwedge_state_t; 69 70 struct dkwedge_softc { 71 device_t sc_dev; /* pointer to our pseudo-device */ 72 struct cfdata sc_cfdata; /* our cfdata structure */ 73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */ 74 75 dkwedge_state_t sc_state; /* state this wedge is in */ 76 77 struct disk *sc_parent; /* parent disk */ 78 daddr_t sc_offset; /* LBA offset of wedge in parent */ 79 uint64_t sc_size; /* size of wedge in blocks */ 80 char sc_ptype[32]; /* partition type */ 81 dev_t sc_pdev; /* cached parent's dev_t */ 82 /* link on parent's wedge list */ 83 LIST_ENTRY(dkwedge_softc) sc_plink; 84 85 struct disk sc_dk; /* our own disk structure */ 86 struct bufq_state *sc_bufq; /* buffer queue */ 87 struct callout sc_restart_ch; /* callout to restart I/O */ 88 89 u_int sc_iopend; /* I/Os pending */ 90 int sc_flags; /* flags (splbio) */ 91 }; 92 93 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */ 94 95 static void dkstart(struct dkwedge_softc *); 96 static void dkiodone(struct buf *); 97 static void dkrestart(void *); 98 static void dkminphys(struct buf *); 99 100 static int dklastclose(struct dkwedge_softc *); 101 static int dkwedge_cleanup_parent(struct dkwedge_softc *, int); 102 static int dkwedge_detach(device_t, int); 103 static void dkwedge_delall1(struct disk *, bool); 104 static int dkwedge_del1(struct dkwedge_info *, int); 105 static int dk_open_parent(dev_t, int, struct vnode **); 106 static int dk_close_parent(struct vnode *, int); 107 108 static dev_type_open(dkopen); 109 static dev_type_close(dkclose); 110 static dev_type_read(dkread); 111 static dev_type_write(dkwrite); 112 static dev_type_ioctl(dkioctl); 113 static dev_type_strategy(dkstrategy); 114 static dev_type_dump(dkdump); 115 static dev_type_size(dksize); 116 static dev_type_discard(dkdiscard); 117 118 const struct bdevsw dk_bdevsw = { 119 .d_open = dkopen, 120 .d_close = dkclose, 121 .d_strategy = dkstrategy, 122 .d_ioctl = dkioctl, 123 .d_dump = dkdump, 124 .d_psize = dksize, 125 .d_discard = dkdiscard, 126 .d_flag = D_DISK 127 }; 128 129 const struct cdevsw dk_cdevsw = { 130 .d_open = dkopen, 131 .d_close = dkclose, 132 .d_read = dkread, 133 .d_write = dkwrite, 134 .d_ioctl = dkioctl, 135 .d_stop = nostop, 136 .d_tty = notty, 137 .d_poll = nopoll, 138 .d_mmap = nommap, 139 .d_kqfilter = nokqfilter, 140 .d_discard = dkdiscard, 141 .d_flag = D_DISK 142 }; 143 144 static struct dkwedge_softc **dkwedges; 145 static u_int ndkwedges; 146 static krwlock_t dkwedges_lock; 147 148 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods; 149 static krwlock_t dkwedge_discovery_methods_lock; 150 151 /* 152 * dkwedge_match: 153 * 154 * Autoconfiguration match function for pseudo-device glue. 155 */ 156 static int 157 dkwedge_match(device_t parent, cfdata_t match, 158 void *aux) 159 { 160 161 /* Pseudo-device; always present. */ 162 return (1); 163 } 164 165 /* 166 * dkwedge_attach: 167 * 168 * Autoconfiguration attach function for pseudo-device glue. 169 */ 170 static void 171 dkwedge_attach(device_t parent, device_t self, 172 void *aux) 173 { 174 175 if (!pmf_device_register(self, NULL, NULL)) 176 aprint_error_dev(self, "couldn't establish power handler\n"); 177 } 178 179 CFDRIVER_DECL(dk, DV_DISK, NULL); 180 CFATTACH_DECL3_NEW(dk, 0, 181 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL, 182 DVF_DETACH_SHUTDOWN); 183 184 /* 185 * dkwedge_wait_drain: 186 * 187 * Wait for I/O on the wedge to drain. 188 * NOTE: Must be called at splbio()! 189 */ 190 static void 191 dkwedge_wait_drain(struct dkwedge_softc *sc) 192 { 193 194 while (sc->sc_iopend != 0) { 195 sc->sc_flags |= DK_F_WAIT_DRAIN; 196 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0); 197 } 198 } 199 200 /* 201 * dkwedge_compute_pdev: 202 * 203 * Compute the parent disk's dev_t. 204 */ 205 static int 206 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type) 207 { 208 const char *name, *cp; 209 devmajor_t pmaj; 210 int punit; 211 char devname[16]; 212 213 name = pname; 214 switch (type) { 215 case VBLK: 216 pmaj = devsw_name2blk(name, devname, sizeof(devname)); 217 break; 218 case VCHR: 219 pmaj = devsw_name2chr(name, devname, sizeof(devname)); 220 break; 221 default: 222 pmaj = NODEVMAJOR; 223 break; 224 } 225 if (pmaj == NODEVMAJOR) 226 return (ENODEV); 227 228 name += strlen(devname); 229 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++) 230 punit = (punit * 10) + (*cp - '0'); 231 if (cp == name) { 232 /* Invalid parent disk name. */ 233 return (ENODEV); 234 } 235 236 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART); 237 238 return (0); 239 } 240 241 /* 242 * dkwedge_array_expand: 243 * 244 * Expand the dkwedges array. 245 */ 246 static void 247 dkwedge_array_expand(void) 248 { 249 int newcnt = ndkwedges + 16; 250 struct dkwedge_softc **newarray, **oldarray; 251 252 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE, 253 M_WAITOK|M_ZERO); 254 if ((oldarray = dkwedges) != NULL) 255 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray)); 256 dkwedges = newarray; 257 ndkwedges = newcnt; 258 if (oldarray != NULL) 259 free(oldarray, M_DKWEDGE); 260 } 261 262 static void 263 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk) 264 { 265 struct disk *dk = &sc->sc_dk; 266 struct disk_geom *dg = &dk->dk_geom; 267 268 memset(dg, 0, sizeof(*dg)); 269 270 dg->dg_secperunit = sc->sc_size; 271 dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift; 272 273 /* fake numbers, 1 cylinder is 1 MB with default sector size */ 274 dg->dg_nsectors = 32; 275 dg->dg_ntracks = 64; 276 dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks); 277 278 disk_set_info(sc->sc_dev, dk, NULL); 279 } 280 281 /* 282 * dkwedge_add: [exported function] 283 * 284 * Add a disk wedge based on the provided information. 285 * 286 * The incoming dkw_devname[] is ignored, instead being 287 * filled in and returned to the caller. 288 */ 289 int 290 dkwedge_add(struct dkwedge_info *dkw) 291 { 292 struct dkwedge_softc *sc, *lsc; 293 struct disk *pdk; 294 u_int unit; 295 int error; 296 dev_t pdev; 297 298 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0'; 299 pdk = disk_find(dkw->dkw_parent); 300 if (pdk == NULL) 301 return (ENODEV); 302 303 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK); 304 if (error) 305 return (error); 306 307 if (dkw->dkw_offset < 0) 308 return (EINVAL); 309 310 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO); 311 sc->sc_state = DKW_STATE_LARVAL; 312 sc->sc_parent = pdk; 313 sc->sc_pdev = pdev; 314 sc->sc_offset = dkw->dkw_offset; 315 sc->sc_size = dkw->dkw_size; 316 317 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname)); 318 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0'; 319 320 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype)); 321 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0'; 322 323 bufq_alloc(&sc->sc_bufq, "fcfs", 0); 324 325 callout_init(&sc->sc_restart_ch, 0); 326 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc); 327 328 /* 329 * Wedge will be added; increment the wedge count for the parent. 330 * Only allow this to happend if RAW_PART is the only thing open. 331 */ 332 mutex_enter(&pdk->dk_openlock); 333 if (pdk->dk_openmask & ~(1 << RAW_PART)) 334 error = EBUSY; 335 else { 336 /* Check for wedge overlap. */ 337 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) { 338 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1; 339 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1; 340 341 if (sc->sc_offset >= lsc->sc_offset && 342 sc->sc_offset <= llastblk) { 343 /* Overlaps the tail of the existing wedge. */ 344 break; 345 } 346 if (lastblk >= lsc->sc_offset && 347 lastblk <= llastblk) { 348 /* Overlaps the head of the existing wedge. */ 349 break; 350 } 351 } 352 if (lsc != NULL) { 353 if (sc->sc_offset == lsc->sc_offset && 354 sc->sc_size == lsc->sc_size && 355 strcmp(sc->sc_wname, lsc->sc_wname) == 0) 356 error = EEXIST; 357 else 358 error = EINVAL; 359 } else { 360 pdk->dk_nwedges++; 361 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink); 362 } 363 } 364 mutex_exit(&pdk->dk_openlock); 365 if (error) { 366 bufq_free(sc->sc_bufq); 367 free(sc, M_DKWEDGE); 368 return (error); 369 } 370 371 /* Fill in our cfdata for the pseudo-device glue. */ 372 sc->sc_cfdata.cf_name = dk_cd.cd_name; 373 sc->sc_cfdata.cf_atname = dk_ca.ca_name; 374 /* sc->sc_cfdata.cf_unit set below */ 375 sc->sc_cfdata.cf_fstate = FSTATE_STAR; 376 377 /* Insert the larval wedge into the array. */ 378 rw_enter(&dkwedges_lock, RW_WRITER); 379 for (error = 0;;) { 380 struct dkwedge_softc **scpp; 381 382 /* 383 * Check for a duplicate wname while searching for 384 * a slot. 385 */ 386 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) { 387 if (dkwedges[unit] == NULL) { 388 if (scpp == NULL) { 389 scpp = &dkwedges[unit]; 390 sc->sc_cfdata.cf_unit = unit; 391 } 392 } else { 393 /* XXX Unicode. */ 394 if (strcmp(dkwedges[unit]->sc_wname, 395 sc->sc_wname) == 0) { 396 error = EEXIST; 397 break; 398 } 399 } 400 } 401 if (error) 402 break; 403 KASSERT(unit == ndkwedges); 404 if (scpp == NULL) 405 dkwedge_array_expand(); 406 else { 407 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]); 408 *scpp = sc; 409 break; 410 } 411 } 412 rw_exit(&dkwedges_lock); 413 if (error) { 414 mutex_enter(&pdk->dk_openlock); 415 pdk->dk_nwedges--; 416 LIST_REMOVE(sc, sc_plink); 417 mutex_exit(&pdk->dk_openlock); 418 419 bufq_free(sc->sc_bufq); 420 free(sc, M_DKWEDGE); 421 return (error); 422 } 423 424 /* 425 * Now that we know the unit #, attach a pseudo-device for 426 * this wedge instance. This will provide us with the 427 * device_t necessary for glue to other parts of the system. 428 * 429 * This should never fail, unless we're almost totally out of 430 * memory. 431 */ 432 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) { 433 aprint_error("%s%u: unable to attach pseudo-device\n", 434 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit); 435 436 rw_enter(&dkwedges_lock, RW_WRITER); 437 dkwedges[sc->sc_cfdata.cf_unit] = NULL; 438 rw_exit(&dkwedges_lock); 439 440 mutex_enter(&pdk->dk_openlock); 441 pdk->dk_nwedges--; 442 LIST_REMOVE(sc, sc_plink); 443 mutex_exit(&pdk->dk_openlock); 444 445 bufq_free(sc->sc_bufq); 446 free(sc, M_DKWEDGE); 447 return (ENOMEM); 448 } 449 450 /* Return the devname to the caller. */ 451 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev), 452 sizeof(dkw->dkw_devname)); 453 454 /* 455 * XXX Really ought to make the disk_attach() and the changing 456 * of state to RUNNING atomic. 457 */ 458 459 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL); 460 dk_set_geometry(sc, pdk); 461 disk_attach(&sc->sc_dk); 462 463 /* Disk wedge is ready for use! */ 464 sc->sc_state = DKW_STATE_RUNNING; 465 466 /* Announce our arrival. */ 467 aprint_normal( 468 "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n", 469 device_xname(sc->sc_dev), pdk->dk_name, 470 sc->sc_wname, /* XXX Unicode */ 471 sc->sc_size, sc->sc_offset, 472 sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype); 473 474 return (0); 475 } 476 477 /* 478 * dkwedge_find: 479 * 480 * Lookup a disk wedge based on the provided information. 481 * NOTE: We look up the wedge based on the wedge devname, 482 * not wname. 483 * 484 * Return NULL if the wedge is not found, otherwise return 485 * the wedge's softc. Assign the wedge's unit number to unitp 486 * if unitp is not NULL. 487 */ 488 static struct dkwedge_softc * 489 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp) 490 { 491 struct dkwedge_softc *sc = NULL; 492 u_int unit; 493 494 /* Find our softc. */ 495 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0'; 496 rw_enter(&dkwedges_lock, RW_READER); 497 for (unit = 0; unit < ndkwedges; unit++) { 498 if ((sc = dkwedges[unit]) != NULL && 499 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 && 500 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) { 501 break; 502 } 503 } 504 rw_exit(&dkwedges_lock); 505 if (unit == ndkwedges) 506 return NULL; 507 508 if (unitp != NULL) 509 *unitp = unit; 510 511 return sc; 512 } 513 514 /* 515 * dkwedge_del: [exported function] 516 * 517 * Delete a disk wedge based on the provided information. 518 * NOTE: We look up the wedge based on the wedge devname, 519 * not wname. 520 */ 521 int 522 dkwedge_del(struct dkwedge_info *dkw) 523 { 524 return dkwedge_del1(dkw, 0); 525 } 526 527 int 528 dkwedge_del1(struct dkwedge_info *dkw, int flags) 529 { 530 struct dkwedge_softc *sc = NULL; 531 532 /* Find our softc. */ 533 if ((sc = dkwedge_find(dkw, NULL)) == NULL) 534 return (ESRCH); 535 536 return config_detach(sc->sc_dev, flags); 537 } 538 539 static int 540 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags) 541 { 542 struct disk *dk = &sc->sc_dk; 543 int rc; 544 545 rc = 0; 546 mutex_enter(&dk->dk_openlock); 547 if (dk->dk_openmask == 0) 548 /* nothing to do */ 549 mutex_exit(&dk->dk_openlock); 550 else if ((flags & DETACH_FORCE) == 0) { 551 rc = EBUSY; 552 mutex_exit(&dk->dk_openlock); 553 } else { 554 mutex_enter(&sc->sc_parent->dk_rawlock); 555 rc = dklastclose(sc); /* releases locks */ 556 } 557 558 return rc; 559 } 560 561 /* 562 * dkwedge_detach: 563 * 564 * Autoconfiguration detach function for pseudo-device glue. 565 */ 566 static int 567 dkwedge_detach(device_t self, int flags) 568 { 569 struct dkwedge_softc *sc = NULL; 570 u_int unit; 571 int bmaj, cmaj, rc, s; 572 573 rw_enter(&dkwedges_lock, RW_WRITER); 574 for (unit = 0; unit < ndkwedges; unit++) { 575 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self) 576 break; 577 } 578 if (unit == ndkwedges) 579 rc = ENXIO; 580 else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) { 581 /* Mark the wedge as dying. */ 582 sc->sc_state = DKW_STATE_DYING; 583 } 584 rw_exit(&dkwedges_lock); 585 586 if (rc != 0) 587 return rc; 588 589 pmf_device_deregister(self); 590 591 /* Locate the wedge major numbers. */ 592 bmaj = bdevsw_lookup_major(&dk_bdevsw); 593 cmaj = cdevsw_lookup_major(&dk_cdevsw); 594 595 /* Kill any pending restart. */ 596 callout_stop(&sc->sc_restart_ch); 597 598 /* 599 * dkstart() will kill any queued buffers now that the 600 * state of the wedge is not RUNNING. Once we've done 601 * that, wait for any other pending I/O to complete. 602 */ 603 s = splbio(); 604 dkstart(sc); 605 dkwedge_wait_drain(sc); 606 splx(s); 607 608 /* Nuke the vnodes for any open instances. */ 609 vdevgone(bmaj, unit, unit, VBLK); 610 vdevgone(cmaj, unit, unit, VCHR); 611 612 /* Clean up the parent. */ 613 dkwedge_cleanup_parent(sc, flags | DETACH_FORCE); 614 615 /* Announce our departure. */ 616 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev), 617 sc->sc_parent->dk_name, 618 sc->sc_wname); /* XXX Unicode */ 619 620 mutex_enter(&sc->sc_parent->dk_openlock); 621 sc->sc_parent->dk_nwedges--; 622 LIST_REMOVE(sc, sc_plink); 623 mutex_exit(&sc->sc_parent->dk_openlock); 624 625 /* Delete our buffer queue. */ 626 bufq_free(sc->sc_bufq); 627 628 /* Detach from the disk list. */ 629 disk_detach(&sc->sc_dk); 630 disk_destroy(&sc->sc_dk); 631 632 /* Poof. */ 633 rw_enter(&dkwedges_lock, RW_WRITER); 634 dkwedges[unit] = NULL; 635 sc->sc_state = DKW_STATE_DEAD; 636 rw_exit(&dkwedges_lock); 637 638 free(sc, M_DKWEDGE); 639 640 return 0; 641 } 642 643 /* 644 * dkwedge_delall: [exported function] 645 * 646 * Delete all of the wedges on the specified disk. Used when 647 * a disk is being detached. 648 */ 649 void 650 dkwedge_delall(struct disk *pdk) 651 { 652 dkwedge_delall1(pdk, false); 653 } 654 655 static void 656 dkwedge_delall1(struct disk *pdk, bool idleonly) 657 { 658 struct dkwedge_info dkw; 659 struct dkwedge_softc *sc; 660 int flags; 661 662 flags = DETACH_QUIET; 663 if (!idleonly) flags |= DETACH_FORCE; 664 665 for (;;) { 666 mutex_enter(&pdk->dk_openlock); 667 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) { 668 if (!idleonly || sc->sc_dk.dk_openmask == 0) 669 break; 670 } 671 if (sc == NULL) { 672 KASSERT(idleonly || pdk->dk_nwedges == 0); 673 mutex_exit(&pdk->dk_openlock); 674 return; 675 } 676 strcpy(dkw.dkw_parent, pdk->dk_name); 677 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev), 678 sizeof(dkw.dkw_devname)); 679 mutex_exit(&pdk->dk_openlock); 680 (void) dkwedge_del1(&dkw, flags); 681 } 682 } 683 684 /* 685 * dkwedge_list: [exported function] 686 * 687 * List all of the wedges on a particular disk. 688 */ 689 int 690 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l) 691 { 692 struct uio uio; 693 struct iovec iov; 694 struct dkwedge_softc *sc; 695 struct dkwedge_info dkw; 696 int error = 0; 697 698 iov.iov_base = dkwl->dkwl_buf; 699 iov.iov_len = dkwl->dkwl_bufsize; 700 701 uio.uio_iov = &iov; 702 uio.uio_iovcnt = 1; 703 uio.uio_offset = 0; 704 uio.uio_resid = dkwl->dkwl_bufsize; 705 uio.uio_rw = UIO_READ; 706 KASSERT(l == curlwp); 707 uio.uio_vmspace = l->l_proc->p_vmspace; 708 709 dkwl->dkwl_ncopied = 0; 710 711 mutex_enter(&pdk->dk_openlock); 712 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) { 713 if (uio.uio_resid < sizeof(dkw)) 714 break; 715 716 if (sc->sc_state != DKW_STATE_RUNNING) 717 continue; 718 719 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev), 720 sizeof(dkw.dkw_devname)); 721 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname)); 722 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0'; 723 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name); 724 dkw.dkw_offset = sc->sc_offset; 725 dkw.dkw_size = sc->sc_size; 726 strcpy(dkw.dkw_ptype, sc->sc_ptype); 727 728 error = uiomove(&dkw, sizeof(dkw), &uio); 729 if (error) 730 break; 731 dkwl->dkwl_ncopied++; 732 } 733 dkwl->dkwl_nwedges = pdk->dk_nwedges; 734 mutex_exit(&pdk->dk_openlock); 735 736 return (error); 737 } 738 739 device_t 740 dkwedge_find_by_wname(const char *wname) 741 { 742 device_t dv = NULL; 743 struct dkwedge_softc *sc; 744 int i; 745 746 rw_enter(&dkwedges_lock, RW_WRITER); 747 for (i = 0; i < ndkwedges; i++) { 748 if ((sc = dkwedges[i]) == NULL) 749 continue; 750 if (strcmp(sc->sc_wname, wname) == 0) { 751 if (dv != NULL) { 752 printf( 753 "WARNING: double match for wedge name %s " 754 "(%s, %s)\n", wname, device_xname(dv), 755 device_xname(sc->sc_dev)); 756 continue; 757 } 758 dv = sc->sc_dev; 759 } 760 } 761 rw_exit(&dkwedges_lock); 762 return dv; 763 } 764 765 device_t 766 dkwedge_find_by_parent(const char *name, size_t *i) 767 { 768 rw_enter(&dkwedges_lock, RW_WRITER); 769 for (; *i < (size_t)ndkwedges; (*i)++) { 770 struct dkwedge_softc *sc; 771 if ((sc = dkwedges[*i]) == NULL) 772 continue; 773 if (strcmp(sc->sc_parent->dk_name, name) != 0) 774 continue; 775 rw_exit(&dkwedges_lock); 776 return sc->sc_dev; 777 } 778 rw_exit(&dkwedges_lock); 779 return NULL; 780 } 781 782 void 783 dkwedge_print_wnames(void) 784 { 785 struct dkwedge_softc *sc; 786 int i; 787 788 rw_enter(&dkwedges_lock, RW_WRITER); 789 for (i = 0; i < ndkwedges; i++) { 790 if ((sc = dkwedges[i]) == NULL) 791 continue; 792 printf(" wedge:%s", sc->sc_wname); 793 } 794 rw_exit(&dkwedges_lock); 795 } 796 797 /* 798 * We need a dummy object to stuff into the dkwedge discovery method link 799 * set to ensure that there is always at least one object in the set. 800 */ 801 static struct dkwedge_discovery_method dummy_discovery_method; 802 __link_set_add_bss(dkwedge_methods, dummy_discovery_method); 803 804 /* 805 * dkwedge_init: 806 * 807 * Initialize the disk wedge subsystem. 808 */ 809 void 810 dkwedge_init(void) 811 { 812 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method); 813 struct dkwedge_discovery_method * const *ddmp; 814 struct dkwedge_discovery_method *lddm, *ddm; 815 816 rw_init(&dkwedges_lock); 817 rw_init(&dkwedge_discovery_methods_lock); 818 819 if (config_cfdriver_attach(&dk_cd) != 0) 820 panic("dkwedge: unable to attach cfdriver"); 821 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0) 822 panic("dkwedge: unable to attach cfattach"); 823 824 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER); 825 826 LIST_INIT(&dkwedge_discovery_methods); 827 828 __link_set_foreach(ddmp, dkwedge_methods) { 829 ddm = *ddmp; 830 if (ddm == &dummy_discovery_method) 831 continue; 832 if (LIST_EMPTY(&dkwedge_discovery_methods)) { 833 LIST_INSERT_HEAD(&dkwedge_discovery_methods, 834 ddm, ddm_list); 835 continue; 836 } 837 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) { 838 if (ddm->ddm_priority == lddm->ddm_priority) { 839 aprint_error("dk-method-%s: method \"%s\" " 840 "already exists at priority %d\n", 841 ddm->ddm_name, lddm->ddm_name, 842 lddm->ddm_priority); 843 /* Not inserted. */ 844 break; 845 } 846 if (ddm->ddm_priority < lddm->ddm_priority) { 847 /* Higher priority; insert before. */ 848 LIST_INSERT_BEFORE(lddm, ddm, ddm_list); 849 break; 850 } 851 if (LIST_NEXT(lddm, ddm_list) == NULL) { 852 /* Last one; insert after. */ 853 KASSERT(lddm->ddm_priority < ddm->ddm_priority); 854 LIST_INSERT_AFTER(lddm, ddm, ddm_list); 855 break; 856 } 857 } 858 } 859 860 rw_exit(&dkwedge_discovery_methods_lock); 861 } 862 863 #ifdef DKWEDGE_AUTODISCOVER 864 int dkwedge_autodiscover = 1; 865 #else 866 int dkwedge_autodiscover = 0; 867 #endif 868 869 /* 870 * dkwedge_discover: [exported function] 871 * 872 * Discover the wedges on a newly attached disk. 873 * Remove all unused wedges on the disk first. 874 */ 875 void 876 dkwedge_discover(struct disk *pdk) 877 { 878 struct dkwedge_discovery_method *ddm; 879 struct vnode *vp; 880 int error; 881 dev_t pdev; 882 883 /* 884 * Require people playing with wedges to enable this explicitly. 885 */ 886 if (dkwedge_autodiscover == 0) 887 return; 888 889 rw_enter(&dkwedge_discovery_methods_lock, RW_READER); 890 891 /* 892 * Use the character device for scanning, the block device 893 * is busy if there are already wedges attached. 894 */ 895 error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR); 896 if (error) { 897 aprint_error("%s: unable to compute pdev, error = %d\n", 898 pdk->dk_name, error); 899 goto out; 900 } 901 902 error = cdevvp(pdev, &vp); 903 if (error) { 904 aprint_error("%s: unable to find vnode for pdev, error = %d\n", 905 pdk->dk_name, error); 906 goto out; 907 } 908 909 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 910 if (error) { 911 aprint_error("%s: unable to lock vnode for pdev, error = %d\n", 912 pdk->dk_name, error); 913 vrele(vp); 914 goto out; 915 } 916 917 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED); 918 if (error) { 919 if (error != ENODEV) 920 aprint_error("%s: unable to open device, error = %d\n", 921 pdk->dk_name, error); 922 vput(vp); 923 goto out; 924 } 925 VOP_UNLOCK(vp); 926 927 /* 928 * Remove unused wedges 929 */ 930 dkwedge_delall1(pdk, true); 931 932 /* 933 * For each supported partition map type, look to see if 934 * this map type exists. If so, parse it and add the 935 * corresponding wedges. 936 */ 937 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) { 938 error = (*ddm->ddm_discover)(pdk, vp); 939 if (error == 0) { 940 /* Successfully created wedges; we're done. */ 941 break; 942 } 943 } 944 945 error = vn_close(vp, FREAD, NOCRED); 946 if (error) { 947 aprint_error("%s: unable to close device, error = %d\n", 948 pdk->dk_name, error); 949 /* We'll just assume the vnode has been cleaned up. */ 950 } 951 952 out: 953 rw_exit(&dkwedge_discovery_methods_lock); 954 } 955 956 /* 957 * dkwedge_read: 958 * 959 * Read some data from the specified disk, used for 960 * partition discovery. 961 */ 962 int 963 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno, 964 void *tbuf, size_t len) 965 { 966 buf_t *bp; 967 int error; 968 bool isopen; 969 dev_t bdev; 970 struct vnode *bdvp; 971 972 /* 973 * The kernel cannot read from a character device vnode 974 * as physio() only handles user memory. 975 * 976 * If the block device has already been opened by a wedge 977 * use that vnode and temporarily bump the open counter. 978 * 979 * Otherwise try to open the block device. 980 */ 981 982 bdev = devsw_chr2blk(vp->v_rdev); 983 984 mutex_enter(&pdk->dk_rawlock); 985 if (pdk->dk_rawopens != 0) { 986 KASSERT(pdk->dk_rawvp != NULL); 987 isopen = true; 988 ++pdk->dk_rawopens; 989 bdvp = pdk->dk_rawvp; 990 error = 0; 991 } else { 992 isopen = false; 993 error = dk_open_parent(bdev, FREAD, &bdvp); 994 } 995 mutex_exit(&pdk->dk_rawlock); 996 997 if (error) 998 return error; 999 1000 bp = getiobuf(bdvp, true); 1001 bp->b_flags = B_READ; 1002 bp->b_cflags = BC_BUSY; 1003 bp->b_dev = bdev; 1004 bp->b_data = tbuf; 1005 bp->b_bufsize = bp->b_bcount = len; 1006 bp->b_blkno = blkno; 1007 bp->b_cylinder = 0; 1008 bp->b_error = 0; 1009 1010 VOP_STRATEGY(bdvp, bp); 1011 error = biowait(bp); 1012 putiobuf(bp); 1013 1014 mutex_enter(&pdk->dk_rawlock); 1015 if (isopen) { 1016 --pdk->dk_rawopens; 1017 } else { 1018 dk_close_parent(bdvp, FREAD); 1019 } 1020 mutex_exit(&pdk->dk_rawlock); 1021 1022 return error; 1023 } 1024 1025 /* 1026 * dkwedge_lookup: 1027 * 1028 * Look up a dkwedge_softc based on the provided dev_t. 1029 */ 1030 static struct dkwedge_softc * 1031 dkwedge_lookup(dev_t dev) 1032 { 1033 int unit = minor(dev); 1034 1035 if (unit >= ndkwedges) 1036 return (NULL); 1037 1038 KASSERT(dkwedges != NULL); 1039 1040 return (dkwedges[unit]); 1041 } 1042 1043 static int 1044 dk_open_parent(dev_t dev, int mode, struct vnode **vpp) 1045 { 1046 struct vnode *vp; 1047 int error; 1048 1049 error = bdevvp(dev, &vp); 1050 if (error) 1051 return error; 1052 1053 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1054 if (error) { 1055 vrele(vp); 1056 return error; 1057 } 1058 error = VOP_OPEN(vp, mode, NOCRED); 1059 if (error) { 1060 vput(vp); 1061 return error; 1062 } 1063 1064 /* VOP_OPEN() doesn't do this for us. */ 1065 if (mode & FWRITE) { 1066 mutex_enter(vp->v_interlock); 1067 vp->v_writecount++; 1068 mutex_exit(vp->v_interlock); 1069 } 1070 1071 VOP_UNLOCK(vp); 1072 1073 *vpp = vp; 1074 1075 return 0; 1076 } 1077 1078 static int 1079 dk_close_parent(struct vnode *vp, int mode) 1080 { 1081 int error; 1082 1083 error = vn_close(vp, mode, NOCRED); 1084 return error; 1085 } 1086 1087 /* 1088 * dkopen: [devsw entry point] 1089 * 1090 * Open a wedge. 1091 */ 1092 static int 1093 dkopen(dev_t dev, int flags, int fmt, struct lwp *l) 1094 { 1095 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1096 struct vnode *vp; 1097 int error = 0; 1098 1099 if (sc == NULL) 1100 return (ENODEV); 1101 if (sc->sc_state != DKW_STATE_RUNNING) 1102 return (ENXIO); 1103 1104 /* 1105 * We go through a complicated little dance to only open the parent 1106 * vnode once per wedge, no matter how many times the wedge is 1107 * opened. The reason? We see one dkopen() per open call, but 1108 * only dkclose() on the last close. 1109 */ 1110 mutex_enter(&sc->sc_dk.dk_openlock); 1111 mutex_enter(&sc->sc_parent->dk_rawlock); 1112 if (sc->sc_dk.dk_openmask == 0) { 1113 if (sc->sc_parent->dk_rawopens == 0) { 1114 KASSERT(sc->sc_parent->dk_rawvp == NULL); 1115 error = dk_open_parent(sc->sc_pdev, FREAD | FWRITE, &vp); 1116 if (error) 1117 goto popen_fail; 1118 sc->sc_parent->dk_rawvp = vp; 1119 } 1120 sc->sc_parent->dk_rawopens++; 1121 } 1122 if (fmt == S_IFCHR) 1123 sc->sc_dk.dk_copenmask |= 1; 1124 else 1125 sc->sc_dk.dk_bopenmask |= 1; 1126 sc->sc_dk.dk_openmask = 1127 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; 1128 1129 popen_fail: 1130 mutex_exit(&sc->sc_parent->dk_rawlock); 1131 mutex_exit(&sc->sc_dk.dk_openlock); 1132 return (error); 1133 } 1134 1135 /* 1136 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock. 1137 */ 1138 static int 1139 dklastclose(struct dkwedge_softc *sc) 1140 { 1141 int error = 0, doclose; 1142 1143 doclose = 0; 1144 if (sc->sc_parent->dk_rawopens > 0) { 1145 if (--sc->sc_parent->dk_rawopens == 0) 1146 doclose = 1; 1147 } 1148 1149 mutex_exit(&sc->sc_parent->dk_rawlock); 1150 mutex_exit(&sc->sc_dk.dk_openlock); 1151 1152 if (doclose) { 1153 KASSERT(sc->sc_parent->dk_rawvp != NULL); 1154 dk_close_parent(sc->sc_parent->dk_rawvp, FREAD | FWRITE); 1155 sc->sc_parent->dk_rawvp = NULL; 1156 } 1157 1158 return error; 1159 } 1160 1161 /* 1162 * dkclose: [devsw entry point] 1163 * 1164 * Close a wedge. 1165 */ 1166 static int 1167 dkclose(dev_t dev, int flags, int fmt, struct lwp *l) 1168 { 1169 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1170 int error = 0; 1171 1172 if (sc == NULL) 1173 return (ENODEV); 1174 if (sc->sc_state != DKW_STATE_RUNNING) 1175 return (ENXIO); 1176 1177 KASSERT(sc->sc_dk.dk_openmask != 0); 1178 1179 mutex_enter(&sc->sc_dk.dk_openlock); 1180 mutex_enter(&sc->sc_parent->dk_rawlock); 1181 1182 if (fmt == S_IFCHR) 1183 sc->sc_dk.dk_copenmask &= ~1; 1184 else 1185 sc->sc_dk.dk_bopenmask &= ~1; 1186 sc->sc_dk.dk_openmask = 1187 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; 1188 1189 if (sc->sc_dk.dk_openmask == 0) 1190 error = dklastclose(sc); /* releases locks */ 1191 else { 1192 mutex_exit(&sc->sc_parent->dk_rawlock); 1193 mutex_exit(&sc->sc_dk.dk_openlock); 1194 } 1195 1196 return (error); 1197 } 1198 1199 /* 1200 * dkstragegy: [devsw entry point] 1201 * 1202 * Perform I/O based on the wedge I/O strategy. 1203 */ 1204 static void 1205 dkstrategy(struct buf *bp) 1206 { 1207 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev); 1208 uint64_t p_size, p_offset; 1209 int s; 1210 1211 if (sc == NULL) { 1212 bp->b_error = ENODEV; 1213 goto done; 1214 } 1215 1216 if (sc->sc_state != DKW_STATE_RUNNING || 1217 sc->sc_parent->dk_rawvp == NULL) { 1218 bp->b_error = ENXIO; 1219 goto done; 1220 } 1221 1222 /* If it's an empty transfer, wake up the top half now. */ 1223 if (bp->b_bcount == 0) 1224 goto done; 1225 1226 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift; 1227 p_size = sc->sc_size << sc->sc_parent->dk_blkshift; 1228 1229 /* Make sure it's in-range. */ 1230 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0) 1231 goto done; 1232 1233 /* Translate it to the parent's raw LBA. */ 1234 bp->b_rawblkno = bp->b_blkno + p_offset; 1235 1236 /* Place it in the queue and start I/O on the unit. */ 1237 s = splbio(); 1238 sc->sc_iopend++; 1239 bufq_put(sc->sc_bufq, bp); 1240 dkstart(sc); 1241 splx(s); 1242 return; 1243 1244 done: 1245 bp->b_resid = bp->b_bcount; 1246 biodone(bp); 1247 } 1248 1249 /* 1250 * dkstart: 1251 * 1252 * Start I/O that has been enqueued on the wedge. 1253 * NOTE: Must be called at splbio()! 1254 */ 1255 static void 1256 dkstart(struct dkwedge_softc *sc) 1257 { 1258 struct vnode *vp; 1259 struct buf *bp, *nbp; 1260 1261 /* Do as much work as has been enqueued. */ 1262 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) { 1263 if (sc->sc_state != DKW_STATE_RUNNING) { 1264 (void) bufq_get(sc->sc_bufq); 1265 if (sc->sc_iopend-- == 1 && 1266 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) { 1267 sc->sc_flags &= ~DK_F_WAIT_DRAIN; 1268 wakeup(&sc->sc_iopend); 1269 } 1270 bp->b_error = ENXIO; 1271 bp->b_resid = bp->b_bcount; 1272 biodone(bp); 1273 } 1274 1275 /* Instrumentation. */ 1276 disk_busy(&sc->sc_dk); 1277 1278 nbp = getiobuf(sc->sc_parent->dk_rawvp, false); 1279 if (nbp == NULL) { 1280 /* 1281 * No resources to run this request; leave the 1282 * buffer queued up, and schedule a timer to 1283 * restart the queue in 1/2 a second. 1284 */ 1285 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ); 1286 callout_schedule(&sc->sc_restart_ch, hz / 2); 1287 return; 1288 } 1289 1290 (void) bufq_get(sc->sc_bufq); 1291 1292 nbp->b_data = bp->b_data; 1293 nbp->b_flags = bp->b_flags; 1294 nbp->b_oflags = bp->b_oflags; 1295 nbp->b_cflags = bp->b_cflags; 1296 nbp->b_iodone = dkiodone; 1297 nbp->b_proc = bp->b_proc; 1298 nbp->b_blkno = bp->b_rawblkno; 1299 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev; 1300 nbp->b_bcount = bp->b_bcount; 1301 nbp->b_private = bp; 1302 BIO_COPYPRIO(nbp, bp); 1303 1304 vp = nbp->b_vp; 1305 if ((nbp->b_flags & B_READ) == 0) { 1306 mutex_enter(vp->v_interlock); 1307 vp->v_numoutput++; 1308 mutex_exit(vp->v_interlock); 1309 } 1310 VOP_STRATEGY(vp, nbp); 1311 } 1312 } 1313 1314 /* 1315 * dkiodone: 1316 * 1317 * I/O to a wedge has completed; alert the top half. 1318 */ 1319 static void 1320 dkiodone(struct buf *bp) 1321 { 1322 struct buf *obp = bp->b_private; 1323 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev); 1324 1325 int s = splbio(); 1326 1327 if (bp->b_error != 0) 1328 obp->b_error = bp->b_error; 1329 obp->b_resid = bp->b_resid; 1330 putiobuf(bp); 1331 1332 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) { 1333 sc->sc_flags &= ~DK_F_WAIT_DRAIN; 1334 wakeup(&sc->sc_iopend); 1335 } 1336 1337 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid, 1338 obp->b_flags & B_READ); 1339 1340 biodone(obp); 1341 1342 /* Kick the queue in case there is more work we can do. */ 1343 dkstart(sc); 1344 splx(s); 1345 } 1346 1347 /* 1348 * dkrestart: 1349 * 1350 * Restart the work queue after it was stalled due to 1351 * a resource shortage. Invoked via a callout. 1352 */ 1353 static void 1354 dkrestart(void *v) 1355 { 1356 struct dkwedge_softc *sc = v; 1357 int s; 1358 1359 s = splbio(); 1360 dkstart(sc); 1361 splx(s); 1362 } 1363 1364 /* 1365 * dkminphys: 1366 * 1367 * Call parent's minphys function. 1368 */ 1369 static void 1370 dkminphys(struct buf *bp) 1371 { 1372 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev); 1373 dev_t dev; 1374 1375 dev = bp->b_dev; 1376 bp->b_dev = sc->sc_pdev; 1377 (*sc->sc_parent->dk_driver->d_minphys)(bp); 1378 bp->b_dev = dev; 1379 } 1380 1381 /* 1382 * dkread: [devsw entry point] 1383 * 1384 * Read from a wedge. 1385 */ 1386 static int 1387 dkread(dev_t dev, struct uio *uio, int flags) 1388 { 1389 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1390 1391 if (sc == NULL) 1392 return (ENODEV); 1393 if (sc->sc_state != DKW_STATE_RUNNING) 1394 return (ENXIO); 1395 1396 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio)); 1397 } 1398 1399 /* 1400 * dkwrite: [devsw entry point] 1401 * 1402 * Write to a wedge. 1403 */ 1404 static int 1405 dkwrite(dev_t dev, struct uio *uio, int flags) 1406 { 1407 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1408 1409 if (sc == NULL) 1410 return (ENODEV); 1411 if (sc->sc_state != DKW_STATE_RUNNING) 1412 return (ENXIO); 1413 1414 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio)); 1415 } 1416 1417 /* 1418 * dkioctl: [devsw entry point] 1419 * 1420 * Perform an ioctl request on a wedge. 1421 */ 1422 static int 1423 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 1424 { 1425 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1426 int error = 0; 1427 1428 if (sc == NULL) 1429 return (ENODEV); 1430 if (sc->sc_state != DKW_STATE_RUNNING) 1431 return (ENXIO); 1432 if (sc->sc_parent->dk_rawvp == NULL) 1433 return (ENXIO); 1434 1435 /* 1436 * We pass NODEV instead of our device to indicate we don't 1437 * want to handle disklabel ioctls 1438 */ 1439 error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l); 1440 if (error != EPASSTHROUGH) 1441 return (error); 1442 1443 error = 0; 1444 1445 switch (cmd) { 1446 case DIOCCACHESYNC: 1447 /* 1448 * XXX Do we really need to care about having a writable 1449 * file descriptor here? 1450 */ 1451 if ((flag & FWRITE) == 0) 1452 error = EBADF; 1453 else 1454 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, 1455 cmd, data, flag, 1456 l != NULL ? l->l_cred : NOCRED); 1457 break; 1458 case DIOCGWEDGEINFO: 1459 { 1460 struct dkwedge_info *dkw = (void *) data; 1461 1462 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev), 1463 sizeof(dkw->dkw_devname)); 1464 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname)); 1465 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0'; 1466 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name); 1467 dkw->dkw_offset = sc->sc_offset; 1468 dkw->dkw_size = sc->sc_size; 1469 strcpy(dkw->dkw_ptype, sc->sc_ptype); 1470 1471 break; 1472 } 1473 1474 default: 1475 error = ENOTTY; 1476 } 1477 1478 return (error); 1479 } 1480 1481 /* 1482 * dkdiscard: [devsw entry point] 1483 * 1484 * Perform a discard-range request on a wedge. 1485 */ 1486 static int 1487 dkdiscard(dev_t dev, off_t pos, off_t len) 1488 { 1489 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1490 unsigned shift; 1491 off_t offset, maxlen; 1492 1493 if (sc == NULL) 1494 return (ENODEV); 1495 if (sc->sc_state != DKW_STATE_RUNNING) 1496 return (ENXIO); 1497 if (sc->sc_parent->dk_rawvp == NULL) 1498 return (ENXIO); 1499 1500 shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT); 1501 KASSERT(__type_fit(off_t, sc->sc_size)); 1502 KASSERT(__type_fit(off_t, sc->sc_offset)); 1503 KASSERT(0 <= sc->sc_offset); 1504 KASSERT(sc->sc_size <= (__type_max(off_t) >> shift)); 1505 KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size)); 1506 offset = ((off_t)sc->sc_offset << shift); 1507 maxlen = ((off_t)sc->sc_size << shift); 1508 1509 if (len > maxlen) 1510 return (EINVAL); 1511 if (pos > (maxlen - len)) 1512 return (EINVAL); 1513 1514 pos += offset; 1515 return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len); 1516 } 1517 1518 /* 1519 * dksize: [devsw entry point] 1520 * 1521 * Query the size of a wedge for the purpose of performing a dump 1522 * or for swapping to. 1523 */ 1524 static int 1525 dksize(dev_t dev) 1526 { 1527 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1528 int rv = -1; 1529 1530 if (sc == NULL) 1531 return (-1); 1532 if (sc->sc_state != DKW_STATE_RUNNING) 1533 return (-1); 1534 1535 mutex_enter(&sc->sc_dk.dk_openlock); 1536 mutex_enter(&sc->sc_parent->dk_rawlock); 1537 1538 /* Our content type is static, no need to open the device. */ 1539 1540 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) { 1541 /* Saturate if we are larger than INT_MAX. */ 1542 if (sc->sc_size > INT_MAX) 1543 rv = INT_MAX; 1544 else 1545 rv = (int) sc->sc_size; 1546 } 1547 1548 mutex_exit(&sc->sc_parent->dk_rawlock); 1549 mutex_exit(&sc->sc_dk.dk_openlock); 1550 1551 return (rv); 1552 } 1553 1554 /* 1555 * dkdump: [devsw entry point] 1556 * 1557 * Perform a crash dump to a wedge. 1558 */ 1559 static int 1560 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size) 1561 { 1562 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1563 const struct bdevsw *bdev; 1564 int rv = 0; 1565 1566 if (sc == NULL) 1567 return (ENODEV); 1568 if (sc->sc_state != DKW_STATE_RUNNING) 1569 return (ENXIO); 1570 1571 mutex_enter(&sc->sc_dk.dk_openlock); 1572 mutex_enter(&sc->sc_parent->dk_rawlock); 1573 1574 /* Our content type is static, no need to open the device. */ 1575 1576 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 && 1577 strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0) { 1578 rv = ENXIO; 1579 goto out; 1580 } 1581 if (size % DEV_BSIZE != 0) { 1582 rv = EINVAL; 1583 goto out; 1584 } 1585 if (blkno + size / DEV_BSIZE > sc->sc_size) { 1586 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > " 1587 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno, 1588 size / DEV_BSIZE, sc->sc_size); 1589 rv = EINVAL; 1590 goto out; 1591 } 1592 1593 bdev = bdevsw_lookup(sc->sc_pdev); 1594 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size); 1595 1596 out: 1597 mutex_exit(&sc->sc_parent->dk_rawlock); 1598 mutex_exit(&sc->sc_dk.dk_openlock); 1599 1600 return rv; 1601 } 1602 1603 /* 1604 * config glue 1605 */ 1606 1607 /* 1608 * dkwedge_find_partition 1609 * 1610 * Find wedge corresponding to the specified parent name 1611 * and offset/length. 1612 */ 1613 device_t 1614 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks) 1615 { 1616 struct dkwedge_softc *sc; 1617 int i; 1618 device_t wedge = NULL; 1619 1620 rw_enter(&dkwedges_lock, RW_READER); 1621 for (i = 0; i < ndkwedges; i++) { 1622 if ((sc = dkwedges[i]) == NULL) 1623 continue; 1624 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 && 1625 sc->sc_offset == startblk && 1626 sc->sc_size == nblks) { 1627 if (wedge) { 1628 printf("WARNING: double match for boot wedge " 1629 "(%s, %s)\n", 1630 device_xname(wedge), 1631 device_xname(sc->sc_dev)); 1632 continue; 1633 } 1634 wedge = sc->sc_dev; 1635 } 1636 } 1637 rw_exit(&dkwedges_lock); 1638 1639 return wedge; 1640 } 1641 1642 const char * 1643 dkwedge_get_parent_name(dev_t dev) 1644 { 1645 /* XXX: perhaps do this in lookup? */ 1646 int bmaj = bdevsw_lookup_major(&dk_bdevsw); 1647 int cmaj = cdevsw_lookup_major(&dk_cdevsw); 1648 if (major(dev) != bmaj && major(dev) != cmaj) 1649 return NULL; 1650 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1651 if (sc == NULL) 1652 return NULL; 1653 return sc->sc_parent->dk_name; 1654 } 1655 1656