xref: /netbsd-src/sys/dev/dkwedge/dk.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: dk.c,v 1.91 2016/05/29 13:11:21 mlelstv Exp $	*/
2 
3 /*-
4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.91 2016/05/29 13:11:21 mlelstv Exp $");
34 
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58 
59 #include <miscfs/specfs/specdev.h>
60 
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62 
63 typedef enum {
64 	DKW_STATE_LARVAL	= 0,
65 	DKW_STATE_RUNNING	= 1,
66 	DKW_STATE_DYING		= 2,
67 	DKW_STATE_DEAD		= 666
68 } dkwedge_state_t;
69 
70 struct dkwedge_softc {
71 	device_t	sc_dev;	/* pointer to our pseudo-device */
72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
74 
75 	dkwedge_state_t sc_state;	/* state this wedge is in */
76 
77 	struct disk	*sc_parent;	/* parent disk */
78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
79 	uint64_t	sc_size;	/* size of wedge in blocks */
80 	char		sc_ptype[32];	/* partition type */
81 	dev_t		sc_pdev;	/* cached parent's dev_t */
82 					/* link on parent's wedge list */
83 	LIST_ENTRY(dkwedge_softc) sc_plink;
84 
85 	struct disk	sc_dk;		/* our own disk structure */
86 	struct bufq_state *sc_bufq;	/* buffer queue */
87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
88 
89 	u_int		sc_iopend;	/* I/Os pending */
90 	int		sc_flags;	/* flags (splbio) */
91 };
92 
93 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
94 
95 static void	dkstart(struct dkwedge_softc *);
96 static void	dkiodone(struct buf *);
97 static void	dkrestart(void *);
98 static void	dkminphys(struct buf *);
99 
100 static int	dklastclose(struct dkwedge_softc *);
101 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
102 static int	dkwedge_detach(device_t, int);
103 static void	dkwedge_delall1(struct disk *, bool);
104 static int	dkwedge_del1(struct dkwedge_info *, int);
105 static int	dk_open_parent(dev_t, int, struct vnode **);
106 static int	dk_close_parent(struct vnode *, int);
107 
108 static dev_type_open(dkopen);
109 static dev_type_close(dkclose);
110 static dev_type_read(dkread);
111 static dev_type_write(dkwrite);
112 static dev_type_ioctl(dkioctl);
113 static dev_type_strategy(dkstrategy);
114 static dev_type_dump(dkdump);
115 static dev_type_size(dksize);
116 static dev_type_discard(dkdiscard);
117 
118 const struct bdevsw dk_bdevsw = {
119 	.d_open = dkopen,
120 	.d_close = dkclose,
121 	.d_strategy = dkstrategy,
122 	.d_ioctl = dkioctl,
123 	.d_dump = dkdump,
124 	.d_psize = dksize,
125 	.d_discard = dkdiscard,
126 	.d_flag = D_DISK
127 };
128 
129 const struct cdevsw dk_cdevsw = {
130 	.d_open = dkopen,
131 	.d_close = dkclose,
132 	.d_read = dkread,
133 	.d_write = dkwrite,
134 	.d_ioctl = dkioctl,
135 	.d_stop = nostop,
136 	.d_tty = notty,
137 	.d_poll = nopoll,
138 	.d_mmap = nommap,
139 	.d_kqfilter = nokqfilter,
140 	.d_discard = dkdiscard,
141 	.d_flag = D_DISK
142 };
143 
144 static struct dkwedge_softc **dkwedges;
145 static u_int ndkwedges;
146 static krwlock_t dkwedges_lock;
147 
148 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
149 static krwlock_t dkwedge_discovery_methods_lock;
150 
151 /*
152  * dkwedge_match:
153  *
154  *	Autoconfiguration match function for pseudo-device glue.
155  */
156 static int
157 dkwedge_match(device_t parent, cfdata_t match,
158     void *aux)
159 {
160 
161 	/* Pseudo-device; always present. */
162 	return (1);
163 }
164 
165 /*
166  * dkwedge_attach:
167  *
168  *	Autoconfiguration attach function for pseudo-device glue.
169  */
170 static void
171 dkwedge_attach(device_t parent, device_t self,
172     void *aux)
173 {
174 
175 	if (!pmf_device_register(self, NULL, NULL))
176 		aprint_error_dev(self, "couldn't establish power handler\n");
177 }
178 
179 CFDRIVER_DECL(dk, DV_DISK, NULL);
180 CFATTACH_DECL3_NEW(dk, 0,
181     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
182     DVF_DETACH_SHUTDOWN);
183 
184 /*
185  * dkwedge_wait_drain:
186  *
187  *	Wait for I/O on the wedge to drain.
188  *	NOTE: Must be called at splbio()!
189  */
190 static void
191 dkwedge_wait_drain(struct dkwedge_softc *sc)
192 {
193 
194 	while (sc->sc_iopend != 0) {
195 		sc->sc_flags |= DK_F_WAIT_DRAIN;
196 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
197 	}
198 }
199 
200 /*
201  * dkwedge_compute_pdev:
202  *
203  *	Compute the parent disk's dev_t.
204  */
205 static int
206 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
207 {
208 	const char *name, *cp;
209 	devmajor_t pmaj;
210 	int punit;
211 	char devname[16];
212 
213 	name = pname;
214 	switch (type) {
215 	case VBLK:
216 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
217 		break;
218 	case VCHR:
219 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
220 		break;
221 	default:
222 		pmaj = NODEVMAJOR;
223 		break;
224 	}
225 	if (pmaj == NODEVMAJOR)
226 		return (ENODEV);
227 
228 	name += strlen(devname);
229 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
230 		punit = (punit * 10) + (*cp - '0');
231 	if (cp == name) {
232 		/* Invalid parent disk name. */
233 		return (ENODEV);
234 	}
235 
236 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
237 
238 	return (0);
239 }
240 
241 /*
242  * dkwedge_array_expand:
243  *
244  *	Expand the dkwedges array.
245  */
246 static void
247 dkwedge_array_expand(void)
248 {
249 	int newcnt = ndkwedges + 16;
250 	struct dkwedge_softc **newarray, **oldarray;
251 
252 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
253 	    M_WAITOK|M_ZERO);
254 	if ((oldarray = dkwedges) != NULL)
255 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
256 	dkwedges = newarray;
257 	ndkwedges = newcnt;
258 	if (oldarray != NULL)
259 		free(oldarray, M_DKWEDGE);
260 }
261 
262 static void
263 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
264 {
265 	struct disk *dk = &sc->sc_dk;
266 	struct disk_geom *dg = &dk->dk_geom;
267 
268 	memset(dg, 0, sizeof(*dg));
269 
270 	dg->dg_secperunit = sc->sc_size;
271 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
272 
273 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
274 	dg->dg_nsectors = 32;
275 	dg->dg_ntracks = 64;
276 	dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
277 
278 	disk_set_info(sc->sc_dev, dk, NULL);
279 }
280 
281 /*
282  * dkwedge_add:		[exported function]
283  *
284  *	Add a disk wedge based on the provided information.
285  *
286  *	The incoming dkw_devname[] is ignored, instead being
287  *	filled in and returned to the caller.
288  */
289 int
290 dkwedge_add(struct dkwedge_info *dkw)
291 {
292 	struct dkwedge_softc *sc, *lsc;
293 	struct disk *pdk;
294 	u_int unit;
295 	int error;
296 	dev_t pdev;
297 
298 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
299 	pdk = disk_find(dkw->dkw_parent);
300 	if (pdk == NULL)
301 		return (ENODEV);
302 
303 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
304 	if (error)
305 		return (error);
306 
307 	if (dkw->dkw_offset < 0)
308 		return (EINVAL);
309 
310 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
311 	sc->sc_state = DKW_STATE_LARVAL;
312 	sc->sc_parent = pdk;
313 	sc->sc_pdev = pdev;
314 	sc->sc_offset = dkw->dkw_offset;
315 	sc->sc_size = dkw->dkw_size;
316 
317 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
318 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
319 
320 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
321 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
322 
323 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
324 
325 	callout_init(&sc->sc_restart_ch, 0);
326 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
327 
328 	/*
329 	 * Wedge will be added; increment the wedge count for the parent.
330 	 * Only allow this to happend if RAW_PART is the only thing open.
331 	 */
332 	mutex_enter(&pdk->dk_openlock);
333 	if (pdk->dk_openmask & ~(1 << RAW_PART))
334 		error = EBUSY;
335 	else {
336 		/* Check for wedge overlap. */
337 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
338 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
339 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
340 
341 			if (sc->sc_offset >= lsc->sc_offset &&
342 			    sc->sc_offset <= llastblk) {
343 				/* Overlaps the tail of the existing wedge. */
344 				break;
345 			}
346 			if (lastblk >= lsc->sc_offset &&
347 			    lastblk <= llastblk) {
348 				/* Overlaps the head of the existing wedge. */
349 			    	break;
350 			}
351 		}
352 		if (lsc != NULL) {
353 			if (sc->sc_offset == lsc->sc_offset &&
354 			    sc->sc_size == lsc->sc_size &&
355 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
356 				error = EEXIST;
357 			else
358 				error = EINVAL;
359 		} else {
360 			pdk->dk_nwedges++;
361 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
362 		}
363 	}
364 	mutex_exit(&pdk->dk_openlock);
365 	if (error) {
366 		bufq_free(sc->sc_bufq);
367 		free(sc, M_DKWEDGE);
368 		return (error);
369 	}
370 
371 	/* Fill in our cfdata for the pseudo-device glue. */
372 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
373 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
374 	/* sc->sc_cfdata.cf_unit set below */
375 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
376 
377 	/* Insert the larval wedge into the array. */
378 	rw_enter(&dkwedges_lock, RW_WRITER);
379 	for (error = 0;;) {
380 		struct dkwedge_softc **scpp;
381 
382 		/*
383 		 * Check for a duplicate wname while searching for
384 		 * a slot.
385 		 */
386 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
387 			if (dkwedges[unit] == NULL) {
388 				if (scpp == NULL) {
389 					scpp = &dkwedges[unit];
390 					sc->sc_cfdata.cf_unit = unit;
391 				}
392 			} else {
393 				/* XXX Unicode. */
394 				if (strcmp(dkwedges[unit]->sc_wname,
395 					   sc->sc_wname) == 0) {
396 					error = EEXIST;
397 					break;
398 				}
399 			}
400 		}
401 		if (error)
402 			break;
403 		KASSERT(unit == ndkwedges);
404 		if (scpp == NULL)
405 			dkwedge_array_expand();
406 		else {
407 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
408 			*scpp = sc;
409 			break;
410 		}
411 	}
412 	rw_exit(&dkwedges_lock);
413 	if (error) {
414 		mutex_enter(&pdk->dk_openlock);
415 		pdk->dk_nwedges--;
416 		LIST_REMOVE(sc, sc_plink);
417 		mutex_exit(&pdk->dk_openlock);
418 
419 		bufq_free(sc->sc_bufq);
420 		free(sc, M_DKWEDGE);
421 		return (error);
422 	}
423 
424 	/*
425 	 * Now that we know the unit #, attach a pseudo-device for
426 	 * this wedge instance.  This will provide us with the
427 	 * device_t necessary for glue to other parts of the system.
428 	 *
429 	 * This should never fail, unless we're almost totally out of
430 	 * memory.
431 	 */
432 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
433 		aprint_error("%s%u: unable to attach pseudo-device\n",
434 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
435 
436 		rw_enter(&dkwedges_lock, RW_WRITER);
437 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
438 		rw_exit(&dkwedges_lock);
439 
440 		mutex_enter(&pdk->dk_openlock);
441 		pdk->dk_nwedges--;
442 		LIST_REMOVE(sc, sc_plink);
443 		mutex_exit(&pdk->dk_openlock);
444 
445 		bufq_free(sc->sc_bufq);
446 		free(sc, M_DKWEDGE);
447 		return (ENOMEM);
448 	}
449 
450 	/* Return the devname to the caller. */
451 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
452 		sizeof(dkw->dkw_devname));
453 
454 	/*
455 	 * XXX Really ought to make the disk_attach() and the changing
456 	 * of state to RUNNING atomic.
457 	 */
458 
459 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
460 	dk_set_geometry(sc, pdk);
461 	disk_attach(&sc->sc_dk);
462 
463 	/* Disk wedge is ready for use! */
464 	sc->sc_state = DKW_STATE_RUNNING;
465 
466 	/* Announce our arrival. */
467 	aprint_normal(
468 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
469 	    device_xname(sc->sc_dev), pdk->dk_name,
470 	    sc->sc_wname,	/* XXX Unicode */
471 	    sc->sc_size, sc->sc_offset,
472 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
473 
474 	return (0);
475 }
476 
477 /*
478  * dkwedge_find:
479  *
480  *	Lookup a disk wedge based on the provided information.
481  *	NOTE: We look up the wedge based on the wedge devname,
482  *	not wname.
483  *
484  *	Return NULL if the wedge is not found, otherwise return
485  *	the wedge's softc.  Assign the wedge's unit number to unitp
486  *	if unitp is not NULL.
487  */
488 static struct dkwedge_softc *
489 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
490 {
491 	struct dkwedge_softc *sc = NULL;
492 	u_int unit;
493 
494 	/* Find our softc. */
495 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
496 	rw_enter(&dkwedges_lock, RW_READER);
497 	for (unit = 0; unit < ndkwedges; unit++) {
498 		if ((sc = dkwedges[unit]) != NULL &&
499 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
500 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
501 			break;
502 		}
503 	}
504 	rw_exit(&dkwedges_lock);
505 	if (unit == ndkwedges)
506 		return NULL;
507 
508 	if (unitp != NULL)
509 		*unitp = unit;
510 
511 	return sc;
512 }
513 
514 /*
515  * dkwedge_del:		[exported function]
516  *
517  *	Delete a disk wedge based on the provided information.
518  *	NOTE: We look up the wedge based on the wedge devname,
519  *	not wname.
520  */
521 int
522 dkwedge_del(struct dkwedge_info *dkw)
523 {
524 	return dkwedge_del1(dkw, 0);
525 }
526 
527 int
528 dkwedge_del1(struct dkwedge_info *dkw, int flags)
529 {
530 	struct dkwedge_softc *sc = NULL;
531 
532 	/* Find our softc. */
533 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
534 		return (ESRCH);
535 
536 	return config_detach(sc->sc_dev, flags);
537 }
538 
539 static int
540 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
541 {
542 	struct disk *dk = &sc->sc_dk;
543 	int rc;
544 
545 	rc = 0;
546 	mutex_enter(&dk->dk_openlock);
547 	if (dk->dk_openmask == 0)
548 		/* nothing to do */
549 		mutex_exit(&dk->dk_openlock);
550 	else if ((flags & DETACH_FORCE) == 0) {
551 		rc = EBUSY;
552 		mutex_exit(&dk->dk_openlock);
553 	}  else {
554 		mutex_enter(&sc->sc_parent->dk_rawlock);
555 		rc = dklastclose(sc); /* releases locks */
556 	}
557 
558 	return rc;
559 }
560 
561 /*
562  * dkwedge_detach:
563  *
564  *	Autoconfiguration detach function for pseudo-device glue.
565  */
566 static int
567 dkwedge_detach(device_t self, int flags)
568 {
569 	struct dkwedge_softc *sc = NULL;
570 	u_int unit;
571 	int bmaj, cmaj, rc, s;
572 
573 	rw_enter(&dkwedges_lock, RW_WRITER);
574 	for (unit = 0; unit < ndkwedges; unit++) {
575 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
576 			break;
577 	}
578 	if (unit == ndkwedges)
579 		rc = ENXIO;
580 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
581 		/* Mark the wedge as dying. */
582 		sc->sc_state = DKW_STATE_DYING;
583 	}
584 	rw_exit(&dkwedges_lock);
585 
586 	if (rc != 0)
587 		return rc;
588 
589 	pmf_device_deregister(self);
590 
591 	/* Locate the wedge major numbers. */
592 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
593 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
594 
595 	/* Kill any pending restart. */
596 	callout_stop(&sc->sc_restart_ch);
597 
598 	/*
599 	 * dkstart() will kill any queued buffers now that the
600 	 * state of the wedge is not RUNNING.  Once we've done
601 	 * that, wait for any other pending I/O to complete.
602 	 */
603 	s = splbio();
604 	dkstart(sc);
605 	dkwedge_wait_drain(sc);
606 	splx(s);
607 
608 	/* Nuke the vnodes for any open instances. */
609 	vdevgone(bmaj, unit, unit, VBLK);
610 	vdevgone(cmaj, unit, unit, VCHR);
611 
612 	/* Clean up the parent. */
613 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
614 
615 	/* Announce our departure. */
616 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
617 	    sc->sc_parent->dk_name,
618 	    sc->sc_wname);	/* XXX Unicode */
619 
620 	mutex_enter(&sc->sc_parent->dk_openlock);
621 	sc->sc_parent->dk_nwedges--;
622 	LIST_REMOVE(sc, sc_plink);
623 	mutex_exit(&sc->sc_parent->dk_openlock);
624 
625 	/* Delete our buffer queue. */
626 	bufq_free(sc->sc_bufq);
627 
628 	/* Detach from the disk list. */
629 	disk_detach(&sc->sc_dk);
630 	disk_destroy(&sc->sc_dk);
631 
632 	/* Poof. */
633 	rw_enter(&dkwedges_lock, RW_WRITER);
634 	dkwedges[unit] = NULL;
635 	sc->sc_state = DKW_STATE_DEAD;
636 	rw_exit(&dkwedges_lock);
637 
638 	free(sc, M_DKWEDGE);
639 
640 	return 0;
641 }
642 
643 /*
644  * dkwedge_delall:	[exported function]
645  *
646  *	Delete all of the wedges on the specified disk.  Used when
647  *	a disk is being detached.
648  */
649 void
650 dkwedge_delall(struct disk *pdk)
651 {
652 	dkwedge_delall1(pdk, false);
653 }
654 
655 static void
656 dkwedge_delall1(struct disk *pdk, bool idleonly)
657 {
658 	struct dkwedge_info dkw;
659 	struct dkwedge_softc *sc;
660 	int flags;
661 
662 	flags = DETACH_QUIET;
663 	if (!idleonly) flags |= DETACH_FORCE;
664 
665 	for (;;) {
666 		mutex_enter(&pdk->dk_openlock);
667 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
668 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
669 				break;
670 		}
671 		if (sc == NULL) {
672 			KASSERT(idleonly || pdk->dk_nwedges == 0);
673 			mutex_exit(&pdk->dk_openlock);
674 			return;
675 		}
676 		strcpy(dkw.dkw_parent, pdk->dk_name);
677 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
678 			sizeof(dkw.dkw_devname));
679 		mutex_exit(&pdk->dk_openlock);
680 		(void) dkwedge_del1(&dkw, flags);
681 	}
682 }
683 
684 /*
685  * dkwedge_list:	[exported function]
686  *
687  *	List all of the wedges on a particular disk.
688  */
689 int
690 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
691 {
692 	struct uio uio;
693 	struct iovec iov;
694 	struct dkwedge_softc *sc;
695 	struct dkwedge_info dkw;
696 	int error = 0;
697 
698 	iov.iov_base = dkwl->dkwl_buf;
699 	iov.iov_len = dkwl->dkwl_bufsize;
700 
701 	uio.uio_iov = &iov;
702 	uio.uio_iovcnt = 1;
703 	uio.uio_offset = 0;
704 	uio.uio_resid = dkwl->dkwl_bufsize;
705 	uio.uio_rw = UIO_READ;
706 	KASSERT(l == curlwp);
707 	uio.uio_vmspace = l->l_proc->p_vmspace;
708 
709 	dkwl->dkwl_ncopied = 0;
710 
711 	mutex_enter(&pdk->dk_openlock);
712 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
713 		if (uio.uio_resid < sizeof(dkw))
714 			break;
715 
716 		if (sc->sc_state != DKW_STATE_RUNNING)
717 			continue;
718 
719 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
720 			sizeof(dkw.dkw_devname));
721 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
722 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
723 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
724 		dkw.dkw_offset = sc->sc_offset;
725 		dkw.dkw_size = sc->sc_size;
726 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
727 
728 		error = uiomove(&dkw, sizeof(dkw), &uio);
729 		if (error)
730 			break;
731 		dkwl->dkwl_ncopied++;
732 	}
733 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
734 	mutex_exit(&pdk->dk_openlock);
735 
736 	return (error);
737 }
738 
739 device_t
740 dkwedge_find_by_wname(const char *wname)
741 {
742 	device_t dv = NULL;
743 	struct dkwedge_softc *sc;
744 	int i;
745 
746 	rw_enter(&dkwedges_lock, RW_WRITER);
747 	for (i = 0; i < ndkwedges; i++) {
748 		if ((sc = dkwedges[i]) == NULL)
749 			continue;
750 		if (strcmp(sc->sc_wname, wname) == 0) {
751 			if (dv != NULL) {
752 				printf(
753 				    "WARNING: double match for wedge name %s "
754 				    "(%s, %s)\n", wname, device_xname(dv),
755 				    device_xname(sc->sc_dev));
756 				continue;
757 			}
758 			dv = sc->sc_dev;
759 		}
760 	}
761 	rw_exit(&dkwedges_lock);
762 	return dv;
763 }
764 
765 device_t
766 dkwedge_find_by_parent(const char *name, size_t *i)
767 {
768 	rw_enter(&dkwedges_lock, RW_WRITER);
769 	for (; *i < (size_t)ndkwedges; (*i)++) {
770 		struct dkwedge_softc *sc;
771 		if ((sc = dkwedges[*i]) == NULL)
772 			continue;
773 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
774 			continue;
775 		rw_exit(&dkwedges_lock);
776 		return sc->sc_dev;
777 	}
778 	rw_exit(&dkwedges_lock);
779 	return NULL;
780 }
781 
782 void
783 dkwedge_print_wnames(void)
784 {
785 	struct dkwedge_softc *sc;
786 	int i;
787 
788 	rw_enter(&dkwedges_lock, RW_WRITER);
789 	for (i = 0; i < ndkwedges; i++) {
790 		if ((sc = dkwedges[i]) == NULL)
791 			continue;
792 		printf(" wedge:%s", sc->sc_wname);
793 	}
794 	rw_exit(&dkwedges_lock);
795 }
796 
797 /*
798  * We need a dummy object to stuff into the dkwedge discovery method link
799  * set to ensure that there is always at least one object in the set.
800  */
801 static struct dkwedge_discovery_method dummy_discovery_method;
802 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
803 
804 /*
805  * dkwedge_init:
806  *
807  *	Initialize the disk wedge subsystem.
808  */
809 void
810 dkwedge_init(void)
811 {
812 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
813 	struct dkwedge_discovery_method * const *ddmp;
814 	struct dkwedge_discovery_method *lddm, *ddm;
815 
816 	rw_init(&dkwedges_lock);
817 	rw_init(&dkwedge_discovery_methods_lock);
818 
819 	if (config_cfdriver_attach(&dk_cd) != 0)
820 		panic("dkwedge: unable to attach cfdriver");
821 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
822 		panic("dkwedge: unable to attach cfattach");
823 
824 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
825 
826 	LIST_INIT(&dkwedge_discovery_methods);
827 
828 	__link_set_foreach(ddmp, dkwedge_methods) {
829 		ddm = *ddmp;
830 		if (ddm == &dummy_discovery_method)
831 			continue;
832 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
833 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
834 					 ddm, ddm_list);
835 			continue;
836 		}
837 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
838 			if (ddm->ddm_priority == lddm->ddm_priority) {
839 				aprint_error("dk-method-%s: method \"%s\" "
840 				    "already exists at priority %d\n",
841 				    ddm->ddm_name, lddm->ddm_name,
842 				    lddm->ddm_priority);
843 				/* Not inserted. */
844 				break;
845 			}
846 			if (ddm->ddm_priority < lddm->ddm_priority) {
847 				/* Higher priority; insert before. */
848 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
849 				break;
850 			}
851 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
852 				/* Last one; insert after. */
853 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
854 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
855 				break;
856 			}
857 		}
858 	}
859 
860 	rw_exit(&dkwedge_discovery_methods_lock);
861 }
862 
863 #ifdef DKWEDGE_AUTODISCOVER
864 int	dkwedge_autodiscover = 1;
865 #else
866 int	dkwedge_autodiscover = 0;
867 #endif
868 
869 /*
870  * dkwedge_discover:	[exported function]
871  *
872  *	Discover the wedges on a newly attached disk.
873  *	Remove all unused wedges on the disk first.
874  */
875 void
876 dkwedge_discover(struct disk *pdk)
877 {
878 	struct dkwedge_discovery_method *ddm;
879 	struct vnode *vp;
880 	int error;
881 	dev_t pdev;
882 
883 	/*
884 	 * Require people playing with wedges to enable this explicitly.
885 	 */
886 	if (dkwedge_autodiscover == 0)
887 		return;
888 
889 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
890 
891 	/*
892 	 * Use the character device for scanning, the block device
893 	 * is busy if there are already wedges attached.
894 	 */
895 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
896 	if (error) {
897 		aprint_error("%s: unable to compute pdev, error = %d\n",
898 		    pdk->dk_name, error);
899 		goto out;
900 	}
901 
902 	error = cdevvp(pdev, &vp);
903 	if (error) {
904 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
905 		    pdk->dk_name, error);
906 		goto out;
907 	}
908 
909 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
910 	if (error) {
911 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
912 		    pdk->dk_name, error);
913 		vrele(vp);
914 		goto out;
915 	}
916 
917 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
918 	if (error) {
919 		if (error != ENODEV)
920 			aprint_error("%s: unable to open device, error = %d\n",
921 			    pdk->dk_name, error);
922 		vput(vp);
923 		goto out;
924 	}
925 	VOP_UNLOCK(vp);
926 
927 	/*
928 	 * Remove unused wedges
929 	 */
930 	dkwedge_delall1(pdk, true);
931 
932 	/*
933 	 * For each supported partition map type, look to see if
934 	 * this map type exists.  If so, parse it and add the
935 	 * corresponding wedges.
936 	 */
937 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
938 		error = (*ddm->ddm_discover)(pdk, vp);
939 		if (error == 0) {
940 			/* Successfully created wedges; we're done. */
941 			break;
942 		}
943 	}
944 
945 	error = vn_close(vp, FREAD, NOCRED);
946 	if (error) {
947 		aprint_error("%s: unable to close device, error = %d\n",
948 		    pdk->dk_name, error);
949 		/* We'll just assume the vnode has been cleaned up. */
950 	}
951 
952  out:
953 	rw_exit(&dkwedge_discovery_methods_lock);
954 }
955 
956 /*
957  * dkwedge_read:
958  *
959  *	Read some data from the specified disk, used for
960  *	partition discovery.
961  */
962 int
963 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
964     void *tbuf, size_t len)
965 {
966 	buf_t *bp;
967 	int error;
968 	bool isopen;
969 	dev_t bdev;
970 	struct vnode *bdvp;
971 
972 	/*
973 	 * The kernel cannot read from a character device vnode
974 	 * as physio() only handles user memory.
975 	 *
976 	 * If the block device has already been opened by a wedge
977 	 * use that vnode and temporarily bump the open counter.
978 	 *
979 	 * Otherwise try to open the block device.
980 	 */
981 
982 	bdev = devsw_chr2blk(vp->v_rdev);
983 
984 	mutex_enter(&pdk->dk_rawlock);
985 	if (pdk->dk_rawopens != 0) {
986 		KASSERT(pdk->dk_rawvp != NULL);
987 		isopen = true;
988 		++pdk->dk_rawopens;
989 		bdvp = pdk->dk_rawvp;
990 		error = 0;
991 	} else {
992 		isopen = false;
993 		error = dk_open_parent(bdev, FREAD, &bdvp);
994 	}
995 	mutex_exit(&pdk->dk_rawlock);
996 
997 	if (error)
998 		return error;
999 
1000 	bp = getiobuf(bdvp, true);
1001 	bp->b_flags = B_READ;
1002 	bp->b_cflags = BC_BUSY;
1003 	bp->b_dev = bdev;
1004 	bp->b_data = tbuf;
1005 	bp->b_bufsize = bp->b_bcount = len;
1006 	bp->b_blkno = blkno;
1007 	bp->b_cylinder = 0;
1008 	bp->b_error = 0;
1009 
1010 	VOP_STRATEGY(bdvp, bp);
1011 	error = biowait(bp);
1012 	putiobuf(bp);
1013 
1014 	mutex_enter(&pdk->dk_rawlock);
1015 	if (isopen) {
1016 		--pdk->dk_rawopens;
1017 	} else {
1018 		dk_close_parent(bdvp, FREAD);
1019 	}
1020 	mutex_exit(&pdk->dk_rawlock);
1021 
1022 	return error;
1023 }
1024 
1025 /*
1026  * dkwedge_lookup:
1027  *
1028  *	Look up a dkwedge_softc based on the provided dev_t.
1029  */
1030 static struct dkwedge_softc *
1031 dkwedge_lookup(dev_t dev)
1032 {
1033 	int unit = minor(dev);
1034 
1035 	if (unit >= ndkwedges)
1036 		return (NULL);
1037 
1038 	KASSERT(dkwedges != NULL);
1039 
1040 	return (dkwedges[unit]);
1041 }
1042 
1043 static int
1044 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1045 {
1046 	struct vnode *vp;
1047 	int error;
1048 
1049 	error = bdevvp(dev, &vp);
1050 	if (error)
1051 		return error;
1052 
1053 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1054 	if (error) {
1055 		vrele(vp);
1056 		return error;
1057 	}
1058 	error = VOP_OPEN(vp, mode, NOCRED);
1059 	if (error) {
1060 		vput(vp);
1061 		return error;
1062 	}
1063 
1064 	/* VOP_OPEN() doesn't do this for us. */
1065 	if (mode & FWRITE) {
1066 		mutex_enter(vp->v_interlock);
1067 		vp->v_writecount++;
1068 		mutex_exit(vp->v_interlock);
1069 	}
1070 
1071 	VOP_UNLOCK(vp);
1072 
1073 	*vpp = vp;
1074 
1075 	return 0;
1076 }
1077 
1078 static int
1079 dk_close_parent(struct vnode *vp, int mode)
1080 {
1081 	int error;
1082 
1083 	error = vn_close(vp, mode, NOCRED);
1084 	return error;
1085 }
1086 
1087 /*
1088  * dkopen:		[devsw entry point]
1089  *
1090  *	Open a wedge.
1091  */
1092 static int
1093 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1094 {
1095 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1096 	struct vnode *vp;
1097 	int error = 0;
1098 
1099 	if (sc == NULL)
1100 		return (ENODEV);
1101 	if (sc->sc_state != DKW_STATE_RUNNING)
1102 		return (ENXIO);
1103 
1104 	/*
1105 	 * We go through a complicated little dance to only open the parent
1106 	 * vnode once per wedge, no matter how many times the wedge is
1107 	 * opened.  The reason?  We see one dkopen() per open call, but
1108 	 * only dkclose() on the last close.
1109 	 */
1110 	mutex_enter(&sc->sc_dk.dk_openlock);
1111 	mutex_enter(&sc->sc_parent->dk_rawlock);
1112 	if (sc->sc_dk.dk_openmask == 0) {
1113 		if (sc->sc_parent->dk_rawopens == 0) {
1114 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
1115 			error = dk_open_parent(sc->sc_pdev, FREAD | FWRITE, &vp);
1116 			if (error)
1117 				goto popen_fail;
1118 			sc->sc_parent->dk_rawvp = vp;
1119 		}
1120 		sc->sc_parent->dk_rawopens++;
1121 	}
1122 	if (fmt == S_IFCHR)
1123 		sc->sc_dk.dk_copenmask |= 1;
1124 	else
1125 		sc->sc_dk.dk_bopenmask |= 1;
1126 	sc->sc_dk.dk_openmask =
1127 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1128 
1129  popen_fail:
1130 	mutex_exit(&sc->sc_parent->dk_rawlock);
1131 	mutex_exit(&sc->sc_dk.dk_openlock);
1132 	return (error);
1133 }
1134 
1135 /*
1136  * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1137  */
1138 static int
1139 dklastclose(struct dkwedge_softc *sc)
1140 {
1141 	int error = 0, doclose;
1142 
1143 	doclose = 0;
1144 	if (sc->sc_parent->dk_rawopens > 0) {
1145 		if (--sc->sc_parent->dk_rawopens == 0)
1146 			doclose = 1;
1147 	}
1148 
1149 	mutex_exit(&sc->sc_parent->dk_rawlock);
1150 	mutex_exit(&sc->sc_dk.dk_openlock);
1151 
1152 	if (doclose) {
1153 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
1154 		dk_close_parent(sc->sc_parent->dk_rawvp, FREAD | FWRITE);
1155 		sc->sc_parent->dk_rawvp = NULL;
1156 	}
1157 
1158 	return error;
1159 }
1160 
1161 /*
1162  * dkclose:		[devsw entry point]
1163  *
1164  *	Close a wedge.
1165  */
1166 static int
1167 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1168 {
1169 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1170 	int error = 0;
1171 
1172 	if (sc == NULL)
1173 		return (ENODEV);
1174 	if (sc->sc_state != DKW_STATE_RUNNING)
1175 		return (ENXIO);
1176 
1177 	KASSERT(sc->sc_dk.dk_openmask != 0);
1178 
1179 	mutex_enter(&sc->sc_dk.dk_openlock);
1180 	mutex_enter(&sc->sc_parent->dk_rawlock);
1181 
1182 	if (fmt == S_IFCHR)
1183 		sc->sc_dk.dk_copenmask &= ~1;
1184 	else
1185 		sc->sc_dk.dk_bopenmask &= ~1;
1186 	sc->sc_dk.dk_openmask =
1187 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1188 
1189 	if (sc->sc_dk.dk_openmask == 0)
1190 		error = dklastclose(sc); /* releases locks */
1191 	else {
1192 		mutex_exit(&sc->sc_parent->dk_rawlock);
1193 		mutex_exit(&sc->sc_dk.dk_openlock);
1194 	}
1195 
1196 	return (error);
1197 }
1198 
1199 /*
1200  * dkstragegy:		[devsw entry point]
1201  *
1202  *	Perform I/O based on the wedge I/O strategy.
1203  */
1204 static void
1205 dkstrategy(struct buf *bp)
1206 {
1207 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1208 	uint64_t p_size, p_offset;
1209 	int s;
1210 
1211 	if (sc == NULL) {
1212 		bp->b_error = ENODEV;
1213 		goto done;
1214 	}
1215 
1216 	if (sc->sc_state != DKW_STATE_RUNNING ||
1217 	    sc->sc_parent->dk_rawvp == NULL) {
1218 		bp->b_error = ENXIO;
1219 		goto done;
1220 	}
1221 
1222 	/* If it's an empty transfer, wake up the top half now. */
1223 	if (bp->b_bcount == 0)
1224 		goto done;
1225 
1226 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1227 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
1228 
1229 	/* Make sure it's in-range. */
1230 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1231 		goto done;
1232 
1233 	/* Translate it to the parent's raw LBA. */
1234 	bp->b_rawblkno = bp->b_blkno + p_offset;
1235 
1236 	/* Place it in the queue and start I/O on the unit. */
1237 	s = splbio();
1238 	sc->sc_iopend++;
1239 	bufq_put(sc->sc_bufq, bp);
1240 	dkstart(sc);
1241 	splx(s);
1242 	return;
1243 
1244  done:
1245 	bp->b_resid = bp->b_bcount;
1246 	biodone(bp);
1247 }
1248 
1249 /*
1250  * dkstart:
1251  *
1252  *	Start I/O that has been enqueued on the wedge.
1253  *	NOTE: Must be called at splbio()!
1254  */
1255 static void
1256 dkstart(struct dkwedge_softc *sc)
1257 {
1258 	struct vnode *vp;
1259 	struct buf *bp, *nbp;
1260 
1261 	/* Do as much work as has been enqueued. */
1262 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1263 		if (sc->sc_state != DKW_STATE_RUNNING) {
1264 			(void) bufq_get(sc->sc_bufq);
1265 			if (sc->sc_iopend-- == 1 &&
1266 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1267 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1268 				wakeup(&sc->sc_iopend);
1269 			}
1270 			bp->b_error = ENXIO;
1271 			bp->b_resid = bp->b_bcount;
1272 			biodone(bp);
1273 		}
1274 
1275 		/* Instrumentation. */
1276 		disk_busy(&sc->sc_dk);
1277 
1278 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1279 		if (nbp == NULL) {
1280 			/*
1281 			 * No resources to run this request; leave the
1282 			 * buffer queued up, and schedule a timer to
1283 			 * restart the queue in 1/2 a second.
1284 			 */
1285 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1286 			callout_schedule(&sc->sc_restart_ch, hz / 2);
1287 			return;
1288 		}
1289 
1290 		(void) bufq_get(sc->sc_bufq);
1291 
1292 		nbp->b_data = bp->b_data;
1293 		nbp->b_flags = bp->b_flags;
1294 		nbp->b_oflags = bp->b_oflags;
1295 		nbp->b_cflags = bp->b_cflags;
1296 		nbp->b_iodone = dkiodone;
1297 		nbp->b_proc = bp->b_proc;
1298 		nbp->b_blkno = bp->b_rawblkno;
1299 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1300 		nbp->b_bcount = bp->b_bcount;
1301 		nbp->b_private = bp;
1302 		BIO_COPYPRIO(nbp, bp);
1303 
1304 		vp = nbp->b_vp;
1305 		if ((nbp->b_flags & B_READ) == 0) {
1306 			mutex_enter(vp->v_interlock);
1307 			vp->v_numoutput++;
1308 			mutex_exit(vp->v_interlock);
1309 		}
1310 		VOP_STRATEGY(vp, nbp);
1311 	}
1312 }
1313 
1314 /*
1315  * dkiodone:
1316  *
1317  *	I/O to a wedge has completed; alert the top half.
1318  */
1319 static void
1320 dkiodone(struct buf *bp)
1321 {
1322 	struct buf *obp = bp->b_private;
1323 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1324 
1325 	int s = splbio();
1326 
1327 	if (bp->b_error != 0)
1328 		obp->b_error = bp->b_error;
1329 	obp->b_resid = bp->b_resid;
1330 	putiobuf(bp);
1331 
1332 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1333 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1334 		wakeup(&sc->sc_iopend);
1335 	}
1336 
1337 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1338 	    obp->b_flags & B_READ);
1339 
1340 	biodone(obp);
1341 
1342 	/* Kick the queue in case there is more work we can do. */
1343 	dkstart(sc);
1344 	splx(s);
1345 }
1346 
1347 /*
1348  * dkrestart:
1349  *
1350  *	Restart the work queue after it was stalled due to
1351  *	a resource shortage.  Invoked via a callout.
1352  */
1353 static void
1354 dkrestart(void *v)
1355 {
1356 	struct dkwedge_softc *sc = v;
1357 	int s;
1358 
1359 	s = splbio();
1360 	dkstart(sc);
1361 	splx(s);
1362 }
1363 
1364 /*
1365  * dkminphys:
1366  *
1367  *	Call parent's minphys function.
1368  */
1369 static void
1370 dkminphys(struct buf *bp)
1371 {
1372 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1373 	dev_t dev;
1374 
1375 	dev = bp->b_dev;
1376 	bp->b_dev = sc->sc_pdev;
1377 	(*sc->sc_parent->dk_driver->d_minphys)(bp);
1378 	bp->b_dev = dev;
1379 }
1380 
1381 /*
1382  * dkread:		[devsw entry point]
1383  *
1384  *	Read from a wedge.
1385  */
1386 static int
1387 dkread(dev_t dev, struct uio *uio, int flags)
1388 {
1389 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1390 
1391 	if (sc == NULL)
1392 		return (ENODEV);
1393 	if (sc->sc_state != DKW_STATE_RUNNING)
1394 		return (ENXIO);
1395 
1396 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1397 }
1398 
1399 /*
1400  * dkwrite:		[devsw entry point]
1401  *
1402  *	Write to a wedge.
1403  */
1404 static int
1405 dkwrite(dev_t dev, struct uio *uio, int flags)
1406 {
1407 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1408 
1409 	if (sc == NULL)
1410 		return (ENODEV);
1411 	if (sc->sc_state != DKW_STATE_RUNNING)
1412 		return (ENXIO);
1413 
1414 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1415 }
1416 
1417 /*
1418  * dkioctl:		[devsw entry point]
1419  *
1420  *	Perform an ioctl request on a wedge.
1421  */
1422 static int
1423 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1424 {
1425 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1426 	int error = 0;
1427 
1428 	if (sc == NULL)
1429 		return (ENODEV);
1430 	if (sc->sc_state != DKW_STATE_RUNNING)
1431 		return (ENXIO);
1432 	if (sc->sc_parent->dk_rawvp == NULL)
1433 		return (ENXIO);
1434 
1435 	/*
1436 	 * We pass NODEV instead of our device to indicate we don't
1437 	 * want to handle disklabel ioctls
1438 	 */
1439 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1440 	if (error != EPASSTHROUGH)
1441 		return (error);
1442 
1443 	error = 0;
1444 
1445 	switch (cmd) {
1446 	case DIOCCACHESYNC:
1447 		/*
1448 		 * XXX Do we really need to care about having a writable
1449 		 * file descriptor here?
1450 		 */
1451 		if ((flag & FWRITE) == 0)
1452 			error = EBADF;
1453 		else
1454 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1455 					  cmd, data, flag,
1456 					  l != NULL ? l->l_cred : NOCRED);
1457 		break;
1458 	case DIOCGWEDGEINFO:
1459 	    {
1460 		struct dkwedge_info *dkw = (void *) data;
1461 
1462 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1463 			sizeof(dkw->dkw_devname));
1464 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1465 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1466 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1467 		dkw->dkw_offset = sc->sc_offset;
1468 		dkw->dkw_size = sc->sc_size;
1469 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
1470 
1471 		break;
1472 	    }
1473 
1474 	default:
1475 		error = ENOTTY;
1476 	}
1477 
1478 	return (error);
1479 }
1480 
1481 /*
1482  * dkdiscard:		[devsw entry point]
1483  *
1484  *	Perform a discard-range request on a wedge.
1485  */
1486 static int
1487 dkdiscard(dev_t dev, off_t pos, off_t len)
1488 {
1489 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1490 	unsigned shift;
1491 	off_t offset, maxlen;
1492 
1493 	if (sc == NULL)
1494 		return (ENODEV);
1495 	if (sc->sc_state != DKW_STATE_RUNNING)
1496 		return (ENXIO);
1497 	if (sc->sc_parent->dk_rawvp == NULL)
1498 		return (ENXIO);
1499 
1500 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1501 	KASSERT(__type_fit(off_t, sc->sc_size));
1502 	KASSERT(__type_fit(off_t, sc->sc_offset));
1503 	KASSERT(0 <= sc->sc_offset);
1504 	KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1505 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1506 	offset = ((off_t)sc->sc_offset << shift);
1507 	maxlen = ((off_t)sc->sc_size << shift);
1508 
1509 	if (len > maxlen)
1510 		return (EINVAL);
1511 	if (pos > (maxlen - len))
1512 		return (EINVAL);
1513 
1514 	pos += offset;
1515 	return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1516 }
1517 
1518 /*
1519  * dksize:		[devsw entry point]
1520  *
1521  *	Query the size of a wedge for the purpose of performing a dump
1522  *	or for swapping to.
1523  */
1524 static int
1525 dksize(dev_t dev)
1526 {
1527 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1528 	int rv = -1;
1529 
1530 	if (sc == NULL)
1531 		return (-1);
1532 	if (sc->sc_state != DKW_STATE_RUNNING)
1533 		return (-1);
1534 
1535 	mutex_enter(&sc->sc_dk.dk_openlock);
1536 	mutex_enter(&sc->sc_parent->dk_rawlock);
1537 
1538 	/* Our content type is static, no need to open the device. */
1539 
1540 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1541 		/* Saturate if we are larger than INT_MAX. */
1542 		if (sc->sc_size > INT_MAX)
1543 			rv = INT_MAX;
1544 		else
1545 			rv = (int) sc->sc_size;
1546 	}
1547 
1548 	mutex_exit(&sc->sc_parent->dk_rawlock);
1549 	mutex_exit(&sc->sc_dk.dk_openlock);
1550 
1551 	return (rv);
1552 }
1553 
1554 /*
1555  * dkdump:		[devsw entry point]
1556  *
1557  *	Perform a crash dump to a wedge.
1558  */
1559 static int
1560 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1561 {
1562 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1563 	const struct bdevsw *bdev;
1564 	int rv = 0;
1565 
1566 	if (sc == NULL)
1567 		return (ENODEV);
1568 	if (sc->sc_state != DKW_STATE_RUNNING)
1569 		return (ENXIO);
1570 
1571 	mutex_enter(&sc->sc_dk.dk_openlock);
1572 	mutex_enter(&sc->sc_parent->dk_rawlock);
1573 
1574 	/* Our content type is static, no need to open the device. */
1575 
1576 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1577 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0) {
1578 		rv = ENXIO;
1579 		goto out;
1580 	}
1581 	if (size % DEV_BSIZE != 0) {
1582 		rv = EINVAL;
1583 		goto out;
1584 	}
1585 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
1586 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1587 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1588 		    size / DEV_BSIZE, sc->sc_size);
1589 		rv = EINVAL;
1590 		goto out;
1591 	}
1592 
1593 	bdev = bdevsw_lookup(sc->sc_pdev);
1594 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1595 
1596 out:
1597 	mutex_exit(&sc->sc_parent->dk_rawlock);
1598 	mutex_exit(&sc->sc_dk.dk_openlock);
1599 
1600 	return rv;
1601 }
1602 
1603 /*
1604  * config glue
1605  */
1606 
1607 /*
1608  * dkwedge_find_partition
1609  *
1610  *	Find wedge corresponding to the specified parent name
1611  *	and offset/length.
1612  */
1613 device_t
1614 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1615 {
1616 	struct dkwedge_softc *sc;
1617 	int i;
1618 	device_t wedge = NULL;
1619 
1620 	rw_enter(&dkwedges_lock, RW_READER);
1621 	for (i = 0; i < ndkwedges; i++) {
1622 		if ((sc = dkwedges[i]) == NULL)
1623 			continue;
1624 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1625 		    sc->sc_offset == startblk &&
1626 		    sc->sc_size == nblks) {
1627 			if (wedge) {
1628 				printf("WARNING: double match for boot wedge "
1629 				    "(%s, %s)\n",
1630 				    device_xname(wedge),
1631 				    device_xname(sc->sc_dev));
1632 				continue;
1633 			}
1634 			wedge = sc->sc_dev;
1635 		}
1636 	}
1637 	rw_exit(&dkwedges_lock);
1638 
1639 	return wedge;
1640 }
1641 
1642 const char *
1643 dkwedge_get_parent_name(dev_t dev)
1644 {
1645 	/* XXX: perhaps do this in lookup? */
1646 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1647 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1648 	if (major(dev) != bmaj && major(dev) != cmaj)
1649 		return NULL;
1650 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1651 	if (sc == NULL)
1652 		return NULL;
1653 	return sc->sc_parent->dk_name;
1654 }
1655 
1656