xref: /netbsd-src/sys/dev/dkwedge/dk.c (revision d536862b7d93d77932ef5de7eebdc48d76921b77)
1 /*	$NetBSD: dk.c,v 1.109 2021/10/18 11:40:56 simonb Exp $	*/
2 
3 /*-
4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.109 2021/10/18 11:40:56 simonb Exp $");
34 
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58 
59 #include <miscfs/specfs/specdev.h>
60 
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62 
63 typedef enum {
64 	DKW_STATE_LARVAL	= 0,
65 	DKW_STATE_RUNNING	= 1,
66 	DKW_STATE_DYING		= 2,
67 	DKW_STATE_DEAD		= 666
68 } dkwedge_state_t;
69 
70 struct dkwedge_softc {
71 	device_t	sc_dev;	/* pointer to our pseudo-device */
72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
74 
75 	dkwedge_state_t sc_state;	/* state this wedge is in */
76 
77 	struct disk	*sc_parent;	/* parent disk */
78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
79 	uint64_t	sc_size;	/* size of wedge in blocks */
80 	char		sc_ptype[32];	/* partition type */
81 	dev_t		sc_pdev;	/* cached parent's dev_t */
82 					/* link on parent's wedge list */
83 	LIST_ENTRY(dkwedge_softc) sc_plink;
84 
85 	struct disk	sc_dk;		/* our own disk structure */
86 	struct bufq_state *sc_bufq;	/* buffer queue */
87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
88 
89 	kmutex_t	sc_iolock;
90 	kcondvar_t	sc_dkdrn;
91 	u_int		sc_iopend;	/* I/Os pending */
92 	int		sc_flags;	/* flags (sc_iolock) */
93 	int		sc_mode;	/* parent open mode */
94 };
95 
96 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
97 
98 static void	dkstart(struct dkwedge_softc *);
99 static void	dkiodone(struct buf *);
100 static void	dkrestart(void *);
101 static void	dkminphys(struct buf *);
102 
103 static int	dklastclose(struct dkwedge_softc *);
104 static int	dkwedge_cleanup_parent(struct dkwedge_softc *, int);
105 static int	dkwedge_detach(device_t, int);
106 static void	dkwedge_delall1(struct disk *, bool);
107 static int	dkwedge_del1(struct dkwedge_info *, int);
108 static int	dk_open_parent(dev_t, int, struct vnode **);
109 static int	dk_close_parent(struct vnode *, int);
110 
111 static dev_type_open(dkopen);
112 static dev_type_close(dkclose);
113 static dev_type_read(dkread);
114 static dev_type_write(dkwrite);
115 static dev_type_ioctl(dkioctl);
116 static dev_type_strategy(dkstrategy);
117 static dev_type_dump(dkdump);
118 static dev_type_size(dksize);
119 static dev_type_discard(dkdiscard);
120 
121 const struct bdevsw dk_bdevsw = {
122 	.d_open = dkopen,
123 	.d_close = dkclose,
124 	.d_strategy = dkstrategy,
125 	.d_ioctl = dkioctl,
126 	.d_dump = dkdump,
127 	.d_psize = dksize,
128 	.d_discard = dkdiscard,
129 	.d_flag = D_DISK | D_MPSAFE
130 };
131 
132 const struct cdevsw dk_cdevsw = {
133 	.d_open = dkopen,
134 	.d_close = dkclose,
135 	.d_read = dkread,
136 	.d_write = dkwrite,
137 	.d_ioctl = dkioctl,
138 	.d_stop = nostop,
139 	.d_tty = notty,
140 	.d_poll = nopoll,
141 	.d_mmap = nommap,
142 	.d_kqfilter = nokqfilter,
143 	.d_discard = dkdiscard,
144 	.d_flag = D_DISK | D_MPSAFE
145 };
146 
147 static struct dkwedge_softc **dkwedges;
148 static u_int ndkwedges;
149 static krwlock_t dkwedges_lock;
150 
151 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
152 static krwlock_t dkwedge_discovery_methods_lock;
153 
154 /*
155  * dkwedge_match:
156  *
157  *	Autoconfiguration match function for pseudo-device glue.
158  */
159 static int
160 dkwedge_match(device_t parent, cfdata_t match,
161     void *aux)
162 {
163 
164 	/* Pseudo-device; always present. */
165 	return (1);
166 }
167 
168 /*
169  * dkwedge_attach:
170  *
171  *	Autoconfiguration attach function for pseudo-device glue.
172  */
173 static void
174 dkwedge_attach(device_t parent, device_t self,
175     void *aux)
176 {
177 
178 	if (!pmf_device_register(self, NULL, NULL))
179 		aprint_error_dev(self, "couldn't establish power handler\n");
180 }
181 
182 CFDRIVER_DECL(dk, DV_DISK, NULL);
183 CFATTACH_DECL3_NEW(dk, 0,
184     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
185     DVF_DETACH_SHUTDOWN);
186 
187 /*
188  * dkwedge_wait_drain:
189  *
190  *	Wait for I/O on the wedge to drain.
191  */
192 static void
193 dkwedge_wait_drain(struct dkwedge_softc *sc)
194 {
195 
196 	mutex_enter(&sc->sc_iolock);
197 	while (sc->sc_iopend != 0) {
198 		sc->sc_flags |= DK_F_WAIT_DRAIN;
199 		cv_wait(&sc->sc_dkdrn, &sc->sc_iolock);
200 	}
201 	mutex_exit(&sc->sc_iolock);
202 }
203 
204 /*
205  * dkwedge_compute_pdev:
206  *
207  *	Compute the parent disk's dev_t.
208  */
209 static int
210 dkwedge_compute_pdev(const char *pname, dev_t *pdevp, enum vtype type)
211 {
212 	const char *name, *cp;
213 	devmajor_t pmaj;
214 	int punit;
215 	char devname[16];
216 
217 	name = pname;
218 	switch (type) {
219 	case VBLK:
220 		pmaj = devsw_name2blk(name, devname, sizeof(devname));
221 		break;
222 	case VCHR:
223 		pmaj = devsw_name2chr(name, devname, sizeof(devname));
224 		break;
225 	default:
226 		pmaj = NODEVMAJOR;
227 		break;
228 	}
229 	if (pmaj == NODEVMAJOR)
230 		return (ENODEV);
231 
232 	name += strlen(devname);
233 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
234 		punit = (punit * 10) + (*cp - '0');
235 	if (cp == name) {
236 		/* Invalid parent disk name. */
237 		return (ENODEV);
238 	}
239 
240 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
241 
242 	return (0);
243 }
244 
245 /*
246  * dkwedge_array_expand:
247  *
248  *	Expand the dkwedges array.
249  */
250 static void
251 dkwedge_array_expand(void)
252 {
253 	int newcnt = ndkwedges + 16;
254 	struct dkwedge_softc **newarray, **oldarray;
255 
256 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
257 	    M_WAITOK|M_ZERO);
258 	if ((oldarray = dkwedges) != NULL)
259 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
260 	dkwedges = newarray;
261 	ndkwedges = newcnt;
262 	if (oldarray != NULL)
263 		free(oldarray, M_DKWEDGE);
264 }
265 
266 static void
267 dk_set_geometry(struct dkwedge_softc *sc, struct disk *pdk)
268 {
269 	struct disk *dk = &sc->sc_dk;
270 	struct disk_geom *dg = &dk->dk_geom;
271 
272 	memset(dg, 0, sizeof(*dg));
273 
274 	dg->dg_secperunit = sc->sc_size;
275 	dg->dg_secsize = DEV_BSIZE << pdk->dk_blkshift;
276 
277 	/* fake numbers, 1 cylinder is 1 MB with default sector size */
278 	dg->dg_nsectors = 32;
279 	dg->dg_ntracks = 64;
280 	dg->dg_ncylinders = dg->dg_secperunit / (dg->dg_nsectors * dg->dg_ntracks);
281 
282 	disk_set_info(sc->sc_dev, dk, NULL);
283 }
284 
285 /*
286  * dkwedge_add:		[exported function]
287  *
288  *	Add a disk wedge based on the provided information.
289  *
290  *	The incoming dkw_devname[] is ignored, instead being
291  *	filled in and returned to the caller.
292  */
293 int
294 dkwedge_add(struct dkwedge_info *dkw)
295 {
296 	struct dkwedge_softc *sc, *lsc;
297 	struct disk *pdk;
298 	u_int unit;
299 	int error;
300 	dev_t pdev;
301 
302 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
303 	pdk = disk_find(dkw->dkw_parent);
304 	if (pdk == NULL)
305 		return (ENODEV);
306 
307 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VBLK);
308 	if (error)
309 		return (error);
310 
311 	if (dkw->dkw_offset < 0)
312 		return (EINVAL);
313 
314 	/*
315 	 * Check for an existing wedge at the same disk offset. Allow
316 	 * updating a wedge if the only change is the size, and the new
317 	 * size is larger than the old.
318 	 */
319 	sc = NULL;
320 	mutex_enter(&pdk->dk_openlock);
321 	LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
322 		if (lsc->sc_offset != dkw->dkw_offset)
323 			continue;
324 		if (strcmp(lsc->sc_wname, dkw->dkw_wname) != 0)
325 			break;
326 		if (strcmp(lsc->sc_ptype, dkw->dkw_ptype) != 0)
327 			break;
328 		if (lsc->sc_size > dkw->dkw_size)
329 			break;
330 
331 		sc = lsc;
332 		sc->sc_size = dkw->dkw_size;
333 		dk_set_geometry(sc, pdk);
334 
335 		break;
336 	}
337 	mutex_exit(&pdk->dk_openlock);
338 
339 	if (sc != NULL)
340 		goto announce;
341 
342 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
343 	sc->sc_state = DKW_STATE_LARVAL;
344 	sc->sc_parent = pdk;
345 	sc->sc_pdev = pdev;
346 	sc->sc_offset = dkw->dkw_offset;
347 	sc->sc_size = dkw->dkw_size;
348 
349 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
350 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
351 
352 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
353 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
354 
355 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
356 
357 	callout_init(&sc->sc_restart_ch, 0);
358 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
359 
360 	mutex_init(&sc->sc_iolock, MUTEX_DEFAULT, IPL_BIO);
361 	cv_init(&sc->sc_dkdrn, "dkdrn");
362 
363 	/*
364 	 * Wedge will be added; increment the wedge count for the parent.
365 	 * Only allow this to happen if RAW_PART is the only thing open.
366 	 */
367 	mutex_enter(&pdk->dk_openlock);
368 	if (pdk->dk_openmask & ~(1 << RAW_PART))
369 		error = EBUSY;
370 	else {
371 		/* Check for wedge overlap. */
372 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
373 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
374 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
375 
376 			if (sc->sc_offset >= lsc->sc_offset &&
377 			    sc->sc_offset <= llastblk) {
378 				/* Overlaps the tail of the existing wedge. */
379 				break;
380 			}
381 			if (lastblk >= lsc->sc_offset &&
382 			    lastblk <= llastblk) {
383 				/* Overlaps the head of the existing wedge. */
384 			    	break;
385 			}
386 		}
387 		if (lsc != NULL) {
388 			if (sc->sc_offset == lsc->sc_offset &&
389 			    sc->sc_size == lsc->sc_size &&
390 			    strcmp(sc->sc_wname, lsc->sc_wname) == 0)
391 				error = EEXIST;
392 			else
393 				error = EINVAL;
394 		} else {
395 			pdk->dk_nwedges++;
396 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
397 		}
398 	}
399 	mutex_exit(&pdk->dk_openlock);
400 	if (error) {
401 		cv_destroy(&sc->sc_dkdrn);
402 		mutex_destroy(&sc->sc_iolock);
403 		bufq_free(sc->sc_bufq);
404 		free(sc, M_DKWEDGE);
405 		return (error);
406 	}
407 
408 	/* Fill in our cfdata for the pseudo-device glue. */
409 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
410 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
411 	/* sc->sc_cfdata.cf_unit set below */
412 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
413 
414 	/* Insert the larval wedge into the array. */
415 	rw_enter(&dkwedges_lock, RW_WRITER);
416 	for (error = 0;;) {
417 		struct dkwedge_softc **scpp;
418 
419 		/*
420 		 * Check for a duplicate wname while searching for
421 		 * a slot.
422 		 */
423 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
424 			if (dkwedges[unit] == NULL) {
425 				if (scpp == NULL) {
426 					scpp = &dkwedges[unit];
427 					sc->sc_cfdata.cf_unit = unit;
428 				}
429 			} else {
430 				/* XXX Unicode. */
431 				if (strcmp(dkwedges[unit]->sc_wname,
432 					   sc->sc_wname) == 0) {
433 					error = EEXIST;
434 					break;
435 				}
436 			}
437 		}
438 		if (error)
439 			break;
440 		KASSERT(unit == ndkwedges);
441 		if (scpp == NULL)
442 			dkwedge_array_expand();
443 		else {
444 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
445 			*scpp = sc;
446 			break;
447 		}
448 	}
449 	rw_exit(&dkwedges_lock);
450 	if (error) {
451 		mutex_enter(&pdk->dk_openlock);
452 		pdk->dk_nwedges--;
453 		LIST_REMOVE(sc, sc_plink);
454 		mutex_exit(&pdk->dk_openlock);
455 
456 		cv_destroy(&sc->sc_dkdrn);
457 		mutex_destroy(&sc->sc_iolock);
458 		bufq_free(sc->sc_bufq);
459 		free(sc, M_DKWEDGE);
460 		return (error);
461 	}
462 
463 	/*
464 	 * Now that we know the unit #, attach a pseudo-device for
465 	 * this wedge instance.  This will provide us with the
466 	 * device_t necessary for glue to other parts of the system.
467 	 *
468 	 * This should never fail, unless we're almost totally out of
469 	 * memory.
470 	 */
471 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
472 		aprint_error("%s%u: unable to attach pseudo-device\n",
473 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
474 
475 		rw_enter(&dkwedges_lock, RW_WRITER);
476 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
477 		rw_exit(&dkwedges_lock);
478 
479 		mutex_enter(&pdk->dk_openlock);
480 		pdk->dk_nwedges--;
481 		LIST_REMOVE(sc, sc_plink);
482 		mutex_exit(&pdk->dk_openlock);
483 
484 		cv_destroy(&sc->sc_dkdrn);
485 		mutex_destroy(&sc->sc_iolock);
486 		bufq_free(sc->sc_bufq);
487 		free(sc, M_DKWEDGE);
488 		return (ENOMEM);
489 	}
490 
491 	/* Return the devname to the caller. */
492 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
493 		sizeof(dkw->dkw_devname));
494 
495 	/*
496 	 * XXX Really ought to make the disk_attach() and the changing
497 	 * of state to RUNNING atomic.
498 	 */
499 
500 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
501 	dk_set_geometry(sc, pdk);
502 	disk_attach(&sc->sc_dk);
503 
504 	/* Disk wedge is ready for use! */
505 	sc->sc_state = DKW_STATE_RUNNING;
506 
507 announce:
508 	/* Announce our arrival. */
509 	aprint_normal(
510 	    "%s at %s: \"%s\", %"PRIu64" blocks at %"PRId64", type: %s\n",
511 	    device_xname(sc->sc_dev), pdk->dk_name,
512 	    sc->sc_wname,	/* XXX Unicode */
513 	    sc->sc_size, sc->sc_offset,
514 	    sc->sc_ptype[0] == '\0' ? "<unknown>" : sc->sc_ptype);
515 
516 	return (0);
517 }
518 
519 /*
520  * dkwedge_find:
521  *
522  *	Lookup a disk wedge based on the provided information.
523  *	NOTE: We look up the wedge based on the wedge devname,
524  *	not wname.
525  *
526  *	Return NULL if the wedge is not found, otherwise return
527  *	the wedge's softc.  Assign the wedge's unit number to unitp
528  *	if unitp is not NULL.
529  */
530 static struct dkwedge_softc *
531 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
532 {
533 	struct dkwedge_softc *sc = NULL;
534 	u_int unit;
535 
536 	/* Find our softc. */
537 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
538 	rw_enter(&dkwedges_lock, RW_READER);
539 	for (unit = 0; unit < ndkwedges; unit++) {
540 		if ((sc = dkwedges[unit]) != NULL &&
541 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
542 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
543 			break;
544 		}
545 	}
546 	rw_exit(&dkwedges_lock);
547 	if (unit == ndkwedges)
548 		return NULL;
549 
550 	if (unitp != NULL)
551 		*unitp = unit;
552 
553 	return sc;
554 }
555 
556 /*
557  * dkwedge_del:		[exported function]
558  *
559  *	Delete a disk wedge based on the provided information.
560  *	NOTE: We look up the wedge based on the wedge devname,
561  *	not wname.
562  */
563 int
564 dkwedge_del(struct dkwedge_info *dkw)
565 {
566 	return dkwedge_del1(dkw, 0);
567 }
568 
569 int
570 dkwedge_del1(struct dkwedge_info *dkw, int flags)
571 {
572 	struct dkwedge_softc *sc = NULL;
573 
574 	/* Find our softc. */
575 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
576 		return (ESRCH);
577 
578 	return config_detach(sc->sc_dev, flags);
579 }
580 
581 static int
582 dkwedge_cleanup_parent(struct dkwedge_softc *sc, int flags)
583 {
584 	struct disk *dk = &sc->sc_dk;
585 	int rc;
586 
587 	rc = 0;
588 	mutex_enter(&dk->dk_openlock);
589 	if (dk->dk_openmask == 0)
590 		/* nothing to do */
591 		mutex_exit(&dk->dk_openlock);
592 	else if ((flags & DETACH_FORCE) == 0) {
593 		rc = EBUSY;
594 		mutex_exit(&dk->dk_openlock);
595 	}  else {
596 		mutex_enter(&sc->sc_parent->dk_rawlock);
597 		rc = dklastclose(sc); /* releases locks */
598 	}
599 
600 	return rc;
601 }
602 
603 /*
604  * dkwedge_detach:
605  *
606  *	Autoconfiguration detach function for pseudo-device glue.
607  */
608 static int
609 dkwedge_detach(device_t self, int flags)
610 {
611 	struct dkwedge_softc *sc = NULL;
612 	u_int unit;
613 	int bmaj, cmaj, rc;
614 
615 	rw_enter(&dkwedges_lock, RW_WRITER);
616 	for (unit = 0; unit < ndkwedges; unit++) {
617 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
618 			break;
619 	}
620 	if (unit == ndkwedges)
621 		rc = ENXIO;
622 	else if ((rc = dkwedge_cleanup_parent(sc, flags)) == 0) {
623 		/* Mark the wedge as dying. */
624 		sc->sc_state = DKW_STATE_DYING;
625 	}
626 	rw_exit(&dkwedges_lock);
627 
628 	if (rc != 0)
629 		return rc;
630 
631 	pmf_device_deregister(self);
632 
633 	/* Locate the wedge major numbers. */
634 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
635 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
636 
637 	/* Kill any pending restart. */
638 	callout_stop(&sc->sc_restart_ch);
639 
640 	/*
641 	 * dkstart() will kill any queued buffers now that the
642 	 * state of the wedge is not RUNNING.  Once we've done
643 	 * that, wait for any other pending I/O to complete.
644 	 */
645 	dkstart(sc);
646 	dkwedge_wait_drain(sc);
647 
648 	/* Nuke the vnodes for any open instances. */
649 	vdevgone(bmaj, unit, unit, VBLK);
650 	vdevgone(cmaj, unit, unit, VCHR);
651 
652 	/* Clean up the parent. */
653 	dkwedge_cleanup_parent(sc, flags | DETACH_FORCE);
654 
655 	/* Announce our departure. */
656 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
657 	    sc->sc_parent->dk_name,
658 	    sc->sc_wname);	/* XXX Unicode */
659 
660 	mutex_enter(&sc->sc_parent->dk_openlock);
661 	sc->sc_parent->dk_nwedges--;
662 	LIST_REMOVE(sc, sc_plink);
663 	mutex_exit(&sc->sc_parent->dk_openlock);
664 
665 	/* Delete our buffer queue. */
666 	bufq_free(sc->sc_bufq);
667 
668 	/* Detach from the disk list. */
669 	disk_detach(&sc->sc_dk);
670 	disk_destroy(&sc->sc_dk);
671 
672 	/* Poof. */
673 	rw_enter(&dkwedges_lock, RW_WRITER);
674 	dkwedges[unit] = NULL;
675 	sc->sc_state = DKW_STATE_DEAD;
676 	rw_exit(&dkwedges_lock);
677 
678 	mutex_destroy(&sc->sc_iolock);
679 	cv_destroy(&sc->sc_dkdrn);
680 
681 	free(sc, M_DKWEDGE);
682 
683 	return 0;
684 }
685 
686 /*
687  * dkwedge_delall:	[exported function]
688  *
689  *	Delete all of the wedges on the specified disk.  Used when
690  *	a disk is being detached.
691  */
692 void
693 dkwedge_delall(struct disk *pdk)
694 {
695 	dkwedge_delall1(pdk, false);
696 }
697 
698 static void
699 dkwedge_delall1(struct disk *pdk, bool idleonly)
700 {
701 	struct dkwedge_info dkw;
702 	struct dkwedge_softc *sc;
703 	int flags;
704 
705 	flags = DETACH_QUIET;
706 	if (!idleonly) flags |= DETACH_FORCE;
707 
708 	for (;;) {
709 		mutex_enter(&pdk->dk_openlock);
710 		LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
711 			if (!idleonly || sc->sc_dk.dk_openmask == 0)
712 				break;
713 		}
714 		if (sc == NULL) {
715 			KASSERT(idleonly || pdk->dk_nwedges == 0);
716 			mutex_exit(&pdk->dk_openlock);
717 			return;
718 		}
719 		strlcpy(dkw.dkw_parent, pdk->dk_name, sizeof(dkw.dkw_parent));
720 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
721 			sizeof(dkw.dkw_devname));
722 		mutex_exit(&pdk->dk_openlock);
723 		(void) dkwedge_del1(&dkw, flags);
724 	}
725 }
726 
727 /*
728  * dkwedge_list:	[exported function]
729  *
730  *	List all of the wedges on a particular disk.
731  */
732 int
733 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
734 {
735 	struct uio uio;
736 	struct iovec iov;
737 	struct dkwedge_softc *sc;
738 	struct dkwedge_info dkw;
739 	int error = 0;
740 
741 	iov.iov_base = dkwl->dkwl_buf;
742 	iov.iov_len = dkwl->dkwl_bufsize;
743 
744 	uio.uio_iov = &iov;
745 	uio.uio_iovcnt = 1;
746 	uio.uio_offset = 0;
747 	uio.uio_resid = dkwl->dkwl_bufsize;
748 	uio.uio_rw = UIO_READ;
749 	KASSERT(l == curlwp);
750 	uio.uio_vmspace = l->l_proc->p_vmspace;
751 
752 	dkwl->dkwl_ncopied = 0;
753 
754 	mutex_enter(&pdk->dk_openlock);
755 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
756 		if (uio.uio_resid < sizeof(dkw))
757 			break;
758 
759 		if (sc->sc_state != DKW_STATE_RUNNING)
760 			continue;
761 
762 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
763 			sizeof(dkw.dkw_devname));
764 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
765 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
766 		strlcpy(dkw.dkw_parent, sc->sc_parent->dk_name,
767 		    sizeof(dkw.dkw_parent));
768 		dkw.dkw_offset = sc->sc_offset;
769 		dkw.dkw_size = sc->sc_size;
770 		strlcpy(dkw.dkw_ptype, sc->sc_ptype, sizeof(dkw.dkw_ptype));
771 
772 		error = uiomove(&dkw, sizeof(dkw), &uio);
773 		if (error)
774 			break;
775 		dkwl->dkwl_ncopied++;
776 	}
777 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
778 	mutex_exit(&pdk->dk_openlock);
779 
780 	return (error);
781 }
782 
783 device_t
784 dkwedge_find_by_wname(const char *wname)
785 {
786 	device_t dv = NULL;
787 	struct dkwedge_softc *sc;
788 	int i;
789 
790 	rw_enter(&dkwedges_lock, RW_WRITER);
791 	for (i = 0; i < ndkwedges; i++) {
792 		if ((sc = dkwedges[i]) == NULL)
793 			continue;
794 		if (strcmp(sc->sc_wname, wname) == 0) {
795 			if (dv != NULL) {
796 				printf(
797 				    "WARNING: double match for wedge name %s "
798 				    "(%s, %s)\n", wname, device_xname(dv),
799 				    device_xname(sc->sc_dev));
800 				continue;
801 			}
802 			dv = sc->sc_dev;
803 		}
804 	}
805 	rw_exit(&dkwedges_lock);
806 	return dv;
807 }
808 
809 device_t
810 dkwedge_find_by_parent(const char *name, size_t *i)
811 {
812 	rw_enter(&dkwedges_lock, RW_WRITER);
813 	for (; *i < (size_t)ndkwedges; (*i)++) {
814 		struct dkwedge_softc *sc;
815 		if ((sc = dkwedges[*i]) == NULL)
816 			continue;
817 		if (strcmp(sc->sc_parent->dk_name, name) != 0)
818 			continue;
819 		rw_exit(&dkwedges_lock);
820 		return sc->sc_dev;
821 	}
822 	rw_exit(&dkwedges_lock);
823 	return NULL;
824 }
825 
826 void
827 dkwedge_print_wnames(void)
828 {
829 	struct dkwedge_softc *sc;
830 	int i;
831 
832 	rw_enter(&dkwedges_lock, RW_WRITER);
833 	for (i = 0; i < ndkwedges; i++) {
834 		if ((sc = dkwedges[i]) == NULL)
835 			continue;
836 		printf(" wedge:%s", sc->sc_wname);
837 	}
838 	rw_exit(&dkwedges_lock);
839 }
840 
841 /*
842  * We need a dummy object to stuff into the dkwedge discovery method link
843  * set to ensure that there is always at least one object in the set.
844  */
845 static struct dkwedge_discovery_method dummy_discovery_method;
846 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
847 
848 /*
849  * dkwedge_init:
850  *
851  *	Initialize the disk wedge subsystem.
852  */
853 void
854 dkwedge_init(void)
855 {
856 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
857 	struct dkwedge_discovery_method * const *ddmp;
858 	struct dkwedge_discovery_method *lddm, *ddm;
859 
860 	rw_init(&dkwedges_lock);
861 	rw_init(&dkwedge_discovery_methods_lock);
862 
863 	if (config_cfdriver_attach(&dk_cd) != 0)
864 		panic("dkwedge: unable to attach cfdriver");
865 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
866 		panic("dkwedge: unable to attach cfattach");
867 
868 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
869 
870 	LIST_INIT(&dkwedge_discovery_methods);
871 
872 	__link_set_foreach(ddmp, dkwedge_methods) {
873 		ddm = *ddmp;
874 		if (ddm == &dummy_discovery_method)
875 			continue;
876 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
877 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
878 					 ddm, ddm_list);
879 			continue;
880 		}
881 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
882 			if (ddm->ddm_priority == lddm->ddm_priority) {
883 				aprint_error("dk-method-%s: method \"%s\" "
884 				    "already exists at priority %d\n",
885 				    ddm->ddm_name, lddm->ddm_name,
886 				    lddm->ddm_priority);
887 				/* Not inserted. */
888 				break;
889 			}
890 			if (ddm->ddm_priority < lddm->ddm_priority) {
891 				/* Higher priority; insert before. */
892 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
893 				break;
894 			}
895 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
896 				/* Last one; insert after. */
897 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
898 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
899 				break;
900 			}
901 		}
902 	}
903 
904 	rw_exit(&dkwedge_discovery_methods_lock);
905 }
906 
907 #ifdef DKWEDGE_AUTODISCOVER
908 int	dkwedge_autodiscover = 1;
909 #else
910 int	dkwedge_autodiscover = 0;
911 #endif
912 
913 /*
914  * dkwedge_discover:	[exported function]
915  *
916  *	Discover the wedges on a newly attached disk.
917  *	Remove all unused wedges on the disk first.
918  */
919 void
920 dkwedge_discover(struct disk *pdk)
921 {
922 	struct dkwedge_discovery_method *ddm;
923 	struct vnode *vp;
924 	int error;
925 	dev_t pdev;
926 
927 	/*
928 	 * Require people playing with wedges to enable this explicitly.
929 	 */
930 	if (dkwedge_autodiscover == 0)
931 		return;
932 
933 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
934 
935 	/*
936 	 * Use the character device for scanning, the block device
937 	 * is busy if there are already wedges attached.
938 	 */
939 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev, VCHR);
940 	if (error) {
941 		aprint_error("%s: unable to compute pdev, error = %d\n",
942 		    pdk->dk_name, error);
943 		goto out;
944 	}
945 
946 	error = cdevvp(pdev, &vp);
947 	if (error) {
948 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
949 		    pdk->dk_name, error);
950 		goto out;
951 	}
952 
953 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
954 	if (error) {
955 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
956 		    pdk->dk_name, error);
957 		vrele(vp);
958 		goto out;
959 	}
960 
961 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
962 	if (error) {
963 		if (error != ENODEV)
964 			aprint_error("%s: unable to open device, error = %d\n",
965 			    pdk->dk_name, error);
966 		vput(vp);
967 		goto out;
968 	}
969 	VOP_UNLOCK(vp);
970 
971 	/*
972 	 * Remove unused wedges
973 	 */
974 	dkwedge_delall1(pdk, true);
975 
976 	/*
977 	 * For each supported partition map type, look to see if
978 	 * this map type exists.  If so, parse it and add the
979 	 * corresponding wedges.
980 	 */
981 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
982 		error = (*ddm->ddm_discover)(pdk, vp);
983 		if (error == 0) {
984 			/* Successfully created wedges; we're done. */
985 			break;
986 		}
987 	}
988 
989 	error = vn_close(vp, FREAD, NOCRED);
990 	if (error) {
991 		aprint_error("%s: unable to close device, error = %d\n",
992 		    pdk->dk_name, error);
993 		/* We'll just assume the vnode has been cleaned up. */
994 	}
995 
996  out:
997 	rw_exit(&dkwedge_discovery_methods_lock);
998 }
999 
1000 /*
1001  * dkwedge_read:
1002  *
1003  *	Read some data from the specified disk, used for
1004  *	partition discovery.
1005  */
1006 int
1007 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
1008     void *tbuf, size_t len)
1009 {
1010 	buf_t *bp;
1011 	int error;
1012 	bool isopen;
1013 	dev_t bdev;
1014 	struct vnode *bdvp;
1015 
1016 	/*
1017 	 * The kernel cannot read from a character device vnode
1018 	 * as physio() only handles user memory.
1019 	 *
1020 	 * If the block device has already been opened by a wedge
1021 	 * use that vnode and temporarily bump the open counter.
1022 	 *
1023 	 * Otherwise try to open the block device.
1024 	 */
1025 
1026 	bdev = devsw_chr2blk(vp->v_rdev);
1027 
1028 	mutex_enter(&pdk->dk_rawlock);
1029 	if (pdk->dk_rawopens != 0) {
1030 		KASSERT(pdk->dk_rawvp != NULL);
1031 		isopen = true;
1032 		++pdk->dk_rawopens;
1033 		bdvp = pdk->dk_rawvp;
1034 		error = 0;
1035 	} else {
1036 		isopen = false;
1037 		error = dk_open_parent(bdev, FREAD, &bdvp);
1038 	}
1039 	mutex_exit(&pdk->dk_rawlock);
1040 
1041 	if (error)
1042 		return error;
1043 
1044 	bp = getiobuf(bdvp, true);
1045 	bp->b_flags = B_READ;
1046 	bp->b_cflags = BC_BUSY;
1047 	bp->b_dev = bdev;
1048 	bp->b_data = tbuf;
1049 	bp->b_bufsize = bp->b_bcount = len;
1050 	bp->b_blkno = blkno;
1051 	bp->b_cylinder = 0;
1052 	bp->b_error = 0;
1053 
1054 	VOP_STRATEGY(bdvp, bp);
1055 	error = biowait(bp);
1056 	putiobuf(bp);
1057 
1058 	mutex_enter(&pdk->dk_rawlock);
1059 	if (isopen) {
1060 		--pdk->dk_rawopens;
1061 	} else {
1062 		dk_close_parent(bdvp, FREAD);
1063 	}
1064 	mutex_exit(&pdk->dk_rawlock);
1065 
1066 	return error;
1067 }
1068 
1069 /*
1070  * dkwedge_lookup:
1071  *
1072  *	Look up a dkwedge_softc based on the provided dev_t.
1073  */
1074 static struct dkwedge_softc *
1075 dkwedge_lookup(dev_t dev)
1076 {
1077 	int unit = minor(dev);
1078 
1079 	if (unit >= ndkwedges)
1080 		return (NULL);
1081 
1082 	KASSERT(dkwedges != NULL);
1083 
1084 	return (dkwedges[unit]);
1085 }
1086 
1087 static int
1088 dk_open_parent(dev_t dev, int mode, struct vnode **vpp)
1089 {
1090 	struct vnode *vp;
1091 	int error;
1092 
1093 	error = bdevvp(dev, &vp);
1094 	if (error)
1095 		return error;
1096 
1097 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1098 	if (error) {
1099 		vrele(vp);
1100 		return error;
1101 	}
1102 	error = VOP_OPEN(vp, mode, NOCRED);
1103 	if (error) {
1104 		vput(vp);
1105 		return error;
1106 	}
1107 
1108 	/* VOP_OPEN() doesn't do this for us. */
1109 	if (mode & FWRITE) {
1110 		mutex_enter(vp->v_interlock);
1111 		vp->v_writecount++;
1112 		mutex_exit(vp->v_interlock);
1113 	}
1114 
1115 	VOP_UNLOCK(vp);
1116 
1117 	*vpp = vp;
1118 
1119 	return 0;
1120 }
1121 
1122 static int
1123 dk_close_parent(struct vnode *vp, int mode)
1124 {
1125 	int error;
1126 
1127 	error = vn_close(vp, mode, NOCRED);
1128 	return error;
1129 }
1130 
1131 /*
1132  * dkopen:		[devsw entry point]
1133  *
1134  *	Open a wedge.
1135  */
1136 static int
1137 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
1138 {
1139 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1140 	struct dkwedge_softc *nsc;
1141 	struct vnode *vp;
1142 	int error = 0;
1143 	int mode;
1144 
1145 	if (sc == NULL)
1146 		return (ENODEV);
1147 	if (sc->sc_state != DKW_STATE_RUNNING)
1148 		return (ENXIO);
1149 
1150 	/*
1151 	 * We go through a complicated little dance to only open the parent
1152 	 * vnode once per wedge, no matter how many times the wedge is
1153 	 * opened.  The reason?  We see one dkopen() per open call, but
1154 	 * only dkclose() on the last close.
1155 	 */
1156 	mutex_enter(&sc->sc_dk.dk_openlock);
1157 	mutex_enter(&sc->sc_parent->dk_rawlock);
1158 	if (sc->sc_dk.dk_openmask == 0) {
1159 		if (sc->sc_parent->dk_rawopens == 0) {
1160 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
1161 			/*
1162 			 * Try open read-write. If this fails for EROFS
1163 			 * and wedge is read-only, retry to open read-only.
1164 			 */
1165 			mode = FREAD | FWRITE;
1166 			error = dk_open_parent(sc->sc_pdev, mode, &vp);
1167 			if (error == EROFS && (flags & FWRITE) == 0) {
1168 				mode &= ~FWRITE;
1169 				error = dk_open_parent(sc->sc_pdev, mode, &vp);
1170 			}
1171 			if (error)
1172 				goto popen_fail;
1173 			sc->sc_parent->dk_rawvp = vp;
1174 		} else {
1175 			/*
1176 			 * Retrieve mode from an already opened wedge.
1177 			 */
1178 			mode = 0;
1179 			LIST_FOREACH(nsc, &sc->sc_parent->dk_wedges, sc_plink) {
1180 				if (nsc == sc || nsc->sc_dk.dk_openmask == 0)
1181 					continue;
1182 				mode = nsc->sc_mode;
1183 				break;
1184 			}
1185 		}
1186 		sc->sc_mode = mode;
1187 		sc->sc_parent->dk_rawopens++;
1188 	}
1189 	KASSERT(sc->sc_mode != 0);
1190 	if (flags & ~sc->sc_mode & FWRITE) {
1191 		error = EROFS;
1192 		goto popen_fail;
1193 	}
1194 	if (fmt == S_IFCHR)
1195 		sc->sc_dk.dk_copenmask |= 1;
1196 	else
1197 		sc->sc_dk.dk_bopenmask |= 1;
1198 	sc->sc_dk.dk_openmask =
1199 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1200 
1201  popen_fail:
1202 	mutex_exit(&sc->sc_parent->dk_rawlock);
1203 	mutex_exit(&sc->sc_dk.dk_openlock);
1204 	return (error);
1205 }
1206 
1207 /*
1208  * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1209  */
1210 static int
1211 dklastclose(struct dkwedge_softc *sc)
1212 {
1213 	struct vnode *vp;
1214 	int error = 0, mode;
1215 
1216 	mode = sc->sc_mode;
1217 
1218 	vp = NULL;
1219 	if (sc->sc_parent->dk_rawopens > 0) {
1220 		if (--sc->sc_parent->dk_rawopens == 0) {
1221 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
1222 			vp = sc->sc_parent->dk_rawvp;
1223 			sc->sc_parent->dk_rawvp = NULL;
1224 			sc->sc_mode = 0;
1225 		}
1226 	}
1227 
1228 	mutex_exit(&sc->sc_parent->dk_rawlock);
1229 	mutex_exit(&sc->sc_dk.dk_openlock);
1230 
1231 	if (vp) {
1232 		dk_close_parent(vp, mode);
1233 	}
1234 
1235 	return error;
1236 }
1237 
1238 /*
1239  * dkclose:		[devsw entry point]
1240  *
1241  *	Close a wedge.
1242  */
1243 static int
1244 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1245 {
1246 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1247 	int error = 0;
1248 
1249 	if (sc == NULL)
1250 		return (ENODEV);
1251 	if (sc->sc_state != DKW_STATE_RUNNING)
1252 		return (ENXIO);
1253 
1254 	KASSERT(sc->sc_dk.dk_openmask != 0);
1255 
1256 	mutex_enter(&sc->sc_dk.dk_openlock);
1257 	mutex_enter(&sc->sc_parent->dk_rawlock);
1258 
1259 	if (fmt == S_IFCHR)
1260 		sc->sc_dk.dk_copenmask &= ~1;
1261 	else
1262 		sc->sc_dk.dk_bopenmask &= ~1;
1263 	sc->sc_dk.dk_openmask =
1264 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1265 
1266 	if (sc->sc_dk.dk_openmask == 0) {
1267 		error = dklastclose(sc); /* releases locks */
1268 	} else {
1269 		mutex_exit(&sc->sc_parent->dk_rawlock);
1270 		mutex_exit(&sc->sc_dk.dk_openlock);
1271 	}
1272 
1273 	return (error);
1274 }
1275 
1276 /*
1277  * dkstragegy:		[devsw entry point]
1278  *
1279  *	Perform I/O based on the wedge I/O strategy.
1280  */
1281 static void
1282 dkstrategy(struct buf *bp)
1283 {
1284 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1285 	uint64_t p_size, p_offset;
1286 
1287 	if (sc == NULL) {
1288 		bp->b_error = ENODEV;
1289 		goto done;
1290 	}
1291 
1292 	if (sc->sc_state != DKW_STATE_RUNNING ||
1293 	    sc->sc_parent->dk_rawvp == NULL) {
1294 		bp->b_error = ENXIO;
1295 		goto done;
1296 	}
1297 
1298 	/* If it's an empty transfer, wake up the top half now. */
1299 	if (bp->b_bcount == 0)
1300 		goto done;
1301 
1302 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1303 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
1304 
1305 	/* Make sure it's in-range. */
1306 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1307 		goto done;
1308 
1309 	/* Translate it to the parent's raw LBA. */
1310 	bp->b_rawblkno = bp->b_blkno + p_offset;
1311 
1312 	/* Place it in the queue and start I/O on the unit. */
1313 	mutex_enter(&sc->sc_iolock);
1314 	sc->sc_iopend++;
1315 	disk_wait(&sc->sc_dk);
1316 	bufq_put(sc->sc_bufq, bp);
1317 	mutex_exit(&sc->sc_iolock);
1318 
1319 	dkstart(sc);
1320 	return;
1321 
1322  done:
1323 	bp->b_resid = bp->b_bcount;
1324 	biodone(bp);
1325 }
1326 
1327 /*
1328  * dkstart:
1329  *
1330  *	Start I/O that has been enqueued on the wedge.
1331  */
1332 static void
1333 dkstart(struct dkwedge_softc *sc)
1334 {
1335 	struct vnode *vp;
1336 	struct buf *bp, *nbp;
1337 
1338 	mutex_enter(&sc->sc_iolock);
1339 
1340 	/* Do as much work as has been enqueued. */
1341 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1342 		if (sc->sc_state != DKW_STATE_RUNNING) {
1343 			(void) bufq_get(sc->sc_bufq);
1344 			if (sc->sc_iopend-- == 1 &&
1345 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1346 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1347 				cv_broadcast(&sc->sc_dkdrn);
1348 			}
1349 			mutex_exit(&sc->sc_iolock);
1350 			bp->b_error = ENXIO;
1351 			bp->b_resid = bp->b_bcount;
1352 			biodone(bp);
1353 			mutex_enter(&sc->sc_iolock);
1354 			continue;
1355 		}
1356 
1357 		/* fetch an I/O buf with sc_iolock dropped */
1358 		mutex_exit(&sc->sc_iolock);
1359 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1360 		mutex_enter(&sc->sc_iolock);
1361 		if (nbp == NULL) {
1362 			/*
1363 			 * No resources to run this request; leave the
1364 			 * buffer queued up, and schedule a timer to
1365 			 * restart the queue in 1/2 a second.
1366 			 */
1367 			callout_schedule(&sc->sc_restart_ch, hz / 2);
1368 			break;
1369 		}
1370 
1371 		/*
1372 		 * fetch buf, this can fail if another thread
1373 		 * has already processed the queue, it can also
1374 		 * return a completely different buf.
1375 		 */
1376 		bp = bufq_get(sc->sc_bufq);
1377 		if (bp == NULL) {
1378 			mutex_exit(&sc->sc_iolock);
1379 			putiobuf(nbp);
1380 			mutex_enter(&sc->sc_iolock);
1381 			continue;
1382 		}
1383 
1384 		/* Instrumentation. */
1385 		disk_busy(&sc->sc_dk);
1386 
1387 		/* release lock for VOP_STRATEGY */
1388 		mutex_exit(&sc->sc_iolock);
1389 
1390 		nbp->b_data = bp->b_data;
1391 		nbp->b_flags = bp->b_flags;
1392 		nbp->b_oflags = bp->b_oflags;
1393 		nbp->b_cflags = bp->b_cflags;
1394 		nbp->b_iodone = dkiodone;
1395 		nbp->b_proc = bp->b_proc;
1396 		nbp->b_blkno = bp->b_rawblkno;
1397 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1398 		nbp->b_bcount = bp->b_bcount;
1399 		nbp->b_private = bp;
1400 		BIO_COPYPRIO(nbp, bp);
1401 
1402 		vp = nbp->b_vp;
1403 		if ((nbp->b_flags & B_READ) == 0) {
1404 			mutex_enter(vp->v_interlock);
1405 			vp->v_numoutput++;
1406 			mutex_exit(vp->v_interlock);
1407 		}
1408 		VOP_STRATEGY(vp, nbp);
1409 
1410 		mutex_enter(&sc->sc_iolock);
1411 	}
1412 
1413 	mutex_exit(&sc->sc_iolock);
1414 }
1415 
1416 /*
1417  * dkiodone:
1418  *
1419  *	I/O to a wedge has completed; alert the top half.
1420  */
1421 static void
1422 dkiodone(struct buf *bp)
1423 {
1424 	struct buf *obp = bp->b_private;
1425 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1426 
1427 	if (bp->b_error != 0)
1428 		obp->b_error = bp->b_error;
1429 	obp->b_resid = bp->b_resid;
1430 	putiobuf(bp);
1431 
1432 	mutex_enter(&sc->sc_iolock);
1433 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1434 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1435 		cv_broadcast(&sc->sc_dkdrn);
1436 	}
1437 
1438 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1439 	    obp->b_flags & B_READ);
1440 	mutex_exit(&sc->sc_iolock);
1441 
1442 	biodone(obp);
1443 
1444 	/* Kick the queue in case there is more work we can do. */
1445 	dkstart(sc);
1446 }
1447 
1448 /*
1449  * dkrestart:
1450  *
1451  *	Restart the work queue after it was stalled due to
1452  *	a resource shortage.  Invoked via a callout.
1453  */
1454 static void
1455 dkrestart(void *v)
1456 {
1457 	struct dkwedge_softc *sc = v;
1458 
1459 	dkstart(sc);
1460 }
1461 
1462 /*
1463  * dkminphys:
1464  *
1465  *	Call parent's minphys function.
1466  */
1467 static void
1468 dkminphys(struct buf *bp)
1469 {
1470 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1471 	dev_t dev;
1472 
1473 	dev = bp->b_dev;
1474 	bp->b_dev = sc->sc_pdev;
1475 	if (sc->sc_parent->dk_driver && sc->sc_parent->dk_driver->d_minphys)
1476 		(*sc->sc_parent->dk_driver->d_minphys)(bp);
1477 	else
1478 		minphys(bp);
1479 	bp->b_dev = dev;
1480 }
1481 
1482 /*
1483  * dkread:		[devsw entry point]
1484  *
1485  *	Read from a wedge.
1486  */
1487 static int
1488 dkread(dev_t dev, struct uio *uio, int flags)
1489 {
1490 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1491 
1492 	if (sc == NULL)
1493 		return (ENODEV);
1494 	if (sc->sc_state != DKW_STATE_RUNNING)
1495 		return (ENXIO);
1496 
1497 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1498 }
1499 
1500 /*
1501  * dkwrite:		[devsw entry point]
1502  *
1503  *	Write to a wedge.
1504  */
1505 static int
1506 dkwrite(dev_t dev, struct uio *uio, int flags)
1507 {
1508 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1509 
1510 	if (sc == NULL)
1511 		return (ENODEV);
1512 	if (sc->sc_state != DKW_STATE_RUNNING)
1513 		return (ENXIO);
1514 
1515 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1516 }
1517 
1518 /*
1519  * dkioctl:		[devsw entry point]
1520  *
1521  *	Perform an ioctl request on a wedge.
1522  */
1523 static int
1524 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1525 {
1526 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1527 	int error = 0;
1528 
1529 	if (sc == NULL)
1530 		return (ENODEV);
1531 	if (sc->sc_state != DKW_STATE_RUNNING)
1532 		return (ENXIO);
1533 	if (sc->sc_parent->dk_rawvp == NULL)
1534 		return (ENXIO);
1535 
1536 	/*
1537 	 * We pass NODEV instead of our device to indicate we don't
1538 	 * want to handle disklabel ioctls
1539 	 */
1540 	error = disk_ioctl(&sc->sc_dk, NODEV, cmd, data, flag, l);
1541 	if (error != EPASSTHROUGH)
1542 		return (error);
1543 
1544 	error = 0;
1545 
1546 	switch (cmd) {
1547 	case DIOCGSTRATEGY:
1548 	case DIOCGCACHE:
1549 	case DIOCCACHESYNC:
1550 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, data, flag,
1551 					  l != NULL ? l->l_cred : NOCRED);
1552 		break;
1553 	case DIOCGWEDGEINFO:
1554 	    {
1555 		struct dkwedge_info *dkw = (void *) data;
1556 
1557 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1558 			sizeof(dkw->dkw_devname));
1559 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1560 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1561 		strlcpy(dkw->dkw_parent, sc->sc_parent->dk_name,
1562 		    sizeof(dkw->dkw_parent));
1563 		dkw->dkw_offset = sc->sc_offset;
1564 		dkw->dkw_size = sc->sc_size;
1565 		strlcpy(dkw->dkw_ptype, sc->sc_ptype, sizeof(dkw->dkw_ptype));
1566 
1567 		break;
1568 	    }
1569 	case DIOCGSECTORALIGN:
1570 	    {
1571 		struct disk_sectoralign *dsa = data;
1572 		uint32_t r;
1573 
1574 		error = VOP_IOCTL(sc->sc_parent->dk_rawvp, cmd, dsa, flag,
1575 		    l != NULL ? l->l_cred : NOCRED);
1576 		if (error)
1577 			break;
1578 
1579 		r = sc->sc_offset % dsa->dsa_alignment;
1580 		if (r < dsa->dsa_firstaligned)
1581 			dsa->dsa_firstaligned = dsa->dsa_firstaligned - r;
1582 		else
1583 			dsa->dsa_firstaligned = (dsa->dsa_firstaligned +
1584 			    dsa->dsa_alignment) - r;
1585 		break;
1586 	    }
1587 	default:
1588 		error = ENOTTY;
1589 	}
1590 
1591 	return (error);
1592 }
1593 
1594 /*
1595  * dkdiscard:		[devsw entry point]
1596  *
1597  *	Perform a discard-range request on a wedge.
1598  */
1599 static int
1600 dkdiscard(dev_t dev, off_t pos, off_t len)
1601 {
1602 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1603 	unsigned shift;
1604 	off_t offset, maxlen;
1605 
1606 	if (sc == NULL)
1607 		return (ENODEV);
1608 	if (sc->sc_state != DKW_STATE_RUNNING)
1609 		return (ENXIO);
1610 	if (sc->sc_parent->dk_rawvp == NULL)
1611 		return (ENXIO);
1612 
1613 	shift = (sc->sc_parent->dk_blkshift + DEV_BSHIFT);
1614 	KASSERT(__type_fit(off_t, sc->sc_size));
1615 	KASSERT(__type_fit(off_t, sc->sc_offset));
1616 	KASSERT(0 <= sc->sc_offset);
1617 	KASSERT(sc->sc_size <= (__type_max(off_t) >> shift));
1618 	KASSERT(sc->sc_offset <= ((__type_max(off_t) >> shift) - sc->sc_size));
1619 	offset = ((off_t)sc->sc_offset << shift);
1620 	maxlen = ((off_t)sc->sc_size << shift);
1621 
1622 	if (len > maxlen)
1623 		return (EINVAL);
1624 	if (pos > (maxlen - len))
1625 		return (EINVAL);
1626 
1627 	pos += offset;
1628 	return VOP_FDISCARD(sc->sc_parent->dk_rawvp, pos, len);
1629 }
1630 
1631 /*
1632  * dksize:		[devsw entry point]
1633  *
1634  *	Query the size of a wedge for the purpose of performing a dump
1635  *	or for swapping to.
1636  */
1637 static int
1638 dksize(dev_t dev)
1639 {
1640 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1641 	uint64_t p_size;
1642 	int rv = -1;
1643 
1644 	if (sc == NULL)
1645 		return (-1);
1646 	if (sc->sc_state != DKW_STATE_RUNNING)
1647 		return (-1);
1648 
1649 	mutex_enter(&sc->sc_dk.dk_openlock);
1650 	mutex_enter(&sc->sc_parent->dk_rawlock);
1651 
1652 	/* Our content type is static, no need to open the device. */
1653 
1654 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
1655 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1656 		/* Saturate if we are larger than INT_MAX. */
1657 		if (p_size > INT_MAX)
1658 			rv = INT_MAX;
1659 		else
1660 			rv = (int) p_size;
1661 	}
1662 
1663 	mutex_exit(&sc->sc_parent->dk_rawlock);
1664 	mutex_exit(&sc->sc_dk.dk_openlock);
1665 
1666 	return (rv);
1667 }
1668 
1669 /*
1670  * dkdump:		[devsw entry point]
1671  *
1672  *	Perform a crash dump to a wedge.
1673  */
1674 static int
1675 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1676 {
1677 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1678 	const struct bdevsw *bdev;
1679 	uint64_t p_size, p_offset;
1680 	int rv = 0;
1681 
1682 	if (sc == NULL)
1683 		return (ENODEV);
1684 	if (sc->sc_state != DKW_STATE_RUNNING)
1685 		return (ENXIO);
1686 
1687 	mutex_enter(&sc->sc_dk.dk_openlock);
1688 	mutex_enter(&sc->sc_parent->dk_rawlock);
1689 
1690 	/* Our content type is static, no need to open the device. */
1691 
1692 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0 &&
1693 	    strcmp(sc->sc_ptype, DKW_PTYPE_RAID) != 0 &&
1694 	    strcmp(sc->sc_ptype, DKW_PTYPE_CGD) != 0) {
1695 		rv = ENXIO;
1696 		goto out;
1697 	}
1698 	if (size % DEV_BSIZE != 0) {
1699 		rv = EINVAL;
1700 		goto out;
1701 	}
1702 
1703 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1704 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
1705 
1706 	if (blkno < 0 || blkno + size / DEV_BSIZE > p_size) {
1707 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1708 		    "p_size (%" PRIu64 ")\n", __func__, blkno,
1709 		    size / DEV_BSIZE, p_size);
1710 		rv = EINVAL;
1711 		goto out;
1712 	}
1713 
1714 	bdev = bdevsw_lookup(sc->sc_pdev);
1715 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + p_offset, va, size);
1716 
1717 out:
1718 	mutex_exit(&sc->sc_parent->dk_rawlock);
1719 	mutex_exit(&sc->sc_dk.dk_openlock);
1720 
1721 	return rv;
1722 }
1723 
1724 /*
1725  * config glue
1726  */
1727 
1728 /*
1729  * dkwedge_find_partition
1730  *
1731  *	Find wedge corresponding to the specified parent name
1732  *	and offset/length.
1733  */
1734 device_t
1735 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1736 {
1737 	struct dkwedge_softc *sc;
1738 	int i;
1739 	device_t wedge = NULL;
1740 
1741 	rw_enter(&dkwedges_lock, RW_READER);
1742 	for (i = 0; i < ndkwedges; i++) {
1743 		if ((sc = dkwedges[i]) == NULL)
1744 			continue;
1745 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1746 		    sc->sc_offset == startblk &&
1747 		    sc->sc_size == nblks) {
1748 			if (wedge) {
1749 				printf("WARNING: double match for boot wedge "
1750 				    "(%s, %s)\n",
1751 				    device_xname(wedge),
1752 				    device_xname(sc->sc_dev));
1753 				continue;
1754 			}
1755 			wedge = sc->sc_dev;
1756 		}
1757 	}
1758 	rw_exit(&dkwedges_lock);
1759 
1760 	return wedge;
1761 }
1762 
1763 const char *
1764 dkwedge_get_parent_name(dev_t dev)
1765 {
1766 	/* XXX: perhaps do this in lookup? */
1767 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1768 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1769 	if (major(dev) != bmaj && major(dev) != cmaj)
1770 		return NULL;
1771 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1772 	if (sc == NULL)
1773 		return NULL;
1774 	return sc->sc_parent->dk_name;
1775 }
1776