1 /* $NetBSD: dk.c,v 1.69 2014/04/03 15:24:20 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.69 2014/04/03 15:24:20 christos Exp $"); 34 35 #ifdef _KERNEL_OPT 36 #include "opt_dkwedge.h" 37 #endif 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/proc.h> 42 #include <sys/errno.h> 43 #include <sys/pool.h> 44 #include <sys/ioctl.h> 45 #include <sys/disklabel.h> 46 #include <sys/disk.h> 47 #include <sys/fcntl.h> 48 #include <sys/buf.h> 49 #include <sys/bufq.h> 50 #include <sys/vnode.h> 51 #include <sys/stat.h> 52 #include <sys/conf.h> 53 #include <sys/callout.h> 54 #include <sys/kernel.h> 55 #include <sys/malloc.h> 56 #include <sys/device.h> 57 #include <sys/kauth.h> 58 59 #include <miscfs/specfs/specdev.h> 60 61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures"); 62 63 typedef enum { 64 DKW_STATE_LARVAL = 0, 65 DKW_STATE_RUNNING = 1, 66 DKW_STATE_DYING = 2, 67 DKW_STATE_DEAD = 666 68 } dkwedge_state_t; 69 70 struct dkwedge_softc { 71 device_t sc_dev; /* pointer to our pseudo-device */ 72 struct cfdata sc_cfdata; /* our cfdata structure */ 73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */ 74 75 dkwedge_state_t sc_state; /* state this wedge is in */ 76 77 struct disk *sc_parent; /* parent disk */ 78 daddr_t sc_offset; /* LBA offset of wedge in parent */ 79 uint64_t sc_size; /* size of wedge in blocks */ 80 char sc_ptype[32]; /* partition type */ 81 dev_t sc_pdev; /* cached parent's dev_t */ 82 /* link on parent's wedge list */ 83 LIST_ENTRY(dkwedge_softc) sc_plink; 84 85 struct disk sc_dk; /* our own disk structure */ 86 struct bufq_state *sc_bufq; /* buffer queue */ 87 struct callout sc_restart_ch; /* callout to restart I/O */ 88 89 u_int sc_iopend; /* I/Os pending */ 90 int sc_flags; /* flags (splbio) */ 91 }; 92 93 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */ 94 95 static void dkstart(struct dkwedge_softc *); 96 static void dkiodone(struct buf *); 97 static void dkrestart(void *); 98 static void dkminphys(struct buf *); 99 100 static int dklastclose(struct dkwedge_softc *); 101 static int dkwedge_detach(device_t, int); 102 103 static dev_type_open(dkopen); 104 static dev_type_close(dkclose); 105 static dev_type_read(dkread); 106 static dev_type_write(dkwrite); 107 static dev_type_ioctl(dkioctl); 108 static dev_type_strategy(dkstrategy); 109 static dev_type_dump(dkdump); 110 static dev_type_size(dksize); 111 112 const struct bdevsw dk_bdevsw = { 113 .d_open = dkopen, 114 .d_close = dkclose, 115 .d_strategy = dkstrategy, 116 .d_ioctl = dkioctl, 117 .d_dump = dkdump, 118 .d_psize = dksize, 119 .d_flag = D_DISK 120 }; 121 122 const struct cdevsw dk_cdevsw = { 123 .d_open = dkopen, 124 .d_close = dkclose, 125 .d_read = dkread, 126 .d_write = dkwrite, 127 .d_ioctl = dkioctl, 128 .d_stop = nostop, 129 .d_tty = notty, 130 .d_poll = nopoll, 131 .d_mmap = nommap, 132 .d_kqfilter = nokqfilter, 133 .d_flag = D_DISK 134 }; 135 136 static struct dkwedge_softc **dkwedges; 137 static u_int ndkwedges; 138 static krwlock_t dkwedges_lock; 139 140 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods; 141 static krwlock_t dkwedge_discovery_methods_lock; 142 143 /* 144 * dkwedge_match: 145 * 146 * Autoconfiguration match function for pseudo-device glue. 147 */ 148 static int 149 dkwedge_match(device_t parent, cfdata_t match, 150 void *aux) 151 { 152 153 /* Pseudo-device; always present. */ 154 return (1); 155 } 156 157 /* 158 * dkwedge_attach: 159 * 160 * Autoconfiguration attach function for pseudo-device glue. 161 */ 162 static void 163 dkwedge_attach(device_t parent, device_t self, 164 void *aux) 165 { 166 167 if (!pmf_device_register(self, NULL, NULL)) 168 aprint_error_dev(self, "couldn't establish power handler\n"); 169 } 170 171 CFDRIVER_DECL(dk, DV_DISK, NULL); 172 CFATTACH_DECL3_NEW(dk, 0, 173 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL, 174 DVF_DETACH_SHUTDOWN); 175 176 /* 177 * dkwedge_wait_drain: 178 * 179 * Wait for I/O on the wedge to drain. 180 * NOTE: Must be called at splbio()! 181 */ 182 static void 183 dkwedge_wait_drain(struct dkwedge_softc *sc) 184 { 185 186 while (sc->sc_iopend != 0) { 187 sc->sc_flags |= DK_F_WAIT_DRAIN; 188 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0); 189 } 190 } 191 192 /* 193 * dkwedge_compute_pdev: 194 * 195 * Compute the parent disk's dev_t. 196 */ 197 static int 198 dkwedge_compute_pdev(const char *pname, dev_t *pdevp) 199 { 200 const char *name, *cp; 201 devmajor_t pmaj; 202 int punit; 203 char devname[16]; 204 205 name = pname; 206 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1) 207 return (ENODEV); 208 209 name += strlen(devname); 210 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++) 211 punit = (punit * 10) + (*cp - '0'); 212 if (cp == name) { 213 /* Invalid parent disk name. */ 214 return (ENODEV); 215 } 216 217 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART); 218 219 return (0); 220 } 221 222 /* 223 * dkwedge_array_expand: 224 * 225 * Expand the dkwedges array. 226 */ 227 static void 228 dkwedge_array_expand(void) 229 { 230 int newcnt = ndkwedges + 16; 231 struct dkwedge_softc **newarray, **oldarray; 232 233 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE, 234 M_WAITOK|M_ZERO); 235 if ((oldarray = dkwedges) != NULL) 236 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray)); 237 dkwedges = newarray; 238 ndkwedges = newcnt; 239 if (oldarray != NULL) 240 free(oldarray, M_DKWEDGE); 241 } 242 243 static void 244 dkgetproperties(struct disk *disk, struct dkwedge_info *dkw) 245 { 246 struct disk_geom *dg = &disk->dk_geom; 247 248 memset(dg, 0, sizeof(*dg)); 249 250 dg->dg_secperunit = dkw->dkw_size >> disk->dk_blkshift; 251 dg->dg_secsize = DEV_BSIZE << disk->dk_blkshift; 252 dg->dg_nsectors = 32; 253 dg->dg_ntracks = 64; 254 /* XXX: why is that dkw->dkw_size instead of secperunit?!?! */ 255 dg->dg_ncylinders = dkw->dkw_size / (dg->dg_nsectors * dg->dg_ntracks); 256 257 disk_set_info(NULL, disk, "ESDI"); 258 } 259 260 /* 261 * dkwedge_add: [exported function] 262 * 263 * Add a disk wedge based on the provided information. 264 * 265 * The incoming dkw_devname[] is ignored, instead being 266 * filled in and returned to the caller. 267 */ 268 int 269 dkwedge_add(struct dkwedge_info *dkw) 270 { 271 struct dkwedge_softc *sc, *lsc; 272 struct disk *pdk; 273 u_int unit; 274 int error; 275 dev_t pdev; 276 277 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0'; 278 pdk = disk_find(dkw->dkw_parent); 279 if (pdk == NULL) 280 return (ENODEV); 281 282 error = dkwedge_compute_pdev(pdk->dk_name, &pdev); 283 if (error) 284 return (error); 285 286 if (dkw->dkw_offset < 0) 287 return (EINVAL); 288 289 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO); 290 sc->sc_state = DKW_STATE_LARVAL; 291 sc->sc_parent = pdk; 292 sc->sc_pdev = pdev; 293 sc->sc_offset = dkw->dkw_offset; 294 sc->sc_size = dkw->dkw_size; 295 296 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname)); 297 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0'; 298 299 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype)); 300 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0'; 301 302 bufq_alloc(&sc->sc_bufq, "fcfs", 0); 303 304 callout_init(&sc->sc_restart_ch, 0); 305 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc); 306 307 /* 308 * Wedge will be added; increment the wedge count for the parent. 309 * Only allow this to happend if RAW_PART is the only thing open. 310 */ 311 mutex_enter(&pdk->dk_openlock); 312 if (pdk->dk_openmask & ~(1 << RAW_PART)) 313 error = EBUSY; 314 else { 315 /* Check for wedge overlap. */ 316 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) { 317 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1; 318 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1; 319 320 if (sc->sc_offset >= lsc->sc_offset && 321 sc->sc_offset <= llastblk) { 322 /* Overlaps the tail of the existing wedge. */ 323 break; 324 } 325 if (lastblk >= lsc->sc_offset && 326 lastblk <= llastblk) { 327 /* Overlaps the head of the existing wedge. */ 328 break; 329 } 330 } 331 if (lsc != NULL) 332 error = EINVAL; 333 else { 334 pdk->dk_nwedges++; 335 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink); 336 } 337 } 338 mutex_exit(&pdk->dk_openlock); 339 if (error) { 340 bufq_free(sc->sc_bufq); 341 free(sc, M_DKWEDGE); 342 return (error); 343 } 344 345 /* Fill in our cfdata for the pseudo-device glue. */ 346 sc->sc_cfdata.cf_name = dk_cd.cd_name; 347 sc->sc_cfdata.cf_atname = dk_ca.ca_name; 348 /* sc->sc_cfdata.cf_unit set below */ 349 sc->sc_cfdata.cf_fstate = FSTATE_STAR; 350 351 /* Insert the larval wedge into the array. */ 352 rw_enter(&dkwedges_lock, RW_WRITER); 353 for (error = 0;;) { 354 struct dkwedge_softc **scpp; 355 356 /* 357 * Check for a duplicate wname while searching for 358 * a slot. 359 */ 360 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) { 361 if (dkwedges[unit] == NULL) { 362 if (scpp == NULL) { 363 scpp = &dkwedges[unit]; 364 sc->sc_cfdata.cf_unit = unit; 365 } 366 } else { 367 /* XXX Unicode. */ 368 if (strcmp(dkwedges[unit]->sc_wname, 369 sc->sc_wname) == 0) { 370 error = EEXIST; 371 break; 372 } 373 } 374 } 375 if (error) 376 break; 377 KASSERT(unit == ndkwedges); 378 if (scpp == NULL) 379 dkwedge_array_expand(); 380 else { 381 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]); 382 *scpp = sc; 383 break; 384 } 385 } 386 rw_exit(&dkwedges_lock); 387 if (error) { 388 mutex_enter(&pdk->dk_openlock); 389 pdk->dk_nwedges--; 390 LIST_REMOVE(sc, sc_plink); 391 mutex_exit(&pdk->dk_openlock); 392 393 bufq_free(sc->sc_bufq); 394 free(sc, M_DKWEDGE); 395 return (error); 396 } 397 398 /* 399 * Now that we know the unit #, attach a pseudo-device for 400 * this wedge instance. This will provide us with the 401 * device_t necessary for glue to other parts of the system. 402 * 403 * This should never fail, unless we're almost totally out of 404 * memory. 405 */ 406 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) { 407 aprint_error("%s%u: unable to attach pseudo-device\n", 408 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit); 409 410 rw_enter(&dkwedges_lock, RW_WRITER); 411 dkwedges[sc->sc_cfdata.cf_unit] = NULL; 412 rw_exit(&dkwedges_lock); 413 414 mutex_enter(&pdk->dk_openlock); 415 pdk->dk_nwedges--; 416 LIST_REMOVE(sc, sc_plink); 417 mutex_exit(&pdk->dk_openlock); 418 419 bufq_free(sc->sc_bufq); 420 free(sc, M_DKWEDGE); 421 return (ENOMEM); 422 } 423 424 /* Return the devname to the caller. */ 425 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev), 426 sizeof(dkw->dkw_devname)); 427 428 /* 429 * XXX Really ought to make the disk_attach() and the changing 430 * of state to RUNNING atomic. 431 */ 432 433 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL); 434 disk_blocksize(&sc->sc_dk, DEV_BSIZE << pdk->dk_blkshift); 435 dkgetproperties(&sc->sc_dk, dkw); 436 disk_attach(&sc->sc_dk); 437 438 /* Disk wedge is ready for use! */ 439 sc->sc_state = DKW_STATE_RUNNING; 440 441 /* Announce our arrival. */ 442 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name, 443 sc->sc_wname); /* XXX Unicode */ 444 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n", 445 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype); 446 447 return (0); 448 } 449 450 /* 451 * dkwedge_find: 452 * 453 * Lookup a disk wedge based on the provided information. 454 * NOTE: We look up the wedge based on the wedge devname, 455 * not wname. 456 * 457 * Return NULL if the wedge is not found, otherwise return 458 * the wedge's softc. Assign the wedge's unit number to unitp 459 * if unitp is not NULL. 460 */ 461 static struct dkwedge_softc * 462 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp) 463 { 464 struct dkwedge_softc *sc = NULL; 465 u_int unit; 466 467 /* Find our softc. */ 468 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0'; 469 rw_enter(&dkwedges_lock, RW_READER); 470 for (unit = 0; unit < ndkwedges; unit++) { 471 if ((sc = dkwedges[unit]) != NULL && 472 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 && 473 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) { 474 break; 475 } 476 } 477 rw_exit(&dkwedges_lock); 478 if (unit == ndkwedges) 479 return NULL; 480 481 if (unitp != NULL) 482 *unitp = unit; 483 484 return sc; 485 } 486 487 /* 488 * dkwedge_del: [exported function] 489 * 490 * Delete a disk wedge based on the provided information. 491 * NOTE: We look up the wedge based on the wedge devname, 492 * not wname. 493 */ 494 int 495 dkwedge_del(struct dkwedge_info *dkw) 496 { 497 struct dkwedge_softc *sc = NULL; 498 499 /* Find our softc. */ 500 if ((sc = dkwedge_find(dkw, NULL)) == NULL) 501 return (ESRCH); 502 503 return config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET); 504 } 505 506 static int 507 dkwedge_begindetach(struct dkwedge_softc *sc, int flags) 508 { 509 struct disk *dk = &sc->sc_dk; 510 int rc; 511 512 rc = 0; 513 mutex_enter(&dk->dk_openlock); 514 if (dk->dk_openmask == 0) 515 ; /* nothing to do */ 516 else if ((flags & DETACH_FORCE) == 0) 517 rc = EBUSY; 518 else { 519 mutex_enter(&sc->sc_parent->dk_rawlock); 520 rc = dklastclose(sc); /* releases dk_rawlock */ 521 } 522 mutex_exit(&dk->dk_openlock); 523 524 return rc; 525 } 526 527 /* 528 * dkwedge_detach: 529 * 530 * Autoconfiguration detach function for pseudo-device glue. 531 */ 532 static int 533 dkwedge_detach(device_t self, int flags) 534 { 535 struct dkwedge_softc *sc = NULL; 536 u_int unit; 537 int bmaj, cmaj, rc, s; 538 539 rw_enter(&dkwedges_lock, RW_WRITER); 540 for (unit = 0; unit < ndkwedges; unit++) { 541 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self) 542 break; 543 } 544 if (unit == ndkwedges) 545 rc = ENXIO; 546 else if ((rc = dkwedge_begindetach(sc, flags)) == 0) { 547 /* Mark the wedge as dying. */ 548 sc->sc_state = DKW_STATE_DYING; 549 } 550 rw_exit(&dkwedges_lock); 551 552 if (rc != 0) 553 return rc; 554 555 pmf_device_deregister(self); 556 557 /* Locate the wedge major numbers. */ 558 bmaj = bdevsw_lookup_major(&dk_bdevsw); 559 cmaj = cdevsw_lookup_major(&dk_cdevsw); 560 561 /* Kill any pending restart. */ 562 callout_stop(&sc->sc_restart_ch); 563 564 /* 565 * dkstart() will kill any queued buffers now that the 566 * state of the wedge is not RUNNING. Once we've done 567 * that, wait for any other pending I/O to complete. 568 */ 569 s = splbio(); 570 dkstart(sc); 571 dkwedge_wait_drain(sc); 572 splx(s); 573 574 /* Nuke the vnodes for any open instances. */ 575 vdevgone(bmaj, unit, unit, VBLK); 576 vdevgone(cmaj, unit, unit, VCHR); 577 578 /* Clean up the parent. */ 579 mutex_enter(&sc->sc_dk.dk_openlock); 580 if (sc->sc_dk.dk_openmask) { 581 mutex_enter(&sc->sc_parent->dk_rawlock); 582 if (sc->sc_parent->dk_rawopens-- == 1) { 583 KASSERT(sc->sc_parent->dk_rawvp != NULL); 584 mutex_exit(&sc->sc_parent->dk_rawlock); 585 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE, 586 NOCRED); 587 sc->sc_parent->dk_rawvp = NULL; 588 } else 589 mutex_exit(&sc->sc_parent->dk_rawlock); 590 sc->sc_dk.dk_openmask = 0; 591 } 592 mutex_exit(&sc->sc_dk.dk_openlock); 593 594 /* Announce our departure. */ 595 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev), 596 sc->sc_parent->dk_name, 597 sc->sc_wname); /* XXX Unicode */ 598 599 mutex_enter(&sc->sc_parent->dk_openlock); 600 sc->sc_parent->dk_nwedges--; 601 LIST_REMOVE(sc, sc_plink); 602 mutex_exit(&sc->sc_parent->dk_openlock); 603 604 /* Delete our buffer queue. */ 605 bufq_free(sc->sc_bufq); 606 607 /* Detach from the disk list. */ 608 disk_detach(&sc->sc_dk); 609 disk_destroy(&sc->sc_dk); 610 611 /* Poof. */ 612 rw_enter(&dkwedges_lock, RW_WRITER); 613 dkwedges[unit] = NULL; 614 sc->sc_state = DKW_STATE_DEAD; 615 rw_exit(&dkwedges_lock); 616 617 free(sc, M_DKWEDGE); 618 619 return 0; 620 } 621 622 /* 623 * dkwedge_delall: [exported function] 624 * 625 * Delete all of the wedges on the specified disk. Used when 626 * a disk is being detached. 627 */ 628 void 629 dkwedge_delall(struct disk *pdk) 630 { 631 struct dkwedge_info dkw; 632 struct dkwedge_softc *sc; 633 634 for (;;) { 635 mutex_enter(&pdk->dk_openlock); 636 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) { 637 KASSERT(pdk->dk_nwedges == 0); 638 mutex_exit(&pdk->dk_openlock); 639 return; 640 } 641 strcpy(dkw.dkw_parent, pdk->dk_name); 642 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev), 643 sizeof(dkw.dkw_devname)); 644 mutex_exit(&pdk->dk_openlock); 645 (void) dkwedge_del(&dkw); 646 } 647 } 648 649 /* 650 * dkwedge_list: [exported function] 651 * 652 * List all of the wedges on a particular disk. 653 * If p == NULL, the buffer is in kernel space. Otherwise, it is 654 * in user space of the specified process. 655 */ 656 int 657 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l) 658 { 659 struct uio uio; 660 struct iovec iov; 661 struct dkwedge_softc *sc; 662 struct dkwedge_info dkw; 663 int error = 0; 664 665 iov.iov_base = dkwl->dkwl_buf; 666 iov.iov_len = dkwl->dkwl_bufsize; 667 668 uio.uio_iov = &iov; 669 uio.uio_iovcnt = 1; 670 uio.uio_offset = 0; 671 uio.uio_resid = dkwl->dkwl_bufsize; 672 uio.uio_rw = UIO_READ; 673 KASSERT(l == curlwp); 674 uio.uio_vmspace = l->l_proc->p_vmspace; 675 676 dkwl->dkwl_ncopied = 0; 677 678 mutex_enter(&pdk->dk_openlock); 679 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) { 680 if (uio.uio_resid < sizeof(dkw)) 681 break; 682 683 if (sc->sc_state != DKW_STATE_RUNNING) 684 continue; 685 686 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev), 687 sizeof(dkw.dkw_devname)); 688 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname)); 689 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0'; 690 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name); 691 dkw.dkw_offset = sc->sc_offset; 692 dkw.dkw_size = sc->sc_size; 693 strcpy(dkw.dkw_ptype, sc->sc_ptype); 694 695 error = uiomove(&dkw, sizeof(dkw), &uio); 696 if (error) 697 break; 698 dkwl->dkwl_ncopied++; 699 } 700 dkwl->dkwl_nwedges = pdk->dk_nwedges; 701 mutex_exit(&pdk->dk_openlock); 702 703 return (error); 704 } 705 706 device_t 707 dkwedge_find_by_wname(const char *wname) 708 { 709 device_t dv = NULL; 710 struct dkwedge_softc *sc; 711 int i; 712 713 rw_enter(&dkwedges_lock, RW_WRITER); 714 for (i = 0; i < ndkwedges; i++) { 715 if ((sc = dkwedges[i]) == NULL) 716 continue; 717 if (strcmp(sc->sc_wname, wname) == 0) { 718 if (dv != NULL) { 719 printf( 720 "WARNING: double match for wedge name %s " 721 "(%s, %s)\n", wname, device_xname(dv), 722 device_xname(sc->sc_dev)); 723 continue; 724 } 725 dv = sc->sc_dev; 726 } 727 } 728 rw_exit(&dkwedges_lock); 729 return dv; 730 } 731 732 void 733 dkwedge_print_wnames(void) 734 { 735 struct dkwedge_softc *sc; 736 int i; 737 738 rw_enter(&dkwedges_lock, RW_WRITER); 739 for (i = 0; i < ndkwedges; i++) { 740 if ((sc = dkwedges[i]) == NULL) 741 continue; 742 printf(" wedge:%s", sc->sc_wname); 743 } 744 rw_exit(&dkwedges_lock); 745 } 746 747 /* 748 * We need a dummy object to stuff into the dkwedge discovery method link 749 * set to ensure that there is always at least one object in the set. 750 */ 751 static struct dkwedge_discovery_method dummy_discovery_method; 752 __link_set_add_bss(dkwedge_methods, dummy_discovery_method); 753 754 /* 755 * dkwedge_init: 756 * 757 * Initialize the disk wedge subsystem. 758 */ 759 void 760 dkwedge_init(void) 761 { 762 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method); 763 struct dkwedge_discovery_method * const *ddmp; 764 struct dkwedge_discovery_method *lddm, *ddm; 765 766 rw_init(&dkwedges_lock); 767 rw_init(&dkwedge_discovery_methods_lock); 768 769 if (config_cfdriver_attach(&dk_cd) != 0) 770 panic("dkwedge: unable to attach cfdriver"); 771 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0) 772 panic("dkwedge: unable to attach cfattach"); 773 774 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER); 775 776 LIST_INIT(&dkwedge_discovery_methods); 777 778 __link_set_foreach(ddmp, dkwedge_methods) { 779 ddm = *ddmp; 780 if (ddm == &dummy_discovery_method) 781 continue; 782 if (LIST_EMPTY(&dkwedge_discovery_methods)) { 783 LIST_INSERT_HEAD(&dkwedge_discovery_methods, 784 ddm, ddm_list); 785 continue; 786 } 787 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) { 788 if (ddm->ddm_priority == lddm->ddm_priority) { 789 aprint_error("dk-method-%s: method \"%s\" " 790 "already exists at priority %d\n", 791 ddm->ddm_name, lddm->ddm_name, 792 lddm->ddm_priority); 793 /* Not inserted. */ 794 break; 795 } 796 if (ddm->ddm_priority < lddm->ddm_priority) { 797 /* Higher priority; insert before. */ 798 LIST_INSERT_BEFORE(lddm, ddm, ddm_list); 799 break; 800 } 801 if (LIST_NEXT(lddm, ddm_list) == NULL) { 802 /* Last one; insert after. */ 803 KASSERT(lddm->ddm_priority < ddm->ddm_priority); 804 LIST_INSERT_AFTER(lddm, ddm, ddm_list); 805 break; 806 } 807 } 808 } 809 810 rw_exit(&dkwedge_discovery_methods_lock); 811 } 812 813 #ifdef DKWEDGE_AUTODISCOVER 814 int dkwedge_autodiscover = 1; 815 #else 816 int dkwedge_autodiscover = 0; 817 #endif 818 819 /* 820 * dkwedge_discover: [exported function] 821 * 822 * Discover the wedges on a newly attached disk. 823 */ 824 void 825 dkwedge_discover(struct disk *pdk) 826 { 827 struct dkwedge_discovery_method *ddm; 828 struct vnode *vp; 829 int error; 830 dev_t pdev; 831 832 /* 833 * Require people playing with wedges to enable this explicitly. 834 */ 835 if (dkwedge_autodiscover == 0) 836 return; 837 838 rw_enter(&dkwedge_discovery_methods_lock, RW_READER); 839 840 error = dkwedge_compute_pdev(pdk->dk_name, &pdev); 841 if (error) { 842 aprint_error("%s: unable to compute pdev, error = %d\n", 843 pdk->dk_name, error); 844 goto out; 845 } 846 847 error = bdevvp(pdev, &vp); 848 if (error) { 849 aprint_error("%s: unable to find vnode for pdev, error = %d\n", 850 pdk->dk_name, error); 851 goto out; 852 } 853 854 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 855 if (error) { 856 aprint_error("%s: unable to lock vnode for pdev, error = %d\n", 857 pdk->dk_name, error); 858 vrele(vp); 859 goto out; 860 } 861 862 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED); 863 if (error) { 864 if (error != ENODEV) 865 aprint_error("%s: unable to open device, error = %d\n", 866 pdk->dk_name, error); 867 vput(vp); 868 goto out; 869 } 870 VOP_UNLOCK(vp); 871 872 /* 873 * For each supported partition map type, look to see if 874 * this map type exists. If so, parse it and add the 875 * corresponding wedges. 876 */ 877 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) { 878 error = (*ddm->ddm_discover)(pdk, vp); 879 if (error == 0) { 880 /* Successfully created wedges; we're done. */ 881 break; 882 } 883 } 884 885 error = vn_close(vp, FREAD, NOCRED); 886 if (error) { 887 aprint_error("%s: unable to close device, error = %d\n", 888 pdk->dk_name, error); 889 /* We'll just assume the vnode has been cleaned up. */ 890 } 891 out: 892 rw_exit(&dkwedge_discovery_methods_lock); 893 } 894 895 /* 896 * dkwedge_read: 897 * 898 * Read some data from the specified disk, used for 899 * partition discovery. 900 */ 901 int 902 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno, 903 void *tbuf, size_t len) 904 { 905 struct buf *bp; 906 int result; 907 908 bp = getiobuf(vp, true); 909 910 bp->b_dev = vp->v_rdev; 911 bp->b_blkno = blkno; 912 bp->b_bcount = len; 913 bp->b_resid = len; 914 bp->b_flags = B_READ; 915 bp->b_data = tbuf; 916 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */ 917 918 VOP_STRATEGY(vp, bp); 919 result = biowait(bp); 920 putiobuf(bp); 921 922 return result; 923 } 924 925 /* 926 * dkwedge_lookup: 927 * 928 * Look up a dkwedge_softc based on the provided dev_t. 929 */ 930 static struct dkwedge_softc * 931 dkwedge_lookup(dev_t dev) 932 { 933 int unit = minor(dev); 934 935 if (unit >= ndkwedges) 936 return (NULL); 937 938 KASSERT(dkwedges != NULL); 939 940 return (dkwedges[unit]); 941 } 942 943 /* 944 * dkopen: [devsw entry point] 945 * 946 * Open a wedge. 947 */ 948 static int 949 dkopen(dev_t dev, int flags, int fmt, struct lwp *l) 950 { 951 struct dkwedge_softc *sc = dkwedge_lookup(dev); 952 struct vnode *vp; 953 int error = 0; 954 955 if (sc == NULL) 956 return (ENODEV); 957 if (sc->sc_state != DKW_STATE_RUNNING) 958 return (ENXIO); 959 960 /* 961 * We go through a complicated little dance to only open the parent 962 * vnode once per wedge, no matter how many times the wedge is 963 * opened. The reason? We see one dkopen() per open call, but 964 * only dkclose() on the last close. 965 */ 966 mutex_enter(&sc->sc_dk.dk_openlock); 967 mutex_enter(&sc->sc_parent->dk_rawlock); 968 if (sc->sc_dk.dk_openmask == 0) { 969 if (sc->sc_parent->dk_rawopens == 0) { 970 KASSERT(sc->sc_parent->dk_rawvp == NULL); 971 error = bdevvp(sc->sc_pdev, &vp); 972 if (error) 973 goto popen_fail; 974 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 975 if (error) { 976 vrele(vp); 977 goto popen_fail; 978 } 979 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED); 980 if (error) { 981 vput(vp); 982 goto popen_fail; 983 } 984 /* VOP_OPEN() doesn't do this for us. */ 985 mutex_enter(vp->v_interlock); 986 vp->v_writecount++; 987 mutex_exit(vp->v_interlock); 988 VOP_UNLOCK(vp); 989 sc->sc_parent->dk_rawvp = vp; 990 } 991 sc->sc_parent->dk_rawopens++; 992 } 993 if (fmt == S_IFCHR) 994 sc->sc_dk.dk_copenmask |= 1; 995 else 996 sc->sc_dk.dk_bopenmask |= 1; 997 sc->sc_dk.dk_openmask = 998 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; 999 1000 popen_fail: 1001 mutex_exit(&sc->sc_parent->dk_rawlock); 1002 mutex_exit(&sc->sc_dk.dk_openlock); 1003 return (error); 1004 } 1005 1006 /* 1007 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock. 1008 */ 1009 static int 1010 dklastclose(struct dkwedge_softc *sc) 1011 { 1012 int error = 0; 1013 1014 if (sc->sc_parent->dk_rawopens-- == 1) { 1015 KASSERT(sc->sc_parent->dk_rawvp != NULL); 1016 mutex_exit(&sc->sc_parent->dk_rawlock); 1017 error = vn_close(sc->sc_parent->dk_rawvp, 1018 FREAD | FWRITE, NOCRED); 1019 sc->sc_parent->dk_rawvp = NULL; 1020 } else 1021 mutex_exit(&sc->sc_parent->dk_rawlock); 1022 return error; 1023 } 1024 1025 /* 1026 * dkclose: [devsw entry point] 1027 * 1028 * Close a wedge. 1029 */ 1030 static int 1031 dkclose(dev_t dev, int flags, int fmt, struct lwp *l) 1032 { 1033 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1034 int error = 0; 1035 1036 if (sc == NULL) 1037 return (ENODEV); 1038 if (sc->sc_state != DKW_STATE_RUNNING) 1039 return (ENXIO); 1040 1041 KASSERT(sc->sc_dk.dk_openmask != 0); 1042 1043 mutex_enter(&sc->sc_dk.dk_openlock); 1044 mutex_enter(&sc->sc_parent->dk_rawlock); 1045 1046 if (fmt == S_IFCHR) 1047 sc->sc_dk.dk_copenmask &= ~1; 1048 else 1049 sc->sc_dk.dk_bopenmask &= ~1; 1050 sc->sc_dk.dk_openmask = 1051 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; 1052 1053 if (sc->sc_dk.dk_openmask == 0) 1054 error = dklastclose(sc); /* releases dk_rawlock */ 1055 else 1056 mutex_exit(&sc->sc_parent->dk_rawlock); 1057 1058 mutex_exit(&sc->sc_dk.dk_openlock); 1059 1060 return (error); 1061 } 1062 1063 /* 1064 * dkstragegy: [devsw entry point] 1065 * 1066 * Perform I/O based on the wedge I/O strategy. 1067 */ 1068 static void 1069 dkstrategy(struct buf *bp) 1070 { 1071 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev); 1072 uint64_t p_size, p_offset; 1073 int s; 1074 1075 if (sc == NULL) { 1076 bp->b_error = ENODEV; 1077 goto done; 1078 } 1079 1080 if (sc->sc_state != DKW_STATE_RUNNING || 1081 sc->sc_parent->dk_rawvp == NULL) { 1082 bp->b_error = ENXIO; 1083 goto done; 1084 } 1085 1086 /* If it's an empty transfer, wake up the top half now. */ 1087 if (bp->b_bcount == 0) 1088 goto done; 1089 1090 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift; 1091 p_size = sc->sc_size << sc->sc_parent->dk_blkshift; 1092 1093 /* Make sure it's in-range. */ 1094 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0) 1095 goto done; 1096 1097 /* Translate it to the parent's raw LBA. */ 1098 bp->b_rawblkno = bp->b_blkno + p_offset; 1099 1100 /* Place it in the queue and start I/O on the unit. */ 1101 s = splbio(); 1102 sc->sc_iopend++; 1103 bufq_put(sc->sc_bufq, bp); 1104 dkstart(sc); 1105 splx(s); 1106 return; 1107 1108 done: 1109 bp->b_resid = bp->b_bcount; 1110 biodone(bp); 1111 } 1112 1113 /* 1114 * dkstart: 1115 * 1116 * Start I/O that has been enqueued on the wedge. 1117 * NOTE: Must be called at splbio()! 1118 */ 1119 static void 1120 dkstart(struct dkwedge_softc *sc) 1121 { 1122 struct vnode *vp; 1123 struct buf *bp, *nbp; 1124 1125 /* Do as much work as has been enqueued. */ 1126 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) { 1127 if (sc->sc_state != DKW_STATE_RUNNING) { 1128 (void) bufq_get(sc->sc_bufq); 1129 if (sc->sc_iopend-- == 1 && 1130 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) { 1131 sc->sc_flags &= ~DK_F_WAIT_DRAIN; 1132 wakeup(&sc->sc_iopend); 1133 } 1134 bp->b_error = ENXIO; 1135 bp->b_resid = bp->b_bcount; 1136 biodone(bp); 1137 } 1138 1139 /* Instrumentation. */ 1140 disk_busy(&sc->sc_dk); 1141 1142 nbp = getiobuf(sc->sc_parent->dk_rawvp, false); 1143 if (nbp == NULL) { 1144 /* 1145 * No resources to run this request; leave the 1146 * buffer queued up, and schedule a timer to 1147 * restart the queue in 1/2 a second. 1148 */ 1149 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ); 1150 callout_schedule(&sc->sc_restart_ch, hz / 2); 1151 return; 1152 } 1153 1154 (void) bufq_get(sc->sc_bufq); 1155 1156 nbp->b_data = bp->b_data; 1157 nbp->b_flags = bp->b_flags; 1158 nbp->b_oflags = bp->b_oflags; 1159 nbp->b_cflags = bp->b_cflags; 1160 nbp->b_iodone = dkiodone; 1161 nbp->b_proc = bp->b_proc; 1162 nbp->b_blkno = bp->b_rawblkno; 1163 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev; 1164 nbp->b_bcount = bp->b_bcount; 1165 nbp->b_private = bp; 1166 BIO_COPYPRIO(nbp, bp); 1167 1168 vp = nbp->b_vp; 1169 if ((nbp->b_flags & B_READ) == 0) { 1170 mutex_enter(vp->v_interlock); 1171 vp->v_numoutput++; 1172 mutex_exit(vp->v_interlock); 1173 } 1174 VOP_STRATEGY(vp, nbp); 1175 } 1176 } 1177 1178 /* 1179 * dkiodone: 1180 * 1181 * I/O to a wedge has completed; alert the top half. 1182 */ 1183 static void 1184 dkiodone(struct buf *bp) 1185 { 1186 struct buf *obp = bp->b_private; 1187 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev); 1188 1189 int s = splbio(); 1190 1191 if (bp->b_error != 0) 1192 obp->b_error = bp->b_error; 1193 obp->b_resid = bp->b_resid; 1194 putiobuf(bp); 1195 1196 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) { 1197 sc->sc_flags &= ~DK_F_WAIT_DRAIN; 1198 wakeup(&sc->sc_iopend); 1199 } 1200 1201 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid, 1202 obp->b_flags & B_READ); 1203 1204 biodone(obp); 1205 1206 /* Kick the queue in case there is more work we can do. */ 1207 dkstart(sc); 1208 splx(s); 1209 } 1210 1211 /* 1212 * dkrestart: 1213 * 1214 * Restart the work queue after it was stalled due to 1215 * a resource shortage. Invoked via a callout. 1216 */ 1217 static void 1218 dkrestart(void *v) 1219 { 1220 struct dkwedge_softc *sc = v; 1221 int s; 1222 1223 s = splbio(); 1224 dkstart(sc); 1225 splx(s); 1226 } 1227 1228 /* 1229 * dkminphys: 1230 * 1231 * Call parent's minphys function. 1232 */ 1233 static void 1234 dkminphys(struct buf *bp) 1235 { 1236 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev); 1237 dev_t dev; 1238 1239 dev = bp->b_dev; 1240 bp->b_dev = sc->sc_pdev; 1241 (*sc->sc_parent->dk_driver->d_minphys)(bp); 1242 bp->b_dev = dev; 1243 } 1244 1245 /* 1246 * dkread: [devsw entry point] 1247 * 1248 * Read from a wedge. 1249 */ 1250 static int 1251 dkread(dev_t dev, struct uio *uio, int flags) 1252 { 1253 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1254 1255 if (sc == NULL) 1256 return (ENODEV); 1257 if (sc->sc_state != DKW_STATE_RUNNING) 1258 return (ENXIO); 1259 1260 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio)); 1261 } 1262 1263 /* 1264 * dkwrite: [devsw entry point] 1265 * 1266 * Write to a wedge. 1267 */ 1268 static int 1269 dkwrite(dev_t dev, struct uio *uio, int flags) 1270 { 1271 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1272 1273 if (sc == NULL) 1274 return (ENODEV); 1275 if (sc->sc_state != DKW_STATE_RUNNING) 1276 return (ENXIO); 1277 1278 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio)); 1279 } 1280 1281 /* 1282 * dkioctl: [devsw entry point] 1283 * 1284 * Perform an ioctl request on a wedge. 1285 */ 1286 static int 1287 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 1288 { 1289 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1290 int error = 0; 1291 1292 if (sc == NULL) 1293 return (ENODEV); 1294 if (sc->sc_state != DKW_STATE_RUNNING) 1295 return (ENXIO); 1296 if (sc->sc_parent->dk_rawvp == NULL) 1297 return (ENXIO); 1298 1299 error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l); 1300 if (error != EPASSTHROUGH) 1301 return (error); 1302 1303 error = 0; 1304 1305 switch (cmd) { 1306 case DIOCCACHESYNC: 1307 /* 1308 * XXX Do we really need to care about having a writable 1309 * file descriptor here? 1310 */ 1311 if ((flag & FWRITE) == 0) 1312 error = EBADF; 1313 else 1314 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, 1315 cmd, data, flag, 1316 l != NULL ? l->l_cred : NOCRED); 1317 break; 1318 case DIOCGWEDGEINFO: 1319 { 1320 struct dkwedge_info *dkw = (void *) data; 1321 1322 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev), 1323 sizeof(dkw->dkw_devname)); 1324 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname)); 1325 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0'; 1326 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name); 1327 dkw->dkw_offset = sc->sc_offset; 1328 dkw->dkw_size = sc->sc_size; 1329 strcpy(dkw->dkw_ptype, sc->sc_ptype); 1330 1331 break; 1332 } 1333 1334 default: 1335 error = ENOTTY; 1336 } 1337 1338 return (error); 1339 } 1340 1341 /* 1342 * dksize: [devsw entry point] 1343 * 1344 * Query the size of a wedge for the purpose of performing a dump 1345 * or for swapping to. 1346 */ 1347 static int 1348 dksize(dev_t dev) 1349 { 1350 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1351 int rv = -1; 1352 1353 if (sc == NULL) 1354 return (-1); 1355 if (sc->sc_state != DKW_STATE_RUNNING) 1356 return (-1); 1357 1358 mutex_enter(&sc->sc_dk.dk_openlock); 1359 mutex_enter(&sc->sc_parent->dk_rawlock); 1360 1361 /* Our content type is static, no need to open the device. */ 1362 1363 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) { 1364 /* Saturate if we are larger than INT_MAX. */ 1365 if (sc->sc_size > INT_MAX) 1366 rv = INT_MAX; 1367 else 1368 rv = (int) sc->sc_size; 1369 } 1370 1371 mutex_exit(&sc->sc_parent->dk_rawlock); 1372 mutex_exit(&sc->sc_dk.dk_openlock); 1373 1374 return (rv); 1375 } 1376 1377 /* 1378 * dkdump: [devsw entry point] 1379 * 1380 * Perform a crash dump to a wedge. 1381 */ 1382 static int 1383 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size) 1384 { 1385 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1386 const struct bdevsw *bdev; 1387 int rv = 0; 1388 1389 if (sc == NULL) 1390 return (ENODEV); 1391 if (sc->sc_state != DKW_STATE_RUNNING) 1392 return (ENXIO); 1393 1394 mutex_enter(&sc->sc_dk.dk_openlock); 1395 mutex_enter(&sc->sc_parent->dk_rawlock); 1396 1397 /* Our content type is static, no need to open the device. */ 1398 1399 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) { 1400 rv = ENXIO; 1401 goto out; 1402 } 1403 if (size % DEV_BSIZE != 0) { 1404 rv = EINVAL; 1405 goto out; 1406 } 1407 if (blkno + size / DEV_BSIZE > sc->sc_size) { 1408 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > " 1409 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno, 1410 size / DEV_BSIZE, sc->sc_size); 1411 rv = EINVAL; 1412 goto out; 1413 } 1414 1415 bdev = bdevsw_lookup(sc->sc_pdev); 1416 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size); 1417 1418 out: 1419 mutex_exit(&sc->sc_parent->dk_rawlock); 1420 mutex_exit(&sc->sc_dk.dk_openlock); 1421 1422 return rv; 1423 } 1424 1425 /* 1426 * config glue 1427 */ 1428 1429 /* 1430 * dkwedge_find_partition 1431 * 1432 * Find wedge corresponding to the specified parent name 1433 * and offset/length. 1434 */ 1435 device_t 1436 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks) 1437 { 1438 struct dkwedge_softc *sc; 1439 int i; 1440 device_t wedge = NULL; 1441 1442 rw_enter(&dkwedges_lock, RW_READER); 1443 for (i = 0; i < ndkwedges; i++) { 1444 if ((sc = dkwedges[i]) == NULL) 1445 continue; 1446 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 && 1447 sc->sc_offset == startblk && 1448 sc->sc_size == nblks) { 1449 if (wedge) { 1450 printf("WARNING: double match for boot wedge " 1451 "(%s, %s)\n", 1452 device_xname(wedge), 1453 device_xname(sc->sc_dev)); 1454 continue; 1455 } 1456 wedge = sc->sc_dev; 1457 } 1458 } 1459 rw_exit(&dkwedges_lock); 1460 1461 return wedge; 1462 } 1463 1464 const char * 1465 dkwedge_get_parent_name(dev_t dev) 1466 { 1467 /* XXX: perhaps do this in lookup? */ 1468 int bmaj = bdevsw_lookup_major(&dk_bdevsw); 1469 int cmaj = cdevsw_lookup_major(&dk_cdevsw); 1470 if (major(dev) != bmaj && major(dev) != cmaj) 1471 return NULL; 1472 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1473 if (sc == NULL) 1474 return NULL; 1475 return sc->sc_parent->dk_name; 1476 } 1477