xref: /netbsd-src/sys/dev/dkwedge/dk.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: dk.c,v 1.69 2014/04/03 15:24:20 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.69 2014/04/03 15:24:20 christos Exp $");
34 
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58 
59 #include <miscfs/specfs/specdev.h>
60 
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62 
63 typedef enum {
64 	DKW_STATE_LARVAL	= 0,
65 	DKW_STATE_RUNNING	= 1,
66 	DKW_STATE_DYING		= 2,
67 	DKW_STATE_DEAD		= 666
68 } dkwedge_state_t;
69 
70 struct dkwedge_softc {
71 	device_t	sc_dev;	/* pointer to our pseudo-device */
72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
74 
75 	dkwedge_state_t sc_state;	/* state this wedge is in */
76 
77 	struct disk	*sc_parent;	/* parent disk */
78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
79 	uint64_t	sc_size;	/* size of wedge in blocks */
80 	char		sc_ptype[32];	/* partition type */
81 	dev_t		sc_pdev;	/* cached parent's dev_t */
82 					/* link on parent's wedge list */
83 	LIST_ENTRY(dkwedge_softc) sc_plink;
84 
85 	struct disk	sc_dk;		/* our own disk structure */
86 	struct bufq_state *sc_bufq;	/* buffer queue */
87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
88 
89 	u_int		sc_iopend;	/* I/Os pending */
90 	int		sc_flags;	/* flags (splbio) */
91 };
92 
93 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
94 
95 static void	dkstart(struct dkwedge_softc *);
96 static void	dkiodone(struct buf *);
97 static void	dkrestart(void *);
98 static void	dkminphys(struct buf *);
99 
100 static int	dklastclose(struct dkwedge_softc *);
101 static int	dkwedge_detach(device_t, int);
102 
103 static dev_type_open(dkopen);
104 static dev_type_close(dkclose);
105 static dev_type_read(dkread);
106 static dev_type_write(dkwrite);
107 static dev_type_ioctl(dkioctl);
108 static dev_type_strategy(dkstrategy);
109 static dev_type_dump(dkdump);
110 static dev_type_size(dksize);
111 
112 const struct bdevsw dk_bdevsw = {
113 	.d_open = dkopen,
114 	.d_close = dkclose,
115 	.d_strategy = dkstrategy,
116 	.d_ioctl = dkioctl,
117 	.d_dump = dkdump,
118 	.d_psize = dksize,
119 	.d_flag = D_DISK
120 };
121 
122 const struct cdevsw dk_cdevsw = {
123 	.d_open = dkopen,
124 	.d_close = dkclose,
125 	.d_read = dkread,
126 	.d_write = dkwrite,
127 	.d_ioctl = dkioctl,
128 	.d_stop = nostop,
129 	.d_tty = notty,
130 	.d_poll = nopoll,
131 	.d_mmap = nommap,
132 	.d_kqfilter = nokqfilter,
133 	.d_flag = D_DISK
134 };
135 
136 static struct dkwedge_softc **dkwedges;
137 static u_int ndkwedges;
138 static krwlock_t dkwedges_lock;
139 
140 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
141 static krwlock_t dkwedge_discovery_methods_lock;
142 
143 /*
144  * dkwedge_match:
145  *
146  *	Autoconfiguration match function for pseudo-device glue.
147  */
148 static int
149 dkwedge_match(device_t parent, cfdata_t match,
150     void *aux)
151 {
152 
153 	/* Pseudo-device; always present. */
154 	return (1);
155 }
156 
157 /*
158  * dkwedge_attach:
159  *
160  *	Autoconfiguration attach function for pseudo-device glue.
161  */
162 static void
163 dkwedge_attach(device_t parent, device_t self,
164     void *aux)
165 {
166 
167 	if (!pmf_device_register(self, NULL, NULL))
168 		aprint_error_dev(self, "couldn't establish power handler\n");
169 }
170 
171 CFDRIVER_DECL(dk, DV_DISK, NULL);
172 CFATTACH_DECL3_NEW(dk, 0,
173     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
174     DVF_DETACH_SHUTDOWN);
175 
176 /*
177  * dkwedge_wait_drain:
178  *
179  *	Wait for I/O on the wedge to drain.
180  *	NOTE: Must be called at splbio()!
181  */
182 static void
183 dkwedge_wait_drain(struct dkwedge_softc *sc)
184 {
185 
186 	while (sc->sc_iopend != 0) {
187 		sc->sc_flags |= DK_F_WAIT_DRAIN;
188 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
189 	}
190 }
191 
192 /*
193  * dkwedge_compute_pdev:
194  *
195  *	Compute the parent disk's dev_t.
196  */
197 static int
198 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
199 {
200 	const char *name, *cp;
201 	devmajor_t pmaj;
202 	int punit;
203 	char devname[16];
204 
205 	name = pname;
206 	if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
207 		return (ENODEV);
208 
209 	name += strlen(devname);
210 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
211 		punit = (punit * 10) + (*cp - '0');
212 	if (cp == name) {
213 		/* Invalid parent disk name. */
214 		return (ENODEV);
215 	}
216 
217 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
218 
219 	return (0);
220 }
221 
222 /*
223  * dkwedge_array_expand:
224  *
225  *	Expand the dkwedges array.
226  */
227 static void
228 dkwedge_array_expand(void)
229 {
230 	int newcnt = ndkwedges + 16;
231 	struct dkwedge_softc **newarray, **oldarray;
232 
233 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
234 	    M_WAITOK|M_ZERO);
235 	if ((oldarray = dkwedges) != NULL)
236 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
237 	dkwedges = newarray;
238 	ndkwedges = newcnt;
239 	if (oldarray != NULL)
240 		free(oldarray, M_DKWEDGE);
241 }
242 
243 static void
244 dkgetproperties(struct disk *disk, struct dkwedge_info *dkw)
245 {
246 	struct disk_geom *dg = &disk->dk_geom;
247 
248 	memset(dg, 0, sizeof(*dg));
249 
250 	dg->dg_secperunit = dkw->dkw_size >> disk->dk_blkshift;
251 	dg->dg_secsize = DEV_BSIZE << disk->dk_blkshift;
252 	dg->dg_nsectors = 32;
253 	dg->dg_ntracks = 64;
254 	/* XXX: why is that dkw->dkw_size instead of secperunit?!?! */
255 	dg->dg_ncylinders = dkw->dkw_size / (dg->dg_nsectors * dg->dg_ntracks);
256 
257 	disk_set_info(NULL, disk, "ESDI");
258 }
259 
260 /*
261  * dkwedge_add:		[exported function]
262  *
263  *	Add a disk wedge based on the provided information.
264  *
265  *	The incoming dkw_devname[] is ignored, instead being
266  *	filled in and returned to the caller.
267  */
268 int
269 dkwedge_add(struct dkwedge_info *dkw)
270 {
271 	struct dkwedge_softc *sc, *lsc;
272 	struct disk *pdk;
273 	u_int unit;
274 	int error;
275 	dev_t pdev;
276 
277 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
278 	pdk = disk_find(dkw->dkw_parent);
279 	if (pdk == NULL)
280 		return (ENODEV);
281 
282 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
283 	if (error)
284 		return (error);
285 
286 	if (dkw->dkw_offset < 0)
287 		return (EINVAL);
288 
289 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
290 	sc->sc_state = DKW_STATE_LARVAL;
291 	sc->sc_parent = pdk;
292 	sc->sc_pdev = pdev;
293 	sc->sc_offset = dkw->dkw_offset;
294 	sc->sc_size = dkw->dkw_size;
295 
296 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
297 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
298 
299 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
300 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
301 
302 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
303 
304 	callout_init(&sc->sc_restart_ch, 0);
305 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
306 
307 	/*
308 	 * Wedge will be added; increment the wedge count for the parent.
309 	 * Only allow this to happend if RAW_PART is the only thing open.
310 	 */
311 	mutex_enter(&pdk->dk_openlock);
312 	if (pdk->dk_openmask & ~(1 << RAW_PART))
313 		error = EBUSY;
314 	else {
315 		/* Check for wedge overlap. */
316 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
317 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
318 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
319 
320 			if (sc->sc_offset >= lsc->sc_offset &&
321 			    sc->sc_offset <= llastblk) {
322 				/* Overlaps the tail of the existing wedge. */
323 				break;
324 			}
325 			if (lastblk >= lsc->sc_offset &&
326 			    lastblk <= llastblk) {
327 				/* Overlaps the head of the existing wedge. */
328 			    	break;
329 			}
330 		}
331 		if (lsc != NULL)
332 			error = EINVAL;
333 		else {
334 			pdk->dk_nwedges++;
335 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
336 		}
337 	}
338 	mutex_exit(&pdk->dk_openlock);
339 	if (error) {
340 		bufq_free(sc->sc_bufq);
341 		free(sc, M_DKWEDGE);
342 		return (error);
343 	}
344 
345 	/* Fill in our cfdata for the pseudo-device glue. */
346 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
347 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
348 	/* sc->sc_cfdata.cf_unit set below */
349 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
350 
351 	/* Insert the larval wedge into the array. */
352 	rw_enter(&dkwedges_lock, RW_WRITER);
353 	for (error = 0;;) {
354 		struct dkwedge_softc **scpp;
355 
356 		/*
357 		 * Check for a duplicate wname while searching for
358 		 * a slot.
359 		 */
360 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
361 			if (dkwedges[unit] == NULL) {
362 				if (scpp == NULL) {
363 					scpp = &dkwedges[unit];
364 					sc->sc_cfdata.cf_unit = unit;
365 				}
366 			} else {
367 				/* XXX Unicode. */
368 				if (strcmp(dkwedges[unit]->sc_wname,
369 					   sc->sc_wname) == 0) {
370 					error = EEXIST;
371 					break;
372 				}
373 			}
374 		}
375 		if (error)
376 			break;
377 		KASSERT(unit == ndkwedges);
378 		if (scpp == NULL)
379 			dkwedge_array_expand();
380 		else {
381 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
382 			*scpp = sc;
383 			break;
384 		}
385 	}
386 	rw_exit(&dkwedges_lock);
387 	if (error) {
388 		mutex_enter(&pdk->dk_openlock);
389 		pdk->dk_nwedges--;
390 		LIST_REMOVE(sc, sc_plink);
391 		mutex_exit(&pdk->dk_openlock);
392 
393 		bufq_free(sc->sc_bufq);
394 		free(sc, M_DKWEDGE);
395 		return (error);
396 	}
397 
398 	/*
399 	 * Now that we know the unit #, attach a pseudo-device for
400 	 * this wedge instance.  This will provide us with the
401 	 * device_t necessary for glue to other parts of the system.
402 	 *
403 	 * This should never fail, unless we're almost totally out of
404 	 * memory.
405 	 */
406 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
407 		aprint_error("%s%u: unable to attach pseudo-device\n",
408 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
409 
410 		rw_enter(&dkwedges_lock, RW_WRITER);
411 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
412 		rw_exit(&dkwedges_lock);
413 
414 		mutex_enter(&pdk->dk_openlock);
415 		pdk->dk_nwedges--;
416 		LIST_REMOVE(sc, sc_plink);
417 		mutex_exit(&pdk->dk_openlock);
418 
419 		bufq_free(sc->sc_bufq);
420 		free(sc, M_DKWEDGE);
421 		return (ENOMEM);
422 	}
423 
424 	/* Return the devname to the caller. */
425 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
426 		sizeof(dkw->dkw_devname));
427 
428 	/*
429 	 * XXX Really ought to make the disk_attach() and the changing
430 	 * of state to RUNNING atomic.
431 	 */
432 
433 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
434 	disk_blocksize(&sc->sc_dk, DEV_BSIZE << pdk->dk_blkshift);
435 	dkgetproperties(&sc->sc_dk, dkw);
436 	disk_attach(&sc->sc_dk);
437 
438 	/* Disk wedge is ready for use! */
439 	sc->sc_state = DKW_STATE_RUNNING;
440 
441 	/* Announce our arrival. */
442 	aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
443 	    sc->sc_wname);	/* XXX Unicode */
444 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
445 	    device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
446 
447 	return (0);
448 }
449 
450 /*
451  * dkwedge_find:
452  *
453  *	Lookup a disk wedge based on the provided information.
454  *	NOTE: We look up the wedge based on the wedge devname,
455  *	not wname.
456  *
457  *	Return NULL if the wedge is not found, otherwise return
458  *	the wedge's softc.  Assign the wedge's unit number to unitp
459  *	if unitp is not NULL.
460  */
461 static struct dkwedge_softc *
462 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
463 {
464 	struct dkwedge_softc *sc = NULL;
465 	u_int unit;
466 
467 	/* Find our softc. */
468 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
469 	rw_enter(&dkwedges_lock, RW_READER);
470 	for (unit = 0; unit < ndkwedges; unit++) {
471 		if ((sc = dkwedges[unit]) != NULL &&
472 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
473 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
474 			break;
475 		}
476 	}
477 	rw_exit(&dkwedges_lock);
478 	if (unit == ndkwedges)
479 		return NULL;
480 
481 	if (unitp != NULL)
482 		*unitp = unit;
483 
484 	return sc;
485 }
486 
487 /*
488  * dkwedge_del:		[exported function]
489  *
490  *	Delete a disk wedge based on the provided information.
491  *	NOTE: We look up the wedge based on the wedge devname,
492  *	not wname.
493  */
494 int
495 dkwedge_del(struct dkwedge_info *dkw)
496 {
497 	struct dkwedge_softc *sc = NULL;
498 
499 	/* Find our softc. */
500 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
501 		return (ESRCH);
502 
503 	return config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
504 }
505 
506 static int
507 dkwedge_begindetach(struct dkwedge_softc *sc, int flags)
508 {
509 	struct disk *dk = &sc->sc_dk;
510 	int rc;
511 
512 	rc = 0;
513 	mutex_enter(&dk->dk_openlock);
514 	if (dk->dk_openmask == 0)
515 		;	/* nothing to do */
516 	else if ((flags & DETACH_FORCE) == 0)
517 		rc = EBUSY;
518 	else {
519 		mutex_enter(&sc->sc_parent->dk_rawlock);
520 		rc = dklastclose(sc); /* releases dk_rawlock */
521 	}
522 	mutex_exit(&dk->dk_openlock);
523 
524 	return rc;
525 }
526 
527 /*
528  * dkwedge_detach:
529  *
530  *	Autoconfiguration detach function for pseudo-device glue.
531  */
532 static int
533 dkwedge_detach(device_t self, int flags)
534 {
535 	struct dkwedge_softc *sc = NULL;
536 	u_int unit;
537 	int bmaj, cmaj, rc, s;
538 
539 	rw_enter(&dkwedges_lock, RW_WRITER);
540 	for (unit = 0; unit < ndkwedges; unit++) {
541 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
542 			break;
543 	}
544 	if (unit == ndkwedges)
545 		rc = ENXIO;
546 	else if ((rc = dkwedge_begindetach(sc, flags)) == 0) {
547 		/* Mark the wedge as dying. */
548 		sc->sc_state = DKW_STATE_DYING;
549 	}
550 	rw_exit(&dkwedges_lock);
551 
552 	if (rc != 0)
553 		return rc;
554 
555 	pmf_device_deregister(self);
556 
557 	/* Locate the wedge major numbers. */
558 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
559 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
560 
561 	/* Kill any pending restart. */
562 	callout_stop(&sc->sc_restart_ch);
563 
564 	/*
565 	 * dkstart() will kill any queued buffers now that the
566 	 * state of the wedge is not RUNNING.  Once we've done
567 	 * that, wait for any other pending I/O to complete.
568 	 */
569 	s = splbio();
570 	dkstart(sc);
571 	dkwedge_wait_drain(sc);
572 	splx(s);
573 
574 	/* Nuke the vnodes for any open instances. */
575 	vdevgone(bmaj, unit, unit, VBLK);
576 	vdevgone(cmaj, unit, unit, VCHR);
577 
578 	/* Clean up the parent. */
579 	mutex_enter(&sc->sc_dk.dk_openlock);
580 	if (sc->sc_dk.dk_openmask) {
581 		mutex_enter(&sc->sc_parent->dk_rawlock);
582 		if (sc->sc_parent->dk_rawopens-- == 1) {
583 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
584 			mutex_exit(&sc->sc_parent->dk_rawlock);
585 			(void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
586 			    NOCRED);
587 			sc->sc_parent->dk_rawvp = NULL;
588 		} else
589 			mutex_exit(&sc->sc_parent->dk_rawlock);
590 		sc->sc_dk.dk_openmask = 0;
591 	}
592 	mutex_exit(&sc->sc_dk.dk_openlock);
593 
594 	/* Announce our departure. */
595 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
596 	    sc->sc_parent->dk_name,
597 	    sc->sc_wname);	/* XXX Unicode */
598 
599 	mutex_enter(&sc->sc_parent->dk_openlock);
600 	sc->sc_parent->dk_nwedges--;
601 	LIST_REMOVE(sc, sc_plink);
602 	mutex_exit(&sc->sc_parent->dk_openlock);
603 
604 	/* Delete our buffer queue. */
605 	bufq_free(sc->sc_bufq);
606 
607 	/* Detach from the disk list. */
608 	disk_detach(&sc->sc_dk);
609 	disk_destroy(&sc->sc_dk);
610 
611 	/* Poof. */
612 	rw_enter(&dkwedges_lock, RW_WRITER);
613 	dkwedges[unit] = NULL;
614 	sc->sc_state = DKW_STATE_DEAD;
615 	rw_exit(&dkwedges_lock);
616 
617 	free(sc, M_DKWEDGE);
618 
619 	return 0;
620 }
621 
622 /*
623  * dkwedge_delall:	[exported function]
624  *
625  *	Delete all of the wedges on the specified disk.  Used when
626  *	a disk is being detached.
627  */
628 void
629 dkwedge_delall(struct disk *pdk)
630 {
631 	struct dkwedge_info dkw;
632 	struct dkwedge_softc *sc;
633 
634 	for (;;) {
635 		mutex_enter(&pdk->dk_openlock);
636 		if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
637 			KASSERT(pdk->dk_nwedges == 0);
638 			mutex_exit(&pdk->dk_openlock);
639 			return;
640 		}
641 		strcpy(dkw.dkw_parent, pdk->dk_name);
642 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
643 			sizeof(dkw.dkw_devname));
644 		mutex_exit(&pdk->dk_openlock);
645 		(void) dkwedge_del(&dkw);
646 	}
647 }
648 
649 /*
650  * dkwedge_list:	[exported function]
651  *
652  *	List all of the wedges on a particular disk.
653  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
654  *	in user space of the specified process.
655  */
656 int
657 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
658 {
659 	struct uio uio;
660 	struct iovec iov;
661 	struct dkwedge_softc *sc;
662 	struct dkwedge_info dkw;
663 	int error = 0;
664 
665 	iov.iov_base = dkwl->dkwl_buf;
666 	iov.iov_len = dkwl->dkwl_bufsize;
667 
668 	uio.uio_iov = &iov;
669 	uio.uio_iovcnt = 1;
670 	uio.uio_offset = 0;
671 	uio.uio_resid = dkwl->dkwl_bufsize;
672 	uio.uio_rw = UIO_READ;
673 	KASSERT(l == curlwp);
674 	uio.uio_vmspace = l->l_proc->p_vmspace;
675 
676 	dkwl->dkwl_ncopied = 0;
677 
678 	mutex_enter(&pdk->dk_openlock);
679 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
680 		if (uio.uio_resid < sizeof(dkw))
681 			break;
682 
683 		if (sc->sc_state != DKW_STATE_RUNNING)
684 			continue;
685 
686 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
687 			sizeof(dkw.dkw_devname));
688 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
689 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
690 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
691 		dkw.dkw_offset = sc->sc_offset;
692 		dkw.dkw_size = sc->sc_size;
693 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
694 
695 		error = uiomove(&dkw, sizeof(dkw), &uio);
696 		if (error)
697 			break;
698 		dkwl->dkwl_ncopied++;
699 	}
700 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
701 	mutex_exit(&pdk->dk_openlock);
702 
703 	return (error);
704 }
705 
706 device_t
707 dkwedge_find_by_wname(const char *wname)
708 {
709 	device_t dv = NULL;
710 	struct dkwedge_softc *sc;
711 	int i;
712 
713 	rw_enter(&dkwedges_lock, RW_WRITER);
714 	for (i = 0; i < ndkwedges; i++) {
715 		if ((sc = dkwedges[i]) == NULL)
716 			continue;
717 		if (strcmp(sc->sc_wname, wname) == 0) {
718 			if (dv != NULL) {
719 				printf(
720 				    "WARNING: double match for wedge name %s "
721 				    "(%s, %s)\n", wname, device_xname(dv),
722 				    device_xname(sc->sc_dev));
723 				continue;
724 			}
725 			dv = sc->sc_dev;
726 		}
727 	}
728 	rw_exit(&dkwedges_lock);
729 	return dv;
730 }
731 
732 void
733 dkwedge_print_wnames(void)
734 {
735 	struct dkwedge_softc *sc;
736 	int i;
737 
738 	rw_enter(&dkwedges_lock, RW_WRITER);
739 	for (i = 0; i < ndkwedges; i++) {
740 		if ((sc = dkwedges[i]) == NULL)
741 			continue;
742 		printf(" wedge:%s", sc->sc_wname);
743 	}
744 	rw_exit(&dkwedges_lock);
745 }
746 
747 /*
748  * We need a dummy object to stuff into the dkwedge discovery method link
749  * set to ensure that there is always at least one object in the set.
750  */
751 static struct dkwedge_discovery_method dummy_discovery_method;
752 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
753 
754 /*
755  * dkwedge_init:
756  *
757  *	Initialize the disk wedge subsystem.
758  */
759 void
760 dkwedge_init(void)
761 {
762 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
763 	struct dkwedge_discovery_method * const *ddmp;
764 	struct dkwedge_discovery_method *lddm, *ddm;
765 
766 	rw_init(&dkwedges_lock);
767 	rw_init(&dkwedge_discovery_methods_lock);
768 
769 	if (config_cfdriver_attach(&dk_cd) != 0)
770 		panic("dkwedge: unable to attach cfdriver");
771 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
772 		panic("dkwedge: unable to attach cfattach");
773 
774 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
775 
776 	LIST_INIT(&dkwedge_discovery_methods);
777 
778 	__link_set_foreach(ddmp, dkwedge_methods) {
779 		ddm = *ddmp;
780 		if (ddm == &dummy_discovery_method)
781 			continue;
782 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
783 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
784 					 ddm, ddm_list);
785 			continue;
786 		}
787 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
788 			if (ddm->ddm_priority == lddm->ddm_priority) {
789 				aprint_error("dk-method-%s: method \"%s\" "
790 				    "already exists at priority %d\n",
791 				    ddm->ddm_name, lddm->ddm_name,
792 				    lddm->ddm_priority);
793 				/* Not inserted. */
794 				break;
795 			}
796 			if (ddm->ddm_priority < lddm->ddm_priority) {
797 				/* Higher priority; insert before. */
798 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
799 				break;
800 			}
801 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
802 				/* Last one; insert after. */
803 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
804 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
805 				break;
806 			}
807 		}
808 	}
809 
810 	rw_exit(&dkwedge_discovery_methods_lock);
811 }
812 
813 #ifdef DKWEDGE_AUTODISCOVER
814 int	dkwedge_autodiscover = 1;
815 #else
816 int	dkwedge_autodiscover = 0;
817 #endif
818 
819 /*
820  * dkwedge_discover:	[exported function]
821  *
822  *	Discover the wedges on a newly attached disk.
823  */
824 void
825 dkwedge_discover(struct disk *pdk)
826 {
827 	struct dkwedge_discovery_method *ddm;
828 	struct vnode *vp;
829 	int error;
830 	dev_t pdev;
831 
832 	/*
833 	 * Require people playing with wedges to enable this explicitly.
834 	 */
835 	if (dkwedge_autodiscover == 0)
836 		return;
837 
838 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
839 
840 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
841 	if (error) {
842 		aprint_error("%s: unable to compute pdev, error = %d\n",
843 		    pdk->dk_name, error);
844 		goto out;
845 	}
846 
847 	error = bdevvp(pdev, &vp);
848 	if (error) {
849 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
850 		    pdk->dk_name, error);
851 		goto out;
852 	}
853 
854 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
855 	if (error) {
856 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
857 		    pdk->dk_name, error);
858 		vrele(vp);
859 		goto out;
860 	}
861 
862 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
863 	if (error) {
864 		if (error != ENODEV)
865 			aprint_error("%s: unable to open device, error = %d\n",
866 			    pdk->dk_name, error);
867 		vput(vp);
868 		goto out;
869 	}
870 	VOP_UNLOCK(vp);
871 
872 	/*
873 	 * For each supported partition map type, look to see if
874 	 * this map type exists.  If so, parse it and add the
875 	 * corresponding wedges.
876 	 */
877 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
878 		error = (*ddm->ddm_discover)(pdk, vp);
879 		if (error == 0) {
880 			/* Successfully created wedges; we're done. */
881 			break;
882 		}
883 	}
884 
885 	error = vn_close(vp, FREAD, NOCRED);
886 	if (error) {
887 		aprint_error("%s: unable to close device, error = %d\n",
888 		    pdk->dk_name, error);
889 		/* We'll just assume the vnode has been cleaned up. */
890 	}
891  out:
892 	rw_exit(&dkwedge_discovery_methods_lock);
893 }
894 
895 /*
896  * dkwedge_read:
897  *
898  *	Read some data from the specified disk, used for
899  *	partition discovery.
900  */
901 int
902 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
903     void *tbuf, size_t len)
904 {
905 	struct buf *bp;
906 	int result;
907 
908 	bp = getiobuf(vp, true);
909 
910 	bp->b_dev = vp->v_rdev;
911 	bp->b_blkno = blkno;
912 	bp->b_bcount = len;
913 	bp->b_resid = len;
914 	bp->b_flags = B_READ;
915 	bp->b_data = tbuf;
916 	SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
917 
918 	VOP_STRATEGY(vp, bp);
919 	result = biowait(bp);
920 	putiobuf(bp);
921 
922 	return result;
923 }
924 
925 /*
926  * dkwedge_lookup:
927  *
928  *	Look up a dkwedge_softc based on the provided dev_t.
929  */
930 static struct dkwedge_softc *
931 dkwedge_lookup(dev_t dev)
932 {
933 	int unit = minor(dev);
934 
935 	if (unit >= ndkwedges)
936 		return (NULL);
937 
938 	KASSERT(dkwedges != NULL);
939 
940 	return (dkwedges[unit]);
941 }
942 
943 /*
944  * dkopen:		[devsw entry point]
945  *
946  *	Open a wedge.
947  */
948 static int
949 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
950 {
951 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
952 	struct vnode *vp;
953 	int error = 0;
954 
955 	if (sc == NULL)
956 		return (ENODEV);
957 	if (sc->sc_state != DKW_STATE_RUNNING)
958 		return (ENXIO);
959 
960 	/*
961 	 * We go through a complicated little dance to only open the parent
962 	 * vnode once per wedge, no matter how many times the wedge is
963 	 * opened.  The reason?  We see one dkopen() per open call, but
964 	 * only dkclose() on the last close.
965 	 */
966 	mutex_enter(&sc->sc_dk.dk_openlock);
967 	mutex_enter(&sc->sc_parent->dk_rawlock);
968 	if (sc->sc_dk.dk_openmask == 0) {
969 		if (sc->sc_parent->dk_rawopens == 0) {
970 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
971 			error = bdevvp(sc->sc_pdev, &vp);
972 			if (error)
973 				goto popen_fail;
974 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
975 			if (error) {
976 				vrele(vp);
977 				goto popen_fail;
978 			}
979 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
980 			if (error) {
981 				vput(vp);
982 				goto popen_fail;
983 			}
984 			/* VOP_OPEN() doesn't do this for us. */
985 			mutex_enter(vp->v_interlock);
986 			vp->v_writecount++;
987 			mutex_exit(vp->v_interlock);
988 			VOP_UNLOCK(vp);
989 			sc->sc_parent->dk_rawvp = vp;
990 		}
991 		sc->sc_parent->dk_rawopens++;
992 	}
993 	if (fmt == S_IFCHR)
994 		sc->sc_dk.dk_copenmask |= 1;
995 	else
996 		sc->sc_dk.dk_bopenmask |= 1;
997 	sc->sc_dk.dk_openmask =
998 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
999 
1000  popen_fail:
1001 	mutex_exit(&sc->sc_parent->dk_rawlock);
1002 	mutex_exit(&sc->sc_dk.dk_openlock);
1003 	return (error);
1004 }
1005 
1006 /*
1007  * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
1008  */
1009 static int
1010 dklastclose(struct dkwedge_softc *sc)
1011 {
1012 	int error = 0;
1013 
1014 	if (sc->sc_parent->dk_rawopens-- == 1) {
1015 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
1016 		mutex_exit(&sc->sc_parent->dk_rawlock);
1017 		error = vn_close(sc->sc_parent->dk_rawvp,
1018 		    FREAD | FWRITE, NOCRED);
1019 		sc->sc_parent->dk_rawvp = NULL;
1020 	} else
1021 		mutex_exit(&sc->sc_parent->dk_rawlock);
1022 	return error;
1023 }
1024 
1025 /*
1026  * dkclose:		[devsw entry point]
1027  *
1028  *	Close a wedge.
1029  */
1030 static int
1031 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1032 {
1033 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1034 	int error = 0;
1035 
1036 	if (sc == NULL)
1037 		return (ENODEV);
1038 	if (sc->sc_state != DKW_STATE_RUNNING)
1039 		return (ENXIO);
1040 
1041 	KASSERT(sc->sc_dk.dk_openmask != 0);
1042 
1043 	mutex_enter(&sc->sc_dk.dk_openlock);
1044 	mutex_enter(&sc->sc_parent->dk_rawlock);
1045 
1046 	if (fmt == S_IFCHR)
1047 		sc->sc_dk.dk_copenmask &= ~1;
1048 	else
1049 		sc->sc_dk.dk_bopenmask &= ~1;
1050 	sc->sc_dk.dk_openmask =
1051 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1052 
1053 	if (sc->sc_dk.dk_openmask == 0)
1054 		error = dklastclose(sc); /* releases dk_rawlock */
1055 	else
1056 		mutex_exit(&sc->sc_parent->dk_rawlock);
1057 
1058 	mutex_exit(&sc->sc_dk.dk_openlock);
1059 
1060 	return (error);
1061 }
1062 
1063 /*
1064  * dkstragegy:		[devsw entry point]
1065  *
1066  *	Perform I/O based on the wedge I/O strategy.
1067  */
1068 static void
1069 dkstrategy(struct buf *bp)
1070 {
1071 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1072 	uint64_t p_size, p_offset;
1073 	int s;
1074 
1075 	if (sc == NULL) {
1076 		bp->b_error = ENODEV;
1077 		goto done;
1078 	}
1079 
1080 	if (sc->sc_state != DKW_STATE_RUNNING ||
1081 	    sc->sc_parent->dk_rawvp == NULL) {
1082 		bp->b_error = ENXIO;
1083 		goto done;
1084 	}
1085 
1086 	/* If it's an empty transfer, wake up the top half now. */
1087 	if (bp->b_bcount == 0)
1088 		goto done;
1089 
1090 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1091 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
1092 
1093 	/* Make sure it's in-range. */
1094 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1095 		goto done;
1096 
1097 	/* Translate it to the parent's raw LBA. */
1098 	bp->b_rawblkno = bp->b_blkno + p_offset;
1099 
1100 	/* Place it in the queue and start I/O on the unit. */
1101 	s = splbio();
1102 	sc->sc_iopend++;
1103 	bufq_put(sc->sc_bufq, bp);
1104 	dkstart(sc);
1105 	splx(s);
1106 	return;
1107 
1108  done:
1109 	bp->b_resid = bp->b_bcount;
1110 	biodone(bp);
1111 }
1112 
1113 /*
1114  * dkstart:
1115  *
1116  *	Start I/O that has been enqueued on the wedge.
1117  *	NOTE: Must be called at splbio()!
1118  */
1119 static void
1120 dkstart(struct dkwedge_softc *sc)
1121 {
1122 	struct vnode *vp;
1123 	struct buf *bp, *nbp;
1124 
1125 	/* Do as much work as has been enqueued. */
1126 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1127 		if (sc->sc_state != DKW_STATE_RUNNING) {
1128 			(void) bufq_get(sc->sc_bufq);
1129 			if (sc->sc_iopend-- == 1 &&
1130 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1131 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1132 				wakeup(&sc->sc_iopend);
1133 			}
1134 			bp->b_error = ENXIO;
1135 			bp->b_resid = bp->b_bcount;
1136 			biodone(bp);
1137 		}
1138 
1139 		/* Instrumentation. */
1140 		disk_busy(&sc->sc_dk);
1141 
1142 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1143 		if (nbp == NULL) {
1144 			/*
1145 			 * No resources to run this request; leave the
1146 			 * buffer queued up, and schedule a timer to
1147 			 * restart the queue in 1/2 a second.
1148 			 */
1149 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1150 			callout_schedule(&sc->sc_restart_ch, hz / 2);
1151 			return;
1152 		}
1153 
1154 		(void) bufq_get(sc->sc_bufq);
1155 
1156 		nbp->b_data = bp->b_data;
1157 		nbp->b_flags = bp->b_flags;
1158 		nbp->b_oflags = bp->b_oflags;
1159 		nbp->b_cflags = bp->b_cflags;
1160 		nbp->b_iodone = dkiodone;
1161 		nbp->b_proc = bp->b_proc;
1162 		nbp->b_blkno = bp->b_rawblkno;
1163 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1164 		nbp->b_bcount = bp->b_bcount;
1165 		nbp->b_private = bp;
1166 		BIO_COPYPRIO(nbp, bp);
1167 
1168 		vp = nbp->b_vp;
1169 		if ((nbp->b_flags & B_READ) == 0) {
1170 			mutex_enter(vp->v_interlock);
1171 			vp->v_numoutput++;
1172 			mutex_exit(vp->v_interlock);
1173 		}
1174 		VOP_STRATEGY(vp, nbp);
1175 	}
1176 }
1177 
1178 /*
1179  * dkiodone:
1180  *
1181  *	I/O to a wedge has completed; alert the top half.
1182  */
1183 static void
1184 dkiodone(struct buf *bp)
1185 {
1186 	struct buf *obp = bp->b_private;
1187 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1188 
1189 	int s = splbio();
1190 
1191 	if (bp->b_error != 0)
1192 		obp->b_error = bp->b_error;
1193 	obp->b_resid = bp->b_resid;
1194 	putiobuf(bp);
1195 
1196 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1197 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1198 		wakeup(&sc->sc_iopend);
1199 	}
1200 
1201 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1202 	    obp->b_flags & B_READ);
1203 
1204 	biodone(obp);
1205 
1206 	/* Kick the queue in case there is more work we can do. */
1207 	dkstart(sc);
1208 	splx(s);
1209 }
1210 
1211 /*
1212  * dkrestart:
1213  *
1214  *	Restart the work queue after it was stalled due to
1215  *	a resource shortage.  Invoked via a callout.
1216  */
1217 static void
1218 dkrestart(void *v)
1219 {
1220 	struct dkwedge_softc *sc = v;
1221 	int s;
1222 
1223 	s = splbio();
1224 	dkstart(sc);
1225 	splx(s);
1226 }
1227 
1228 /*
1229  * dkminphys:
1230  *
1231  *	Call parent's minphys function.
1232  */
1233 static void
1234 dkminphys(struct buf *bp)
1235 {
1236 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1237 	dev_t dev;
1238 
1239 	dev = bp->b_dev;
1240 	bp->b_dev = sc->sc_pdev;
1241 	(*sc->sc_parent->dk_driver->d_minphys)(bp);
1242 	bp->b_dev = dev;
1243 }
1244 
1245 /*
1246  * dkread:		[devsw entry point]
1247  *
1248  *	Read from a wedge.
1249  */
1250 static int
1251 dkread(dev_t dev, struct uio *uio, int flags)
1252 {
1253 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1254 
1255 	if (sc == NULL)
1256 		return (ENODEV);
1257 	if (sc->sc_state != DKW_STATE_RUNNING)
1258 		return (ENXIO);
1259 
1260 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1261 }
1262 
1263 /*
1264  * dkwrite:		[devsw entry point]
1265  *
1266  *	Write to a wedge.
1267  */
1268 static int
1269 dkwrite(dev_t dev, struct uio *uio, int flags)
1270 {
1271 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1272 
1273 	if (sc == NULL)
1274 		return (ENODEV);
1275 	if (sc->sc_state != DKW_STATE_RUNNING)
1276 		return (ENXIO);
1277 
1278 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1279 }
1280 
1281 /*
1282  * dkioctl:		[devsw entry point]
1283  *
1284  *	Perform an ioctl request on a wedge.
1285  */
1286 static int
1287 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1288 {
1289 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1290 	int error = 0;
1291 
1292 	if (sc == NULL)
1293 		return (ENODEV);
1294 	if (sc->sc_state != DKW_STATE_RUNNING)
1295 		return (ENXIO);
1296 	if (sc->sc_parent->dk_rawvp == NULL)
1297 		return (ENXIO);
1298 
1299 	error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l);
1300 	if (error != EPASSTHROUGH)
1301 		return (error);
1302 
1303 	error = 0;
1304 
1305 	switch (cmd) {
1306 	case DIOCCACHESYNC:
1307 		/*
1308 		 * XXX Do we really need to care about having a writable
1309 		 * file descriptor here?
1310 		 */
1311 		if ((flag & FWRITE) == 0)
1312 			error = EBADF;
1313 		else
1314 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1315 					  cmd, data, flag,
1316 					  l != NULL ? l->l_cred : NOCRED);
1317 		break;
1318 	case DIOCGWEDGEINFO:
1319 	    {
1320 		struct dkwedge_info *dkw = (void *) data;
1321 
1322 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1323 			sizeof(dkw->dkw_devname));
1324 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1325 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1326 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1327 		dkw->dkw_offset = sc->sc_offset;
1328 		dkw->dkw_size = sc->sc_size;
1329 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
1330 
1331 		break;
1332 	    }
1333 
1334 	default:
1335 		error = ENOTTY;
1336 	}
1337 
1338 	return (error);
1339 }
1340 
1341 /*
1342  * dksize:		[devsw entry point]
1343  *
1344  *	Query the size of a wedge for the purpose of performing a dump
1345  *	or for swapping to.
1346  */
1347 static int
1348 dksize(dev_t dev)
1349 {
1350 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1351 	int rv = -1;
1352 
1353 	if (sc == NULL)
1354 		return (-1);
1355 	if (sc->sc_state != DKW_STATE_RUNNING)
1356 		return (-1);
1357 
1358 	mutex_enter(&sc->sc_dk.dk_openlock);
1359 	mutex_enter(&sc->sc_parent->dk_rawlock);
1360 
1361 	/* Our content type is static, no need to open the device. */
1362 
1363 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1364 		/* Saturate if we are larger than INT_MAX. */
1365 		if (sc->sc_size > INT_MAX)
1366 			rv = INT_MAX;
1367 		else
1368 			rv = (int) sc->sc_size;
1369 	}
1370 
1371 	mutex_exit(&sc->sc_parent->dk_rawlock);
1372 	mutex_exit(&sc->sc_dk.dk_openlock);
1373 
1374 	return (rv);
1375 }
1376 
1377 /*
1378  * dkdump:		[devsw entry point]
1379  *
1380  *	Perform a crash dump to a wedge.
1381  */
1382 static int
1383 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1384 {
1385 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1386 	const struct bdevsw *bdev;
1387 	int rv = 0;
1388 
1389 	if (sc == NULL)
1390 		return (ENODEV);
1391 	if (sc->sc_state != DKW_STATE_RUNNING)
1392 		return (ENXIO);
1393 
1394 	mutex_enter(&sc->sc_dk.dk_openlock);
1395 	mutex_enter(&sc->sc_parent->dk_rawlock);
1396 
1397 	/* Our content type is static, no need to open the device. */
1398 
1399 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1400 		rv = ENXIO;
1401 		goto out;
1402 	}
1403 	if (size % DEV_BSIZE != 0) {
1404 		rv = EINVAL;
1405 		goto out;
1406 	}
1407 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
1408 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1409 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1410 		    size / DEV_BSIZE, sc->sc_size);
1411 		rv = EINVAL;
1412 		goto out;
1413 	}
1414 
1415 	bdev = bdevsw_lookup(sc->sc_pdev);
1416 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1417 
1418 out:
1419 	mutex_exit(&sc->sc_parent->dk_rawlock);
1420 	mutex_exit(&sc->sc_dk.dk_openlock);
1421 
1422 	return rv;
1423 }
1424 
1425 /*
1426  * config glue
1427  */
1428 
1429 /*
1430  * dkwedge_find_partition
1431  *
1432  *	Find wedge corresponding to the specified parent name
1433  *	and offset/length.
1434  */
1435 device_t
1436 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1437 {
1438 	struct dkwedge_softc *sc;
1439 	int i;
1440 	device_t wedge = NULL;
1441 
1442 	rw_enter(&dkwedges_lock, RW_READER);
1443 	for (i = 0; i < ndkwedges; i++) {
1444 		if ((sc = dkwedges[i]) == NULL)
1445 			continue;
1446 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1447 		    sc->sc_offset == startblk &&
1448 		    sc->sc_size == nblks) {
1449 			if (wedge) {
1450 				printf("WARNING: double match for boot wedge "
1451 				    "(%s, %s)\n",
1452 				    device_xname(wedge),
1453 				    device_xname(sc->sc_dev));
1454 				continue;
1455 			}
1456 			wedge = sc->sc_dev;
1457 		}
1458 	}
1459 	rw_exit(&dkwedges_lock);
1460 
1461 	return wedge;
1462 }
1463 
1464 const char *
1465 dkwedge_get_parent_name(dev_t dev)
1466 {
1467 	/* XXX: perhaps do this in lookup? */
1468 	int bmaj = bdevsw_lookup_major(&dk_bdevsw);
1469 	int cmaj = cdevsw_lookup_major(&dk_cdevsw);
1470 	if (major(dev) != bmaj && major(dev) != cmaj)
1471 		return NULL;
1472 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1473 	if (sc == NULL)
1474 		return NULL;
1475 	return sc->sc_parent->dk_name;
1476 }
1477