xref: /netbsd-src/sys/dev/dkwedge/dk.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: dk.c,v 1.31 2007/12/09 20:27:56 jmcneill Exp $	*/
2 
3 /*-
4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.31 2007/12/09 20:27:56 jmcneill Exp $");
41 
42 #include "opt_dkwedge.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/pool.h>
49 #include <sys/ioctl.h>
50 #include <sys/disklabel.h>
51 #include <sys/disk.h>
52 #include <sys/fcntl.h>
53 #include <sys/buf.h>
54 #include <sys/bufq.h>
55 #include <sys/vnode.h>
56 #include <sys/stat.h>
57 #include <sys/conf.h>
58 #include <sys/callout.h>
59 #include <sys/kernel.h>
60 #include <sys/malloc.h>
61 #include <sys/device.h>
62 #include <sys/kauth.h>
63 
64 #include <miscfs/specfs/specdev.h>
65 
66 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
67 
68 typedef enum {
69 	DKW_STATE_LARVAL	= 0,
70 	DKW_STATE_RUNNING	= 1,
71 	DKW_STATE_DYING		= 2,
72 	DKW_STATE_DEAD		= 666
73 } dkwedge_state_t;
74 
75 struct dkwedge_softc {
76 	struct device	*sc_dev;	/* pointer to our pseudo-device */
77 	struct cfdata	sc_cfdata;	/* our cfdata structure */
78 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
79 
80 	dkwedge_state_t sc_state;	/* state this wedge is in */
81 
82 	struct disk	*sc_parent;	/* parent disk */
83 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
84 	uint64_t	sc_size;	/* size of wedge in blocks */
85 	char		sc_ptype[32];	/* partition type */
86 	dev_t		sc_pdev;	/* cached parent's dev_t */
87 					/* link on parent's wedge list */
88 	LIST_ENTRY(dkwedge_softc) sc_plink;
89 
90 	struct disk	sc_dk;		/* our own disk structure */
91 	struct bufq_state *sc_bufq;	/* buffer queue */
92 	struct callout	sc_restart_ch;	/* callout to restart I/O */
93 
94 	u_int		sc_iopend;	/* I/Os pending */
95 	int		sc_flags;	/* flags (splbio) */
96 };
97 
98 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
99 
100 static void	dkstart(struct dkwedge_softc *);
101 static void	dkiodone(struct buf *);
102 static void	dkrestart(void *);
103 
104 static dev_type_open(dkopen);
105 static dev_type_close(dkclose);
106 static dev_type_read(dkread);
107 static dev_type_write(dkwrite);
108 static dev_type_ioctl(dkioctl);
109 static dev_type_strategy(dkstrategy);
110 static dev_type_dump(dkdump);
111 static dev_type_size(dksize);
112 
113 const struct bdevsw dk_bdevsw = {
114 	dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
115 };
116 
117 const struct cdevsw dk_cdevsw = {
118 	dkopen, dkclose, dkread, dkwrite, dkioctl,
119 	    nostop, notty, nopoll, nommap, nokqfilter, D_DISK
120 };
121 
122 static struct dkwedge_softc **dkwedges;
123 static u_int ndkwedges;
124 static krwlock_t dkwedges_lock;
125 
126 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
127 static krwlock_t dkwedge_discovery_methods_lock;
128 
129 /*
130  * dkwedge_match:
131  *
132  *	Autoconfiguration match function for pseudo-device glue.
133  */
134 static int
135 dkwedge_match(struct device *parent, struct cfdata *match,
136     void *aux)
137 {
138 
139 	/* Pseudo-device; always present. */
140 	return (1);
141 }
142 
143 /*
144  * dkwedge_attach:
145  *
146  *	Autoconfiguration attach function for pseudo-device glue.
147  */
148 static void
149 dkwedge_attach(struct device *parent, struct device *self,
150     void *aux)
151 {
152 
153 	if (!pmf_device_register(self, NULL, NULL))
154 		aprint_error_dev(self, "couldn't establish power handler\n");
155 }
156 
157 /*
158  * dkwedge_detach:
159  *
160  *	Autoconfiguration detach function for pseudo-device glue.
161  */
162 static int
163 dkwedge_detach(struct device *self, int flags)
164 {
165 
166 	pmf_device_deregister(self);
167 	/* Always succeeds. */
168 	return (0);
169 }
170 
171 CFDRIVER_DECL(dk, DV_DISK, NULL);
172 CFATTACH_DECL(dk, sizeof(struct device),
173 	      dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
174 
175 /*
176  * dkwedge_wait_drain:
177  *
178  *	Wait for I/O on the wedge to drain.
179  *	NOTE: Must be called at splbio()!
180  */
181 static void
182 dkwedge_wait_drain(struct dkwedge_softc *sc)
183 {
184 
185 	while (sc->sc_iopend != 0) {
186 		sc->sc_flags |= DK_F_WAIT_DRAIN;
187 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
188 	}
189 }
190 
191 /*
192  * dkwedge_compute_pdev:
193  *
194  *	Compute the parent disk's dev_t.
195  */
196 static int
197 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
198 {
199 	const char *name, *cp;
200 	int punit, pmaj;
201 	char devname[16];
202 
203 	name = pname;
204 	if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
205 		return (ENODEV);
206 
207 	name += strlen(devname);
208 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
209 		punit = (punit * 10) + (*cp - '0');
210 	if (cp == name) {
211 		/* Invalid parent disk name. */
212 		return (ENODEV);
213 	}
214 
215 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
216 
217 	return (0);
218 }
219 
220 /*
221  * dkwedge_array_expand:
222  *
223  *	Expand the dkwedges array.
224  */
225 static void
226 dkwedge_array_expand(void)
227 {
228 	int newcnt = ndkwedges + 16;
229 	struct dkwedge_softc **newarray, **oldarray;
230 
231 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
232 	    M_WAITOK|M_ZERO);
233 	if ((oldarray = dkwedges) != NULL)
234 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
235 	dkwedges = newarray;
236 	ndkwedges = newcnt;
237 	if (oldarray != NULL)
238 		free(oldarray, M_DKWEDGE);
239 }
240 
241 /*
242  * dkwedge_add:		[exported function]
243  *
244  *	Add a disk wedge based on the provided information.
245  *
246  *	The incoming dkw_devname[] is ignored, instead being
247  *	filled in and returned to the caller.
248  */
249 int
250 dkwedge_add(struct dkwedge_info *dkw)
251 {
252 	struct dkwedge_softc *sc, *lsc;
253 	struct disk *pdk;
254 	u_int unit;
255 	int error;
256 	dev_t pdev;
257 
258 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
259 	pdk = disk_find(dkw->dkw_parent);
260 	if (pdk == NULL)
261 		return (ENODEV);
262 
263 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
264 	if (error)
265 		return (error);
266 
267 	if (dkw->dkw_offset < 0)
268 		return (EINVAL);
269 
270 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
271 	sc->sc_state = DKW_STATE_LARVAL;
272 	sc->sc_parent = pdk;
273 	sc->sc_pdev = pdev;
274 	sc->sc_offset = dkw->dkw_offset;
275 	sc->sc_size = dkw->dkw_size;
276 
277 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
278 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
279 
280 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
281 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
282 
283 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
284 
285 	callout_init(&sc->sc_restart_ch, 0);
286 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
287 
288 	/*
289 	 * Wedge will be added; increment the wedge count for the parent.
290 	 * Only allow this to happend if RAW_PART is the only thing open.
291 	 */
292 	mutex_enter(&pdk->dk_openlock);
293 	if (pdk->dk_openmask & ~(1 << RAW_PART))
294 		error = EBUSY;
295 	else {
296 		/* Check for wedge overlap. */
297 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
298 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
299 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
300 
301 			if (sc->sc_offset >= lsc->sc_offset &&
302 			    sc->sc_offset <= llastblk) {
303 				/* Overlaps the tail of the exsiting wedge. */
304 				break;
305 			}
306 			if (lastblk >= lsc->sc_offset &&
307 			    lastblk <= llastblk) {
308 				/* Overlaps the head of the existing wedge. */
309 			    	break;
310 			}
311 		}
312 		if (lsc != NULL)
313 			error = EINVAL;
314 		else {
315 			pdk->dk_nwedges++;
316 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
317 		}
318 	}
319 	mutex_exit(&pdk->dk_openlock);
320 	if (error) {
321 		bufq_free(sc->sc_bufq);
322 		free(sc, M_DKWEDGE);
323 		return (error);
324 	}
325 
326 	/* Fill in our cfdata for the pseudo-device glue. */
327 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
328 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
329 	/* sc->sc_cfdata.cf_unit set below */
330 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
331 
332 	/* Insert the larval wedge into the array. */
333 	rw_enter(&dkwedges_lock, RW_WRITER);
334 	for (error = 0;;) {
335 		struct dkwedge_softc **scpp;
336 
337 		/*
338 		 * Check for a duplicate wname while searching for
339 		 * a slot.
340 		 */
341 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
342 			if (dkwedges[unit] == NULL) {
343 				if (scpp == NULL) {
344 					scpp = &dkwedges[unit];
345 					sc->sc_cfdata.cf_unit = unit;
346 				}
347 			} else {
348 				/* XXX Unicode. */
349 				if (strcmp(dkwedges[unit]->sc_wname,
350 					   sc->sc_wname) == 0) {
351 					error = EEXIST;
352 					break;
353 				}
354 			}
355 		}
356 		if (error)
357 			break;
358 		KASSERT(unit == ndkwedges);
359 		if (scpp == NULL)
360 			dkwedge_array_expand();
361 		else {
362 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
363 			*scpp = sc;
364 			break;
365 		}
366 	}
367 	rw_exit(&dkwedges_lock);
368 	if (error) {
369 		mutex_enter(&pdk->dk_openlock);
370 		pdk->dk_nwedges--;
371 		LIST_REMOVE(sc, sc_plink);
372 		mutex_exit(&pdk->dk_openlock);
373 
374 		bufq_free(sc->sc_bufq);
375 		free(sc, M_DKWEDGE);
376 		return (error);
377 	}
378 
379 	/*
380 	 * Now that we know the unit #, attach a pseudo-device for
381 	 * this wedge instance.  This will provide us with the
382 	 * "struct device" necessary for glue to other parts of the
383 	 * system.
384 	 *
385 	 * This should never fail, unless we're almost totally out of
386 	 * memory.
387 	 */
388 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
389 		aprint_error("%s%u: unable to attach pseudo-device\n",
390 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
391 
392 		rw_enter(&dkwedges_lock, RW_WRITER);
393 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
394 		rw_exit(&dkwedges_lock);
395 
396 		mutex_enter(&pdk->dk_openlock);
397 		pdk->dk_nwedges--;
398 		LIST_REMOVE(sc, sc_plink);
399 		mutex_exit(&pdk->dk_openlock);
400 
401 		bufq_free(sc->sc_bufq);
402 		free(sc, M_DKWEDGE);
403 		return (ENOMEM);
404 	}
405 
406 	/* Return the devname to the caller. */
407 	strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
408 
409 	/*
410 	 * XXX Really ought to make the disk_attach() and the changing
411 	 * of state to RUNNING atomic.
412 	 */
413 
414 	disk_init(&sc->sc_dk, sc->sc_dev->dv_xname, NULL);
415 	disk_attach(&sc->sc_dk);
416 
417 	/* Disk wedge is ready for use! */
418 	sc->sc_state = DKW_STATE_RUNNING;
419 
420 	/* Announce our arrival. */
421 	aprint_normal("%s at %s: %s\n", sc->sc_dev->dv_xname, pdk->dk_name,
422 	    sc->sc_wname);	/* XXX Unicode */
423 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
424 	    sc->sc_dev->dv_xname, sc->sc_size, sc->sc_offset, sc->sc_ptype);
425 
426 	return (0);
427 }
428 
429 /*
430  * dkwedge_del:		[exported function]
431  *
432  *	Delete a disk wedge based on the provided information.
433  *	NOTE: We look up the wedge based on the wedge devname,
434  *	not wname.
435  */
436 int
437 dkwedge_del(struct dkwedge_info *dkw)
438 {
439 	struct dkwedge_softc *sc = NULL;
440 	u_int unit;
441 	int bmaj, cmaj, s;
442 
443 	/* Find our softc. */
444 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
445 	rw_enter(&dkwedges_lock, RW_WRITER);
446 	for (unit = 0; unit < ndkwedges; unit++) {
447 		if ((sc = dkwedges[unit]) != NULL &&
448 		    strcmp(sc->sc_dev->dv_xname, dkw->dkw_devname) == 0 &&
449 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
450 			/* Mark the wedge as dying. */
451 			sc->sc_state = DKW_STATE_DYING;
452 			break;
453 		}
454 	}
455 	rw_exit(&dkwedges_lock);
456 	if (unit == ndkwedges)
457 		return (ESRCH);
458 
459 	KASSERT(sc != NULL);
460 
461 	/* Locate the wedge major numbers. */
462 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
463 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
464 
465 	/* Kill any pending restart. */
466 	callout_stop(&sc->sc_restart_ch);
467 
468 	/*
469 	 * dkstart() will kill any queued buffers now that the
470 	 * state of the wedge is not RUNNING.  Once we've done
471 	 * that, wait for any other pending I/O to complete.
472 	 */
473 	s = splbio();
474 	dkstart(sc);
475 	dkwedge_wait_drain(sc);
476 	splx(s);
477 
478 	/* Nuke the vnodes for any open instances. */
479 	vdevgone(bmaj, unit, unit, VBLK);
480 	vdevgone(cmaj, unit, unit, VCHR);
481 
482 	/* Clean up the parent. */
483 	mutex_enter(&sc->sc_dk.dk_openlock);
484 	mutex_enter(&sc->sc_parent->dk_rawlock);
485 	if (sc->sc_dk.dk_openmask) {
486 		if (sc->sc_parent->dk_rawopens-- == 1) {
487 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
488 			(void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
489 					NOCRED, curlwp);
490 			sc->sc_parent->dk_rawvp = NULL;
491 		}
492 		sc->sc_dk.dk_openmask = 0;
493 	}
494 	mutex_exit(&sc->sc_parent->dk_rawlock);
495 	mutex_exit(&sc->sc_dk.dk_openlock);
496 
497 	/* Announce our departure. */
498 	aprint_normal("%s at %s (%s) deleted\n", sc->sc_dev->dv_xname,
499 	    sc->sc_parent->dk_name,
500 	    sc->sc_wname);	/* XXX Unicode */
501 
502 	/* Delete our pseudo-device. */
503 	(void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
504 
505 	mutex_enter(&sc->sc_parent->dk_openlock);
506 	sc->sc_parent->dk_nwedges--;
507 	LIST_REMOVE(sc, sc_plink);
508 	mutex_exit(&sc->sc_parent->dk_openlock);
509 
510 	/* Delete our buffer queue. */
511 	bufq_free(sc->sc_bufq);
512 
513 	/* Detach from the disk list. */
514 	disk_detach(&sc->sc_dk);
515 
516 	/* Poof. */
517 	rw_enter(&dkwedges_lock, RW_WRITER);
518 	dkwedges[unit] = NULL;
519 	sc->sc_state = DKW_STATE_DEAD;
520 	rw_exit(&dkwedges_lock);
521 
522 	free(sc, M_DKWEDGE);
523 
524 	return (0);
525 }
526 
527 /*
528  * dkwedge_delall:	[exported function]
529  *
530  *	Delete all of the wedges on the specified disk.  Used when
531  *	a disk is being detached.
532  */
533 void
534 dkwedge_delall(struct disk *pdk)
535 {
536 	struct dkwedge_info dkw;
537 	struct dkwedge_softc *sc;
538 
539 	for (;;) {
540 		mutex_enter(&pdk->dk_openlock);
541 		if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
542 			KASSERT(pdk->dk_nwedges == 0);
543 			mutex_exit(&pdk->dk_openlock);
544 			return;
545 		}
546 		strcpy(dkw.dkw_parent, pdk->dk_name);
547 		strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
548 		mutex_exit(&pdk->dk_openlock);
549 		(void) dkwedge_del(&dkw);
550 	}
551 }
552 
553 /*
554  * dkwedge_list:	[exported function]
555  *
556  *	List all of the wedges on a particular disk.
557  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
558  *	in user space of the specified process.
559  */
560 int
561 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
562 {
563 	struct uio uio;
564 	struct iovec iov;
565 	struct dkwedge_softc *sc;
566 	struct dkwedge_info dkw;
567 	struct vmspace *vm;
568 	int error = 0;
569 
570 	iov.iov_base = dkwl->dkwl_buf;
571 	iov.iov_len = dkwl->dkwl_bufsize;
572 
573 	uio.uio_iov = &iov;
574 	uio.uio_iovcnt = 1;
575 	uio.uio_offset = 0;
576 	uio.uio_resid = dkwl->dkwl_bufsize;
577 	uio.uio_rw = UIO_READ;
578 	if (l == NULL) {
579 		UIO_SETUP_SYSSPACE(&uio);
580 	} else {
581 		error = proc_vmspace_getref(l->l_proc, &vm);
582 		if (error) {
583 			return error;
584 		}
585 		uio.uio_vmspace = vm;
586 	}
587 
588 	dkwl->dkwl_ncopied = 0;
589 
590 	mutex_enter(&pdk->dk_openlock);
591 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
592 		if (uio.uio_resid < sizeof(dkw))
593 			break;
594 
595 		if (sc->sc_state != DKW_STATE_RUNNING)
596 			continue;
597 
598 		strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname);
599 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
600 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
601 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
602 		dkw.dkw_offset = sc->sc_offset;
603 		dkw.dkw_size = sc->sc_size;
604 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
605 
606 		error = uiomove(&dkw, sizeof(dkw), &uio);
607 		if (error)
608 			break;
609 		dkwl->dkwl_ncopied++;
610 	}
611 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
612 	mutex_exit(&pdk->dk_openlock);
613 
614 	if (l != NULL) {
615 		uvmspace_free(vm);
616 	}
617 
618 	return (error);
619 }
620 
621 device_t
622 dkwedge_find_by_wname(const char *wname)
623 {
624 	device_t dv = NULL;
625 	struct dkwedge_softc *sc;
626 	int i;
627 
628 	rw_enter(&dkwedges_lock, RW_WRITER);
629 	for (i = 0; i < ndkwedges; i++) {
630 		if ((sc = dkwedges[i]) == NULL)
631 			continue;
632 		if (strcmp(sc->sc_wname, wname) == 0) {
633 			if (dv != NULL) {
634 				printf(
635 				    "WARNING: double match for wedge name %s "
636 				    "(%s, %s)\n", wname, device_xname(dv),
637 				    device_xname(sc->sc_dev));
638 				continue;
639 			}
640 			dv = sc->sc_dev;
641 		}
642 	}
643 	rw_exit(&dkwedges_lock);
644 	return dv;
645 }
646 
647 void
648 dkwedge_print_wnames(void)
649 {
650 	struct dkwedge_softc *sc;
651 	int i;
652 
653 	rw_enter(&dkwedges_lock, RW_WRITER);
654 	for (i = 0; i < ndkwedges; i++) {
655 		if ((sc = dkwedges[i]) == NULL)
656 			continue;
657 		printf(" wedge:%s", sc->sc_wname);
658 	}
659 	rw_exit(&dkwedges_lock);
660 }
661 
662 /*
663  * dkwedge_set_bootwedge
664  *
665  *	Set the booted_wedge global based on the specified parent name
666  *	and offset/length.
667  */
668 void
669 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
670 {
671 	struct dkwedge_softc *sc;
672 	int i;
673 
674 	rw_enter(&dkwedges_lock, RW_WRITER);
675 	for (i = 0; i < ndkwedges; i++) {
676 		if ((sc = dkwedges[i]) == NULL)
677 			continue;
678 		if (strcmp(sc->sc_parent->dk_name, parent->dv_xname) == 0 &&
679 		    sc->sc_offset == startblk &&
680 		    sc->sc_size == nblks) {
681 			if (booted_wedge) {
682 				printf("WARNING: double match for boot wedge "
683 				    "(%s, %s)\n",
684 				    booted_wedge->dv_xname,
685 				    sc->sc_dev->dv_xname);
686 				continue;
687 			}
688 			booted_device = parent;
689 			booted_wedge = sc->sc_dev;
690 			booted_partition = 0;
691 		}
692 	}
693 	/*
694 	 * XXX What if we don't find one?  Should we create a special
695 	 * XXX root wedge?
696 	 */
697 	rw_exit(&dkwedges_lock);
698 }
699 
700 /*
701  * We need a dummy object to stuff into the dkwedge discovery method link
702  * set to ensure that there is always at least one object in the set.
703  */
704 static struct dkwedge_discovery_method dummy_discovery_method;
705 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
706 
707 /*
708  * dkwedge_init:
709  *
710  *	Initialize the disk wedge subsystem.
711  */
712 void
713 dkwedge_init(void)
714 {
715 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
716 	struct dkwedge_discovery_method * const *ddmp;
717 	struct dkwedge_discovery_method *lddm, *ddm;
718 
719 	rw_init(&dkwedges_lock);
720 	rw_init(&dkwedge_discovery_methods_lock);
721 
722 	if (config_cfdriver_attach(&dk_cd) != 0)
723 		panic("dkwedge: unable to attach cfdriver");
724 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
725 		panic("dkwedge: unable to attach cfattach");
726 
727 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
728 
729 	LIST_INIT(&dkwedge_discovery_methods);
730 
731 	__link_set_foreach(ddmp, dkwedge_methods) {
732 		ddm = *ddmp;
733 		if (ddm == &dummy_discovery_method)
734 			continue;
735 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
736 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
737 					 ddm, ddm_list);
738 			continue;
739 		}
740 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
741 			if (ddm->ddm_priority == lddm->ddm_priority) {
742 				aprint_error("dk-method-%s: method \"%s\" "
743 				    "already exists at priority %d\n",
744 				    ddm->ddm_name, lddm->ddm_name,
745 				    lddm->ddm_priority);
746 				/* Not inserted. */
747 				break;
748 			}
749 			if (ddm->ddm_priority < lddm->ddm_priority) {
750 				/* Higher priority; insert before. */
751 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
752 				break;
753 			}
754 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
755 				/* Last one; insert after. */
756 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
757 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
758 				break;
759 			}
760 		}
761 	}
762 
763 	rw_exit(&dkwedge_discovery_methods_lock);
764 }
765 
766 #ifdef DKWEDGE_AUTODISCOVER
767 int	dkwedge_autodiscover = 1;
768 #else
769 int	dkwedge_autodiscover = 0;
770 #endif
771 
772 /*
773  * dkwedge_discover:	[exported function]
774  *
775  *	Discover the wedges on a newly attached disk.
776  */
777 void
778 dkwedge_discover(struct disk *pdk)
779 {
780 	struct dkwedge_discovery_method *ddm;
781 	struct vnode *vp;
782 	int error;
783 	dev_t pdev;
784 
785 	/*
786 	 * Require people playing with wedges to enable this explicitly.
787 	 */
788 	if (dkwedge_autodiscover == 0)
789 		return;
790 
791 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
792 
793 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
794 	if (error) {
795 		aprint_error("%s: unable to compute pdev, error = %d\n",
796 		    pdk->dk_name, error);
797 		goto out;
798 	}
799 
800 	error = bdevvp(pdev, &vp);
801 	if (error) {
802 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
803 		    pdk->dk_name, error);
804 		goto out;
805 	}
806 
807 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
808 	if (error) {
809 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
810 		    pdk->dk_name, error);
811 		vrele(vp);
812 		goto out;
813 	}
814 
815 	error = VOP_OPEN(vp, FREAD, NOCRED);
816 	if (error) {
817 		aprint_error("%s: unable to open device, error = %d\n",
818 		    pdk->dk_name, error);
819 		vput(vp);
820 		goto out;
821 	}
822 	VOP_UNLOCK(vp, 0);
823 
824 	/*
825 	 * For each supported partition map type, look to see if
826 	 * this map type exists.  If so, parse it and add the
827 	 * corresponding wedges.
828 	 */
829 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
830 		error = (*ddm->ddm_discover)(pdk, vp);
831 		if (error == 0) {
832 			/* Successfully created wedges; we're done. */
833 			break;
834 		}
835 	}
836 
837 	error = vn_close(vp, FREAD, NOCRED, curlwp);
838 	if (error) {
839 		aprint_error("%s: unable to close device, error = %d\n",
840 		    pdk->dk_name, error);
841 		/* We'll just assume the vnode has been cleaned up. */
842 	}
843  out:
844 	rw_exit(&dkwedge_discovery_methods_lock);
845 }
846 
847 /*
848  * dkwedge_read:
849  *
850  *	Read the some data from the specified disk, used for
851  *	partition discovery.
852  */
853 int
854 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
855     void *tbuf, size_t len)
856 {
857 	struct buf b;
858 
859 	BUF_INIT(&b);
860 
861 	b.b_vp = vp;
862 	b.b_dev = vp->v_rdev;
863 	b.b_blkno = blkno;
864 	b.b_bcount = b.b_resid = len;
865 	b.b_flags = B_READ;
866 	b.b_proc = curproc;
867 	b.b_data = tbuf;
868 
869 	VOP_STRATEGY(vp, &b);
870 	return (biowait(&b));
871 }
872 
873 /*
874  * dkwedge_lookup:
875  *
876  *	Look up a dkwedge_softc based on the provided dev_t.
877  */
878 static struct dkwedge_softc *
879 dkwedge_lookup(dev_t dev)
880 {
881 	int unit = minor(dev);
882 
883 	if (unit >= ndkwedges)
884 		return (NULL);
885 
886 	KASSERT(dkwedges != NULL);
887 
888 	return (dkwedges[unit]);
889 }
890 
891 /*
892  * dkopen:		[devsw entry point]
893  *
894  *	Open a wedge.
895  */
896 static int
897 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
898 {
899 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
900 	struct vnode *vp;
901 	int error = 0;
902 
903 	if (sc == NULL)
904 		return (ENODEV);
905 
906 	if (sc->sc_state != DKW_STATE_RUNNING)
907 		return (ENXIO);
908 
909 	/*
910 	 * We go through a complicated little dance to only open the parent
911 	 * vnode once per wedge, no matter how many times the wedge is
912 	 * opened.  The reason?  We see one dkopen() per open call, but
913 	 * only dkclose() on the last close.
914 	 */
915 	mutex_enter(&sc->sc_dk.dk_openlock);
916 	mutex_enter(&sc->sc_parent->dk_rawlock);
917 	if (sc->sc_dk.dk_openmask == 0) {
918 		if (sc->sc_parent->dk_rawopens == 0) {
919 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
920 			error = bdevvp(sc->sc_pdev, &vp);
921 			if (error)
922 				goto popen_fail;
923 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
924 			if (error) {
925 				vrele(vp);
926 				goto popen_fail;
927 			}
928 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
929 			if (error) {
930 				vput(vp);
931 				goto popen_fail;
932 			}
933 			/* VOP_OPEN() doesn't do this for us. */
934 			vp->v_writecount++;
935 			VOP_UNLOCK(vp, 0);
936 			sc->sc_parent->dk_rawvp = vp;
937 		}
938 		sc->sc_parent->dk_rawopens++;
939 	}
940 	if (fmt == S_IFCHR)
941 		sc->sc_dk.dk_copenmask |= 1;
942 	else
943 		sc->sc_dk.dk_bopenmask |= 1;
944 	sc->sc_dk.dk_openmask =
945 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
946 
947  popen_fail:
948 	mutex_exit(&sc->sc_parent->dk_rawlock);
949 	mutex_exit(&sc->sc_dk.dk_openlock);
950 	return (error);
951 }
952 
953 /*
954  * dkclose:		[devsw entry point]
955  *
956  *	Close a wedge.
957  */
958 static int
959 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
960 {
961 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
962 	int error = 0;
963 
964 	KASSERT(sc->sc_dk.dk_openmask != 0);
965 
966 	mutex_enter(&sc->sc_dk.dk_openlock);
967 	mutex_enter(&sc->sc_parent->dk_rawlock);
968 
969 	if (fmt == S_IFCHR)
970 		sc->sc_dk.dk_copenmask &= ~1;
971 	else
972 		sc->sc_dk.dk_bopenmask &= ~1;
973 	sc->sc_dk.dk_openmask =
974 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
975 
976 	if (sc->sc_dk.dk_openmask == 0) {
977 		if (sc->sc_parent->dk_rawopens-- == 1) {
978 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
979 			error = vn_close(sc->sc_parent->dk_rawvp,
980 					 FREAD | FWRITE, NOCRED, l);
981 			sc->sc_parent->dk_rawvp = NULL;
982 		}
983 	}
984 
985 	mutex_exit(&sc->sc_parent->dk_rawlock);
986 	mutex_exit(&sc->sc_dk.dk_openlock);
987 
988 	return (error);
989 }
990 
991 /*
992  * dkstragegy:		[devsw entry point]
993  *
994  *	Perform I/O based on the wedge I/O strategy.
995  */
996 static void
997 dkstrategy(struct buf *bp)
998 {
999 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1000 	int s;
1001 
1002 	if (sc->sc_state != DKW_STATE_RUNNING) {
1003 		bp->b_error = ENXIO;
1004 		goto done;
1005 	}
1006 
1007 	/* If it's an empty transfer, wake up the top half now. */
1008 	if (bp->b_bcount == 0)
1009 		goto done;
1010 
1011 	/* Make sure it's in-range. */
1012 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1013 		goto done;
1014 
1015 	/* Translate it to the parent's raw LBA. */
1016 	bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1017 
1018 	/* Place it in the queue and start I/O on the unit. */
1019 	s = splbio();
1020 	sc->sc_iopend++;
1021 	BUFQ_PUT(sc->sc_bufq, bp);
1022 	dkstart(sc);
1023 	splx(s);
1024 	return;
1025 
1026  done:
1027 	bp->b_resid = bp->b_bcount;
1028 	biodone(bp);
1029 }
1030 
1031 /*
1032  * dkstart:
1033  *
1034  *	Start I/O that has been enqueued on the wedge.
1035  *	NOTE: Must be called at splbio()!
1036  */
1037 static void
1038 dkstart(struct dkwedge_softc *sc)
1039 {
1040 	struct buf *bp, *nbp;
1041 
1042 	/* Do as much work as has been enqueued. */
1043 	while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) {
1044 		if (sc->sc_state != DKW_STATE_RUNNING) {
1045 			(void) BUFQ_GET(sc->sc_bufq);
1046 			if (sc->sc_iopend-- == 1 &&
1047 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1048 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1049 				wakeup(&sc->sc_iopend);
1050 			}
1051 			bp->b_error = ENXIO;
1052 			bp->b_resid = bp->b_bcount;
1053 			biodone(bp);
1054 		}
1055 
1056 		/* Instrumentation. */
1057 		disk_busy(&sc->sc_dk);
1058 
1059 		nbp = getiobuf_nowait();
1060 		if (nbp == NULL) {
1061 			/*
1062 			 * No resources to run this request; leave the
1063 			 * buffer queued up, and schedule a timer to
1064 			 * restart the queue in 1/2 a second.
1065 			 */
1066 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1067 			callout_schedule(&sc->sc_restart_ch, hz / 2);
1068 			return;
1069 		}
1070 
1071 		(void) BUFQ_GET(sc->sc_bufq);
1072 
1073 		BUF_INIT(nbp);
1074 		nbp->b_data = bp->b_data;
1075 		nbp->b_flags = bp->b_flags | B_CALL;
1076 		nbp->b_iodone = dkiodone;
1077 		nbp->b_proc = bp->b_proc;
1078 		nbp->b_blkno = bp->b_rawblkno;
1079 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1080 		nbp->b_vp = sc->sc_parent->dk_rawvp;
1081 		nbp->b_bcount = bp->b_bcount;
1082 		nbp->b_private = bp;
1083 		BIO_COPYPRIO(nbp, bp);
1084 
1085 		if ((nbp->b_flags & B_READ) == 0)
1086 			V_INCR_NUMOUTPUT(nbp->b_vp);
1087 		VOP_STRATEGY(nbp->b_vp, nbp);
1088 	}
1089 }
1090 
1091 /*
1092  * dkiodone:
1093  *
1094  *	I/O to a wedge has completed; alert the top half.
1095  *	NOTE: Must be called at splbio()!
1096  */
1097 static void
1098 dkiodone(struct buf *bp)
1099 {
1100 	struct buf *obp = bp->b_private;
1101 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1102 
1103 	if (bp->b_error != 0)
1104 		obp->b_error = bp->b_error;
1105 	obp->b_resid = bp->b_resid;
1106 	putiobuf(bp);
1107 
1108 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1109 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1110 		wakeup(&sc->sc_iopend);
1111 	}
1112 
1113 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1114 	    obp->b_flags & B_READ);
1115 
1116 	biodone(obp);
1117 
1118 	/* Kick the queue in case there is more work we can do. */
1119 	dkstart(sc);
1120 }
1121 
1122 /*
1123  * dkrestart:
1124  *
1125  *	Restart the work queue after it was stalled due to
1126  *	a resource shortage.  Invoked via a callout.
1127  */
1128 static void
1129 dkrestart(void *v)
1130 {
1131 	struct dkwedge_softc *sc = v;
1132 	int s;
1133 
1134 	s = splbio();
1135 	dkstart(sc);
1136 	splx(s);
1137 }
1138 
1139 /*
1140  * dkread:		[devsw entry point]
1141  *
1142  *	Read from a wedge.
1143  */
1144 static int
1145 dkread(dev_t dev, struct uio *uio, int flags)
1146 {
1147 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1148 
1149 	if (sc->sc_state != DKW_STATE_RUNNING)
1150 		return (ENXIO);
1151 
1152 	return (physio(dkstrategy, NULL, dev, B_READ,
1153 		       sc->sc_parent->dk_driver->d_minphys, uio));
1154 }
1155 
1156 /*
1157  * dkwrite:		[devsw entry point]
1158  *
1159  *	Write to a wedge.
1160  */
1161 static int
1162 dkwrite(dev_t dev, struct uio *uio, int flags)
1163 {
1164 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1165 
1166 	if (sc->sc_state != DKW_STATE_RUNNING)
1167 		return (ENXIO);
1168 
1169 	return (physio(dkstrategy, NULL, dev, B_WRITE,
1170 		       sc->sc_parent->dk_driver->d_minphys, uio));
1171 }
1172 
1173 /*
1174  * dkioctl:		[devsw entry point]
1175  *
1176  *	Perform an ioctl request on a wedge.
1177  */
1178 static int
1179 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1180 {
1181 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1182 	int error = 0;
1183 
1184 	if (sc->sc_state != DKW_STATE_RUNNING)
1185 		return (ENXIO);
1186 
1187 	switch (cmd) {
1188 	case DIOCCACHESYNC:
1189 		/*
1190 		 * XXX Do we really need to care about having a writable
1191 		 * file descriptor here?
1192 		 */
1193 		if ((flag & FWRITE) == 0)
1194 			error = EBADF;
1195 		else
1196 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1197 					  cmd, data, flag,
1198 					  l != NULL ? l->l_cred : NOCRED);
1199 		break;
1200 	case DIOCGWEDGEINFO:
1201 	    {
1202 	    	struct dkwedge_info *dkw = (void *) data;
1203 
1204 		strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname);
1205 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1206 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1207 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1208 		dkw->dkw_offset = sc->sc_offset;
1209 		dkw->dkw_size = sc->sc_size;
1210 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
1211 
1212 		break;
1213 	    }
1214 
1215 	default:
1216 		error = ENOTTY;
1217 	}
1218 
1219 	return (error);
1220 }
1221 
1222 /*
1223  * dksize:		[devsw entry point]
1224  *
1225  *	Query the size of a wedge for the purpose of performing a dump
1226  *	or for swapping to.
1227  */
1228 static int
1229 dksize(dev_t dev)
1230 {
1231 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1232 	int rv = -1;
1233 
1234 	if (sc == NULL)
1235 		return (-1);
1236 
1237 	if (sc->sc_state != DKW_STATE_RUNNING)
1238 		return (ENXIO);
1239 
1240 	mutex_enter(&sc->sc_dk.dk_openlock);
1241 	mutex_enter(&sc->sc_parent->dk_rawlock);
1242 
1243 	/* Our content type is static, no need to open the device. */
1244 
1245 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1246 		/* Saturate if we are larger than INT_MAX. */
1247 		if (sc->sc_size > INT_MAX)
1248 			rv = INT_MAX;
1249 		else
1250 			rv = (int) sc->sc_size;
1251 	}
1252 
1253 	mutex_exit(&sc->sc_parent->dk_rawlock);
1254 	mutex_exit(&sc->sc_dk.dk_openlock);
1255 
1256 	return (rv);
1257 }
1258 
1259 /*
1260  * dkdump:		[devsw entry point]
1261  *
1262  *	Perform a crash dump to a wedge.
1263  */
1264 static int
1265 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1266 {
1267 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1268 	const struct bdevsw *bdev;
1269 	int rv = 0;
1270 
1271 	if (sc == NULL)
1272 		return (-1);
1273 
1274 	if (sc->sc_state != DKW_STATE_RUNNING)
1275 		return (ENXIO);
1276 
1277 	mutex_enter(&sc->sc_dk.dk_openlock);
1278 	mutex_enter(&sc->sc_parent->dk_rawlock);
1279 
1280 	/* Our content type is static, no need to open the device. */
1281 
1282 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1283 		rv = ENXIO;
1284 		goto out;
1285 	}
1286 	if (size % DEV_BSIZE != 0) {
1287 		rv = EINVAL;
1288 		goto out;
1289 	}
1290 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
1291 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1292 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1293 		    size / DEV_BSIZE, sc->sc_size);
1294 		rv = EINVAL;
1295 		goto out;
1296 	}
1297 
1298 	bdev = bdevsw_lookup(sc->sc_pdev);
1299 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1300 
1301 out:
1302 	mutex_exit(&sc->sc_parent->dk_rawlock);
1303 	mutex_exit(&sc->sc_dk.dk_openlock);
1304 
1305 	return rv;
1306 }
1307