xref: /netbsd-src/sys/dev/dkwedge/dk.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: dk.c,v 1.67 2013/08/03 18:30:57 soren Exp $	*/
2 
3 /*-
4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.67 2013/08/03 18:30:57 soren Exp $");
34 
35 #ifdef _KERNEL_OPT
36 #include "opt_dkwedge.h"
37 #endif
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/errno.h>
43 #include <sys/pool.h>
44 #include <sys/ioctl.h>
45 #include <sys/disklabel.h>
46 #include <sys/disk.h>
47 #include <sys/fcntl.h>
48 #include <sys/buf.h>
49 #include <sys/bufq.h>
50 #include <sys/vnode.h>
51 #include <sys/stat.h>
52 #include <sys/conf.h>
53 #include <sys/callout.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56 #include <sys/device.h>
57 #include <sys/kauth.h>
58 
59 #include <miscfs/specfs/specdev.h>
60 
61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
62 
63 typedef enum {
64 	DKW_STATE_LARVAL	= 0,
65 	DKW_STATE_RUNNING	= 1,
66 	DKW_STATE_DYING		= 2,
67 	DKW_STATE_DEAD		= 666
68 } dkwedge_state_t;
69 
70 struct dkwedge_softc {
71 	device_t	sc_dev;	/* pointer to our pseudo-device */
72 	struct cfdata	sc_cfdata;	/* our cfdata structure */
73 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
74 
75 	dkwedge_state_t sc_state;	/* state this wedge is in */
76 
77 	struct disk	*sc_parent;	/* parent disk */
78 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
79 	uint64_t	sc_size;	/* size of wedge in blocks */
80 	char		sc_ptype[32];	/* partition type */
81 	dev_t		sc_pdev;	/* cached parent's dev_t */
82 					/* link on parent's wedge list */
83 	LIST_ENTRY(dkwedge_softc) sc_plink;
84 
85 	struct disk	sc_dk;		/* our own disk structure */
86 	struct bufq_state *sc_bufq;	/* buffer queue */
87 	struct callout	sc_restart_ch;	/* callout to restart I/O */
88 
89 	u_int		sc_iopend;	/* I/Os pending */
90 	int		sc_flags;	/* flags (splbio) */
91 };
92 
93 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
94 
95 static void	dkstart(struct dkwedge_softc *);
96 static void	dkiodone(struct buf *);
97 static void	dkrestart(void *);
98 static void	dkminphys(struct buf *);
99 
100 static int	dklastclose(struct dkwedge_softc *);
101 static int	dkwedge_detach(device_t, int);
102 
103 static dev_type_open(dkopen);
104 static dev_type_close(dkclose);
105 static dev_type_read(dkread);
106 static dev_type_write(dkwrite);
107 static dev_type_ioctl(dkioctl);
108 static dev_type_strategy(dkstrategy);
109 static dev_type_dump(dkdump);
110 static dev_type_size(dksize);
111 
112 const struct bdevsw dk_bdevsw = {
113 	dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
114 };
115 
116 const struct cdevsw dk_cdevsw = {
117 	dkopen, dkclose, dkread, dkwrite, dkioctl,
118 	    nostop, notty, nopoll, nommap, nokqfilter, D_DISK
119 };
120 
121 static struct dkwedge_softc **dkwedges;
122 static u_int ndkwedges;
123 static krwlock_t dkwedges_lock;
124 
125 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
126 static krwlock_t dkwedge_discovery_methods_lock;
127 
128 /*
129  * dkwedge_match:
130  *
131  *	Autoconfiguration match function for pseudo-device glue.
132  */
133 static int
134 dkwedge_match(device_t parent, cfdata_t match,
135     void *aux)
136 {
137 
138 	/* Pseudo-device; always present. */
139 	return (1);
140 }
141 
142 /*
143  * dkwedge_attach:
144  *
145  *	Autoconfiguration attach function for pseudo-device glue.
146  */
147 static void
148 dkwedge_attach(device_t parent, device_t self,
149     void *aux)
150 {
151 
152 	if (!pmf_device_register(self, NULL, NULL))
153 		aprint_error_dev(self, "couldn't establish power handler\n");
154 }
155 
156 CFDRIVER_DECL(dk, DV_DISK, NULL);
157 CFATTACH_DECL3_NEW(dk, 0,
158     dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL,
159     DVF_DETACH_SHUTDOWN);
160 
161 /*
162  * dkwedge_wait_drain:
163  *
164  *	Wait for I/O on the wedge to drain.
165  *	NOTE: Must be called at splbio()!
166  */
167 static void
168 dkwedge_wait_drain(struct dkwedge_softc *sc)
169 {
170 
171 	while (sc->sc_iopend != 0) {
172 		sc->sc_flags |= DK_F_WAIT_DRAIN;
173 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
174 	}
175 }
176 
177 /*
178  * dkwedge_compute_pdev:
179  *
180  *	Compute the parent disk's dev_t.
181  */
182 static int
183 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
184 {
185 	const char *name, *cp;
186 	devmajor_t pmaj;
187 	int punit;
188 	char devname[16];
189 
190 	name = pname;
191 	if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
192 		return (ENODEV);
193 
194 	name += strlen(devname);
195 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
196 		punit = (punit * 10) + (*cp - '0');
197 	if (cp == name) {
198 		/* Invalid parent disk name. */
199 		return (ENODEV);
200 	}
201 
202 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
203 
204 	return (0);
205 }
206 
207 /*
208  * dkwedge_array_expand:
209  *
210  *	Expand the dkwedges array.
211  */
212 static void
213 dkwedge_array_expand(void)
214 {
215 	int newcnt = ndkwedges + 16;
216 	struct dkwedge_softc **newarray, **oldarray;
217 
218 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
219 	    M_WAITOK|M_ZERO);
220 	if ((oldarray = dkwedges) != NULL)
221 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
222 	dkwedges = newarray;
223 	ndkwedges = newcnt;
224 	if (oldarray != NULL)
225 		free(oldarray, M_DKWEDGE);
226 }
227 
228 static void
229 dkgetproperties(struct disk *disk, struct dkwedge_info *dkw)
230 {
231 	struct disk_geom *dg = &disk->dk_geom;
232 
233 	memset(dg, 0, sizeof(*dg));
234 
235 	dg->dg_secperunit = dkw->dkw_size >> disk->dk_blkshift;
236 	dg->dg_secsize = DEV_BSIZE << disk->dk_blkshift;
237 	dg->dg_nsectors = 32;
238 	dg->dg_ntracks = 64;
239 	/* XXX: why is that dkw->dkw_size instead of secperunit?!?! */
240 	dg->dg_ncylinders = dkw->dkw_size / (dg->dg_nsectors * dg->dg_ntracks);
241 
242 	disk_set_info(NULL, disk, "ESDI");
243 }
244 
245 /*
246  * dkwedge_add:		[exported function]
247  *
248  *	Add a disk wedge based on the provided information.
249  *
250  *	The incoming dkw_devname[] is ignored, instead being
251  *	filled in and returned to the caller.
252  */
253 int
254 dkwedge_add(struct dkwedge_info *dkw)
255 {
256 	struct dkwedge_softc *sc, *lsc;
257 	struct disk *pdk;
258 	u_int unit;
259 	int error;
260 	dev_t pdev;
261 
262 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
263 	pdk = disk_find(dkw->dkw_parent);
264 	if (pdk == NULL)
265 		return (ENODEV);
266 
267 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
268 	if (error)
269 		return (error);
270 
271 	if (dkw->dkw_offset < 0)
272 		return (EINVAL);
273 
274 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
275 	sc->sc_state = DKW_STATE_LARVAL;
276 	sc->sc_parent = pdk;
277 	sc->sc_pdev = pdev;
278 	sc->sc_offset = dkw->dkw_offset;
279 	sc->sc_size = dkw->dkw_size;
280 
281 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
282 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
283 
284 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
285 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
286 
287 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
288 
289 	callout_init(&sc->sc_restart_ch, 0);
290 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
291 
292 	/*
293 	 * Wedge will be added; increment the wedge count for the parent.
294 	 * Only allow this to happend if RAW_PART is the only thing open.
295 	 */
296 	mutex_enter(&pdk->dk_openlock);
297 	if (pdk->dk_openmask & ~(1 << RAW_PART))
298 		error = EBUSY;
299 	else {
300 		/* Check for wedge overlap. */
301 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
302 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
303 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
304 
305 			if (sc->sc_offset >= lsc->sc_offset &&
306 			    sc->sc_offset <= llastblk) {
307 				/* Overlaps the tail of the existing wedge. */
308 				break;
309 			}
310 			if (lastblk >= lsc->sc_offset &&
311 			    lastblk <= llastblk) {
312 				/* Overlaps the head of the existing wedge. */
313 			    	break;
314 			}
315 		}
316 		if (lsc != NULL)
317 			error = EINVAL;
318 		else {
319 			pdk->dk_nwedges++;
320 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
321 		}
322 	}
323 	mutex_exit(&pdk->dk_openlock);
324 	if (error) {
325 		bufq_free(sc->sc_bufq);
326 		free(sc, M_DKWEDGE);
327 		return (error);
328 	}
329 
330 	/* Fill in our cfdata for the pseudo-device glue. */
331 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
332 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
333 	/* sc->sc_cfdata.cf_unit set below */
334 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
335 
336 	/* Insert the larval wedge into the array. */
337 	rw_enter(&dkwedges_lock, RW_WRITER);
338 	for (error = 0;;) {
339 		struct dkwedge_softc **scpp;
340 
341 		/*
342 		 * Check for a duplicate wname while searching for
343 		 * a slot.
344 		 */
345 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
346 			if (dkwedges[unit] == NULL) {
347 				if (scpp == NULL) {
348 					scpp = &dkwedges[unit];
349 					sc->sc_cfdata.cf_unit = unit;
350 				}
351 			} else {
352 				/* XXX Unicode. */
353 				if (strcmp(dkwedges[unit]->sc_wname,
354 					   sc->sc_wname) == 0) {
355 					error = EEXIST;
356 					break;
357 				}
358 			}
359 		}
360 		if (error)
361 			break;
362 		KASSERT(unit == ndkwedges);
363 		if (scpp == NULL)
364 			dkwedge_array_expand();
365 		else {
366 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
367 			*scpp = sc;
368 			break;
369 		}
370 	}
371 	rw_exit(&dkwedges_lock);
372 	if (error) {
373 		mutex_enter(&pdk->dk_openlock);
374 		pdk->dk_nwedges--;
375 		LIST_REMOVE(sc, sc_plink);
376 		mutex_exit(&pdk->dk_openlock);
377 
378 		bufq_free(sc->sc_bufq);
379 		free(sc, M_DKWEDGE);
380 		return (error);
381 	}
382 
383 	/*
384 	 * Now that we know the unit #, attach a pseudo-device for
385 	 * this wedge instance.  This will provide us with the
386 	 * device_t necessary for glue to other parts of the system.
387 	 *
388 	 * This should never fail, unless we're almost totally out of
389 	 * memory.
390 	 */
391 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
392 		aprint_error("%s%u: unable to attach pseudo-device\n",
393 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
394 
395 		rw_enter(&dkwedges_lock, RW_WRITER);
396 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
397 		rw_exit(&dkwedges_lock);
398 
399 		mutex_enter(&pdk->dk_openlock);
400 		pdk->dk_nwedges--;
401 		LIST_REMOVE(sc, sc_plink);
402 		mutex_exit(&pdk->dk_openlock);
403 
404 		bufq_free(sc->sc_bufq);
405 		free(sc, M_DKWEDGE);
406 		return (ENOMEM);
407 	}
408 
409 	/* Return the devname to the caller. */
410 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
411 		sizeof(dkw->dkw_devname));
412 
413 	/*
414 	 * XXX Really ought to make the disk_attach() and the changing
415 	 * of state to RUNNING atomic.
416 	 */
417 
418 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
419 	disk_blocksize(&sc->sc_dk, DEV_BSIZE << pdk->dk_blkshift);
420 	dkgetproperties(&sc->sc_dk, dkw);
421 	disk_attach(&sc->sc_dk);
422 
423 	/* Disk wedge is ready for use! */
424 	sc->sc_state = DKW_STATE_RUNNING;
425 
426 	/* Announce our arrival. */
427 	aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
428 	    sc->sc_wname);	/* XXX Unicode */
429 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
430 	    device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
431 
432 	return (0);
433 }
434 
435 /*
436  * dkwedge_find:
437  *
438  *	Lookup a disk wedge based on the provided information.
439  *	NOTE: We look up the wedge based on the wedge devname,
440  *	not wname.
441  *
442  *	Return NULL if the wedge is not found, otherwise return
443  *	the wedge's softc.  Assign the wedge's unit number to unitp
444  *	if unitp is not NULL.
445  */
446 static struct dkwedge_softc *
447 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp)
448 {
449 	struct dkwedge_softc *sc = NULL;
450 	u_int unit;
451 
452 	/* Find our softc. */
453 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
454 	rw_enter(&dkwedges_lock, RW_READER);
455 	for (unit = 0; unit < ndkwedges; unit++) {
456 		if ((sc = dkwedges[unit]) != NULL &&
457 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
458 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
459 			break;
460 		}
461 	}
462 	rw_exit(&dkwedges_lock);
463 	if (unit == ndkwedges)
464 		return NULL;
465 
466 	if (unitp != NULL)
467 		*unitp = unit;
468 
469 	return sc;
470 }
471 
472 /*
473  * dkwedge_del:		[exported function]
474  *
475  *	Delete a disk wedge based on the provided information.
476  *	NOTE: We look up the wedge based on the wedge devname,
477  *	not wname.
478  */
479 int
480 dkwedge_del(struct dkwedge_info *dkw)
481 {
482 	struct dkwedge_softc *sc = NULL;
483 
484 	/* Find our softc. */
485 	if ((sc = dkwedge_find(dkw, NULL)) == NULL)
486 		return (ESRCH);
487 
488 	return config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
489 }
490 
491 static int
492 dkwedge_begindetach(struct dkwedge_softc *sc, int flags)
493 {
494 	struct disk *dk = &sc->sc_dk;
495 	int rc;
496 
497 	rc = 0;
498 	mutex_enter(&dk->dk_openlock);
499 	if (dk->dk_openmask == 0)
500 		;	/* nothing to do */
501 	else if ((flags & DETACH_FORCE) == 0)
502 		rc = EBUSY;
503 	else {
504 		mutex_enter(&sc->sc_parent->dk_rawlock);
505 		rc = dklastclose(sc); /* releases dk_rawlock */
506 	}
507 	mutex_exit(&dk->dk_openlock);
508 
509 	return rc;
510 }
511 
512 /*
513  * dkwedge_detach:
514  *
515  *	Autoconfiguration detach function for pseudo-device glue.
516  */
517 static int
518 dkwedge_detach(device_t self, int flags)
519 {
520 	struct dkwedge_softc *sc = NULL;
521 	u_int unit;
522 	int bmaj, cmaj, rc, s;
523 
524 	rw_enter(&dkwedges_lock, RW_WRITER);
525 	for (unit = 0; unit < ndkwedges; unit++) {
526 		if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self)
527 			break;
528 	}
529 	if (unit == ndkwedges)
530 		rc = ENXIO;
531 	else if ((rc = dkwedge_begindetach(sc, flags)) == 0) {
532 		/* Mark the wedge as dying. */
533 		sc->sc_state = DKW_STATE_DYING;
534 	}
535 	rw_exit(&dkwedges_lock);
536 
537 	if (rc != 0)
538 		return rc;
539 
540 	pmf_device_deregister(self);
541 
542 	/* Locate the wedge major numbers. */
543 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
544 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
545 
546 	/* Kill any pending restart. */
547 	callout_stop(&sc->sc_restart_ch);
548 
549 	/*
550 	 * dkstart() will kill any queued buffers now that the
551 	 * state of the wedge is not RUNNING.  Once we've done
552 	 * that, wait for any other pending I/O to complete.
553 	 */
554 	s = splbio();
555 	dkstart(sc);
556 	dkwedge_wait_drain(sc);
557 	splx(s);
558 
559 	/* Nuke the vnodes for any open instances. */
560 	vdevgone(bmaj, unit, unit, VBLK);
561 	vdevgone(cmaj, unit, unit, VCHR);
562 
563 	/* Clean up the parent. */
564 	mutex_enter(&sc->sc_dk.dk_openlock);
565 	if (sc->sc_dk.dk_openmask) {
566 		mutex_enter(&sc->sc_parent->dk_rawlock);
567 		if (sc->sc_parent->dk_rawopens-- == 1) {
568 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
569 			mutex_exit(&sc->sc_parent->dk_rawlock);
570 			(void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
571 			    NOCRED);
572 			sc->sc_parent->dk_rawvp = NULL;
573 		} else
574 			mutex_exit(&sc->sc_parent->dk_rawlock);
575 		sc->sc_dk.dk_openmask = 0;
576 	}
577 	mutex_exit(&sc->sc_dk.dk_openlock);
578 
579 	/* Announce our departure. */
580 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
581 	    sc->sc_parent->dk_name,
582 	    sc->sc_wname);	/* XXX Unicode */
583 
584 	mutex_enter(&sc->sc_parent->dk_openlock);
585 	sc->sc_parent->dk_nwedges--;
586 	LIST_REMOVE(sc, sc_plink);
587 	mutex_exit(&sc->sc_parent->dk_openlock);
588 
589 	/* Delete our buffer queue. */
590 	bufq_free(sc->sc_bufq);
591 
592 	/* Detach from the disk list. */
593 	disk_detach(&sc->sc_dk);
594 	disk_destroy(&sc->sc_dk);
595 
596 	/* Poof. */
597 	rw_enter(&dkwedges_lock, RW_WRITER);
598 	dkwedges[unit] = NULL;
599 	sc->sc_state = DKW_STATE_DEAD;
600 	rw_exit(&dkwedges_lock);
601 
602 	free(sc, M_DKWEDGE);
603 
604 	return 0;
605 }
606 
607 /*
608  * dkwedge_delall:	[exported function]
609  *
610  *	Delete all of the wedges on the specified disk.  Used when
611  *	a disk is being detached.
612  */
613 void
614 dkwedge_delall(struct disk *pdk)
615 {
616 	struct dkwedge_info dkw;
617 	struct dkwedge_softc *sc;
618 
619 	for (;;) {
620 		mutex_enter(&pdk->dk_openlock);
621 		if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
622 			KASSERT(pdk->dk_nwedges == 0);
623 			mutex_exit(&pdk->dk_openlock);
624 			return;
625 		}
626 		strcpy(dkw.dkw_parent, pdk->dk_name);
627 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
628 			sizeof(dkw.dkw_devname));
629 		mutex_exit(&pdk->dk_openlock);
630 		(void) dkwedge_del(&dkw);
631 	}
632 }
633 
634 /*
635  * dkwedge_list:	[exported function]
636  *
637  *	List all of the wedges on a particular disk.
638  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
639  *	in user space of the specified process.
640  */
641 int
642 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
643 {
644 	struct uio uio;
645 	struct iovec iov;
646 	struct dkwedge_softc *sc;
647 	struct dkwedge_info dkw;
648 	int error = 0;
649 
650 	iov.iov_base = dkwl->dkwl_buf;
651 	iov.iov_len = dkwl->dkwl_bufsize;
652 
653 	uio.uio_iov = &iov;
654 	uio.uio_iovcnt = 1;
655 	uio.uio_offset = 0;
656 	uio.uio_resid = dkwl->dkwl_bufsize;
657 	uio.uio_rw = UIO_READ;
658 	KASSERT(l == curlwp);
659 	uio.uio_vmspace = l->l_proc->p_vmspace;
660 
661 	dkwl->dkwl_ncopied = 0;
662 
663 	mutex_enter(&pdk->dk_openlock);
664 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
665 		if (uio.uio_resid < sizeof(dkw))
666 			break;
667 
668 		if (sc->sc_state != DKW_STATE_RUNNING)
669 			continue;
670 
671 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
672 			sizeof(dkw.dkw_devname));
673 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
674 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
675 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
676 		dkw.dkw_offset = sc->sc_offset;
677 		dkw.dkw_size = sc->sc_size;
678 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
679 
680 		error = uiomove(&dkw, sizeof(dkw), &uio);
681 		if (error)
682 			break;
683 		dkwl->dkwl_ncopied++;
684 	}
685 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
686 	mutex_exit(&pdk->dk_openlock);
687 
688 	return (error);
689 }
690 
691 device_t
692 dkwedge_find_by_wname(const char *wname)
693 {
694 	device_t dv = NULL;
695 	struct dkwedge_softc *sc;
696 	int i;
697 
698 	rw_enter(&dkwedges_lock, RW_WRITER);
699 	for (i = 0; i < ndkwedges; i++) {
700 		if ((sc = dkwedges[i]) == NULL)
701 			continue;
702 		if (strcmp(sc->sc_wname, wname) == 0) {
703 			if (dv != NULL) {
704 				printf(
705 				    "WARNING: double match for wedge name %s "
706 				    "(%s, %s)\n", wname, device_xname(dv),
707 				    device_xname(sc->sc_dev));
708 				continue;
709 			}
710 			dv = sc->sc_dev;
711 		}
712 	}
713 	rw_exit(&dkwedges_lock);
714 	return dv;
715 }
716 
717 void
718 dkwedge_print_wnames(void)
719 {
720 	struct dkwedge_softc *sc;
721 	int i;
722 
723 	rw_enter(&dkwedges_lock, RW_WRITER);
724 	for (i = 0; i < ndkwedges; i++) {
725 		if ((sc = dkwedges[i]) == NULL)
726 			continue;
727 		printf(" wedge:%s", sc->sc_wname);
728 	}
729 	rw_exit(&dkwedges_lock);
730 }
731 
732 /*
733  * We need a dummy object to stuff into the dkwedge discovery method link
734  * set to ensure that there is always at least one object in the set.
735  */
736 static struct dkwedge_discovery_method dummy_discovery_method;
737 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
738 
739 /*
740  * dkwedge_init:
741  *
742  *	Initialize the disk wedge subsystem.
743  */
744 void
745 dkwedge_init(void)
746 {
747 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
748 	struct dkwedge_discovery_method * const *ddmp;
749 	struct dkwedge_discovery_method *lddm, *ddm;
750 
751 	rw_init(&dkwedges_lock);
752 	rw_init(&dkwedge_discovery_methods_lock);
753 
754 	if (config_cfdriver_attach(&dk_cd) != 0)
755 		panic("dkwedge: unable to attach cfdriver");
756 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
757 		panic("dkwedge: unable to attach cfattach");
758 
759 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
760 
761 	LIST_INIT(&dkwedge_discovery_methods);
762 
763 	__link_set_foreach(ddmp, dkwedge_methods) {
764 		ddm = *ddmp;
765 		if (ddm == &dummy_discovery_method)
766 			continue;
767 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
768 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
769 					 ddm, ddm_list);
770 			continue;
771 		}
772 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
773 			if (ddm->ddm_priority == lddm->ddm_priority) {
774 				aprint_error("dk-method-%s: method \"%s\" "
775 				    "already exists at priority %d\n",
776 				    ddm->ddm_name, lddm->ddm_name,
777 				    lddm->ddm_priority);
778 				/* Not inserted. */
779 				break;
780 			}
781 			if (ddm->ddm_priority < lddm->ddm_priority) {
782 				/* Higher priority; insert before. */
783 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
784 				break;
785 			}
786 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
787 				/* Last one; insert after. */
788 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
789 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
790 				break;
791 			}
792 		}
793 	}
794 
795 	rw_exit(&dkwedge_discovery_methods_lock);
796 }
797 
798 #ifdef DKWEDGE_AUTODISCOVER
799 int	dkwedge_autodiscover = 1;
800 #else
801 int	dkwedge_autodiscover = 0;
802 #endif
803 
804 /*
805  * dkwedge_discover:	[exported function]
806  *
807  *	Discover the wedges on a newly attached disk.
808  */
809 void
810 dkwedge_discover(struct disk *pdk)
811 {
812 	struct dkwedge_discovery_method *ddm;
813 	struct vnode *vp;
814 	int error;
815 	dev_t pdev;
816 
817 	/*
818 	 * Require people playing with wedges to enable this explicitly.
819 	 */
820 	if (dkwedge_autodiscover == 0)
821 		return;
822 
823 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
824 
825 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
826 	if (error) {
827 		aprint_error("%s: unable to compute pdev, error = %d\n",
828 		    pdk->dk_name, error);
829 		goto out;
830 	}
831 
832 	error = bdevvp(pdev, &vp);
833 	if (error) {
834 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
835 		    pdk->dk_name, error);
836 		goto out;
837 	}
838 
839 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
840 	if (error) {
841 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
842 		    pdk->dk_name, error);
843 		vrele(vp);
844 		goto out;
845 	}
846 
847 	error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED);
848 	if (error) {
849 		if (error != ENODEV)
850 			aprint_error("%s: unable to open device, error = %d\n",
851 			    pdk->dk_name, error);
852 		vput(vp);
853 		goto out;
854 	}
855 	VOP_UNLOCK(vp);
856 
857 	/*
858 	 * For each supported partition map type, look to see if
859 	 * this map type exists.  If so, parse it and add the
860 	 * corresponding wedges.
861 	 */
862 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
863 		error = (*ddm->ddm_discover)(pdk, vp);
864 		if (error == 0) {
865 			/* Successfully created wedges; we're done. */
866 			break;
867 		}
868 	}
869 
870 	error = vn_close(vp, FREAD, NOCRED);
871 	if (error) {
872 		aprint_error("%s: unable to close device, error = %d\n",
873 		    pdk->dk_name, error);
874 		/* We'll just assume the vnode has been cleaned up. */
875 	}
876  out:
877 	rw_exit(&dkwedge_discovery_methods_lock);
878 }
879 
880 /*
881  * dkwedge_read:
882  *
883  *	Read some data from the specified disk, used for
884  *	partition discovery.
885  */
886 int
887 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
888     void *tbuf, size_t len)
889 {
890 	struct buf *bp;
891 	int result;
892 
893 	bp = getiobuf(vp, true);
894 
895 	bp->b_dev = vp->v_rdev;
896 	bp->b_blkno = blkno;
897 	bp->b_bcount = len;
898 	bp->b_resid = len;
899 	bp->b_flags = B_READ;
900 	bp->b_data = tbuf;
901 	SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
902 
903 	VOP_STRATEGY(vp, bp);
904 	result = biowait(bp);
905 	putiobuf(bp);
906 
907 	return result;
908 }
909 
910 /*
911  * dkwedge_lookup:
912  *
913  *	Look up a dkwedge_softc based on the provided dev_t.
914  */
915 static struct dkwedge_softc *
916 dkwedge_lookup(dev_t dev)
917 {
918 	int unit = minor(dev);
919 
920 	if (unit >= ndkwedges)
921 		return (NULL);
922 
923 	KASSERT(dkwedges != NULL);
924 
925 	return (dkwedges[unit]);
926 }
927 
928 /*
929  * dkopen:		[devsw entry point]
930  *
931  *	Open a wedge.
932  */
933 static int
934 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
935 {
936 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
937 	struct vnode *vp;
938 	int error = 0;
939 
940 	if (sc == NULL)
941 		return (ENODEV);
942 	if (sc->sc_state != DKW_STATE_RUNNING)
943 		return (ENXIO);
944 
945 	/*
946 	 * We go through a complicated little dance to only open the parent
947 	 * vnode once per wedge, no matter how many times the wedge is
948 	 * opened.  The reason?  We see one dkopen() per open call, but
949 	 * only dkclose() on the last close.
950 	 */
951 	mutex_enter(&sc->sc_dk.dk_openlock);
952 	mutex_enter(&sc->sc_parent->dk_rawlock);
953 	if (sc->sc_dk.dk_openmask == 0) {
954 		if (sc->sc_parent->dk_rawopens == 0) {
955 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
956 			error = bdevvp(sc->sc_pdev, &vp);
957 			if (error)
958 				goto popen_fail;
959 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
960 			if (error) {
961 				vrele(vp);
962 				goto popen_fail;
963 			}
964 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
965 			if (error) {
966 				vput(vp);
967 				goto popen_fail;
968 			}
969 			/* VOP_OPEN() doesn't do this for us. */
970 			mutex_enter(vp->v_interlock);
971 			vp->v_writecount++;
972 			mutex_exit(vp->v_interlock);
973 			VOP_UNLOCK(vp);
974 			sc->sc_parent->dk_rawvp = vp;
975 		}
976 		sc->sc_parent->dk_rawopens++;
977 	}
978 	if (fmt == S_IFCHR)
979 		sc->sc_dk.dk_copenmask |= 1;
980 	else
981 		sc->sc_dk.dk_bopenmask |= 1;
982 	sc->sc_dk.dk_openmask =
983 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
984 
985  popen_fail:
986 	mutex_exit(&sc->sc_parent->dk_rawlock);
987 	mutex_exit(&sc->sc_dk.dk_openlock);
988 	return (error);
989 }
990 
991 /*
992  * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock.
993  */
994 static int
995 dklastclose(struct dkwedge_softc *sc)
996 {
997 	int error = 0;
998 
999 	if (sc->sc_parent->dk_rawopens-- == 1) {
1000 		KASSERT(sc->sc_parent->dk_rawvp != NULL);
1001 		mutex_exit(&sc->sc_parent->dk_rawlock);
1002 		error = vn_close(sc->sc_parent->dk_rawvp,
1003 		    FREAD | FWRITE, NOCRED);
1004 		sc->sc_parent->dk_rawvp = NULL;
1005 	} else
1006 		mutex_exit(&sc->sc_parent->dk_rawlock);
1007 	return error;
1008 }
1009 
1010 /*
1011  * dkclose:		[devsw entry point]
1012  *
1013  *	Close a wedge.
1014  */
1015 static int
1016 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
1017 {
1018 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1019 	int error = 0;
1020 
1021 	if (sc == NULL)
1022 		return (ENODEV);
1023 	if (sc->sc_state != DKW_STATE_RUNNING)
1024 		return (ENXIO);
1025 
1026 	KASSERT(sc->sc_dk.dk_openmask != 0);
1027 
1028 	mutex_enter(&sc->sc_dk.dk_openlock);
1029 	mutex_enter(&sc->sc_parent->dk_rawlock);
1030 
1031 	if (fmt == S_IFCHR)
1032 		sc->sc_dk.dk_copenmask &= ~1;
1033 	else
1034 		sc->sc_dk.dk_bopenmask &= ~1;
1035 	sc->sc_dk.dk_openmask =
1036 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
1037 
1038 	if (sc->sc_dk.dk_openmask == 0)
1039 		error = dklastclose(sc); /* releases dk_rawlock */
1040 	else
1041 		mutex_exit(&sc->sc_parent->dk_rawlock);
1042 
1043 	mutex_exit(&sc->sc_dk.dk_openlock);
1044 
1045 	return (error);
1046 }
1047 
1048 /*
1049  * dkstragegy:		[devsw entry point]
1050  *
1051  *	Perform I/O based on the wedge I/O strategy.
1052  */
1053 static void
1054 dkstrategy(struct buf *bp)
1055 {
1056 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1057 	uint64_t p_size, p_offset;
1058 	int s;
1059 
1060 	if (sc == NULL) {
1061 		bp->b_error = ENODEV;
1062 		goto done;
1063 	}
1064 
1065 	if (sc->sc_state != DKW_STATE_RUNNING ||
1066 	    sc->sc_parent->dk_rawvp == NULL) {
1067 		bp->b_error = ENXIO;
1068 		goto done;
1069 	}
1070 
1071 	/* If it's an empty transfer, wake up the top half now. */
1072 	if (bp->b_bcount == 0)
1073 		goto done;
1074 
1075 	p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift;
1076 	p_size   = sc->sc_size << sc->sc_parent->dk_blkshift;
1077 
1078 	/* Make sure it's in-range. */
1079 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0)
1080 		goto done;
1081 
1082 	/* Translate it to the parent's raw LBA. */
1083 	bp->b_rawblkno = bp->b_blkno + p_offset;
1084 
1085 	/* Place it in the queue and start I/O on the unit. */
1086 	s = splbio();
1087 	sc->sc_iopend++;
1088 	bufq_put(sc->sc_bufq, bp);
1089 	dkstart(sc);
1090 	splx(s);
1091 	return;
1092 
1093  done:
1094 	bp->b_resid = bp->b_bcount;
1095 	biodone(bp);
1096 }
1097 
1098 /*
1099  * dkstart:
1100  *
1101  *	Start I/O that has been enqueued on the wedge.
1102  *	NOTE: Must be called at splbio()!
1103  */
1104 static void
1105 dkstart(struct dkwedge_softc *sc)
1106 {
1107 	struct vnode *vp;
1108 	struct buf *bp, *nbp;
1109 
1110 	/* Do as much work as has been enqueued. */
1111 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1112 		if (sc->sc_state != DKW_STATE_RUNNING) {
1113 			(void) bufq_get(sc->sc_bufq);
1114 			if (sc->sc_iopend-- == 1 &&
1115 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1116 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1117 				wakeup(&sc->sc_iopend);
1118 			}
1119 			bp->b_error = ENXIO;
1120 			bp->b_resid = bp->b_bcount;
1121 			biodone(bp);
1122 		}
1123 
1124 		/* Instrumentation. */
1125 		disk_busy(&sc->sc_dk);
1126 
1127 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1128 		if (nbp == NULL) {
1129 			/*
1130 			 * No resources to run this request; leave the
1131 			 * buffer queued up, and schedule a timer to
1132 			 * restart the queue in 1/2 a second.
1133 			 */
1134 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1135 			callout_schedule(&sc->sc_restart_ch, hz / 2);
1136 			return;
1137 		}
1138 
1139 		(void) bufq_get(sc->sc_bufq);
1140 
1141 		nbp->b_data = bp->b_data;
1142 		nbp->b_flags = bp->b_flags;
1143 		nbp->b_oflags = bp->b_oflags;
1144 		nbp->b_cflags = bp->b_cflags;
1145 		nbp->b_iodone = dkiodone;
1146 		nbp->b_proc = bp->b_proc;
1147 		nbp->b_blkno = bp->b_rawblkno;
1148 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1149 		nbp->b_bcount = bp->b_bcount;
1150 		nbp->b_private = bp;
1151 		BIO_COPYPRIO(nbp, bp);
1152 
1153 		vp = nbp->b_vp;
1154 		if ((nbp->b_flags & B_READ) == 0) {
1155 			mutex_enter(vp->v_interlock);
1156 			vp->v_numoutput++;
1157 			mutex_exit(vp->v_interlock);
1158 		}
1159 		VOP_STRATEGY(vp, nbp);
1160 	}
1161 }
1162 
1163 /*
1164  * dkiodone:
1165  *
1166  *	I/O to a wedge has completed; alert the top half.
1167  */
1168 static void
1169 dkiodone(struct buf *bp)
1170 {
1171 	struct buf *obp = bp->b_private;
1172 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1173 
1174 	int s = splbio();
1175 
1176 	if (bp->b_error != 0)
1177 		obp->b_error = bp->b_error;
1178 	obp->b_resid = bp->b_resid;
1179 	putiobuf(bp);
1180 
1181 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1182 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1183 		wakeup(&sc->sc_iopend);
1184 	}
1185 
1186 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1187 	    obp->b_flags & B_READ);
1188 
1189 	biodone(obp);
1190 
1191 	/* Kick the queue in case there is more work we can do. */
1192 	dkstart(sc);
1193 	splx(s);
1194 }
1195 
1196 /*
1197  * dkrestart:
1198  *
1199  *	Restart the work queue after it was stalled due to
1200  *	a resource shortage.  Invoked via a callout.
1201  */
1202 static void
1203 dkrestart(void *v)
1204 {
1205 	struct dkwedge_softc *sc = v;
1206 	int s;
1207 
1208 	s = splbio();
1209 	dkstart(sc);
1210 	splx(s);
1211 }
1212 
1213 /*
1214  * dkminphys:
1215  *
1216  *	Call parent's minphys function.
1217  */
1218 static void
1219 dkminphys(struct buf *bp)
1220 {
1221 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1222 	dev_t dev;
1223 
1224 	dev = bp->b_dev;
1225 	bp->b_dev = sc->sc_pdev;
1226 	(*sc->sc_parent->dk_driver->d_minphys)(bp);
1227 	bp->b_dev = dev;
1228 }
1229 
1230 /*
1231  * dkread:		[devsw entry point]
1232  *
1233  *	Read from a wedge.
1234  */
1235 static int
1236 dkread(dev_t dev, struct uio *uio, int flags)
1237 {
1238 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1239 
1240 	if (sc == NULL)
1241 		return (ENODEV);
1242 	if (sc->sc_state != DKW_STATE_RUNNING)
1243 		return (ENXIO);
1244 
1245 	return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio));
1246 }
1247 
1248 /*
1249  * dkwrite:		[devsw entry point]
1250  *
1251  *	Write to a wedge.
1252  */
1253 static int
1254 dkwrite(dev_t dev, struct uio *uio, int flags)
1255 {
1256 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1257 
1258 	if (sc == NULL)
1259 		return (ENODEV);
1260 	if (sc->sc_state != DKW_STATE_RUNNING)
1261 		return (ENXIO);
1262 
1263 	return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio));
1264 }
1265 
1266 /*
1267  * dkioctl:		[devsw entry point]
1268  *
1269  *	Perform an ioctl request on a wedge.
1270  */
1271 static int
1272 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1273 {
1274 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1275 	int error = 0;
1276 
1277 	if (sc == NULL)
1278 		return (ENODEV);
1279 	if (sc->sc_state != DKW_STATE_RUNNING)
1280 		return (ENXIO);
1281 	if (sc->sc_parent->dk_rawvp == NULL)
1282 		return (ENXIO);
1283 
1284 	error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l);
1285 	if (error != EPASSTHROUGH)
1286 		return (error);
1287 
1288 	error = 0;
1289 
1290 	switch (cmd) {
1291 	case DIOCCACHESYNC:
1292 		/*
1293 		 * XXX Do we really need to care about having a writable
1294 		 * file descriptor here?
1295 		 */
1296 		if ((flag & FWRITE) == 0)
1297 			error = EBADF;
1298 		else
1299 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1300 					  cmd, data, flag,
1301 					  l != NULL ? l->l_cred : NOCRED);
1302 		break;
1303 	case DIOCGWEDGEINFO:
1304 	    {
1305 		struct dkwedge_info *dkw = (void *) data;
1306 
1307 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1308 			sizeof(dkw->dkw_devname));
1309 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1310 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1311 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1312 		dkw->dkw_offset = sc->sc_offset;
1313 		dkw->dkw_size = sc->sc_size;
1314 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
1315 
1316 		break;
1317 	    }
1318 
1319 	default:
1320 		error = ENOTTY;
1321 	}
1322 
1323 	return (error);
1324 }
1325 
1326 /*
1327  * dksize:		[devsw entry point]
1328  *
1329  *	Query the size of a wedge for the purpose of performing a dump
1330  *	or for swapping to.
1331  */
1332 static int
1333 dksize(dev_t dev)
1334 {
1335 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1336 	int rv = -1;
1337 
1338 	if (sc == NULL)
1339 		return (-1);
1340 	if (sc->sc_state != DKW_STATE_RUNNING)
1341 		return (-1);
1342 
1343 	mutex_enter(&sc->sc_dk.dk_openlock);
1344 	mutex_enter(&sc->sc_parent->dk_rawlock);
1345 
1346 	/* Our content type is static, no need to open the device. */
1347 
1348 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1349 		/* Saturate if we are larger than INT_MAX. */
1350 		if (sc->sc_size > INT_MAX)
1351 			rv = INT_MAX;
1352 		else
1353 			rv = (int) sc->sc_size;
1354 	}
1355 
1356 	mutex_exit(&sc->sc_parent->dk_rawlock);
1357 	mutex_exit(&sc->sc_dk.dk_openlock);
1358 
1359 	return (rv);
1360 }
1361 
1362 /*
1363  * dkdump:		[devsw entry point]
1364  *
1365  *	Perform a crash dump to a wedge.
1366  */
1367 static int
1368 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1369 {
1370 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1371 	const struct bdevsw *bdev;
1372 	int rv = 0;
1373 
1374 	if (sc == NULL)
1375 		return (ENODEV);
1376 	if (sc->sc_state != DKW_STATE_RUNNING)
1377 		return (ENXIO);
1378 
1379 	mutex_enter(&sc->sc_dk.dk_openlock);
1380 	mutex_enter(&sc->sc_parent->dk_rawlock);
1381 
1382 	/* Our content type is static, no need to open the device. */
1383 
1384 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1385 		rv = ENXIO;
1386 		goto out;
1387 	}
1388 	if (size % DEV_BSIZE != 0) {
1389 		rv = EINVAL;
1390 		goto out;
1391 	}
1392 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
1393 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1394 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1395 		    size / DEV_BSIZE, sc->sc_size);
1396 		rv = EINVAL;
1397 		goto out;
1398 	}
1399 
1400 	bdev = bdevsw_lookup(sc->sc_pdev);
1401 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1402 
1403 out:
1404 	mutex_exit(&sc->sc_parent->dk_rawlock);
1405 	mutex_exit(&sc->sc_dk.dk_openlock);
1406 
1407 	return rv;
1408 }
1409 
1410 /*
1411  * config glue
1412  */
1413 
1414 /*
1415  * dkwedge_find_partition
1416  *
1417  *	Find wedge corresponding to the specified parent name
1418  *	and offset/length.
1419  */
1420 device_t
1421 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks)
1422 {
1423 	struct dkwedge_softc *sc;
1424 	int i;
1425 	device_t wedge = NULL;
1426 
1427 	rw_enter(&dkwedges_lock, RW_READER);
1428 	for (i = 0; i < ndkwedges; i++) {
1429 		if ((sc = dkwedges[i]) == NULL)
1430 			continue;
1431 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
1432 		    sc->sc_offset == startblk &&
1433 		    sc->sc_size == nblks) {
1434 			if (wedge) {
1435 				printf("WARNING: double match for boot wedge "
1436 				    "(%s, %s)\n",
1437 				    device_xname(wedge),
1438 				    device_xname(sc->sc_dev));
1439 				continue;
1440 			}
1441 			wedge = sc->sc_dev;
1442 		}
1443 	}
1444 	rw_exit(&dkwedges_lock);
1445 
1446 	return wedge;
1447 }
1448 
1449