1 /* $NetBSD: dk.c,v 1.64 2012/06/10 17:05:19 mlelstv Exp $ */ 2 3 /*- 4 * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.64 2012/06/10 17:05:19 mlelstv Exp $"); 34 35 #ifdef _KERNEL_OPT 36 #include "opt_dkwedge.h" 37 #endif 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/proc.h> 42 #include <sys/errno.h> 43 #include <sys/pool.h> 44 #include <sys/ioctl.h> 45 #include <sys/disklabel.h> 46 #include <sys/disk.h> 47 #include <sys/fcntl.h> 48 #include <sys/buf.h> 49 #include <sys/bufq.h> 50 #include <sys/vnode.h> 51 #include <sys/stat.h> 52 #include <sys/conf.h> 53 #include <sys/callout.h> 54 #include <sys/kernel.h> 55 #include <sys/malloc.h> 56 #include <sys/device.h> 57 #include <sys/kauth.h> 58 59 #include <miscfs/specfs/specdev.h> 60 61 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures"); 62 63 typedef enum { 64 DKW_STATE_LARVAL = 0, 65 DKW_STATE_RUNNING = 1, 66 DKW_STATE_DYING = 2, 67 DKW_STATE_DEAD = 666 68 } dkwedge_state_t; 69 70 struct dkwedge_softc { 71 struct device *sc_dev; /* pointer to our pseudo-device */ 72 struct cfdata sc_cfdata; /* our cfdata structure */ 73 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */ 74 75 dkwedge_state_t sc_state; /* state this wedge is in */ 76 77 struct disk *sc_parent; /* parent disk */ 78 daddr_t sc_offset; /* LBA offset of wedge in parent */ 79 uint64_t sc_size; /* size of wedge in blocks */ 80 char sc_ptype[32]; /* partition type */ 81 dev_t sc_pdev; /* cached parent's dev_t */ 82 /* link on parent's wedge list */ 83 LIST_ENTRY(dkwedge_softc) sc_plink; 84 85 struct disk sc_dk; /* our own disk structure */ 86 struct bufq_state *sc_bufq; /* buffer queue */ 87 struct callout sc_restart_ch; /* callout to restart I/O */ 88 89 u_int sc_iopend; /* I/Os pending */ 90 int sc_flags; /* flags (splbio) */ 91 }; 92 93 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */ 94 95 static void dkstart(struct dkwedge_softc *); 96 static void dkiodone(struct buf *); 97 static void dkrestart(void *); 98 static void dkminphys(struct buf *); 99 100 static int dklastclose(struct dkwedge_softc *); 101 static int dkwedge_detach(device_t, int); 102 103 static dev_type_open(dkopen); 104 static dev_type_close(dkclose); 105 static dev_type_read(dkread); 106 static dev_type_write(dkwrite); 107 static dev_type_ioctl(dkioctl); 108 static dev_type_strategy(dkstrategy); 109 static dev_type_dump(dkdump); 110 static dev_type_size(dksize); 111 112 const struct bdevsw dk_bdevsw = { 113 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK 114 }; 115 116 const struct cdevsw dk_cdevsw = { 117 dkopen, dkclose, dkread, dkwrite, dkioctl, 118 nostop, notty, nopoll, nommap, nokqfilter, D_DISK 119 }; 120 121 static struct dkwedge_softc **dkwedges; 122 static u_int ndkwedges; 123 static krwlock_t dkwedges_lock; 124 125 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods; 126 static krwlock_t dkwedge_discovery_methods_lock; 127 128 /* 129 * dkwedge_match: 130 * 131 * Autoconfiguration match function for pseudo-device glue. 132 */ 133 static int 134 dkwedge_match(device_t parent, cfdata_t match, 135 void *aux) 136 { 137 138 /* Pseudo-device; always present. */ 139 return (1); 140 } 141 142 /* 143 * dkwedge_attach: 144 * 145 * Autoconfiguration attach function for pseudo-device glue. 146 */ 147 static void 148 dkwedge_attach(device_t parent, device_t self, 149 void *aux) 150 { 151 152 if (!pmf_device_register(self, NULL, NULL)) 153 aprint_error_dev(self, "couldn't establish power handler\n"); 154 } 155 156 CFDRIVER_DECL(dk, DV_DISK, NULL); 157 CFATTACH_DECL3_NEW(dk, 0, 158 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL, NULL, NULL, 159 DVF_DETACH_SHUTDOWN); 160 161 /* 162 * dkwedge_wait_drain: 163 * 164 * Wait for I/O on the wedge to drain. 165 * NOTE: Must be called at splbio()! 166 */ 167 static void 168 dkwedge_wait_drain(struct dkwedge_softc *sc) 169 { 170 171 while (sc->sc_iopend != 0) { 172 sc->sc_flags |= DK_F_WAIT_DRAIN; 173 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0); 174 } 175 } 176 177 /* 178 * dkwedge_compute_pdev: 179 * 180 * Compute the parent disk's dev_t. 181 */ 182 static int 183 dkwedge_compute_pdev(const char *pname, dev_t *pdevp) 184 { 185 const char *name, *cp; 186 devmajor_t pmaj; 187 int punit; 188 char devname[16]; 189 190 name = pname; 191 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1) 192 return (ENODEV); 193 194 name += strlen(devname); 195 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++) 196 punit = (punit * 10) + (*cp - '0'); 197 if (cp == name) { 198 /* Invalid parent disk name. */ 199 return (ENODEV); 200 } 201 202 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART); 203 204 return (0); 205 } 206 207 /* 208 * dkwedge_array_expand: 209 * 210 * Expand the dkwedges array. 211 */ 212 static void 213 dkwedge_array_expand(void) 214 { 215 int newcnt = ndkwedges + 16; 216 struct dkwedge_softc **newarray, **oldarray; 217 218 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE, 219 M_WAITOK|M_ZERO); 220 if ((oldarray = dkwedges) != NULL) 221 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray)); 222 dkwedges = newarray; 223 ndkwedges = newcnt; 224 if (oldarray != NULL) 225 free(oldarray, M_DKWEDGE); 226 } 227 228 static void 229 dkgetproperties(struct disk *disk, struct dkwedge_info *dkw) 230 { 231 prop_dictionary_t disk_info, odisk_info, geom; 232 233 disk_info = prop_dictionary_create(); 234 235 prop_dictionary_set_cstring_nocopy(disk_info, "type", "ESDI"); 236 237 geom = prop_dictionary_create(); 238 239 prop_dictionary_set_uint64(geom, "sectors-per-unit", 240 dkw->dkw_size >> disk->dk_blkshift); 241 242 prop_dictionary_set_uint32(geom, "sector-size", 243 DEV_BSIZE << disk->dk_blkshift); 244 245 prop_dictionary_set_uint32(geom, "sectors-per-track", 32); 246 247 prop_dictionary_set_uint32(geom, "tracks-per-cylinder", 64); 248 249 prop_dictionary_set_uint32(geom, "cylinders-per-unit", dkw->dkw_size / 2048); 250 251 prop_dictionary_set(disk_info, "geometry", geom); 252 prop_object_release(geom); 253 254 odisk_info = disk->dk_info; 255 256 disk->dk_info = disk_info; 257 258 if (odisk_info != NULL) 259 prop_object_release(odisk_info); 260 } 261 262 /* 263 * dkwedge_add: [exported function] 264 * 265 * Add a disk wedge based on the provided information. 266 * 267 * The incoming dkw_devname[] is ignored, instead being 268 * filled in and returned to the caller. 269 */ 270 int 271 dkwedge_add(struct dkwedge_info *dkw) 272 { 273 struct dkwedge_softc *sc, *lsc; 274 struct disk *pdk; 275 u_int unit; 276 int error; 277 dev_t pdev; 278 279 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0'; 280 pdk = disk_find(dkw->dkw_parent); 281 if (pdk == NULL) 282 return (ENODEV); 283 284 error = dkwedge_compute_pdev(pdk->dk_name, &pdev); 285 if (error) 286 return (error); 287 288 if (dkw->dkw_offset < 0) 289 return (EINVAL); 290 291 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO); 292 sc->sc_state = DKW_STATE_LARVAL; 293 sc->sc_parent = pdk; 294 sc->sc_pdev = pdev; 295 sc->sc_offset = dkw->dkw_offset; 296 sc->sc_size = dkw->dkw_size; 297 298 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname)); 299 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0'; 300 301 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype)); 302 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0'; 303 304 bufq_alloc(&sc->sc_bufq, "fcfs", 0); 305 306 callout_init(&sc->sc_restart_ch, 0); 307 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc); 308 309 /* 310 * Wedge will be added; increment the wedge count for the parent. 311 * Only allow this to happend if RAW_PART is the only thing open. 312 */ 313 mutex_enter(&pdk->dk_openlock); 314 if (pdk->dk_openmask & ~(1 << RAW_PART)) 315 error = EBUSY; 316 else { 317 /* Check for wedge overlap. */ 318 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) { 319 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1; 320 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1; 321 322 if (sc->sc_offset >= lsc->sc_offset && 323 sc->sc_offset <= llastblk) { 324 /* Overlaps the tail of the existing wedge. */ 325 break; 326 } 327 if (lastblk >= lsc->sc_offset && 328 lastblk <= llastblk) { 329 /* Overlaps the head of the existing wedge. */ 330 break; 331 } 332 } 333 if (lsc != NULL) 334 error = EINVAL; 335 else { 336 pdk->dk_nwedges++; 337 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink); 338 } 339 } 340 mutex_exit(&pdk->dk_openlock); 341 if (error) { 342 bufq_free(sc->sc_bufq); 343 free(sc, M_DKWEDGE); 344 return (error); 345 } 346 347 /* Fill in our cfdata for the pseudo-device glue. */ 348 sc->sc_cfdata.cf_name = dk_cd.cd_name; 349 sc->sc_cfdata.cf_atname = dk_ca.ca_name; 350 /* sc->sc_cfdata.cf_unit set below */ 351 sc->sc_cfdata.cf_fstate = FSTATE_STAR; 352 353 /* Insert the larval wedge into the array. */ 354 rw_enter(&dkwedges_lock, RW_WRITER); 355 for (error = 0;;) { 356 struct dkwedge_softc **scpp; 357 358 /* 359 * Check for a duplicate wname while searching for 360 * a slot. 361 */ 362 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) { 363 if (dkwedges[unit] == NULL) { 364 if (scpp == NULL) { 365 scpp = &dkwedges[unit]; 366 sc->sc_cfdata.cf_unit = unit; 367 } 368 } else { 369 /* XXX Unicode. */ 370 if (strcmp(dkwedges[unit]->sc_wname, 371 sc->sc_wname) == 0) { 372 error = EEXIST; 373 break; 374 } 375 } 376 } 377 if (error) 378 break; 379 KASSERT(unit == ndkwedges); 380 if (scpp == NULL) 381 dkwedge_array_expand(); 382 else { 383 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]); 384 *scpp = sc; 385 break; 386 } 387 } 388 rw_exit(&dkwedges_lock); 389 if (error) { 390 mutex_enter(&pdk->dk_openlock); 391 pdk->dk_nwedges--; 392 LIST_REMOVE(sc, sc_plink); 393 mutex_exit(&pdk->dk_openlock); 394 395 bufq_free(sc->sc_bufq); 396 free(sc, M_DKWEDGE); 397 return (error); 398 } 399 400 /* 401 * Now that we know the unit #, attach a pseudo-device for 402 * this wedge instance. This will provide us with the 403 * "struct device" necessary for glue to other parts of the 404 * system. 405 * 406 * This should never fail, unless we're almost totally out of 407 * memory. 408 */ 409 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) { 410 aprint_error("%s%u: unable to attach pseudo-device\n", 411 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit); 412 413 rw_enter(&dkwedges_lock, RW_WRITER); 414 dkwedges[sc->sc_cfdata.cf_unit] = NULL; 415 rw_exit(&dkwedges_lock); 416 417 mutex_enter(&pdk->dk_openlock); 418 pdk->dk_nwedges--; 419 LIST_REMOVE(sc, sc_plink); 420 mutex_exit(&pdk->dk_openlock); 421 422 bufq_free(sc->sc_bufq); 423 free(sc, M_DKWEDGE); 424 return (ENOMEM); 425 } 426 427 /* Return the devname to the caller. */ 428 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev), 429 sizeof(dkw->dkw_devname)); 430 431 /* 432 * XXX Really ought to make the disk_attach() and the changing 433 * of state to RUNNING atomic. 434 */ 435 436 disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL); 437 disk_blocksize(&sc->sc_dk, DEV_BSIZE << pdk->dk_blkshift); 438 dkgetproperties(&sc->sc_dk, dkw); 439 disk_attach(&sc->sc_dk); 440 441 /* Disk wedge is ready for use! */ 442 sc->sc_state = DKW_STATE_RUNNING; 443 444 /* Announce our arrival. */ 445 aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name, 446 sc->sc_wname); /* XXX Unicode */ 447 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n", 448 device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype); 449 450 return (0); 451 } 452 453 /* 454 * dkwedge_find: 455 * 456 * Lookup a disk wedge based on the provided information. 457 * NOTE: We look up the wedge based on the wedge devname, 458 * not wname. 459 * 460 * Return NULL if the wedge is not found, otherwise return 461 * the wedge's softc. Assign the wedge's unit number to unitp 462 * if unitp is not NULL. 463 */ 464 static struct dkwedge_softc * 465 dkwedge_find(struct dkwedge_info *dkw, u_int *unitp) 466 { 467 struct dkwedge_softc *sc = NULL; 468 u_int unit; 469 470 /* Find our softc. */ 471 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0'; 472 rw_enter(&dkwedges_lock, RW_READER); 473 for (unit = 0; unit < ndkwedges; unit++) { 474 if ((sc = dkwedges[unit]) != NULL && 475 strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 && 476 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) { 477 break; 478 } 479 } 480 rw_exit(&dkwedges_lock); 481 if (unit == ndkwedges) 482 return NULL; 483 484 if (unitp != NULL) 485 *unitp = unit; 486 487 return sc; 488 } 489 490 /* 491 * dkwedge_del: [exported function] 492 * 493 * Delete a disk wedge based on the provided information. 494 * NOTE: We look up the wedge based on the wedge devname, 495 * not wname. 496 */ 497 int 498 dkwedge_del(struct dkwedge_info *dkw) 499 { 500 struct dkwedge_softc *sc = NULL; 501 502 /* Find our softc. */ 503 if ((sc = dkwedge_find(dkw, NULL)) == NULL) 504 return (ESRCH); 505 506 return config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET); 507 } 508 509 static int 510 dkwedge_begindetach(struct dkwedge_softc *sc, int flags) 511 { 512 struct disk *dk = &sc->sc_dk; 513 int rc; 514 515 rc = 0; 516 mutex_enter(&dk->dk_openlock); 517 if (dk->dk_openmask == 0) 518 ; /* nothing to do */ 519 else if ((flags & DETACH_FORCE) == 0) 520 rc = EBUSY; 521 else { 522 mutex_enter(&sc->sc_parent->dk_rawlock); 523 rc = dklastclose(sc); /* releases dk_rawlock */ 524 } 525 mutex_exit(&dk->dk_openlock); 526 527 return rc; 528 } 529 530 /* 531 * dkwedge_detach: 532 * 533 * Autoconfiguration detach function for pseudo-device glue. 534 */ 535 static int 536 dkwedge_detach(device_t self, int flags) 537 { 538 struct dkwedge_softc *sc = NULL; 539 u_int unit; 540 int bmaj, cmaj, rc, s; 541 542 rw_enter(&dkwedges_lock, RW_WRITER); 543 for (unit = 0; unit < ndkwedges; unit++) { 544 if ((sc = dkwedges[unit]) != NULL && sc->sc_dev == self) 545 break; 546 } 547 if (unit == ndkwedges) 548 rc = ENXIO; 549 else if ((rc = dkwedge_begindetach(sc, flags)) == 0) { 550 /* Mark the wedge as dying. */ 551 sc->sc_state = DKW_STATE_DYING; 552 } 553 rw_exit(&dkwedges_lock); 554 555 if (rc != 0) 556 return rc; 557 558 pmf_device_deregister(self); 559 560 /* Locate the wedge major numbers. */ 561 bmaj = bdevsw_lookup_major(&dk_bdevsw); 562 cmaj = cdevsw_lookup_major(&dk_cdevsw); 563 564 /* Kill any pending restart. */ 565 callout_stop(&sc->sc_restart_ch); 566 567 /* 568 * dkstart() will kill any queued buffers now that the 569 * state of the wedge is not RUNNING. Once we've done 570 * that, wait for any other pending I/O to complete. 571 */ 572 s = splbio(); 573 dkstart(sc); 574 dkwedge_wait_drain(sc); 575 splx(s); 576 577 /* Nuke the vnodes for any open instances. */ 578 vdevgone(bmaj, unit, unit, VBLK); 579 vdevgone(cmaj, unit, unit, VCHR); 580 581 /* Clean up the parent. */ 582 mutex_enter(&sc->sc_dk.dk_openlock); 583 if (sc->sc_dk.dk_openmask) { 584 mutex_enter(&sc->sc_parent->dk_rawlock); 585 if (sc->sc_parent->dk_rawopens-- == 1) { 586 KASSERT(sc->sc_parent->dk_rawvp != NULL); 587 mutex_exit(&sc->sc_parent->dk_rawlock); 588 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE, 589 NOCRED); 590 sc->sc_parent->dk_rawvp = NULL; 591 } else 592 mutex_exit(&sc->sc_parent->dk_rawlock); 593 sc->sc_dk.dk_openmask = 0; 594 } 595 mutex_exit(&sc->sc_dk.dk_openlock); 596 597 /* Announce our departure. */ 598 aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev), 599 sc->sc_parent->dk_name, 600 sc->sc_wname); /* XXX Unicode */ 601 602 mutex_enter(&sc->sc_parent->dk_openlock); 603 sc->sc_parent->dk_nwedges--; 604 LIST_REMOVE(sc, sc_plink); 605 mutex_exit(&sc->sc_parent->dk_openlock); 606 607 /* Delete our buffer queue. */ 608 bufq_free(sc->sc_bufq); 609 610 /* Detach from the disk list. */ 611 disk_detach(&sc->sc_dk); 612 disk_destroy(&sc->sc_dk); 613 614 /* Poof. */ 615 rw_enter(&dkwedges_lock, RW_WRITER); 616 dkwedges[unit] = NULL; 617 sc->sc_state = DKW_STATE_DEAD; 618 rw_exit(&dkwedges_lock); 619 620 free(sc, M_DKWEDGE); 621 622 return 0; 623 } 624 625 /* 626 * dkwedge_delall: [exported function] 627 * 628 * Delete all of the wedges on the specified disk. Used when 629 * a disk is being detached. 630 */ 631 void 632 dkwedge_delall(struct disk *pdk) 633 { 634 struct dkwedge_info dkw; 635 struct dkwedge_softc *sc; 636 637 for (;;) { 638 mutex_enter(&pdk->dk_openlock); 639 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) { 640 KASSERT(pdk->dk_nwedges == 0); 641 mutex_exit(&pdk->dk_openlock); 642 return; 643 } 644 strcpy(dkw.dkw_parent, pdk->dk_name); 645 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev), 646 sizeof(dkw.dkw_devname)); 647 mutex_exit(&pdk->dk_openlock); 648 (void) dkwedge_del(&dkw); 649 } 650 } 651 652 /* 653 * dkwedge_list: [exported function] 654 * 655 * List all of the wedges on a particular disk. 656 * If p == NULL, the buffer is in kernel space. Otherwise, it is 657 * in user space of the specified process. 658 */ 659 int 660 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l) 661 { 662 struct uio uio; 663 struct iovec iov; 664 struct dkwedge_softc *sc; 665 struct dkwedge_info dkw; 666 int error = 0; 667 668 iov.iov_base = dkwl->dkwl_buf; 669 iov.iov_len = dkwl->dkwl_bufsize; 670 671 uio.uio_iov = &iov; 672 uio.uio_iovcnt = 1; 673 uio.uio_offset = 0; 674 uio.uio_resid = dkwl->dkwl_bufsize; 675 uio.uio_rw = UIO_READ; 676 KASSERT(l == curlwp); 677 uio.uio_vmspace = l->l_proc->p_vmspace; 678 679 dkwl->dkwl_ncopied = 0; 680 681 mutex_enter(&pdk->dk_openlock); 682 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) { 683 if (uio.uio_resid < sizeof(dkw)) 684 break; 685 686 if (sc->sc_state != DKW_STATE_RUNNING) 687 continue; 688 689 strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev), 690 sizeof(dkw.dkw_devname)); 691 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname)); 692 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0'; 693 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name); 694 dkw.dkw_offset = sc->sc_offset; 695 dkw.dkw_size = sc->sc_size; 696 strcpy(dkw.dkw_ptype, sc->sc_ptype); 697 698 error = uiomove(&dkw, sizeof(dkw), &uio); 699 if (error) 700 break; 701 dkwl->dkwl_ncopied++; 702 } 703 dkwl->dkwl_nwedges = pdk->dk_nwedges; 704 mutex_exit(&pdk->dk_openlock); 705 706 return (error); 707 } 708 709 device_t 710 dkwedge_find_by_wname(const char *wname) 711 { 712 device_t dv = NULL; 713 struct dkwedge_softc *sc; 714 int i; 715 716 rw_enter(&dkwedges_lock, RW_WRITER); 717 for (i = 0; i < ndkwedges; i++) { 718 if ((sc = dkwedges[i]) == NULL) 719 continue; 720 if (strcmp(sc->sc_wname, wname) == 0) { 721 if (dv != NULL) { 722 printf( 723 "WARNING: double match for wedge name %s " 724 "(%s, %s)\n", wname, device_xname(dv), 725 device_xname(sc->sc_dev)); 726 continue; 727 } 728 dv = sc->sc_dev; 729 } 730 } 731 rw_exit(&dkwedges_lock); 732 return dv; 733 } 734 735 void 736 dkwedge_print_wnames(void) 737 { 738 struct dkwedge_softc *sc; 739 int i; 740 741 rw_enter(&dkwedges_lock, RW_WRITER); 742 for (i = 0; i < ndkwedges; i++) { 743 if ((sc = dkwedges[i]) == NULL) 744 continue; 745 printf(" wedge:%s", sc->sc_wname); 746 } 747 rw_exit(&dkwedges_lock); 748 } 749 750 /* 751 * We need a dummy object to stuff into the dkwedge discovery method link 752 * set to ensure that there is always at least one object in the set. 753 */ 754 static struct dkwedge_discovery_method dummy_discovery_method; 755 __link_set_add_bss(dkwedge_methods, dummy_discovery_method); 756 757 /* 758 * dkwedge_init: 759 * 760 * Initialize the disk wedge subsystem. 761 */ 762 void 763 dkwedge_init(void) 764 { 765 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method); 766 struct dkwedge_discovery_method * const *ddmp; 767 struct dkwedge_discovery_method *lddm, *ddm; 768 769 rw_init(&dkwedges_lock); 770 rw_init(&dkwedge_discovery_methods_lock); 771 772 if (config_cfdriver_attach(&dk_cd) != 0) 773 panic("dkwedge: unable to attach cfdriver"); 774 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0) 775 panic("dkwedge: unable to attach cfattach"); 776 777 rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER); 778 779 LIST_INIT(&dkwedge_discovery_methods); 780 781 __link_set_foreach(ddmp, dkwedge_methods) { 782 ddm = *ddmp; 783 if (ddm == &dummy_discovery_method) 784 continue; 785 if (LIST_EMPTY(&dkwedge_discovery_methods)) { 786 LIST_INSERT_HEAD(&dkwedge_discovery_methods, 787 ddm, ddm_list); 788 continue; 789 } 790 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) { 791 if (ddm->ddm_priority == lddm->ddm_priority) { 792 aprint_error("dk-method-%s: method \"%s\" " 793 "already exists at priority %d\n", 794 ddm->ddm_name, lddm->ddm_name, 795 lddm->ddm_priority); 796 /* Not inserted. */ 797 break; 798 } 799 if (ddm->ddm_priority < lddm->ddm_priority) { 800 /* Higher priority; insert before. */ 801 LIST_INSERT_BEFORE(lddm, ddm, ddm_list); 802 break; 803 } 804 if (LIST_NEXT(lddm, ddm_list) == NULL) { 805 /* Last one; insert after. */ 806 KASSERT(lddm->ddm_priority < ddm->ddm_priority); 807 LIST_INSERT_AFTER(lddm, ddm, ddm_list); 808 break; 809 } 810 } 811 } 812 813 rw_exit(&dkwedge_discovery_methods_lock); 814 } 815 816 #ifdef DKWEDGE_AUTODISCOVER 817 int dkwedge_autodiscover = 1; 818 #else 819 int dkwedge_autodiscover = 0; 820 #endif 821 822 /* 823 * dkwedge_discover: [exported function] 824 * 825 * Discover the wedges on a newly attached disk. 826 */ 827 void 828 dkwedge_discover(struct disk *pdk) 829 { 830 struct dkwedge_discovery_method *ddm; 831 struct vnode *vp; 832 int error; 833 dev_t pdev; 834 835 /* 836 * Require people playing with wedges to enable this explicitly. 837 */ 838 if (dkwedge_autodiscover == 0) 839 return; 840 841 rw_enter(&dkwedge_discovery_methods_lock, RW_READER); 842 843 error = dkwedge_compute_pdev(pdk->dk_name, &pdev); 844 if (error) { 845 aprint_error("%s: unable to compute pdev, error = %d\n", 846 pdk->dk_name, error); 847 goto out; 848 } 849 850 error = bdevvp(pdev, &vp); 851 if (error) { 852 aprint_error("%s: unable to find vnode for pdev, error = %d\n", 853 pdk->dk_name, error); 854 goto out; 855 } 856 857 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 858 if (error) { 859 aprint_error("%s: unable to lock vnode for pdev, error = %d\n", 860 pdk->dk_name, error); 861 vrele(vp); 862 goto out; 863 } 864 865 error = VOP_OPEN(vp, FREAD | FSILENT, NOCRED); 866 if (error) { 867 aprint_error("%s: unable to open device, error = %d\n", 868 pdk->dk_name, error); 869 vput(vp); 870 goto out; 871 } 872 VOP_UNLOCK(vp); 873 874 /* 875 * For each supported partition map type, look to see if 876 * this map type exists. If so, parse it and add the 877 * corresponding wedges. 878 */ 879 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) { 880 error = (*ddm->ddm_discover)(pdk, vp); 881 if (error == 0) { 882 /* Successfully created wedges; we're done. */ 883 break; 884 } 885 } 886 887 error = vn_close(vp, FREAD, NOCRED); 888 if (error) { 889 aprint_error("%s: unable to close device, error = %d\n", 890 pdk->dk_name, error); 891 /* We'll just assume the vnode has been cleaned up. */ 892 } 893 out: 894 rw_exit(&dkwedge_discovery_methods_lock); 895 } 896 897 /* 898 * dkwedge_read: 899 * 900 * Read some data from the specified disk, used for 901 * partition discovery. 902 */ 903 int 904 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno, 905 void *tbuf, size_t len) 906 { 907 struct buf *bp; 908 int result; 909 910 bp = getiobuf(vp, true); 911 912 bp->b_dev = vp->v_rdev; 913 bp->b_blkno = blkno; 914 bp->b_bcount = len; 915 bp->b_resid = len; 916 bp->b_flags = B_READ; 917 bp->b_data = tbuf; 918 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */ 919 920 VOP_STRATEGY(vp, bp); 921 result = biowait(bp); 922 putiobuf(bp); 923 924 return result; 925 } 926 927 /* 928 * dkwedge_lookup: 929 * 930 * Look up a dkwedge_softc based on the provided dev_t. 931 */ 932 static struct dkwedge_softc * 933 dkwedge_lookup(dev_t dev) 934 { 935 int unit = minor(dev); 936 937 if (unit >= ndkwedges) 938 return (NULL); 939 940 KASSERT(dkwedges != NULL); 941 942 return (dkwedges[unit]); 943 } 944 945 /* 946 * dkopen: [devsw entry point] 947 * 948 * Open a wedge. 949 */ 950 static int 951 dkopen(dev_t dev, int flags, int fmt, struct lwp *l) 952 { 953 struct dkwedge_softc *sc = dkwedge_lookup(dev); 954 struct vnode *vp; 955 int error = 0; 956 957 if (sc == NULL) 958 return (ENODEV); 959 if (sc->sc_state != DKW_STATE_RUNNING) 960 return (ENXIO); 961 962 /* 963 * We go through a complicated little dance to only open the parent 964 * vnode once per wedge, no matter how many times the wedge is 965 * opened. The reason? We see one dkopen() per open call, but 966 * only dkclose() on the last close. 967 */ 968 mutex_enter(&sc->sc_dk.dk_openlock); 969 mutex_enter(&sc->sc_parent->dk_rawlock); 970 if (sc->sc_dk.dk_openmask == 0) { 971 if (sc->sc_parent->dk_rawopens == 0) { 972 KASSERT(sc->sc_parent->dk_rawvp == NULL); 973 error = bdevvp(sc->sc_pdev, &vp); 974 if (error) 975 goto popen_fail; 976 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 977 if (error) { 978 vrele(vp); 979 goto popen_fail; 980 } 981 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED); 982 if (error) { 983 vput(vp); 984 goto popen_fail; 985 } 986 /* VOP_OPEN() doesn't do this for us. */ 987 mutex_enter(vp->v_interlock); 988 vp->v_writecount++; 989 mutex_exit(vp->v_interlock); 990 VOP_UNLOCK(vp); 991 sc->sc_parent->dk_rawvp = vp; 992 } 993 sc->sc_parent->dk_rawopens++; 994 } 995 if (fmt == S_IFCHR) 996 sc->sc_dk.dk_copenmask |= 1; 997 else 998 sc->sc_dk.dk_bopenmask |= 1; 999 sc->sc_dk.dk_openmask = 1000 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; 1001 1002 popen_fail: 1003 mutex_exit(&sc->sc_parent->dk_rawlock); 1004 mutex_exit(&sc->sc_dk.dk_openlock); 1005 return (error); 1006 } 1007 1008 /* 1009 * Caller must hold sc->sc_dk.dk_openlock and sc->sc_parent->dk_rawlock. 1010 */ 1011 static int 1012 dklastclose(struct dkwedge_softc *sc) 1013 { 1014 int error = 0; 1015 1016 if (sc->sc_parent->dk_rawopens-- == 1) { 1017 KASSERT(sc->sc_parent->dk_rawvp != NULL); 1018 mutex_exit(&sc->sc_parent->dk_rawlock); 1019 error = vn_close(sc->sc_parent->dk_rawvp, 1020 FREAD | FWRITE, NOCRED); 1021 sc->sc_parent->dk_rawvp = NULL; 1022 } else 1023 mutex_exit(&sc->sc_parent->dk_rawlock); 1024 return error; 1025 } 1026 1027 /* 1028 * dkclose: [devsw entry point] 1029 * 1030 * Close a wedge. 1031 */ 1032 static int 1033 dkclose(dev_t dev, int flags, int fmt, struct lwp *l) 1034 { 1035 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1036 int error = 0; 1037 1038 if (sc == NULL) 1039 return (ENODEV); 1040 if (sc->sc_state != DKW_STATE_RUNNING) 1041 return (ENXIO); 1042 1043 KASSERT(sc->sc_dk.dk_openmask != 0); 1044 1045 mutex_enter(&sc->sc_dk.dk_openlock); 1046 mutex_enter(&sc->sc_parent->dk_rawlock); 1047 1048 if (fmt == S_IFCHR) 1049 sc->sc_dk.dk_copenmask &= ~1; 1050 else 1051 sc->sc_dk.dk_bopenmask &= ~1; 1052 sc->sc_dk.dk_openmask = 1053 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; 1054 1055 if (sc->sc_dk.dk_openmask == 0) 1056 error = dklastclose(sc); /* releases dk_rawlock */ 1057 else 1058 mutex_exit(&sc->sc_parent->dk_rawlock); 1059 1060 mutex_exit(&sc->sc_dk.dk_openlock); 1061 1062 return (error); 1063 } 1064 1065 /* 1066 * dkstragegy: [devsw entry point] 1067 * 1068 * Perform I/O based on the wedge I/O strategy. 1069 */ 1070 static void 1071 dkstrategy(struct buf *bp) 1072 { 1073 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev); 1074 uint64_t p_size, p_offset; 1075 int s; 1076 1077 if (sc == NULL) { 1078 bp->b_error = ENODEV; 1079 goto done; 1080 } 1081 1082 if (sc->sc_state != DKW_STATE_RUNNING || 1083 sc->sc_parent->dk_rawvp == NULL) { 1084 bp->b_error = ENXIO; 1085 goto done; 1086 } 1087 1088 /* If it's an empty transfer, wake up the top half now. */ 1089 if (bp->b_bcount == 0) 1090 goto done; 1091 1092 p_offset = sc->sc_offset << sc->sc_parent->dk_blkshift; 1093 p_size = sc->sc_size << sc->sc_parent->dk_blkshift; 1094 1095 /* Make sure it's in-range. */ 1096 if (bounds_check_with_mediasize(bp, DEV_BSIZE, p_size) <= 0) 1097 goto done; 1098 1099 /* Translate it to the parent's raw LBA. */ 1100 bp->b_rawblkno = bp->b_blkno + p_offset; 1101 1102 /* Place it in the queue and start I/O on the unit. */ 1103 s = splbio(); 1104 sc->sc_iopend++; 1105 bufq_put(sc->sc_bufq, bp); 1106 dkstart(sc); 1107 splx(s); 1108 return; 1109 1110 done: 1111 bp->b_resid = bp->b_bcount; 1112 biodone(bp); 1113 } 1114 1115 /* 1116 * dkstart: 1117 * 1118 * Start I/O that has been enqueued on the wedge. 1119 * NOTE: Must be called at splbio()! 1120 */ 1121 static void 1122 dkstart(struct dkwedge_softc *sc) 1123 { 1124 struct vnode *vp; 1125 struct buf *bp, *nbp; 1126 1127 /* Do as much work as has been enqueued. */ 1128 while ((bp = bufq_peek(sc->sc_bufq)) != NULL) { 1129 if (sc->sc_state != DKW_STATE_RUNNING) { 1130 (void) bufq_get(sc->sc_bufq); 1131 if (sc->sc_iopend-- == 1 && 1132 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) { 1133 sc->sc_flags &= ~DK_F_WAIT_DRAIN; 1134 wakeup(&sc->sc_iopend); 1135 } 1136 bp->b_error = ENXIO; 1137 bp->b_resid = bp->b_bcount; 1138 biodone(bp); 1139 } 1140 1141 /* Instrumentation. */ 1142 disk_busy(&sc->sc_dk); 1143 1144 nbp = getiobuf(sc->sc_parent->dk_rawvp, false); 1145 if (nbp == NULL) { 1146 /* 1147 * No resources to run this request; leave the 1148 * buffer queued up, and schedule a timer to 1149 * restart the queue in 1/2 a second. 1150 */ 1151 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ); 1152 callout_schedule(&sc->sc_restart_ch, hz / 2); 1153 return; 1154 } 1155 1156 (void) bufq_get(sc->sc_bufq); 1157 1158 nbp->b_data = bp->b_data; 1159 nbp->b_flags = bp->b_flags; 1160 nbp->b_oflags = bp->b_oflags; 1161 nbp->b_cflags = bp->b_cflags; 1162 nbp->b_iodone = dkiodone; 1163 nbp->b_proc = bp->b_proc; 1164 nbp->b_blkno = bp->b_rawblkno; 1165 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev; 1166 nbp->b_bcount = bp->b_bcount; 1167 nbp->b_private = bp; 1168 BIO_COPYPRIO(nbp, bp); 1169 1170 vp = nbp->b_vp; 1171 if ((nbp->b_flags & B_READ) == 0) { 1172 mutex_enter(vp->v_interlock); 1173 vp->v_numoutput++; 1174 mutex_exit(vp->v_interlock); 1175 } 1176 VOP_STRATEGY(vp, nbp); 1177 } 1178 } 1179 1180 /* 1181 * dkiodone: 1182 * 1183 * I/O to a wedge has completed; alert the top half. 1184 */ 1185 static void 1186 dkiodone(struct buf *bp) 1187 { 1188 struct buf *obp = bp->b_private; 1189 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev); 1190 1191 int s = splbio(); 1192 1193 if (bp->b_error != 0) 1194 obp->b_error = bp->b_error; 1195 obp->b_resid = bp->b_resid; 1196 putiobuf(bp); 1197 1198 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) { 1199 sc->sc_flags &= ~DK_F_WAIT_DRAIN; 1200 wakeup(&sc->sc_iopend); 1201 } 1202 1203 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid, 1204 obp->b_flags & B_READ); 1205 1206 biodone(obp); 1207 1208 /* Kick the queue in case there is more work we can do. */ 1209 dkstart(sc); 1210 splx(s); 1211 } 1212 1213 /* 1214 * dkrestart: 1215 * 1216 * Restart the work queue after it was stalled due to 1217 * a resource shortage. Invoked via a callout. 1218 */ 1219 static void 1220 dkrestart(void *v) 1221 { 1222 struct dkwedge_softc *sc = v; 1223 int s; 1224 1225 s = splbio(); 1226 dkstart(sc); 1227 splx(s); 1228 } 1229 1230 /* 1231 * dkminphys: 1232 * 1233 * Call parent's minphys function. 1234 */ 1235 static void 1236 dkminphys(struct buf *bp) 1237 { 1238 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev); 1239 dev_t dev; 1240 1241 dev = bp->b_dev; 1242 bp->b_dev = sc->sc_pdev; 1243 (*sc->sc_parent->dk_driver->d_minphys)(bp); 1244 bp->b_dev = dev; 1245 } 1246 1247 /* 1248 * dkread: [devsw entry point] 1249 * 1250 * Read from a wedge. 1251 */ 1252 static int 1253 dkread(dev_t dev, struct uio *uio, int flags) 1254 { 1255 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1256 1257 if (sc == NULL) 1258 return (ENODEV); 1259 if (sc->sc_state != DKW_STATE_RUNNING) 1260 return (ENXIO); 1261 1262 return (physio(dkstrategy, NULL, dev, B_READ, dkminphys, uio)); 1263 } 1264 1265 /* 1266 * dkwrite: [devsw entry point] 1267 * 1268 * Write to a wedge. 1269 */ 1270 static int 1271 dkwrite(dev_t dev, struct uio *uio, int flags) 1272 { 1273 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1274 1275 if (sc == NULL) 1276 return (ENODEV); 1277 if (sc->sc_state != DKW_STATE_RUNNING) 1278 return (ENXIO); 1279 1280 return (physio(dkstrategy, NULL, dev, B_WRITE, dkminphys, uio)); 1281 } 1282 1283 /* 1284 * dkioctl: [devsw entry point] 1285 * 1286 * Perform an ioctl request on a wedge. 1287 */ 1288 static int 1289 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 1290 { 1291 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1292 int error = 0; 1293 1294 if (sc == NULL) 1295 return (ENODEV); 1296 if (sc->sc_state != DKW_STATE_RUNNING) 1297 return (ENXIO); 1298 if (sc->sc_parent->dk_rawvp == NULL) 1299 return (ENXIO); 1300 1301 error = disk_ioctl(&sc->sc_dk, cmd, data, flag, l); 1302 if (error != EPASSTHROUGH) 1303 return (error); 1304 1305 error = 0; 1306 1307 switch (cmd) { 1308 case DIOCCACHESYNC: 1309 /* 1310 * XXX Do we really need to care about having a writable 1311 * file descriptor here? 1312 */ 1313 if ((flag & FWRITE) == 0) 1314 error = EBADF; 1315 else 1316 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, 1317 cmd, data, flag, 1318 l != NULL ? l->l_cred : NOCRED); 1319 break; 1320 case DIOCGWEDGEINFO: 1321 { 1322 struct dkwedge_info *dkw = (void *) data; 1323 1324 strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev), 1325 sizeof(dkw->dkw_devname)); 1326 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname)); 1327 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0'; 1328 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name); 1329 dkw->dkw_offset = sc->sc_offset; 1330 dkw->dkw_size = sc->sc_size; 1331 strcpy(dkw->dkw_ptype, sc->sc_ptype); 1332 1333 break; 1334 } 1335 1336 default: 1337 error = ENOTTY; 1338 } 1339 1340 return (error); 1341 } 1342 1343 /* 1344 * dksize: [devsw entry point] 1345 * 1346 * Query the size of a wedge for the purpose of performing a dump 1347 * or for swapping to. 1348 */ 1349 static int 1350 dksize(dev_t dev) 1351 { 1352 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1353 int rv = -1; 1354 1355 if (sc == NULL) 1356 return (-1); 1357 if (sc->sc_state != DKW_STATE_RUNNING) 1358 return (-1); 1359 1360 mutex_enter(&sc->sc_dk.dk_openlock); 1361 mutex_enter(&sc->sc_parent->dk_rawlock); 1362 1363 /* Our content type is static, no need to open the device. */ 1364 1365 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) { 1366 /* Saturate if we are larger than INT_MAX. */ 1367 if (sc->sc_size > INT_MAX) 1368 rv = INT_MAX; 1369 else 1370 rv = (int) sc->sc_size; 1371 } 1372 1373 mutex_exit(&sc->sc_parent->dk_rawlock); 1374 mutex_exit(&sc->sc_dk.dk_openlock); 1375 1376 return (rv); 1377 } 1378 1379 /* 1380 * dkdump: [devsw entry point] 1381 * 1382 * Perform a crash dump to a wedge. 1383 */ 1384 static int 1385 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size) 1386 { 1387 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1388 const struct bdevsw *bdev; 1389 int rv = 0; 1390 1391 if (sc == NULL) 1392 return (ENODEV); 1393 if (sc->sc_state != DKW_STATE_RUNNING) 1394 return (ENXIO); 1395 1396 mutex_enter(&sc->sc_dk.dk_openlock); 1397 mutex_enter(&sc->sc_parent->dk_rawlock); 1398 1399 /* Our content type is static, no need to open the device. */ 1400 1401 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) { 1402 rv = ENXIO; 1403 goto out; 1404 } 1405 if (size % DEV_BSIZE != 0) { 1406 rv = EINVAL; 1407 goto out; 1408 } 1409 if (blkno + size / DEV_BSIZE > sc->sc_size) { 1410 printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > " 1411 "sc->sc_size (%" PRIu64 ")\n", __func__, blkno, 1412 size / DEV_BSIZE, sc->sc_size); 1413 rv = EINVAL; 1414 goto out; 1415 } 1416 1417 bdev = bdevsw_lookup(sc->sc_pdev); 1418 rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size); 1419 1420 out: 1421 mutex_exit(&sc->sc_parent->dk_rawlock); 1422 mutex_exit(&sc->sc_dk.dk_openlock); 1423 1424 return rv; 1425 } 1426 1427 /* 1428 * config glue 1429 */ 1430 1431 /* 1432 * dkwedge_find_partition 1433 * 1434 * Find wedge corresponding to the specified parent name 1435 * and offset/length. 1436 */ 1437 device_t 1438 dkwedge_find_partition(device_t parent, daddr_t startblk, uint64_t nblks) 1439 { 1440 struct dkwedge_softc *sc; 1441 int i; 1442 device_t wedge = NULL; 1443 1444 rw_enter(&dkwedges_lock, RW_READER); 1445 for (i = 0; i < ndkwedges; i++) { 1446 if ((sc = dkwedges[i]) == NULL) 1447 continue; 1448 if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 && 1449 sc->sc_offset == startblk && 1450 sc->sc_size == nblks) { 1451 if (wedge) { 1452 printf("WARNING: double match for boot wedge " 1453 "(%s, %s)\n", 1454 device_xname(wedge), 1455 device_xname(sc->sc_dev)); 1456 continue; 1457 } 1458 wedge = sc->sc_dev; 1459 } 1460 } 1461 rw_exit(&dkwedges_lock); 1462 1463 return wedge; 1464 } 1465 1466