xref: /netbsd-src/sys/dev/dkwedge/dk.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: dk.c,v 1.43 2009/01/13 13:35:53 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2004, 2005, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.43 2009/01/13 13:35:53 yamt Exp $");
34 
35 #include "opt_dkwedge.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <sys/errno.h>
41 #include <sys/pool.h>
42 #include <sys/ioctl.h>
43 #include <sys/disklabel.h>
44 #include <sys/disk.h>
45 #include <sys/fcntl.h>
46 #include <sys/buf.h>
47 #include <sys/bufq.h>
48 #include <sys/vnode.h>
49 #include <sys/stat.h>
50 #include <sys/conf.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/device.h>
55 #include <sys/kauth.h>
56 
57 #include <miscfs/specfs/specdev.h>
58 
59 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures");
60 
61 typedef enum {
62 	DKW_STATE_LARVAL	= 0,
63 	DKW_STATE_RUNNING	= 1,
64 	DKW_STATE_DYING		= 2,
65 	DKW_STATE_DEAD		= 666
66 } dkwedge_state_t;
67 
68 struct dkwedge_softc {
69 	struct device	*sc_dev;	/* pointer to our pseudo-device */
70 	struct cfdata	sc_cfdata;	/* our cfdata structure */
71 	uint8_t		sc_wname[128];	/* wedge name (Unicode, UTF-8) */
72 
73 	dkwedge_state_t sc_state;	/* state this wedge is in */
74 
75 	struct disk	*sc_parent;	/* parent disk */
76 	daddr_t		sc_offset;	/* LBA offset of wedge in parent */
77 	uint64_t	sc_size;	/* size of wedge in blocks */
78 	char		sc_ptype[32];	/* partition type */
79 	dev_t		sc_pdev;	/* cached parent's dev_t */
80 					/* link on parent's wedge list */
81 	LIST_ENTRY(dkwedge_softc) sc_plink;
82 
83 	struct disk	sc_dk;		/* our own disk structure */
84 	struct bufq_state *sc_bufq;	/* buffer queue */
85 	struct callout	sc_restart_ch;	/* callout to restart I/O */
86 
87 	u_int		sc_iopend;	/* I/Os pending */
88 	int		sc_flags;	/* flags (splbio) */
89 };
90 
91 #define	DK_F_WAIT_DRAIN		0x0001	/* waiting for I/O to drain */
92 
93 static void	dkstart(struct dkwedge_softc *);
94 static void	dkiodone(struct buf *);
95 static void	dkrestart(void *);
96 
97 static dev_type_open(dkopen);
98 static dev_type_close(dkclose);
99 static dev_type_read(dkread);
100 static dev_type_write(dkwrite);
101 static dev_type_ioctl(dkioctl);
102 static dev_type_strategy(dkstrategy);
103 static dev_type_dump(dkdump);
104 static dev_type_size(dksize);
105 
106 const struct bdevsw dk_bdevsw = {
107 	dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK
108 };
109 
110 const struct cdevsw dk_cdevsw = {
111 	dkopen, dkclose, dkread, dkwrite, dkioctl,
112 	    nostop, notty, nopoll, nommap, nokqfilter, D_DISK
113 };
114 
115 static struct dkwedge_softc **dkwedges;
116 static u_int ndkwedges;
117 static krwlock_t dkwedges_lock;
118 
119 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods;
120 static krwlock_t dkwedge_discovery_methods_lock;
121 
122 /*
123  * dkwedge_match:
124  *
125  *	Autoconfiguration match function for pseudo-device glue.
126  */
127 static int
128 dkwedge_match(struct device *parent, struct cfdata *match,
129     void *aux)
130 {
131 
132 	/* Pseudo-device; always present. */
133 	return (1);
134 }
135 
136 /*
137  * dkwedge_attach:
138  *
139  *	Autoconfiguration attach function for pseudo-device glue.
140  */
141 static void
142 dkwedge_attach(struct device *parent, struct device *self,
143     void *aux)
144 {
145 
146 	if (!pmf_device_register(self, NULL, NULL))
147 		aprint_error_dev(self, "couldn't establish power handler\n");
148 }
149 
150 /*
151  * dkwedge_detach:
152  *
153  *	Autoconfiguration detach function for pseudo-device glue.
154  */
155 static int
156 dkwedge_detach(struct device *self, int flags)
157 {
158 
159 	pmf_device_deregister(self);
160 	/* Always succeeds. */
161 	return (0);
162 }
163 
164 CFDRIVER_DECL(dk, DV_DISK, NULL);
165 CFATTACH_DECL_NEW(dk, 0,
166 	      dkwedge_match, dkwedge_attach, dkwedge_detach, NULL);
167 
168 /*
169  * dkwedge_wait_drain:
170  *
171  *	Wait for I/O on the wedge to drain.
172  *	NOTE: Must be called at splbio()!
173  */
174 static void
175 dkwedge_wait_drain(struct dkwedge_softc *sc)
176 {
177 
178 	while (sc->sc_iopend != 0) {
179 		sc->sc_flags |= DK_F_WAIT_DRAIN;
180 		(void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0);
181 	}
182 }
183 
184 /*
185  * dkwedge_compute_pdev:
186  *
187  *	Compute the parent disk's dev_t.
188  */
189 static int
190 dkwedge_compute_pdev(const char *pname, dev_t *pdevp)
191 {
192 	const char *name, *cp;
193 	int punit, pmaj;
194 	char devname[16];
195 
196 	name = pname;
197 	if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1)
198 		return (ENODEV);
199 
200 	name += strlen(devname);
201 	for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++)
202 		punit = (punit * 10) + (*cp - '0');
203 	if (cp == name) {
204 		/* Invalid parent disk name. */
205 		return (ENODEV);
206 	}
207 
208 	*pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART);
209 
210 	return (0);
211 }
212 
213 /*
214  * dkwedge_array_expand:
215  *
216  *	Expand the dkwedges array.
217  */
218 static void
219 dkwedge_array_expand(void)
220 {
221 	int newcnt = ndkwedges + 16;
222 	struct dkwedge_softc **newarray, **oldarray;
223 
224 	newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE,
225 	    M_WAITOK|M_ZERO);
226 	if ((oldarray = dkwedges) != NULL)
227 		memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray));
228 	dkwedges = newarray;
229 	ndkwedges = newcnt;
230 	if (oldarray != NULL)
231 		free(oldarray, M_DKWEDGE);
232 }
233 
234 /*
235  * dkwedge_add:		[exported function]
236  *
237  *	Add a disk wedge based on the provided information.
238  *
239  *	The incoming dkw_devname[] is ignored, instead being
240  *	filled in and returned to the caller.
241  */
242 int
243 dkwedge_add(struct dkwedge_info *dkw)
244 {
245 	struct dkwedge_softc *sc, *lsc;
246 	struct disk *pdk;
247 	u_int unit;
248 	int error;
249 	dev_t pdev;
250 
251 	dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0';
252 	pdk = disk_find(dkw->dkw_parent);
253 	if (pdk == NULL)
254 		return (ENODEV);
255 
256 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
257 	if (error)
258 		return (error);
259 
260 	if (dkw->dkw_offset < 0)
261 		return (EINVAL);
262 
263 	sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO);
264 	sc->sc_state = DKW_STATE_LARVAL;
265 	sc->sc_parent = pdk;
266 	sc->sc_pdev = pdev;
267 	sc->sc_offset = dkw->dkw_offset;
268 	sc->sc_size = dkw->dkw_size;
269 
270 	memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname));
271 	sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0';
272 
273 	memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype));
274 	sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0';
275 
276 	bufq_alloc(&sc->sc_bufq, "fcfs", 0);
277 
278 	callout_init(&sc->sc_restart_ch, 0);
279 	callout_setfunc(&sc->sc_restart_ch, dkrestart, sc);
280 
281 	/*
282 	 * Wedge will be added; increment the wedge count for the parent.
283 	 * Only allow this to happend if RAW_PART is the only thing open.
284 	 */
285 	mutex_enter(&pdk->dk_openlock);
286 	if (pdk->dk_openmask & ~(1 << RAW_PART))
287 		error = EBUSY;
288 	else {
289 		/* Check for wedge overlap. */
290 		LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) {
291 			daddr_t lastblk = sc->sc_offset + sc->sc_size - 1;
292 			daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1;
293 
294 			if (sc->sc_offset >= lsc->sc_offset &&
295 			    sc->sc_offset <= llastblk) {
296 				/* Overlaps the tail of the exsiting wedge. */
297 				break;
298 			}
299 			if (lastblk >= lsc->sc_offset &&
300 			    lastblk <= llastblk) {
301 				/* Overlaps the head of the existing wedge. */
302 			    	break;
303 			}
304 		}
305 		if (lsc != NULL)
306 			error = EINVAL;
307 		else {
308 			pdk->dk_nwedges++;
309 			LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink);
310 		}
311 	}
312 	mutex_exit(&pdk->dk_openlock);
313 	if (error) {
314 		bufq_free(sc->sc_bufq);
315 		free(sc, M_DKWEDGE);
316 		return (error);
317 	}
318 
319 	/* Fill in our cfdata for the pseudo-device glue. */
320 	sc->sc_cfdata.cf_name = dk_cd.cd_name;
321 	sc->sc_cfdata.cf_atname = dk_ca.ca_name;
322 	/* sc->sc_cfdata.cf_unit set below */
323 	sc->sc_cfdata.cf_fstate = FSTATE_STAR;
324 
325 	/* Insert the larval wedge into the array. */
326 	rw_enter(&dkwedges_lock, RW_WRITER);
327 	for (error = 0;;) {
328 		struct dkwedge_softc **scpp;
329 
330 		/*
331 		 * Check for a duplicate wname while searching for
332 		 * a slot.
333 		 */
334 		for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) {
335 			if (dkwedges[unit] == NULL) {
336 				if (scpp == NULL) {
337 					scpp = &dkwedges[unit];
338 					sc->sc_cfdata.cf_unit = unit;
339 				}
340 			} else {
341 				/* XXX Unicode. */
342 				if (strcmp(dkwedges[unit]->sc_wname,
343 					   sc->sc_wname) == 0) {
344 					error = EEXIST;
345 					break;
346 				}
347 			}
348 		}
349 		if (error)
350 			break;
351 		KASSERT(unit == ndkwedges);
352 		if (scpp == NULL)
353 			dkwedge_array_expand();
354 		else {
355 			KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]);
356 			*scpp = sc;
357 			break;
358 		}
359 	}
360 	rw_exit(&dkwedges_lock);
361 	if (error) {
362 		mutex_enter(&pdk->dk_openlock);
363 		pdk->dk_nwedges--;
364 		LIST_REMOVE(sc, sc_plink);
365 		mutex_exit(&pdk->dk_openlock);
366 
367 		bufq_free(sc->sc_bufq);
368 		free(sc, M_DKWEDGE);
369 		return (error);
370 	}
371 
372 	/*
373 	 * Now that we know the unit #, attach a pseudo-device for
374 	 * this wedge instance.  This will provide us with the
375 	 * "struct device" necessary for glue to other parts of the
376 	 * system.
377 	 *
378 	 * This should never fail, unless we're almost totally out of
379 	 * memory.
380 	 */
381 	if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) {
382 		aprint_error("%s%u: unable to attach pseudo-device\n",
383 		    sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit);
384 
385 		rw_enter(&dkwedges_lock, RW_WRITER);
386 		dkwedges[sc->sc_cfdata.cf_unit] = NULL;
387 		rw_exit(&dkwedges_lock);
388 
389 		mutex_enter(&pdk->dk_openlock);
390 		pdk->dk_nwedges--;
391 		LIST_REMOVE(sc, sc_plink);
392 		mutex_exit(&pdk->dk_openlock);
393 
394 		bufq_free(sc->sc_bufq);
395 		free(sc, M_DKWEDGE);
396 		return (ENOMEM);
397 	}
398 
399 	/* Return the devname to the caller. */
400 	strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
401 		sizeof(dkw->dkw_devname));
402 
403 	/*
404 	 * XXX Really ought to make the disk_attach() and the changing
405 	 * of state to RUNNING atomic.
406 	 */
407 
408 	disk_init(&sc->sc_dk, device_xname(sc->sc_dev), NULL);
409 	disk_attach(&sc->sc_dk);
410 
411 	/* Disk wedge is ready for use! */
412 	sc->sc_state = DKW_STATE_RUNNING;
413 
414 	/* Announce our arrival. */
415 	aprint_normal("%s at %s: %s\n", device_xname(sc->sc_dev), pdk->dk_name,
416 	    sc->sc_wname);	/* XXX Unicode */
417 	aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n",
418 	    device_xname(sc->sc_dev), sc->sc_size, sc->sc_offset, sc->sc_ptype);
419 
420 	return (0);
421 }
422 
423 /*
424  * dkwedge_del:		[exported function]
425  *
426  *	Delete a disk wedge based on the provided information.
427  *	NOTE: We look up the wedge based on the wedge devname,
428  *	not wname.
429  */
430 int
431 dkwedge_del(struct dkwedge_info *dkw)
432 {
433 	struct dkwedge_softc *sc = NULL;
434 	u_int unit;
435 	int bmaj, cmaj, s;
436 
437 	/* Find our softc. */
438 	dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0';
439 	rw_enter(&dkwedges_lock, RW_WRITER);
440 	for (unit = 0; unit < ndkwedges; unit++) {
441 		if ((sc = dkwedges[unit]) != NULL &&
442 		    strcmp(device_xname(sc->sc_dev), dkw->dkw_devname) == 0 &&
443 		    strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) {
444 			/* Mark the wedge as dying. */
445 			sc->sc_state = DKW_STATE_DYING;
446 			break;
447 		}
448 	}
449 	rw_exit(&dkwedges_lock);
450 	if (unit == ndkwedges)
451 		return (ESRCH);
452 
453 	KASSERT(sc != NULL);
454 
455 	/* Locate the wedge major numbers. */
456 	bmaj = bdevsw_lookup_major(&dk_bdevsw);
457 	cmaj = cdevsw_lookup_major(&dk_cdevsw);
458 
459 	/* Kill any pending restart. */
460 	callout_stop(&sc->sc_restart_ch);
461 
462 	/*
463 	 * dkstart() will kill any queued buffers now that the
464 	 * state of the wedge is not RUNNING.  Once we've done
465 	 * that, wait for any other pending I/O to complete.
466 	 */
467 	s = splbio();
468 	dkstart(sc);
469 	dkwedge_wait_drain(sc);
470 	splx(s);
471 
472 	/* Nuke the vnodes for any open instances. */
473 	vdevgone(bmaj, unit, unit, VBLK);
474 	vdevgone(cmaj, unit, unit, VCHR);
475 
476 	/* Clean up the parent. */
477 	mutex_enter(&sc->sc_dk.dk_openlock);
478 	mutex_enter(&sc->sc_parent->dk_rawlock);
479 	if (sc->sc_dk.dk_openmask) {
480 		if (sc->sc_parent->dk_rawopens-- == 1) {
481 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
482 			(void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE,
483 			    NOCRED);
484 			sc->sc_parent->dk_rawvp = NULL;
485 		}
486 		sc->sc_dk.dk_openmask = 0;
487 	}
488 	mutex_exit(&sc->sc_parent->dk_rawlock);
489 	mutex_exit(&sc->sc_dk.dk_openlock);
490 
491 	/* Announce our departure. */
492 	aprint_normal("%s at %s (%s) deleted\n", device_xname(sc->sc_dev),
493 	    sc->sc_parent->dk_name,
494 	    sc->sc_wname);	/* XXX Unicode */
495 
496 	/* Delete our pseudo-device. */
497 	(void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET);
498 
499 	mutex_enter(&sc->sc_parent->dk_openlock);
500 	sc->sc_parent->dk_nwedges--;
501 	LIST_REMOVE(sc, sc_plink);
502 	mutex_exit(&sc->sc_parent->dk_openlock);
503 
504 	/* Delete our buffer queue. */
505 	bufq_free(sc->sc_bufq);
506 
507 	/* Detach from the disk list. */
508 	disk_detach(&sc->sc_dk);
509 	disk_destroy(&sc->sc_dk);
510 
511 	/* Poof. */
512 	rw_enter(&dkwedges_lock, RW_WRITER);
513 	dkwedges[unit] = NULL;
514 	sc->sc_state = DKW_STATE_DEAD;
515 	rw_exit(&dkwedges_lock);
516 
517 	free(sc, M_DKWEDGE);
518 
519 	return (0);
520 }
521 
522 /*
523  * dkwedge_delall:	[exported function]
524  *
525  *	Delete all of the wedges on the specified disk.  Used when
526  *	a disk is being detached.
527  */
528 void
529 dkwedge_delall(struct disk *pdk)
530 {
531 	struct dkwedge_info dkw;
532 	struct dkwedge_softc *sc;
533 
534 	for (;;) {
535 		mutex_enter(&pdk->dk_openlock);
536 		if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) {
537 			KASSERT(pdk->dk_nwedges == 0);
538 			mutex_exit(&pdk->dk_openlock);
539 			return;
540 		}
541 		strcpy(dkw.dkw_parent, pdk->dk_name);
542 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
543 			sizeof(dkw.dkw_devname));
544 		mutex_exit(&pdk->dk_openlock);
545 		(void) dkwedge_del(&dkw);
546 	}
547 }
548 
549 /*
550  * dkwedge_list:	[exported function]
551  *
552  *	List all of the wedges on a particular disk.
553  *	If p == NULL, the buffer is in kernel space.  Otherwise, it is
554  *	in user space of the specified process.
555  */
556 int
557 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l)
558 {
559 	struct uio uio;
560 	struct iovec iov;
561 	struct dkwedge_softc *sc;
562 	struct dkwedge_info dkw;
563 	struct vmspace *vm;
564 	int error = 0;
565 
566 	iov.iov_base = dkwl->dkwl_buf;
567 	iov.iov_len = dkwl->dkwl_bufsize;
568 
569 	uio.uio_iov = &iov;
570 	uio.uio_iovcnt = 1;
571 	uio.uio_offset = 0;
572 	uio.uio_resid = dkwl->dkwl_bufsize;
573 	uio.uio_rw = UIO_READ;
574 	if (l == NULL) {
575 		UIO_SETUP_SYSSPACE(&uio);
576 	} else {
577 		error = proc_vmspace_getref(l->l_proc, &vm);
578 		if (error) {
579 			return error;
580 		}
581 		uio.uio_vmspace = vm;
582 	}
583 
584 	dkwl->dkwl_ncopied = 0;
585 
586 	mutex_enter(&pdk->dk_openlock);
587 	LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) {
588 		if (uio.uio_resid < sizeof(dkw))
589 			break;
590 
591 		if (sc->sc_state != DKW_STATE_RUNNING)
592 			continue;
593 
594 		strlcpy(dkw.dkw_devname, device_xname(sc->sc_dev),
595 			sizeof(dkw.dkw_devname));
596 		memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname));
597 		dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0';
598 		strcpy(dkw.dkw_parent, sc->sc_parent->dk_name);
599 		dkw.dkw_offset = sc->sc_offset;
600 		dkw.dkw_size = sc->sc_size;
601 		strcpy(dkw.dkw_ptype, sc->sc_ptype);
602 
603 		error = uiomove(&dkw, sizeof(dkw), &uio);
604 		if (error)
605 			break;
606 		dkwl->dkwl_ncopied++;
607 	}
608 	dkwl->dkwl_nwedges = pdk->dk_nwedges;
609 	mutex_exit(&pdk->dk_openlock);
610 
611 	if (l != NULL) {
612 		uvmspace_free(vm);
613 	}
614 
615 	return (error);
616 }
617 
618 device_t
619 dkwedge_find_by_wname(const char *wname)
620 {
621 	device_t dv = NULL;
622 	struct dkwedge_softc *sc;
623 	int i;
624 
625 	rw_enter(&dkwedges_lock, RW_WRITER);
626 	for (i = 0; i < ndkwedges; i++) {
627 		if ((sc = dkwedges[i]) == NULL)
628 			continue;
629 		if (strcmp(sc->sc_wname, wname) == 0) {
630 			if (dv != NULL) {
631 				printf(
632 				    "WARNING: double match for wedge name %s "
633 				    "(%s, %s)\n", wname, device_xname(dv),
634 				    device_xname(sc->sc_dev));
635 				continue;
636 			}
637 			dv = sc->sc_dev;
638 		}
639 	}
640 	rw_exit(&dkwedges_lock);
641 	return dv;
642 }
643 
644 void
645 dkwedge_print_wnames(void)
646 {
647 	struct dkwedge_softc *sc;
648 	int i;
649 
650 	rw_enter(&dkwedges_lock, RW_WRITER);
651 	for (i = 0; i < ndkwedges; i++) {
652 		if ((sc = dkwedges[i]) == NULL)
653 			continue;
654 		printf(" wedge:%s", sc->sc_wname);
655 	}
656 	rw_exit(&dkwedges_lock);
657 }
658 
659 /*
660  * dkwedge_set_bootwedge
661  *
662  *	Set the booted_wedge global based on the specified parent name
663  *	and offset/length.
664  */
665 void
666 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks)
667 {
668 	struct dkwedge_softc *sc;
669 	int i;
670 
671 	rw_enter(&dkwedges_lock, RW_WRITER);
672 	for (i = 0; i < ndkwedges; i++) {
673 		if ((sc = dkwedges[i]) == NULL)
674 			continue;
675 		if (strcmp(sc->sc_parent->dk_name, device_xname(parent)) == 0 &&
676 		    sc->sc_offset == startblk &&
677 		    sc->sc_size == nblks) {
678 			if (booted_wedge) {
679 				printf("WARNING: double match for boot wedge "
680 				    "(%s, %s)\n",
681 				    device_xname(booted_wedge),
682 				    device_xname(sc->sc_dev));
683 				continue;
684 			}
685 			booted_device = parent;
686 			booted_wedge = sc->sc_dev;
687 			booted_partition = 0;
688 		}
689 	}
690 	/*
691 	 * XXX What if we don't find one?  Should we create a special
692 	 * XXX root wedge?
693 	 */
694 	rw_exit(&dkwedges_lock);
695 }
696 
697 /*
698  * We need a dummy object to stuff into the dkwedge discovery method link
699  * set to ensure that there is always at least one object in the set.
700  */
701 static struct dkwedge_discovery_method dummy_discovery_method;
702 __link_set_add_bss(dkwedge_methods, dummy_discovery_method);
703 
704 /*
705  * dkwedge_init:
706  *
707  *	Initialize the disk wedge subsystem.
708  */
709 void
710 dkwedge_init(void)
711 {
712 	__link_set_decl(dkwedge_methods, struct dkwedge_discovery_method);
713 	struct dkwedge_discovery_method * const *ddmp;
714 	struct dkwedge_discovery_method *lddm, *ddm;
715 
716 	rw_init(&dkwedges_lock);
717 	rw_init(&dkwedge_discovery_methods_lock);
718 
719 	if (config_cfdriver_attach(&dk_cd) != 0)
720 		panic("dkwedge: unable to attach cfdriver");
721 	if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0)
722 		panic("dkwedge: unable to attach cfattach");
723 
724 	rw_enter(&dkwedge_discovery_methods_lock, RW_WRITER);
725 
726 	LIST_INIT(&dkwedge_discovery_methods);
727 
728 	__link_set_foreach(ddmp, dkwedge_methods) {
729 		ddm = *ddmp;
730 		if (ddm == &dummy_discovery_method)
731 			continue;
732 		if (LIST_EMPTY(&dkwedge_discovery_methods)) {
733 			LIST_INSERT_HEAD(&dkwedge_discovery_methods,
734 					 ddm, ddm_list);
735 			continue;
736 		}
737 		LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) {
738 			if (ddm->ddm_priority == lddm->ddm_priority) {
739 				aprint_error("dk-method-%s: method \"%s\" "
740 				    "already exists at priority %d\n",
741 				    ddm->ddm_name, lddm->ddm_name,
742 				    lddm->ddm_priority);
743 				/* Not inserted. */
744 				break;
745 			}
746 			if (ddm->ddm_priority < lddm->ddm_priority) {
747 				/* Higher priority; insert before. */
748 				LIST_INSERT_BEFORE(lddm, ddm, ddm_list);
749 				break;
750 			}
751 			if (LIST_NEXT(lddm, ddm_list) == NULL) {
752 				/* Last one; insert after. */
753 				KASSERT(lddm->ddm_priority < ddm->ddm_priority);
754 				LIST_INSERT_AFTER(lddm, ddm, ddm_list);
755 				break;
756 			}
757 		}
758 	}
759 
760 	rw_exit(&dkwedge_discovery_methods_lock);
761 }
762 
763 #ifdef DKWEDGE_AUTODISCOVER
764 int	dkwedge_autodiscover = 1;
765 #else
766 int	dkwedge_autodiscover = 0;
767 #endif
768 
769 /*
770  * dkwedge_discover:	[exported function]
771  *
772  *	Discover the wedges on a newly attached disk.
773  */
774 void
775 dkwedge_discover(struct disk *pdk)
776 {
777 	struct dkwedge_discovery_method *ddm;
778 	struct vnode *vp;
779 	int error;
780 	dev_t pdev;
781 
782 	/*
783 	 * Require people playing with wedges to enable this explicitly.
784 	 */
785 	if (dkwedge_autodiscover == 0)
786 		return;
787 
788 	rw_enter(&dkwedge_discovery_methods_lock, RW_READER);
789 
790 	error = dkwedge_compute_pdev(pdk->dk_name, &pdev);
791 	if (error) {
792 		aprint_error("%s: unable to compute pdev, error = %d\n",
793 		    pdk->dk_name, error);
794 		goto out;
795 	}
796 
797 	error = bdevvp(pdev, &vp);
798 	if (error) {
799 		aprint_error("%s: unable to find vnode for pdev, error = %d\n",
800 		    pdk->dk_name, error);
801 		goto out;
802 	}
803 
804 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
805 	if (error) {
806 		aprint_error("%s: unable to lock vnode for pdev, error = %d\n",
807 		    pdk->dk_name, error);
808 		vrele(vp);
809 		goto out;
810 	}
811 
812 	error = VOP_OPEN(vp, FREAD, NOCRED);
813 	if (error) {
814 		aprint_error("%s: unable to open device, error = %d\n",
815 		    pdk->dk_name, error);
816 		vput(vp);
817 		goto out;
818 	}
819 	VOP_UNLOCK(vp, 0);
820 
821 	/*
822 	 * For each supported partition map type, look to see if
823 	 * this map type exists.  If so, parse it and add the
824 	 * corresponding wedges.
825 	 */
826 	LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) {
827 		error = (*ddm->ddm_discover)(pdk, vp);
828 		if (error == 0) {
829 			/* Successfully created wedges; we're done. */
830 			break;
831 		}
832 	}
833 
834 	error = vn_close(vp, FREAD, NOCRED);
835 	if (error) {
836 		aprint_error("%s: unable to close device, error = %d\n",
837 		    pdk->dk_name, error);
838 		/* We'll just assume the vnode has been cleaned up. */
839 	}
840  out:
841 	rw_exit(&dkwedge_discovery_methods_lock);
842 }
843 
844 /*
845  * dkwedge_read:
846  *
847  *	Read some data from the specified disk, used for
848  *	partition discovery.
849  */
850 int
851 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno,
852     void *tbuf, size_t len)
853 {
854 	struct buf *bp;
855 	int result;
856 
857 	bp = getiobuf(vp, true);
858 
859 	bp->b_dev = vp->v_rdev;
860 	bp->b_blkno = blkno;
861 	bp->b_bcount = len;
862 	bp->b_resid = len;
863 	bp->b_flags = B_READ;
864 	bp->b_data = tbuf;
865 	SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
866 
867 	VOP_STRATEGY(vp, bp);
868 	result = biowait(bp);
869 	putiobuf(bp);
870 
871 	return result;
872 }
873 
874 /*
875  * dkwedge_lookup:
876  *
877  *	Look up a dkwedge_softc based on the provided dev_t.
878  */
879 static struct dkwedge_softc *
880 dkwedge_lookup(dev_t dev)
881 {
882 	int unit = minor(dev);
883 
884 	if (unit >= ndkwedges)
885 		return (NULL);
886 
887 	KASSERT(dkwedges != NULL);
888 
889 	return (dkwedges[unit]);
890 }
891 
892 /*
893  * dkopen:		[devsw entry point]
894  *
895  *	Open a wedge.
896  */
897 static int
898 dkopen(dev_t dev, int flags, int fmt, struct lwp *l)
899 {
900 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
901 	struct vnode *vp;
902 	int error = 0;
903 
904 	if (sc == NULL)
905 		return (ENODEV);
906 
907 	if (sc->sc_state != DKW_STATE_RUNNING)
908 		return (ENXIO);
909 
910 	/*
911 	 * We go through a complicated little dance to only open the parent
912 	 * vnode once per wedge, no matter how many times the wedge is
913 	 * opened.  The reason?  We see one dkopen() per open call, but
914 	 * only dkclose() on the last close.
915 	 */
916 	mutex_enter(&sc->sc_dk.dk_openlock);
917 	mutex_enter(&sc->sc_parent->dk_rawlock);
918 	if (sc->sc_dk.dk_openmask == 0) {
919 		if (sc->sc_parent->dk_rawopens == 0) {
920 			KASSERT(sc->sc_parent->dk_rawvp == NULL);
921 			error = bdevvp(sc->sc_pdev, &vp);
922 			if (error)
923 				goto popen_fail;
924 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
925 			if (error) {
926 				vrele(vp);
927 				goto popen_fail;
928 			}
929 			error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED);
930 			if (error) {
931 				vput(vp);
932 				goto popen_fail;
933 			}
934 			/* VOP_OPEN() doesn't do this for us. */
935 			mutex_enter(&vp->v_interlock);
936 			vp->v_writecount++;
937 			mutex_exit(&vp->v_interlock);
938 			VOP_UNLOCK(vp, 0);
939 			sc->sc_parent->dk_rawvp = vp;
940 		}
941 		sc->sc_parent->dk_rawopens++;
942 	}
943 	if (fmt == S_IFCHR)
944 		sc->sc_dk.dk_copenmask |= 1;
945 	else
946 		sc->sc_dk.dk_bopenmask |= 1;
947 	sc->sc_dk.dk_openmask =
948 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
949 
950  popen_fail:
951 	mutex_exit(&sc->sc_parent->dk_rawlock);
952 	mutex_exit(&sc->sc_dk.dk_openlock);
953 	return (error);
954 }
955 
956 /*
957  * dkclose:		[devsw entry point]
958  *
959  *	Close a wedge.
960  */
961 static int
962 dkclose(dev_t dev, int flags, int fmt, struct lwp *l)
963 {
964 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
965 	int error = 0;
966 
967 	KASSERT(sc->sc_dk.dk_openmask != 0);
968 
969 	mutex_enter(&sc->sc_dk.dk_openlock);
970 	mutex_enter(&sc->sc_parent->dk_rawlock);
971 
972 	if (fmt == S_IFCHR)
973 		sc->sc_dk.dk_copenmask &= ~1;
974 	else
975 		sc->sc_dk.dk_bopenmask &= ~1;
976 	sc->sc_dk.dk_openmask =
977 	    sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
978 
979 	if (sc->sc_dk.dk_openmask == 0) {
980 		if (sc->sc_parent->dk_rawopens-- == 1) {
981 			KASSERT(sc->sc_parent->dk_rawvp != NULL);
982 			error = vn_close(sc->sc_parent->dk_rawvp,
983 			    FREAD | FWRITE, NOCRED);
984 			sc->sc_parent->dk_rawvp = NULL;
985 		}
986 	}
987 
988 	mutex_exit(&sc->sc_parent->dk_rawlock);
989 	mutex_exit(&sc->sc_dk.dk_openlock);
990 
991 	return (error);
992 }
993 
994 /*
995  * dkstragegy:		[devsw entry point]
996  *
997  *	Perform I/O based on the wedge I/O strategy.
998  */
999 static void
1000 dkstrategy(struct buf *bp)
1001 {
1002 	struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev);
1003 	int s;
1004 
1005 	if (sc->sc_state != DKW_STATE_RUNNING) {
1006 		bp->b_error = ENXIO;
1007 		goto done;
1008 	}
1009 
1010 	/* If it's an empty transfer, wake up the top half now. */
1011 	if (bp->b_bcount == 0)
1012 		goto done;
1013 
1014 	/* Make sure it's in-range. */
1015 	if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0)
1016 		goto done;
1017 
1018 	/* Translate it to the parent's raw LBA. */
1019 	bp->b_rawblkno = bp->b_blkno + sc->sc_offset;
1020 
1021 	/* Place it in the queue and start I/O on the unit. */
1022 	s = splbio();
1023 	sc->sc_iopend++;
1024 	bufq_put(sc->sc_bufq, bp);
1025 	dkstart(sc);
1026 	splx(s);
1027 	return;
1028 
1029  done:
1030 	bp->b_resid = bp->b_bcount;
1031 	biodone(bp);
1032 }
1033 
1034 /*
1035  * dkstart:
1036  *
1037  *	Start I/O that has been enqueued on the wedge.
1038  *	NOTE: Must be called at splbio()!
1039  */
1040 static void
1041 dkstart(struct dkwedge_softc *sc)
1042 {
1043 	struct vnode *vp;
1044 	struct buf *bp, *nbp;
1045 
1046 	/* Do as much work as has been enqueued. */
1047 	while ((bp = bufq_peek(sc->sc_bufq)) != NULL) {
1048 		if (sc->sc_state != DKW_STATE_RUNNING) {
1049 			(void) bufq_get(sc->sc_bufq);
1050 			if (sc->sc_iopend-- == 1 &&
1051 			    (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1052 				sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1053 				wakeup(&sc->sc_iopend);
1054 			}
1055 			bp->b_error = ENXIO;
1056 			bp->b_resid = bp->b_bcount;
1057 			biodone(bp);
1058 		}
1059 
1060 		/* Instrumentation. */
1061 		disk_busy(&sc->sc_dk);
1062 
1063 		nbp = getiobuf(sc->sc_parent->dk_rawvp, false);
1064 		if (nbp == NULL) {
1065 			/*
1066 			 * No resources to run this request; leave the
1067 			 * buffer queued up, and schedule a timer to
1068 			 * restart the queue in 1/2 a second.
1069 			 */
1070 			disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ);
1071 			callout_schedule(&sc->sc_restart_ch, hz / 2);
1072 			return;
1073 		}
1074 
1075 		(void) bufq_get(sc->sc_bufq);
1076 
1077 		nbp->b_data = bp->b_data;
1078 		nbp->b_flags = bp->b_flags;
1079 		nbp->b_oflags = bp->b_oflags;
1080 		nbp->b_cflags = bp->b_cflags;
1081 		nbp->b_iodone = dkiodone;
1082 		nbp->b_proc = bp->b_proc;
1083 		nbp->b_blkno = bp->b_rawblkno;
1084 		nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev;
1085 		nbp->b_bcount = bp->b_bcount;
1086 		nbp->b_private = bp;
1087 		BIO_COPYPRIO(nbp, bp);
1088 
1089 		vp = nbp->b_vp;
1090 		if ((nbp->b_flags & B_READ) == 0) {
1091 			mutex_enter(&vp->v_interlock);
1092 			vp->v_numoutput++;
1093 			mutex_exit(&vp->v_interlock);
1094 		}
1095 		VOP_STRATEGY(vp, nbp);
1096 	}
1097 }
1098 
1099 /*
1100  * dkiodone:
1101  *
1102  *	I/O to a wedge has completed; alert the top half.
1103  *	NOTE: Must be called at splbio()!
1104  */
1105 static void
1106 dkiodone(struct buf *bp)
1107 {
1108 	struct buf *obp = bp->b_private;
1109 	struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev);
1110 
1111 	if (bp->b_error != 0)
1112 		obp->b_error = bp->b_error;
1113 	obp->b_resid = bp->b_resid;
1114 	putiobuf(bp);
1115 
1116 	if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) {
1117 		sc->sc_flags &= ~DK_F_WAIT_DRAIN;
1118 		wakeup(&sc->sc_iopend);
1119 	}
1120 
1121 	disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid,
1122 	    obp->b_flags & B_READ);
1123 
1124 	biodone(obp);
1125 
1126 	/* Kick the queue in case there is more work we can do. */
1127 	dkstart(sc);
1128 }
1129 
1130 /*
1131  * dkrestart:
1132  *
1133  *	Restart the work queue after it was stalled due to
1134  *	a resource shortage.  Invoked via a callout.
1135  */
1136 static void
1137 dkrestart(void *v)
1138 {
1139 	struct dkwedge_softc *sc = v;
1140 	int s;
1141 
1142 	s = splbio();
1143 	dkstart(sc);
1144 	splx(s);
1145 }
1146 
1147 /*
1148  * dkread:		[devsw entry point]
1149  *
1150  *	Read from a wedge.
1151  */
1152 static int
1153 dkread(dev_t dev, struct uio *uio, int flags)
1154 {
1155 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1156 
1157 	if (sc->sc_state != DKW_STATE_RUNNING)
1158 		return (ENXIO);
1159 
1160 	return (physio(dkstrategy, NULL, dev, B_READ,
1161 		       sc->sc_parent->dk_driver->d_minphys, uio));
1162 }
1163 
1164 /*
1165  * dkwrite:		[devsw entry point]
1166  *
1167  *	Write to a wedge.
1168  */
1169 static int
1170 dkwrite(dev_t dev, struct uio *uio, int flags)
1171 {
1172 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1173 
1174 	if (sc->sc_state != DKW_STATE_RUNNING)
1175 		return (ENXIO);
1176 
1177 	return (physio(dkstrategy, NULL, dev, B_WRITE,
1178 		       sc->sc_parent->dk_driver->d_minphys, uio));
1179 }
1180 
1181 /*
1182  * dkioctl:		[devsw entry point]
1183  *
1184  *	Perform an ioctl request on a wedge.
1185  */
1186 static int
1187 dkioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1188 {
1189 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1190 	int error = 0;
1191 
1192 	if (sc->sc_state != DKW_STATE_RUNNING)
1193 		return (ENXIO);
1194 
1195 	switch (cmd) {
1196 	case DIOCCACHESYNC:
1197 		/*
1198 		 * XXX Do we really need to care about having a writable
1199 		 * file descriptor here?
1200 		 */
1201 		if ((flag & FWRITE) == 0)
1202 			error = EBADF;
1203 		else
1204 			error = VOP_IOCTL(sc->sc_parent->dk_rawvp,
1205 					  cmd, data, flag,
1206 					  l != NULL ? l->l_cred : NOCRED);
1207 		break;
1208 	case DIOCGWEDGEINFO:
1209 	    {
1210 	    	struct dkwedge_info *dkw = (void *) data;
1211 
1212 		strlcpy(dkw->dkw_devname, device_xname(sc->sc_dev),
1213 			sizeof(dkw->dkw_devname));
1214 	    	memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname));
1215 		dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0';
1216 		strcpy(dkw->dkw_parent, sc->sc_parent->dk_name);
1217 		dkw->dkw_offset = sc->sc_offset;
1218 		dkw->dkw_size = sc->sc_size;
1219 		strcpy(dkw->dkw_ptype, sc->sc_ptype);
1220 
1221 		break;
1222 	    }
1223 
1224 	default:
1225 		error = ENOTTY;
1226 	}
1227 
1228 	return (error);
1229 }
1230 
1231 /*
1232  * dksize:		[devsw entry point]
1233  *
1234  *	Query the size of a wedge for the purpose of performing a dump
1235  *	or for swapping to.
1236  */
1237 static int
1238 dksize(dev_t dev)
1239 {
1240 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1241 	int rv = -1;
1242 
1243 	if (sc == NULL)
1244 		return (-1);
1245 
1246 	if (sc->sc_state != DKW_STATE_RUNNING)
1247 		return (ENXIO);
1248 
1249 	mutex_enter(&sc->sc_dk.dk_openlock);
1250 	mutex_enter(&sc->sc_parent->dk_rawlock);
1251 
1252 	/* Our content type is static, no need to open the device. */
1253 
1254 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) {
1255 		/* Saturate if we are larger than INT_MAX. */
1256 		if (sc->sc_size > INT_MAX)
1257 			rv = INT_MAX;
1258 		else
1259 			rv = (int) sc->sc_size;
1260 	}
1261 
1262 	mutex_exit(&sc->sc_parent->dk_rawlock);
1263 	mutex_exit(&sc->sc_dk.dk_openlock);
1264 
1265 	return (rv);
1266 }
1267 
1268 /*
1269  * dkdump:		[devsw entry point]
1270  *
1271  *	Perform a crash dump to a wedge.
1272  */
1273 static int
1274 dkdump(dev_t dev, daddr_t blkno, void *va, size_t size)
1275 {
1276 	struct dkwedge_softc *sc = dkwedge_lookup(dev);
1277 	const struct bdevsw *bdev;
1278 	int rv = 0;
1279 
1280 	if (sc == NULL)
1281 		return (-1);
1282 
1283 	if (sc->sc_state != DKW_STATE_RUNNING)
1284 		return (ENXIO);
1285 
1286 	mutex_enter(&sc->sc_dk.dk_openlock);
1287 	mutex_enter(&sc->sc_parent->dk_rawlock);
1288 
1289 	/* Our content type is static, no need to open the device. */
1290 
1291 	if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) != 0) {
1292 		rv = ENXIO;
1293 		goto out;
1294 	}
1295 	if (size % DEV_BSIZE != 0) {
1296 		rv = EINVAL;
1297 		goto out;
1298 	}
1299 	if (blkno + size / DEV_BSIZE > sc->sc_size) {
1300 		printf("%s: blkno (%" PRIu64 ") + size / DEV_BSIZE (%zu) > "
1301 		    "sc->sc_size (%" PRIu64 ")\n", __func__, blkno,
1302 		    size / DEV_BSIZE, sc->sc_size);
1303 		rv = EINVAL;
1304 		goto out;
1305 	}
1306 
1307 	bdev = bdevsw_lookup(sc->sc_pdev);
1308 	rv = (*bdev->d_dump)(sc->sc_pdev, blkno + sc->sc_offset, va, size);
1309 
1310 out:
1311 	mutex_exit(&sc->sc_parent->dk_rawlock);
1312 	mutex_exit(&sc->sc_dk.dk_openlock);
1313 
1314 	return rv;
1315 }
1316