1 /* $NetBSD: dk.c,v 1.18 2006/09/18 07:47:13 uebayasi Exp $ */ 2 3 /*- 4 * Copyright (c) 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: dk.c,v 1.18 2006/09/18 07:47:13 uebayasi Exp $"); 41 42 #include "opt_dkwedge.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/errno.h> 48 #include <sys/pool.h> 49 #include <sys/ioctl.h> 50 #include <sys/disklabel.h> 51 #include <sys/disk.h> 52 #include <sys/fcntl.h> 53 #include <sys/buf.h> 54 #include <sys/bufq.h> 55 #include <sys/vnode.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/callout.h> 59 #include <sys/kernel.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/device.h> 63 #include <sys/kauth.h> 64 65 #include <miscfs/specfs/specdev.h> 66 67 MALLOC_DEFINE(M_DKWEDGE, "dkwedge", "Disk wedge structures"); 68 69 typedef enum { 70 DKW_STATE_LARVAL = 0, 71 DKW_STATE_RUNNING = 1, 72 DKW_STATE_DYING = 2, 73 DKW_STATE_DEAD = 666 74 } dkwedge_state_t; 75 76 struct dkwedge_softc { 77 struct device *sc_dev; /* pointer to our pseudo-device */ 78 struct cfdata sc_cfdata; /* our cfdata structure */ 79 uint8_t sc_wname[128]; /* wedge name (Unicode, UTF-8) */ 80 81 dkwedge_state_t sc_state; /* state this wedge is in */ 82 83 struct disk *sc_parent; /* parent disk */ 84 daddr_t sc_offset; /* LBA offset of wedge in parent */ 85 uint64_t sc_size; /* size of wedge in blocks */ 86 char sc_ptype[32]; /* partition type */ 87 dev_t sc_pdev; /* cached parent's dev_t */ 88 /* link on parent's wedge list */ 89 LIST_ENTRY(dkwedge_softc) sc_plink; 90 91 struct disk sc_dk; /* our own disk structure */ 92 struct bufq_state *sc_bufq; /* buffer queue */ 93 struct callout sc_restart_ch; /* callout to restart I/O */ 94 95 u_int sc_iopend; /* I/Os pending */ 96 int sc_flags; /* flags (splbio) */ 97 }; 98 99 #define DK_F_WAIT_DRAIN 0x0001 /* waiting for I/O to drain */ 100 101 static void dkstart(struct dkwedge_softc *); 102 static void dkiodone(struct buf *); 103 static void dkrestart(void *); 104 105 static dev_type_open(dkopen); 106 static dev_type_close(dkclose); 107 static dev_type_read(dkread); 108 static dev_type_write(dkwrite); 109 static dev_type_ioctl(dkioctl); 110 static dev_type_strategy(dkstrategy); 111 static dev_type_dump(dkdump); 112 static dev_type_size(dksize); 113 114 const struct bdevsw dk_bdevsw = { 115 dkopen, dkclose, dkstrategy, dkioctl, dkdump, dksize, D_DISK 116 }; 117 118 const struct cdevsw dk_cdevsw = { 119 dkopen, dkclose, dkread, dkwrite, dkioctl, 120 nostop, notty, nopoll, nommap, nokqfilter, D_DISK 121 }; 122 123 static struct dkwedge_softc **dkwedges; 124 static u_int ndkwedges; 125 static struct lock dkwedges_lock = LOCK_INITIALIZER(PRIBIO, "dkwgs", 0, 0); 126 127 static LIST_HEAD(, dkwedge_discovery_method) dkwedge_discovery_methods; 128 static int dkwedge_discovery_methods_initialized; 129 static struct lock dkwedge_discovery_methods_lock = 130 LOCK_INITIALIZER(PRIBIO, "dkddm", 0, 0); 131 132 /* 133 * dkwedge_match: 134 * 135 * Autoconfiguration match function for pseudo-device glue. 136 */ 137 static int 138 dkwedge_match(struct device *parent, struct cfdata *match, void *aux) 139 { 140 141 /* Pseudo-device; always present. */ 142 return (1); 143 } 144 145 /* 146 * dkwedge_attach: 147 * 148 * Autoconfiguration attach function for pseudo-device glue. 149 */ 150 static void 151 dkwedge_attach(struct device *parent, struct device *self, void *aux) 152 { 153 154 /* Nothing to do. */ 155 } 156 157 /* 158 * dkwedge_detach: 159 * 160 * Autoconfiguration detach function for pseudo-device glue. 161 */ 162 static int 163 dkwedge_detach(struct device *self, int flags) 164 { 165 166 /* Always succeeds. */ 167 return (0); 168 } 169 170 CFDRIVER_DECL(dk, DV_DISK, NULL); 171 CFATTACH_DECL(dk, sizeof(struct device), 172 dkwedge_match, dkwedge_attach, dkwedge_detach, NULL); 173 174 static int dkwedge_cfglue_initialized; 175 static struct simplelock dkwedge_cfglue_initialized_slock = 176 SIMPLELOCK_INITIALIZER; 177 178 static void 179 dkwedge_cfglue_init(void) 180 { 181 182 simple_lock(&dkwedge_cfglue_initialized_slock); 183 if (dkwedge_cfglue_initialized == 0) { 184 if (config_cfdriver_attach(&dk_cd) != 0) 185 panic("dkwedge: unable to attach cfdriver"); 186 if (config_cfattach_attach(dk_cd.cd_name, &dk_ca) != 0) 187 panic("dkwedge: unable to attach cfattach"); 188 189 dkwedge_cfglue_initialized = 1; 190 } 191 simple_unlock(&dkwedge_cfglue_initialized_slock); 192 } 193 194 /* 195 * dkwedge_wait_drain: 196 * 197 * Wait for I/O on the wedge to drain. 198 * NOTE: Must be called at splbio()! 199 */ 200 static void 201 dkwedge_wait_drain(struct dkwedge_softc *sc) 202 { 203 204 while (sc->sc_iopend != 0) { 205 sc->sc_flags |= DK_F_WAIT_DRAIN; 206 (void) tsleep(&sc->sc_iopend, PRIBIO, "dkdrn", 0); 207 } 208 } 209 210 /* 211 * dkwedge_compute_pdev: 212 * 213 * Compute the parent disk's dev_t. 214 */ 215 static int 216 dkwedge_compute_pdev(const char *pname, dev_t *pdevp) 217 { 218 const char *name, *cp; 219 int punit, pmaj; 220 char devname[16]; 221 222 name = pname; 223 if ((pmaj = devsw_name2blk(name, devname, sizeof(devname))) == -1) 224 return (ENODEV); 225 226 name += strlen(devname); 227 for (cp = name, punit = 0; *cp >= '0' && *cp <= '9'; cp++) 228 punit = (punit * 10) + (*cp - '0'); 229 if (cp == name) { 230 /* Invalid parent disk name. */ 231 return (ENODEV); 232 } 233 234 *pdevp = MAKEDISKDEV(pmaj, punit, RAW_PART); 235 236 return (0); 237 } 238 239 /* 240 * dkwedge_array_expand: 241 * 242 * Expand the dkwedges array. 243 */ 244 static void 245 dkwedge_array_expand(void) 246 { 247 int newcnt = ndkwedges + 16; 248 struct dkwedge_softc **newarray, **oldarray; 249 250 newarray = malloc(newcnt * sizeof(*newarray), M_DKWEDGE, 251 M_WAITOK|M_ZERO); 252 if ((oldarray = dkwedges) != NULL) 253 memcpy(newarray, dkwedges, ndkwedges * sizeof(*newarray)); 254 dkwedges = newarray; 255 ndkwedges = newcnt; 256 if (oldarray != NULL) 257 free(oldarray, M_DKWEDGE); 258 } 259 260 /* 261 * dkwedge_add: [exported function] 262 * 263 * Add a disk wedge based on the provided information. 264 * 265 * The incoming dkw_devname[] is ignored, instead being 266 * filled in and returned to the caller. 267 */ 268 int 269 dkwedge_add(struct dkwedge_info *dkw) 270 { 271 struct dkwedge_softc *sc, *lsc; 272 struct disk *pdk; 273 u_int unit; 274 int error; 275 dev_t pdev; 276 277 if (dkwedge_cfglue_initialized == 0) 278 dkwedge_cfglue_init(); 279 280 dkw->dkw_parent[sizeof(dkw->dkw_parent) - 1] = '\0'; 281 pdk = disk_find(dkw->dkw_parent); 282 if (pdk == NULL) 283 return (ENODEV); 284 285 error = dkwedge_compute_pdev(pdk->dk_name, &pdev); 286 if (error) 287 return (error); 288 289 if (dkw->dkw_offset < 0) 290 return (EINVAL); 291 292 sc = malloc(sizeof(*sc), M_DKWEDGE, M_WAITOK|M_ZERO); 293 sc->sc_state = DKW_STATE_LARVAL; 294 sc->sc_parent = pdk; 295 sc->sc_pdev = pdev; 296 sc->sc_offset = dkw->dkw_offset; 297 sc->sc_size = dkw->dkw_size; 298 299 memcpy(sc->sc_wname, dkw->dkw_wname, sizeof(sc->sc_wname)); 300 sc->sc_wname[sizeof(sc->sc_wname) - 1] = '\0'; 301 302 memcpy(sc->sc_ptype, dkw->dkw_ptype, sizeof(sc->sc_ptype)); 303 sc->sc_ptype[sizeof(sc->sc_ptype) - 1] = '\0'; 304 305 bufq_alloc(&sc->sc_bufq, "fcfs", 0); 306 307 callout_init(&sc->sc_restart_ch); 308 callout_setfunc(&sc->sc_restart_ch, dkrestart, sc); 309 310 /* 311 * Wedge will be added; increment the wedge count for the parent. 312 * Only allow this to happend if RAW_PART is the only thing open. 313 */ 314 (void) lockmgr(&pdk->dk_openlock, LK_EXCLUSIVE, NULL); 315 if (pdk->dk_openmask & ~(1 << RAW_PART)) 316 error = EBUSY; 317 else { 318 /* Check for wedge overlap. */ 319 LIST_FOREACH(lsc, &pdk->dk_wedges, sc_plink) { 320 daddr_t lastblk = sc->sc_offset + sc->sc_size - 1; 321 daddr_t llastblk = lsc->sc_offset + lsc->sc_size - 1; 322 323 if (sc->sc_offset >= lsc->sc_offset && 324 sc->sc_offset <= llastblk) { 325 /* Overlaps the tail of the exsiting wedge. */ 326 break; 327 } 328 if (lastblk >= lsc->sc_offset && 329 lastblk <= llastblk) { 330 /* Overlaps the head of the existing wedge. */ 331 break; 332 } 333 } 334 if (lsc != NULL) 335 error = EINVAL; 336 else { 337 pdk->dk_nwedges++; 338 LIST_INSERT_HEAD(&pdk->dk_wedges, sc, sc_plink); 339 } 340 } 341 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL); 342 if (error) { 343 bufq_free(sc->sc_bufq); 344 free(sc, M_DKWEDGE); 345 return (error); 346 } 347 348 /* Fill in our cfdata for the pseudo-device glue. */ 349 sc->sc_cfdata.cf_name = dk_cd.cd_name; 350 sc->sc_cfdata.cf_atname = dk_ca.ca_name; 351 /* sc->sc_cfdata.cf_unit set below */ 352 sc->sc_cfdata.cf_fstate = FSTATE_STAR; 353 354 /* Insert the larval wedge into the array. */ 355 (void) lockmgr(&dkwedges_lock, LK_EXCLUSIVE, NULL); 356 for (error = 0;;) { 357 struct dkwedge_softc **scpp; 358 359 /* 360 * Check for a duplicate wname while searching for 361 * a slot. 362 */ 363 for (scpp = NULL, unit = 0; unit < ndkwedges; unit++) { 364 if (dkwedges[unit] == NULL) { 365 if (scpp == NULL) { 366 scpp = &dkwedges[unit]; 367 sc->sc_cfdata.cf_unit = unit; 368 } 369 } else { 370 /* XXX Unicode. */ 371 if (strcmp(dkwedges[unit]->sc_wname, 372 sc->sc_wname) == 0) { 373 error = EEXIST; 374 break; 375 } 376 } 377 } 378 if (error) 379 break; 380 KASSERT(unit == ndkwedges); 381 if (scpp == NULL) 382 dkwedge_array_expand(); 383 else { 384 KASSERT(scpp == &dkwedges[sc->sc_cfdata.cf_unit]); 385 *scpp = sc; 386 break; 387 } 388 } 389 (void) lockmgr(&dkwedges_lock, LK_RELEASE, NULL); 390 if (error) { 391 (void) lockmgr(&pdk->dk_openlock, LK_EXCLUSIVE, NULL); 392 pdk->dk_nwedges--; 393 LIST_REMOVE(sc, sc_plink); 394 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL); 395 396 bufq_free(sc->sc_bufq); 397 free(sc, M_DKWEDGE); 398 return (error); 399 } 400 401 /* 402 * Now that we know the unit #, attach a pseudo-device for 403 * this wedge instance. This will provide us with the 404 * "struct device" necessary for glue to other parts of the 405 * system. 406 * 407 * This should never fail, unless we're almost totally out of 408 * memory. 409 */ 410 if ((sc->sc_dev = config_attach_pseudo(&sc->sc_cfdata)) == NULL) { 411 aprint_error("%s%u: unable to attach pseudo-device\n", 412 sc->sc_cfdata.cf_name, sc->sc_cfdata.cf_unit); 413 414 (void) lockmgr(&dkwedges_lock, LK_EXCLUSIVE, NULL); 415 dkwedges[sc->sc_cfdata.cf_unit] = NULL; 416 (void) lockmgr(&dkwedges_lock, LK_RELEASE, NULL); 417 418 (void) lockmgr(&pdk->dk_openlock, LK_EXCLUSIVE, NULL); 419 pdk->dk_nwedges--; 420 LIST_REMOVE(sc, sc_plink); 421 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL); 422 423 bufq_free(sc->sc_bufq); 424 free(sc, M_DKWEDGE); 425 return (ENOMEM); 426 } 427 sc->sc_dk.dk_name = sc->sc_dev->dv_xname; 428 429 /* Return the devname to the caller. */ 430 strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname); 431 432 /* 433 * XXX Really ought to make the disk_attach() and the changing 434 * of state to RUNNING atomic. 435 */ 436 437 disk_attach(&sc->sc_dk); 438 439 /* Disk wedge is ready for use! */ 440 sc->sc_state = DKW_STATE_RUNNING; 441 442 /* Announce our arrival. */ 443 aprint_normal("%s at %s: %s\n", sc->sc_dev->dv_xname, pdk->dk_name, 444 sc->sc_wname); /* XXX Unicode */ 445 aprint_normal("%s: %"PRIu64" blocks at %"PRId64", type: %s\n", 446 sc->sc_dev->dv_xname, sc->sc_size, sc->sc_offset, sc->sc_ptype); 447 448 return (0); 449 } 450 451 /* 452 * dkwedge_del: [exported function] 453 * 454 * Delete a disk wedge based on the provided information. 455 * NOTE: We look up the wedge based on the wedge devname, 456 * not wname. 457 */ 458 int 459 dkwedge_del(struct dkwedge_info *dkw) 460 { 461 struct dkwedge_softc *sc = NULL; 462 u_int unit; 463 int bmaj, cmaj, s; 464 465 /* Find our softc. */ 466 dkw->dkw_devname[sizeof(dkw->dkw_devname) - 1] = '\0'; 467 (void) lockmgr(&dkwedges_lock, LK_EXCLUSIVE, NULL); 468 for (unit = 0; unit < ndkwedges; unit++) { 469 if ((sc = dkwedges[unit]) != NULL && 470 strcmp(sc->sc_dev->dv_xname, dkw->dkw_devname) == 0 && 471 strcmp(sc->sc_parent->dk_name, dkw->dkw_parent) == 0) { 472 /* Mark the wedge as dying. */ 473 sc->sc_state = DKW_STATE_DYING; 474 break; 475 } 476 } 477 (void) lockmgr(&dkwedges_lock, LK_RELEASE, NULL); 478 if (unit == ndkwedges) 479 return (ESRCH); 480 481 KASSERT(sc != NULL); 482 483 /* Locate the wedge major numbers. */ 484 bmaj = bdevsw_lookup_major(&dk_bdevsw); 485 cmaj = cdevsw_lookup_major(&dk_cdevsw); 486 487 /* Kill any pending restart. */ 488 callout_stop(&sc->sc_restart_ch); 489 490 /* 491 * dkstart() will kill any queued buffers now that the 492 * state of the wedge is not RUNNING. Once we've done 493 * that, wait for any other pending I/O to complete. 494 */ 495 s = splbio(); 496 dkstart(sc); 497 dkwedge_wait_drain(sc); 498 splx(s); 499 500 /* Nuke the vnodes for any open instances. */ 501 vdevgone(bmaj, unit, unit, VBLK); 502 vdevgone(cmaj, unit, unit, VCHR); 503 504 /* Clean up the parent. */ 505 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL); 506 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_EXCLUSIVE, NULL); 507 if (sc->sc_dk.dk_openmask) { 508 if (sc->sc_parent->dk_rawopens-- == 1) { 509 KASSERT(sc->sc_parent->dk_rawvp != NULL); 510 (void) vn_close(sc->sc_parent->dk_rawvp, FREAD | FWRITE, 511 NOCRED, curlwp); 512 sc->sc_parent->dk_rawvp = NULL; 513 } 514 sc->sc_dk.dk_openmask = 0; 515 } 516 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_RELEASE, NULL); 517 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_RELEASE, NULL); 518 519 /* Announce our departure. */ 520 aprint_normal("%s at %s (%s) deleted\n", sc->sc_dev->dv_xname, 521 sc->sc_parent->dk_name, 522 sc->sc_wname); /* XXX Unicode */ 523 524 /* Delete our pseudo-device. */ 525 (void) config_detach(sc->sc_dev, DETACH_FORCE | DETACH_QUIET); 526 527 (void) lockmgr(&sc->sc_parent->dk_openlock, LK_EXCLUSIVE, NULL); 528 sc->sc_parent->dk_nwedges--; 529 LIST_REMOVE(sc, sc_plink); 530 (void) lockmgr(&sc->sc_parent->dk_openlock, LK_RELEASE, NULL); 531 532 /* Delete our buffer queue. */ 533 bufq_free(sc->sc_bufq); 534 535 /* Detach from the disk list. */ 536 disk_detach(&sc->sc_dk); 537 538 /* Poof. */ 539 (void) lockmgr(&dkwedges_lock, LK_EXCLUSIVE, NULL); 540 dkwedges[unit] = NULL; 541 sc->sc_state = DKW_STATE_DEAD; 542 (void) lockmgr(&dkwedges_lock, LK_RELEASE, NULL); 543 544 free(sc, M_DKWEDGE); 545 546 return (0); 547 } 548 549 /* 550 * dkwedge_delall: [exported function] 551 * 552 * Delete all of the wedges on the specified disk. Used when 553 * a disk is being detached. 554 */ 555 void 556 dkwedge_delall(struct disk *pdk) 557 { 558 struct dkwedge_info dkw; 559 struct dkwedge_softc *sc; 560 561 for (;;) { 562 (void) lockmgr(&pdk->dk_openlock, LK_EXCLUSIVE, NULL); 563 if ((sc = LIST_FIRST(&pdk->dk_wedges)) == NULL) { 564 KASSERT(pdk->dk_nwedges == 0); 565 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL); 566 return; 567 } 568 strcpy(dkw.dkw_parent, pdk->dk_name); 569 strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname); 570 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL); 571 (void) dkwedge_del(&dkw); 572 } 573 } 574 575 /* 576 * dkwedge_list: [exported function] 577 * 578 * List all of the wedges on a particular disk. 579 * If p == NULL, the buffer is in kernel space. Otherwise, it is 580 * in user space of the specified process. 581 */ 582 int 583 dkwedge_list(struct disk *pdk, struct dkwedge_list *dkwl, struct lwp *l) 584 { 585 struct uio uio; 586 struct iovec iov; 587 struct dkwedge_softc *sc; 588 struct dkwedge_info dkw; 589 struct vmspace *vm; 590 int error = 0; 591 592 iov.iov_base = dkwl->dkwl_buf; 593 iov.iov_len = dkwl->dkwl_bufsize; 594 595 uio.uio_iov = &iov; 596 uio.uio_iovcnt = 1; 597 uio.uio_offset = 0; 598 uio.uio_resid = dkwl->dkwl_bufsize; 599 uio.uio_rw = UIO_READ; 600 if (l == NULL) { 601 UIO_SETUP_SYSSPACE(&uio); 602 } else { 603 error = proc_vmspace_getref(l->l_proc, &vm); 604 if (error) { 605 return error; 606 } 607 uio.uio_vmspace = vm; 608 } 609 610 dkwl->dkwl_ncopied = 0; 611 612 (void) lockmgr(&pdk->dk_openlock, LK_EXCLUSIVE, NULL); 613 LIST_FOREACH(sc, &pdk->dk_wedges, sc_plink) { 614 if (uio.uio_resid < sizeof(dkw)) 615 break; 616 617 if (sc->sc_state != DKW_STATE_RUNNING) 618 continue; 619 620 strcpy(dkw.dkw_devname, sc->sc_dev->dv_xname); 621 memcpy(dkw.dkw_wname, sc->sc_wname, sizeof(dkw.dkw_wname)); 622 dkw.dkw_wname[sizeof(dkw.dkw_wname) - 1] = '\0'; 623 strcpy(dkw.dkw_parent, sc->sc_parent->dk_name); 624 dkw.dkw_offset = sc->sc_offset; 625 dkw.dkw_size = sc->sc_size; 626 strcpy(dkw.dkw_ptype, sc->sc_ptype); 627 628 error = uiomove(&dkw, sizeof(dkw), &uio); 629 if (error) 630 break; 631 dkwl->dkwl_ncopied++; 632 } 633 dkwl->dkwl_nwedges = pdk->dk_nwedges; 634 (void) lockmgr(&pdk->dk_openlock, LK_RELEASE, NULL); 635 636 if (l != NULL) { 637 uvmspace_free(vm); 638 } 639 640 return (error); 641 } 642 643 /* 644 * dkwedge_set_bootwedge 645 * 646 * Set the booted_wedge global based on the specified parent name 647 * and offset/length. 648 */ 649 void 650 dkwedge_set_bootwedge(struct device *parent, daddr_t startblk, uint64_t nblks) 651 { 652 struct dkwedge_softc *sc; 653 int i; 654 655 (void) lockmgr(&dkwedges_lock, LK_EXCLUSIVE, NULL); 656 for (i = 0; i < ndkwedges; i++) { 657 if ((sc = dkwedges[i]) == NULL) 658 continue; 659 if (strcmp(sc->sc_parent->dk_name, parent->dv_xname) == 0 && 660 sc->sc_offset == startblk && 661 sc->sc_size == nblks) { 662 if (booted_wedge) { 663 printf("WARNING: double match for boot wedge " 664 "(%s, %s)\n", 665 booted_wedge->dv_xname, 666 sc->sc_dev->dv_xname); 667 continue; 668 } 669 booted_device = parent; 670 booted_wedge = sc->sc_dev; 671 booted_partition = 0; 672 } 673 } 674 /* 675 * XXX What if we don't find one? Should we create a special 676 * XXX root wedge? 677 */ 678 (void) lockmgr(&dkwedges_lock, LK_RELEASE, NULL); 679 } 680 681 /* 682 * We need a dummy object to stuff into the dkwedge discovery method link 683 * set to ensure that there is always at least one object in the set. 684 */ 685 static struct dkwedge_discovery_method dummy_discovery_method; 686 __link_set_add_bss(dkwedge_methods, dummy_discovery_method); 687 688 /* 689 * dkwedge_discover_init: 690 * 691 * Initialize the disk wedge discovery method list. 692 */ 693 static void 694 dkwedge_discover_init(void) 695 { 696 __link_set_decl(dkwedge_methods, struct dkwedge_discovery_method); 697 struct dkwedge_discovery_method * const *ddmp; 698 struct dkwedge_discovery_method *lddm, *ddm; 699 700 (void) lockmgr(&dkwedge_discovery_methods_lock, LK_EXCLUSIVE, NULL); 701 702 if (dkwedge_discovery_methods_initialized) { 703 (void) lockmgr(&dkwedge_discovery_methods_lock, LK_RELEASE, 704 NULL); 705 return; 706 } 707 708 LIST_INIT(&dkwedge_discovery_methods); 709 710 __link_set_foreach(ddmp, dkwedge_methods) { 711 ddm = *ddmp; 712 if (ddm == &dummy_discovery_method) 713 continue; 714 if (LIST_EMPTY(&dkwedge_discovery_methods)) { 715 LIST_INSERT_HEAD(&dkwedge_discovery_methods, 716 ddm, ddm_list); 717 continue; 718 } 719 LIST_FOREACH(lddm, &dkwedge_discovery_methods, ddm_list) { 720 if (ddm->ddm_priority == lddm->ddm_priority) { 721 aprint_error("dk-method-%s: method \"%s\" " 722 "already exists at priority %d\n", 723 ddm->ddm_name, lddm->ddm_name, 724 lddm->ddm_priority); 725 /* Not inserted. */ 726 break; 727 } 728 if (ddm->ddm_priority < lddm->ddm_priority) { 729 /* Higher priority; insert before. */ 730 LIST_INSERT_BEFORE(lddm, ddm, ddm_list); 731 break; 732 } 733 if (LIST_NEXT(lddm, ddm_list) == NULL) { 734 /* Last one; insert after. */ 735 KASSERT(lddm->ddm_priority < ddm->ddm_priority); 736 LIST_INSERT_AFTER(lddm, ddm, ddm_list); 737 break; 738 } 739 } 740 } 741 742 dkwedge_discovery_methods_initialized = 1; 743 744 (void) lockmgr(&dkwedge_discovery_methods_lock, LK_RELEASE, NULL); 745 } 746 747 #ifdef DKWEDGE_AUTODISCOVER 748 int dkwedge_autodiscover = 1; 749 #else 750 int dkwedge_autodiscover = 0; 751 #endif 752 753 /* 754 * dkwedge_discover: [exported function] 755 * 756 * Discover the wedges on a newly attached disk. 757 */ 758 void 759 dkwedge_discover(struct disk *pdk) 760 { 761 struct dkwedge_discovery_method *ddm; 762 struct vnode *vp; 763 int error; 764 dev_t pdev; 765 766 /* 767 * Require people playing with wedges to enable this explicitly. 768 */ 769 if (dkwedge_autodiscover == 0) 770 return; 771 772 if (dkwedge_discovery_methods_initialized == 0) 773 dkwedge_discover_init(); 774 775 (void) lockmgr(&dkwedge_discovery_methods_lock, LK_SHARED, NULL); 776 777 error = dkwedge_compute_pdev(pdk->dk_name, &pdev); 778 if (error) { 779 aprint_error("%s: unable to compute pdev, error = %d\n", 780 pdk->dk_name, error); 781 goto out; 782 } 783 784 error = bdevvp(pdev, &vp); 785 if (error) { 786 aprint_error("%s: unable to find vnode for pdev, error = %d\n", 787 pdk->dk_name, error); 788 goto out; 789 } 790 791 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 792 if (error) { 793 aprint_error("%s: unable to lock vnode for pdev, error = %d\n", 794 pdk->dk_name, error); 795 vrele(vp); 796 goto out; 797 } 798 799 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED, 0); 800 if (error) { 801 aprint_error("%s: unable to open device, error = %d\n", 802 pdk->dk_name, error); 803 vput(vp); 804 goto out; 805 } 806 /* VOP_OPEN() doesn't do this for us. */ 807 vp->v_writecount++; 808 VOP_UNLOCK(vp, 0); 809 810 /* 811 * For each supported partition map type, look to see if 812 * this map type exists. If so, parse it and add the 813 * corresponding wedges. 814 */ 815 LIST_FOREACH(ddm, &dkwedge_discovery_methods, ddm_list) { 816 error = (*ddm->ddm_discover)(pdk, vp); 817 if (error == 0) { 818 /* Successfully created wedges; we're done. */ 819 break; 820 } 821 } 822 823 error = vn_close(vp, FREAD | FWRITE, NOCRED, curlwp); 824 if (error) { 825 aprint_error("%s: unable to close device, error = %d\n", 826 pdk->dk_name, error); 827 /* We'll just assume the vnode has been cleaned up. */ 828 } 829 out: 830 (void) lockmgr(&dkwedge_discovery_methods_lock, LK_RELEASE, NULL); 831 } 832 833 /* 834 * dkwedge_read: 835 * 836 * Read the some data from the specified disk, used for 837 * partition discovery. 838 */ 839 int 840 dkwedge_read(struct disk *pdk, struct vnode *vp, daddr_t blkno, void *tbuf, 841 size_t len) 842 { 843 struct buf b; 844 845 BUF_INIT(&b); 846 847 b.b_vp = vp; 848 b.b_dev = vp->v_rdev; 849 b.b_blkno = blkno; 850 b.b_bcount = b.b_resid = len; 851 b.b_flags = B_READ; 852 b.b_proc = curproc; 853 b.b_data = tbuf; 854 855 VOP_STRATEGY(vp, &b); 856 return (biowait(&b)); 857 } 858 859 /* 860 * dkwedge_lookup: 861 * 862 * Look up a dkwedge_softc based on the provided dev_t. 863 */ 864 static struct dkwedge_softc * 865 dkwedge_lookup(dev_t dev) 866 { 867 int unit = minor(dev); 868 869 if (unit >= ndkwedges) 870 return (NULL); 871 872 KASSERT(dkwedges != NULL); 873 874 return (dkwedges[unit]); 875 } 876 877 /* 878 * dkopen: [devsw entry point] 879 * 880 * Open a wedge. 881 */ 882 static int 883 dkopen(dev_t dev, int flags, int fmt, struct lwp *l) 884 { 885 struct dkwedge_softc *sc = dkwedge_lookup(dev); 886 struct vnode *vp; 887 int error = 0; 888 889 if (sc == NULL) 890 return (ENODEV); 891 892 if (sc->sc_state != DKW_STATE_RUNNING) 893 return (ENXIO); 894 895 /* 896 * We go through a complicated little dance to only open the parent 897 * vnode once per wedge, no matter how many times the wedge is 898 * opened. The reason? We see one dkopen() per open call, but 899 * only dkclose() on the last close. 900 */ 901 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL); 902 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_EXCLUSIVE, NULL); 903 if (sc->sc_dk.dk_openmask == 0) { 904 if (sc->sc_parent->dk_rawopens++ == 0) { 905 KASSERT(sc->sc_parent->dk_rawvp == NULL); 906 error = bdevvp(sc->sc_pdev, &vp); 907 if (error) 908 goto popen_fail; 909 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 910 if (error) { 911 vrele(vp); 912 goto popen_fail; 913 } 914 error = VOP_OPEN(vp, FREAD | FWRITE, NOCRED, 0); 915 if (error) { 916 vput(vp); 917 goto popen_fail; 918 } 919 /* VOP_OPEN() doesn't do this for us. */ 920 vp->v_writecount++; 921 VOP_UNLOCK(vp, 0); 922 sc->sc_parent->dk_rawvp = vp; 923 } 924 } 925 if (fmt == S_IFCHR) 926 sc->sc_dk.dk_copenmask |= 1; 927 else 928 sc->sc_dk.dk_bopenmask |= 1; 929 sc->sc_dk.dk_openmask = 930 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; 931 932 popen_fail: 933 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_RELEASE, NULL); 934 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_RELEASE, NULL); 935 return (error); 936 } 937 938 /* 939 * dkclose: [devsw entry point] 940 * 941 * Close a wedge. 942 */ 943 static int 944 dkclose(dev_t dev, int flags, int fmt, struct lwp *l) 945 { 946 struct dkwedge_softc *sc = dkwedge_lookup(dev); 947 int error = 0; 948 949 KASSERT(sc->sc_dk.dk_openmask != 0); 950 951 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL); 952 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_EXCLUSIVE, NULL); 953 954 if (fmt == S_IFCHR) 955 sc->sc_dk.dk_copenmask &= ~1; 956 else 957 sc->sc_dk.dk_bopenmask &= ~1; 958 sc->sc_dk.dk_openmask = 959 sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask; 960 961 if (sc->sc_dk.dk_openmask == 0) { 962 if (sc->sc_parent->dk_rawopens-- == 1) { 963 KASSERT(sc->sc_parent->dk_rawvp != NULL); 964 error = vn_close(sc->sc_parent->dk_rawvp, 965 FREAD | FWRITE, NOCRED, l); 966 sc->sc_parent->dk_rawvp = NULL; 967 } 968 } 969 970 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_RELEASE, NULL); 971 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_RELEASE, NULL); 972 973 return (error); 974 } 975 976 /* 977 * dkstragegy: [devsw entry point] 978 * 979 * Perform I/O based on the wedge I/O strategy. 980 */ 981 static void 982 dkstrategy(struct buf *bp) 983 { 984 struct dkwedge_softc *sc = dkwedge_lookup(bp->b_dev); 985 int s; 986 987 if (sc->sc_state != DKW_STATE_RUNNING) { 988 bp->b_error = ENXIO; 989 bp->b_flags |= B_ERROR; 990 goto done; 991 } 992 993 /* If it's an empty transfer, wake up the top half now. */ 994 if (bp->b_bcount == 0) 995 goto done; 996 997 /* Make sure it's in-range. */ 998 if (bounds_check_with_mediasize(bp, DEV_BSIZE, sc->sc_size) <= 0) 999 goto done; 1000 1001 /* Translate it to the parent's raw LBA. */ 1002 bp->b_rawblkno = bp->b_blkno + sc->sc_offset; 1003 1004 /* Place it in the queue and start I/O on the unit. */ 1005 s = splbio(); 1006 sc->sc_iopend++; 1007 BUFQ_PUT(sc->sc_bufq, bp); 1008 dkstart(sc); 1009 splx(s); 1010 return; 1011 1012 done: 1013 bp->b_resid = bp->b_bcount; 1014 biodone(bp); 1015 } 1016 1017 /* 1018 * dkstart: 1019 * 1020 * Start I/O that has been enqueued on the wedge. 1021 * NOTE: Must be called at splbio()! 1022 */ 1023 static void 1024 dkstart(struct dkwedge_softc *sc) 1025 { 1026 struct buf *bp, *nbp; 1027 1028 /* Do as much work as has been enqueued. */ 1029 while ((bp = BUFQ_PEEK(sc->sc_bufq)) != NULL) { 1030 if (sc->sc_state != DKW_STATE_RUNNING) { 1031 (void) BUFQ_GET(sc->sc_bufq); 1032 if (sc->sc_iopend-- == 1 && 1033 (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) { 1034 sc->sc_flags &= ~DK_F_WAIT_DRAIN; 1035 wakeup(&sc->sc_iopend); 1036 } 1037 bp->b_error = ENXIO; 1038 bp->b_flags |= B_ERROR; 1039 bp->b_resid = bp->b_bcount; 1040 biodone(bp); 1041 } 1042 1043 /* Instrumentation. */ 1044 disk_busy(&sc->sc_dk); 1045 1046 nbp = getiobuf_nowait(); 1047 if (nbp == NULL) { 1048 /* 1049 * No resources to run this request; leave the 1050 * buffer queued up, and schedule a timer to 1051 * restart the queue in 1/2 a second. 1052 */ 1053 disk_unbusy(&sc->sc_dk, 0, bp->b_flags & B_READ); 1054 callout_schedule(&sc->sc_restart_ch, hz / 2); 1055 return; 1056 } 1057 1058 (void) BUFQ_GET(sc->sc_bufq); 1059 1060 BUF_INIT(nbp); 1061 nbp->b_data = bp->b_data; 1062 nbp->b_flags = bp->b_flags | B_CALL; 1063 nbp->b_iodone = dkiodone; 1064 nbp->b_proc = bp->b_proc; 1065 nbp->b_blkno = bp->b_rawblkno; 1066 nbp->b_dev = sc->sc_parent->dk_rawvp->v_rdev; 1067 nbp->b_vp = sc->sc_parent->dk_rawvp; 1068 nbp->b_bcount = bp->b_bcount; 1069 nbp->b_private = bp; 1070 BIO_COPYPRIO(nbp, bp); 1071 1072 if ((nbp->b_flags & B_READ) == 0) 1073 V_INCR_NUMOUTPUT(nbp->b_vp); 1074 VOP_STRATEGY(nbp->b_vp, nbp); 1075 } 1076 } 1077 1078 /* 1079 * dkiodone: 1080 * 1081 * I/O to a wedge has completed; alert the top half. 1082 * NOTE: Must be called at splbio()! 1083 */ 1084 static void 1085 dkiodone(struct buf *bp) 1086 { 1087 struct buf *obp = bp->b_private; 1088 struct dkwedge_softc *sc = dkwedge_lookup(obp->b_dev); 1089 1090 if (bp->b_flags & B_ERROR) { 1091 obp->b_flags |= B_ERROR; 1092 obp->b_error = bp->b_error; 1093 } 1094 obp->b_resid = bp->b_resid; 1095 putiobuf(bp); 1096 1097 if (sc->sc_iopend-- == 1 && (sc->sc_flags & DK_F_WAIT_DRAIN) != 0) { 1098 sc->sc_flags &= ~DK_F_WAIT_DRAIN; 1099 wakeup(&sc->sc_iopend); 1100 } 1101 1102 disk_unbusy(&sc->sc_dk, obp->b_bcount - obp->b_resid, 1103 obp->b_flags & B_READ); 1104 1105 biodone(obp); 1106 1107 /* Kick the queue in case there is more work we can do. */ 1108 dkstart(sc); 1109 } 1110 1111 /* 1112 * dkrestart: 1113 * 1114 * Restart the work queue after it was stalled due to 1115 * a resource shortage. Invoked via a callout. 1116 */ 1117 static void 1118 dkrestart(void *v) 1119 { 1120 struct dkwedge_softc *sc = v; 1121 int s; 1122 1123 s = splbio(); 1124 dkstart(sc); 1125 splx(s); 1126 } 1127 1128 /* 1129 * dkread: [devsw entry point] 1130 * 1131 * Read from a wedge. 1132 */ 1133 static int 1134 dkread(dev_t dev, struct uio *uio, int flags) 1135 { 1136 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1137 1138 if (sc->sc_state != DKW_STATE_RUNNING) 1139 return (ENXIO); 1140 1141 return (physio(dkstrategy, NULL, dev, B_READ, 1142 sc->sc_parent->dk_driver->d_minphys, uio)); 1143 } 1144 1145 /* 1146 * dkwrite: [devsw entry point] 1147 * 1148 * Write to a wedge. 1149 */ 1150 static int 1151 dkwrite(dev_t dev, struct uio *uio, int flags) 1152 { 1153 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1154 1155 if (sc->sc_state != DKW_STATE_RUNNING) 1156 return (ENXIO); 1157 1158 return (physio(dkstrategy, NULL, dev, B_WRITE, 1159 sc->sc_parent->dk_driver->d_minphys, uio)); 1160 } 1161 1162 /* 1163 * dkioctl: [devsw entry point] 1164 * 1165 * Perform an ioctl request on a wedge. 1166 */ 1167 static int 1168 dkioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l) 1169 { 1170 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1171 int error = 0; 1172 1173 if (sc->sc_state != DKW_STATE_RUNNING) 1174 return (ENXIO); 1175 1176 switch (cmd) { 1177 case DIOCCACHESYNC: 1178 /* 1179 * XXX Do we really need to care about having a writable 1180 * file descriptor here? 1181 */ 1182 if ((flag & FWRITE) == 0) 1183 error = EBADF; 1184 else 1185 error = VOP_IOCTL(sc->sc_parent->dk_rawvp, 1186 cmd, data, flag, 1187 l != NULL ? l->l_cred : NOCRED, l); 1188 break; 1189 case DIOCGWEDGEINFO: 1190 { 1191 struct dkwedge_info *dkw = (void *) data; 1192 1193 strcpy(dkw->dkw_devname, sc->sc_dev->dv_xname); 1194 memcpy(dkw->dkw_wname, sc->sc_wname, sizeof(dkw->dkw_wname)); 1195 dkw->dkw_wname[sizeof(dkw->dkw_wname) - 1] = '\0'; 1196 strcpy(dkw->dkw_parent, sc->sc_parent->dk_name); 1197 dkw->dkw_offset = sc->sc_offset; 1198 dkw->dkw_size = sc->sc_size; 1199 strcpy(dkw->dkw_ptype, sc->sc_ptype); 1200 1201 break; 1202 } 1203 1204 default: 1205 error = ENOTTY; 1206 } 1207 1208 return (error); 1209 } 1210 1211 /* 1212 * dksize: [devsw entry point] 1213 * 1214 * Query the size of a wedge for the purpose of performing a dump 1215 * or for swapping to. 1216 */ 1217 static int 1218 dksize(dev_t dev) 1219 { 1220 struct dkwedge_softc *sc = dkwedge_lookup(dev); 1221 int rv = -1; 1222 1223 if (sc == NULL) 1224 return (-1); 1225 1226 if (sc->sc_state != DKW_STATE_RUNNING) 1227 return (ENXIO); 1228 1229 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_EXCLUSIVE, NULL); 1230 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_EXCLUSIVE, NULL); 1231 1232 /* Our content type is static, no need to open the device. */ 1233 1234 if (strcmp(sc->sc_ptype, DKW_PTYPE_SWAP) == 0) { 1235 /* Saturate if we are larger than INT_MAX. */ 1236 if (sc->sc_size > INT_MAX) 1237 rv = INT_MAX; 1238 else 1239 rv = (int) sc->sc_size; 1240 } 1241 1242 (void) lockmgr(&sc->sc_parent->dk_rawlock, LK_RELEASE, NULL); 1243 (void) lockmgr(&sc->sc_dk.dk_openlock, LK_RELEASE, NULL); 1244 1245 return (rv); 1246 } 1247 1248 /* 1249 * dkdump: [devsw entry point] 1250 * 1251 * Perform a crash dump to a wedge. 1252 */ 1253 static int 1254 dkdump(dev_t dev, daddr_t blkno, caddr_t va, size_t size) 1255 { 1256 1257 /* XXX */ 1258 return (ENXIO); 1259 } 1260