1 /* $NetBSD: cgd.c,v 1.56 2009/01/11 09:51:38 cegger Exp $ */ 2 3 /*- 4 * Copyright (c) 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Roland C. Dowdeswell. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __KERNEL_RCSID(0, "$NetBSD: cgd.c,v 1.56 2009/01/11 09:51:38 cegger Exp $"); 34 35 #include <sys/types.h> 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/proc.h> 39 #include <sys/errno.h> 40 #include <sys/buf.h> 41 #include <sys/bufq.h> 42 #include <sys/malloc.h> 43 #include <sys/pool.h> 44 #include <sys/ioctl.h> 45 #include <sys/device.h> 46 #include <sys/disk.h> 47 #include <sys/disklabel.h> 48 #include <sys/fcntl.h> 49 #include <sys/vnode.h> 50 #include <sys/conf.h> 51 52 #include <dev/dkvar.h> 53 #include <dev/cgdvar.h> 54 55 /* Entry Point Functions */ 56 57 void cgdattach(int); 58 59 static dev_type_open(cgdopen); 60 static dev_type_close(cgdclose); 61 static dev_type_read(cgdread); 62 static dev_type_write(cgdwrite); 63 static dev_type_ioctl(cgdioctl); 64 static dev_type_strategy(cgdstrategy); 65 static dev_type_dump(cgddump); 66 static dev_type_size(cgdsize); 67 68 const struct bdevsw cgd_bdevsw = { 69 cgdopen, cgdclose, cgdstrategy, cgdioctl, 70 cgddump, cgdsize, D_DISK 71 }; 72 73 const struct cdevsw cgd_cdevsw = { 74 cgdopen, cgdclose, cgdread, cgdwrite, cgdioctl, 75 nostop, notty, nopoll, nommap, nokqfilter, D_DISK 76 }; 77 78 /* Internal Functions */ 79 80 static int cgdstart(struct dk_softc *, struct buf *); 81 static void cgdiodone(struct buf *); 82 83 static int cgd_ioctl_set(struct cgd_softc *, void *, struct lwp *); 84 static int cgd_ioctl_clr(struct cgd_softc *, void *, struct lwp *); 85 static int cgdinit(struct cgd_softc *, const char *, struct vnode *, 86 struct lwp *); 87 static void cgd_cipher(struct cgd_softc *, void *, void *, 88 size_t, daddr_t, size_t, int); 89 90 /* Pseudo-disk Interface */ 91 92 static struct dk_intf the_dkintf = { 93 DTYPE_CGD, 94 "cgd", 95 cgdopen, 96 cgdclose, 97 cgdstrategy, 98 cgdstart, 99 }; 100 static struct dk_intf *di = &the_dkintf; 101 102 static struct dkdriver cgddkdriver = { 103 .d_strategy = cgdstrategy, 104 .d_minphys = minphys, 105 }; 106 107 /* DIAGNOSTIC and DEBUG definitions */ 108 109 #if defined(CGDDEBUG) && !defined(DEBUG) 110 #define DEBUG 111 #endif 112 113 #ifdef DEBUG 114 int cgddebug = 0; 115 116 #define CGDB_FOLLOW 0x1 117 #define CGDB_IO 0x2 118 #define CGDB_CRYPTO 0x4 119 120 #define IFDEBUG(x,y) if (cgddebug & (x)) y 121 #define DPRINTF(x,y) IFDEBUG(x, printf y) 122 #define DPRINTF_FOLLOW(y) DPRINTF(CGDB_FOLLOW, y) 123 124 static void hexprint(const char *, void *, int); 125 126 #else 127 #define IFDEBUG(x,y) 128 #define DPRINTF(x,y) 129 #define DPRINTF_FOLLOW(y) 130 #endif 131 132 #ifdef DIAGNOSTIC 133 #define DIAGPANIC(x) panic x 134 #define DIAGCONDPANIC(x,y) if (x) panic y 135 #else 136 #define DIAGPANIC(x) 137 #define DIAGCONDPANIC(x,y) 138 #endif 139 140 /* Global variables */ 141 142 struct cgd_softc *cgd_softc; 143 int numcgd = 0; 144 145 /* Utility Functions */ 146 147 #define CGDUNIT(x) DISKUNIT(x) 148 #define GETCGD_SOFTC(_cs, x) if (!((_cs) = getcgd_softc(x))) return ENXIO 149 150 static struct cgd_softc * 151 getcgd_softc(dev_t dev) 152 { 153 int unit = CGDUNIT(dev); 154 155 DPRINTF_FOLLOW(("getcgd_softc(0x%"PRIx64"): unit = %d\n", dev, unit)); 156 if (unit >= numcgd) 157 return NULL; 158 return &cgd_softc[unit]; 159 } 160 161 /* The code */ 162 163 static void 164 cgdsoftc_init(struct cgd_softc *cs, int num) 165 { 166 char sbuf[DK_XNAME_SIZE]; 167 168 memset(cs, 0x0, sizeof(*cs)); 169 snprintf(sbuf, DK_XNAME_SIZE, "cgd%d", num); 170 simple_lock_init(&cs->sc_slock); 171 dk_sc_init(&cs->sc_dksc, cs, sbuf); 172 disk_init(&cs->sc_dksc.sc_dkdev, cs->sc_dksc.sc_xname, &cgddkdriver); 173 } 174 175 void 176 cgdattach(int num) 177 { 178 int i; 179 180 DPRINTF_FOLLOW(("cgdattach(%d)\n", num)); 181 if (num <= 0) { 182 DIAGPANIC(("cgdattach: count <= 0")); 183 return; 184 } 185 186 cgd_softc = (void *)malloc(num * sizeof(*cgd_softc), M_DEVBUF, M_NOWAIT); 187 if (!cgd_softc) { 188 printf("WARNING: unable to malloc(9) memory for crypt disks\n"); 189 DIAGPANIC(("cgdattach: cannot malloc(9) enough memory")); 190 return; 191 } 192 193 numcgd = num; 194 for (i=0; i<num; i++) 195 cgdsoftc_init(&cgd_softc[i], i); 196 } 197 198 static int 199 cgdopen(dev_t dev, int flags, int fmt, struct lwp *l) 200 { 201 struct cgd_softc *cs; 202 203 DPRINTF_FOLLOW(("cgdopen(0x%"PRIx64", %d)\n", dev, flags)); 204 GETCGD_SOFTC(cs, dev); 205 return dk_open(di, &cs->sc_dksc, dev, flags, fmt, l); 206 } 207 208 static int 209 cgdclose(dev_t dev, int flags, int fmt, struct lwp *l) 210 { 211 struct cgd_softc *cs; 212 213 DPRINTF_FOLLOW(("cgdclose(0x%"PRIx64", %d)\n", dev, flags)); 214 GETCGD_SOFTC(cs, dev); 215 return dk_close(di, &cs->sc_dksc, dev, flags, fmt, l); 216 } 217 218 static void 219 cgdstrategy(struct buf *bp) 220 { 221 struct cgd_softc *cs = getcgd_softc(bp->b_dev); 222 223 DPRINTF_FOLLOW(("cgdstrategy(%p): b_bcount = %ld\n", bp, 224 (long)bp->b_bcount)); 225 /* XXXrcd: Should we test for (cs != NULL)? */ 226 dk_strategy(di, &cs->sc_dksc, bp); 227 return; 228 } 229 230 static int 231 cgdsize(dev_t dev) 232 { 233 struct cgd_softc *cs = getcgd_softc(dev); 234 235 DPRINTF_FOLLOW(("cgdsize(0x%"PRIx64")\n", dev)); 236 if (!cs) 237 return -1; 238 return dk_size(di, &cs->sc_dksc, dev); 239 } 240 241 /* 242 * cgd_{get,put}data are functions that deal with getting a buffer 243 * for the new encrypted data. We have a buffer per device so that 244 * we can ensure that we can always have a transaction in flight. 245 * We use this buffer first so that we have one less piece of 246 * malloc'ed data at any given point. 247 */ 248 249 static void * 250 cgd_getdata(struct dk_softc *dksc, unsigned long size) 251 { 252 struct cgd_softc *cs =dksc->sc_osc; 253 void * data = NULL; 254 255 simple_lock(&cs->sc_slock); 256 if (cs->sc_data_used == 0) { 257 cs->sc_data_used = 1; 258 data = cs->sc_data; 259 } 260 simple_unlock(&cs->sc_slock); 261 262 if (data) 263 return data; 264 265 return malloc(size, M_DEVBUF, M_NOWAIT); 266 } 267 268 static void 269 cgd_putdata(struct dk_softc *dksc, void *data) 270 { 271 struct cgd_softc *cs =dksc->sc_osc; 272 273 if (data == cs->sc_data) { 274 simple_lock(&cs->sc_slock); 275 cs->sc_data_used = 0; 276 simple_unlock(&cs->sc_slock); 277 } else { 278 free(data, M_DEVBUF); 279 } 280 } 281 282 static int 283 cgdstart(struct dk_softc *dksc, struct buf *bp) 284 { 285 struct cgd_softc *cs = dksc->sc_osc; 286 struct buf *nbp; 287 void * addr; 288 void * newaddr; 289 daddr_t bn; 290 struct vnode *vp; 291 292 DPRINTF_FOLLOW(("cgdstart(%p, %p)\n", dksc, bp)); 293 disk_busy(&dksc->sc_dkdev); /* XXX: put in dksubr.c */ 294 295 bn = bp->b_rawblkno; 296 297 /* 298 * We attempt to allocate all of our resources up front, so that 299 * we can fail quickly if they are unavailable. 300 */ 301 302 nbp = getiobuf(cs->sc_tvn, false); 303 if (nbp == NULL) { 304 disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ)); 305 return -1; 306 } 307 308 /* 309 * If we are writing, then we need to encrypt the outgoing 310 * block into a new block of memory. If we fail, then we 311 * return an error and let the dksubr framework deal with it. 312 */ 313 newaddr = addr = bp->b_data; 314 if ((bp->b_flags & B_READ) == 0) { 315 newaddr = cgd_getdata(dksc, bp->b_bcount); 316 if (!newaddr) { 317 putiobuf(nbp); 318 disk_unbusy(&dksc->sc_dkdev, 0, (bp->b_flags & B_READ)); 319 return -1; 320 } 321 cgd_cipher(cs, newaddr, addr, bp->b_bcount, bn, 322 DEV_BSIZE, CGD_CIPHER_ENCRYPT); 323 } 324 325 nbp->b_data = newaddr; 326 nbp->b_flags = bp->b_flags; 327 nbp->b_oflags = bp->b_oflags; 328 nbp->b_cflags = bp->b_cflags; 329 nbp->b_iodone = cgdiodone; 330 nbp->b_proc = bp->b_proc; 331 nbp->b_blkno = bn; 332 nbp->b_bcount = bp->b_bcount; 333 nbp->b_private = bp; 334 335 BIO_COPYPRIO(nbp, bp); 336 337 if ((nbp->b_flags & B_READ) == 0) { 338 vp = nbp->b_vp; 339 mutex_enter(&vp->v_interlock); 340 vp->v_numoutput++; 341 mutex_exit(&vp->v_interlock); 342 } 343 VOP_STRATEGY(cs->sc_tvn, nbp); 344 return 0; 345 } 346 347 /* expected to be called at splbio() */ 348 static void 349 cgdiodone(struct buf *nbp) 350 { 351 struct buf *obp = nbp->b_private; 352 struct cgd_softc *cs = getcgd_softc(obp->b_dev); 353 struct dk_softc *dksc = &cs->sc_dksc; 354 355 KDASSERT(cs); 356 357 DPRINTF_FOLLOW(("cgdiodone(%p)\n", nbp)); 358 DPRINTF(CGDB_IO, ("cgdiodone: bp %p bcount %d resid %d\n", 359 obp, obp->b_bcount, obp->b_resid)); 360 DPRINTF(CGDB_IO, (" dev 0x%"PRIx64", nbp %p bn %" PRId64 " addr %p bcnt %d\n", 361 nbp->b_dev, nbp, nbp->b_blkno, nbp->b_data, 362 nbp->b_bcount)); 363 if (nbp->b_error != 0) { 364 obp->b_error = nbp->b_error; 365 printf("%s: error %d\n", dksc->sc_xname, obp->b_error); 366 } 367 368 /* Perform the decryption if we are reading. 369 * 370 * Note: use the blocknumber from nbp, since it is what 371 * we used to encrypt the blocks. 372 */ 373 374 if (nbp->b_flags & B_READ) 375 cgd_cipher(cs, obp->b_data, obp->b_data, obp->b_bcount, 376 nbp->b_blkno, DEV_BSIZE, CGD_CIPHER_DECRYPT); 377 378 /* If we allocated memory, free it now... */ 379 if (nbp->b_data != obp->b_data) 380 cgd_putdata(dksc, nbp->b_data); 381 382 putiobuf(nbp); 383 384 /* Request is complete for whatever reason */ 385 obp->b_resid = 0; 386 if (obp->b_error != 0) 387 obp->b_resid = obp->b_bcount; 388 disk_unbusy(&dksc->sc_dkdev, obp->b_bcount - obp->b_resid, 389 (obp->b_flags & B_READ)); 390 biodone(obp); 391 dk_iodone(di, dksc); 392 } 393 394 /* XXX: we should probably put these into dksubr.c, mostly */ 395 static int 396 cgdread(dev_t dev, struct uio *uio, int flags) 397 { 398 struct cgd_softc *cs; 399 struct dk_softc *dksc; 400 401 DPRINTF_FOLLOW(("cgdread(0x%llx, %p, %d)\n", 402 (unsigned long long)dev, uio, flags)); 403 GETCGD_SOFTC(cs, dev); 404 dksc = &cs->sc_dksc; 405 if ((dksc->sc_flags & DKF_INITED) == 0) 406 return ENXIO; 407 return physio(cgdstrategy, NULL, dev, B_READ, minphys, uio); 408 } 409 410 /* XXX: we should probably put these into dksubr.c, mostly */ 411 static int 412 cgdwrite(dev_t dev, struct uio *uio, int flags) 413 { 414 struct cgd_softc *cs; 415 struct dk_softc *dksc; 416 417 DPRINTF_FOLLOW(("cgdwrite(0x%"PRIx64", %p, %d)\n", dev, uio, flags)); 418 GETCGD_SOFTC(cs, dev); 419 dksc = &cs->sc_dksc; 420 if ((dksc->sc_flags & DKF_INITED) == 0) 421 return ENXIO; 422 return physio(cgdstrategy, NULL, dev, B_WRITE, minphys, uio); 423 } 424 425 static int 426 cgdioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 427 { 428 struct cgd_softc *cs; 429 struct dk_softc *dksc; 430 struct disk *dk; 431 int ret; 432 int part = DISKPART(dev); 433 int pmask = 1 << part; 434 435 DPRINTF_FOLLOW(("cgdioctl(0x%"PRIx64", %ld, %p, %d, %p)\n", 436 dev, cmd, data, flag, l)); 437 GETCGD_SOFTC(cs, dev); 438 dksc = &cs->sc_dksc; 439 dk = &dksc->sc_dkdev; 440 switch (cmd) { 441 case CGDIOCSET: 442 case CGDIOCCLR: 443 if ((flag & FWRITE) == 0) 444 return EBADF; 445 } 446 447 switch (cmd) { 448 case CGDIOCSET: 449 if (dksc->sc_flags & DKF_INITED) 450 ret = EBUSY; 451 else 452 ret = cgd_ioctl_set(cs, data, l); 453 break; 454 case CGDIOCCLR: 455 if (!(dksc->sc_flags & DKF_INITED)) { 456 ret = ENXIO; 457 break; 458 } 459 if (DK_BUSY(&cs->sc_dksc, pmask)) { 460 ret = EBUSY; 461 break; 462 } 463 ret = cgd_ioctl_clr(cs, data, l); 464 break; 465 default: 466 ret = dk_ioctl(di, dksc, dev, cmd, data, flag, l); 467 break; 468 } 469 470 return ret; 471 } 472 473 static int 474 cgddump(dev_t dev, daddr_t blkno, void *va, size_t size) 475 { 476 struct cgd_softc *cs; 477 478 DPRINTF_FOLLOW(("cgddump(0x%"PRIx64", %" PRId64 ", %p, %lu)\n", 479 dev, blkno, va, (unsigned long)size)); 480 GETCGD_SOFTC(cs, dev); 481 return dk_dump(di, &cs->sc_dksc, dev, blkno, va, size); 482 } 483 484 /* 485 * XXXrcd: 486 * for now we hardcode the maximum key length. 487 */ 488 #define MAX_KEYSIZE 1024 489 490 static const struct { 491 const char *n; 492 int v; 493 int d; 494 } encblkno[] = { 495 { "encblkno", CGD_CIPHER_CBC_ENCBLKNO8, 1 }, 496 { "encblkno8", CGD_CIPHER_CBC_ENCBLKNO8, 1 }, 497 { "encblkno1", CGD_CIPHER_CBC_ENCBLKNO1, 8 }, 498 }; 499 500 /* ARGSUSED */ 501 static int 502 cgd_ioctl_set(struct cgd_softc *cs, void *data, struct lwp *l) 503 { 504 struct cgd_ioctl *ci = data; 505 struct vnode *vp; 506 int ret; 507 size_t i; 508 size_t keybytes; /* key length in bytes */ 509 const char *cp; 510 char *inbuf; 511 512 cp = ci->ci_disk; 513 if ((ret = dk_lookup(cp, l, &vp, UIO_USERSPACE)) != 0) 514 return ret; 515 516 inbuf = malloc(MAX_KEYSIZE, M_TEMP, M_WAITOK); 517 518 if ((ret = cgdinit(cs, cp, vp, l)) != 0) 519 goto bail; 520 521 (void)memset(inbuf, 0, MAX_KEYSIZE); 522 ret = copyinstr(ci->ci_alg, inbuf, 256, NULL); 523 if (ret) 524 goto bail; 525 cs->sc_cfuncs = cryptfuncs_find(inbuf); 526 if (!cs->sc_cfuncs) { 527 ret = EINVAL; 528 goto bail; 529 } 530 531 (void)memset(inbuf, 0, MAX_KEYSIZE); 532 ret = copyinstr(ci->ci_ivmethod, inbuf, MAX_KEYSIZE, NULL); 533 if (ret) 534 goto bail; 535 536 for (i = 0; i < __arraycount(encblkno); i++) 537 if (strcmp(encblkno[i].n, inbuf) == 0) 538 break; 539 540 if (i == __arraycount(encblkno)) { 541 ret = EINVAL; 542 goto bail; 543 } 544 545 keybytes = ci->ci_keylen / 8 + 1; 546 if (keybytes > MAX_KEYSIZE) { 547 ret = EINVAL; 548 goto bail; 549 } 550 551 (void)memset(inbuf, 0, MAX_KEYSIZE); 552 ret = copyin(ci->ci_key, inbuf, keybytes); 553 if (ret) 554 goto bail; 555 556 cs->sc_cdata.cf_blocksize = ci->ci_blocksize; 557 cs->sc_cdata.cf_mode = encblkno[i].v; 558 cs->sc_cdata.cf_priv = cs->sc_cfuncs->cf_init(ci->ci_keylen, inbuf, 559 &cs->sc_cdata.cf_blocksize); 560 /* 561 * The blocksize is supposed to be in bytes. Unfortunately originally 562 * it was expressed in bits. For compatibility we maintain encblkno 563 * and encblkno8. 564 */ 565 cs->sc_cdata.cf_blocksize /= encblkno[i].d; 566 (void)memset(inbuf, 0, MAX_KEYSIZE); 567 if (!cs->sc_cdata.cf_priv) { 568 printf("cgd: unable to initialize cipher\n"); 569 ret = EINVAL; /* XXX is this the right error? */ 570 goto bail; 571 } 572 free(inbuf, M_TEMP); 573 574 bufq_alloc(&cs->sc_dksc.sc_bufq, "fcfs", 0); 575 576 cs->sc_data = malloc(MAXPHYS, M_DEVBUF, M_WAITOK); 577 cs->sc_data_used = 0; 578 579 cs->sc_dksc.sc_flags |= DKF_INITED; 580 581 /* Attach the disk. */ 582 disk_attach(&cs->sc_dksc.sc_dkdev); 583 584 /* Try and read the disklabel. */ 585 dk_getdisklabel(di, &cs->sc_dksc, 0 /* XXX ? */); 586 587 /* Discover wedges on this disk. */ 588 dkwedge_discover(&cs->sc_dksc.sc_dkdev); 589 590 return 0; 591 592 bail: 593 free(inbuf, M_TEMP); 594 (void)vn_close(vp, FREAD|FWRITE, l->l_cred); 595 return ret; 596 } 597 598 /* ARGSUSED */ 599 static int 600 cgd_ioctl_clr(struct cgd_softc *cs, void *data, struct lwp *l) 601 { 602 int s; 603 604 /* Delete all of our wedges. */ 605 dkwedge_delall(&cs->sc_dksc.sc_dkdev); 606 607 /* Kill off any queued buffers. */ 608 s = splbio(); 609 bufq_drain(cs->sc_dksc.sc_bufq); 610 splx(s); 611 bufq_free(cs->sc_dksc.sc_bufq); 612 613 (void)vn_close(cs->sc_tvn, FREAD|FWRITE, l->l_cred); 614 cs->sc_cfuncs->cf_destroy(cs->sc_cdata.cf_priv); 615 free(cs->sc_tpath, M_DEVBUF); 616 free(cs->sc_data, M_DEVBUF); 617 cs->sc_data_used = 0; 618 cs->sc_dksc.sc_flags &= ~DKF_INITED; 619 disk_detach(&cs->sc_dksc.sc_dkdev); 620 621 return 0; 622 } 623 624 static int 625 getsize(struct lwp *l, struct vnode *vp, size_t *size) 626 { 627 struct partinfo dpart; 628 struct dkwedge_info dkw; 629 int ret; 630 631 if ((ret = VOP_IOCTL(vp, DIOCGWEDGEINFO, &dkw, FREAD, 632 l->l_cred)) == 0) { 633 *size = dkw.dkw_size; 634 return 0; 635 } 636 637 if ((ret = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, l->l_cred)) == 0) { 638 *size = dpart.part->p_size; 639 return 0; 640 } 641 642 return ret; 643 } 644 645 646 static int 647 cgdinit(struct cgd_softc *cs, const char *cpath, struct vnode *vp, 648 struct lwp *l) 649 { 650 struct dk_geom *pdg; 651 struct vattr va; 652 size_t size; 653 int ret; 654 char *tmppath; 655 656 cs->sc_dksc.sc_size = 0; 657 cs->sc_tvn = vp; 658 cs->sc_tpath = NULL; 659 660 tmppath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 661 ret = copyinstr(cpath, tmppath, MAXPATHLEN, &cs->sc_tpathlen); 662 if (ret) 663 goto bail; 664 cs->sc_tpath = malloc(cs->sc_tpathlen, M_DEVBUF, M_WAITOK); 665 memcpy(cs->sc_tpath, tmppath, cs->sc_tpathlen); 666 667 if ((ret = VOP_GETATTR(vp, &va, l->l_cred)) != 0) 668 goto bail; 669 670 cs->sc_tdev = va.va_rdev; 671 672 if ((ret = getsize(l, vp, &size)) != 0) 673 goto bail; 674 675 if (!size) { 676 ret = ENODEV; 677 goto bail; 678 } 679 680 cs->sc_dksc.sc_size = size; 681 682 /* 683 * XXX here we should probe the underlying device. If we 684 * are accessing a partition of type RAW_PART, then 685 * we should populate our initial geometry with the 686 * geometry that we discover from the device. 687 */ 688 pdg = &cs->sc_dksc.sc_geom; 689 pdg->pdg_secsize = DEV_BSIZE; 690 pdg->pdg_ntracks = 1; 691 pdg->pdg_nsectors = 1024 * (1024 / pdg->pdg_secsize); 692 pdg->pdg_ncylinders = cs->sc_dksc.sc_size / pdg->pdg_nsectors; 693 694 bail: 695 free(tmppath, M_TEMP); 696 if (ret && cs->sc_tpath) 697 free(cs->sc_tpath, M_DEVBUF); 698 return ret; 699 } 700 701 /* 702 * Our generic cipher entry point. This takes care of the 703 * IV mode and passes off the work to the specific cipher. 704 * We implement here the IV method ``encrypted block 705 * number''. 706 * 707 * For the encryption case, we accomplish this by setting 708 * up a struct uio where the first iovec of the source is 709 * the blocknumber and the first iovec of the dest is a 710 * sink. We then call the cipher with an IV of zero, and 711 * the right thing happens. 712 * 713 * For the decryption case, we use the same basic mechanism 714 * for symmetry, but we encrypt the block number in the 715 * first iovec. 716 * 717 * We mainly do this to avoid requiring the definition of 718 * an ECB mode. 719 * 720 * XXXrcd: for now we rely on our own crypto framework defined 721 * in dev/cgd_crypto.c. This will change when we 722 * get a generic kernel crypto framework. 723 */ 724 725 static void 726 blkno2blkno_buf(char *sbuf, daddr_t blkno) 727 { 728 int i; 729 730 /* Set up the blkno in blkno_buf, here we do not care much 731 * about the final layout of the information as long as we 732 * can guarantee that each sector will have a different IV 733 * and that the endianness of the machine will not affect 734 * the representation that we have chosen. 735 * 736 * We choose this representation, because it does not rely 737 * on the size of buf (which is the blocksize of the cipher), 738 * but allows daddr_t to grow without breaking existing 739 * disks. 740 * 741 * Note that blkno2blkno_buf does not take a size as input, 742 * and hence must be called on a pre-zeroed buffer of length 743 * greater than or equal to sizeof(daddr_t). 744 */ 745 for (i=0; i < sizeof(daddr_t); i++) { 746 *sbuf++ = blkno & 0xff; 747 blkno >>= 8; 748 } 749 } 750 751 static void 752 cgd_cipher(struct cgd_softc *cs, void *dstv, void *srcv, 753 size_t len, daddr_t blkno, size_t secsize, int dir) 754 { 755 char *dst = dstv; 756 char *src = srcv; 757 cfunc_cipher *cipher = cs->sc_cfuncs->cf_cipher; 758 struct uio dstuio; 759 struct uio srcuio; 760 struct iovec dstiov[2]; 761 struct iovec srciov[2]; 762 size_t blocksize = cs->sc_cdata.cf_blocksize; 763 char sink[blocksize]; 764 char zero_iv[blocksize]; 765 char blkno_buf[blocksize]; 766 767 DPRINTF_FOLLOW(("cgd_cipher() dir=%d\n", dir)); 768 769 DIAGCONDPANIC(len % blocksize != 0, 770 ("cgd_cipher: len %% blocksize != 0")); 771 772 /* ensure that sizeof(daddr_t) <= blocksize (for encblkno IVing) */ 773 DIAGCONDPANIC(sizeof(daddr_t) > blocksize, 774 ("cgd_cipher: sizeof(daddr_t) > blocksize")); 775 776 memset(zero_iv, 0x0, sizeof(zero_iv)); 777 778 dstuio.uio_iov = dstiov; 779 dstuio.uio_iovcnt = 2; 780 781 srcuio.uio_iov = srciov; 782 srcuio.uio_iovcnt = 2; 783 784 dstiov[0].iov_base = sink; 785 dstiov[0].iov_len = blocksize; 786 srciov[0].iov_base = blkno_buf; 787 srciov[0].iov_len = blocksize; 788 dstiov[1].iov_len = secsize; 789 srciov[1].iov_len = secsize; 790 791 for (; len > 0; len -= secsize) { 792 dstiov[1].iov_base = dst; 793 srciov[1].iov_base = src; 794 795 memset(blkno_buf, 0x0, sizeof(blkno_buf)); 796 blkno2blkno_buf(blkno_buf, blkno); 797 if (dir == CGD_CIPHER_DECRYPT) { 798 dstuio.uio_iovcnt = 1; 799 srcuio.uio_iovcnt = 1; 800 IFDEBUG(CGDB_CRYPTO, hexprint("step 0: blkno_buf", 801 blkno_buf, sizeof(blkno_buf))); 802 cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio, 803 zero_iv, CGD_CIPHER_ENCRYPT); 804 memcpy(blkno_buf, sink, blocksize); 805 dstuio.uio_iovcnt = 2; 806 srcuio.uio_iovcnt = 2; 807 } 808 809 IFDEBUG(CGDB_CRYPTO, hexprint("step 1: blkno_buf", 810 blkno_buf, sizeof(blkno_buf))); 811 cipher(cs->sc_cdata.cf_priv, &dstuio, &srcuio, zero_iv, dir); 812 IFDEBUG(CGDB_CRYPTO, hexprint("step 2: sink", 813 sink, sizeof(sink))); 814 815 dst += secsize; 816 src += secsize; 817 blkno++; 818 } 819 } 820 821 #ifdef DEBUG 822 static void 823 hexprint(const char *start, void *buf, int len) 824 { 825 char *c = buf; 826 827 DIAGCONDPANIC(len < 0, ("hexprint: called with len < 0")); 828 printf("%s: len=%06d 0x", start, len); 829 while (len--) 830 printf("%02x", (unsigned char) *c++); 831 } 832 #endif 833