xref: /netbsd-src/sys/dev/audio/audio.c (revision 9fb66d812c00ebfb445c0b47dea128f32aa6fe96)
1 /*	$NetBSD: audio.c,v 1.91 2021/02/14 03:41:13 isaki Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1991-1993 Regents of the University of California.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by the Computer Systems
47  *	Engineering Group at Lawrence Berkeley Laboratory.
48  * 4. Neither the name of the University nor of the Laboratory may be used
49  *    to endorse or promote products derived from this software without
50  *    specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 /*
66  * Locking: there are three locks per device.
67  *
68  * - sc_lock, provided by the underlying driver.  This is an adaptive lock,
69  *   returned in the second parameter to hw_if->get_locks().  It is known
70  *   as the "thread lock".
71  *
72  *   It serializes access to state in all places except the
73  *   driver's interrupt service routine.  This lock is taken from process
74  *   context (example: access to /dev/audio).  It is also taken from soft
75  *   interrupt handlers in this module, primarily to serialize delivery of
76  *   wakeups.  This lock may be used/provided by modules external to the
77  *   audio subsystem, so take care not to introduce a lock order problem.
78  *   LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79  *
80  * - sc_intr_lock, provided by the underlying driver.  This may be either a
81  *   spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82  *   IPL_SOFT*), returned in the first parameter to hw_if->get_locks().  It
83  *   is known as the "interrupt lock".
84  *
85  *   It provides atomic access to the device's hardware state, and to audio
86  *   channel data that may be accessed by the hardware driver's ISR.
87  *   In all places outside the ISR, sc_lock must be held before taking
88  *   sc_intr_lock.  This is to ensure that groups of hardware operations are
89  *   made atomically.  SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90  *
91  * - sc_exlock, private to this module.  This is a variable protected by
92  *   sc_lock.  It is known as the "critical section".
93  *   Some operations release sc_lock in order to allocate memory, to wait
94  *   for in-flight I/O to complete, to copy to/from user context, etc.
95  *   sc_exlock provides a critical section even under the circumstance.
96  *   "+" in following list indicates the interfaces which necessary to be
97  *   protected by sc_exlock.
98  *
99  * List of hardware interface methods, and which locks are held when each
100  * is called by this module:
101  *
102  *	METHOD			INTR	THREAD  NOTES
103  *	----------------------- ------- -------	-------------------------
104  *	open 			x	x +
105  *	close 			x	x +
106  *	query_format		-	x
107  *	set_format		-	x
108  *	round_blocksize		-	x
109  *	commit_settings		-	x
110  *	init_output 		x	x
111  *	init_input 		x	x
112  *	start_output 		x	x +
113  *	start_input 		x	x +
114  *	halt_output 		x	x +
115  *	halt_input 		x	x +
116  *	speaker_ctl 		x	x
117  *	getdev 			-	x
118  *	set_port 		-	x +
119  *	get_port 		-	x +
120  *	query_devinfo 		-	x
121  *	allocm 			-	- +
122  *	freem 			-	- +
123  *	round_buffersize 	-	x
124  *	get_props 		-	-	Called at attach time
125  *	trigger_output 		x	x +
126  *	trigger_input 		x	x +
127  *	dev_ioctl 		-	x
128  *	get_locks 		-	-	Called at attach time
129  *
130  * In addition, there is an additional lock.
131  *
132  * - track->lock.  This is an atomic variable and is similar to the
133  *   "interrupt lock".  This is one for each track.  If any thread context
134  *   (and software interrupt context) and hardware interrupt context who
135  *   want to access some variables on this track, they must acquire this
136  *   lock before.  It protects track's consistency between hardware
137  *   interrupt context and others.
138  */
139 
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.91 2021/02/14 03:41:13 isaki Exp $");
142 
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147 
148 #if NAUDIO > 0
149 
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178 
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184 
185 #include <machine/endian.h>
186 
187 #include <uvm/uvm_extern.h>
188 
189 #include "ioconf.h"
190 
191 /*
192  * 0: No debug logs
193  * 1: action changes like open/close/set_format...
194  * 2: + normal operations like read/write/ioctl...
195  * 3: + TRACEs except interrupt
196  * 4: + TRACEs including interrupt
197  */
198 //#define AUDIO_DEBUG 1
199 
200 #if defined(AUDIO_DEBUG)
201 
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 	const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 	__printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 	__printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 	__printflike(3, 4);
211 
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218 
219 static int mlog_refs;		/* reference counter */
220 static char *mlog_buf[2];	/* double buffer */
221 static int mlog_buflen;		/* buffer length */
222 static int mlog_used;		/* used length */
223 static int mlog_full;		/* number of dropped lines by buffer full */
224 static int mlog_drop;		/* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse;	/* in-use */
226 static int mlog_wpage;		/* active page */
227 static void *mlog_sih;		/* softint handle */
228 
229 static void
230 audio_mlog_init(void)
231 {
232 	mlog_refs++;
233 	if (mlog_refs > 1)
234 		return;
235 	mlog_buflen = 4096;
236 	mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 	mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 	mlog_used = 0;
239 	mlog_full = 0;
240 	mlog_drop = 0;
241 	mlog_inuse = 0;
242 	mlog_wpage = 0;
243 	mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 	if (mlog_sih == NULL)
245 		printf("%s: softint_establish failed\n", __func__);
246 }
247 
248 static void
249 audio_mlog_free(void)
250 {
251 	mlog_refs--;
252 	if (mlog_refs > 0)
253 		return;
254 
255 	audio_mlog_flush();
256 	if (mlog_sih)
257 		softint_disestablish(mlog_sih);
258 	kmem_free(mlog_buf[0], mlog_buflen);
259 	kmem_free(mlog_buf[1], mlog_buflen);
260 }
261 
262 /*
263  * Flush memory buffer.
264  * It must not be called from hardware interrupt context.
265  */
266 void
267 audio_mlog_flush(void)
268 {
269 	if (mlog_refs == 0)
270 		return;
271 
272 	/* Nothing to do if already in use ? */
273 	if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 		return;
275 
276 	int rpage = mlog_wpage;
277 	mlog_wpage ^= 1;
278 	mlog_buf[mlog_wpage][0] = '\0';
279 	mlog_used = 0;
280 
281 	atomic_swap_32(&mlog_inuse, 0);
282 
283 	if (mlog_buf[rpage][0] != '\0') {
284 		printf("%s", mlog_buf[rpage]);
285 		if (mlog_drop > 0)
286 			printf("mlog_drop %d\n", mlog_drop);
287 		if (mlog_full > 0)
288 			printf("mlog_full %d\n", mlog_full);
289 	}
290 	mlog_full = 0;
291 	mlog_drop = 0;
292 }
293 
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 	audio_mlog_flush();
298 }
299 
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 	int len;
304 	va_list ap;
305 
306 	if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 		/* already inuse */
308 		mlog_drop++;
309 		return;
310 	}
311 
312 	va_start(ap, fmt);
313 	len = vsnprintf(
314 	    mlog_buf[mlog_wpage] + mlog_used,
315 	    mlog_buflen - mlog_used,
316 	    fmt, ap);
317 	va_end(ap);
318 
319 	mlog_used += len;
320 	if (mlog_buflen - mlog_used <= 1) {
321 		mlog_full++;
322 	}
323 
324 	atomic_swap_32(&mlog_inuse, 0);
325 
326 	if (mlog_sih)
327 		softint_schedule(mlog_sih);
328 }
329 
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 	const char *fmt, va_list ap)
334 {
335 	char buf[256];
336 	int n;
337 
338 	n = 0;
339 	buf[0] = '\0';
340 	n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 	    funcname, device_unit(sc->sc_dev), header);
342 	n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343 
344 	if (cpu_intr_p()) {
345 		audio_mlog_printf("%s\n", buf);
346 	} else {
347 		audio_mlog_flush();
348 		printf("%s\n", buf);
349 	}
350 }
351 
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 	va_list ap;
356 
357 	va_start(ap, fmt);
358 	audio_vtrace(sc, funcname, "", fmt, ap);
359 	va_end(ap);
360 }
361 
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 	char hdr[16];
366 	va_list ap;
367 
368 	snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 	va_start(ap, fmt);
370 	audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 	va_end(ap);
372 }
373 
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 	char hdr[32];
378 	char phdr[16], rhdr[16];
379 	va_list ap;
380 
381 	phdr[0] = '\0';
382 	rhdr[0] = '\0';
383 	if (file->ptrack)
384 		snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 	if (file->rtrack)
386 		snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 	snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388 
389 	va_start(ap, fmt);
390 	audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 	va_end(ap);
392 }
393 
394 #define DPRINTF(n, fmt...)	do {	\
395 	if (audiodebug >= (n)) {	\
396 		audio_mlog_flush();	\
397 		printf(fmt);		\
398 	}				\
399 } while (0)
400 #define TRACE(n, fmt...)	do { \
401 	if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...)	do { \
404 	if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...)	do { \
407 	if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409 
410 struct audio_track_debugbuf {
411 	char usrbuf[32];
412 	char codec[32];
413 	char chvol[32];
414 	char chmix[32];
415 	char freq[32];
416 	char outbuf[32];
417 };
418 
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422 
423 	memset(buf, 0, sizeof(*buf));
424 
425 	snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 	    track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 	if (track->freq.filter)
428 		snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 		    track->freq.srcbuf.head,
430 		    track->freq.srcbuf.used,
431 		    track->freq.srcbuf.capacity);
432 	if (track->chmix.filter)
433 		snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 		    track->chmix.srcbuf.used);
435 	if (track->chvol.filter)
436 		snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 		    track->chvol.srcbuf.used);
438 	if (track->codec.filter)
439 		snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 		    track->codec.srcbuf.used);
441 	snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 	    track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...)	do { } while (0)
446 #define TRACE(n, fmt, ...)	do { } while (0)
447 #define TRACET(n, t, fmt, ...)	do { } while (0)
448 #define TRACEF(n, f, fmt, ...)	do { } while (0)
449 #endif
450 
451 #define SPECIFIED(x)	((x) != ~0)
452 #define SPECIFIED_CH(x)	((x) != (u_char)~0)
453 
454 /*
455  * Default hardware blocksize in msec.
456  *
457  * We use 10 msec for most modern platforms.  This period is good enough to
458  * play audio and video synchronizely.
459  * In contrast, for very old platforms, this is usually too short and too
460  * severe.  Also such platforms usually can not play video confortably, so
461  * it's not so important to make the blocksize shorter.  If the platform
462  * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
463  * uses this instead.
464  *
465  * In either case, you can overwrite AUDIO_BLK_MS by your kernel
466  * configuration file if you wish.
467  */
468 #if !defined(AUDIO_BLK_MS)
469 # if defined(__AUDIO_BLK_MS)
470 #  define AUDIO_BLK_MS __AUDIO_BLK_MS
471 # else
472 #  define AUDIO_BLK_MS (10)
473 # endif
474 #endif
475 
476 /* Device timeout in msec */
477 #define AUDIO_TIMEOUT	(3000)
478 
479 /* #define AUDIO_PM_IDLE */
480 #ifdef AUDIO_PM_IDLE
481 int audio_idle_timeout = 30;
482 #endif
483 
484 /* Number of elements of async mixer's pid */
485 #define AM_CAPACITY	(4)
486 
487 struct portname {
488 	const char *name;
489 	int mask;
490 };
491 
492 static int audiomatch(device_t, cfdata_t, void *);
493 static void audioattach(device_t, device_t, void *);
494 static int audiodetach(device_t, int);
495 static int audioactivate(device_t, enum devact);
496 static void audiochilddet(device_t, device_t);
497 static int audiorescan(device_t, const char *, const int *);
498 
499 static int audio_modcmd(modcmd_t, void *);
500 
501 #ifdef AUDIO_PM_IDLE
502 static void audio_idle(void *);
503 static void audio_activity(device_t, devactive_t);
504 #endif
505 
506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
507 static bool audio_resume(device_t dv, const pmf_qual_t *);
508 static void audio_volume_down(device_t);
509 static void audio_volume_up(device_t);
510 static void audio_volume_toggle(device_t);
511 
512 static void audio_mixer_capture(struct audio_softc *);
513 static void audio_mixer_restore(struct audio_softc *);
514 
515 static void audio_softintr_rd(void *);
516 static void audio_softintr_wr(void *);
517 
518 static void audio_printf(struct audio_softc *, const char *, ...)
519 	__printflike(2, 3);
520 static int audio_exlock_mutex_enter(struct audio_softc *);
521 static void audio_exlock_mutex_exit(struct audio_softc *);
522 static int audio_exlock_enter(struct audio_softc *);
523 static void audio_exlock_exit(struct audio_softc *);
524 static void audio_sc_acquire_foropen(struct audio_softc *, struct psref *);
525 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
526 	struct psref *);
527 static void audio_sc_release(struct audio_softc *, struct psref *);
528 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
529 
530 static int audioclose(struct file *);
531 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
532 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
533 static int audioioctl(struct file *, u_long, void *);
534 static int audiopoll(struct file *, int);
535 static int audiokqfilter(struct file *, struct knote *);
536 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
537 	struct uvm_object **, int *);
538 static int audiostat(struct file *, struct stat *);
539 
540 static void filt_audiowrite_detach(struct knote *);
541 static int  filt_audiowrite_event(struct knote *, long);
542 static void filt_audioread_detach(struct knote *);
543 static int  filt_audioread_event(struct knote *, long);
544 
545 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
546 	audio_file_t **);
547 static int audio_close(struct audio_softc *, audio_file_t *);
548 static int audio_unlink(struct audio_softc *, audio_file_t *);
549 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
550 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
551 static void audio_file_clear(struct audio_softc *, audio_file_t *);
552 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
553 	struct lwp *, audio_file_t *);
554 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
555 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
556 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
557 	struct uvm_object **, int *, audio_file_t *);
558 
559 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
560 
561 static void audio_pintr(void *);
562 static void audio_rintr(void *);
563 
564 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
565 
566 static __inline int audio_track_readablebytes(const audio_track_t *);
567 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
568 	const struct audio_info *);
569 static int audio_track_setinfo_check(audio_track_t *,
570 	audio_format2_t *, const struct audio_prinfo *);
571 static void audio_track_setinfo_water(audio_track_t *,
572 	const struct audio_info *);
573 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
574 	struct audio_info *);
575 static int audio_hw_set_format(struct audio_softc *, int,
576 	const audio_format2_t *, const audio_format2_t *,
577 	audio_filter_reg_t *, audio_filter_reg_t *);
578 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
579 	audio_file_t *);
580 static bool audio_can_playback(struct audio_softc *);
581 static bool audio_can_capture(struct audio_softc *);
582 static int audio_check_params(audio_format2_t *);
583 static int audio_mixers_init(struct audio_softc *sc, int,
584 	const audio_format2_t *, const audio_format2_t *,
585 	const audio_filter_reg_t *, const audio_filter_reg_t *);
586 static int audio_select_freq(const struct audio_format *);
587 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
588 static int audio_hw_validate_format(struct audio_softc *, int,
589 	const audio_format2_t *);
590 static int audio_mixers_set_format(struct audio_softc *,
591 	const struct audio_info *);
592 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
593 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
594 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
595 #if defined(AUDIO_DEBUG)
596 static int audio_sysctl_debug(SYSCTLFN_PROTO);
597 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
598 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
599 #endif
600 
601 static void *audio_realloc(void *, size_t);
602 static int audio_realloc_usrbuf(audio_track_t *, int);
603 static void audio_free_usrbuf(audio_track_t *);
604 
605 static audio_track_t *audio_track_create(struct audio_softc *,
606 	audio_trackmixer_t *);
607 static void audio_track_destroy(audio_track_t *);
608 static audio_filter_t audio_track_get_codec(audio_track_t *,
609 	const audio_format2_t *, const audio_format2_t *);
610 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
611 static void audio_track_play(audio_track_t *);
612 static int audio_track_drain(struct audio_softc *, audio_track_t *);
613 static void audio_track_record(audio_track_t *);
614 static void audio_track_clear(struct audio_softc *, audio_track_t *);
615 
616 static int audio_mixer_init(struct audio_softc *, int,
617 	const audio_format2_t *, const audio_filter_reg_t *);
618 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
619 static void audio_pmixer_start(struct audio_softc *, bool);
620 static void audio_pmixer_process(struct audio_softc *);
621 static void audio_pmixer_agc(audio_trackmixer_t *, int);
622 static int  audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
623 static void audio_pmixer_output(struct audio_softc *);
624 static int  audio_pmixer_halt(struct audio_softc *);
625 static void audio_rmixer_start(struct audio_softc *);
626 static void audio_rmixer_process(struct audio_softc *);
627 static void audio_rmixer_input(struct audio_softc *);
628 static int  audio_rmixer_halt(struct audio_softc *);
629 
630 static void mixer_init(struct audio_softc *);
631 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
632 static int mixer_close(struct audio_softc *, audio_file_t *);
633 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
634 static void mixer_async_add(struct audio_softc *, pid_t);
635 static void mixer_async_remove(struct audio_softc *, pid_t);
636 static void mixer_signal(struct audio_softc *);
637 
638 static int au_portof(struct audio_softc *, char *, int);
639 
640 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
641 	mixer_devinfo_t *, const struct portname *);
642 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
643 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
644 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
645 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
646 	u_int *, u_char *);
647 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
648 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
649 static int au_set_monitor_gain(struct audio_softc *, int);
650 static int au_get_monitor_gain(struct audio_softc *);
651 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
652 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
653 
654 static __inline struct audio_params
655 format2_to_params(const audio_format2_t *f2)
656 {
657 	audio_params_t p;
658 
659 	/* validbits/precision <-> precision/stride */
660 	p.sample_rate = f2->sample_rate;
661 	p.channels    = f2->channels;
662 	p.encoding    = f2->encoding;
663 	p.validbits   = f2->precision;
664 	p.precision   = f2->stride;
665 	return p;
666 }
667 
668 static __inline audio_format2_t
669 params_to_format2(const struct audio_params *p)
670 {
671 	audio_format2_t f2;
672 
673 	/* precision/stride <-> validbits/precision */
674 	f2.sample_rate = p->sample_rate;
675 	f2.channels    = p->channels;
676 	f2.encoding    = p->encoding;
677 	f2.precision   = p->validbits;
678 	f2.stride      = p->precision;
679 	return f2;
680 }
681 
682 /* Return true if this track is a playback track. */
683 static __inline bool
684 audio_track_is_playback(const audio_track_t *track)
685 {
686 
687 	return ((track->mode & AUMODE_PLAY) != 0);
688 }
689 
690 /* Return true if this track is a recording track. */
691 static __inline bool
692 audio_track_is_record(const audio_track_t *track)
693 {
694 
695 	return ((track->mode & AUMODE_RECORD) != 0);
696 }
697 
698 #if 0 /* XXX Not used yet */
699 /*
700  * Convert 0..255 volume used in userland to internal presentation 0..256.
701  */
702 static __inline u_int
703 audio_volume_to_inner(u_int v)
704 {
705 
706 	return v < 127 ? v : v + 1;
707 }
708 
709 /*
710  * Convert 0..256 internal presentation to 0..255 volume used in userland.
711  */
712 static __inline u_int
713 audio_volume_to_outer(u_int v)
714 {
715 
716 	return v < 127 ? v : v - 1;
717 }
718 #endif /* 0 */
719 
720 static dev_type_open(audioopen);
721 /* XXXMRG use more dev_type_xxx */
722 
723 const struct cdevsw audio_cdevsw = {
724 	.d_open = audioopen,
725 	.d_close = noclose,
726 	.d_read = noread,
727 	.d_write = nowrite,
728 	.d_ioctl = noioctl,
729 	.d_stop = nostop,
730 	.d_tty = notty,
731 	.d_poll = nopoll,
732 	.d_mmap = nommap,
733 	.d_kqfilter = nokqfilter,
734 	.d_discard = nodiscard,
735 	.d_flag = D_OTHER | D_MPSAFE
736 };
737 
738 const struct fileops audio_fileops = {
739 	.fo_name = "audio",
740 	.fo_read = audioread,
741 	.fo_write = audiowrite,
742 	.fo_ioctl = audioioctl,
743 	.fo_fcntl = fnullop_fcntl,
744 	.fo_stat = audiostat,
745 	.fo_poll = audiopoll,
746 	.fo_close = audioclose,
747 	.fo_mmap = audiommap,
748 	.fo_kqfilter = audiokqfilter,
749 	.fo_restart = fnullop_restart
750 };
751 
752 /* The default audio mode: 8 kHz mono mu-law */
753 static const struct audio_params audio_default = {
754 	.sample_rate = 8000,
755 	.encoding = AUDIO_ENCODING_ULAW,
756 	.precision = 8,
757 	.validbits = 8,
758 	.channels = 1,
759 };
760 
761 static const char *encoding_names[] = {
762 	"none",
763 	AudioEmulaw,
764 	AudioEalaw,
765 	"pcm16",
766 	"pcm8",
767 	AudioEadpcm,
768 	AudioEslinear_le,
769 	AudioEslinear_be,
770 	AudioEulinear_le,
771 	AudioEulinear_be,
772 	AudioEslinear,
773 	AudioEulinear,
774 	AudioEmpeg_l1_stream,
775 	AudioEmpeg_l1_packets,
776 	AudioEmpeg_l1_system,
777 	AudioEmpeg_l2_stream,
778 	AudioEmpeg_l2_packets,
779 	AudioEmpeg_l2_system,
780 	AudioEac3,
781 };
782 
783 /*
784  * Returns encoding name corresponding to AUDIO_ENCODING_*.
785  * Note that it may return a local buffer because it is mainly for debugging.
786  */
787 const char *
788 audio_encoding_name(int encoding)
789 {
790 	static char buf[16];
791 
792 	if (0 <= encoding && encoding < __arraycount(encoding_names)) {
793 		return encoding_names[encoding];
794 	} else {
795 		snprintf(buf, sizeof(buf), "enc=%d", encoding);
796 		return buf;
797 	}
798 }
799 
800 /*
801  * Supported encodings used by AUDIO_GETENC.
802  * index and flags are set by code.
803  * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
804  */
805 static const audio_encoding_t audio_encodings[] = {
806 	{ 0, AudioEmulaw,	AUDIO_ENCODING_ULAW,		8,  0 },
807 	{ 0, AudioEalaw,	AUDIO_ENCODING_ALAW,		8,  0 },
808 	{ 0, AudioEslinear,	AUDIO_ENCODING_SLINEAR,		8,  0 },
809 	{ 0, AudioEulinear,	AUDIO_ENCODING_ULINEAR,		8,  0 },
810 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	16, 0 },
811 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	16, 0 },
812 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	16, 0 },
813 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	16, 0 },
814 #if defined(AUDIO_SUPPORT_LINEAR24)
815 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	24, 0 },
816 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	24, 0 },
817 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	24, 0 },
818 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	24, 0 },
819 #endif
820 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	32, 0 },
821 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	32, 0 },
822 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	32, 0 },
823 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	32, 0 },
824 };
825 
826 static const struct portname itable[] = {
827 	{ AudioNmicrophone,	AUDIO_MICROPHONE },
828 	{ AudioNline,		AUDIO_LINE_IN },
829 	{ AudioNcd,		AUDIO_CD },
830 	{ 0, 0 }
831 };
832 static const struct portname otable[] = {
833 	{ AudioNspeaker,	AUDIO_SPEAKER },
834 	{ AudioNheadphone,	AUDIO_HEADPHONE },
835 	{ AudioNline,		AUDIO_LINE_OUT },
836 	{ 0, 0 }
837 };
838 
839 static struct psref_class *audio_psref_class __read_mostly;
840 
841 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
842     audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
843     audiochilddet, DVF_DETACH_SHUTDOWN);
844 
845 static int
846 audiomatch(device_t parent, cfdata_t match, void *aux)
847 {
848 	struct audio_attach_args *sa;
849 
850 	sa = aux;
851 	DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
852 	     __func__, sa->type, sa, sa->hwif);
853 	return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
854 }
855 
856 static void
857 audioattach(device_t parent, device_t self, void *aux)
858 {
859 	struct audio_softc *sc;
860 	struct audio_attach_args *sa;
861 	const struct audio_hw_if *hw_if;
862 	audio_format2_t phwfmt;
863 	audio_format2_t rhwfmt;
864 	audio_filter_reg_t pfil;
865 	audio_filter_reg_t rfil;
866 	const struct sysctlnode *node;
867 	void *hdlp;
868 	bool has_playback;
869 	bool has_capture;
870 	bool has_indep;
871 	bool has_fulldup;
872 	int mode;
873 	int error;
874 
875 	sc = device_private(self);
876 	sc->sc_dev = self;
877 	sa = (struct audio_attach_args *)aux;
878 	hw_if = sa->hwif;
879 	hdlp = sa->hdl;
880 
881 	if (hw_if == NULL) {
882 		panic("audioattach: missing hw_if method");
883 	}
884 	if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
885 		aprint_error(": missing mandatory method\n");
886 		return;
887 	}
888 
889 	hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
890 	sc->sc_props = hw_if->get_props(hdlp);
891 
892 	has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
893 	has_capture  = (sc->sc_props & AUDIO_PROP_CAPTURE);
894 	has_indep    = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
895 	has_fulldup  = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
896 
897 #ifdef DIAGNOSTIC
898 	if (hw_if->query_format == NULL ||
899 	    hw_if->set_format == NULL ||
900 	    hw_if->getdev == NULL ||
901 	    hw_if->set_port == NULL ||
902 	    hw_if->get_port == NULL ||
903 	    hw_if->query_devinfo == NULL) {
904 		aprint_error(": missing mandatory method\n");
905 		return;
906 	}
907 	if (has_playback) {
908 		if ((hw_if->start_output == NULL &&
909 		     hw_if->trigger_output == NULL) ||
910 		    hw_if->halt_output == NULL) {
911 			aprint_error(": missing playback method\n");
912 		}
913 	}
914 	if (has_capture) {
915 		if ((hw_if->start_input == NULL &&
916 		     hw_if->trigger_input == NULL) ||
917 		    hw_if->halt_input == NULL) {
918 			aprint_error(": missing capture method\n");
919 		}
920 	}
921 #endif
922 
923 	sc->hw_if = hw_if;
924 	sc->hw_hdl = hdlp;
925 	sc->hw_dev = parent;
926 
927 	sc->sc_exlock = 1;
928 	sc->sc_blk_ms = AUDIO_BLK_MS;
929 	SLIST_INIT(&sc->sc_files);
930 	cv_init(&sc->sc_exlockcv, "audiolk");
931 	sc->sc_am_capacity = 0;
932 	sc->sc_am_used = 0;
933 	sc->sc_am = NULL;
934 
935 	/* MMAP is now supported by upper layer.  */
936 	sc->sc_props |= AUDIO_PROP_MMAP;
937 
938 	KASSERT(has_playback || has_capture);
939 	/* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
940 	if (!has_playback || !has_capture) {
941 		KASSERT(!has_indep);
942 		KASSERT(!has_fulldup);
943 	}
944 
945 	mode = 0;
946 	if (has_playback) {
947 		aprint_normal(": playback");
948 		mode |= AUMODE_PLAY;
949 	}
950 	if (has_capture) {
951 		aprint_normal("%c capture", has_playback ? ',' : ':');
952 		mode |= AUMODE_RECORD;
953 	}
954 	if (has_playback && has_capture) {
955 		if (has_fulldup)
956 			aprint_normal(", full duplex");
957 		else
958 			aprint_normal(", half duplex");
959 
960 		if (has_indep)
961 			aprint_normal(", independent");
962 	}
963 
964 	aprint_naive("\n");
965 	aprint_normal("\n");
966 
967 	/* probe hw params */
968 	memset(&phwfmt, 0, sizeof(phwfmt));
969 	memset(&rhwfmt, 0, sizeof(rhwfmt));
970 	memset(&pfil, 0, sizeof(pfil));
971 	memset(&rfil, 0, sizeof(rfil));
972 	if (has_indep) {
973 		int perror, rerror;
974 
975 		/* On independent devices, probe separately. */
976 		perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
977 		rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
978 		if (perror && rerror) {
979 			aprint_error_dev(self,
980 			    "audio_hw_probe failed: perror=%d, rerror=%d\n",
981 			    perror, rerror);
982 			goto bad;
983 		}
984 		if (perror) {
985 			mode &= ~AUMODE_PLAY;
986 			aprint_error_dev(self, "audio_hw_probe failed: "
987 			    "errno=%d, playback disabled\n", perror);
988 		}
989 		if (rerror) {
990 			mode &= ~AUMODE_RECORD;
991 			aprint_error_dev(self, "audio_hw_probe failed: "
992 			    "errno=%d, capture disabled\n", rerror);
993 		}
994 	} else {
995 		/*
996 		 * On non independent devices or uni-directional devices,
997 		 * probe once (simultaneously).
998 		 */
999 		audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1000 		error = audio_hw_probe(sc, fmt, mode);
1001 		if (error) {
1002 			aprint_error_dev(self,
1003 			    "audio_hw_probe failed: errno=%d\n", error);
1004 			goto bad;
1005 		}
1006 		if (has_playback && has_capture)
1007 			rhwfmt = phwfmt;
1008 	}
1009 
1010 	/* Init hardware. */
1011 	/* hw_probe() also validates [pr]hwfmt.  */
1012 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1013 	if (error) {
1014 		aprint_error_dev(self,
1015 		    "audio_hw_set_format failed: errno=%d\n", error);
1016 		goto bad;
1017 	}
1018 
1019 	/*
1020 	 * Init track mixers.  If at least one direction is available on
1021 	 * attach time, we assume a success.
1022 	 */
1023 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1024 	if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1025 		aprint_error_dev(self,
1026 		    "audio_mixers_init failed: errno=%d\n", error);
1027 		goto bad;
1028 	}
1029 
1030 	sc->sc_psz = pserialize_create();
1031 	psref_target_init(&sc->sc_psref, audio_psref_class);
1032 
1033 	selinit(&sc->sc_wsel);
1034 	selinit(&sc->sc_rsel);
1035 
1036 	/* Initial parameter of /dev/sound */
1037 	sc->sc_sound_pparams = params_to_format2(&audio_default);
1038 	sc->sc_sound_rparams = params_to_format2(&audio_default);
1039 	sc->sc_sound_ppause = false;
1040 	sc->sc_sound_rpause = false;
1041 
1042 	/* XXX TODO: consider about sc_ai */
1043 
1044 	mixer_init(sc);
1045 	TRACE(2, "inputs ports=0x%x, input master=%d, "
1046 	    "output ports=0x%x, output master=%d",
1047 	    sc->sc_inports.allports, sc->sc_inports.master,
1048 	    sc->sc_outports.allports, sc->sc_outports.master);
1049 
1050 	sysctl_createv(&sc->sc_log, 0, NULL, &node,
1051 	    0,
1052 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
1053 	    SYSCTL_DESCR("audio test"),
1054 	    NULL, 0,
1055 	    NULL, 0,
1056 	    CTL_HW,
1057 	    CTL_CREATE, CTL_EOL);
1058 
1059 	if (node != NULL) {
1060 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1061 		    CTLFLAG_READWRITE,
1062 		    CTLTYPE_INT, "blk_ms",
1063 		    SYSCTL_DESCR("blocksize in msec"),
1064 		    audio_sysctl_blk_ms, 0, (void *)sc, 0,
1065 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1066 
1067 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1068 		    CTLFLAG_READWRITE,
1069 		    CTLTYPE_BOOL, "multiuser",
1070 		    SYSCTL_DESCR("allow multiple user access"),
1071 		    audio_sysctl_multiuser, 0, (void *)sc, 0,
1072 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1073 
1074 #if defined(AUDIO_DEBUG)
1075 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1076 		    CTLFLAG_READWRITE,
1077 		    CTLTYPE_INT, "debug",
1078 		    SYSCTL_DESCR("debug level (0..4)"),
1079 		    audio_sysctl_debug, 0, (void *)sc, 0,
1080 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1081 #endif
1082 	}
1083 
1084 #ifdef AUDIO_PM_IDLE
1085 	callout_init(&sc->sc_idle_counter, 0);
1086 	callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1087 #endif
1088 
1089 	if (!pmf_device_register(self, audio_suspend, audio_resume))
1090 		aprint_error_dev(self, "couldn't establish power handler\n");
1091 #ifdef AUDIO_PM_IDLE
1092 	if (!device_active_register(self, audio_activity))
1093 		aprint_error_dev(self, "couldn't register activity handler\n");
1094 #endif
1095 
1096 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1097 	    audio_volume_down, true))
1098 		aprint_error_dev(self, "couldn't add volume down handler\n");
1099 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1100 	    audio_volume_up, true))
1101 		aprint_error_dev(self, "couldn't add volume up handler\n");
1102 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1103 	    audio_volume_toggle, true))
1104 		aprint_error_dev(self, "couldn't add volume toggle handler\n");
1105 
1106 #ifdef AUDIO_PM_IDLE
1107 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1108 #endif
1109 
1110 #if defined(AUDIO_DEBUG)
1111 	audio_mlog_init();
1112 #endif
1113 
1114 	audiorescan(self, "audio", NULL);
1115 	sc->sc_exlock = 0;
1116 	return;
1117 
1118 bad:
1119 	/* Clearing hw_if means that device is attached but disabled. */
1120 	sc->hw_if = NULL;
1121 	sc->sc_exlock = 0;
1122 	aprint_error_dev(sc->sc_dev, "disabled\n");
1123 	return;
1124 }
1125 
1126 /*
1127  * Initialize hardware mixer.
1128  * This function is called from audioattach().
1129  */
1130 static void
1131 mixer_init(struct audio_softc *sc)
1132 {
1133 	mixer_devinfo_t mi;
1134 	int iclass, mclass, oclass, rclass;
1135 	int record_master_found, record_source_found;
1136 
1137 	iclass = mclass = oclass = rclass = -1;
1138 	sc->sc_inports.index = -1;
1139 	sc->sc_inports.master = -1;
1140 	sc->sc_inports.nports = 0;
1141 	sc->sc_inports.isenum = false;
1142 	sc->sc_inports.allports = 0;
1143 	sc->sc_inports.isdual = false;
1144 	sc->sc_inports.mixerout = -1;
1145 	sc->sc_inports.cur_port = -1;
1146 	sc->sc_outports.index = -1;
1147 	sc->sc_outports.master = -1;
1148 	sc->sc_outports.nports = 0;
1149 	sc->sc_outports.isenum = false;
1150 	sc->sc_outports.allports = 0;
1151 	sc->sc_outports.isdual = false;
1152 	sc->sc_outports.mixerout = -1;
1153 	sc->sc_outports.cur_port = -1;
1154 	sc->sc_monitor_port = -1;
1155 	/*
1156 	 * Read through the underlying driver's list, picking out the class
1157 	 * names from the mixer descriptions. We'll need them to decode the
1158 	 * mixer descriptions on the next pass through the loop.
1159 	 */
1160 	mutex_enter(sc->sc_lock);
1161 	for(mi.index = 0; ; mi.index++) {
1162 		if (audio_query_devinfo(sc, &mi) != 0)
1163 			break;
1164 		 /*
1165 		  * The type of AUDIO_MIXER_CLASS merely introduces a class.
1166 		  * All the other types describe an actual mixer.
1167 		  */
1168 		if (mi.type == AUDIO_MIXER_CLASS) {
1169 			if (strcmp(mi.label.name, AudioCinputs) == 0)
1170 				iclass = mi.mixer_class;
1171 			if (strcmp(mi.label.name, AudioCmonitor) == 0)
1172 				mclass = mi.mixer_class;
1173 			if (strcmp(mi.label.name, AudioCoutputs) == 0)
1174 				oclass = mi.mixer_class;
1175 			if (strcmp(mi.label.name, AudioCrecord) == 0)
1176 				rclass = mi.mixer_class;
1177 		}
1178 	}
1179 	mutex_exit(sc->sc_lock);
1180 
1181 	/* Allocate save area.  Ensure non-zero allocation. */
1182 	sc->sc_nmixer_states = mi.index;
1183 	sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1184 	    (sc->sc_nmixer_states + 1), KM_SLEEP);
1185 
1186 	/*
1187 	 * This is where we assign each control in the "audio" model, to the
1188 	 * underlying "mixer" control.  We walk through the whole list once,
1189 	 * assigning likely candidates as we come across them.
1190 	 */
1191 	record_master_found = 0;
1192 	record_source_found = 0;
1193 	mutex_enter(sc->sc_lock);
1194 	for(mi.index = 0; ; mi.index++) {
1195 		if (audio_query_devinfo(sc, &mi) != 0)
1196 			break;
1197 		KASSERT(mi.index < sc->sc_nmixer_states);
1198 		if (mi.type == AUDIO_MIXER_CLASS)
1199 			continue;
1200 		if (mi.mixer_class == iclass) {
1201 			/*
1202 			 * AudioCinputs is only a fallback, when we don't
1203 			 * find what we're looking for in AudioCrecord, so
1204 			 * check the flags before accepting one of these.
1205 			 */
1206 			if (strcmp(mi.label.name, AudioNmaster) == 0
1207 			    && record_master_found == 0)
1208 				sc->sc_inports.master = mi.index;
1209 			if (strcmp(mi.label.name, AudioNsource) == 0
1210 			    && record_source_found == 0) {
1211 				if (mi.type == AUDIO_MIXER_ENUM) {
1212 				    int i;
1213 				    for(i = 0; i < mi.un.e.num_mem; i++)
1214 					if (strcmp(mi.un.e.member[i].label.name,
1215 						    AudioNmixerout) == 0)
1216 						sc->sc_inports.mixerout =
1217 						    mi.un.e.member[i].ord;
1218 				}
1219 				au_setup_ports(sc, &sc->sc_inports, &mi,
1220 				    itable);
1221 			}
1222 			if (strcmp(mi.label.name, AudioNdac) == 0 &&
1223 			    sc->sc_outports.master == -1)
1224 				sc->sc_outports.master = mi.index;
1225 		} else if (mi.mixer_class == mclass) {
1226 			if (strcmp(mi.label.name, AudioNmonitor) == 0)
1227 				sc->sc_monitor_port = mi.index;
1228 		} else if (mi.mixer_class == oclass) {
1229 			if (strcmp(mi.label.name, AudioNmaster) == 0)
1230 				sc->sc_outports.master = mi.index;
1231 			if (strcmp(mi.label.name, AudioNselect) == 0)
1232 				au_setup_ports(sc, &sc->sc_outports, &mi,
1233 				    otable);
1234 		} else if (mi.mixer_class == rclass) {
1235 			/*
1236 			 * These are the preferred mixers for the audio record
1237 			 * controls, so set the flags here, but don't check.
1238 			 */
1239 			if (strcmp(mi.label.name, AudioNmaster) == 0) {
1240 				sc->sc_inports.master = mi.index;
1241 				record_master_found = 1;
1242 			}
1243 #if 1	/* Deprecated. Use AudioNmaster. */
1244 			if (strcmp(mi.label.name, AudioNrecord) == 0) {
1245 				sc->sc_inports.master = mi.index;
1246 				record_master_found = 1;
1247 			}
1248 			if (strcmp(mi.label.name, AudioNvolume) == 0) {
1249 				sc->sc_inports.master = mi.index;
1250 				record_master_found = 1;
1251 			}
1252 #endif
1253 			if (strcmp(mi.label.name, AudioNsource) == 0) {
1254 				if (mi.type == AUDIO_MIXER_ENUM) {
1255 				    int i;
1256 				    for(i = 0; i < mi.un.e.num_mem; i++)
1257 					if (strcmp(mi.un.e.member[i].label.name,
1258 						    AudioNmixerout) == 0)
1259 						sc->sc_inports.mixerout =
1260 						    mi.un.e.member[i].ord;
1261 				}
1262 				au_setup_ports(sc, &sc->sc_inports, &mi,
1263 				    itable);
1264 				record_source_found = 1;
1265 			}
1266 		}
1267 	}
1268 	mutex_exit(sc->sc_lock);
1269 }
1270 
1271 static int
1272 audioactivate(device_t self, enum devact act)
1273 {
1274 	struct audio_softc *sc = device_private(self);
1275 
1276 	switch (act) {
1277 	case DVACT_DEACTIVATE:
1278 		mutex_enter(sc->sc_lock);
1279 		sc->sc_dying = true;
1280 		cv_broadcast(&sc->sc_exlockcv);
1281 		mutex_exit(sc->sc_lock);
1282 		return 0;
1283 	default:
1284 		return EOPNOTSUPP;
1285 	}
1286 }
1287 
1288 static int
1289 audiodetach(device_t self, int flags)
1290 {
1291 	struct audio_softc *sc;
1292 	struct audio_file *file;
1293 	int error;
1294 
1295 	sc = device_private(self);
1296 	TRACE(2, "flags=%d", flags);
1297 
1298 	/* device is not initialized */
1299 	if (sc->hw_if == NULL)
1300 		return 0;
1301 
1302 	/* Start draining existing accessors of the device. */
1303 	error = config_detach_children(self, flags);
1304 	if (error)
1305 		return error;
1306 
1307 	/*
1308 	 * This waits currently running sysctls to finish if exists.
1309 	 * After this, no more new sysctls will come.
1310 	 */
1311 	sysctl_teardown(&sc->sc_log);
1312 
1313 	mutex_enter(sc->sc_lock);
1314 	sc->sc_dying = true;
1315 	cv_broadcast(&sc->sc_exlockcv);
1316 	if (sc->sc_pmixer)
1317 		cv_broadcast(&sc->sc_pmixer->outcv);
1318 	if (sc->sc_rmixer)
1319 		cv_broadcast(&sc->sc_rmixer->outcv);
1320 
1321 	/* Prevent new users */
1322 	SLIST_FOREACH(file, &sc->sc_files, entry) {
1323 		atomic_store_relaxed(&file->dying, true);
1324 	}
1325 
1326 	/*
1327 	 * Wait for existing users to drain.
1328 	 * - pserialize_perform waits for all pserialize_read sections on
1329 	 *   all CPUs; after this, no more new psref_acquire can happen.
1330 	 * - psref_target_destroy waits for all extant acquired psrefs to
1331 	 *   be psref_released.
1332 	 */
1333 	pserialize_perform(sc->sc_psz);
1334 	mutex_exit(sc->sc_lock);
1335 	psref_target_destroy(&sc->sc_psref, audio_psref_class);
1336 
1337 	/*
1338 	 * We are now guaranteed that there are no calls to audio fileops
1339 	 * that hold sc, and any new calls with files that were for sc will
1340 	 * fail.  Thus, we now have exclusive access to the softc.
1341 	 */
1342 	sc->sc_exlock = 1;
1343 
1344 	/*
1345 	 * Clean up all open instances.
1346 	 * Here, we no longer need any locks to traverse sc_files.
1347 	 */
1348 	while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1349 		audio_unlink(sc, file);
1350 	}
1351 
1352 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1353 	    audio_volume_down, true);
1354 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1355 	    audio_volume_up, true);
1356 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1357 	    audio_volume_toggle, true);
1358 
1359 #ifdef AUDIO_PM_IDLE
1360 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1361 
1362 	device_active_deregister(self, audio_activity);
1363 #endif
1364 
1365 	pmf_device_deregister(self);
1366 
1367 	/* Free resources */
1368 	if (sc->sc_pmixer) {
1369 		audio_mixer_destroy(sc, sc->sc_pmixer);
1370 		kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1371 	}
1372 	if (sc->sc_rmixer) {
1373 		audio_mixer_destroy(sc, sc->sc_rmixer);
1374 		kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1375 	}
1376 	if (sc->sc_am)
1377 		kern_free(sc->sc_am);
1378 
1379 	seldestroy(&sc->sc_wsel);
1380 	seldestroy(&sc->sc_rsel);
1381 
1382 #ifdef AUDIO_PM_IDLE
1383 	callout_destroy(&sc->sc_idle_counter);
1384 #endif
1385 
1386 	cv_destroy(&sc->sc_exlockcv);
1387 
1388 #if defined(AUDIO_DEBUG)
1389 	audio_mlog_free();
1390 #endif
1391 
1392 	return 0;
1393 }
1394 
1395 static void
1396 audiochilddet(device_t self, device_t child)
1397 {
1398 
1399 	/* we hold no child references, so do nothing */
1400 }
1401 
1402 static int
1403 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1404 {
1405 
1406 	if (config_match(parent, cf, aux))
1407 		config_attach_loc(parent, cf, locs, aux, NULL);
1408 
1409 	return 0;
1410 }
1411 
1412 static int
1413 audiorescan(device_t self, const char *ifattr, const int *flags)
1414 {
1415 	struct audio_softc *sc = device_private(self);
1416 
1417 	if (!ifattr_match(ifattr, "audio"))
1418 		return 0;
1419 
1420 	config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1421 
1422 	return 0;
1423 }
1424 
1425 /*
1426  * Called from hardware driver.  This is where the MI audio driver gets
1427  * probed/attached to the hardware driver.
1428  */
1429 device_t
1430 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1431 {
1432 	struct audio_attach_args arg;
1433 
1434 #ifdef DIAGNOSTIC
1435 	if (ahwp == NULL) {
1436 		aprint_error("audio_attach_mi: NULL\n");
1437 		return 0;
1438 	}
1439 #endif
1440 	arg.type = AUDIODEV_TYPE_AUDIO;
1441 	arg.hwif = ahwp;
1442 	arg.hdl = hdlp;
1443 	return config_found(dev, &arg, audioprint);
1444 }
1445 
1446 /*
1447  * audio_printf() outputs fmt... with the audio device name and MD device
1448  * name prefixed.  If the message is considered to be related to the MD
1449  * driver, use this one instead of device_printf().
1450  */
1451 static void
1452 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1453 {
1454 	va_list ap;
1455 
1456 	printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1457 	va_start(ap, fmt);
1458 	vprintf(fmt, ap);
1459 	va_end(ap);
1460 }
1461 
1462 /*
1463  * Enter critical section and also keep sc_lock.
1464  * If successful, returns 0 with sc_lock held.  Otherwise returns errno.
1465  * Must be called without sc_lock held.
1466  */
1467 static int
1468 audio_exlock_mutex_enter(struct audio_softc *sc)
1469 {
1470 	int error;
1471 
1472 	mutex_enter(sc->sc_lock);
1473 	if (sc->sc_dying) {
1474 		mutex_exit(sc->sc_lock);
1475 		return EIO;
1476 	}
1477 
1478 	while (__predict_false(sc->sc_exlock != 0)) {
1479 		error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1480 		if (sc->sc_dying)
1481 			error = EIO;
1482 		if (error) {
1483 			mutex_exit(sc->sc_lock);
1484 			return error;
1485 		}
1486 	}
1487 
1488 	/* Acquire */
1489 	sc->sc_exlock = 1;
1490 	return 0;
1491 }
1492 
1493 /*
1494  * Exit critical section and exit sc_lock.
1495  * Must be called with sc_lock held.
1496  */
1497 static void
1498 audio_exlock_mutex_exit(struct audio_softc *sc)
1499 {
1500 
1501 	KASSERT(mutex_owned(sc->sc_lock));
1502 
1503 	sc->sc_exlock = 0;
1504 	cv_broadcast(&sc->sc_exlockcv);
1505 	mutex_exit(sc->sc_lock);
1506 }
1507 
1508 /*
1509  * Enter critical section.
1510  * If successful, it returns 0.  Otherwise returns errno.
1511  * Must be called without sc_lock held.
1512  * This function returns without sc_lock held.
1513  */
1514 static int
1515 audio_exlock_enter(struct audio_softc *sc)
1516 {
1517 	int error;
1518 
1519 	error = audio_exlock_mutex_enter(sc);
1520 	if (error)
1521 		return error;
1522 	mutex_exit(sc->sc_lock);
1523 	return 0;
1524 }
1525 
1526 /*
1527  * Exit critical section.
1528  * Must be called without sc_lock held.
1529  */
1530 static void
1531 audio_exlock_exit(struct audio_softc *sc)
1532 {
1533 
1534 	mutex_enter(sc->sc_lock);
1535 	audio_exlock_mutex_exit(sc);
1536 }
1537 
1538 /*
1539  * Increment reference counter for this sc.
1540  * This is intended to be used for open.
1541  */
1542 void
1543 audio_sc_acquire_foropen(struct audio_softc *sc, struct psref *refp)
1544 {
1545 	int s;
1546 
1547 	/* Block audiodetach while we acquire a reference */
1548 	s = pserialize_read_enter();
1549 
1550 	/*
1551 	 * We don't examine sc_dying here.  However, all open methods
1552 	 * call audio_exlock_enter() right after this, so we can examine
1553 	 * sc_dying in it.
1554 	 */
1555 
1556 	/* Acquire a reference */
1557 	psref_acquire(refp, &sc->sc_psref, audio_psref_class);
1558 
1559 	/* Now sc won't go away until we drop the reference count */
1560 	pserialize_read_exit(s);
1561 }
1562 
1563 /*
1564  * Get sc from file, and increment reference counter for this sc.
1565  * This is intended to be used for methods other than open.
1566  * If successful, returns sc.  Otherwise returns NULL.
1567  */
1568 struct audio_softc *
1569 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
1570 {
1571 	int s;
1572 	bool dying;
1573 
1574 	/* Block audiodetach while we acquire a reference */
1575 	s = pserialize_read_enter();
1576 
1577 	/* If close or audiodetach already ran, tough -- no more audio */
1578 	dying = atomic_load_relaxed(&file->dying);
1579 	if (dying) {
1580 		pserialize_read_exit(s);
1581 		return NULL;
1582 	}
1583 
1584 	/* Acquire a reference */
1585 	psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1586 
1587 	/* Now sc won't go away until we drop the reference count */
1588 	pserialize_read_exit(s);
1589 
1590 	return file->sc;
1591 }
1592 
1593 /*
1594  * Decrement reference counter for this sc.
1595  */
1596 void
1597 audio_sc_release(struct audio_softc *sc, struct psref *refp)
1598 {
1599 
1600 	psref_release(refp, &sc->sc_psref, audio_psref_class);
1601 }
1602 
1603 /*
1604  * Wait for I/O to complete, releasing sc_lock.
1605  * Must be called with sc_lock held.
1606  */
1607 static int
1608 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1609 {
1610 	int error;
1611 
1612 	KASSERT(track);
1613 	KASSERT(mutex_owned(sc->sc_lock));
1614 
1615 	/* Wait for pending I/O to complete. */
1616 	error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1617 	    mstohz(AUDIO_TIMEOUT));
1618 	if (sc->sc_suspending) {
1619 		/* If it's about to suspend, ignore timeout error. */
1620 		if (error == EWOULDBLOCK) {
1621 			TRACET(2, track, "timeout (suspending)");
1622 			return 0;
1623 		}
1624 	}
1625 	if (sc->sc_dying) {
1626 		error = EIO;
1627 	}
1628 	if (error) {
1629 		TRACET(2, track, "cv_timedwait_sig failed %d", error);
1630 		if (error == EWOULDBLOCK)
1631 			audio_printf(sc, "device timeout\n");
1632 	} else {
1633 		TRACET(3, track, "wakeup");
1634 	}
1635 	return error;
1636 }
1637 
1638 /*
1639  * Try to acquire track lock.
1640  * It doesn't block if the track lock is already aquired.
1641  * Returns true if the track lock was acquired, or false if the track
1642  * lock was already acquired.
1643  */
1644 static __inline bool
1645 audio_track_lock_tryenter(audio_track_t *track)
1646 {
1647 	return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1648 }
1649 
1650 /*
1651  * Acquire track lock.
1652  */
1653 static __inline void
1654 audio_track_lock_enter(audio_track_t *track)
1655 {
1656 	/* Don't sleep here. */
1657 	while (audio_track_lock_tryenter(track) == false)
1658 		;
1659 }
1660 
1661 /*
1662  * Release track lock.
1663  */
1664 static __inline void
1665 audio_track_lock_exit(audio_track_t *track)
1666 {
1667 	atomic_swap_uint(&track->lock, 0);
1668 }
1669 
1670 
1671 static int
1672 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1673 {
1674 	struct audio_softc *sc;
1675 	struct psref sc_ref;
1676 	int bound;
1677 	int error;
1678 
1679 	/* Find the device */
1680 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1681 	if (sc == NULL || sc->hw_if == NULL)
1682 		return ENXIO;
1683 
1684 	bound = curlwp_bind();
1685 	audio_sc_acquire_foropen(sc, &sc_ref);
1686 
1687 	error = audio_exlock_enter(sc);
1688 	if (error)
1689 		goto done;
1690 
1691 	device_active(sc->sc_dev, DVA_SYSTEM);
1692 	switch (AUDIODEV(dev)) {
1693 	case SOUND_DEVICE:
1694 	case AUDIO_DEVICE:
1695 		error = audio_open(dev, sc, flags, ifmt, l, NULL);
1696 		break;
1697 	case AUDIOCTL_DEVICE:
1698 		error = audioctl_open(dev, sc, flags, ifmt, l);
1699 		break;
1700 	case MIXER_DEVICE:
1701 		error = mixer_open(dev, sc, flags, ifmt, l);
1702 		break;
1703 	default:
1704 		error = ENXIO;
1705 		break;
1706 	}
1707 	audio_exlock_exit(sc);
1708 
1709 done:
1710 	audio_sc_release(sc, &sc_ref);
1711 	curlwp_bindx(bound);
1712 	return error;
1713 }
1714 
1715 static int
1716 audioclose(struct file *fp)
1717 {
1718 	struct audio_softc *sc;
1719 	struct psref sc_ref;
1720 	audio_file_t *file;
1721 	int bound;
1722 	int error;
1723 	dev_t dev;
1724 
1725 	KASSERT(fp->f_audioctx);
1726 	file = fp->f_audioctx;
1727 	dev = file->dev;
1728 	error = 0;
1729 
1730 	/*
1731 	 * audioclose() must
1732 	 * - unplug track from the trackmixer (and unplug anything from softc),
1733 	 *   if sc exists.
1734 	 * - free all memory objects, regardless of sc.
1735 	 */
1736 
1737 	bound = curlwp_bind();
1738 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
1739 	if (sc) {
1740 		switch (AUDIODEV(dev)) {
1741 		case SOUND_DEVICE:
1742 		case AUDIO_DEVICE:
1743 			error = audio_close(sc, file);
1744 			break;
1745 		case AUDIOCTL_DEVICE:
1746 			error = 0;
1747 			break;
1748 		case MIXER_DEVICE:
1749 			error = mixer_close(sc, file);
1750 			break;
1751 		default:
1752 			error = ENXIO;
1753 			break;
1754 		}
1755 
1756 		audio_sc_release(sc, &sc_ref);
1757 	}
1758 	curlwp_bindx(bound);
1759 
1760 	/* Free memory objects anyway */
1761 	TRACEF(2, file, "free memory");
1762 	if (file->ptrack)
1763 		audio_track_destroy(file->ptrack);
1764 	if (file->rtrack)
1765 		audio_track_destroy(file->rtrack);
1766 	kmem_free(file, sizeof(*file));
1767 	fp->f_audioctx = NULL;
1768 
1769 	return error;
1770 }
1771 
1772 static int
1773 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1774 	int ioflag)
1775 {
1776 	struct audio_softc *sc;
1777 	struct psref sc_ref;
1778 	audio_file_t *file;
1779 	int bound;
1780 	int error;
1781 	dev_t dev;
1782 
1783 	KASSERT(fp->f_audioctx);
1784 	file = fp->f_audioctx;
1785 	dev = file->dev;
1786 
1787 	bound = curlwp_bind();
1788 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
1789 	if (sc == NULL) {
1790 		error = EIO;
1791 		goto done;
1792 	}
1793 
1794 	if (fp->f_flag & O_NONBLOCK)
1795 		ioflag |= IO_NDELAY;
1796 
1797 	switch (AUDIODEV(dev)) {
1798 	case SOUND_DEVICE:
1799 	case AUDIO_DEVICE:
1800 		error = audio_read(sc, uio, ioflag, file);
1801 		break;
1802 	case AUDIOCTL_DEVICE:
1803 	case MIXER_DEVICE:
1804 		error = ENODEV;
1805 		break;
1806 	default:
1807 		error = ENXIO;
1808 		break;
1809 	}
1810 
1811 	audio_sc_release(sc, &sc_ref);
1812 done:
1813 	curlwp_bindx(bound);
1814 	return error;
1815 }
1816 
1817 static int
1818 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1819 	int ioflag)
1820 {
1821 	struct audio_softc *sc;
1822 	struct psref sc_ref;
1823 	audio_file_t *file;
1824 	int bound;
1825 	int error;
1826 	dev_t dev;
1827 
1828 	KASSERT(fp->f_audioctx);
1829 	file = fp->f_audioctx;
1830 	dev = file->dev;
1831 
1832 	bound = curlwp_bind();
1833 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
1834 	if (sc == NULL) {
1835 		error = EIO;
1836 		goto done;
1837 	}
1838 
1839 	if (fp->f_flag & O_NONBLOCK)
1840 		ioflag |= IO_NDELAY;
1841 
1842 	switch (AUDIODEV(dev)) {
1843 	case SOUND_DEVICE:
1844 	case AUDIO_DEVICE:
1845 		error = audio_write(sc, uio, ioflag, file);
1846 		break;
1847 	case AUDIOCTL_DEVICE:
1848 	case MIXER_DEVICE:
1849 		error = ENODEV;
1850 		break;
1851 	default:
1852 		error = ENXIO;
1853 		break;
1854 	}
1855 
1856 	audio_sc_release(sc, &sc_ref);
1857 done:
1858 	curlwp_bindx(bound);
1859 	return error;
1860 }
1861 
1862 static int
1863 audioioctl(struct file *fp, u_long cmd, void *addr)
1864 {
1865 	struct audio_softc *sc;
1866 	struct psref sc_ref;
1867 	audio_file_t *file;
1868 	struct lwp *l = curlwp;
1869 	int bound;
1870 	int error;
1871 	dev_t dev;
1872 
1873 	KASSERT(fp->f_audioctx);
1874 	file = fp->f_audioctx;
1875 	dev = file->dev;
1876 
1877 	bound = curlwp_bind();
1878 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
1879 	if (sc == NULL) {
1880 		error = EIO;
1881 		goto done;
1882 	}
1883 
1884 	switch (AUDIODEV(dev)) {
1885 	case SOUND_DEVICE:
1886 	case AUDIO_DEVICE:
1887 	case AUDIOCTL_DEVICE:
1888 		mutex_enter(sc->sc_lock);
1889 		device_active(sc->sc_dev, DVA_SYSTEM);
1890 		mutex_exit(sc->sc_lock);
1891 		if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1892 			error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1893 		else
1894 			error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1895 			    file);
1896 		break;
1897 	case MIXER_DEVICE:
1898 		error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1899 		break;
1900 	default:
1901 		error = ENXIO;
1902 		break;
1903 	}
1904 
1905 	audio_sc_release(sc, &sc_ref);
1906 done:
1907 	curlwp_bindx(bound);
1908 	return error;
1909 }
1910 
1911 static int
1912 audiostat(struct file *fp, struct stat *st)
1913 {
1914 	struct audio_softc *sc;
1915 	struct psref sc_ref;
1916 	audio_file_t *file;
1917 	int bound;
1918 	int error;
1919 
1920 	KASSERT(fp->f_audioctx);
1921 	file = fp->f_audioctx;
1922 
1923 	bound = curlwp_bind();
1924 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
1925 	if (sc == NULL) {
1926 		error = EIO;
1927 		goto done;
1928 	}
1929 
1930 	error = 0;
1931 	memset(st, 0, sizeof(*st));
1932 
1933 	st->st_dev = file->dev;
1934 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
1935 	st->st_gid = kauth_cred_getegid(fp->f_cred);
1936 	st->st_mode = S_IFCHR;
1937 
1938 	audio_sc_release(sc, &sc_ref);
1939 done:
1940 	curlwp_bindx(bound);
1941 	return error;
1942 }
1943 
1944 static int
1945 audiopoll(struct file *fp, int events)
1946 {
1947 	struct audio_softc *sc;
1948 	struct psref sc_ref;
1949 	audio_file_t *file;
1950 	struct lwp *l = curlwp;
1951 	int bound;
1952 	int revents;
1953 	dev_t dev;
1954 
1955 	KASSERT(fp->f_audioctx);
1956 	file = fp->f_audioctx;
1957 	dev = file->dev;
1958 
1959 	bound = curlwp_bind();
1960 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
1961 	if (sc == NULL) {
1962 		revents = POLLERR;
1963 		goto done;
1964 	}
1965 
1966 	switch (AUDIODEV(dev)) {
1967 	case SOUND_DEVICE:
1968 	case AUDIO_DEVICE:
1969 		revents = audio_poll(sc, events, l, file);
1970 		break;
1971 	case AUDIOCTL_DEVICE:
1972 	case MIXER_DEVICE:
1973 		revents = 0;
1974 		break;
1975 	default:
1976 		revents = POLLERR;
1977 		break;
1978 	}
1979 
1980 	audio_sc_release(sc, &sc_ref);
1981 done:
1982 	curlwp_bindx(bound);
1983 	return revents;
1984 }
1985 
1986 static int
1987 audiokqfilter(struct file *fp, struct knote *kn)
1988 {
1989 	struct audio_softc *sc;
1990 	struct psref sc_ref;
1991 	audio_file_t *file;
1992 	dev_t dev;
1993 	int bound;
1994 	int error;
1995 
1996 	KASSERT(fp->f_audioctx);
1997 	file = fp->f_audioctx;
1998 	dev = file->dev;
1999 
2000 	bound = curlwp_bind();
2001 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2002 	if (sc == NULL) {
2003 		error = EIO;
2004 		goto done;
2005 	}
2006 
2007 	switch (AUDIODEV(dev)) {
2008 	case SOUND_DEVICE:
2009 	case AUDIO_DEVICE:
2010 		error = audio_kqfilter(sc, file, kn);
2011 		break;
2012 	case AUDIOCTL_DEVICE:
2013 	case MIXER_DEVICE:
2014 		error = ENODEV;
2015 		break;
2016 	default:
2017 		error = ENXIO;
2018 		break;
2019 	}
2020 
2021 	audio_sc_release(sc, &sc_ref);
2022 done:
2023 	curlwp_bindx(bound);
2024 	return error;
2025 }
2026 
2027 static int
2028 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
2029 	int *advicep, struct uvm_object **uobjp, int *maxprotp)
2030 {
2031 	struct audio_softc *sc;
2032 	struct psref sc_ref;
2033 	audio_file_t *file;
2034 	dev_t dev;
2035 	int bound;
2036 	int error;
2037 
2038 	KASSERT(fp->f_audioctx);
2039 	file = fp->f_audioctx;
2040 	dev = file->dev;
2041 
2042 	bound = curlwp_bind();
2043 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2044 	if (sc == NULL) {
2045 		error = EIO;
2046 		goto done;
2047 	}
2048 
2049 	mutex_enter(sc->sc_lock);
2050 	device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
2051 	mutex_exit(sc->sc_lock);
2052 
2053 	switch (AUDIODEV(dev)) {
2054 	case SOUND_DEVICE:
2055 	case AUDIO_DEVICE:
2056 		error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
2057 		    uobjp, maxprotp, file);
2058 		break;
2059 	case AUDIOCTL_DEVICE:
2060 	case MIXER_DEVICE:
2061 	default:
2062 		error = ENOTSUP;
2063 		break;
2064 	}
2065 
2066 	audio_sc_release(sc, &sc_ref);
2067 done:
2068 	curlwp_bindx(bound);
2069 	return error;
2070 }
2071 
2072 
2073 /* Exported interfaces for audiobell. */
2074 
2075 /*
2076  * Open for audiobell.
2077  * It stores allocated file to *filep.
2078  * If successful returns 0, otherwise errno.
2079  */
2080 int
2081 audiobellopen(dev_t dev, audio_file_t **filep)
2082 {
2083 	struct audio_softc *sc;
2084 	struct psref sc_ref;
2085 	int bound;
2086 	int error;
2087 
2088 	/* Find the device */
2089 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
2090 	if (sc == NULL || sc->hw_if == NULL)
2091 		return ENXIO;
2092 
2093 	bound = curlwp_bind();
2094 	audio_sc_acquire_foropen(sc, &sc_ref);
2095 
2096 	error = audio_exlock_enter(sc);
2097 	if (error)
2098 		goto done;
2099 
2100 	device_active(sc->sc_dev, DVA_SYSTEM);
2101 	error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2102 
2103 	audio_exlock_exit(sc);
2104 done:
2105 	audio_sc_release(sc, &sc_ref);
2106 	curlwp_bindx(bound);
2107 	return error;
2108 }
2109 
2110 /* Close for audiobell */
2111 int
2112 audiobellclose(audio_file_t *file)
2113 {
2114 	struct audio_softc *sc;
2115 	struct psref sc_ref;
2116 	int bound;
2117 	int error;
2118 
2119 	error = 0;
2120 	/*
2121 	 * audiobellclose() must
2122 	 * - unplug track from the trackmixer if sc exist.
2123 	 * - free all memory objects, regardless of sc.
2124 	 */
2125 	bound = curlwp_bind();
2126 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2127 	if (sc) {
2128 		error = audio_close(sc, file);
2129 		audio_sc_release(sc, &sc_ref);
2130 	}
2131 	curlwp_bindx(bound);
2132 
2133 	/* Free memory objects anyway */
2134 	KASSERT(file->ptrack);
2135 	audio_track_destroy(file->ptrack);
2136 	KASSERT(file->rtrack == NULL);
2137 	kmem_free(file, sizeof(*file));
2138 	return error;
2139 }
2140 
2141 /* Set sample rate for audiobell */
2142 int
2143 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2144 {
2145 	struct audio_softc *sc;
2146 	struct psref sc_ref;
2147 	struct audio_info ai;
2148 	int bound;
2149 	int error;
2150 
2151 	bound = curlwp_bind();
2152 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2153 	if (sc == NULL) {
2154 		error = EIO;
2155 		goto done1;
2156 	}
2157 
2158 	AUDIO_INITINFO(&ai);
2159 	ai.play.sample_rate = sample_rate;
2160 
2161 	error = audio_exlock_enter(sc);
2162 	if (error)
2163 		goto done2;
2164 	error = audio_file_setinfo(sc, file, &ai);
2165 	audio_exlock_exit(sc);
2166 
2167 done2:
2168 	audio_sc_release(sc, &sc_ref);
2169 done1:
2170 	curlwp_bindx(bound);
2171 	return error;
2172 }
2173 
2174 /* Playback for audiobell */
2175 int
2176 audiobellwrite(audio_file_t *file, struct uio *uio)
2177 {
2178 	struct audio_softc *sc;
2179 	struct psref sc_ref;
2180 	int bound;
2181 	int error;
2182 
2183 	bound = curlwp_bind();
2184 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2185 	if (sc == NULL) {
2186 		error = EIO;
2187 		goto done;
2188 	}
2189 
2190 	error = audio_write(sc, uio, 0, file);
2191 
2192 	audio_sc_release(sc, &sc_ref);
2193 done:
2194 	curlwp_bindx(bound);
2195 	return error;
2196 }
2197 
2198 
2199 /*
2200  * Audio driver
2201  */
2202 
2203 /*
2204  * Must be called with sc_exlock held and without sc_lock held.
2205  */
2206 int
2207 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2208 	struct lwp *l, audio_file_t **bellfile)
2209 {
2210 	struct audio_info ai;
2211 	struct file *fp;
2212 	audio_file_t *af;
2213 	audio_ring_t *hwbuf;
2214 	bool fullduplex;
2215 	bool cred_held;
2216 	bool hw_opened;
2217 	bool rmixer_started;
2218 	bool inserted;
2219 	int fd;
2220 	int error;
2221 
2222 	KASSERT(sc->sc_exlock);
2223 
2224 	TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2225 	    (audiodebug >= 3) ? "start " : "",
2226 	    ISDEVSOUND(dev) ? "sound" : "audio",
2227 	    flags, sc->sc_popens, sc->sc_ropens);
2228 
2229 	fp = NULL;
2230 	cred_held = false;
2231 	hw_opened = false;
2232 	rmixer_started = false;
2233 	inserted = false;
2234 
2235 	af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2236 	af->sc = sc;
2237 	af->dev = dev;
2238 	if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2239 		af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2240 	if ((flags & FREAD) != 0 && audio_can_capture(sc))
2241 		af->mode |= AUMODE_RECORD;
2242 	if (af->mode == 0) {
2243 		error = ENXIO;
2244 		goto bad;
2245 	}
2246 
2247 	fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2248 
2249 	/*
2250 	 * On half duplex hardware,
2251 	 * 1. if mode is (PLAY | REC), let mode PLAY.
2252 	 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2253 	 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2254 	 */
2255 	if (fullduplex == false) {
2256 		if ((af->mode & AUMODE_PLAY)) {
2257 			if (sc->sc_ropens != 0) {
2258 				TRACE(1, "record track already exists");
2259 				error = ENODEV;
2260 				goto bad;
2261 			}
2262 			/* Play takes precedence */
2263 			af->mode &= ~AUMODE_RECORD;
2264 		}
2265 		if ((af->mode & AUMODE_RECORD)) {
2266 			if (sc->sc_popens != 0) {
2267 				TRACE(1, "play track already exists");
2268 				error = ENODEV;
2269 				goto bad;
2270 			}
2271 		}
2272 	}
2273 
2274 	/* Create tracks */
2275 	if ((af->mode & AUMODE_PLAY))
2276 		af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2277 	if ((af->mode & AUMODE_RECORD))
2278 		af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2279 
2280 	/* Set parameters */
2281 	AUDIO_INITINFO(&ai);
2282 	if (bellfile) {
2283 		/* If audiobell, only sample_rate will be set later. */
2284 		ai.play.sample_rate   = audio_default.sample_rate;
2285 		ai.play.encoding      = AUDIO_ENCODING_SLINEAR_NE;
2286 		ai.play.channels      = 1;
2287 		ai.play.precision     = 16;
2288 		ai.play.pause         = 0;
2289 	} else if (ISDEVAUDIO(dev)) {
2290 		/* If /dev/audio, initialize everytime. */
2291 		ai.play.sample_rate   = audio_default.sample_rate;
2292 		ai.play.encoding      = audio_default.encoding;
2293 		ai.play.channels      = audio_default.channels;
2294 		ai.play.precision     = audio_default.precision;
2295 		ai.play.pause         = 0;
2296 		ai.record.sample_rate = audio_default.sample_rate;
2297 		ai.record.encoding    = audio_default.encoding;
2298 		ai.record.channels    = audio_default.channels;
2299 		ai.record.precision   = audio_default.precision;
2300 		ai.record.pause       = 0;
2301 	} else {
2302 		/* If /dev/sound, take over the previous parameters. */
2303 		ai.play.sample_rate   = sc->sc_sound_pparams.sample_rate;
2304 		ai.play.encoding      = sc->sc_sound_pparams.encoding;
2305 		ai.play.channels      = sc->sc_sound_pparams.channels;
2306 		ai.play.precision     = sc->sc_sound_pparams.precision;
2307 		ai.play.pause         = sc->sc_sound_ppause;
2308 		ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2309 		ai.record.encoding    = sc->sc_sound_rparams.encoding;
2310 		ai.record.channels    = sc->sc_sound_rparams.channels;
2311 		ai.record.precision   = sc->sc_sound_rparams.precision;
2312 		ai.record.pause       = sc->sc_sound_rpause;
2313 	}
2314 	error = audio_file_setinfo(sc, af, &ai);
2315 	if (error)
2316 		goto bad;
2317 
2318 	if (sc->sc_popens + sc->sc_ropens == 0) {
2319 		/* First open */
2320 
2321 		sc->sc_cred = kauth_cred_get();
2322 		kauth_cred_hold(sc->sc_cred);
2323 		cred_held = true;
2324 
2325 		if (sc->hw_if->open) {
2326 			int hwflags;
2327 
2328 			/*
2329 			 * Call hw_if->open() only at first open of
2330 			 * combination of playback and recording.
2331 			 * On full duplex hardware, the flags passed to
2332 			 * hw_if->open() is always (FREAD | FWRITE)
2333 			 * regardless of this open()'s flags.
2334 			 * see also dev/isa/aria.c
2335 			 * On half duplex hardware, the flags passed to
2336 			 * hw_if->open() is either FREAD or FWRITE.
2337 			 * see also arch/evbarm/mini2440/audio_mini2440.c
2338 			 */
2339 			if (fullduplex) {
2340 				hwflags = FREAD | FWRITE;
2341 			} else {
2342 				/* Construct hwflags from af->mode. */
2343 				hwflags = 0;
2344 				if ((af->mode & AUMODE_PLAY) != 0)
2345 					hwflags |= FWRITE;
2346 				if ((af->mode & AUMODE_RECORD) != 0)
2347 					hwflags |= FREAD;
2348 			}
2349 
2350 			mutex_enter(sc->sc_lock);
2351 			mutex_enter(sc->sc_intr_lock);
2352 			error = sc->hw_if->open(sc->hw_hdl, hwflags);
2353 			mutex_exit(sc->sc_intr_lock);
2354 			mutex_exit(sc->sc_lock);
2355 			if (error)
2356 				goto bad;
2357 		}
2358 		/*
2359 		 * Regardless of whether we called hw_if->open (whether
2360 		 * hw_if->open exists) or not, we move to the Opened phase
2361 		 * here.  Therefore from this point, we have to call
2362 		 * hw_if->close (if exists) whenever abort.
2363 		 * Note that both of hw_if->{open,close} are optional.
2364 		 */
2365 		hw_opened = true;
2366 
2367 		/*
2368 		 * Set speaker mode when a half duplex.
2369 		 * XXX I'm not sure this is correct.
2370 		 */
2371 		if (1/*XXX*/) {
2372 			if (sc->hw_if->speaker_ctl) {
2373 				int on;
2374 				if (af->ptrack) {
2375 					on = 1;
2376 				} else {
2377 					on = 0;
2378 				}
2379 				mutex_enter(sc->sc_lock);
2380 				mutex_enter(sc->sc_intr_lock);
2381 				error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2382 				mutex_exit(sc->sc_intr_lock);
2383 				mutex_exit(sc->sc_lock);
2384 				if (error)
2385 					goto bad;
2386 			}
2387 		}
2388 	} else if (sc->sc_multiuser == false) {
2389 		uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2390 		if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2391 			error = EPERM;
2392 			goto bad;
2393 		}
2394 	}
2395 
2396 	/* Call init_output if this is the first playback open. */
2397 	if (af->ptrack && sc->sc_popens == 0) {
2398 		if (sc->hw_if->init_output) {
2399 			hwbuf = &sc->sc_pmixer->hwbuf;
2400 			mutex_enter(sc->sc_lock);
2401 			mutex_enter(sc->sc_intr_lock);
2402 			error = sc->hw_if->init_output(sc->hw_hdl,
2403 			    hwbuf->mem,
2404 			    hwbuf->capacity *
2405 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2406 			mutex_exit(sc->sc_intr_lock);
2407 			mutex_exit(sc->sc_lock);
2408 			if (error)
2409 				goto bad;
2410 		}
2411 	}
2412 	/*
2413 	 * Call init_input and start rmixer, if this is the first recording
2414 	 * open.  See pause consideration notes.
2415 	 */
2416 	if (af->rtrack && sc->sc_ropens == 0) {
2417 		if (sc->hw_if->init_input) {
2418 			hwbuf = &sc->sc_rmixer->hwbuf;
2419 			mutex_enter(sc->sc_lock);
2420 			mutex_enter(sc->sc_intr_lock);
2421 			error = sc->hw_if->init_input(sc->hw_hdl,
2422 			    hwbuf->mem,
2423 			    hwbuf->capacity *
2424 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2425 			mutex_exit(sc->sc_intr_lock);
2426 			mutex_exit(sc->sc_lock);
2427 			if (error)
2428 				goto bad;
2429 		}
2430 
2431 		mutex_enter(sc->sc_lock);
2432 		audio_rmixer_start(sc);
2433 		mutex_exit(sc->sc_lock);
2434 		rmixer_started = true;
2435 	}
2436 
2437 	/*
2438 	 * This is the last sc_lock section in the function, so we have to
2439 	 * examine sc_dying again before starting the rest tasks.  Because
2440 	 * audiodeatch() may have been invoked (and it would set sc_dying)
2441 	 * from the time audioopen() was executed until now.  If it happens,
2442 	 * audiodetach() may already have set file->dying for all sc_files
2443 	 * that exist at that point, so that audioopen() must abort without
2444 	 * inserting af to sc_files, in order to keep consistency.
2445 	 */
2446 	mutex_enter(sc->sc_lock);
2447 	if (sc->sc_dying) {
2448 		mutex_exit(sc->sc_lock);
2449 		goto bad;
2450 	}
2451 
2452 	/* Count up finally */
2453 	if (af->ptrack)
2454 		sc->sc_popens++;
2455 	if (af->rtrack)
2456 		sc->sc_ropens++;
2457 	mutex_enter(sc->sc_intr_lock);
2458 	SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2459 	mutex_exit(sc->sc_intr_lock);
2460 	mutex_exit(sc->sc_lock);
2461 	inserted = true;
2462 
2463 	if (bellfile) {
2464 		*bellfile = af;
2465 	} else {
2466 		error = fd_allocfile(&fp, &fd);
2467 		if (error)
2468 			goto bad;
2469 
2470 		error = fd_clone(fp, fd, flags, &audio_fileops, af);
2471 		KASSERTMSG(error == EMOVEFD, "error=%d", error);
2472 	}
2473 
2474 	/* Be nothing else after fd_clone */
2475 
2476 	TRACEF(3, af, "done");
2477 	return error;
2478 
2479 bad:
2480 	if (inserted) {
2481 		mutex_enter(sc->sc_lock);
2482 		mutex_enter(sc->sc_intr_lock);
2483 		SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
2484 		mutex_exit(sc->sc_intr_lock);
2485 		if (af->ptrack)
2486 			sc->sc_popens--;
2487 		if (af->rtrack)
2488 			sc->sc_ropens--;
2489 		mutex_exit(sc->sc_lock);
2490 	}
2491 
2492 	if (rmixer_started) {
2493 		mutex_enter(sc->sc_lock);
2494 		audio_rmixer_halt(sc);
2495 		mutex_exit(sc->sc_lock);
2496 	}
2497 
2498 	if (hw_opened) {
2499 		if (sc->hw_if->close) {
2500 			mutex_enter(sc->sc_lock);
2501 			mutex_enter(sc->sc_intr_lock);
2502 			sc->hw_if->close(sc->hw_hdl);
2503 			mutex_exit(sc->sc_intr_lock);
2504 			mutex_exit(sc->sc_lock);
2505 		}
2506 	}
2507 	if (cred_held) {
2508 		kauth_cred_free(sc->sc_cred);
2509 	}
2510 
2511 	/*
2512 	 * Since track here is not yet linked to sc_files,
2513 	 * you can call track_destroy() without sc_intr_lock.
2514 	 */
2515 	if (af->rtrack) {
2516 		audio_track_destroy(af->rtrack);
2517 		af->rtrack = NULL;
2518 	}
2519 	if (af->ptrack) {
2520 		audio_track_destroy(af->ptrack);
2521 		af->ptrack = NULL;
2522 	}
2523 
2524 	kmem_free(af, sizeof(*af));
2525 	return error;
2526 }
2527 
2528 /*
2529  * Must be called without sc_lock nor sc_exlock held.
2530  */
2531 int
2532 audio_close(struct audio_softc *sc, audio_file_t *file)
2533 {
2534 	int error;
2535 
2536 	/* Protect entering new fileops to this file */
2537 	atomic_store_relaxed(&file->dying, true);
2538 
2539 	/*
2540 	 * Drain first.
2541 	 * It must be done before unlinking(acquiring exlock).
2542 	 */
2543 	if (file->ptrack) {
2544 		mutex_enter(sc->sc_lock);
2545 		audio_track_drain(sc, file->ptrack);
2546 		mutex_exit(sc->sc_lock);
2547 	}
2548 
2549 	error = audio_exlock_enter(sc);
2550 	if (error) {
2551 		/*
2552 		 * If EIO, this sc is about to detach.  In this case, even if
2553 		 * we don't do subsequent _unlink(), audiodetach() will do it.
2554 		 */
2555 		if (error == EIO)
2556 			return error;
2557 
2558 		/* XXX This should not happen but what should I do ? */
2559 		panic("%s: can't acquire exlock: errno=%d", __func__, error);
2560 	}
2561 	error = audio_unlink(sc, file);
2562 	audio_exlock_exit(sc);
2563 
2564 	return error;
2565 }
2566 
2567 /*
2568  * Unlink this file, but not freeing memory here.
2569  * Must be called with sc_exlock held and without sc_lock held.
2570  */
2571 int
2572 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2573 {
2574 	int error;
2575 
2576 	mutex_enter(sc->sc_lock);
2577 
2578 	TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2579 	    (audiodebug >= 3) ? "start " : "",
2580 	    (int)curproc->p_pid, (int)curlwp->l_lid,
2581 	    sc->sc_popens, sc->sc_ropens);
2582 	KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2583 	    "sc->sc_popens=%d, sc->sc_ropens=%d",
2584 	    sc->sc_popens, sc->sc_ropens);
2585 
2586 	device_active(sc->sc_dev, DVA_SYSTEM);
2587 
2588 	mutex_enter(sc->sc_intr_lock);
2589 	SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2590 	mutex_exit(sc->sc_intr_lock);
2591 
2592 	if (file->ptrack) {
2593 		TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2594 		    file->ptrack->dropframes);
2595 
2596 		KASSERT(sc->sc_popens > 0);
2597 		sc->sc_popens--;
2598 
2599 		/* Call hw halt_output if this is the last playback track. */
2600 		if (sc->sc_popens == 0 && sc->sc_pbusy) {
2601 			error = audio_pmixer_halt(sc);
2602 			if (error) {
2603 				audio_printf(sc,
2604 				    "halt_output failed: errno=%d (ignored)\n",
2605 				    error);
2606 			}
2607 		}
2608 
2609 		/* Restore mixing volume if all tracks are gone. */
2610 		if (sc->sc_popens == 0) {
2611 			/* intr_lock is not necessary, but just manners. */
2612 			mutex_enter(sc->sc_intr_lock);
2613 			sc->sc_pmixer->volume = 256;
2614 			sc->sc_pmixer->voltimer = 0;
2615 			mutex_exit(sc->sc_intr_lock);
2616 		}
2617 	}
2618 	if (file->rtrack) {
2619 		TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2620 		    file->rtrack->dropframes);
2621 
2622 		KASSERT(sc->sc_ropens > 0);
2623 		sc->sc_ropens--;
2624 
2625 		/* Call hw halt_input if this is the last recording track. */
2626 		if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2627 			error = audio_rmixer_halt(sc);
2628 			if (error) {
2629 				audio_printf(sc,
2630 				    "halt_input failed: errno=%d (ignored)\n",
2631 				    error);
2632 			}
2633 		}
2634 
2635 	}
2636 
2637 	/* Call hw close if this is the last track. */
2638 	if (sc->sc_popens + sc->sc_ropens == 0) {
2639 		if (sc->hw_if->close) {
2640 			TRACE(2, "hw_if close");
2641 			mutex_enter(sc->sc_intr_lock);
2642 			sc->hw_if->close(sc->hw_hdl);
2643 			mutex_exit(sc->sc_intr_lock);
2644 		}
2645 	}
2646 
2647 	mutex_exit(sc->sc_lock);
2648 	if (sc->sc_popens + sc->sc_ropens == 0)
2649 		kauth_cred_free(sc->sc_cred);
2650 
2651 	TRACE(3, "done");
2652 
2653 	return 0;
2654 }
2655 
2656 /*
2657  * Must be called without sc_lock nor sc_exlock held.
2658  */
2659 int
2660 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2661 	audio_file_t *file)
2662 {
2663 	audio_track_t *track;
2664 	audio_ring_t *usrbuf;
2665 	audio_ring_t *input;
2666 	int error;
2667 
2668 	/*
2669 	 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2670 	 * However read() system call itself can be called because it's
2671 	 * opened with O_RDWR.  So in this case, deny this read().
2672 	 */
2673 	track = file->rtrack;
2674 	if (track == NULL) {
2675 		return EBADF;
2676 	}
2677 
2678 	/* I think it's better than EINVAL. */
2679 	if (track->mmapped)
2680 		return EPERM;
2681 
2682 	TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2683 
2684 #ifdef AUDIO_PM_IDLE
2685 	error = audio_exlock_mutex_enter(sc);
2686 	if (error)
2687 		return error;
2688 
2689 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2690 		device_active(&sc->sc_dev, DVA_SYSTEM);
2691 
2692 	/* In recording, unlike playback, read() never operates rmixer. */
2693 
2694 	audio_exlock_mutex_exit(sc);
2695 #endif
2696 
2697 	usrbuf = &track->usrbuf;
2698 	input = track->input;
2699 	error = 0;
2700 
2701 	while (uio->uio_resid > 0 && error == 0) {
2702 		int bytes;
2703 
2704 		TRACET(3, track,
2705 		    "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2706 		    uio->uio_resid,
2707 		    input->head, input->used, input->capacity,
2708 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2709 
2710 		/* Wait when buffers are empty. */
2711 		mutex_enter(sc->sc_lock);
2712 		for (;;) {
2713 			bool empty;
2714 			audio_track_lock_enter(track);
2715 			empty = (input->used == 0 && usrbuf->used == 0);
2716 			audio_track_lock_exit(track);
2717 			if (!empty)
2718 				break;
2719 
2720 			if ((ioflag & IO_NDELAY)) {
2721 				mutex_exit(sc->sc_lock);
2722 				return EWOULDBLOCK;
2723 			}
2724 
2725 			TRACET(3, track, "sleep");
2726 			error = audio_track_waitio(sc, track);
2727 			if (error) {
2728 				mutex_exit(sc->sc_lock);
2729 				return error;
2730 			}
2731 		}
2732 		mutex_exit(sc->sc_lock);
2733 
2734 		audio_track_lock_enter(track);
2735 		audio_track_record(track);
2736 
2737 		/* uiomove from usrbuf as much as possible. */
2738 		bytes = uimin(usrbuf->used, uio->uio_resid);
2739 		while (bytes > 0) {
2740 			int head = usrbuf->head;
2741 			int len = uimin(bytes, usrbuf->capacity - head);
2742 			error = uiomove((uint8_t *)usrbuf->mem + head, len,
2743 			    uio);
2744 			if (error) {
2745 				audio_track_lock_exit(track);
2746 				device_printf(sc->sc_dev,
2747 				    "%s: uiomove(%d) failed: errno=%d\n",
2748 				    __func__, len, error);
2749 				goto abort;
2750 			}
2751 			auring_take(usrbuf, len);
2752 			track->useriobytes += len;
2753 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2754 			    len,
2755 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
2756 			bytes -= len;
2757 		}
2758 
2759 		audio_track_lock_exit(track);
2760 	}
2761 
2762 abort:
2763 	return error;
2764 }
2765 
2766 
2767 /*
2768  * Clear file's playback and/or record track buffer immediately.
2769  */
2770 static void
2771 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2772 {
2773 
2774 	if (file->ptrack)
2775 		audio_track_clear(sc, file->ptrack);
2776 	if (file->rtrack)
2777 		audio_track_clear(sc, file->rtrack);
2778 }
2779 
2780 /*
2781  * Must be called without sc_lock nor sc_exlock held.
2782  */
2783 int
2784 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2785 	audio_file_t *file)
2786 {
2787 	audio_track_t *track;
2788 	audio_ring_t *usrbuf;
2789 	audio_ring_t *outbuf;
2790 	int error;
2791 
2792 	track = file->ptrack;
2793 	KASSERT(track);
2794 
2795 	/* I think it's better than EINVAL. */
2796 	if (track->mmapped)
2797 		return EPERM;
2798 
2799 	TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2800 	    audiodebug >= 3 ? "begin " : "",
2801 	    uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2802 
2803 	if (uio->uio_resid == 0) {
2804 		track->eofcounter++;
2805 		return 0;
2806 	}
2807 
2808 	error = audio_exlock_mutex_enter(sc);
2809 	if (error)
2810 		return error;
2811 
2812 #ifdef AUDIO_PM_IDLE
2813 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2814 		device_active(&sc->sc_dev, DVA_SYSTEM);
2815 #endif
2816 
2817 	/*
2818 	 * The first write starts pmixer.
2819 	 */
2820 	if (sc->sc_pbusy == false)
2821 		audio_pmixer_start(sc, false);
2822 	audio_exlock_mutex_exit(sc);
2823 
2824 	usrbuf = &track->usrbuf;
2825 	outbuf = &track->outbuf;
2826 	track->pstate = AUDIO_STATE_RUNNING;
2827 	error = 0;
2828 
2829 	while (uio->uio_resid > 0 && error == 0) {
2830 		int bytes;
2831 
2832 		TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2833 		    uio->uio_resid,
2834 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2835 
2836 		/* Wait when buffers are full. */
2837 		mutex_enter(sc->sc_lock);
2838 		for (;;) {
2839 			bool full;
2840 			audio_track_lock_enter(track);
2841 			full = (usrbuf->used >= track->usrbuf_usedhigh &&
2842 			    outbuf->used >= outbuf->capacity);
2843 			audio_track_lock_exit(track);
2844 			if (!full)
2845 				break;
2846 
2847 			if ((ioflag & IO_NDELAY)) {
2848 				error = EWOULDBLOCK;
2849 				mutex_exit(sc->sc_lock);
2850 				goto abort;
2851 			}
2852 
2853 			TRACET(3, track, "sleep usrbuf=%d/H%d",
2854 			    usrbuf->used, track->usrbuf_usedhigh);
2855 			error = audio_track_waitio(sc, track);
2856 			if (error) {
2857 				mutex_exit(sc->sc_lock);
2858 				goto abort;
2859 			}
2860 		}
2861 		mutex_exit(sc->sc_lock);
2862 
2863 		audio_track_lock_enter(track);
2864 
2865 		/* uiomove to usrbuf as much as possible. */
2866 		bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2867 		    uio->uio_resid);
2868 		while (bytes > 0) {
2869 			int tail = auring_tail(usrbuf);
2870 			int len = uimin(bytes, usrbuf->capacity - tail);
2871 			error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2872 			    uio);
2873 			if (error) {
2874 				audio_track_lock_exit(track);
2875 				device_printf(sc->sc_dev,
2876 				    "%s: uiomove(%d) failed: errno=%d\n",
2877 				    __func__, len, error);
2878 				goto abort;
2879 			}
2880 			auring_push(usrbuf, len);
2881 			track->useriobytes += len;
2882 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2883 			    len,
2884 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
2885 			bytes -= len;
2886 		}
2887 
2888 		/* Convert them as much as possible. */
2889 		while (usrbuf->used >= track->usrbuf_blksize &&
2890 		    outbuf->used < outbuf->capacity) {
2891 			audio_track_play(track);
2892 		}
2893 
2894 		audio_track_lock_exit(track);
2895 	}
2896 
2897 abort:
2898 	TRACET(3, track, "done error=%d", error);
2899 	return error;
2900 }
2901 
2902 /*
2903  * Must be called without sc_lock nor sc_exlock held.
2904  */
2905 int
2906 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2907 	struct lwp *l, audio_file_t *file)
2908 {
2909 	struct audio_offset *ao;
2910 	struct audio_info ai;
2911 	audio_track_t *track;
2912 	audio_encoding_t *ae;
2913 	audio_format_query_t *query;
2914 	u_int stamp;
2915 	u_int offs;
2916 	int fd;
2917 	int index;
2918 	int error;
2919 
2920 #if defined(AUDIO_DEBUG)
2921 	const char *ioctlnames[] = {
2922 		" AUDIO_GETINFO",	/* 21 */
2923 		" AUDIO_SETINFO",	/* 22 */
2924 		" AUDIO_DRAIN",		/* 23 */
2925 		" AUDIO_FLUSH",		/* 24 */
2926 		" AUDIO_WSEEK",		/* 25 */
2927 		" AUDIO_RERROR",	/* 26 */
2928 		" AUDIO_GETDEV",	/* 27 */
2929 		" AUDIO_GETENC",	/* 28 */
2930 		" AUDIO_GETFD",		/* 29 */
2931 		" AUDIO_SETFD",		/* 30 */
2932 		" AUDIO_PERROR",	/* 31 */
2933 		" AUDIO_GETIOFFS",	/* 32 */
2934 		" AUDIO_GETOOFFS",	/* 33 */
2935 		" AUDIO_GETPROPS",	/* 34 */
2936 		" AUDIO_GETBUFINFO",	/* 35 */
2937 		" AUDIO_SETCHAN",	/* 36 */
2938 		" AUDIO_GETCHAN",	/* 37 */
2939 		" AUDIO_QUERYFORMAT",	/* 38 */
2940 		" AUDIO_GETFORMAT",	/* 39 */
2941 		" AUDIO_SETFORMAT",	/* 40 */
2942 	};
2943 	int nameidx = (cmd & 0xff);
2944 	const char *ioctlname = "";
2945 	if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2946 		ioctlname = ioctlnames[nameidx - 21];
2947 	TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2948 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2949 	    (int)curproc->p_pid, (int)l->l_lid);
2950 #endif
2951 
2952 	error = 0;
2953 	switch (cmd) {
2954 	case FIONBIO:
2955 		/* All handled in the upper FS layer. */
2956 		break;
2957 
2958 	case FIONREAD:
2959 		/* Get the number of bytes that can be read. */
2960 		if (file->rtrack) {
2961 			*(int *)addr = audio_track_readablebytes(file->rtrack);
2962 		} else {
2963 			*(int *)addr = 0;
2964 		}
2965 		break;
2966 
2967 	case FIOASYNC:
2968 		/* Set/Clear ASYNC I/O. */
2969 		if (*(int *)addr) {
2970 			file->async_audio = curproc->p_pid;
2971 			TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2972 		} else {
2973 			file->async_audio = 0;
2974 			TRACEF(2, file, "FIOASYNC off");
2975 		}
2976 		break;
2977 
2978 	case AUDIO_FLUSH:
2979 		/* XXX TODO: clear errors and restart? */
2980 		audio_file_clear(sc, file);
2981 		break;
2982 
2983 	case AUDIO_RERROR:
2984 		/*
2985 		 * Number of read bytes dropped.  We don't know where
2986 		 * or when they were dropped (including conversion stage).
2987 		 * Therefore, the number of accurate bytes or samples is
2988 		 * also unknown.
2989 		 */
2990 		track = file->rtrack;
2991 		if (track) {
2992 			*(int *)addr = frametobyte(&track->usrbuf.fmt,
2993 			    track->dropframes);
2994 		}
2995 		break;
2996 
2997 	case AUDIO_PERROR:
2998 		/*
2999 		 * Number of write bytes dropped.  We don't know where
3000 		 * or when they were dropped (including conversion stage).
3001 		 * Therefore, the number of accurate bytes or samples is
3002 		 * also unknown.
3003 		 */
3004 		track = file->ptrack;
3005 		if (track) {
3006 			*(int *)addr = frametobyte(&track->usrbuf.fmt,
3007 			    track->dropframes);
3008 		}
3009 		break;
3010 
3011 	case AUDIO_GETIOFFS:
3012 		/* XXX TODO */
3013 		ao = (struct audio_offset *)addr;
3014 		ao->samples = 0;
3015 		ao->deltablks = 0;
3016 		ao->offset = 0;
3017 		break;
3018 
3019 	case AUDIO_GETOOFFS:
3020 		ao = (struct audio_offset *)addr;
3021 		track = file->ptrack;
3022 		if (track == NULL) {
3023 			ao->samples = 0;
3024 			ao->deltablks = 0;
3025 			ao->offset = 0;
3026 			break;
3027 		}
3028 		mutex_enter(sc->sc_lock);
3029 		mutex_enter(sc->sc_intr_lock);
3030 		/* figure out where next DMA will start */
3031 		stamp = track->usrbuf_stamp;
3032 		offs = track->usrbuf.head;
3033 		mutex_exit(sc->sc_intr_lock);
3034 		mutex_exit(sc->sc_lock);
3035 
3036 		ao->samples = stamp;
3037 		ao->deltablks = (stamp / track->usrbuf_blksize) -
3038 		    (track->usrbuf_stamp_last / track->usrbuf_blksize);
3039 		track->usrbuf_stamp_last = stamp;
3040 		offs = rounddown(offs, track->usrbuf_blksize)
3041 		    + track->usrbuf_blksize;
3042 		if (offs >= track->usrbuf.capacity)
3043 			offs -= track->usrbuf.capacity;
3044 		ao->offset = offs;
3045 
3046 		TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
3047 		    ao->samples, ao->deltablks, ao->offset);
3048 		break;
3049 
3050 	case AUDIO_WSEEK:
3051 		/* XXX return value does not include outbuf one. */
3052 		if (file->ptrack)
3053 			*(u_long *)addr = file->ptrack->usrbuf.used;
3054 		break;
3055 
3056 	case AUDIO_SETINFO:
3057 		error = audio_exlock_enter(sc);
3058 		if (error)
3059 			break;
3060 		error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
3061 		if (error) {
3062 			audio_exlock_exit(sc);
3063 			break;
3064 		}
3065 		/* XXX TODO: update last_ai if /dev/sound ? */
3066 		if (ISDEVSOUND(dev))
3067 			error = audiogetinfo(sc, &sc->sc_ai, 0, file);
3068 		audio_exlock_exit(sc);
3069 		break;
3070 
3071 	case AUDIO_GETINFO:
3072 		error = audio_exlock_enter(sc);
3073 		if (error)
3074 			break;
3075 		error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
3076 		audio_exlock_exit(sc);
3077 		break;
3078 
3079 	case AUDIO_GETBUFINFO:
3080 		error = audio_exlock_enter(sc);
3081 		if (error)
3082 			break;
3083 		error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
3084 		audio_exlock_exit(sc);
3085 		break;
3086 
3087 	case AUDIO_DRAIN:
3088 		if (file->ptrack) {
3089 			mutex_enter(sc->sc_lock);
3090 			error = audio_track_drain(sc, file->ptrack);
3091 			mutex_exit(sc->sc_lock);
3092 		}
3093 		break;
3094 
3095 	case AUDIO_GETDEV:
3096 		mutex_enter(sc->sc_lock);
3097 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
3098 		mutex_exit(sc->sc_lock);
3099 		break;
3100 
3101 	case AUDIO_GETENC:
3102 		ae = (audio_encoding_t *)addr;
3103 		index = ae->index;
3104 		if (index < 0 || index >= __arraycount(audio_encodings)) {
3105 			error = EINVAL;
3106 			break;
3107 		}
3108 		*ae = audio_encodings[index];
3109 		ae->index = index;
3110 		/*
3111 		 * EMULATED always.
3112 		 * EMULATED flag at that time used to mean that it could
3113 		 * not be passed directly to the hardware as-is.  But
3114 		 * currently, all formats including hardware native is not
3115 		 * passed directly to the hardware.  So I set EMULATED
3116 		 * flag for all formats.
3117 		 */
3118 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
3119 		break;
3120 
3121 	case AUDIO_GETFD:
3122 		/*
3123 		 * Returns the current setting of full duplex mode.
3124 		 * If HW has full duplex mode and there are two mixers,
3125 		 * it is full duplex.  Otherwise half duplex.
3126 		 */
3127 		error = audio_exlock_enter(sc);
3128 		if (error)
3129 			break;
3130 		fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
3131 		    && (sc->sc_pmixer && sc->sc_rmixer);
3132 		audio_exlock_exit(sc);
3133 		*(int *)addr = fd;
3134 		break;
3135 
3136 	case AUDIO_GETPROPS:
3137 		*(int *)addr = sc->sc_props;
3138 		break;
3139 
3140 	case AUDIO_QUERYFORMAT:
3141 		query = (audio_format_query_t *)addr;
3142 		mutex_enter(sc->sc_lock);
3143 		error = sc->hw_if->query_format(sc->hw_hdl, query);
3144 		mutex_exit(sc->sc_lock);
3145 		/* Hide internal information */
3146 		query->fmt.driver_data = NULL;
3147 		break;
3148 
3149 	case AUDIO_GETFORMAT:
3150 		error = audio_exlock_enter(sc);
3151 		if (error)
3152 			break;
3153 		audio_mixers_get_format(sc, (struct audio_info *)addr);
3154 		audio_exlock_exit(sc);
3155 		break;
3156 
3157 	case AUDIO_SETFORMAT:
3158 		error = audio_exlock_enter(sc);
3159 		audio_mixers_get_format(sc, &ai);
3160 		error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3161 		if (error) {
3162 			/* Rollback */
3163 			audio_mixers_set_format(sc, &ai);
3164 		}
3165 		audio_exlock_exit(sc);
3166 		break;
3167 
3168 	case AUDIO_SETFD:
3169 	case AUDIO_SETCHAN:
3170 	case AUDIO_GETCHAN:
3171 		/* Obsoleted */
3172 		break;
3173 
3174 	default:
3175 		if (sc->hw_if->dev_ioctl) {
3176 			mutex_enter(sc->sc_lock);
3177 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3178 			    cmd, addr, flag, l);
3179 			mutex_exit(sc->sc_lock);
3180 		} else {
3181 			TRACEF(2, file, "unknown ioctl");
3182 			error = EINVAL;
3183 		}
3184 		break;
3185 	}
3186 	TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3187 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3188 	    error);
3189 	return error;
3190 }
3191 
3192 /*
3193  * Returns the number of bytes that can be read on recording buffer.
3194  */
3195 static __inline int
3196 audio_track_readablebytes(const audio_track_t *track)
3197 {
3198 	int bytes;
3199 
3200 	KASSERT(track);
3201 	KASSERT(track->mode == AUMODE_RECORD);
3202 
3203 	/*
3204 	 * Although usrbuf is primarily readable data, recorded data
3205 	 * also stays in track->input until reading.  So it is necessary
3206 	 * to add it.  track->input is in frame, usrbuf is in byte.
3207 	 */
3208 	bytes = track->usrbuf.used +
3209 	    track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3210 	return bytes;
3211 }
3212 
3213 /*
3214  * Must be called without sc_lock nor sc_exlock held.
3215  */
3216 int
3217 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3218 	audio_file_t *file)
3219 {
3220 	audio_track_t *track;
3221 	int revents;
3222 	bool in_is_valid;
3223 	bool out_is_valid;
3224 
3225 #if defined(AUDIO_DEBUG)
3226 #define POLLEV_BITMAP "\177\020" \
3227 	    "b\10WRBAND\0" \
3228 	    "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3229 	    "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3230 	char evbuf[64];
3231 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3232 	TRACEF(2, file, "pid=%d.%d events=%s",
3233 	    (int)curproc->p_pid, (int)l->l_lid, evbuf);
3234 #endif
3235 
3236 	revents = 0;
3237 	in_is_valid = false;
3238 	out_is_valid = false;
3239 	if (events & (POLLIN | POLLRDNORM)) {
3240 		track = file->rtrack;
3241 		if (track) {
3242 			int used;
3243 			in_is_valid = true;
3244 			used = audio_track_readablebytes(track);
3245 			if (used > 0)
3246 				revents |= events & (POLLIN | POLLRDNORM);
3247 		}
3248 	}
3249 	if (events & (POLLOUT | POLLWRNORM)) {
3250 		track = file->ptrack;
3251 		if (track) {
3252 			out_is_valid = true;
3253 			if (track->usrbuf.used <= track->usrbuf_usedlow)
3254 				revents |= events & (POLLOUT | POLLWRNORM);
3255 		}
3256 	}
3257 
3258 	if (revents == 0) {
3259 		mutex_enter(sc->sc_lock);
3260 		if (in_is_valid) {
3261 			TRACEF(3, file, "selrecord rsel");
3262 			selrecord(l, &sc->sc_rsel);
3263 		}
3264 		if (out_is_valid) {
3265 			TRACEF(3, file, "selrecord wsel");
3266 			selrecord(l, &sc->sc_wsel);
3267 		}
3268 		mutex_exit(sc->sc_lock);
3269 	}
3270 
3271 #if defined(AUDIO_DEBUG)
3272 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3273 	TRACEF(2, file, "revents=%s", evbuf);
3274 #endif
3275 	return revents;
3276 }
3277 
3278 static const struct filterops audioread_filtops = {
3279 	.f_isfd = 1,
3280 	.f_attach = NULL,
3281 	.f_detach = filt_audioread_detach,
3282 	.f_event = filt_audioread_event,
3283 };
3284 
3285 static void
3286 filt_audioread_detach(struct knote *kn)
3287 {
3288 	struct audio_softc *sc;
3289 	audio_file_t *file;
3290 
3291 	file = kn->kn_hook;
3292 	sc = file->sc;
3293 	TRACEF(3, file, "called");
3294 
3295 	mutex_enter(sc->sc_lock);
3296 	selremove_knote(&sc->sc_rsel, kn);
3297 	mutex_exit(sc->sc_lock);
3298 }
3299 
3300 static int
3301 filt_audioread_event(struct knote *kn, long hint)
3302 {
3303 	audio_file_t *file;
3304 	audio_track_t *track;
3305 
3306 	file = kn->kn_hook;
3307 	track = file->rtrack;
3308 
3309 	/*
3310 	 * kn_data must contain the number of bytes can be read.
3311 	 * The return value indicates whether the event occurs or not.
3312 	 */
3313 
3314 	if (track == NULL) {
3315 		/* can not read with this descriptor. */
3316 		kn->kn_data = 0;
3317 		return 0;
3318 	}
3319 
3320 	kn->kn_data = audio_track_readablebytes(track);
3321 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3322 	return kn->kn_data > 0;
3323 }
3324 
3325 static const struct filterops audiowrite_filtops = {
3326 	.f_isfd = 1,
3327 	.f_attach = NULL,
3328 	.f_detach = filt_audiowrite_detach,
3329 	.f_event = filt_audiowrite_event,
3330 };
3331 
3332 static void
3333 filt_audiowrite_detach(struct knote *kn)
3334 {
3335 	struct audio_softc *sc;
3336 	audio_file_t *file;
3337 
3338 	file = kn->kn_hook;
3339 	sc = file->sc;
3340 	TRACEF(3, file, "called");
3341 
3342 	mutex_enter(sc->sc_lock);
3343 	selremove_knote(&sc->sc_wsel, kn);
3344 	mutex_exit(sc->sc_lock);
3345 }
3346 
3347 static int
3348 filt_audiowrite_event(struct knote *kn, long hint)
3349 {
3350 	audio_file_t *file;
3351 	audio_track_t *track;
3352 
3353 	file = kn->kn_hook;
3354 	track = file->ptrack;
3355 
3356 	/*
3357 	 * kn_data must contain the number of bytes can be write.
3358 	 * The return value indicates whether the event occurs or not.
3359 	 */
3360 
3361 	if (track == NULL) {
3362 		/* can not write with this descriptor. */
3363 		kn->kn_data = 0;
3364 		return 0;
3365 	}
3366 
3367 	kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3368 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3369 	return (track->usrbuf.used < track->usrbuf_usedlow);
3370 }
3371 
3372 /*
3373  * Must be called without sc_lock nor sc_exlock held.
3374  */
3375 int
3376 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3377 {
3378 	struct selinfo *sip;
3379 
3380 	TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3381 
3382 	switch (kn->kn_filter) {
3383 	case EVFILT_READ:
3384 		sip = &sc->sc_rsel;
3385 		kn->kn_fop = &audioread_filtops;
3386 		break;
3387 
3388 	case EVFILT_WRITE:
3389 		sip = &sc->sc_wsel;
3390 		kn->kn_fop = &audiowrite_filtops;
3391 		break;
3392 
3393 	default:
3394 		return EINVAL;
3395 	}
3396 
3397 	kn->kn_hook = file;
3398 
3399 	mutex_enter(sc->sc_lock);
3400 	selrecord_knote(sip, kn);
3401 	mutex_exit(sc->sc_lock);
3402 
3403 	return 0;
3404 }
3405 
3406 /*
3407  * Must be called without sc_lock nor sc_exlock held.
3408  */
3409 int
3410 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3411 	int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3412 	audio_file_t *file)
3413 {
3414 	audio_track_t *track;
3415 	vsize_t vsize;
3416 	int error;
3417 
3418 	TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3419 
3420 	if (*offp < 0)
3421 		return EINVAL;
3422 
3423 #if 0
3424 	/* XXX
3425 	 * The idea here was to use the protection to determine if
3426 	 * we are mapping the read or write buffer, but it fails.
3427 	 * The VM system is broken in (at least) two ways.
3428 	 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3429 	 *    when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3430 	 *    has to be used for mmapping the play buffer.
3431 	 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3432 	 *    audio_mmap will get called at some point with VM_PROT_READ
3433 	 *    only.
3434 	 * So, alas, we always map the play buffer for now.
3435 	 */
3436 	if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3437 	    prot == VM_PROT_WRITE)
3438 		track = file->ptrack;
3439 	else if (prot == VM_PROT_READ)
3440 		track = file->rtrack;
3441 	else
3442 		return EINVAL;
3443 #else
3444 	track = file->ptrack;
3445 #endif
3446 	if (track == NULL)
3447 		return EACCES;
3448 
3449 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3450 	if (len > vsize)
3451 		return EOVERFLOW;
3452 	if (*offp > (uint)(vsize - len))
3453 		return EOVERFLOW;
3454 
3455 	/* XXX TODO: what happens when mmap twice. */
3456 	if (!track->mmapped) {
3457 		track->mmapped = true;
3458 
3459 		if (!track->is_pause) {
3460 			error = audio_exlock_mutex_enter(sc);
3461 			if (error)
3462 				return error;
3463 			if (sc->sc_pbusy == false)
3464 				audio_pmixer_start(sc, true);
3465 			audio_exlock_mutex_exit(sc);
3466 		}
3467 		/* XXX mmapping record buffer is not supported */
3468 	}
3469 
3470 	/* get ringbuffer */
3471 	*uobjp = track->uobj;
3472 
3473 	/* Acquire a reference for the mmap.  munmap will release. */
3474 	uao_reference(*uobjp);
3475 	*maxprotp = prot;
3476 	*advicep = UVM_ADV_RANDOM;
3477 	*flagsp = MAP_SHARED;
3478 	return 0;
3479 }
3480 
3481 /*
3482  * /dev/audioctl has to be able to open at any time without interference
3483  * with any /dev/audio or /dev/sound.
3484  * Must be called with sc_exlock held and without sc_lock held.
3485  */
3486 static int
3487 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3488 	struct lwp *l)
3489 {
3490 	struct file *fp;
3491 	audio_file_t *af;
3492 	int fd;
3493 	int error;
3494 
3495 	KASSERT(sc->sc_exlock);
3496 
3497 	TRACE(1, "called");
3498 
3499 	error = fd_allocfile(&fp, &fd);
3500 	if (error)
3501 		return error;
3502 
3503 	af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3504 	af->sc = sc;
3505 	af->dev = dev;
3506 
3507 	/* Not necessary to insert sc_files. */
3508 
3509 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
3510 	KASSERTMSG(error == EMOVEFD, "error=%d", error);
3511 
3512 	return error;
3513 }
3514 
3515 /*
3516  * Free 'mem' if available, and initialize the pointer.
3517  * For this reason, this is implemented as macro.
3518  */
3519 #define audio_free(mem)	do {	\
3520 	if (mem != NULL) {	\
3521 		kern_free(mem);	\
3522 		mem = NULL;	\
3523 	}	\
3524 } while (0)
3525 
3526 /*
3527  * (Re)allocate 'memblock' with specified 'bytes'.
3528  * bytes must not be 0.
3529  * This function never returns NULL.
3530  */
3531 static void *
3532 audio_realloc(void *memblock, size_t bytes)
3533 {
3534 
3535 	KASSERT(bytes != 0);
3536 	audio_free(memblock);
3537 	return kern_malloc(bytes, M_WAITOK);
3538 }
3539 
3540 /*
3541  * (Re)allocate usrbuf with 'newbufsize' bytes.
3542  * Use this function for usrbuf because only usrbuf can be mmapped.
3543  * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3544  * returns 0.  Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3545  * and returns errno.
3546  * It must be called before updating usrbuf.capacity.
3547  */
3548 static int
3549 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3550 {
3551 	struct audio_softc *sc;
3552 	vaddr_t vstart;
3553 	vsize_t oldvsize;
3554 	vsize_t newvsize;
3555 	int error;
3556 
3557 	KASSERT(newbufsize > 0);
3558 	sc = track->mixer->sc;
3559 
3560 	/* Get a nonzero multiple of PAGE_SIZE */
3561 	newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3562 
3563 	if (track->usrbuf.mem != NULL) {
3564 		oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3565 		    PAGE_SIZE);
3566 		if (oldvsize == newvsize) {
3567 			track->usrbuf.capacity = newbufsize;
3568 			return 0;
3569 		}
3570 		vstart = (vaddr_t)track->usrbuf.mem;
3571 		uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3572 		/* uvm_unmap also detach uobj */
3573 		track->uobj = NULL;		/* paranoia */
3574 		track->usrbuf.mem = NULL;
3575 	}
3576 
3577 	/* Create a uvm anonymous object */
3578 	track->uobj = uao_create(newvsize, 0);
3579 
3580 	/* Map it into the kernel virtual address space */
3581 	vstart = 0;
3582 	error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3583 	    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3584 	    UVM_ADV_RANDOM, 0));
3585 	if (error) {
3586 		device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3587 		uao_detach(track->uobj);	/* release reference */
3588 		goto abort;
3589 	}
3590 
3591 	error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3592 	    false, 0);
3593 	if (error) {
3594 		device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3595 		    error);
3596 		uvm_unmap(kernel_map, vstart, vstart + newvsize);
3597 		/* uvm_unmap also detach uobj */
3598 		goto abort;
3599 	}
3600 
3601 	track->usrbuf.mem = (void *)vstart;
3602 	track->usrbuf.capacity = newbufsize;
3603 	memset(track->usrbuf.mem, 0, newvsize);
3604 	return 0;
3605 
3606 	/* failure */
3607 abort:
3608 	track->uobj = NULL;		/* paranoia */
3609 	track->usrbuf.mem = NULL;
3610 	track->usrbuf.capacity = 0;
3611 	return error;
3612 }
3613 
3614 /*
3615  * Free usrbuf (if available).
3616  */
3617 static void
3618 audio_free_usrbuf(audio_track_t *track)
3619 {
3620 	vaddr_t vstart;
3621 	vsize_t vsize;
3622 
3623 	vstart = (vaddr_t)track->usrbuf.mem;
3624 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3625 	if (track->usrbuf.mem != NULL) {
3626 		/*
3627 		 * Unmap the kernel mapping.  uvm_unmap releases the
3628 		 * reference to the uvm object, and this should be the
3629 		 * last virtual mapping of the uvm object, so no need
3630 		 * to explicitly release (`detach') the object.
3631 		 */
3632 		uvm_unmap(kernel_map, vstart, vstart + vsize);
3633 
3634 		track->uobj = NULL;
3635 		track->usrbuf.mem = NULL;
3636 		track->usrbuf.capacity = 0;
3637 	}
3638 }
3639 
3640 /*
3641  * This filter changes the volume for each channel.
3642  * arg->context points track->ch_volume[].
3643  */
3644 static void
3645 audio_track_chvol(audio_filter_arg_t *arg)
3646 {
3647 	int16_t *ch_volume;
3648 	const aint_t *s;
3649 	aint_t *d;
3650 	u_int i;
3651 	u_int ch;
3652 	u_int channels;
3653 
3654 	DIAGNOSTIC_filter_arg(arg);
3655 	KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3656 	    "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3657 	    arg->srcfmt->channels, arg->dstfmt->channels);
3658 	KASSERT(arg->context != NULL);
3659 	KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3660 	    "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3661 
3662 	s = arg->src;
3663 	d = arg->dst;
3664 	ch_volume = arg->context;
3665 
3666 	channels = arg->srcfmt->channels;
3667 	for (i = 0; i < arg->count; i++) {
3668 		for (ch = 0; ch < channels; ch++) {
3669 			aint2_t val;
3670 			val = *s++;
3671 			val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3672 			*d++ = (aint_t)val;
3673 		}
3674 	}
3675 }
3676 
3677 /*
3678  * This filter performs conversion from stereo (or more channels) to mono.
3679  */
3680 static void
3681 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3682 {
3683 	const aint_t *s;
3684 	aint_t *d;
3685 	u_int i;
3686 
3687 	DIAGNOSTIC_filter_arg(arg);
3688 
3689 	s = arg->src;
3690 	d = arg->dst;
3691 
3692 	for (i = 0; i < arg->count; i++) {
3693 		*d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3694 		s += arg->srcfmt->channels;
3695 	}
3696 }
3697 
3698 /*
3699  * This filter performs conversion from mono to stereo (or more channels).
3700  */
3701 static void
3702 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3703 {
3704 	const aint_t *s;
3705 	aint_t *d;
3706 	u_int i;
3707 	u_int ch;
3708 	u_int dstchannels;
3709 
3710 	DIAGNOSTIC_filter_arg(arg);
3711 
3712 	s = arg->src;
3713 	d = arg->dst;
3714 	dstchannels = arg->dstfmt->channels;
3715 
3716 	for (i = 0; i < arg->count; i++) {
3717 		d[0] = s[0];
3718 		d[1] = s[0];
3719 		s++;
3720 		d += dstchannels;
3721 	}
3722 	if (dstchannels > 2) {
3723 		d = arg->dst;
3724 		for (i = 0; i < arg->count; i++) {
3725 			for (ch = 2; ch < dstchannels; ch++) {
3726 				d[ch] = 0;
3727 			}
3728 			d += dstchannels;
3729 		}
3730 	}
3731 }
3732 
3733 /*
3734  * This filter shrinks M channels into N channels.
3735  * Extra channels are discarded.
3736  */
3737 static void
3738 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3739 {
3740 	const aint_t *s;
3741 	aint_t *d;
3742 	u_int i;
3743 	u_int ch;
3744 
3745 	DIAGNOSTIC_filter_arg(arg);
3746 
3747 	s = arg->src;
3748 	d = arg->dst;
3749 
3750 	for (i = 0; i < arg->count; i++) {
3751 		for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3752 			*d++ = s[ch];
3753 		}
3754 		s += arg->srcfmt->channels;
3755 	}
3756 }
3757 
3758 /*
3759  * This filter expands M channels into N channels.
3760  * Silence is inserted for missing channels.
3761  */
3762 static void
3763 audio_track_chmix_expand(audio_filter_arg_t *arg)
3764 {
3765 	const aint_t *s;
3766 	aint_t *d;
3767 	u_int i;
3768 	u_int ch;
3769 	u_int srcchannels;
3770 	u_int dstchannels;
3771 
3772 	DIAGNOSTIC_filter_arg(arg);
3773 
3774 	s = arg->src;
3775 	d = arg->dst;
3776 
3777 	srcchannels = arg->srcfmt->channels;
3778 	dstchannels = arg->dstfmt->channels;
3779 	for (i = 0; i < arg->count; i++) {
3780 		for (ch = 0; ch < srcchannels; ch++) {
3781 			*d++ = *s++;
3782 		}
3783 		for (; ch < dstchannels; ch++) {
3784 			*d++ = 0;
3785 		}
3786 	}
3787 }
3788 
3789 /*
3790  * This filter performs frequency conversion (up sampling).
3791  * It uses linear interpolation.
3792  */
3793 static void
3794 audio_track_freq_up(audio_filter_arg_t *arg)
3795 {
3796 	audio_track_t *track;
3797 	audio_ring_t *src;
3798 	audio_ring_t *dst;
3799 	const aint_t *s;
3800 	aint_t *d;
3801 	aint_t prev[AUDIO_MAX_CHANNELS];
3802 	aint_t curr[AUDIO_MAX_CHANNELS];
3803 	aint_t grad[AUDIO_MAX_CHANNELS];
3804 	u_int i;
3805 	u_int t;
3806 	u_int step;
3807 	u_int channels;
3808 	u_int ch;
3809 	int srcused;
3810 
3811 	track = arg->context;
3812 	KASSERT(track);
3813 	src = &track->freq.srcbuf;
3814 	dst = track->freq.dst;
3815 	DIAGNOSTIC_ring(dst);
3816 	DIAGNOSTIC_ring(src);
3817 	KASSERT(src->used > 0);
3818 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3819 	    "src->fmt.channels=%d dst->fmt.channels=%d",
3820 	    src->fmt.channels, dst->fmt.channels);
3821 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3822 	    "src->head=%d track->mixer->frames_per_block=%d",
3823 	    src->head, track->mixer->frames_per_block);
3824 
3825 	s = arg->src;
3826 	d = arg->dst;
3827 
3828 	/*
3829 	 * In order to faciliate interpolation for each block, slide (delay)
3830 	 * input by one sample.  As a result, strictly speaking, the output
3831 	 * phase is delayed by 1/dstfreq.  However, I believe there is no
3832 	 * observable impact.
3833 	 *
3834 	 * Example)
3835 	 * srcfreq:dstfreq = 1:3
3836 	 *
3837 	 *  A - -
3838 	 *  |
3839 	 *  |
3840 	 *  |     B - -
3841 	 *  +-----+-----> input timeframe
3842 	 *  0     1
3843 	 *
3844 	 *  0     1
3845 	 *  +-----+-----> input timeframe
3846 	 *  |     A
3847 	 *  |   x   x
3848 	 *  | x       x
3849 	 *  x          (B)
3850 	 *  +-+-+-+-+-+-> output timeframe
3851 	 *  0 1 2 3 4 5
3852 	 */
3853 
3854 	/* Last samples in previous block */
3855 	channels = src->fmt.channels;
3856 	for (ch = 0; ch < channels; ch++) {
3857 		prev[ch] = track->freq_prev[ch];
3858 		curr[ch] = track->freq_curr[ch];
3859 		grad[ch] = curr[ch] - prev[ch];
3860 	}
3861 
3862 	step = track->freq_step;
3863 	t = track->freq_current;
3864 //#define FREQ_DEBUG
3865 #if defined(FREQ_DEBUG)
3866 #define PRINTF(fmt...)	printf(fmt)
3867 #else
3868 #define PRINTF(fmt...)	do { } while (0)
3869 #endif
3870 	srcused = src->used;
3871 	PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3872 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3873 	PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3874 	PRINTF(" t=%d\n", t);
3875 
3876 	for (i = 0; i < arg->count; i++) {
3877 		PRINTF("i=%d t=%5d", i, t);
3878 		if (t >= 65536) {
3879 			for (ch = 0; ch < channels; ch++) {
3880 				prev[ch] = curr[ch];
3881 				curr[ch] = *s++;
3882 				grad[ch] = curr[ch] - prev[ch];
3883 			}
3884 			PRINTF(" prev=%d s[%d]=%d",
3885 			    prev[0], src->used - srcused, curr[0]);
3886 
3887 			/* Update */
3888 			t -= 65536;
3889 			srcused--;
3890 			if (srcused < 0) {
3891 				PRINTF(" break\n");
3892 				break;
3893 			}
3894 		}
3895 
3896 		for (ch = 0; ch < channels; ch++) {
3897 			*d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3898 #if defined(FREQ_DEBUG)
3899 			if (ch == 0)
3900 				printf(" t=%5d *d=%d", t, d[-1]);
3901 #endif
3902 		}
3903 		t += step;
3904 
3905 		PRINTF("\n");
3906 	}
3907 	PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3908 
3909 	auring_take(src, src->used);
3910 	auring_push(dst, i);
3911 
3912 	/* Adjust */
3913 	t += track->freq_leap;
3914 
3915 	track->freq_current = t;
3916 	for (ch = 0; ch < channels; ch++) {
3917 		track->freq_prev[ch] = prev[ch];
3918 		track->freq_curr[ch] = curr[ch];
3919 	}
3920 }
3921 
3922 /*
3923  * This filter performs frequency conversion (down sampling).
3924  * It uses simple thinning.
3925  */
3926 static void
3927 audio_track_freq_down(audio_filter_arg_t *arg)
3928 {
3929 	audio_track_t *track;
3930 	audio_ring_t *src;
3931 	audio_ring_t *dst;
3932 	const aint_t *s0;
3933 	aint_t *d;
3934 	u_int i;
3935 	u_int t;
3936 	u_int step;
3937 	u_int ch;
3938 	u_int channels;
3939 
3940 	track = arg->context;
3941 	KASSERT(track);
3942 	src = &track->freq.srcbuf;
3943 	dst = track->freq.dst;
3944 
3945 	DIAGNOSTIC_ring(dst);
3946 	DIAGNOSTIC_ring(src);
3947 	KASSERT(src->used > 0);
3948 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3949 	    "src->fmt.channels=%d dst->fmt.channels=%d",
3950 	    src->fmt.channels, dst->fmt.channels);
3951 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3952 	    "src->head=%d track->mixer->frames_per_block=%d",
3953 	    src->head, track->mixer->frames_per_block);
3954 
3955 	s0 = arg->src;
3956 	d = arg->dst;
3957 	t = track->freq_current;
3958 	step = track->freq_step;
3959 	channels = dst->fmt.channels;
3960 	PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3961 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3962 	PRINTF(" t=%d\n", t);
3963 
3964 	for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3965 		const aint_t *s;
3966 		PRINTF("i=%4d t=%10d", i, t);
3967 		s = s0 + (t / 65536) * channels;
3968 		PRINTF(" s=%5ld", (s - s0) / channels);
3969 		for (ch = 0; ch < channels; ch++) {
3970 			if (ch == 0) PRINTF(" *s=%d", s[ch]);
3971 			*d++ = s[ch];
3972 		}
3973 		PRINTF("\n");
3974 		t += step;
3975 	}
3976 	t += track->freq_leap;
3977 	PRINTF("end t=%d\n", t);
3978 	auring_take(src, src->used);
3979 	auring_push(dst, i);
3980 	track->freq_current = t % 65536;
3981 }
3982 
3983 /*
3984  * Creates track and returns it.
3985  * Must be called without sc_lock held.
3986  */
3987 audio_track_t *
3988 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3989 {
3990 	audio_track_t *track;
3991 	static int newid = 0;
3992 
3993 	track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3994 
3995 	track->id = newid++;
3996 	track->mixer = mixer;
3997 	track->mode = mixer->mode;
3998 
3999 	/* Do TRACE after id is assigned. */
4000 	TRACET(3, track, "for %s",
4001 	    mixer->mode == AUMODE_PLAY ? "playback" : "recording");
4002 
4003 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
4004 	track->volume = 256;
4005 #endif
4006 	for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
4007 		track->ch_volume[i] = 256;
4008 	}
4009 
4010 	return track;
4011 }
4012 
4013 /*
4014  * Release all resources of the track and track itself.
4015  * track must not be NULL.  Don't specify the track within the file
4016  * structure linked from sc->sc_files.
4017  */
4018 static void
4019 audio_track_destroy(audio_track_t *track)
4020 {
4021 
4022 	KASSERT(track);
4023 
4024 	audio_free_usrbuf(track);
4025 	audio_free(track->codec.srcbuf.mem);
4026 	audio_free(track->chvol.srcbuf.mem);
4027 	audio_free(track->chmix.srcbuf.mem);
4028 	audio_free(track->freq.srcbuf.mem);
4029 	audio_free(track->outbuf.mem);
4030 
4031 	kmem_free(track, sizeof(*track));
4032 }
4033 
4034 /*
4035  * It returns encoding conversion filter according to src and dst format.
4036  * If it is not a convertible pair, it returns NULL.  Either src or dst
4037  * must be internal format.
4038  */
4039 static audio_filter_t
4040 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
4041 	const audio_format2_t *dst)
4042 {
4043 
4044 	if (audio_format2_is_internal(src)) {
4045 		if (dst->encoding == AUDIO_ENCODING_ULAW) {
4046 			return audio_internal_to_mulaw;
4047 		} else if (dst->encoding == AUDIO_ENCODING_ALAW) {
4048 			return audio_internal_to_alaw;
4049 		} else if (audio_format2_is_linear(dst)) {
4050 			switch (dst->stride) {
4051 			case 8:
4052 				return audio_internal_to_linear8;
4053 			case 16:
4054 				return audio_internal_to_linear16;
4055 #if defined(AUDIO_SUPPORT_LINEAR24)
4056 			case 24:
4057 				return audio_internal_to_linear24;
4058 #endif
4059 			case 32:
4060 				return audio_internal_to_linear32;
4061 			default:
4062 				TRACET(1, track, "unsupported %s stride %d",
4063 				    "dst", dst->stride);
4064 				goto abort;
4065 			}
4066 		}
4067 	} else if (audio_format2_is_internal(dst)) {
4068 		if (src->encoding == AUDIO_ENCODING_ULAW) {
4069 			return audio_mulaw_to_internal;
4070 		} else if (src->encoding == AUDIO_ENCODING_ALAW) {
4071 			return audio_alaw_to_internal;
4072 		} else if (audio_format2_is_linear(src)) {
4073 			switch (src->stride) {
4074 			case 8:
4075 				return audio_linear8_to_internal;
4076 			case 16:
4077 				return audio_linear16_to_internal;
4078 #if defined(AUDIO_SUPPORT_LINEAR24)
4079 			case 24:
4080 				return audio_linear24_to_internal;
4081 #endif
4082 			case 32:
4083 				return audio_linear32_to_internal;
4084 			default:
4085 				TRACET(1, track, "unsupported %s stride %d",
4086 				    "src", src->stride);
4087 				goto abort;
4088 			}
4089 		}
4090 	}
4091 
4092 	TRACET(1, track, "unsupported encoding");
4093 abort:
4094 #if defined(AUDIO_DEBUG)
4095 	if (audiodebug >= 2) {
4096 		char buf[100];
4097 		audio_format2_tostr(buf, sizeof(buf), src);
4098 		TRACET(2, track, "src %s", buf);
4099 		audio_format2_tostr(buf, sizeof(buf), dst);
4100 		TRACET(2, track, "dst %s", buf);
4101 	}
4102 #endif
4103 	return NULL;
4104 }
4105 
4106 /*
4107  * Initialize the codec stage of this track as necessary.
4108  * If successful, it initializes the codec stage as necessary, stores updated
4109  * last_dst in *last_dstp in any case, and returns 0.
4110  * Otherwise, it returns errno without modifying *last_dstp.
4111  */
4112 static int
4113 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
4114 {
4115 	audio_ring_t *last_dst;
4116 	audio_ring_t *srcbuf;
4117 	audio_format2_t *srcfmt;
4118 	audio_format2_t *dstfmt;
4119 	audio_filter_arg_t *arg;
4120 	u_int len;
4121 	int error;
4122 
4123 	KASSERT(track);
4124 
4125 	last_dst = *last_dstp;
4126 	dstfmt = &last_dst->fmt;
4127 	srcfmt = &track->inputfmt;
4128 	srcbuf = &track->codec.srcbuf;
4129 	error = 0;
4130 
4131 	if (srcfmt->encoding != dstfmt->encoding
4132 	 || srcfmt->precision != dstfmt->precision
4133 	 || srcfmt->stride != dstfmt->stride) {
4134 		track->codec.dst = last_dst;
4135 
4136 		srcbuf->fmt = *dstfmt;
4137 		srcbuf->fmt.encoding = srcfmt->encoding;
4138 		srcbuf->fmt.precision = srcfmt->precision;
4139 		srcbuf->fmt.stride = srcfmt->stride;
4140 
4141 		track->codec.filter = audio_track_get_codec(track,
4142 		    &srcbuf->fmt, dstfmt);
4143 		if (track->codec.filter == NULL) {
4144 			error = EINVAL;
4145 			goto abort;
4146 		}
4147 
4148 		srcbuf->head = 0;
4149 		srcbuf->used = 0;
4150 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4151 		len = auring_bytelen(srcbuf);
4152 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
4153 
4154 		arg = &track->codec.arg;
4155 		arg->srcfmt = &srcbuf->fmt;
4156 		arg->dstfmt = dstfmt;
4157 		arg->context = NULL;
4158 
4159 		*last_dstp = srcbuf;
4160 		return 0;
4161 	}
4162 
4163 abort:
4164 	track->codec.filter = NULL;
4165 	audio_free(srcbuf->mem);
4166 	return error;
4167 }
4168 
4169 /*
4170  * Initialize the chvol stage of this track as necessary.
4171  * If successful, it initializes the chvol stage as necessary, stores updated
4172  * last_dst in *last_dstp in any case, and returns 0.
4173  * Otherwise, it returns errno without modifying *last_dstp.
4174  */
4175 static int
4176 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4177 {
4178 	audio_ring_t *last_dst;
4179 	audio_ring_t *srcbuf;
4180 	audio_format2_t *srcfmt;
4181 	audio_format2_t *dstfmt;
4182 	audio_filter_arg_t *arg;
4183 	u_int len;
4184 	int error;
4185 
4186 	KASSERT(track);
4187 
4188 	last_dst = *last_dstp;
4189 	dstfmt = &last_dst->fmt;
4190 	srcfmt = &track->inputfmt;
4191 	srcbuf = &track->chvol.srcbuf;
4192 	error = 0;
4193 
4194 	/* Check whether channel volume conversion is necessary. */
4195 	bool use_chvol = false;
4196 	for (int ch = 0; ch < srcfmt->channels; ch++) {
4197 		if (track->ch_volume[ch] != 256) {
4198 			use_chvol = true;
4199 			break;
4200 		}
4201 	}
4202 
4203 	if (use_chvol == true) {
4204 		track->chvol.dst = last_dst;
4205 		track->chvol.filter = audio_track_chvol;
4206 
4207 		srcbuf->fmt = *dstfmt;
4208 		/* no format conversion occurs */
4209 
4210 		srcbuf->head = 0;
4211 		srcbuf->used = 0;
4212 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4213 		len = auring_bytelen(srcbuf);
4214 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
4215 
4216 		arg = &track->chvol.arg;
4217 		arg->srcfmt = &srcbuf->fmt;
4218 		arg->dstfmt = dstfmt;
4219 		arg->context = track->ch_volume;
4220 
4221 		*last_dstp = srcbuf;
4222 		return 0;
4223 	}
4224 
4225 	track->chvol.filter = NULL;
4226 	audio_free(srcbuf->mem);
4227 	return error;
4228 }
4229 
4230 /*
4231  * Initialize the chmix stage of this track as necessary.
4232  * If successful, it initializes the chmix stage as necessary, stores updated
4233  * last_dst in *last_dstp in any case, and returns 0.
4234  * Otherwise, it returns errno without modifying *last_dstp.
4235  */
4236 static int
4237 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4238 {
4239 	audio_ring_t *last_dst;
4240 	audio_ring_t *srcbuf;
4241 	audio_format2_t *srcfmt;
4242 	audio_format2_t *dstfmt;
4243 	audio_filter_arg_t *arg;
4244 	u_int srcch;
4245 	u_int dstch;
4246 	u_int len;
4247 	int error;
4248 
4249 	KASSERT(track);
4250 
4251 	last_dst = *last_dstp;
4252 	dstfmt = &last_dst->fmt;
4253 	srcfmt = &track->inputfmt;
4254 	srcbuf = &track->chmix.srcbuf;
4255 	error = 0;
4256 
4257 	srcch = srcfmt->channels;
4258 	dstch = dstfmt->channels;
4259 	if (srcch != dstch) {
4260 		track->chmix.dst = last_dst;
4261 
4262 		if (srcch >= 2 && dstch == 1) {
4263 			track->chmix.filter = audio_track_chmix_mixLR;
4264 		} else if (srcch == 1 && dstch >= 2) {
4265 			track->chmix.filter = audio_track_chmix_dupLR;
4266 		} else if (srcch > dstch) {
4267 			track->chmix.filter = audio_track_chmix_shrink;
4268 		} else {
4269 			track->chmix.filter = audio_track_chmix_expand;
4270 		}
4271 
4272 		srcbuf->fmt = *dstfmt;
4273 		srcbuf->fmt.channels = srcch;
4274 
4275 		srcbuf->head = 0;
4276 		srcbuf->used = 0;
4277 		/* XXX The buffer size should be able to calculate. */
4278 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4279 		len = auring_bytelen(srcbuf);
4280 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
4281 
4282 		arg = &track->chmix.arg;
4283 		arg->srcfmt = &srcbuf->fmt;
4284 		arg->dstfmt = dstfmt;
4285 		arg->context = NULL;
4286 
4287 		*last_dstp = srcbuf;
4288 		return 0;
4289 	}
4290 
4291 	track->chmix.filter = NULL;
4292 	audio_free(srcbuf->mem);
4293 	return error;
4294 }
4295 
4296 /*
4297  * Initialize the freq stage of this track as necessary.
4298  * If successful, it initializes the freq stage as necessary, stores updated
4299  * last_dst in *last_dstp in any case, and returns 0.
4300  * Otherwise, it returns errno without modifying *last_dstp.
4301  */
4302 static int
4303 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4304 {
4305 	audio_ring_t *last_dst;
4306 	audio_ring_t *srcbuf;
4307 	audio_format2_t *srcfmt;
4308 	audio_format2_t *dstfmt;
4309 	audio_filter_arg_t *arg;
4310 	uint32_t srcfreq;
4311 	uint32_t dstfreq;
4312 	u_int dst_capacity;
4313 	u_int mod;
4314 	u_int len;
4315 	int error;
4316 
4317 	KASSERT(track);
4318 
4319 	last_dst = *last_dstp;
4320 	dstfmt = &last_dst->fmt;
4321 	srcfmt = &track->inputfmt;
4322 	srcbuf = &track->freq.srcbuf;
4323 	error = 0;
4324 
4325 	srcfreq = srcfmt->sample_rate;
4326 	dstfreq = dstfmt->sample_rate;
4327 	if (srcfreq != dstfreq) {
4328 		track->freq.dst = last_dst;
4329 
4330 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
4331 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
4332 
4333 		/* freq_step is the ratio of src/dst when let dst 65536. */
4334 		track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4335 
4336 		dst_capacity = frame_per_block(track->mixer, dstfmt);
4337 		mod = (uint64_t)srcfreq * 65536 % dstfreq;
4338 		track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4339 
4340 		if (track->freq_step < 65536) {
4341 			track->freq.filter = audio_track_freq_up;
4342 			/* In order to carry at the first time. */
4343 			track->freq_current = 65536;
4344 		} else {
4345 			track->freq.filter = audio_track_freq_down;
4346 			track->freq_current = 0;
4347 		}
4348 
4349 		srcbuf->fmt = *dstfmt;
4350 		srcbuf->fmt.sample_rate = srcfreq;
4351 
4352 		srcbuf->head = 0;
4353 		srcbuf->used = 0;
4354 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4355 		len = auring_bytelen(srcbuf);
4356 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
4357 
4358 		arg = &track->freq.arg;
4359 		arg->srcfmt = &srcbuf->fmt;
4360 		arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4361 		arg->context = track;
4362 
4363 		*last_dstp = srcbuf;
4364 		return 0;
4365 	}
4366 
4367 	track->freq.filter = NULL;
4368 	audio_free(srcbuf->mem);
4369 	return error;
4370 }
4371 
4372 /*
4373  * When playing back: (e.g. if codec and freq stage are valid)
4374  *
4375  *               write
4376  *                | uiomove
4377  *                v
4378  *  usrbuf      [...............]  byte ring buffer (mmap-able)
4379  *                | memcpy
4380  *                v
4381  *  codec.srcbuf[....]             1 block (ring) buffer   <-- stage input
4382  *       .dst ----+
4383  *                | convert
4384  *                v
4385  *  freq.srcbuf [....]             1 block (ring) buffer
4386  *      .dst  ----+
4387  *                | convert
4388  *                v
4389  *  outbuf      [...............]  NBLKOUT blocks ring buffer
4390  *
4391  *
4392  * When recording:
4393  *
4394  *  freq.srcbuf [...............]  NBLKOUT blocks ring buffer <-- stage input
4395  *      .dst  ----+
4396  *                | convert
4397  *                v
4398  *  codec.srcbuf[.....]            1 block (ring) buffer
4399  *       .dst ----+
4400  *                | convert
4401  *                v
4402  *  outbuf      [.....]            1 block (ring) buffer
4403  *                | memcpy
4404  *                v
4405  *  usrbuf      [...............]  byte ring buffer (mmap-able *)
4406  *                | uiomove
4407  *                v
4408  *               read
4409  *
4410  *    *: usrbuf for recording is also mmap-able due to symmetry with
4411  *       playback buffer, but for now mmap will never happen for recording.
4412  */
4413 
4414 /*
4415  * Set the userland format of this track.
4416  * usrfmt argument should have been previously verified by
4417  * audio_track_setinfo_check().
4418  * This function may release and reallocate all internal conversion buffers.
4419  * It returns 0 if successful.  Otherwise it returns errno with clearing all
4420  * internal buffers.
4421  * It must be called without sc_intr_lock since uvm_* routines require non
4422  * intr_lock state.
4423  * It must be called with track lock held since it may release and reallocate
4424  * outbuf.
4425  */
4426 static int
4427 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4428 {
4429 	struct audio_softc *sc;
4430 	u_int newbufsize;
4431 	u_int oldblksize;
4432 	u_int len;
4433 	int error;
4434 
4435 	KASSERT(track);
4436 	sc = track->mixer->sc;
4437 
4438 	/* usrbuf is the closest buffer to the userland. */
4439 	track->usrbuf.fmt = *usrfmt;
4440 
4441 	/*
4442 	 * For references, one block size (in 40msec) is:
4443 	 *  320 bytes    = 204 blocks/64KB for mulaw/8kHz/1ch
4444 	 *  7680 bytes   = 8 blocks/64KB for s16/48kHz/2ch
4445 	 *  30720 bytes  = 90 KB/3blocks for s16/48kHz/8ch
4446 	 *  61440 bytes  = 180 KB/3blocks for s16/96kHz/8ch
4447 	 *  245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4448 	 *
4449 	 * For example,
4450 	 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4451 	 *     newbufsize = rounddown(65536 / 7056) = 63504
4452 	 *     newvsize = roundup2(63504, PAGE_SIZE) = 65536
4453 	 *    Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4454 	 *
4455 	 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4456 	 *     newbufsize = rounddown(65536 / 7680) = 61440
4457 	 *     newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4458 	 *    Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4459 	 */
4460 	oldblksize = track->usrbuf_blksize;
4461 	track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4462 	    frame_per_block(track->mixer, &track->usrbuf.fmt));
4463 	track->usrbuf.head = 0;
4464 	track->usrbuf.used = 0;
4465 	newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4466 	newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4467 	error = audio_realloc_usrbuf(track, newbufsize);
4468 	if (error) {
4469 		device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4470 		    newbufsize);
4471 		goto error;
4472 	}
4473 
4474 	/* Recalc water mark. */
4475 	if (track->usrbuf_blksize != oldblksize) {
4476 		if (audio_track_is_playback(track)) {
4477 			/* Set high at 100%, low at 75%.  */
4478 			track->usrbuf_usedhigh = track->usrbuf.capacity;
4479 			track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4480 		} else {
4481 			/* Set high at 100% minus 1block(?), low at 0% */
4482 			track->usrbuf_usedhigh = track->usrbuf.capacity -
4483 			    track->usrbuf_blksize;
4484 			track->usrbuf_usedlow = 0;
4485 		}
4486 	}
4487 
4488 	/* Stage buffer */
4489 	audio_ring_t *last_dst = &track->outbuf;
4490 	if (audio_track_is_playback(track)) {
4491 		/* On playback, initialize from the mixer side in order. */
4492 		track->inputfmt = *usrfmt;
4493 		track->outbuf.fmt =  track->mixer->track_fmt;
4494 
4495 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4496 			goto error;
4497 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4498 			goto error;
4499 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4500 			goto error;
4501 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4502 			goto error;
4503 	} else {
4504 		/* On recording, initialize from userland side in order. */
4505 		track->inputfmt = track->mixer->track_fmt;
4506 		track->outbuf.fmt = *usrfmt;
4507 
4508 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4509 			goto error;
4510 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4511 			goto error;
4512 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4513 			goto error;
4514 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4515 			goto error;
4516 	}
4517 #if 0
4518 	/* debug */
4519 	if (track->freq.filter) {
4520 		audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4521 		audio_print_format2("freq dst", &track->freq.dst->fmt);
4522 	}
4523 	if (track->chmix.filter) {
4524 		audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4525 		audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4526 	}
4527 	if (track->chvol.filter) {
4528 		audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4529 		audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4530 	}
4531 	if (track->codec.filter) {
4532 		audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4533 		audio_print_format2("codec dst", &track->codec.dst->fmt);
4534 	}
4535 #endif
4536 
4537 	/* Stage input buffer */
4538 	track->input = last_dst;
4539 
4540 	/*
4541 	 * On the recording track, make the first stage a ring buffer.
4542 	 * XXX is there a better way?
4543 	 */
4544 	if (audio_track_is_record(track)) {
4545 		track->input->capacity = NBLKOUT *
4546 		    frame_per_block(track->mixer, &track->input->fmt);
4547 		len = auring_bytelen(track->input);
4548 		track->input->mem = audio_realloc(track->input->mem, len);
4549 	}
4550 
4551 	/*
4552 	 * Output buffer.
4553 	 * On the playback track, its capacity is NBLKOUT blocks.
4554 	 * On the recording track, its capacity is 1 block.
4555 	 */
4556 	track->outbuf.head = 0;
4557 	track->outbuf.used = 0;
4558 	track->outbuf.capacity = frame_per_block(track->mixer,
4559 	    &track->outbuf.fmt);
4560 	if (audio_track_is_playback(track))
4561 		track->outbuf.capacity *= NBLKOUT;
4562 	len = auring_bytelen(&track->outbuf);
4563 	track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4564 	if (track->outbuf.mem == NULL) {
4565 		device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4566 		error = ENOMEM;
4567 		goto error;
4568 	}
4569 
4570 #if defined(AUDIO_DEBUG)
4571 	if (audiodebug >= 3) {
4572 		struct audio_track_debugbuf m;
4573 
4574 		memset(&m, 0, sizeof(m));
4575 		snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4576 		    track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4577 		if (track->freq.filter)
4578 			snprintf(m.freq, sizeof(m.freq), " freq=%d",
4579 			    track->freq.srcbuf.capacity *
4580 			    frametobyte(&track->freq.srcbuf.fmt, 1));
4581 		if (track->chmix.filter)
4582 			snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4583 			    track->chmix.srcbuf.capacity *
4584 			    frametobyte(&track->chmix.srcbuf.fmt, 1));
4585 		if (track->chvol.filter)
4586 			snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4587 			    track->chvol.srcbuf.capacity *
4588 			    frametobyte(&track->chvol.srcbuf.fmt, 1));
4589 		if (track->codec.filter)
4590 			snprintf(m.codec, sizeof(m.codec), " codec=%d",
4591 			    track->codec.srcbuf.capacity *
4592 			    frametobyte(&track->codec.srcbuf.fmt, 1));
4593 		snprintf(m.usrbuf, sizeof(m.usrbuf),
4594 		    " usr=%d", track->usrbuf.capacity);
4595 
4596 		if (audio_track_is_playback(track)) {
4597 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
4598 			    m.outbuf, m.freq, m.chmix,
4599 			    m.chvol, m.codec, m.usrbuf);
4600 		} else {
4601 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
4602 			    m.freq, m.chmix, m.chvol,
4603 			    m.codec, m.outbuf, m.usrbuf);
4604 		}
4605 	}
4606 #endif
4607 	return 0;
4608 
4609 error:
4610 	audio_free_usrbuf(track);
4611 	audio_free(track->codec.srcbuf.mem);
4612 	audio_free(track->chvol.srcbuf.mem);
4613 	audio_free(track->chmix.srcbuf.mem);
4614 	audio_free(track->freq.srcbuf.mem);
4615 	audio_free(track->outbuf.mem);
4616 	return error;
4617 }
4618 
4619 /*
4620  * Fill silence frames (as the internal format) up to 1 block
4621  * if the ring is not empty and less than 1 block.
4622  * It returns the number of appended frames.
4623  */
4624 static int
4625 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4626 {
4627 	int fpb;
4628 	int n;
4629 
4630 	KASSERT(track);
4631 	KASSERT(audio_format2_is_internal(&ring->fmt));
4632 
4633 	/* XXX is n correct? */
4634 	/* XXX memset uses frametobyte()? */
4635 
4636 	if (ring->used == 0)
4637 		return 0;
4638 
4639 	fpb = frame_per_block(track->mixer, &ring->fmt);
4640 	if (ring->used >= fpb)
4641 		return 0;
4642 
4643 	n = (ring->capacity - ring->used) % fpb;
4644 
4645 	KASSERTMSG(auring_get_contig_free(ring) >= n,
4646 	    "auring_get_contig_free(ring)=%d n=%d",
4647 	    auring_get_contig_free(ring), n);
4648 
4649 	memset(auring_tailptr_aint(ring), 0,
4650 	    n * ring->fmt.channels * sizeof(aint_t));
4651 	auring_push(ring, n);
4652 	return n;
4653 }
4654 
4655 /*
4656  * Execute the conversion stage.
4657  * It prepares arg from this stage and executes stage->filter.
4658  * It must be called only if stage->filter is not NULL.
4659  *
4660  * For stages other than frequency conversion, the function increments
4661  * src and dst counters here.  For frequency conversion stage, on the
4662  * other hand, the function does not touch src and dst counters and
4663  * filter side has to increment them.
4664  */
4665 static void
4666 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4667 {
4668 	audio_filter_arg_t *arg;
4669 	int srccount;
4670 	int dstcount;
4671 	int count;
4672 
4673 	KASSERT(track);
4674 	KASSERT(stage->filter);
4675 
4676 	srccount = auring_get_contig_used(&stage->srcbuf);
4677 	dstcount = auring_get_contig_free(stage->dst);
4678 
4679 	if (isfreq) {
4680 		KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4681 		count = uimin(dstcount, track->mixer->frames_per_block);
4682 	} else {
4683 		count = uimin(srccount, dstcount);
4684 	}
4685 
4686 	if (count > 0) {
4687 		arg = &stage->arg;
4688 		arg->src = auring_headptr(&stage->srcbuf);
4689 		arg->dst = auring_tailptr(stage->dst);
4690 		arg->count = count;
4691 
4692 		stage->filter(arg);
4693 
4694 		if (!isfreq) {
4695 			auring_take(&stage->srcbuf, count);
4696 			auring_push(stage->dst, count);
4697 		}
4698 	}
4699 }
4700 
4701 /*
4702  * Produce output buffer for playback from user input buffer.
4703  * It must be called only if usrbuf is not empty and outbuf is
4704  * available at least one free block.
4705  */
4706 static void
4707 audio_track_play(audio_track_t *track)
4708 {
4709 	audio_ring_t *usrbuf;
4710 	audio_ring_t *input;
4711 	int count;
4712 	int framesize;
4713 	int bytes;
4714 
4715 	KASSERT(track);
4716 	KASSERT(track->lock);
4717 	TRACET(4, track, "start pstate=%d", track->pstate);
4718 
4719 	/* At this point usrbuf must not be empty. */
4720 	KASSERT(track->usrbuf.used > 0);
4721 	/* Also, outbuf must be available at least one block. */
4722 	count = auring_get_contig_free(&track->outbuf);
4723 	KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4724 	    "count=%d fpb=%d",
4725 	    count, frame_per_block(track->mixer, &track->outbuf.fmt));
4726 
4727 	/* XXX TODO: is this necessary for now? */
4728 	int track_count_0 = track->outbuf.used;
4729 
4730 	usrbuf = &track->usrbuf;
4731 	input = track->input;
4732 
4733 	/*
4734 	 * framesize is always 1 byte or more since all formats supported as
4735 	 * usrfmt(=input) have 8bit or more stride.
4736 	 */
4737 	framesize = frametobyte(&input->fmt, 1);
4738 	KASSERT(framesize >= 1);
4739 
4740 	/* The next stage of usrbuf (=input) must be available. */
4741 	KASSERT(auring_get_contig_free(input) > 0);
4742 
4743 	/*
4744 	 * Copy usrbuf up to 1block to input buffer.
4745 	 * count is the number of frames to copy from usrbuf.
4746 	 * bytes is the number of bytes to copy from usrbuf.  However it is
4747 	 * not copied less than one frame.
4748 	 */
4749 	count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4750 	bytes = count * framesize;
4751 
4752 	track->usrbuf_stamp += bytes;
4753 
4754 	if (usrbuf->head + bytes < usrbuf->capacity) {
4755 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4756 		    (uint8_t *)usrbuf->mem + usrbuf->head,
4757 		    bytes);
4758 		auring_push(input, count);
4759 		auring_take(usrbuf, bytes);
4760 	} else {
4761 		int bytes1;
4762 		int bytes2;
4763 
4764 		bytes1 = auring_get_contig_used(usrbuf);
4765 		KASSERTMSG(bytes1 % framesize == 0,
4766 		    "bytes1=%d framesize=%d", bytes1, framesize);
4767 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4768 		    (uint8_t *)usrbuf->mem + usrbuf->head,
4769 		    bytes1);
4770 		auring_push(input, bytes1 / framesize);
4771 		auring_take(usrbuf, bytes1);
4772 
4773 		bytes2 = bytes - bytes1;
4774 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4775 		    (uint8_t *)usrbuf->mem + usrbuf->head,
4776 		    bytes2);
4777 		auring_push(input, bytes2 / framesize);
4778 		auring_take(usrbuf, bytes2);
4779 	}
4780 
4781 	/* Encoding conversion */
4782 	if (track->codec.filter)
4783 		audio_apply_stage(track, &track->codec, false);
4784 
4785 	/* Channel volume */
4786 	if (track->chvol.filter)
4787 		audio_apply_stage(track, &track->chvol, false);
4788 
4789 	/* Channel mix */
4790 	if (track->chmix.filter)
4791 		audio_apply_stage(track, &track->chmix, false);
4792 
4793 	/* Frequency conversion */
4794 	/*
4795 	 * Since the frequency conversion needs correction for each block,
4796 	 * it rounds up to 1 block.
4797 	 */
4798 	if (track->freq.filter) {
4799 		int n;
4800 		n = audio_append_silence(track, &track->freq.srcbuf);
4801 		if (n > 0) {
4802 			TRACET(4, track,
4803 			    "freq.srcbuf add silence %d -> %d/%d/%d",
4804 			    n,
4805 			    track->freq.srcbuf.head,
4806 			    track->freq.srcbuf.used,
4807 			    track->freq.srcbuf.capacity);
4808 		}
4809 		if (track->freq.srcbuf.used > 0) {
4810 			audio_apply_stage(track, &track->freq, true);
4811 		}
4812 	}
4813 
4814 	if (bytes < track->usrbuf_blksize) {
4815 		/*
4816 		 * Clear all conversion buffer pointer if the conversion was
4817 		 * not exactly one block.  These conversion stage buffers are
4818 		 * certainly circular buffers because of symmetry with the
4819 		 * previous and next stage buffer.  However, since they are
4820 		 * treated as simple contiguous buffers in operation, so head
4821 		 * always should point 0.  This may happen during drain-age.
4822 		 */
4823 		TRACET(4, track, "reset stage");
4824 		if (track->codec.filter) {
4825 			KASSERT(track->codec.srcbuf.used == 0);
4826 			track->codec.srcbuf.head = 0;
4827 		}
4828 		if (track->chvol.filter) {
4829 			KASSERT(track->chvol.srcbuf.used == 0);
4830 			track->chvol.srcbuf.head = 0;
4831 		}
4832 		if (track->chmix.filter) {
4833 			KASSERT(track->chmix.srcbuf.used == 0);
4834 			track->chmix.srcbuf.head = 0;
4835 		}
4836 		if (track->freq.filter) {
4837 			KASSERT(track->freq.srcbuf.used == 0);
4838 			track->freq.srcbuf.head = 0;
4839 		}
4840 	}
4841 
4842 	if (track->input == &track->outbuf) {
4843 		track->outputcounter = track->inputcounter;
4844 	} else {
4845 		track->outputcounter += track->outbuf.used - track_count_0;
4846 	}
4847 
4848 #if defined(AUDIO_DEBUG)
4849 	if (audiodebug >= 3) {
4850 		struct audio_track_debugbuf m;
4851 		audio_track_bufstat(track, &m);
4852 		TRACET(0, track, "end%s%s%s%s%s%s",
4853 		    m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4854 	}
4855 #endif
4856 }
4857 
4858 /*
4859  * Produce user output buffer for recording from input buffer.
4860  */
4861 static void
4862 audio_track_record(audio_track_t *track)
4863 {
4864 	audio_ring_t *outbuf;
4865 	audio_ring_t *usrbuf;
4866 	int count;
4867 	int bytes;
4868 	int framesize;
4869 
4870 	KASSERT(track);
4871 	KASSERT(track->lock);
4872 
4873 	/* Number of frames to process */
4874 	count = auring_get_contig_used(track->input);
4875 	count = uimin(count, track->mixer->frames_per_block);
4876 	if (count == 0) {
4877 		TRACET(4, track, "count == 0");
4878 		return;
4879 	}
4880 
4881 	/* Frequency conversion */
4882 	if (track->freq.filter) {
4883 		if (track->freq.srcbuf.used > 0) {
4884 			audio_apply_stage(track, &track->freq, true);
4885 			/* XXX should input of freq be from beginning of buf? */
4886 		}
4887 	}
4888 
4889 	/* Channel mix */
4890 	if (track->chmix.filter)
4891 		audio_apply_stage(track, &track->chmix, false);
4892 
4893 	/* Channel volume */
4894 	if (track->chvol.filter)
4895 		audio_apply_stage(track, &track->chvol, false);
4896 
4897 	/* Encoding conversion */
4898 	if (track->codec.filter)
4899 		audio_apply_stage(track, &track->codec, false);
4900 
4901 	/* Copy outbuf to usrbuf */
4902 	outbuf = &track->outbuf;
4903 	usrbuf = &track->usrbuf;
4904 	/*
4905 	 * framesize is always 1 byte or more since all formats supported
4906 	 * as usrfmt(=output) have 8bit or more stride.
4907 	 */
4908 	framesize = frametobyte(&outbuf->fmt, 1);
4909 	KASSERT(framesize >= 1);
4910 	/*
4911 	 * count is the number of frames to copy to usrbuf.
4912 	 * bytes is the number of bytes to copy to usrbuf.
4913 	 */
4914 	count = outbuf->used;
4915 	count = uimin(count,
4916 	    (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4917 	bytes = count * framesize;
4918 	if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4919 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4920 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
4921 		    bytes);
4922 		auring_push(usrbuf, bytes);
4923 		auring_take(outbuf, count);
4924 	} else {
4925 		int bytes1;
4926 		int bytes2;
4927 
4928 		bytes1 = auring_get_contig_free(usrbuf);
4929 		KASSERTMSG(bytes1 % framesize == 0,
4930 		    "bytes1=%d framesize=%d", bytes1, framesize);
4931 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4932 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
4933 		    bytes1);
4934 		auring_push(usrbuf, bytes1);
4935 		auring_take(outbuf, bytes1 / framesize);
4936 
4937 		bytes2 = bytes - bytes1;
4938 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4939 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
4940 		    bytes2);
4941 		auring_push(usrbuf, bytes2);
4942 		auring_take(outbuf, bytes2 / framesize);
4943 	}
4944 
4945 	/* XXX TODO: any counters here? */
4946 
4947 #if defined(AUDIO_DEBUG)
4948 	if (audiodebug >= 3) {
4949 		struct audio_track_debugbuf m;
4950 		audio_track_bufstat(track, &m);
4951 		TRACET(0, track, "end%s%s%s%s%s%s",
4952 		    m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4953 	}
4954 #endif
4955 }
4956 
4957 /*
4958  * Calculate blktime [msec] from mixer(.hwbuf.fmt).
4959  * Must be called with sc_exlock held.
4960  */
4961 static u_int
4962 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4963 {
4964 	audio_format2_t *fmt;
4965 	u_int blktime;
4966 	u_int frames_per_block;
4967 
4968 	KASSERT(sc->sc_exlock);
4969 
4970 	fmt = &mixer->hwbuf.fmt;
4971 	blktime = sc->sc_blk_ms;
4972 
4973 	/*
4974 	 * If stride is not multiples of 8, special treatment is necessary.
4975 	 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4976 	 */
4977 	if (fmt->stride == 4) {
4978 		frames_per_block = fmt->sample_rate * blktime / 1000;
4979 		if ((frames_per_block & 1) != 0)
4980 			blktime *= 2;
4981 	}
4982 #ifdef DIAGNOSTIC
4983 	else if (fmt->stride % NBBY != 0) {
4984 		panic("unsupported HW stride %d", fmt->stride);
4985 	}
4986 #endif
4987 
4988 	return blktime;
4989 }
4990 
4991 /*
4992  * Initialize the mixer corresponding to the mode.
4993  * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4994  * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4995  * This function returns 0 on successful.  Otherwise returns errno.
4996  * Must be called with sc_exlock held and without sc_lock held.
4997  */
4998 static int
4999 audio_mixer_init(struct audio_softc *sc, int mode,
5000 	const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
5001 {
5002 	char codecbuf[64];
5003 	char blkdmsbuf[8];
5004 	audio_trackmixer_t *mixer;
5005 	void (*softint_handler)(void *);
5006 	int len;
5007 	int blksize;
5008 	int capacity;
5009 	size_t bufsize;
5010 	int hwblks;
5011 	int blkms;
5012 	int blkdms;
5013 	int error;
5014 
5015 	KASSERT(hwfmt != NULL);
5016 	KASSERT(reg != NULL);
5017 	KASSERT(sc->sc_exlock);
5018 
5019 	error = 0;
5020 	if (mode == AUMODE_PLAY)
5021 		mixer = sc->sc_pmixer;
5022 	else
5023 		mixer = sc->sc_rmixer;
5024 
5025 	mixer->sc = sc;
5026 	mixer->mode = mode;
5027 
5028 	mixer->hwbuf.fmt = *hwfmt;
5029 	mixer->volume = 256;
5030 	mixer->blktime_d = 1000;
5031 	mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
5032 	sc->sc_blk_ms = mixer->blktime_n;
5033 	hwblks = NBLKHW;
5034 
5035 	mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
5036 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5037 	if (sc->hw_if->round_blocksize) {
5038 		int rounded;
5039 		audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
5040 		mutex_enter(sc->sc_lock);
5041 		rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
5042 		    mode, &p);
5043 		mutex_exit(sc->sc_lock);
5044 		TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
5045 		if (rounded != blksize) {
5046 			if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
5047 			    mixer->hwbuf.fmt.channels) != 0) {
5048 				audio_printf(sc,
5049 				    "round_blocksize returned blocksize "
5050 				    "indivisible by framesize: "
5051 				    "blksize=%d rounded=%d "
5052 				    "stride=%ubit channels=%u\n",
5053 				    blksize, rounded,
5054 				    mixer->hwbuf.fmt.stride,
5055 				    mixer->hwbuf.fmt.channels);
5056 				return EINVAL;
5057 			}
5058 			/* Recalculation */
5059 			blksize = rounded;
5060 			mixer->frames_per_block = blksize * NBBY /
5061 			    (mixer->hwbuf.fmt.stride *
5062 			     mixer->hwbuf.fmt.channels);
5063 		}
5064 	}
5065 	mixer->blktime_n = mixer->frames_per_block;
5066 	mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
5067 
5068 	capacity = mixer->frames_per_block * hwblks;
5069 	bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
5070 	if (sc->hw_if->round_buffersize) {
5071 		size_t rounded;
5072 		mutex_enter(sc->sc_lock);
5073 		rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
5074 		    bufsize);
5075 		mutex_exit(sc->sc_lock);
5076 		TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
5077 		if (rounded < bufsize) {
5078 			/* buffersize needs NBLKHW blocks at least. */
5079 			audio_printf(sc,
5080 			    "round_buffersize returned too small buffersize: "
5081 			    "buffersize=%zd blksize=%d\n",
5082 			    rounded, blksize);
5083 			return EINVAL;
5084 		}
5085 		if (rounded % blksize != 0) {
5086 			/* buffersize/blksize constraint mismatch? */
5087 			audio_printf(sc,
5088 			    "round_buffersize returned buffersize indivisible "
5089 			    "by blksize: buffersize=%zu blksize=%d\n",
5090 			    rounded, blksize);
5091 			return EINVAL;
5092 		}
5093 		if (rounded != bufsize) {
5094 			/* Recalculation */
5095 			bufsize = rounded;
5096 			hwblks = bufsize / blksize;
5097 			capacity = mixer->frames_per_block * hwblks;
5098 		}
5099 	}
5100 	TRACE(1, "buffersize for %s = %zu",
5101 	    (mode == AUMODE_PLAY) ? "playback" : "recording",
5102 	    bufsize);
5103 	mixer->hwbuf.capacity = capacity;
5104 
5105 	if (sc->hw_if->allocm) {
5106 		/* sc_lock is not necessary for allocm */
5107 		mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
5108 		if (mixer->hwbuf.mem == NULL) {
5109 			audio_printf(sc, "allocm(%zu) failed\n", bufsize);
5110 			return ENOMEM;
5111 		}
5112 	} else {
5113 		mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
5114 	}
5115 
5116 	/* From here, audio_mixer_destroy is necessary to exit. */
5117 	if (mode == AUMODE_PLAY) {
5118 		cv_init(&mixer->outcv, "audiowr");
5119 	} else {
5120 		cv_init(&mixer->outcv, "audiord");
5121 	}
5122 
5123 	if (mode == AUMODE_PLAY) {
5124 		softint_handler = audio_softintr_wr;
5125 	} else {
5126 		softint_handler = audio_softintr_rd;
5127 	}
5128 	mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
5129 	    softint_handler, sc);
5130 	if (mixer->sih == NULL) {
5131 		device_printf(sc->sc_dev, "softint_establish failed\n");
5132 		goto abort;
5133 	}
5134 
5135 	mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5136 	mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5137 	mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5138 	mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5139 	mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5140 
5141 	if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5142 	    mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5143 		mixer->swap_endian = true;
5144 		TRACE(1, "swap_endian");
5145 	}
5146 
5147 	if (mode == AUMODE_PLAY) {
5148 		/* Mixing buffer */
5149 		mixer->mixfmt = mixer->track_fmt;
5150 		mixer->mixfmt.precision *= 2;
5151 		mixer->mixfmt.stride *= 2;
5152 		/* XXX TODO: use some macros? */
5153 		len = mixer->frames_per_block * mixer->mixfmt.channels *
5154 		    mixer->mixfmt.stride / NBBY;
5155 		mixer->mixsample = audio_realloc(mixer->mixsample, len);
5156 	} else {
5157 		/* No mixing buffer for recording */
5158 	}
5159 
5160 	if (reg->codec) {
5161 		mixer->codec = reg->codec;
5162 		mixer->codecarg.context = reg->context;
5163 		if (mode == AUMODE_PLAY) {
5164 			mixer->codecarg.srcfmt = &mixer->track_fmt;
5165 			mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5166 		} else {
5167 			mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5168 			mixer->codecarg.dstfmt = &mixer->track_fmt;
5169 		}
5170 		mixer->codecbuf.fmt = mixer->track_fmt;
5171 		mixer->codecbuf.capacity = mixer->frames_per_block;
5172 		len = auring_bytelen(&mixer->codecbuf);
5173 		mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5174 		if (mixer->codecbuf.mem == NULL) {
5175 			device_printf(sc->sc_dev,
5176 			    "malloc codecbuf(%d) failed\n", len);
5177 			error = ENOMEM;
5178 			goto abort;
5179 		}
5180 	}
5181 
5182 	/* Succeeded so display it. */
5183 	codecbuf[0] = '\0';
5184 	if (mixer->codec || mixer->swap_endian) {
5185 		snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5186 		    (mode == AUMODE_PLAY) ? "->" : "<-",
5187 		    audio_encoding_name(mixer->hwbuf.fmt.encoding),
5188 		    mixer->hwbuf.fmt.precision);
5189 	}
5190 	blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5191 	blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5192 	blkdmsbuf[0] = '\0';
5193 	if (blkdms != 0) {
5194 		snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5195 	}
5196 	aprint_normal_dev(sc->sc_dev,
5197 	    "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5198 	    audio_encoding_name(mixer->track_fmt.encoding),
5199 	    mixer->track_fmt.precision,
5200 	    codecbuf,
5201 	    mixer->track_fmt.channels,
5202 	    mixer->track_fmt.sample_rate,
5203 	    blksize,
5204 	    blkms, blkdmsbuf,
5205 	    (mode == AUMODE_PLAY) ? "playback" : "recording");
5206 
5207 	return 0;
5208 
5209 abort:
5210 	audio_mixer_destroy(sc, mixer);
5211 	return error;
5212 }
5213 
5214 /*
5215  * Releases all resources of 'mixer'.
5216  * Note that it does not release the memory area of 'mixer' itself.
5217  * Must be called with sc_exlock held and without sc_lock held.
5218  */
5219 static void
5220 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5221 {
5222 	int bufsize;
5223 
5224 	KASSERT(sc->sc_exlock == 1);
5225 
5226 	bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5227 
5228 	if (mixer->hwbuf.mem != NULL) {
5229 		if (sc->hw_if->freem) {
5230 			/* sc_lock is not necessary for freem */
5231 			sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5232 		} else {
5233 			kmem_free(mixer->hwbuf.mem, bufsize);
5234 		}
5235 		mixer->hwbuf.mem = NULL;
5236 	}
5237 
5238 	audio_free(mixer->codecbuf.mem);
5239 	audio_free(mixer->mixsample);
5240 
5241 	cv_destroy(&mixer->outcv);
5242 
5243 	if (mixer->sih) {
5244 		softint_disestablish(mixer->sih);
5245 		mixer->sih = NULL;
5246 	}
5247 }
5248 
5249 /*
5250  * Starts playback mixer.
5251  * Must be called only if sc_pbusy is false.
5252  * Must be called with sc_lock && sc_exlock held.
5253  * Must not be called from the interrupt context.
5254  */
5255 static void
5256 audio_pmixer_start(struct audio_softc *sc, bool force)
5257 {
5258 	audio_trackmixer_t *mixer;
5259 	int minimum;
5260 
5261 	KASSERT(mutex_owned(sc->sc_lock));
5262 	KASSERT(sc->sc_exlock);
5263 	KASSERT(sc->sc_pbusy == false);
5264 
5265 	mutex_enter(sc->sc_intr_lock);
5266 
5267 	mixer = sc->sc_pmixer;
5268 	TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5269 	    (audiodebug >= 3) ? "begin " : "",
5270 	    (int)mixer->mixseq, (int)mixer->hwseq,
5271 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5272 	    force ? " force" : "");
5273 
5274 	/* Need two blocks to start normally. */
5275 	minimum = (force) ? 1 : 2;
5276 	while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5277 		audio_pmixer_process(sc);
5278 	}
5279 
5280 	/* Start output */
5281 	audio_pmixer_output(sc);
5282 	sc->sc_pbusy = true;
5283 
5284 	TRACE(3, "end   mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5285 	    (int)mixer->mixseq, (int)mixer->hwseq,
5286 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5287 
5288 	mutex_exit(sc->sc_intr_lock);
5289 }
5290 
5291 /*
5292  * When playing back with MD filter:
5293  *
5294  *           track track ...
5295  *               v v
5296  *                +  mix (with aint2_t)
5297  *                |  master volume (with aint2_t)
5298  *                v
5299  *    mixsample [::::]                  wide-int 1 block (ring) buffer
5300  *                |
5301  *                |  convert aint2_t -> aint_t
5302  *                v
5303  *    codecbuf  [....]                  1 block (ring) buffer
5304  *                |
5305  *                |  convert to hw format
5306  *                v
5307  *    hwbuf     [............]          NBLKHW blocks ring buffer
5308  *
5309  * When playing back without MD filter:
5310  *
5311  *    mixsample [::::]                  wide-int 1 block (ring) buffer
5312  *                |
5313  *                |  convert aint2_t -> aint_t
5314  *                |  (with byte swap if necessary)
5315  *                v
5316  *    hwbuf     [............]          NBLKHW blocks ring buffer
5317  *
5318  * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5319  * codecbuf:  slinear_NE, internal precision,      HW ch, HW freq.
5320  * hwbuf:     HW encoding, HW precision,           HW ch, HW freq.
5321  */
5322 
5323 /*
5324  * Performs track mixing and converts it to hwbuf.
5325  * Note that this function doesn't transfer hwbuf to hardware.
5326  * Must be called with sc_intr_lock held.
5327  */
5328 static void
5329 audio_pmixer_process(struct audio_softc *sc)
5330 {
5331 	audio_trackmixer_t *mixer;
5332 	audio_file_t *f;
5333 	int frame_count;
5334 	int sample_count;
5335 	int mixed;
5336 	int i;
5337 	aint2_t *m;
5338 	aint_t *h;
5339 
5340 	mixer = sc->sc_pmixer;
5341 
5342 	frame_count = mixer->frames_per_block;
5343 	KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5344 	    "auring_get_contig_free()=%d frame_count=%d",
5345 	    auring_get_contig_free(&mixer->hwbuf), frame_count);
5346 	sample_count = frame_count * mixer->mixfmt.channels;
5347 
5348 	mixer->mixseq++;
5349 
5350 	/* Mix all tracks */
5351 	mixed = 0;
5352 	SLIST_FOREACH(f, &sc->sc_files, entry) {
5353 		audio_track_t *track = f->ptrack;
5354 
5355 		if (track == NULL)
5356 			continue;
5357 
5358 		if (track->is_pause) {
5359 			TRACET(4, track, "skip; paused");
5360 			continue;
5361 		}
5362 
5363 		/* Skip if the track is used by process context. */
5364 		if (audio_track_lock_tryenter(track) == false) {
5365 			TRACET(4, track, "skip; in use");
5366 			continue;
5367 		}
5368 
5369 		/* Emulate mmap'ped track */
5370 		if (track->mmapped) {
5371 			auring_push(&track->usrbuf, track->usrbuf_blksize);
5372 			TRACET(4, track, "mmap; usr=%d/%d/C%d",
5373 			    track->usrbuf.head,
5374 			    track->usrbuf.used,
5375 			    track->usrbuf.capacity);
5376 		}
5377 
5378 		if (track->outbuf.used < mixer->frames_per_block &&
5379 		    track->usrbuf.used > 0) {
5380 			TRACET(4, track, "process");
5381 			audio_track_play(track);
5382 		}
5383 
5384 		if (track->outbuf.used > 0) {
5385 			mixed = audio_pmixer_mix_track(mixer, track, mixed);
5386 		} else {
5387 			TRACET(4, track, "skip; empty");
5388 		}
5389 
5390 		audio_track_lock_exit(track);
5391 	}
5392 
5393 	if (mixed == 0) {
5394 		/* Silence */
5395 		memset(mixer->mixsample, 0,
5396 		    frametobyte(&mixer->mixfmt, frame_count));
5397 	} else {
5398 		if (mixed > 1) {
5399 			/* If there are multiple tracks, do auto gain control */
5400 			audio_pmixer_agc(mixer, sample_count);
5401 		}
5402 
5403 		/* Apply master volume */
5404 		if (mixer->volume < 256) {
5405 			m = mixer->mixsample;
5406 			for (i = 0; i < sample_count; i++) {
5407 				*m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5408 				m++;
5409 			}
5410 
5411 			/*
5412 			 * Recover the volume gradually at the pace of
5413 			 * several times per second.  If it's too fast, you
5414 			 * can recognize that the volume changes up and down
5415 			 * quickly and it's not so comfortable.
5416 			 */
5417 			mixer->voltimer += mixer->blktime_n;
5418 			if (mixer->voltimer * 4 >= mixer->blktime_d) {
5419 				mixer->volume++;
5420 				mixer->voltimer = 0;
5421 #if defined(AUDIO_DEBUG_AGC)
5422 				TRACE(1, "volume recover: %d", mixer->volume);
5423 #endif
5424 			}
5425 		}
5426 	}
5427 
5428 	/*
5429 	 * The rest is the hardware part.
5430 	 */
5431 
5432 	if (mixer->codec) {
5433 		h = auring_tailptr_aint(&mixer->codecbuf);
5434 	} else {
5435 		h = auring_tailptr_aint(&mixer->hwbuf);
5436 	}
5437 
5438 	m = mixer->mixsample;
5439 	if (mixer->swap_endian) {
5440 		for (i = 0; i < sample_count; i++) {
5441 			*h++ = bswap16(*m++);
5442 		}
5443 	} else {
5444 		for (i = 0; i < sample_count; i++) {
5445 			*h++ = *m++;
5446 		}
5447 	}
5448 
5449 	/* Hardware driver's codec */
5450 	if (mixer->codec) {
5451 		auring_push(&mixer->codecbuf, frame_count);
5452 		mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5453 		mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5454 		mixer->codecarg.count = frame_count;
5455 		mixer->codec(&mixer->codecarg);
5456 		auring_take(&mixer->codecbuf, mixer->codecarg.count);
5457 	}
5458 
5459 	auring_push(&mixer->hwbuf, frame_count);
5460 
5461 	TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5462 	    (int)mixer->mixseq,
5463 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5464 	    (mixed == 0) ? " silent" : "");
5465 }
5466 
5467 /*
5468  * Do auto gain control.
5469  * Must be called sc_intr_lock held.
5470  */
5471 static void
5472 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5473 {
5474 	struct audio_softc *sc __unused;
5475 	aint2_t val;
5476 	aint2_t maxval;
5477 	aint2_t minval;
5478 	aint2_t over_plus;
5479 	aint2_t over_minus;
5480 	aint2_t *m;
5481 	int newvol;
5482 	int i;
5483 
5484 	sc = mixer->sc;
5485 
5486 	/* Overflow detection */
5487 	maxval = AINT_T_MAX;
5488 	minval = AINT_T_MIN;
5489 	m = mixer->mixsample;
5490 	for (i = 0; i < sample_count; i++) {
5491 		val = *m++;
5492 		if (val > maxval)
5493 			maxval = val;
5494 		else if (val < minval)
5495 			minval = val;
5496 	}
5497 
5498 	/* Absolute value of overflowed amount */
5499 	over_plus = maxval - AINT_T_MAX;
5500 	over_minus = AINT_T_MIN - minval;
5501 
5502 	if (over_plus > 0 || over_minus > 0) {
5503 		if (over_plus > over_minus) {
5504 			newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5505 		} else {
5506 			newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5507 		}
5508 
5509 		/*
5510 		 * Change the volume only if new one is smaller.
5511 		 * Reset the timer even if the volume isn't changed.
5512 		 */
5513 		if (newvol <= mixer->volume) {
5514 			mixer->volume = newvol;
5515 			mixer->voltimer = 0;
5516 #if defined(AUDIO_DEBUG_AGC)
5517 			TRACE(1, "auto volume adjust: %d", mixer->volume);
5518 #endif
5519 		}
5520 	}
5521 }
5522 
5523 /*
5524  * Mix one track.
5525  * 'mixed' specifies the number of tracks mixed so far.
5526  * It returns the number of tracks mixed.  In other words, it returns
5527  * mixed + 1 if this track is mixed.
5528  */
5529 static int
5530 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5531 	int mixed)
5532 {
5533 	int count;
5534 	int sample_count;
5535 	int remain;
5536 	int i;
5537 	const aint_t *s;
5538 	aint2_t *d;
5539 
5540 	/* XXX TODO: Is this necessary for now? */
5541 	if (mixer->mixseq < track->seq)
5542 		return mixed;
5543 
5544 	count = auring_get_contig_used(&track->outbuf);
5545 	count = uimin(count, mixer->frames_per_block);
5546 
5547 	s = auring_headptr_aint(&track->outbuf);
5548 	d = mixer->mixsample;
5549 
5550 	/*
5551 	 * Apply track volume with double-sized integer and perform
5552 	 * additive synthesis.
5553 	 *
5554 	 * XXX If you limit the track volume to 1.0 or less (<= 256),
5555 	 *     it would be better to do this in the track conversion stage
5556 	 *     rather than here.  However, if you accept the volume to
5557 	 *     be greater than 1.0 (> 256), it's better to do it here.
5558 	 *     Because the operation here is done by double-sized integer.
5559 	 */
5560 	sample_count = count * mixer->mixfmt.channels;
5561 	if (mixed == 0) {
5562 		/* If this is the first track, assignment can be used. */
5563 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5564 		if (track->volume != 256) {
5565 			for (i = 0; i < sample_count; i++) {
5566 				aint2_t v;
5567 				v = *s++;
5568 				*d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5569 			}
5570 		} else
5571 #endif
5572 		{
5573 			for (i = 0; i < sample_count; i++) {
5574 				*d++ = ((aint2_t)*s++);
5575 			}
5576 		}
5577 		/* Fill silence if the first track is not filled. */
5578 		for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5579 			*d++ = 0;
5580 	} else {
5581 		/* If this is the second or later, add it. */
5582 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5583 		if (track->volume != 256) {
5584 			for (i = 0; i < sample_count; i++) {
5585 				aint2_t v;
5586 				v = *s++;
5587 				*d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5588 			}
5589 		} else
5590 #endif
5591 		{
5592 			for (i = 0; i < sample_count; i++) {
5593 				*d++ += ((aint2_t)*s++);
5594 			}
5595 		}
5596 	}
5597 
5598 	auring_take(&track->outbuf, count);
5599 	/*
5600 	 * The counters have to align block even if outbuf is less than
5601 	 * one block. XXX Is this still necessary?
5602 	 */
5603 	remain = mixer->frames_per_block - count;
5604 	if (__predict_false(remain != 0)) {
5605 		auring_push(&track->outbuf, remain);
5606 		auring_take(&track->outbuf, remain);
5607 	}
5608 
5609 	/*
5610 	 * Update track sequence.
5611 	 * mixseq has previous value yet at this point.
5612 	 */
5613 	track->seq = mixer->mixseq + 1;
5614 
5615 	return mixed + 1;
5616 }
5617 
5618 /*
5619  * Output one block from hwbuf to HW.
5620  * Must be called with sc_intr_lock held.
5621  */
5622 static void
5623 audio_pmixer_output(struct audio_softc *sc)
5624 {
5625 	audio_trackmixer_t *mixer;
5626 	audio_params_t params;
5627 	void *start;
5628 	void *end;
5629 	int blksize;
5630 	int error;
5631 
5632 	mixer = sc->sc_pmixer;
5633 	TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5634 	    sc->sc_pbusy,
5635 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5636 	KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5637 	    "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5638 	    mixer->hwbuf.used, mixer->frames_per_block);
5639 
5640 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5641 
5642 	if (sc->hw_if->trigger_output) {
5643 		/* trigger (at once) */
5644 		if (!sc->sc_pbusy) {
5645 			start = mixer->hwbuf.mem;
5646 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5647 			params = format2_to_params(&mixer->hwbuf.fmt);
5648 
5649 			error = sc->hw_if->trigger_output(sc->hw_hdl,
5650 			    start, end, blksize, audio_pintr, sc, &params);
5651 			if (error) {
5652 				audio_printf(sc,
5653 				    "trigger_output failed: errno=%d\n",
5654 				    error);
5655 				return;
5656 			}
5657 		}
5658 	} else {
5659 		/* start (everytime) */
5660 		start = auring_headptr(&mixer->hwbuf);
5661 
5662 		error = sc->hw_if->start_output(sc->hw_hdl,
5663 		    start, blksize, audio_pintr, sc);
5664 		if (error) {
5665 			audio_printf(sc,
5666 			    "start_output failed: errno=%d\n", error);
5667 			return;
5668 		}
5669 	}
5670 }
5671 
5672 /*
5673  * This is an interrupt handler for playback.
5674  * It is called with sc_intr_lock held.
5675  *
5676  * It is usually called from hardware interrupt.  However, note that
5677  * for some drivers (e.g. uaudio) it is called from software interrupt.
5678  */
5679 static void
5680 audio_pintr(void *arg)
5681 {
5682 	struct audio_softc *sc;
5683 	audio_trackmixer_t *mixer;
5684 
5685 	sc = arg;
5686 	KASSERT(mutex_owned(sc->sc_intr_lock));
5687 
5688 	if (sc->sc_dying)
5689 		return;
5690 	if (sc->sc_pbusy == false) {
5691 #if defined(DIAGNOSTIC)
5692 		audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5693 		    device_xname(sc->hw_dev));
5694 #endif
5695 		return;
5696 	}
5697 
5698 	mixer = sc->sc_pmixer;
5699 	mixer->hw_complete_counter += mixer->frames_per_block;
5700 	mixer->hwseq++;
5701 
5702 	auring_take(&mixer->hwbuf, mixer->frames_per_block);
5703 
5704 	TRACE(4,
5705 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5706 	    mixer->hwseq, mixer->hw_complete_counter,
5707 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5708 
5709 #if defined(AUDIO_HW_SINGLE_BUFFER)
5710 	/*
5711 	 * Create a new block here and output it immediately.
5712 	 * It makes a latency lower but needs machine power.
5713 	 */
5714 	audio_pmixer_process(sc);
5715 	audio_pmixer_output(sc);
5716 #else
5717 	/*
5718 	 * It is called when block N output is done.
5719 	 * Output immediately block N+1 created by the last interrupt.
5720 	 * And then create block N+2 for the next interrupt.
5721 	 * This method makes playback robust even on slower machines.
5722 	 * Instead the latency is increased by one block.
5723 	 */
5724 
5725 	/* At first, output ready block. */
5726 	if (mixer->hwbuf.used >= mixer->frames_per_block) {
5727 		audio_pmixer_output(sc);
5728 	}
5729 
5730 	bool later = false;
5731 
5732 	if (mixer->hwbuf.used < mixer->frames_per_block) {
5733 		later = true;
5734 	}
5735 
5736 	/* Then, process next block. */
5737 	audio_pmixer_process(sc);
5738 
5739 	if (later) {
5740 		audio_pmixer_output(sc);
5741 	}
5742 #endif
5743 
5744 	/*
5745 	 * When this interrupt is the real hardware interrupt, disabling
5746 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
5747 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
5748 	 */
5749 	kpreempt_disable();
5750 	softint_schedule(mixer->sih);
5751 	kpreempt_enable();
5752 }
5753 
5754 /*
5755  * Starts record mixer.
5756  * Must be called only if sc_rbusy is false.
5757  * Must be called with sc_lock && sc_exlock held.
5758  * Must not be called from the interrupt context.
5759  */
5760 static void
5761 audio_rmixer_start(struct audio_softc *sc)
5762 {
5763 
5764 	KASSERT(mutex_owned(sc->sc_lock));
5765 	KASSERT(sc->sc_exlock);
5766 	KASSERT(sc->sc_rbusy == false);
5767 
5768 	mutex_enter(sc->sc_intr_lock);
5769 
5770 	TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5771 	audio_rmixer_input(sc);
5772 	sc->sc_rbusy = true;
5773 	TRACE(3, "end");
5774 
5775 	mutex_exit(sc->sc_intr_lock);
5776 }
5777 
5778 /*
5779  * When recording with MD filter:
5780  *
5781  *    hwbuf     [............]          NBLKHW blocks ring buffer
5782  *                |
5783  *                | convert from hw format
5784  *                v
5785  *    codecbuf  [....]                  1 block (ring) buffer
5786  *               |  |
5787  *               v  v
5788  *            track track ...
5789  *
5790  * When recording without MD filter:
5791  *
5792  *    hwbuf     [............]          NBLKHW blocks ring buffer
5793  *               |  |
5794  *               v  v
5795  *            track track ...
5796  *
5797  * hwbuf:     HW encoding, HW precision, HW ch, HW freq.
5798  * codecbuf:  slinear_NE, internal precision, HW ch, HW freq.
5799  */
5800 
5801 /*
5802  * Distribute a recorded block to all recording tracks.
5803  */
5804 static void
5805 audio_rmixer_process(struct audio_softc *sc)
5806 {
5807 	audio_trackmixer_t *mixer;
5808 	audio_ring_t *mixersrc;
5809 	audio_file_t *f;
5810 	aint_t *p;
5811 	int count;
5812 	int bytes;
5813 	int i;
5814 
5815 	mixer = sc->sc_rmixer;
5816 
5817 	/*
5818 	 * count is the number of frames to be retrieved this time.
5819 	 * count should be one block.
5820 	 */
5821 	count = auring_get_contig_used(&mixer->hwbuf);
5822 	count = uimin(count, mixer->frames_per_block);
5823 	if (count <= 0) {
5824 		TRACE(4, "count %d: too short", count);
5825 		return;
5826 	}
5827 	bytes = frametobyte(&mixer->track_fmt, count);
5828 
5829 	/* Hardware driver's codec */
5830 	if (mixer->codec) {
5831 		mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5832 		mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5833 		mixer->codecarg.count = count;
5834 		mixer->codec(&mixer->codecarg);
5835 		auring_take(&mixer->hwbuf, mixer->codecarg.count);
5836 		auring_push(&mixer->codecbuf, mixer->codecarg.count);
5837 		mixersrc = &mixer->codecbuf;
5838 	} else {
5839 		mixersrc = &mixer->hwbuf;
5840 	}
5841 
5842 	if (mixer->swap_endian) {
5843 		/* inplace conversion */
5844 		p = auring_headptr_aint(mixersrc);
5845 		for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5846 			*p = bswap16(*p);
5847 		}
5848 	}
5849 
5850 	/* Distribute to all tracks. */
5851 	SLIST_FOREACH(f, &sc->sc_files, entry) {
5852 		audio_track_t *track = f->rtrack;
5853 		audio_ring_t *input;
5854 
5855 		if (track == NULL)
5856 			continue;
5857 
5858 		if (track->is_pause) {
5859 			TRACET(4, track, "skip; paused");
5860 			continue;
5861 		}
5862 
5863 		if (audio_track_lock_tryenter(track) == false) {
5864 			TRACET(4, track, "skip; in use");
5865 			continue;
5866 		}
5867 
5868 		/* If the track buffer is full, discard the oldest one? */
5869 		input = track->input;
5870 		if (input->capacity - input->used < mixer->frames_per_block) {
5871 			int drops = mixer->frames_per_block -
5872 			    (input->capacity - input->used);
5873 			track->dropframes += drops;
5874 			TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5875 			    drops,
5876 			    input->head, input->used, input->capacity);
5877 			auring_take(input, drops);
5878 		}
5879 		KASSERTMSG(input->used % mixer->frames_per_block == 0,
5880 		    "input->used=%d mixer->frames_per_block=%d",
5881 		    input->used, mixer->frames_per_block);
5882 
5883 		memcpy(auring_tailptr_aint(input),
5884 		    auring_headptr_aint(mixersrc),
5885 		    bytes);
5886 		auring_push(input, count);
5887 
5888 		/* XXX sequence counter? */
5889 
5890 		audio_track_lock_exit(track);
5891 	}
5892 
5893 	auring_take(mixersrc, count);
5894 }
5895 
5896 /*
5897  * Input one block from HW to hwbuf.
5898  * Must be called with sc_intr_lock held.
5899  */
5900 static void
5901 audio_rmixer_input(struct audio_softc *sc)
5902 {
5903 	audio_trackmixer_t *mixer;
5904 	audio_params_t params;
5905 	void *start;
5906 	void *end;
5907 	int blksize;
5908 	int error;
5909 
5910 	mixer = sc->sc_rmixer;
5911 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5912 
5913 	if (sc->hw_if->trigger_input) {
5914 		/* trigger (at once) */
5915 		if (!sc->sc_rbusy) {
5916 			start = mixer->hwbuf.mem;
5917 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5918 			params = format2_to_params(&mixer->hwbuf.fmt);
5919 
5920 			error = sc->hw_if->trigger_input(sc->hw_hdl,
5921 			    start, end, blksize, audio_rintr, sc, &params);
5922 			if (error) {
5923 				audio_printf(sc,
5924 				    "trigger_input failed: errno=%d\n",
5925 				    error);
5926 				return;
5927 			}
5928 		}
5929 	} else {
5930 		/* start (everytime) */
5931 		start = auring_tailptr(&mixer->hwbuf);
5932 
5933 		error = sc->hw_if->start_input(sc->hw_hdl,
5934 		    start, blksize, audio_rintr, sc);
5935 		if (error) {
5936 			audio_printf(sc,
5937 			    "start_input failed: errno=%d\n", error);
5938 			return;
5939 		}
5940 	}
5941 }
5942 
5943 /*
5944  * This is an interrupt handler for recording.
5945  * It is called with sc_intr_lock.
5946  *
5947  * It is usually called from hardware interrupt.  However, note that
5948  * for some drivers (e.g. uaudio) it is called from software interrupt.
5949  */
5950 static void
5951 audio_rintr(void *arg)
5952 {
5953 	struct audio_softc *sc;
5954 	audio_trackmixer_t *mixer;
5955 
5956 	sc = arg;
5957 	KASSERT(mutex_owned(sc->sc_intr_lock));
5958 
5959 	if (sc->sc_dying)
5960 		return;
5961 	if (sc->sc_rbusy == false) {
5962 #if defined(DIAGNOSTIC)
5963 		audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5964 		    device_xname(sc->hw_dev));
5965 #endif
5966 		return;
5967 	}
5968 
5969 	mixer = sc->sc_rmixer;
5970 	mixer->hw_complete_counter += mixer->frames_per_block;
5971 	mixer->hwseq++;
5972 
5973 	auring_push(&mixer->hwbuf, mixer->frames_per_block);
5974 
5975 	TRACE(4,
5976 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5977 	    mixer->hwseq, mixer->hw_complete_counter,
5978 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5979 
5980 	/* Distrubute recorded block */
5981 	audio_rmixer_process(sc);
5982 
5983 	/* Request next block */
5984 	audio_rmixer_input(sc);
5985 
5986 	/*
5987 	 * When this interrupt is the real hardware interrupt, disabling
5988 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
5989 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
5990 	 */
5991 	kpreempt_disable();
5992 	softint_schedule(mixer->sih);
5993 	kpreempt_enable();
5994 }
5995 
5996 /*
5997  * Halts playback mixer.
5998  * This function also clears related parameters, so call this function
5999  * instead of calling halt_output directly.
6000  * Must be called only if sc_pbusy is true.
6001  * Must be called with sc_lock && sc_exlock held.
6002  */
6003 static int
6004 audio_pmixer_halt(struct audio_softc *sc)
6005 {
6006 	int error;
6007 
6008 	TRACE(2, "called");
6009 	KASSERT(mutex_owned(sc->sc_lock));
6010 	KASSERT(sc->sc_exlock);
6011 
6012 	mutex_enter(sc->sc_intr_lock);
6013 	error = sc->hw_if->halt_output(sc->hw_hdl);
6014 
6015 	/* Halts anyway even if some error has occurred. */
6016 	sc->sc_pbusy = false;
6017 	sc->sc_pmixer->hwbuf.head = 0;
6018 	sc->sc_pmixer->hwbuf.used = 0;
6019 	sc->sc_pmixer->mixseq = 0;
6020 	sc->sc_pmixer->hwseq = 0;
6021 	mutex_exit(sc->sc_intr_lock);
6022 
6023 	return error;
6024 }
6025 
6026 /*
6027  * Halts recording mixer.
6028  * This function also clears related parameters, so call this function
6029  * instead of calling halt_input directly.
6030  * Must be called only if sc_rbusy is true.
6031  * Must be called with sc_lock && sc_exlock held.
6032  */
6033 static int
6034 audio_rmixer_halt(struct audio_softc *sc)
6035 {
6036 	int error;
6037 
6038 	TRACE(2, "called");
6039 	KASSERT(mutex_owned(sc->sc_lock));
6040 	KASSERT(sc->sc_exlock);
6041 
6042 	mutex_enter(sc->sc_intr_lock);
6043 	error = sc->hw_if->halt_input(sc->hw_hdl);
6044 
6045 	/* Halts anyway even if some error has occurred. */
6046 	sc->sc_rbusy = false;
6047 	sc->sc_rmixer->hwbuf.head = 0;
6048 	sc->sc_rmixer->hwbuf.used = 0;
6049 	sc->sc_rmixer->mixseq = 0;
6050 	sc->sc_rmixer->hwseq = 0;
6051 	mutex_exit(sc->sc_intr_lock);
6052 
6053 	return error;
6054 }
6055 
6056 /*
6057  * Flush this track.
6058  * Halts all operations, clears all buffers, reset error counters.
6059  * XXX I'm not sure...
6060  */
6061 static void
6062 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
6063 {
6064 
6065 	KASSERT(track);
6066 	TRACET(3, track, "clear");
6067 
6068 	audio_track_lock_enter(track);
6069 
6070 	track->usrbuf.used = 0;
6071 	/* Clear all internal parameters. */
6072 	if (track->codec.filter) {
6073 		track->codec.srcbuf.used = 0;
6074 		track->codec.srcbuf.head = 0;
6075 	}
6076 	if (track->chvol.filter) {
6077 		track->chvol.srcbuf.used = 0;
6078 		track->chvol.srcbuf.head = 0;
6079 	}
6080 	if (track->chmix.filter) {
6081 		track->chmix.srcbuf.used = 0;
6082 		track->chmix.srcbuf.head = 0;
6083 	}
6084 	if (track->freq.filter) {
6085 		track->freq.srcbuf.used = 0;
6086 		track->freq.srcbuf.head = 0;
6087 		if (track->freq_step < 65536)
6088 			track->freq_current = 65536;
6089 		else
6090 			track->freq_current = 0;
6091 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
6092 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
6093 	}
6094 	/* Clear buffer, then operation halts naturally. */
6095 	track->outbuf.used = 0;
6096 
6097 	/* Clear counters. */
6098 	track->dropframes = 0;
6099 
6100 	audio_track_lock_exit(track);
6101 }
6102 
6103 /*
6104  * Drain the track.
6105  * track must be present and for playback.
6106  * If successful, it returns 0.  Otherwise returns errno.
6107  * Must be called with sc_lock held.
6108  */
6109 static int
6110 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
6111 {
6112 	audio_trackmixer_t *mixer;
6113 	int done;
6114 	int error;
6115 
6116 	KASSERT(track);
6117 	TRACET(3, track, "start");
6118 	mixer = track->mixer;
6119 	KASSERT(mutex_owned(sc->sc_lock));
6120 
6121 	/* Ignore them if pause. */
6122 	if (track->is_pause) {
6123 		TRACET(3, track, "pause -> clear");
6124 		track->pstate = AUDIO_STATE_CLEAR;
6125 	}
6126 	/* Terminate early here if there is no data in the track. */
6127 	if (track->pstate == AUDIO_STATE_CLEAR) {
6128 		TRACET(3, track, "no need to drain");
6129 		return 0;
6130 	}
6131 	track->pstate = AUDIO_STATE_DRAINING;
6132 
6133 	for (;;) {
6134 		/* I want to display it before condition evaluation. */
6135 		TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6136 		    (int)curproc->p_pid, (int)curlwp->l_lid,
6137 		    (int)track->seq, (int)mixer->hwseq,
6138 		    track->outbuf.head, track->outbuf.used,
6139 		    track->outbuf.capacity);
6140 
6141 		/* Condition to terminate */
6142 		audio_track_lock_enter(track);
6143 		done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6144 		    track->outbuf.used == 0 &&
6145 		    track->seq <= mixer->hwseq);
6146 		audio_track_lock_exit(track);
6147 		if (done)
6148 			break;
6149 
6150 		TRACET(3, track, "sleep");
6151 		error = audio_track_waitio(sc, track);
6152 		if (error)
6153 			return error;
6154 
6155 		/* XXX call audio_track_play here ? */
6156 	}
6157 
6158 	track->pstate = AUDIO_STATE_CLEAR;
6159 	TRACET(3, track, "done trk_inp=%d trk_out=%d",
6160 		(int)track->inputcounter, (int)track->outputcounter);
6161 	return 0;
6162 }
6163 
6164 /*
6165  * Send signal to process.
6166  * This is intended to be called only from audio_softintr_{rd,wr}.
6167  * Must be called without sc_intr_lock held.
6168  */
6169 static inline void
6170 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6171 {
6172 	proc_t *p;
6173 
6174 	KASSERT(pid != 0);
6175 
6176 	/*
6177 	 * psignal() must be called without spin lock held.
6178 	 */
6179 
6180 	mutex_enter(&proc_lock);
6181 	p = proc_find(pid);
6182 	if (p)
6183 		psignal(p, signum);
6184 	mutex_exit(&proc_lock);
6185 }
6186 
6187 /*
6188  * This is software interrupt handler for record.
6189  * It is called from recording hardware interrupt everytime.
6190  * It does:
6191  * - Deliver SIGIO for all async processes.
6192  * - Notify to audio_read() that data has arrived.
6193  * - selnotify() for select/poll-ing processes.
6194  */
6195 /*
6196  * XXX If a process issues FIOASYNC between hardware interrupt and
6197  *     software interrupt, (stray) SIGIO will be sent to the process
6198  *     despite the fact that it has not receive recorded data yet.
6199  */
6200 static void
6201 audio_softintr_rd(void *cookie)
6202 {
6203 	struct audio_softc *sc = cookie;
6204 	audio_file_t *f;
6205 	pid_t pid;
6206 
6207 	mutex_enter(sc->sc_lock);
6208 
6209 	SLIST_FOREACH(f, &sc->sc_files, entry) {
6210 		audio_track_t *track = f->rtrack;
6211 
6212 		if (track == NULL)
6213 			continue;
6214 
6215 		TRACET(4, track, "broadcast; inp=%d/%d/%d",
6216 		    track->input->head,
6217 		    track->input->used,
6218 		    track->input->capacity);
6219 
6220 		pid = f->async_audio;
6221 		if (pid != 0) {
6222 			TRACEF(4, f, "sending SIGIO %d", pid);
6223 			audio_psignal(sc, pid, SIGIO);
6224 		}
6225 	}
6226 
6227 	/* Notify that data has arrived. */
6228 	selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6229 	cv_broadcast(&sc->sc_rmixer->outcv);
6230 
6231 	mutex_exit(sc->sc_lock);
6232 }
6233 
6234 /*
6235  * This is software interrupt handler for playback.
6236  * It is called from playback hardware interrupt everytime.
6237  * It does:
6238  * - Deliver SIGIO for all async and writable (used < lowat) processes.
6239  * - Notify to audio_write() that outbuf block available.
6240  * - selnotify() for select/poll-ing processes if there are any writable
6241  *   (used < lowat) processes.  Checking each descriptor will be done by
6242  *   filt_audiowrite_event().
6243  */
6244 static void
6245 audio_softintr_wr(void *cookie)
6246 {
6247 	struct audio_softc *sc = cookie;
6248 	audio_file_t *f;
6249 	bool found;
6250 	pid_t pid;
6251 
6252 	TRACE(4, "called");
6253 	found = false;
6254 
6255 	mutex_enter(sc->sc_lock);
6256 
6257 	SLIST_FOREACH(f, &sc->sc_files, entry) {
6258 		audio_track_t *track = f->ptrack;
6259 
6260 		if (track == NULL)
6261 			continue;
6262 
6263 		TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6264 		    (int)track->seq,
6265 		    track->outbuf.head,
6266 		    track->outbuf.used,
6267 		    track->outbuf.capacity);
6268 
6269 		/*
6270 		 * Send a signal if the process is async mode and
6271 		 * used is lower than lowat.
6272 		 */
6273 		if (track->usrbuf.used <= track->usrbuf_usedlow &&
6274 		    !track->is_pause) {
6275 			/* For selnotify */
6276 			found = true;
6277 			/* For SIGIO */
6278 			pid = f->async_audio;
6279 			if (pid != 0) {
6280 				TRACEF(4, f, "sending SIGIO %d", pid);
6281 				audio_psignal(sc, pid, SIGIO);
6282 			}
6283 		}
6284 	}
6285 
6286 	/*
6287 	 * Notify for select/poll when someone become writable.
6288 	 * It needs sc_lock (and not sc_intr_lock).
6289 	 */
6290 	if (found) {
6291 		TRACE(4, "selnotify");
6292 		selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6293 	}
6294 
6295 	/* Notify to audio_write() that outbuf available. */
6296 	cv_broadcast(&sc->sc_pmixer->outcv);
6297 
6298 	mutex_exit(sc->sc_lock);
6299 }
6300 
6301 /*
6302  * Check (and convert) the format *p came from userland.
6303  * If successful, it writes back the converted format to *p if necessary and
6304  * returns 0.  Otherwise returns errno (*p may be changed even in this case).
6305  */
6306 static int
6307 audio_check_params(audio_format2_t *p)
6308 {
6309 
6310 	/*
6311 	 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6312 	 *
6313 	 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6314 	 * So, it's always signed, as in SunOS.
6315 	 *
6316 	 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6317 	 * So, it's always unsigned, as in SunOS.
6318 	 */
6319 	if (p->encoding == AUDIO_ENCODING_PCM16) {
6320 		p->encoding = AUDIO_ENCODING_SLINEAR;
6321 	} else if (p->encoding == AUDIO_ENCODING_PCM8) {
6322 		if (p->precision == 8)
6323 			p->encoding = AUDIO_ENCODING_ULINEAR;
6324 		else
6325 			return EINVAL;
6326 	}
6327 
6328 	/*
6329 	 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6330 	 * suffix.
6331 	 */
6332 	if (p->encoding == AUDIO_ENCODING_SLINEAR)
6333 		p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6334 	if (p->encoding == AUDIO_ENCODING_ULINEAR)
6335 		p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6336 
6337 	switch (p->encoding) {
6338 	case AUDIO_ENCODING_ULAW:
6339 	case AUDIO_ENCODING_ALAW:
6340 		if (p->precision != 8)
6341 			return EINVAL;
6342 		break;
6343 	case AUDIO_ENCODING_ADPCM:
6344 		if (p->precision != 4 && p->precision != 8)
6345 			return EINVAL;
6346 		break;
6347 	case AUDIO_ENCODING_SLINEAR_LE:
6348 	case AUDIO_ENCODING_SLINEAR_BE:
6349 	case AUDIO_ENCODING_ULINEAR_LE:
6350 	case AUDIO_ENCODING_ULINEAR_BE:
6351 		if (p->precision !=  8 && p->precision != 16 &&
6352 		    p->precision != 24 && p->precision != 32)
6353 			return EINVAL;
6354 
6355 		/* 8bit format does not have endianness. */
6356 		if (p->precision == 8) {
6357 			if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6358 				p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6359 			if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6360 				p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6361 		}
6362 
6363 		if (p->precision > p->stride)
6364 			return EINVAL;
6365 		break;
6366 	case AUDIO_ENCODING_MPEG_L1_STREAM:
6367 	case AUDIO_ENCODING_MPEG_L1_PACKETS:
6368 	case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6369 	case AUDIO_ENCODING_MPEG_L2_STREAM:
6370 	case AUDIO_ENCODING_MPEG_L2_PACKETS:
6371 	case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6372 	case AUDIO_ENCODING_AC3:
6373 		break;
6374 	default:
6375 		return EINVAL;
6376 	}
6377 
6378 	/* sanity check # of channels*/
6379 	if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6380 		return EINVAL;
6381 
6382 	return 0;
6383 }
6384 
6385 /*
6386  * Initialize playback and record mixers.
6387  * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6388  * phwfmt and rhwfmt indicate the hardware format.  pfil and rfil indicate
6389  * the filter registration information.  These four must not be NULL.
6390  * If successful returns 0.  Otherwise returns errno.
6391  * Must be called with sc_exlock held and without sc_lock held.
6392  * Must not be called if there are any tracks.
6393  * Caller should check that the initialization succeed by whether
6394  * sc_[pr]mixer is not NULL.
6395  */
6396 static int
6397 audio_mixers_init(struct audio_softc *sc, int mode,
6398 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6399 	const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6400 {
6401 	int error;
6402 
6403 	KASSERT(phwfmt != NULL);
6404 	KASSERT(rhwfmt != NULL);
6405 	KASSERT(pfil != NULL);
6406 	KASSERT(rfil != NULL);
6407 	KASSERT(sc->sc_exlock);
6408 
6409 	if ((mode & AUMODE_PLAY)) {
6410 		if (sc->sc_pmixer == NULL) {
6411 			sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6412 			    KM_SLEEP);
6413 		} else {
6414 			/* destroy() doesn't free memory. */
6415 			audio_mixer_destroy(sc, sc->sc_pmixer);
6416 			memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6417 		}
6418 		error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6419 		if (error) {
6420 			/* audio_mixer_init already displayed error code */
6421 			audio_printf(sc, "configuring playback mode failed\n");
6422 			kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6423 			sc->sc_pmixer = NULL;
6424 			return error;
6425 		}
6426 	}
6427 	if ((mode & AUMODE_RECORD)) {
6428 		if (sc->sc_rmixer == NULL) {
6429 			sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6430 			    KM_SLEEP);
6431 		} else {
6432 			/* destroy() doesn't free memory. */
6433 			audio_mixer_destroy(sc, sc->sc_rmixer);
6434 			memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6435 		}
6436 		error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6437 		if (error) {
6438 			/* audio_mixer_init already displayed error code */
6439 			audio_printf(sc, "configuring record mode failed\n");
6440 			kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6441 			sc->sc_rmixer = NULL;
6442 			return error;
6443 		}
6444 	}
6445 
6446 	return 0;
6447 }
6448 
6449 /*
6450  * Select a frequency.
6451  * Prioritize 48kHz and 44.1kHz.  Otherwise choose the highest one.
6452  * XXX Better algorithm?
6453  */
6454 static int
6455 audio_select_freq(const struct audio_format *fmt)
6456 {
6457 	int freq;
6458 	int high;
6459 	int low;
6460 	int j;
6461 
6462 	if (fmt->frequency_type == 0) {
6463 		low = fmt->frequency[0];
6464 		high = fmt->frequency[1];
6465 		freq = 48000;
6466 		if (low <= freq && freq <= high) {
6467 			return freq;
6468 		}
6469 		freq = 44100;
6470 		if (low <= freq && freq <= high) {
6471 			return freq;
6472 		}
6473 		return high;
6474 	} else {
6475 		for (j = 0; j < fmt->frequency_type; j++) {
6476 			if (fmt->frequency[j] == 48000) {
6477 				return fmt->frequency[j];
6478 			}
6479 		}
6480 		high = 0;
6481 		for (j = 0; j < fmt->frequency_type; j++) {
6482 			if (fmt->frequency[j] == 44100) {
6483 				return fmt->frequency[j];
6484 			}
6485 			if (fmt->frequency[j] > high) {
6486 				high = fmt->frequency[j];
6487 			}
6488 		}
6489 		return high;
6490 	}
6491 }
6492 
6493 /*
6494  * Choose the most preferred hardware format.
6495  * If successful, it will store the chosen format into *cand and return 0.
6496  * Otherwise, return errno.
6497  * Must be called without sc_lock held.
6498  */
6499 static int
6500 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6501 {
6502 	audio_format_query_t query;
6503 	int cand_score;
6504 	int score;
6505 	int i;
6506 	int error;
6507 
6508 	/*
6509 	 * Score each formats and choose the highest one.
6510 	 *
6511 	 *                 +---- priority(0-3)
6512 	 *                 |+--- encoding/precision
6513 	 *                 ||+-- channels
6514 	 * score = 0x000000PEC
6515 	 */
6516 
6517 	cand_score = 0;
6518 	for (i = 0; ; i++) {
6519 		memset(&query, 0, sizeof(query));
6520 		query.index = i;
6521 
6522 		mutex_enter(sc->sc_lock);
6523 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
6524 		mutex_exit(sc->sc_lock);
6525 		if (error == EINVAL)
6526 			break;
6527 		if (error)
6528 			return error;
6529 
6530 #if defined(AUDIO_DEBUG)
6531 		DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6532 		    (query.fmt.mode & AUMODE_PLAY)   ? 'P' : '-',
6533 		    (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6534 		    query.fmt.priority,
6535 		    audio_encoding_name(query.fmt.encoding),
6536 		    query.fmt.validbits,
6537 		    query.fmt.precision,
6538 		    query.fmt.channels);
6539 		if (query.fmt.frequency_type == 0) {
6540 			DPRINTF(1, "{%d-%d",
6541 			    query.fmt.frequency[0], query.fmt.frequency[1]);
6542 		} else {
6543 			int j;
6544 			for (j = 0; j < query.fmt.frequency_type; j++) {
6545 				DPRINTF(1, "%c%d",
6546 				    (j == 0) ? '{' : ',',
6547 				    query.fmt.frequency[j]);
6548 			}
6549 		}
6550 		DPRINTF(1, "}\n");
6551 #endif
6552 
6553 		if ((query.fmt.mode & mode) == 0) {
6554 			DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6555 			    mode);
6556 			continue;
6557 		}
6558 
6559 		if (query.fmt.priority < 0) {
6560 			DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6561 			continue;
6562 		}
6563 
6564 		/* Score */
6565 		score = (query.fmt.priority & 3) * 0x100;
6566 		if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6567 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6568 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
6569 			score += 0x20;
6570 		} else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6571 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6572 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
6573 			score += 0x10;
6574 		}
6575 		score += query.fmt.channels;
6576 
6577 		if (score < cand_score) {
6578 			DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6579 			    score, cand_score);
6580 			continue;
6581 		}
6582 
6583 		/* Update candidate */
6584 		cand_score = score;
6585 		cand->encoding    = query.fmt.encoding;
6586 		cand->precision   = query.fmt.validbits;
6587 		cand->stride      = query.fmt.precision;
6588 		cand->channels    = query.fmt.channels;
6589 		cand->sample_rate = audio_select_freq(&query.fmt);
6590 		DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6591 		    " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6592 		    cand_score, query.fmt.priority,
6593 		    audio_encoding_name(query.fmt.encoding),
6594 		    cand->precision, cand->stride,
6595 		    cand->channels, cand->sample_rate);
6596 	}
6597 
6598 	if (cand_score == 0) {
6599 		DPRINTF(1, "%s no fmt\n", __func__);
6600 		return ENXIO;
6601 	}
6602 	DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6603 	    audio_encoding_name(cand->encoding),
6604 	    cand->precision, cand->stride, cand->channels, cand->sample_rate);
6605 	return 0;
6606 }
6607 
6608 /*
6609  * Validate fmt with query_format.
6610  * If fmt is included in the result of query_format, returns 0.
6611  * Otherwise returns EINVAL.
6612  * Must be called without sc_lock held.
6613  */
6614 static int
6615 audio_hw_validate_format(struct audio_softc *sc, int mode,
6616 	const audio_format2_t *fmt)
6617 {
6618 	audio_format_query_t query;
6619 	struct audio_format *q;
6620 	int index;
6621 	int error;
6622 	int j;
6623 
6624 	for (index = 0; ; index++) {
6625 		query.index = index;
6626 		mutex_enter(sc->sc_lock);
6627 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
6628 		mutex_exit(sc->sc_lock);
6629 		if (error == EINVAL)
6630 			break;
6631 		if (error)
6632 			return error;
6633 
6634 		q = &query.fmt;
6635 		/*
6636 		 * Note that fmt is audio_format2_t (precision/stride) but
6637 		 * q is audio_format_t (validbits/precision).
6638 		 */
6639 		if ((q->mode & mode) == 0) {
6640 			continue;
6641 		}
6642 		if (fmt->encoding != q->encoding) {
6643 			continue;
6644 		}
6645 		if (fmt->precision != q->validbits) {
6646 			continue;
6647 		}
6648 		if (fmt->stride != q->precision) {
6649 			continue;
6650 		}
6651 		if (fmt->channels != q->channels) {
6652 			continue;
6653 		}
6654 		if (q->frequency_type == 0) {
6655 			if (fmt->sample_rate < q->frequency[0] ||
6656 			    fmt->sample_rate > q->frequency[1]) {
6657 				continue;
6658 			}
6659 		} else {
6660 			for (j = 0; j < q->frequency_type; j++) {
6661 				if (fmt->sample_rate == q->frequency[j])
6662 					break;
6663 			}
6664 			if (j == query.fmt.frequency_type) {
6665 				continue;
6666 			}
6667 		}
6668 
6669 		/* Matched. */
6670 		return 0;
6671 	}
6672 
6673 	return EINVAL;
6674 }
6675 
6676 /*
6677  * Set track mixer's format depending on ai->mode.
6678  * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6679  * with ai.play.*.
6680  * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6681  * with ai.record.*.
6682  * All other fields in ai are ignored.
6683  * If successful returns 0.  Otherwise returns errno.
6684  * This function does not roll back even if it fails.
6685  * Must be called with sc_exlock held and without sc_lock held.
6686  */
6687 static int
6688 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6689 {
6690 	audio_format2_t phwfmt;
6691 	audio_format2_t rhwfmt;
6692 	audio_filter_reg_t pfil;
6693 	audio_filter_reg_t rfil;
6694 	int mode;
6695 	int error;
6696 
6697 	KASSERT(sc->sc_exlock);
6698 
6699 	/*
6700 	 * Even when setting either one of playback and recording,
6701 	 * both must be halted.
6702 	 */
6703 	if (sc->sc_popens + sc->sc_ropens > 0)
6704 		return EBUSY;
6705 
6706 	if (!SPECIFIED(ai->mode) || ai->mode == 0)
6707 		return ENOTTY;
6708 
6709 	mode = ai->mode;
6710 	if ((mode & AUMODE_PLAY)) {
6711 		phwfmt.encoding    = ai->play.encoding;
6712 		phwfmt.precision   = ai->play.precision;
6713 		phwfmt.stride      = ai->play.precision;
6714 		phwfmt.channels    = ai->play.channels;
6715 		phwfmt.sample_rate = ai->play.sample_rate;
6716 	}
6717 	if ((mode & AUMODE_RECORD)) {
6718 		rhwfmt.encoding    = ai->record.encoding;
6719 		rhwfmt.precision   = ai->record.precision;
6720 		rhwfmt.stride      = ai->record.precision;
6721 		rhwfmt.channels    = ai->record.channels;
6722 		rhwfmt.sample_rate = ai->record.sample_rate;
6723 	}
6724 
6725 	/* On non-independent devices, use the same format for both. */
6726 	if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6727 		if (mode == AUMODE_RECORD) {
6728 			phwfmt = rhwfmt;
6729 		} else {
6730 			rhwfmt = phwfmt;
6731 		}
6732 		mode = AUMODE_PLAY | AUMODE_RECORD;
6733 	}
6734 
6735 	/* Then, unset the direction not exist on the hardware. */
6736 	if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6737 		mode &= ~AUMODE_PLAY;
6738 	if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6739 		mode &= ~AUMODE_RECORD;
6740 
6741 	/* debug */
6742 	if ((mode & AUMODE_PLAY)) {
6743 		TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6744 		    audio_encoding_name(phwfmt.encoding),
6745 		    phwfmt.precision,
6746 		    phwfmt.stride,
6747 		    phwfmt.channels,
6748 		    phwfmt.sample_rate);
6749 	}
6750 	if ((mode & AUMODE_RECORD)) {
6751 		TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6752 		    audio_encoding_name(rhwfmt.encoding),
6753 		    rhwfmt.precision,
6754 		    rhwfmt.stride,
6755 		    rhwfmt.channels,
6756 		    rhwfmt.sample_rate);
6757 	}
6758 
6759 	/* Check the format */
6760 	if ((mode & AUMODE_PLAY)) {
6761 		if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6762 			TRACE(1, "invalid format");
6763 			return EINVAL;
6764 		}
6765 	}
6766 	if ((mode & AUMODE_RECORD)) {
6767 		if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6768 			TRACE(1, "invalid format");
6769 			return EINVAL;
6770 		}
6771 	}
6772 
6773 	/* Configure the mixers. */
6774 	memset(&pfil, 0, sizeof(pfil));
6775 	memset(&rfil, 0, sizeof(rfil));
6776 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6777 	if (error)
6778 		return error;
6779 
6780 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6781 	if (error)
6782 		return error;
6783 
6784 	/*
6785 	 * Reinitialize the sticky parameters for /dev/sound.
6786 	 * If the number of the hardware channels becomes less than the number
6787 	 * of channels that sticky parameters remember, subsequent /dev/sound
6788 	 * open will fail.  To prevent this, reinitialize the sticky
6789 	 * parameters whenever the hardware format is changed.
6790 	 */
6791 	sc->sc_sound_pparams = params_to_format2(&audio_default);
6792 	sc->sc_sound_rparams = params_to_format2(&audio_default);
6793 	sc->sc_sound_ppause = false;
6794 	sc->sc_sound_rpause = false;
6795 
6796 	return 0;
6797 }
6798 
6799 /*
6800  * Store current mixers format into *ai.
6801  * Must be called with sc_exlock held.
6802  */
6803 static void
6804 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6805 {
6806 
6807 	KASSERT(sc->sc_exlock);
6808 
6809 	/*
6810 	 * There is no stride information in audio_info but it doesn't matter.
6811 	 * trackmixer always treats stride and precision as the same.
6812 	 */
6813 	AUDIO_INITINFO(ai);
6814 	ai->mode = 0;
6815 	if (sc->sc_pmixer) {
6816 		audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6817 		ai->play.encoding    = fmt->encoding;
6818 		ai->play.precision   = fmt->precision;
6819 		ai->play.channels    = fmt->channels;
6820 		ai->play.sample_rate = fmt->sample_rate;
6821 		ai->mode |= AUMODE_PLAY;
6822 	}
6823 	if (sc->sc_rmixer) {
6824 		audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6825 		ai->record.encoding    = fmt->encoding;
6826 		ai->record.precision   = fmt->precision;
6827 		ai->record.channels    = fmt->channels;
6828 		ai->record.sample_rate = fmt->sample_rate;
6829 		ai->mode |= AUMODE_RECORD;
6830 	}
6831 }
6832 
6833 /*
6834  * audio_info details:
6835  *
6836  * ai.{play,record}.sample_rate		(R/W)
6837  * ai.{play,record}.encoding		(R/W)
6838  * ai.{play,record}.precision		(R/W)
6839  * ai.{play,record}.channels		(R/W)
6840  *	These specify the playback or recording format.
6841  *	Ignore members within an inactive track.
6842  *
6843  * ai.mode				(R/W)
6844  *	It specifies the playback or recording mode, AUMODE_*.
6845  *	Currently, a mode change operation by ai.mode after opening is
6846  *	prohibited.  In addition, AUMODE_PLAY_ALL no longer makes sense.
6847  *	However, it's possible to get or to set for backward compatibility.
6848  *
6849  * ai.{hiwat,lowat}			(R/W)
6850  *	These specify the high water mark and low water mark for playback
6851  *	track.  The unit is block.
6852  *
6853  * ai.{play,record}.gain		(R/W)
6854  *	It specifies the HW mixer volume in 0-255.
6855  *	It is historical reason that the gain is connected to HW mixer.
6856  *
6857  * ai.{play,record}.balance		(R/W)
6858  *	It specifies the left-right balance of HW mixer in 0-64.
6859  *	32 means the center.
6860  *	It is historical reason that the balance is connected to HW mixer.
6861  *
6862  * ai.{play,record}.port		(R/W)
6863  *	It specifies the input/output port of HW mixer.
6864  *
6865  * ai.monitor_gain			(R/W)
6866  *	It specifies the recording monitor gain(?) of HW mixer.
6867  *
6868  * ai.{play,record}.pause		(R/W)
6869  *	Non-zero means the track is paused.
6870  *
6871  * ai.play.seek				(R/-)
6872  *	It indicates the number of bytes written but not processed.
6873  * ai.record.seek			(R/-)
6874  *	It indicates the number of bytes to be able to read.
6875  *
6876  * ai.{play,record}.avail_ports		(R/-)
6877  *	Mixer info.
6878  *
6879  * ai.{play,record}.buffer_size		(R/-)
6880  *	It indicates the buffer size in bytes.  Internally it means usrbuf.
6881  *
6882  * ai.{play,record}.samples		(R/-)
6883  *	It indicates the total number of bytes played or recorded.
6884  *
6885  * ai.{play,record}.eof			(R/-)
6886  *	It indicates the number of times reached EOF(?).
6887  *
6888  * ai.{play,record}.error		(R/-)
6889  *	Non-zero indicates overflow/underflow has occured.
6890  *
6891  * ai.{play,record}.waiting		(R/-)
6892  *	Non-zero indicates that other process waits to open.
6893  *	It will never happen anymore.
6894  *
6895  * ai.{play,record}.open		(R/-)
6896  *	Non-zero indicates the direction is opened by this process(?).
6897  *	XXX Is this better to indicate that "the device is opened by
6898  *	at least one process"?
6899  *
6900  * ai.{play,record}.active		(R/-)
6901  *	Non-zero indicates that I/O is currently active.
6902  *
6903  * ai.blocksize				(R/-)
6904  *	It indicates the block size in bytes.
6905  *	XXX The blocksize of playback and recording may be different.
6906  */
6907 
6908 /*
6909  * Pause consideration:
6910  *
6911  * Pausing/unpausing never affect [pr]mixer.  This single rule makes
6912  * operation simple.  Note that playback and recording are asymmetric.
6913  *
6914  * For playback,
6915  *  1. Any playback open doesn't start pmixer regardless of initial pause
6916  *     state of this track.
6917  *  2. The first write access among playback tracks only starts pmixer
6918  *     regardless of this track's pause state.
6919  *  3. Even a pause of the last playback track doesn't stop pmixer.
6920  *  4. The last close of all playback tracks only stops pmixer.
6921  *
6922  * For recording,
6923  *  1. The first recording open only starts rmixer regardless of initial
6924  *     pause state of this track.
6925  *  2. Even a pause of the last track doesn't stop rmixer.
6926  *  3. The last close of all recording tracks only stops rmixer.
6927  */
6928 
6929 /*
6930  * Set both track's parameters within a file depending on ai.
6931  * Update sc_sound_[pr]* if set.
6932  * Must be called with sc_exlock held and without sc_lock held.
6933  */
6934 static int
6935 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6936 	const struct audio_info *ai)
6937 {
6938 	const struct audio_prinfo *pi;
6939 	const struct audio_prinfo *ri;
6940 	audio_track_t *ptrack;
6941 	audio_track_t *rtrack;
6942 	audio_format2_t pfmt;
6943 	audio_format2_t rfmt;
6944 	int pchanges;
6945 	int rchanges;
6946 	int mode;
6947 	struct audio_info saved_ai;
6948 	audio_format2_t saved_pfmt;
6949 	audio_format2_t saved_rfmt;
6950 	int error;
6951 
6952 	KASSERT(sc->sc_exlock);
6953 
6954 	pi = &ai->play;
6955 	ri = &ai->record;
6956 	pchanges = 0;
6957 	rchanges = 0;
6958 
6959 	ptrack = file->ptrack;
6960 	rtrack = file->rtrack;
6961 
6962 #if defined(AUDIO_DEBUG)
6963 	if (audiodebug >= 2) {
6964 		char buf[256];
6965 		char p[64];
6966 		int buflen;
6967 		int plen;
6968 #define SPRINTF(var, fmt...) do {	\
6969 	var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6970 } while (0)
6971 
6972 		buflen = 0;
6973 		plen = 0;
6974 		if (SPECIFIED(pi->encoding))
6975 			SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6976 		if (SPECIFIED(pi->precision))
6977 			SPRINTF(p, "/%dbit", pi->precision);
6978 		if (SPECIFIED(pi->channels))
6979 			SPRINTF(p, "/%dch", pi->channels);
6980 		if (SPECIFIED(pi->sample_rate))
6981 			SPRINTF(p, "/%dHz", pi->sample_rate);
6982 		if (plen > 0)
6983 			SPRINTF(buf, ",play.param=%s", p + 1);
6984 
6985 		plen = 0;
6986 		if (SPECIFIED(ri->encoding))
6987 			SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6988 		if (SPECIFIED(ri->precision))
6989 			SPRINTF(p, "/%dbit", ri->precision);
6990 		if (SPECIFIED(ri->channels))
6991 			SPRINTF(p, "/%dch", ri->channels);
6992 		if (SPECIFIED(ri->sample_rate))
6993 			SPRINTF(p, "/%dHz", ri->sample_rate);
6994 		if (plen > 0)
6995 			SPRINTF(buf, ",record.param=%s", p + 1);
6996 
6997 		if (SPECIFIED(ai->mode))
6998 			SPRINTF(buf, ",mode=%d", ai->mode);
6999 		if (SPECIFIED(ai->hiwat))
7000 			SPRINTF(buf, ",hiwat=%d", ai->hiwat);
7001 		if (SPECIFIED(ai->lowat))
7002 			SPRINTF(buf, ",lowat=%d", ai->lowat);
7003 		if (SPECIFIED(ai->play.gain))
7004 			SPRINTF(buf, ",play.gain=%d", ai->play.gain);
7005 		if (SPECIFIED(ai->record.gain))
7006 			SPRINTF(buf, ",record.gain=%d", ai->record.gain);
7007 		if (SPECIFIED_CH(ai->play.balance))
7008 			SPRINTF(buf, ",play.balance=%d", ai->play.balance);
7009 		if (SPECIFIED_CH(ai->record.balance))
7010 			SPRINTF(buf, ",record.balance=%d", ai->record.balance);
7011 		if (SPECIFIED(ai->play.port))
7012 			SPRINTF(buf, ",play.port=%d", ai->play.port);
7013 		if (SPECIFIED(ai->record.port))
7014 			SPRINTF(buf, ",record.port=%d", ai->record.port);
7015 		if (SPECIFIED(ai->monitor_gain))
7016 			SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
7017 		if (SPECIFIED_CH(ai->play.pause))
7018 			SPRINTF(buf, ",play.pause=%d", ai->play.pause);
7019 		if (SPECIFIED_CH(ai->record.pause))
7020 			SPRINTF(buf, ",record.pause=%d", ai->record.pause);
7021 
7022 		if (buflen > 0)
7023 			TRACE(2, "specified %s", buf + 1);
7024 	}
7025 #endif
7026 
7027 	AUDIO_INITINFO(&saved_ai);
7028 	/* XXX shut up gcc */
7029 	memset(&saved_pfmt, 0, sizeof(saved_pfmt));
7030 	memset(&saved_rfmt, 0, sizeof(saved_rfmt));
7031 
7032 	/*
7033 	 * Set default value and save current parameters.
7034 	 * For backward compatibility, use sticky parameters for nonexistent
7035 	 * track.
7036 	 */
7037 	if (ptrack) {
7038 		pfmt = ptrack->usrbuf.fmt;
7039 		saved_pfmt = ptrack->usrbuf.fmt;
7040 		saved_ai.play.pause = ptrack->is_pause;
7041 	} else {
7042 		pfmt = sc->sc_sound_pparams;
7043 	}
7044 	if (rtrack) {
7045 		rfmt = rtrack->usrbuf.fmt;
7046 		saved_rfmt = rtrack->usrbuf.fmt;
7047 		saved_ai.record.pause = rtrack->is_pause;
7048 	} else {
7049 		rfmt = sc->sc_sound_rparams;
7050 	}
7051 	saved_ai.mode = file->mode;
7052 
7053 	/*
7054 	 * Overwrite if specified.
7055 	 */
7056 	mode = file->mode;
7057 	if (SPECIFIED(ai->mode)) {
7058 		/*
7059 		 * Setting ai->mode no longer does anything because it's
7060 		 * prohibited to change playback/recording mode after open
7061 		 * and AUMODE_PLAY_ALL is obsoleted.  However, it still
7062 		 * keeps the state of AUMODE_PLAY_ALL itself for backward
7063 		 * compatibility.
7064 		 * In the internal, only file->mode has the state of
7065 		 * AUMODE_PLAY_ALL flag and track->mode in both track does
7066 		 * not have.
7067 		 */
7068 		if ((file->mode & AUMODE_PLAY)) {
7069 			mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
7070 			    | (ai->mode & AUMODE_PLAY_ALL);
7071 		}
7072 	}
7073 
7074 	pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
7075 	if (pchanges == -1) {
7076 #if defined(AUDIO_DEBUG)
7077 		TRACEF(1, file, "check play.params failed: "
7078 		    "%s %ubit %uch %uHz",
7079 		    audio_encoding_name(pi->encoding),
7080 		    pi->precision,
7081 		    pi->channels,
7082 		    pi->sample_rate);
7083 #endif
7084 		return EINVAL;
7085 	}
7086 
7087 	rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
7088 	if (rchanges == -1) {
7089 #if defined(AUDIO_DEBUG)
7090 		TRACEF(1, file, "check record.params failed: "
7091 		    "%s %ubit %uch %uHz",
7092 		    audio_encoding_name(ri->encoding),
7093 		    ri->precision,
7094 		    ri->channels,
7095 		    ri->sample_rate);
7096 #endif
7097 		return EINVAL;
7098 	}
7099 
7100 	if (SPECIFIED(ai->mode)) {
7101 		pchanges = 1;
7102 		rchanges = 1;
7103 	}
7104 
7105 	/*
7106 	 * Even when setting either one of playback and recording,
7107 	 * both track must be halted.
7108 	 */
7109 	if (pchanges || rchanges) {
7110 		audio_file_clear(sc, file);
7111 #if defined(AUDIO_DEBUG)
7112 		char nbuf[16];
7113 		char fmtbuf[64];
7114 		if (pchanges) {
7115 			if (ptrack) {
7116 				snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
7117 			} else {
7118 				snprintf(nbuf, sizeof(nbuf), "-");
7119 			}
7120 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
7121 			DPRINTF(1, "audio track#%s play mode: %s\n",
7122 			    nbuf, fmtbuf);
7123 		}
7124 		if (rchanges) {
7125 			if (rtrack) {
7126 				snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
7127 			} else {
7128 				snprintf(nbuf, sizeof(nbuf), "-");
7129 			}
7130 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
7131 			DPRINTF(1, "audio track#%s rec  mode: %s\n",
7132 			    nbuf, fmtbuf);
7133 		}
7134 #endif
7135 	}
7136 
7137 	/* Set mixer parameters */
7138 	mutex_enter(sc->sc_lock);
7139 	error = audio_hw_setinfo(sc, ai, &saved_ai);
7140 	mutex_exit(sc->sc_lock);
7141 	if (error)
7142 		goto abort1;
7143 
7144 	/*
7145 	 * Set to track and update sticky parameters.
7146 	 */
7147 	error = 0;
7148 	file->mode = mode;
7149 
7150 	if (SPECIFIED_CH(pi->pause)) {
7151 		if (ptrack)
7152 			ptrack->is_pause = pi->pause;
7153 		sc->sc_sound_ppause = pi->pause;
7154 	}
7155 	if (pchanges) {
7156 		if (ptrack) {
7157 			audio_track_lock_enter(ptrack);
7158 			error = audio_track_set_format(ptrack, &pfmt);
7159 			audio_track_lock_exit(ptrack);
7160 			if (error) {
7161 				TRACET(1, ptrack, "set play.params failed");
7162 				goto abort2;
7163 			}
7164 		}
7165 		sc->sc_sound_pparams = pfmt;
7166 	}
7167 	/* Change water marks after initializing the buffers. */
7168 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7169 		if (ptrack)
7170 			audio_track_setinfo_water(ptrack, ai);
7171 	}
7172 
7173 	if (SPECIFIED_CH(ri->pause)) {
7174 		if (rtrack)
7175 			rtrack->is_pause = ri->pause;
7176 		sc->sc_sound_rpause = ri->pause;
7177 	}
7178 	if (rchanges) {
7179 		if (rtrack) {
7180 			audio_track_lock_enter(rtrack);
7181 			error = audio_track_set_format(rtrack, &rfmt);
7182 			audio_track_lock_exit(rtrack);
7183 			if (error) {
7184 				TRACET(1, rtrack, "set record.params failed");
7185 				goto abort3;
7186 			}
7187 		}
7188 		sc->sc_sound_rparams = rfmt;
7189 	}
7190 
7191 	return 0;
7192 
7193 	/* Rollback */
7194 abort3:
7195 	if (error != ENOMEM) {
7196 		rtrack->is_pause = saved_ai.record.pause;
7197 		audio_track_lock_enter(rtrack);
7198 		audio_track_set_format(rtrack, &saved_rfmt);
7199 		audio_track_lock_exit(rtrack);
7200 	}
7201 	sc->sc_sound_rpause = saved_ai.record.pause;
7202 	sc->sc_sound_rparams = saved_rfmt;
7203 abort2:
7204 	if (ptrack && error != ENOMEM) {
7205 		ptrack->is_pause = saved_ai.play.pause;
7206 		audio_track_lock_enter(ptrack);
7207 		audio_track_set_format(ptrack, &saved_pfmt);
7208 		audio_track_lock_exit(ptrack);
7209 	}
7210 	sc->sc_sound_ppause = saved_ai.play.pause;
7211 	sc->sc_sound_pparams = saved_pfmt;
7212 	file->mode = saved_ai.mode;
7213 abort1:
7214 	mutex_enter(sc->sc_lock);
7215 	audio_hw_setinfo(sc, &saved_ai, NULL);
7216 	mutex_exit(sc->sc_lock);
7217 
7218 	return error;
7219 }
7220 
7221 /*
7222  * Write SPECIFIED() parameters within info back to fmt.
7223  * Note that track can be NULL here.
7224  * Return value of 1 indicates that fmt is modified.
7225  * Return value of 0 indicates that fmt is not modified.
7226  * Return value of -1 indicates that error EINVAL has occurred.
7227  */
7228 static int
7229 audio_track_setinfo_check(audio_track_t *track,
7230 	audio_format2_t *fmt, const struct audio_prinfo *info)
7231 {
7232 	const audio_format2_t *hwfmt;
7233 	int changes;
7234 
7235 	changes = 0;
7236 	if (SPECIFIED(info->sample_rate)) {
7237 		if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7238 			return -1;
7239 		if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7240 			return -1;
7241 		fmt->sample_rate = info->sample_rate;
7242 		changes = 1;
7243 	}
7244 	if (SPECIFIED(info->encoding)) {
7245 		fmt->encoding = info->encoding;
7246 		changes = 1;
7247 	}
7248 	if (SPECIFIED(info->precision)) {
7249 		fmt->precision = info->precision;
7250 		/* we don't have API to specify stride */
7251 		fmt->stride = info->precision;
7252 		changes = 1;
7253 	}
7254 	if (SPECIFIED(info->channels)) {
7255 		/*
7256 		 * We can convert between monaural and stereo each other.
7257 		 * We can reduce than the number of channels that the hardware
7258 		 * supports.
7259 		 */
7260 		if (info->channels > 2) {
7261 			if (track) {
7262 				hwfmt = &track->mixer->hwbuf.fmt;
7263 				if (info->channels > hwfmt->channels)
7264 					return -1;
7265 			} else {
7266 				/*
7267 				 * This should never happen.
7268 				 * If track == NULL, channels should be <= 2.
7269 				 */
7270 				return -1;
7271 			}
7272 		}
7273 		fmt->channels = info->channels;
7274 		changes = 1;
7275 	}
7276 
7277 	if (changes) {
7278 		if (audio_check_params(fmt) != 0)
7279 			return -1;
7280 	}
7281 
7282 	return changes;
7283 }
7284 
7285 /*
7286  * Change water marks for playback track if specfied.
7287  */
7288 static void
7289 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7290 {
7291 	u_int blks;
7292 	u_int maxblks;
7293 	u_int blksize;
7294 
7295 	KASSERT(audio_track_is_playback(track));
7296 
7297 	blksize = track->usrbuf_blksize;
7298 	maxblks = track->usrbuf.capacity / blksize;
7299 
7300 	if (SPECIFIED(ai->hiwat)) {
7301 		blks = ai->hiwat;
7302 		if (blks > maxblks)
7303 			blks = maxblks;
7304 		if (blks < 2)
7305 			blks = 2;
7306 		track->usrbuf_usedhigh = blks * blksize;
7307 	}
7308 	if (SPECIFIED(ai->lowat)) {
7309 		blks = ai->lowat;
7310 		if (blks > maxblks - 1)
7311 			blks = maxblks - 1;
7312 		track->usrbuf_usedlow = blks * blksize;
7313 	}
7314 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7315 		if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7316 			track->usrbuf_usedlow = track->usrbuf_usedhigh -
7317 			    blksize;
7318 		}
7319 	}
7320 }
7321 
7322 /*
7323  * Set hardware part of *newai.
7324  * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7325  * If oldai is specified, previous parameters are stored.
7326  * This function itself does not roll back if error occurred.
7327  * Must be called with sc_lock && sc_exlock held.
7328  */
7329 static int
7330 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7331 	struct audio_info *oldai)
7332 {
7333 	const struct audio_prinfo *newpi;
7334 	const struct audio_prinfo *newri;
7335 	struct audio_prinfo *oldpi;
7336 	struct audio_prinfo *oldri;
7337 	u_int pgain;
7338 	u_int rgain;
7339 	u_char pbalance;
7340 	u_char rbalance;
7341 	int error;
7342 
7343 	KASSERT(mutex_owned(sc->sc_lock));
7344 	KASSERT(sc->sc_exlock);
7345 
7346 	/* XXX shut up gcc */
7347 	oldpi = NULL;
7348 	oldri = NULL;
7349 
7350 	newpi = &newai->play;
7351 	newri = &newai->record;
7352 	if (oldai) {
7353 		oldpi = &oldai->play;
7354 		oldri = &oldai->record;
7355 	}
7356 	error = 0;
7357 
7358 	/*
7359 	 * It looks like unnecessary to halt HW mixers to set HW mixers.
7360 	 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7361 	 */
7362 
7363 	if (SPECIFIED(newpi->port)) {
7364 		if (oldai)
7365 			oldpi->port = au_get_port(sc, &sc->sc_outports);
7366 		error = au_set_port(sc, &sc->sc_outports, newpi->port);
7367 		if (error) {
7368 			audio_printf(sc,
7369 			    "setting play.port=%d failed: errno=%d\n",
7370 			    newpi->port, error);
7371 			goto abort;
7372 		}
7373 	}
7374 	if (SPECIFIED(newri->port)) {
7375 		if (oldai)
7376 			oldri->port = au_get_port(sc, &sc->sc_inports);
7377 		error = au_set_port(sc, &sc->sc_inports, newri->port);
7378 		if (error) {
7379 			audio_printf(sc,
7380 			    "setting record.port=%d failed: errno=%d\n",
7381 			    newri->port, error);
7382 			goto abort;
7383 		}
7384 	}
7385 
7386 	/* Backup play.{gain,balance} */
7387 	if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7388 		au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7389 		if (oldai) {
7390 			oldpi->gain = pgain;
7391 			oldpi->balance = pbalance;
7392 		}
7393 	}
7394 	/* Backup record.{gain,balance} */
7395 	if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7396 		au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7397 		if (oldai) {
7398 			oldri->gain = rgain;
7399 			oldri->balance = rbalance;
7400 		}
7401 	}
7402 	if (SPECIFIED(newpi->gain)) {
7403 		error = au_set_gain(sc, &sc->sc_outports,
7404 		    newpi->gain, pbalance);
7405 		if (error) {
7406 			audio_printf(sc,
7407 			    "setting play.gain=%d failed: errno=%d\n",
7408 			    newpi->gain, error);
7409 			goto abort;
7410 		}
7411 	}
7412 	if (SPECIFIED(newri->gain)) {
7413 		error = au_set_gain(sc, &sc->sc_inports,
7414 		    newri->gain, rbalance);
7415 		if (error) {
7416 			audio_printf(sc,
7417 			    "setting record.gain=%d failed: errno=%d\n",
7418 			    newri->gain, error);
7419 			goto abort;
7420 		}
7421 	}
7422 	if (SPECIFIED_CH(newpi->balance)) {
7423 		error = au_set_gain(sc, &sc->sc_outports,
7424 		    pgain, newpi->balance);
7425 		if (error) {
7426 			audio_printf(sc,
7427 			    "setting play.balance=%d failed: errno=%d\n",
7428 			    newpi->balance, error);
7429 			goto abort;
7430 		}
7431 	}
7432 	if (SPECIFIED_CH(newri->balance)) {
7433 		error = au_set_gain(sc, &sc->sc_inports,
7434 		    rgain, newri->balance);
7435 		if (error) {
7436 			audio_printf(sc,
7437 			    "setting record.balance=%d failed: errno=%d\n",
7438 			    newri->balance, error);
7439 			goto abort;
7440 		}
7441 	}
7442 
7443 	if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7444 		if (oldai)
7445 			oldai->monitor_gain = au_get_monitor_gain(sc);
7446 		error = au_set_monitor_gain(sc, newai->monitor_gain);
7447 		if (error) {
7448 			audio_printf(sc,
7449 			    "setting monitor_gain=%d failed: errno=%d\n",
7450 			    newai->monitor_gain, error);
7451 			goto abort;
7452 		}
7453 	}
7454 
7455 	/* XXX TODO */
7456 	/* sc->sc_ai = *ai; */
7457 
7458 	error = 0;
7459 abort:
7460 	return error;
7461 }
7462 
7463 /*
7464  * Setup the hardware with mixer format phwfmt, rhwfmt.
7465  * The arguments have following restrictions:
7466  * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7467  *   or both.
7468  * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7469  * - On non-independent devices, phwfmt and rhwfmt must have the same
7470  *   parameters.
7471  * - pfil and rfil must be zero-filled.
7472  * If successful,
7473  * - pfil, rfil will be filled with filter information specified by the
7474  *   hardware driver if necessary.
7475  * and then returns 0.  Otherwise returns errno.
7476  * Must be called without sc_lock held.
7477  */
7478 static int
7479 audio_hw_set_format(struct audio_softc *sc, int setmode,
7480 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7481 	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7482 {
7483 	audio_params_t pp, rp;
7484 	int error;
7485 
7486 	KASSERT(phwfmt != NULL);
7487 	KASSERT(rhwfmt != NULL);
7488 
7489 	pp = format2_to_params(phwfmt);
7490 	rp = format2_to_params(rhwfmt);
7491 
7492 	mutex_enter(sc->sc_lock);
7493 	error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7494 	    &pp, &rp, pfil, rfil);
7495 	if (error) {
7496 		mutex_exit(sc->sc_lock);
7497 		audio_printf(sc, "set_format failed: errno=%d\n", error);
7498 		return error;
7499 	}
7500 
7501 	if (sc->hw_if->commit_settings) {
7502 		error = sc->hw_if->commit_settings(sc->hw_hdl);
7503 		if (error) {
7504 			mutex_exit(sc->sc_lock);
7505 			audio_printf(sc,
7506 			    "commit_settings failed: errno=%d\n", error);
7507 			return error;
7508 		}
7509 	}
7510 	mutex_exit(sc->sc_lock);
7511 
7512 	return 0;
7513 }
7514 
7515 /*
7516  * Fill audio_info structure.  If need_mixerinfo is true, it will also
7517  * fill the hardware mixer information.
7518  * Must be called with sc_exlock held and without sc_lock held.
7519  */
7520 static int
7521 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7522 	audio_file_t *file)
7523 {
7524 	struct audio_prinfo *ri, *pi;
7525 	audio_track_t *track;
7526 	audio_track_t *ptrack;
7527 	audio_track_t *rtrack;
7528 	int gain;
7529 
7530 	KASSERT(sc->sc_exlock);
7531 
7532 	ri = &ai->record;
7533 	pi = &ai->play;
7534 	ptrack = file->ptrack;
7535 	rtrack = file->rtrack;
7536 
7537 	memset(ai, 0, sizeof(*ai));
7538 
7539 	if (ptrack) {
7540 		pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7541 		pi->channels    = ptrack->usrbuf.fmt.channels;
7542 		pi->precision   = ptrack->usrbuf.fmt.precision;
7543 		pi->encoding    = ptrack->usrbuf.fmt.encoding;
7544 		pi->pause       = ptrack->is_pause;
7545 	} else {
7546 		/* Use sticky parameters if the track is not available. */
7547 		pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7548 		pi->channels    = sc->sc_sound_pparams.channels;
7549 		pi->precision   = sc->sc_sound_pparams.precision;
7550 		pi->encoding    = sc->sc_sound_pparams.encoding;
7551 		pi->pause       = sc->sc_sound_ppause;
7552 	}
7553 	if (rtrack) {
7554 		ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7555 		ri->channels    = rtrack->usrbuf.fmt.channels;
7556 		ri->precision   = rtrack->usrbuf.fmt.precision;
7557 		ri->encoding    = rtrack->usrbuf.fmt.encoding;
7558 		ri->pause       = rtrack->is_pause;
7559 	} else {
7560 		/* Use sticky parameters if the track is not available. */
7561 		ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7562 		ri->channels    = sc->sc_sound_rparams.channels;
7563 		ri->precision   = sc->sc_sound_rparams.precision;
7564 		ri->encoding    = sc->sc_sound_rparams.encoding;
7565 		ri->pause       = sc->sc_sound_rpause;
7566 	}
7567 
7568 	if (ptrack) {
7569 		pi->seek = ptrack->usrbuf.used;
7570 		pi->samples = ptrack->usrbuf_stamp;
7571 		pi->eof = ptrack->eofcounter;
7572 		pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7573 		pi->open = 1;
7574 		pi->buffer_size = ptrack->usrbuf.capacity;
7575 	}
7576 	pi->waiting = 0;		/* open never hangs */
7577 	pi->active = sc->sc_pbusy;
7578 
7579 	if (rtrack) {
7580 		ri->seek = rtrack->usrbuf.used;
7581 		ri->samples = rtrack->usrbuf_stamp;
7582 		ri->eof = 0;
7583 		ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7584 		ri->open = 1;
7585 		ri->buffer_size = rtrack->usrbuf.capacity;
7586 	}
7587 	ri->waiting = 0;		/* open never hangs */
7588 	ri->active = sc->sc_rbusy;
7589 
7590 	/*
7591 	 * XXX There may be different number of channels between playback
7592 	 *     and recording, so that blocksize also may be different.
7593 	 *     But struct audio_info has an united blocksize...
7594 	 *     Here, I use play info precedencely if ptrack is available,
7595 	 *     otherwise record info.
7596 	 *
7597 	 * XXX hiwat/lowat is a playback-only parameter.  What should I
7598 	 *     return for a record-only descriptor?
7599 	 */
7600 	track = ptrack ? ptrack : rtrack;
7601 	if (track) {
7602 		ai->blocksize = track->usrbuf_blksize;
7603 		ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7604 		ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7605 	}
7606 	ai->mode = file->mode;
7607 
7608 	/*
7609 	 * For backward compatibility, we have to pad these five fields
7610 	 * a fake non-zero value even if there are no tracks.
7611 	 */
7612 	if (ptrack == NULL)
7613 		pi->buffer_size = 65536;
7614 	if (rtrack == NULL)
7615 		ri->buffer_size = 65536;
7616 	if (ptrack == NULL && rtrack == NULL) {
7617 		ai->blocksize = 2048;
7618 		ai->hiwat = ai->play.buffer_size / ai->blocksize;
7619 		ai->lowat = ai->hiwat * 3 / 4;
7620 	}
7621 
7622 	if (need_mixerinfo) {
7623 		mutex_enter(sc->sc_lock);
7624 
7625 		pi->port = au_get_port(sc, &sc->sc_outports);
7626 		ri->port = au_get_port(sc, &sc->sc_inports);
7627 
7628 		pi->avail_ports = sc->sc_outports.allports;
7629 		ri->avail_ports = sc->sc_inports.allports;
7630 
7631 		au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7632 		au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7633 
7634 		if (sc->sc_monitor_port != -1) {
7635 			gain = au_get_monitor_gain(sc);
7636 			if (gain != -1)
7637 				ai->monitor_gain = gain;
7638 		}
7639 		mutex_exit(sc->sc_lock);
7640 	}
7641 
7642 	return 0;
7643 }
7644 
7645 /*
7646  * Return true if playback is configured.
7647  * This function can be used after audioattach.
7648  */
7649 static bool
7650 audio_can_playback(struct audio_softc *sc)
7651 {
7652 
7653 	return (sc->sc_pmixer != NULL);
7654 }
7655 
7656 /*
7657  * Return true if recording is configured.
7658  * This function can be used after audioattach.
7659  */
7660 static bool
7661 audio_can_capture(struct audio_softc *sc)
7662 {
7663 
7664 	return (sc->sc_rmixer != NULL);
7665 }
7666 
7667 /*
7668  * Get the afp->index'th item from the valid one of format[].
7669  * If found, stores it to afp->fmt and returns 0.  Otherwise return EINVAL.
7670  *
7671  * This is common routines for query_format.
7672  * If your hardware driver has struct audio_format[], the simplest case
7673  * you can write your query_format interface as follows:
7674  *
7675  * struct audio_format foo_format[] = { ... };
7676  *
7677  * int
7678  * foo_query_format(void *hdl, audio_format_query_t *afp)
7679  * {
7680  *   return audio_query_format(foo_format, __arraycount(foo_format), afp);
7681  * }
7682  */
7683 int
7684 audio_query_format(const struct audio_format *format, int nformats,
7685 	audio_format_query_t *afp)
7686 {
7687 	const struct audio_format *f;
7688 	int idx;
7689 	int i;
7690 
7691 	idx = 0;
7692 	for (i = 0; i < nformats; i++) {
7693 		f = &format[i];
7694 		if (!AUFMT_IS_VALID(f))
7695 			continue;
7696 		if (afp->index == idx) {
7697 			afp->fmt = *f;
7698 			return 0;
7699 		}
7700 		idx++;
7701 	}
7702 	return EINVAL;
7703 }
7704 
7705 /*
7706  * This function is provided for the hardware driver's set_format() to
7707  * find index matches with 'param' from array of audio_format_t 'formats'.
7708  * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7709  * It returns the matched index and never fails.  Because param passed to
7710  * set_format() is selected from query_format().
7711  * This function will be an alternative to auconv_set_converter() to
7712  * find index.
7713  */
7714 int
7715 audio_indexof_format(const struct audio_format *formats, int nformats,
7716 	int mode, const audio_params_t *param)
7717 {
7718 	const struct audio_format *f;
7719 	int index;
7720 	int j;
7721 
7722 	for (index = 0; index < nformats; index++) {
7723 		f = &formats[index];
7724 
7725 		if (!AUFMT_IS_VALID(f))
7726 			continue;
7727 		if ((f->mode & mode) == 0)
7728 			continue;
7729 		if (f->encoding != param->encoding)
7730 			continue;
7731 		if (f->validbits != param->precision)
7732 			continue;
7733 		if (f->channels != param->channels)
7734 			continue;
7735 
7736 		if (f->frequency_type == 0) {
7737 			if (param->sample_rate < f->frequency[0] ||
7738 			    param->sample_rate > f->frequency[1])
7739 				continue;
7740 		} else {
7741 			for (j = 0; j < f->frequency_type; j++) {
7742 				if (param->sample_rate == f->frequency[j])
7743 					break;
7744 			}
7745 			if (j == f->frequency_type)
7746 				continue;
7747 		}
7748 
7749 		/* Then, matched */
7750 		return index;
7751 	}
7752 
7753 	/* Not matched.  This should not be happened. */
7754 	panic("%s: cannot find matched format\n", __func__);
7755 }
7756 
7757 /*
7758  * Get or set hardware blocksize in msec.
7759  * XXX It's for debug.
7760  */
7761 static int
7762 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7763 {
7764 	struct sysctlnode node;
7765 	struct audio_softc *sc;
7766 	audio_format2_t phwfmt;
7767 	audio_format2_t rhwfmt;
7768 	audio_filter_reg_t pfil;
7769 	audio_filter_reg_t rfil;
7770 	int t;
7771 	int old_blk_ms;
7772 	int mode;
7773 	int error;
7774 
7775 	node = *rnode;
7776 	sc = node.sysctl_data;
7777 
7778 	error = audio_exlock_enter(sc);
7779 	if (error)
7780 		return error;
7781 
7782 	old_blk_ms = sc->sc_blk_ms;
7783 	t = old_blk_ms;
7784 	node.sysctl_data = &t;
7785 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
7786 	if (error || newp == NULL)
7787 		goto abort;
7788 
7789 	if (t < 0) {
7790 		error = EINVAL;
7791 		goto abort;
7792 	}
7793 
7794 	if (sc->sc_popens + sc->sc_ropens > 0) {
7795 		error = EBUSY;
7796 		goto abort;
7797 	}
7798 	sc->sc_blk_ms = t;
7799 	mode = 0;
7800 	if (sc->sc_pmixer) {
7801 		mode |= AUMODE_PLAY;
7802 		phwfmt = sc->sc_pmixer->hwbuf.fmt;
7803 	}
7804 	if (sc->sc_rmixer) {
7805 		mode |= AUMODE_RECORD;
7806 		rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7807 	}
7808 
7809 	/* re-init hardware */
7810 	memset(&pfil, 0, sizeof(pfil));
7811 	memset(&rfil, 0, sizeof(rfil));
7812 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7813 	if (error) {
7814 		goto abort;
7815 	}
7816 
7817 	/* re-init track mixer */
7818 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7819 	if (error) {
7820 		/* Rollback */
7821 		sc->sc_blk_ms = old_blk_ms;
7822 		audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7823 		goto abort;
7824 	}
7825 	error = 0;
7826 abort:
7827 	audio_exlock_exit(sc);
7828 	return error;
7829 }
7830 
7831 /*
7832  * Get or set multiuser mode.
7833  */
7834 static int
7835 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7836 {
7837 	struct sysctlnode node;
7838 	struct audio_softc *sc;
7839 	bool t;
7840 	int error;
7841 
7842 	node = *rnode;
7843 	sc = node.sysctl_data;
7844 
7845 	error = audio_exlock_enter(sc);
7846 	if (error)
7847 		return error;
7848 
7849 	t = sc->sc_multiuser;
7850 	node.sysctl_data = &t;
7851 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
7852 	if (error || newp == NULL)
7853 		goto abort;
7854 
7855 	sc->sc_multiuser = t;
7856 	error = 0;
7857 abort:
7858 	audio_exlock_exit(sc);
7859 	return error;
7860 }
7861 
7862 #if defined(AUDIO_DEBUG)
7863 /*
7864  * Get or set debug verbose level. (0..4)
7865  * XXX It's for debug.
7866  * XXX It is not separated per device.
7867  */
7868 static int
7869 audio_sysctl_debug(SYSCTLFN_ARGS)
7870 {
7871 	struct sysctlnode node;
7872 	int t;
7873 	int error;
7874 
7875 	node = *rnode;
7876 	t = audiodebug;
7877 	node.sysctl_data = &t;
7878 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
7879 	if (error || newp == NULL)
7880 		return error;
7881 
7882 	if (t < 0 || t > 4)
7883 		return EINVAL;
7884 	audiodebug = t;
7885 	printf("audio: audiodebug = %d\n", audiodebug);
7886 	return 0;
7887 }
7888 #endif /* AUDIO_DEBUG */
7889 
7890 #ifdef AUDIO_PM_IDLE
7891 static void
7892 audio_idle(void *arg)
7893 {
7894 	device_t dv = arg;
7895 	struct audio_softc *sc = device_private(dv);
7896 
7897 #ifdef PNP_DEBUG
7898 	extern int pnp_debug_idle;
7899 	if (pnp_debug_idle)
7900 		printf("%s: idle handler called\n", device_xname(dv));
7901 #endif
7902 
7903 	sc->sc_idle = true;
7904 
7905 	/* XXX joerg Make pmf_device_suspend handle children? */
7906 	if (!pmf_device_suspend(dv, PMF_Q_SELF))
7907 		return;
7908 
7909 	if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7910 		pmf_device_resume(dv, PMF_Q_SELF);
7911 }
7912 
7913 static void
7914 audio_activity(device_t dv, devactive_t type)
7915 {
7916 	struct audio_softc *sc = device_private(dv);
7917 
7918 	if (type != DVA_SYSTEM)
7919 		return;
7920 
7921 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7922 
7923 	sc->sc_idle = false;
7924 	if (!device_is_active(dv)) {
7925 		/* XXX joerg How to deal with a failing resume... */
7926 		pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7927 		pmf_device_resume(dv, PMF_Q_SELF);
7928 	}
7929 }
7930 #endif
7931 
7932 static bool
7933 audio_suspend(device_t dv, const pmf_qual_t *qual)
7934 {
7935 	struct audio_softc *sc = device_private(dv);
7936 	int error;
7937 
7938 	error = audio_exlock_mutex_enter(sc);
7939 	if (error)
7940 		return error;
7941 	sc->sc_suspending = true;
7942 	audio_mixer_capture(sc);
7943 
7944 	if (sc->sc_pbusy) {
7945 		audio_pmixer_halt(sc);
7946 		/* Reuse this as need-to-restart flag while suspending */
7947 		sc->sc_pbusy = true;
7948 	}
7949 	if (sc->sc_rbusy) {
7950 		audio_rmixer_halt(sc);
7951 		/* Reuse this as need-to-restart flag while suspending */
7952 		sc->sc_rbusy = true;
7953 	}
7954 
7955 #ifdef AUDIO_PM_IDLE
7956 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7957 #endif
7958 	audio_exlock_mutex_exit(sc);
7959 
7960 	return true;
7961 }
7962 
7963 static bool
7964 audio_resume(device_t dv, const pmf_qual_t *qual)
7965 {
7966 	struct audio_softc *sc = device_private(dv);
7967 	struct audio_info ai;
7968 	int error;
7969 
7970 	error = audio_exlock_mutex_enter(sc);
7971 	if (error)
7972 		return error;
7973 
7974 	sc->sc_suspending = false;
7975 	audio_mixer_restore(sc);
7976 	/* XXX ? */
7977 	AUDIO_INITINFO(&ai);
7978 	audio_hw_setinfo(sc, &ai, NULL);
7979 
7980 	/*
7981 	 * During from suspend to resume here, sc_[pr]busy is used as
7982 	 * need-to-restart flag temporarily.  After this point,
7983 	 * sc_[pr]busy is returned to its original usage (busy flag).
7984 	 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
7985 	 */
7986 	if (sc->sc_pbusy) {
7987 		/* pmixer_start() requires pbusy is false */
7988 		sc->sc_pbusy = false;
7989 		audio_pmixer_start(sc, true);
7990 	}
7991 	if (sc->sc_rbusy) {
7992 		/* rmixer_start() requires rbusy is false */
7993 		sc->sc_rbusy = false;
7994 		audio_rmixer_start(sc);
7995 	}
7996 
7997 	audio_exlock_mutex_exit(sc);
7998 
7999 	return true;
8000 }
8001 
8002 #if defined(AUDIO_DEBUG)
8003 static void
8004 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
8005 {
8006 	int n;
8007 
8008 	n = 0;
8009 	n += snprintf(buf + n, bufsize - n, "%s",
8010 	    audio_encoding_name(fmt->encoding));
8011 	if (fmt->precision == fmt->stride) {
8012 		n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
8013 	} else {
8014 		n += snprintf(buf + n, bufsize - n, " %d/%dbit",
8015 			fmt->precision, fmt->stride);
8016 	}
8017 
8018 	snprintf(buf + n, bufsize - n, " %uch %uHz",
8019 	    fmt->channels, fmt->sample_rate);
8020 }
8021 #endif
8022 
8023 #if defined(AUDIO_DEBUG)
8024 static void
8025 audio_print_format2(const char *s, const audio_format2_t *fmt)
8026 {
8027 	char fmtstr[64];
8028 
8029 	audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
8030 	printf("%s %s\n", s, fmtstr);
8031 }
8032 #endif
8033 
8034 #ifdef DIAGNOSTIC
8035 void
8036 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
8037 {
8038 
8039 	KASSERTMSG(fmt, "called from %s", where);
8040 
8041 	/* XXX MSM6258 vs(4) only has 4bit stride format. */
8042 	if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
8043 		KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
8044 		    "called from %s: fmt->stride=%d", where, fmt->stride);
8045 	} else {
8046 		KASSERTMSG(fmt->stride % NBBY == 0,
8047 		    "called from %s: fmt->stride=%d", where, fmt->stride);
8048 	}
8049 	KASSERTMSG(fmt->precision <= fmt->stride,
8050 	    "called from %s: fmt->precision=%d fmt->stride=%d",
8051 	    where, fmt->precision, fmt->stride);
8052 	KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
8053 	    "called from %s: fmt->channels=%d", where, fmt->channels);
8054 
8055 	/* XXX No check for encodings? */
8056 }
8057 
8058 void
8059 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
8060 {
8061 
8062 	KASSERT(arg != NULL);
8063 	KASSERT(arg->src != NULL);
8064 	KASSERT(arg->dst != NULL);
8065 	audio_diagnostic_format2(where, arg->srcfmt);
8066 	audio_diagnostic_format2(where, arg->dstfmt);
8067 	KASSERT(arg->count > 0);
8068 }
8069 
8070 void
8071 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
8072 {
8073 
8074 	KASSERTMSG(ring, "called from %s", where);
8075 	audio_diagnostic_format2(where, &ring->fmt);
8076 	KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
8077 	    "called from %s: ring->capacity=%d", where, ring->capacity);
8078 	KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
8079 	    "called from %s: ring->used=%d ring->capacity=%d",
8080 	    where, ring->used, ring->capacity);
8081 	if (ring->capacity == 0) {
8082 		KASSERTMSG(ring->mem == NULL,
8083 		    "called from %s: capacity == 0 but mem != NULL", where);
8084 	} else {
8085 		KASSERTMSG(ring->mem != NULL,
8086 		    "called from %s: capacity != 0 but mem == NULL", where);
8087 		KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
8088 		    "called from %s: ring->head=%d ring->capacity=%d",
8089 		    where, ring->head, ring->capacity);
8090 	}
8091 }
8092 #endif /* DIAGNOSTIC */
8093 
8094 
8095 /*
8096  * Mixer driver
8097  */
8098 
8099 /*
8100  * Must be called without sc_lock held.
8101  */
8102 int
8103 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
8104 	struct lwp *l)
8105 {
8106 	struct file *fp;
8107 	audio_file_t *af;
8108 	int error, fd;
8109 
8110 	TRACE(1, "flags=0x%x", flags);
8111 
8112 	error = fd_allocfile(&fp, &fd);
8113 	if (error)
8114 		return error;
8115 
8116 	af = kmem_zalloc(sizeof(*af), KM_SLEEP);
8117 	af->sc = sc;
8118 	af->dev = dev;
8119 
8120 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
8121 	KASSERT(error == EMOVEFD);
8122 
8123 	return error;
8124 }
8125 
8126 /*
8127  * Add a process to those to be signalled on mixer activity.
8128  * If the process has already been added, do nothing.
8129  * Must be called with sc_exlock held and without sc_lock held.
8130  */
8131 static void
8132 mixer_async_add(struct audio_softc *sc, pid_t pid)
8133 {
8134 	int i;
8135 
8136 	KASSERT(sc->sc_exlock);
8137 
8138 	/* If already exists, returns without doing anything. */
8139 	for (i = 0; i < sc->sc_am_used; i++) {
8140 		if (sc->sc_am[i] == pid)
8141 			return;
8142 	}
8143 
8144 	/* Extend array if necessary. */
8145 	if (sc->sc_am_used >= sc->sc_am_capacity) {
8146 		sc->sc_am_capacity += AM_CAPACITY;
8147 		sc->sc_am = kern_realloc(sc->sc_am,
8148 		    sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8149 		TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8150 	}
8151 
8152 	TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8153 	sc->sc_am[sc->sc_am_used++] = pid;
8154 }
8155 
8156 /*
8157  * Remove a process from those to be signalled on mixer activity.
8158  * If the process has not been added, do nothing.
8159  * Must be called with sc_exlock held and without sc_lock held.
8160  */
8161 static void
8162 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8163 {
8164 	int i;
8165 
8166 	KASSERT(sc->sc_exlock);
8167 
8168 	for (i = 0; i < sc->sc_am_used; i++) {
8169 		if (sc->sc_am[i] == pid) {
8170 			sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8171 			TRACE(2, "am[%d](%d) removed, used=%d",
8172 			    i, (int)pid, sc->sc_am_used);
8173 
8174 			/* Empty array if no longer necessary. */
8175 			if (sc->sc_am_used == 0) {
8176 				kern_free(sc->sc_am);
8177 				sc->sc_am = NULL;
8178 				sc->sc_am_capacity = 0;
8179 				TRACE(2, "released");
8180 			}
8181 			return;
8182 		}
8183 	}
8184 }
8185 
8186 /*
8187  * Signal all processes waiting for the mixer.
8188  * Must be called with sc_exlock held.
8189  */
8190 static void
8191 mixer_signal(struct audio_softc *sc)
8192 {
8193 	proc_t *p;
8194 	int i;
8195 
8196 	KASSERT(sc->sc_exlock);
8197 
8198 	for (i = 0; i < sc->sc_am_used; i++) {
8199 		mutex_enter(&proc_lock);
8200 		p = proc_find(sc->sc_am[i]);
8201 		if (p)
8202 			psignal(p, SIGIO);
8203 		mutex_exit(&proc_lock);
8204 	}
8205 }
8206 
8207 /*
8208  * Close a mixer device
8209  */
8210 int
8211 mixer_close(struct audio_softc *sc, audio_file_t *file)
8212 {
8213 	int error;
8214 
8215 	error = audio_exlock_enter(sc);
8216 	if (error)
8217 		return error;
8218 	TRACE(1, "called");
8219 	mixer_async_remove(sc, curproc->p_pid);
8220 	audio_exlock_exit(sc);
8221 
8222 	return 0;
8223 }
8224 
8225 /*
8226  * Must be called without sc_lock nor sc_exlock held.
8227  */
8228 int
8229 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8230 	struct lwp *l)
8231 {
8232 	mixer_devinfo_t *mi;
8233 	mixer_ctrl_t *mc;
8234 	int error;
8235 
8236 	TRACE(2, "(%lu,'%c',%lu)",
8237 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8238 	error = EINVAL;
8239 
8240 	/* we can return cached values if we are sleeping */
8241 	if (cmd != AUDIO_MIXER_READ) {
8242 		mutex_enter(sc->sc_lock);
8243 		device_active(sc->sc_dev, DVA_SYSTEM);
8244 		mutex_exit(sc->sc_lock);
8245 	}
8246 
8247 	switch (cmd) {
8248 	case FIOASYNC:
8249 		error = audio_exlock_enter(sc);
8250 		if (error)
8251 			break;
8252 		if (*(int *)addr) {
8253 			mixer_async_add(sc, curproc->p_pid);
8254 		} else {
8255 			mixer_async_remove(sc, curproc->p_pid);
8256 		}
8257 		audio_exlock_exit(sc);
8258 		break;
8259 
8260 	case AUDIO_GETDEV:
8261 		TRACE(2, "AUDIO_GETDEV");
8262 		mutex_enter(sc->sc_lock);
8263 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8264 		mutex_exit(sc->sc_lock);
8265 		break;
8266 
8267 	case AUDIO_MIXER_DEVINFO:
8268 		TRACE(2, "AUDIO_MIXER_DEVINFO");
8269 		mi = (mixer_devinfo_t *)addr;
8270 
8271 		mi->un.v.delta = 0; /* default */
8272 		mutex_enter(sc->sc_lock);
8273 		error = audio_query_devinfo(sc, mi);
8274 		mutex_exit(sc->sc_lock);
8275 		break;
8276 
8277 	case AUDIO_MIXER_READ:
8278 		TRACE(2, "AUDIO_MIXER_READ");
8279 		mc = (mixer_ctrl_t *)addr;
8280 
8281 		error = audio_exlock_mutex_enter(sc);
8282 		if (error)
8283 			break;
8284 		if (device_is_active(sc->hw_dev))
8285 			error = audio_get_port(sc, mc);
8286 		else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8287 			error = ENXIO;
8288 		else {
8289 			int dev = mc->dev;
8290 			memcpy(mc, &sc->sc_mixer_state[dev],
8291 			    sizeof(mixer_ctrl_t));
8292 			error = 0;
8293 		}
8294 		audio_exlock_mutex_exit(sc);
8295 		break;
8296 
8297 	case AUDIO_MIXER_WRITE:
8298 		TRACE(2, "AUDIO_MIXER_WRITE");
8299 		error = audio_exlock_mutex_enter(sc);
8300 		if (error)
8301 			break;
8302 		error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8303 		if (error) {
8304 			audio_exlock_mutex_exit(sc);
8305 			break;
8306 		}
8307 
8308 		if (sc->hw_if->commit_settings) {
8309 			error = sc->hw_if->commit_settings(sc->hw_hdl);
8310 			if (error) {
8311 				audio_exlock_mutex_exit(sc);
8312 				break;
8313 			}
8314 		}
8315 		mutex_exit(sc->sc_lock);
8316 		mixer_signal(sc);
8317 		audio_exlock_exit(sc);
8318 		break;
8319 
8320 	default:
8321 		if (sc->hw_if->dev_ioctl) {
8322 			mutex_enter(sc->sc_lock);
8323 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8324 			    cmd, addr, flag, l);
8325 			mutex_exit(sc->sc_lock);
8326 		} else
8327 			error = EINVAL;
8328 		break;
8329 	}
8330 	TRACE(2, "(%lu,'%c',%lu) result %d",
8331 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8332 	return error;
8333 }
8334 
8335 /*
8336  * Must be called with sc_lock held.
8337  */
8338 int
8339 au_portof(struct audio_softc *sc, char *name, int class)
8340 {
8341 	mixer_devinfo_t mi;
8342 
8343 	KASSERT(mutex_owned(sc->sc_lock));
8344 
8345 	for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8346 		if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8347 			return mi.index;
8348 	}
8349 	return -1;
8350 }
8351 
8352 /*
8353  * Must be called with sc_lock held.
8354  */
8355 void
8356 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8357 	mixer_devinfo_t *mi, const struct portname *tbl)
8358 {
8359 	int i, j;
8360 
8361 	KASSERT(mutex_owned(sc->sc_lock));
8362 
8363 	ports->index = mi->index;
8364 	if (mi->type == AUDIO_MIXER_ENUM) {
8365 		ports->isenum = true;
8366 		for(i = 0; tbl[i].name; i++)
8367 		    for(j = 0; j < mi->un.e.num_mem; j++)
8368 			if (strcmp(mi->un.e.member[j].label.name,
8369 						    tbl[i].name) == 0) {
8370 				ports->allports |= tbl[i].mask;
8371 				ports->aumask[ports->nports] = tbl[i].mask;
8372 				ports->misel[ports->nports] =
8373 				    mi->un.e.member[j].ord;
8374 				ports->miport[ports->nports] =
8375 				    au_portof(sc, mi->un.e.member[j].label.name,
8376 				    mi->mixer_class);
8377 				if (ports->mixerout != -1 &&
8378 				    ports->miport[ports->nports] != -1)
8379 					ports->isdual = true;
8380 				++ports->nports;
8381 			}
8382 	} else if (mi->type == AUDIO_MIXER_SET) {
8383 		for(i = 0; tbl[i].name; i++)
8384 		    for(j = 0; j < mi->un.s.num_mem; j++)
8385 			if (strcmp(mi->un.s.member[j].label.name,
8386 						tbl[i].name) == 0) {
8387 				ports->allports |= tbl[i].mask;
8388 				ports->aumask[ports->nports] = tbl[i].mask;
8389 				ports->misel[ports->nports] =
8390 				    mi->un.s.member[j].mask;
8391 				ports->miport[ports->nports] =
8392 				    au_portof(sc, mi->un.s.member[j].label.name,
8393 				    mi->mixer_class);
8394 				++ports->nports;
8395 			}
8396 	}
8397 }
8398 
8399 /*
8400  * Must be called with sc_lock && sc_exlock held.
8401  */
8402 int
8403 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8404 {
8405 
8406 	KASSERT(mutex_owned(sc->sc_lock));
8407 	KASSERT(sc->sc_exlock);
8408 
8409 	ct->type = AUDIO_MIXER_VALUE;
8410 	ct->un.value.num_channels = 2;
8411 	ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8412 	ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8413 	if (audio_set_port(sc, ct) == 0)
8414 		return 0;
8415 	ct->un.value.num_channels = 1;
8416 	ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8417 	return audio_set_port(sc, ct);
8418 }
8419 
8420 /*
8421  * Must be called with sc_lock && sc_exlock held.
8422  */
8423 int
8424 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8425 {
8426 	int error;
8427 
8428 	KASSERT(mutex_owned(sc->sc_lock));
8429 	KASSERT(sc->sc_exlock);
8430 
8431 	ct->un.value.num_channels = 2;
8432 	if (audio_get_port(sc, ct) == 0) {
8433 		*l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8434 		*r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8435 	} else {
8436 		ct->un.value.num_channels = 1;
8437 		error = audio_get_port(sc, ct);
8438 		if (error)
8439 			return error;
8440 		*r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8441 	}
8442 	return 0;
8443 }
8444 
8445 /*
8446  * Must be called with sc_lock && sc_exlock held.
8447  */
8448 int
8449 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8450 	int gain, int balance)
8451 {
8452 	mixer_ctrl_t ct;
8453 	int i, error;
8454 	int l, r;
8455 	u_int mask;
8456 	int nset;
8457 
8458 	KASSERT(mutex_owned(sc->sc_lock));
8459 	KASSERT(sc->sc_exlock);
8460 
8461 	if (balance == AUDIO_MID_BALANCE) {
8462 		l = r = gain;
8463 	} else if (balance < AUDIO_MID_BALANCE) {
8464 		l = gain;
8465 		r = (balance * gain) / AUDIO_MID_BALANCE;
8466 	} else {
8467 		r = gain;
8468 		l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8469 		    / AUDIO_MID_BALANCE;
8470 	}
8471 	TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8472 
8473 	if (ports->index == -1) {
8474 	usemaster:
8475 		if (ports->master == -1)
8476 			return 0; /* just ignore it silently */
8477 		ct.dev = ports->master;
8478 		error = au_set_lr_value(sc, &ct, l, r);
8479 	} else {
8480 		ct.dev = ports->index;
8481 		if (ports->isenum) {
8482 			ct.type = AUDIO_MIXER_ENUM;
8483 			error = audio_get_port(sc, &ct);
8484 			if (error)
8485 				return error;
8486 			if (ports->isdual) {
8487 				if (ports->cur_port == -1)
8488 					ct.dev = ports->master;
8489 				else
8490 					ct.dev = ports->miport[ports->cur_port];
8491 				error = au_set_lr_value(sc, &ct, l, r);
8492 			} else {
8493 				for(i = 0; i < ports->nports; i++)
8494 				    if (ports->misel[i] == ct.un.ord) {
8495 					    ct.dev = ports->miport[i];
8496 					    if (ct.dev == -1 ||
8497 						au_set_lr_value(sc, &ct, l, r))
8498 						    goto usemaster;
8499 					    else
8500 						    break;
8501 				    }
8502 			}
8503 		} else {
8504 			ct.type = AUDIO_MIXER_SET;
8505 			error = audio_get_port(sc, &ct);
8506 			if (error)
8507 				return error;
8508 			mask = ct.un.mask;
8509 			nset = 0;
8510 			for(i = 0; i < ports->nports; i++) {
8511 				if (ports->misel[i] & mask) {
8512 				    ct.dev = ports->miport[i];
8513 				    if (ct.dev != -1 &&
8514 					au_set_lr_value(sc, &ct, l, r) == 0)
8515 					    nset++;
8516 				}
8517 			}
8518 			if (nset == 0)
8519 				goto usemaster;
8520 		}
8521 	}
8522 	if (!error)
8523 		mixer_signal(sc);
8524 	return error;
8525 }
8526 
8527 /*
8528  * Must be called with sc_lock && sc_exlock held.
8529  */
8530 void
8531 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8532 	u_int *pgain, u_char *pbalance)
8533 {
8534 	mixer_ctrl_t ct;
8535 	int i, l, r, n;
8536 	int lgain, rgain;
8537 
8538 	KASSERT(mutex_owned(sc->sc_lock));
8539 	KASSERT(sc->sc_exlock);
8540 
8541 	lgain = AUDIO_MAX_GAIN / 2;
8542 	rgain = AUDIO_MAX_GAIN / 2;
8543 	if (ports->index == -1) {
8544 	usemaster:
8545 		if (ports->master == -1)
8546 			goto bad;
8547 		ct.dev = ports->master;
8548 		ct.type = AUDIO_MIXER_VALUE;
8549 		if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8550 			goto bad;
8551 	} else {
8552 		ct.dev = ports->index;
8553 		if (ports->isenum) {
8554 			ct.type = AUDIO_MIXER_ENUM;
8555 			if (audio_get_port(sc, &ct))
8556 				goto bad;
8557 			ct.type = AUDIO_MIXER_VALUE;
8558 			if (ports->isdual) {
8559 				if (ports->cur_port == -1)
8560 					ct.dev = ports->master;
8561 				else
8562 					ct.dev = ports->miport[ports->cur_port];
8563 				au_get_lr_value(sc, &ct, &lgain, &rgain);
8564 			} else {
8565 				for(i = 0; i < ports->nports; i++)
8566 				    if (ports->misel[i] == ct.un.ord) {
8567 					    ct.dev = ports->miport[i];
8568 					    if (ct.dev == -1 ||
8569 						au_get_lr_value(sc, &ct,
8570 								&lgain, &rgain))
8571 						    goto usemaster;
8572 					    else
8573 						    break;
8574 				    }
8575 			}
8576 		} else {
8577 			ct.type = AUDIO_MIXER_SET;
8578 			if (audio_get_port(sc, &ct))
8579 				goto bad;
8580 			ct.type = AUDIO_MIXER_VALUE;
8581 			lgain = rgain = n = 0;
8582 			for(i = 0; i < ports->nports; i++) {
8583 				if (ports->misel[i] & ct.un.mask) {
8584 					ct.dev = ports->miport[i];
8585 					if (ct.dev == -1 ||
8586 					    au_get_lr_value(sc, &ct, &l, &r))
8587 						goto usemaster;
8588 					else {
8589 						lgain += l;
8590 						rgain += r;
8591 						n++;
8592 					}
8593 				}
8594 			}
8595 			if (n != 0) {
8596 				lgain /= n;
8597 				rgain /= n;
8598 			}
8599 		}
8600 	}
8601 bad:
8602 	if (lgain == rgain) {	/* handles lgain==rgain==0 */
8603 		*pgain = lgain;
8604 		*pbalance = AUDIO_MID_BALANCE;
8605 	} else if (lgain < rgain) {
8606 		*pgain = rgain;
8607 		/* balance should be > AUDIO_MID_BALANCE */
8608 		*pbalance = AUDIO_RIGHT_BALANCE -
8609 			(AUDIO_MID_BALANCE * lgain) / rgain;
8610 	} else /* lgain > rgain */ {
8611 		*pgain = lgain;
8612 		/* balance should be < AUDIO_MID_BALANCE */
8613 		*pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8614 	}
8615 }
8616 
8617 /*
8618  * Must be called with sc_lock && sc_exlock held.
8619  */
8620 int
8621 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8622 {
8623 	mixer_ctrl_t ct;
8624 	int i, error, use_mixerout;
8625 
8626 	KASSERT(mutex_owned(sc->sc_lock));
8627 	KASSERT(sc->sc_exlock);
8628 
8629 	use_mixerout = 1;
8630 	if (port == 0) {
8631 		if (ports->allports == 0)
8632 			return 0;		/* Allow this special case. */
8633 		else if (ports->isdual) {
8634 			if (ports->cur_port == -1) {
8635 				return 0;
8636 			} else {
8637 				port = ports->aumask[ports->cur_port];
8638 				ports->cur_port = -1;
8639 				use_mixerout = 0;
8640 			}
8641 		}
8642 	}
8643 	if (ports->index == -1)
8644 		return EINVAL;
8645 	ct.dev = ports->index;
8646 	if (ports->isenum) {
8647 		if (port & (port-1))
8648 			return EINVAL; /* Only one port allowed */
8649 		ct.type = AUDIO_MIXER_ENUM;
8650 		error = EINVAL;
8651 		for(i = 0; i < ports->nports; i++)
8652 			if (ports->aumask[i] == port) {
8653 				if (ports->isdual && use_mixerout) {
8654 					ct.un.ord = ports->mixerout;
8655 					ports->cur_port = i;
8656 				} else {
8657 					ct.un.ord = ports->misel[i];
8658 				}
8659 				error = audio_set_port(sc, &ct);
8660 				break;
8661 			}
8662 	} else {
8663 		ct.type = AUDIO_MIXER_SET;
8664 		ct.un.mask = 0;
8665 		for(i = 0; i < ports->nports; i++)
8666 			if (ports->aumask[i] & port)
8667 				ct.un.mask |= ports->misel[i];
8668 		if (port != 0 && ct.un.mask == 0)
8669 			error = EINVAL;
8670 		else
8671 			error = audio_set_port(sc, &ct);
8672 	}
8673 	if (!error)
8674 		mixer_signal(sc);
8675 	return error;
8676 }
8677 
8678 /*
8679  * Must be called with sc_lock && sc_exlock held.
8680  */
8681 int
8682 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8683 {
8684 	mixer_ctrl_t ct;
8685 	int i, aumask;
8686 
8687 	KASSERT(mutex_owned(sc->sc_lock));
8688 	KASSERT(sc->sc_exlock);
8689 
8690 	if (ports->index == -1)
8691 		return 0;
8692 	ct.dev = ports->index;
8693 	ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8694 	if (audio_get_port(sc, &ct))
8695 		return 0;
8696 	aumask = 0;
8697 	if (ports->isenum) {
8698 		if (ports->isdual && ports->cur_port != -1) {
8699 			if (ports->mixerout == ct.un.ord)
8700 				aumask = ports->aumask[ports->cur_port];
8701 			else
8702 				ports->cur_port = -1;
8703 		}
8704 		if (aumask == 0)
8705 			for(i = 0; i < ports->nports; i++)
8706 				if (ports->misel[i] == ct.un.ord)
8707 					aumask = ports->aumask[i];
8708 	} else {
8709 		for(i = 0; i < ports->nports; i++)
8710 			if (ct.un.mask & ports->misel[i])
8711 				aumask |= ports->aumask[i];
8712 	}
8713 	return aumask;
8714 }
8715 
8716 /*
8717  * It returns 0 if success, otherwise errno.
8718  * Must be called only if sc->sc_monitor_port != -1.
8719  * Must be called with sc_lock && sc_exlock held.
8720  */
8721 static int
8722 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8723 {
8724 	mixer_ctrl_t ct;
8725 
8726 	KASSERT(mutex_owned(sc->sc_lock));
8727 	KASSERT(sc->sc_exlock);
8728 
8729 	ct.dev = sc->sc_monitor_port;
8730 	ct.type = AUDIO_MIXER_VALUE;
8731 	ct.un.value.num_channels = 1;
8732 	ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8733 	return audio_set_port(sc, &ct);
8734 }
8735 
8736 /*
8737  * It returns monitor gain if success, otherwise -1.
8738  * Must be called only if sc->sc_monitor_port != -1.
8739  * Must be called with sc_lock && sc_exlock held.
8740  */
8741 static int
8742 au_get_monitor_gain(struct audio_softc *sc)
8743 {
8744 	mixer_ctrl_t ct;
8745 
8746 	KASSERT(mutex_owned(sc->sc_lock));
8747 	KASSERT(sc->sc_exlock);
8748 
8749 	ct.dev = sc->sc_monitor_port;
8750 	ct.type = AUDIO_MIXER_VALUE;
8751 	ct.un.value.num_channels = 1;
8752 	if (audio_get_port(sc, &ct))
8753 		return -1;
8754 	return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8755 }
8756 
8757 /*
8758  * Must be called with sc_lock && sc_exlock held.
8759  */
8760 static int
8761 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8762 {
8763 
8764 	KASSERT(mutex_owned(sc->sc_lock));
8765 	KASSERT(sc->sc_exlock);
8766 
8767 	return sc->hw_if->set_port(sc->hw_hdl, mc);
8768 }
8769 
8770 /*
8771  * Must be called with sc_lock && sc_exlock held.
8772  */
8773 static int
8774 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8775 {
8776 
8777 	KASSERT(mutex_owned(sc->sc_lock));
8778 	KASSERT(sc->sc_exlock);
8779 
8780 	return sc->hw_if->get_port(sc->hw_hdl, mc);
8781 }
8782 
8783 /*
8784  * Must be called with sc_lock && sc_exlock held.
8785  */
8786 static void
8787 audio_mixer_capture(struct audio_softc *sc)
8788 {
8789 	mixer_devinfo_t mi;
8790 	mixer_ctrl_t *mc;
8791 
8792 	KASSERT(mutex_owned(sc->sc_lock));
8793 	KASSERT(sc->sc_exlock);
8794 
8795 	for (mi.index = 0;; mi.index++) {
8796 		if (audio_query_devinfo(sc, &mi) != 0)
8797 			break;
8798 		KASSERT(mi.index < sc->sc_nmixer_states);
8799 		if (mi.type == AUDIO_MIXER_CLASS)
8800 			continue;
8801 		mc = &sc->sc_mixer_state[mi.index];
8802 		mc->dev = mi.index;
8803 		mc->type = mi.type;
8804 		mc->un.value.num_channels = mi.un.v.num_channels;
8805 		(void)audio_get_port(sc, mc);
8806 	}
8807 
8808 	return;
8809 }
8810 
8811 /*
8812  * Must be called with sc_lock && sc_exlock held.
8813  */
8814 static void
8815 audio_mixer_restore(struct audio_softc *sc)
8816 {
8817 	mixer_devinfo_t mi;
8818 	mixer_ctrl_t *mc;
8819 
8820 	KASSERT(mutex_owned(sc->sc_lock));
8821 	KASSERT(sc->sc_exlock);
8822 
8823 	for (mi.index = 0; ; mi.index++) {
8824 		if (audio_query_devinfo(sc, &mi) != 0)
8825 			break;
8826 		if (mi.type == AUDIO_MIXER_CLASS)
8827 			continue;
8828 		mc = &sc->sc_mixer_state[mi.index];
8829 		(void)audio_set_port(sc, mc);
8830 	}
8831 	if (sc->hw_if->commit_settings)
8832 		sc->hw_if->commit_settings(sc->hw_hdl);
8833 
8834 	return;
8835 }
8836 
8837 static void
8838 audio_volume_down(device_t dv)
8839 {
8840 	struct audio_softc *sc = device_private(dv);
8841 	mixer_devinfo_t mi;
8842 	int newgain;
8843 	u_int gain;
8844 	u_char balance;
8845 
8846 	if (audio_exlock_mutex_enter(sc) != 0)
8847 		return;
8848 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8849 		mi.index = sc->sc_outports.master;
8850 		mi.un.v.delta = 0;
8851 		if (audio_query_devinfo(sc, &mi) == 0) {
8852 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8853 			newgain = gain - mi.un.v.delta;
8854 			if (newgain < AUDIO_MIN_GAIN)
8855 				newgain = AUDIO_MIN_GAIN;
8856 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
8857 		}
8858 	}
8859 	audio_exlock_mutex_exit(sc);
8860 }
8861 
8862 static void
8863 audio_volume_up(device_t dv)
8864 {
8865 	struct audio_softc *sc = device_private(dv);
8866 	mixer_devinfo_t mi;
8867 	u_int gain, newgain;
8868 	u_char balance;
8869 
8870 	if (audio_exlock_mutex_enter(sc) != 0)
8871 		return;
8872 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8873 		mi.index = sc->sc_outports.master;
8874 		mi.un.v.delta = 0;
8875 		if (audio_query_devinfo(sc, &mi) == 0) {
8876 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8877 			newgain = gain + mi.un.v.delta;
8878 			if (newgain > AUDIO_MAX_GAIN)
8879 				newgain = AUDIO_MAX_GAIN;
8880 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
8881 		}
8882 	}
8883 	audio_exlock_mutex_exit(sc);
8884 }
8885 
8886 static void
8887 audio_volume_toggle(device_t dv)
8888 {
8889 	struct audio_softc *sc = device_private(dv);
8890 	u_int gain, newgain;
8891 	u_char balance;
8892 
8893 	if (audio_exlock_mutex_enter(sc) != 0)
8894 		return;
8895 	au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8896 	if (gain != 0) {
8897 		sc->sc_lastgain = gain;
8898 		newgain = 0;
8899 	} else
8900 		newgain = sc->sc_lastgain;
8901 	au_set_gain(sc, &sc->sc_outports, newgain, balance);
8902 	audio_exlock_mutex_exit(sc);
8903 }
8904 
8905 /*
8906  * Must be called with sc_lock held.
8907  */
8908 static int
8909 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8910 {
8911 
8912 	KASSERT(mutex_owned(sc->sc_lock));
8913 
8914 	return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8915 }
8916 
8917 #endif /* NAUDIO > 0 */
8918 
8919 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8920 #include <sys/param.h>
8921 #include <sys/systm.h>
8922 #include <sys/device.h>
8923 #include <sys/audioio.h>
8924 #include <dev/audio/audio_if.h>
8925 #endif
8926 
8927 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8928 int
8929 audioprint(void *aux, const char *pnp)
8930 {
8931 	struct audio_attach_args *arg;
8932 	const char *type;
8933 
8934 	if (pnp != NULL) {
8935 		arg = aux;
8936 		switch (arg->type) {
8937 		case AUDIODEV_TYPE_AUDIO:
8938 			type = "audio";
8939 			break;
8940 		case AUDIODEV_TYPE_MIDI:
8941 			type = "midi";
8942 			break;
8943 		case AUDIODEV_TYPE_OPL:
8944 			type = "opl";
8945 			break;
8946 		case AUDIODEV_TYPE_MPU:
8947 			type = "mpu";
8948 			break;
8949 		default:
8950 			panic("audioprint: unknown type %d", arg->type);
8951 		}
8952 		aprint_normal("%s at %s", type, pnp);
8953 	}
8954 	return UNCONF;
8955 }
8956 
8957 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8958 
8959 #ifdef _MODULE
8960 
8961 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8962 
8963 #include "ioconf.c"
8964 
8965 #endif
8966 
8967 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8968 
8969 static int
8970 audio_modcmd(modcmd_t cmd, void *arg)
8971 {
8972 	int error = 0;
8973 
8974 	switch (cmd) {
8975 	case MODULE_CMD_INIT:
8976 		/* XXX interrupt level? */
8977 		audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8978 #ifdef _MODULE
8979 		error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8980 		    &audio_cdevsw, &audio_cmajor);
8981 		if (error)
8982 			break;
8983 
8984 		error = config_init_component(cfdriver_ioconf_audio,
8985 		    cfattach_ioconf_audio, cfdata_ioconf_audio);
8986 		if (error) {
8987 			devsw_detach(NULL, &audio_cdevsw);
8988 		}
8989 #endif
8990 		break;
8991 	case MODULE_CMD_FINI:
8992 #ifdef _MODULE
8993 		devsw_detach(NULL, &audio_cdevsw);
8994 		error = config_fini_component(cfdriver_ioconf_audio,
8995 		   cfattach_ioconf_audio, cfdata_ioconf_audio);
8996 		if (error)
8997 			devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8998 			    &audio_cdevsw, &audio_cmajor);
8999 #endif
9000 		psref_class_destroy(audio_psref_class);
9001 		break;
9002 	default:
9003 		error = ENOTTY;
9004 		break;
9005 	}
9006 
9007 	return error;
9008 }
9009