xref: /netbsd-src/sys/dev/acpi/acpi_cpu_pstate.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /* $NetBSD: acpi_cpu_pstate.c,v 1.33 2010/08/21 13:12:15 jmcneill Exp $ */
2 
3 /*-
4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen@iki.fi>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.33 2010/08/21 13:12:15 jmcneill Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/evcnt.h>
34 #include <sys/kmem.h>
35 #include <sys/once.h>
36 
37 #include <dev/acpi/acpireg.h>
38 #include <dev/acpi/acpivar.h>
39 #include <dev/acpi/acpi_cpu.h>
40 
41 #define _COMPONENT	 ACPI_BUS_COMPONENT
42 ACPI_MODULE_NAME	 ("acpi_cpu_pstate")
43 
44 static void		 acpicpu_pstate_attach_print(struct acpicpu_softc *);
45 static void		 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
46 static void		 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
47 static ACPI_STATUS	 acpicpu_pstate_pss(struct acpicpu_softc *);
48 static ACPI_STATUS	 acpicpu_pstate_pss_add(struct acpicpu_pstate *,
49 						ACPI_OBJECT *);
50 static ACPI_STATUS	 acpicpu_pstate_xpss(struct acpicpu_softc *);
51 static ACPI_STATUS	 acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
52 						 ACPI_OBJECT *);
53 static ACPI_STATUS	 acpicpu_pstate_pct(struct acpicpu_softc *);
54 static int		 acpicpu_pstate_max(struct acpicpu_softc *);
55 static int		 acpicpu_pstate_min(struct acpicpu_softc *);
56 static void		 acpicpu_pstate_change(struct acpicpu_softc *);
57 static void		 acpicpu_pstate_reset(struct acpicpu_softc *);
58 static void		 acpicpu_pstate_bios(void);
59 
60 static uint32_t		 acpicpu_pstate_saved = 0;
61 
62 void
63 acpicpu_pstate_attach(device_t self)
64 {
65 	struct acpicpu_softc *sc = device_private(self);
66 	const char *str;
67 	ACPI_HANDLE tmp;
68 	ACPI_STATUS rv;
69 
70 	rv = acpicpu_pstate_pss(sc);
71 
72 	if (ACPI_FAILURE(rv)) {
73 		str = "_PSS";
74 		goto fail;
75 	}
76 
77 	/*
78 	 * Check the availability of extended _PSS.
79 	 * If present, this will override the data.
80 	 * Note that XPSS can not be used on Intel
81 	 * systems where _PDC or _OSC may be used.
82 	 */
83 	if (sc->sc_cap == 0) {
84 		rv = acpicpu_pstate_xpss(sc);
85 
86 		if (ACPI_SUCCESS(rv))
87 			sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
88 	}
89 
90 	rv = acpicpu_pstate_pct(sc);
91 
92 	if (ACPI_FAILURE(rv)) {
93 		str = "_PCT";
94 		goto fail;
95 	}
96 
97 	/*
98 	 * The ACPI 3.0 and 4.0 specifications mandate three
99 	 * objects for P-states: _PSS, _PCT, and _PPC. A less
100 	 * strict wording is however used in the earlier 2.0
101 	 * standard, and some systems conforming to ACPI 2.0
102 	 * do not have _PPC, the method for dynamic maximum.
103 	 */
104 	rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
105 
106 	if (ACPI_FAILURE(rv))
107 		aprint_debug_dev(self, "_PPC missing\n");
108 
109 	/*
110 	 * Employ the XPSS structure by filling
111 	 * it with MD information required for FFH.
112 	 */
113 	rv = acpicpu_md_pstate_pss(sc);
114 
115 	if (rv != 0) {
116 		rv = AE_SUPPORT;
117 		goto fail;
118 	}
119 
120 	sc->sc_flags |= ACPICPU_FLAG_P;
121 
122 	acpicpu_pstate_bios();
123 	acpicpu_pstate_reset(sc);
124 	acpicpu_pstate_attach_evcnt(sc);
125 	acpicpu_pstate_attach_print(sc);
126 
127 	return;
128 
129 fail:
130 	switch (rv) {
131 
132 	case AE_NOT_FOUND:
133 		return;
134 
135 	case AE_SUPPORT:
136 		aprint_verbose_dev(sc->sc_dev, "P-states not supported\n");
137 		return;
138 
139 	default:
140 		aprint_error_dev(sc->sc_dev, "failed to evaluate "
141 		    "%s: %s\n", str, AcpiFormatException(rv));
142 	}
143 }
144 
145 static void
146 acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
147 {
148 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
149 	struct acpicpu_pstate *ps;
150 	static bool once = false;
151 	const char *str;
152 	uint32_t i;
153 
154 	if (once != false)
155 		return;
156 
157 	str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
158 
159 	for (i = 0; i < sc->sc_pstate_count; i++) {
160 
161 		ps = &sc->sc_pstate[i];
162 
163 		if (ps->ps_freq == 0)
164 			continue;
165 
166 		aprint_debug_dev(sc->sc_dev, "P%d: %3s, "
167 		    "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
168 		    ps->ps_latency, ps->ps_power, ps->ps_freq);
169 	}
170 
171 	once = true;
172 }
173 
174 static void
175 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
176 {
177 	struct acpicpu_pstate *ps;
178 	uint32_t i;
179 
180 	for (i = 0; i < sc->sc_pstate_count; i++) {
181 
182 		ps = &sc->sc_pstate[i];
183 
184 		if (ps->ps_freq == 0)
185 			continue;
186 
187 		(void)snprintf(ps->ps_name, sizeof(ps->ps_name),
188 		    "P%u (%u MHz)", i, ps->ps_freq);
189 
190 		evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
191 		    NULL, device_xname(sc->sc_dev), ps->ps_name);
192 	}
193 }
194 
195 int
196 acpicpu_pstate_detach(device_t self)
197 {
198 	struct acpicpu_softc *sc = device_private(self);
199 	static ONCE_DECL(once_detach);
200 	size_t size;
201 	int rv;
202 
203 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
204 		return 0;
205 
206 	rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
207 
208 	if (rv != 0)
209 		return rv;
210 
211 	size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
212 
213 	if (sc->sc_pstate != NULL)
214 		kmem_free(sc->sc_pstate, size);
215 
216 	sc->sc_flags &= ~ACPICPU_FLAG_P;
217 	acpicpu_pstate_detach_evcnt(sc);
218 
219 	return 0;
220 }
221 
222 static void
223 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
224 {
225 	struct acpicpu_pstate *ps;
226 	uint32_t i;
227 
228 	for (i = 0; i < sc->sc_pstate_count; i++) {
229 
230 		ps = &sc->sc_pstate[i];
231 
232 		if (ps->ps_freq != 0)
233 			evcnt_detach(&ps->ps_evcnt);
234 	}
235 }
236 
237 void
238 acpicpu_pstate_start(device_t self)
239 {
240 	struct acpicpu_softc *sc = device_private(self);
241 	struct acpicpu_pstate *ps;
242 	uint32_t i;
243 	int rv;
244 
245 	rv = acpicpu_md_pstate_start();
246 
247 	if (rv != 0)
248 		goto fail;
249 
250 	/*
251 	 * Initialize the state to P0.
252 	 */
253 	for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
254 
255 		ps = &sc->sc_pstate[i];
256 
257 		if (ps->ps_freq != 0) {
258 			sc->sc_cold = false;
259 			rv = acpicpu_pstate_set(sc, ps->ps_freq);
260 			break;
261 		}
262 	}
263 
264 	if (rv != 0)
265 		goto fail;
266 
267 	return;
268 
269 fail:
270 	sc->sc_flags &= ~ACPICPU_FLAG_P;
271 
272 	if (rv == EEXIST) {
273 		aprint_error_dev(self, "driver conflicts with existing one\n");
274 		return;
275 	}
276 
277 	aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
278 }
279 
280 bool
281 acpicpu_pstate_suspend(device_t self)
282 {
283 	struct acpicpu_softc *sc = device_private(self);
284 	struct acpicpu_pstate *ps = NULL;
285 	int32_t i;
286 
287 	mutex_enter(&sc->sc_mtx);
288 	acpicpu_pstate_reset(sc);
289 	mutex_exit(&sc->sc_mtx);
290 
291 	if (acpicpu_pstate_saved != 0)
292 		return true;
293 
294 	/*
295 	 * Following design notes for Windows, we set the highest
296 	 * P-state when entering any of the system sleep states.
297 	 * When resuming, the saved P-state will be restored.
298 	 *
299 	 *	Microsoft Corporation: Windows Native Processor
300 	 *	Performance Control. Version 1.1a, November, 2002.
301 	 */
302 	for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
303 
304 		if (sc->sc_pstate[i].ps_freq != 0) {
305 			ps = &sc->sc_pstate[i];
306 			break;
307 		}
308 	}
309 
310 	if (__predict_false(ps == NULL))
311 		return true;
312 
313 	mutex_enter(&sc->sc_mtx);
314 	acpicpu_pstate_saved = sc->sc_pstate_current;
315 	mutex_exit(&sc->sc_mtx);
316 
317 	if (acpicpu_pstate_saved == ps->ps_freq)
318 		return true;
319 
320 	(void)acpicpu_pstate_set(sc, ps->ps_freq);
321 
322 	return true;
323 }
324 
325 bool
326 acpicpu_pstate_resume(device_t self)
327 {
328 	struct acpicpu_softc *sc = device_private(self);
329 
330 	if (acpicpu_pstate_saved != 0) {
331 		(void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
332 		acpicpu_pstate_saved = 0;
333 	}
334 
335 	return true;
336 }
337 
338 void
339 acpicpu_pstate_callback(void *aux)
340 {
341 	struct acpicpu_softc *sc;
342 	device_t self = aux;
343 	uint32_t old, new;
344 
345 	sc = device_private(self);
346 
347 	mutex_enter(&sc->sc_mtx);
348 	old = sc->sc_pstate_max;
349 	acpicpu_pstate_change(sc);
350 	new = sc->sc_pstate_max;
351 	mutex_exit(&sc->sc_mtx);
352 
353 	if (old != new) {
354 
355 		aprint_debug_dev(sc->sc_dev, "maximum frequency "
356 		    "changed from P%u (%u MHz) to P%u (%u MHz)\n",
357 		    old, sc->sc_pstate[old].ps_freq, new,
358 		    sc->sc_pstate[sc->sc_pstate_max].ps_freq);
359 #if 0
360 		/*
361 		 * If the maximum changed, proactively
362 		 * raise or lower the target frequency.
363 		 */
364 		(void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
365 
366 #endif
367 	}
368 }
369 
370 ACPI_STATUS
371 acpicpu_pstate_pss(struct acpicpu_softc *sc)
372 {
373 	struct acpicpu_pstate *ps;
374 	ACPI_OBJECT *obj;
375 	ACPI_BUFFER buf;
376 	ACPI_STATUS rv;
377 	uint32_t count;
378 	uint32_t i, j;
379 
380 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
381 
382 	if (ACPI_FAILURE(rv))
383 		return rv;
384 
385 	obj = buf.Pointer;
386 
387 	if (obj->Type != ACPI_TYPE_PACKAGE) {
388 		rv = AE_TYPE;
389 		goto out;
390 	}
391 
392 	sc->sc_pstate_count = obj->Package.Count;
393 
394 	if (sc->sc_pstate_count == 0) {
395 		rv = AE_NOT_EXIST;
396 		goto out;
397 	}
398 
399 	if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
400 		rv = AE_LIMIT;
401 		goto out;
402 	}
403 
404 	sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
405 	    sizeof(struct acpicpu_pstate), KM_SLEEP);
406 
407 	if (sc->sc_pstate == NULL) {
408 		rv = AE_NO_MEMORY;
409 		goto out;
410 	}
411 
412 	for (count = i = 0; i < sc->sc_pstate_count; i++) {
413 
414 		ps = &sc->sc_pstate[i];
415 		rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
416 
417 		if (ACPI_FAILURE(rv)) {
418 			ps->ps_freq = 0;
419 			continue;
420 		}
421 
422 		for (j = 0; j < i; j++) {
423 
424 			if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
425 				ps->ps_freq = 0;
426 				break;
427 			}
428 		}
429 
430 		if (ps->ps_freq != 0)
431 			count++;
432 	}
433 
434 	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
435 
436 out:
437 	if (buf.Pointer != NULL)
438 		ACPI_FREE(buf.Pointer);
439 
440 	return rv;
441 }
442 
443 static ACPI_STATUS
444 acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
445 {
446 	ACPI_OBJECT *elm;
447 	int i;
448 
449 	if (obj->Type != ACPI_TYPE_PACKAGE)
450 		return AE_TYPE;
451 
452 	if (obj->Package.Count != 6)
453 		return AE_BAD_DATA;
454 
455 	elm = obj->Package.Elements;
456 
457 	for (i = 0; i < 6; i++) {
458 
459 		if (elm[i].Type != ACPI_TYPE_INTEGER)
460 			return AE_TYPE;
461 
462 		if (elm[i].Integer.Value > UINT32_MAX)
463 			return AE_AML_NUMERIC_OVERFLOW;
464 	}
465 
466 	ps->ps_freq       = elm[0].Integer.Value;
467 	ps->ps_power      = elm[1].Integer.Value;
468 	ps->ps_latency    = elm[2].Integer.Value;
469 	ps->ps_latency_bm = elm[3].Integer.Value;
470 	ps->ps_control    = elm[4].Integer.Value;
471 	ps->ps_status     = elm[5].Integer.Value;
472 
473 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
474 		return AE_BAD_DECIMAL_CONSTANT;
475 
476 	/*
477 	 * The latency is typically around 10 usec
478 	 * on Intel CPUs. Use that as the minimum.
479 	 */
480 	if (ps->ps_latency < 10)
481 		ps->ps_latency = 10;
482 
483 	return AE_OK;
484 }
485 
486 static ACPI_STATUS
487 acpicpu_pstate_xpss(struct acpicpu_softc *sc)
488 {
489 	static const size_t size = sizeof(struct acpicpu_pstate);
490 	struct acpicpu_pstate *ps, *pstate = NULL;
491 	ACPI_OBJECT *obj;
492 	ACPI_BUFFER buf;
493 	ACPI_STATUS rv;
494 	uint32_t count, pstate_count;
495 	uint32_t i, j;
496 
497 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
498 
499 	if (ACPI_FAILURE(rv))
500 		return rv;
501 
502 	obj = buf.Pointer;
503 
504 	if (obj->Type != ACPI_TYPE_PACKAGE) {
505 		rv = AE_TYPE;
506 		goto out;
507 	}
508 
509 	pstate_count = count = obj->Package.Count;
510 
511 	if (count == 0) {
512 		rv = AE_NOT_EXIST;
513 		goto out;
514 	}
515 
516 	if (count > ACPICPU_P_STATE_MAX) {
517 		rv = AE_LIMIT;
518 		goto out;
519 	}
520 
521 	pstate = kmem_zalloc(count * size, KM_SLEEP);
522 
523 	if (pstate == NULL) {
524 		rv = AE_NO_MEMORY;
525 		goto out;
526 	}
527 
528 	for (count = i = 0; i < pstate_count; i++) {
529 
530 		ps = &pstate[i];
531 		rv = acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
532 
533 		if (ACPI_FAILURE(rv)) {
534 			ps->ps_freq = 0;
535 			continue;
536 		}
537 
538 		for (j = 0; j < i; j++) {
539 
540 			if (ps->ps_freq >= pstate[j].ps_freq) {
541 				ps->ps_freq = 0;
542 				break;
543 			}
544 		}
545 
546 		if (ps->ps_freq != 0)
547 			count++;
548 	}
549 
550 	if (count > 0) {
551 		if (sc->sc_pstate != NULL)
552 			kmem_free(sc->sc_pstate, sc->sc_pstate_count * size);
553 		sc->sc_pstate = pstate;
554 		sc->sc_pstate_count = pstate_count;
555 		rv = AE_OK;
556 	} else {
557 		kmem_free(pstate, pstate_count * size);
558 		rv = AE_NOT_EXIST;
559 	}
560 
561 out:
562 	if (buf.Pointer != NULL)
563 		ACPI_FREE(buf.Pointer);
564 
565 	return rv;
566 }
567 
568 static ACPI_STATUS
569 acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
570 {
571 	ACPI_OBJECT *elm;
572 	int i;
573 
574 	if (obj->Type != ACPI_TYPE_PACKAGE)
575 		return AE_TYPE;
576 
577 	if (obj->Package.Count != 8)
578 		return AE_BAD_DATA;
579 
580 	elm = obj->Package.Elements;
581 
582 	for (i = 0; i < 4; i++) {
583 
584 		if (elm[i].Type != ACPI_TYPE_INTEGER)
585 			return AE_TYPE;
586 
587 		if (elm[i].Integer.Value > UINT32_MAX)
588 			return AE_AML_NUMERIC_OVERFLOW;
589 	}
590 
591 	for (; i < 8; i++) {
592 
593 		if (elm[i].Type != ACPI_TYPE_BUFFER)
594 			return AE_TYPE;
595 
596 		if (elm[i].Buffer.Length != 8)
597 			return AE_LIMIT;
598 	}
599 
600 	ps->ps_freq       = elm[0].Integer.Value;
601 	ps->ps_power      = elm[1].Integer.Value;
602 	ps->ps_latency    = elm[2].Integer.Value;
603 	ps->ps_latency_bm = elm[3].Integer.Value;
604 
605 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
606 		return AE_BAD_DECIMAL_CONSTANT;
607 
608 	ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
609 	ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
610 	ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
611 	ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
612 
613 	/*
614 	 * The latency is often defined to be
615 	 * zero on AMD systems. Raise that to 1.
616 	 */
617 	if (ps->ps_latency == 0)
618 		ps->ps_latency = 1;
619 
620 	ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
621 
622 	return AE_OK;
623 }
624 
625 ACPI_STATUS
626 acpicpu_pstate_pct(struct acpicpu_softc *sc)
627 {
628 	static const size_t size = sizeof(struct acpicpu_reg);
629 	struct acpicpu_reg *reg[2];
630 	struct acpicpu_pstate *ps;
631 	ACPI_OBJECT *elm, *obj;
632 	ACPI_BUFFER buf;
633 	ACPI_STATUS rv;
634 	uint8_t width;
635 	uint32_t i;
636 
637 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
638 
639 	if (ACPI_FAILURE(rv))
640 		return rv;
641 
642 	obj = buf.Pointer;
643 
644 	if (obj->Type != ACPI_TYPE_PACKAGE) {
645 		rv = AE_TYPE;
646 		goto out;
647 	}
648 
649 	if (obj->Package.Count != 2) {
650 		rv = AE_LIMIT;
651 		goto out;
652 	}
653 
654 	for (i = 0; i < 2; i++) {
655 
656 		elm = &obj->Package.Elements[i];
657 
658 		if (elm->Type != ACPI_TYPE_BUFFER) {
659 			rv = AE_TYPE;
660 			goto out;
661 		}
662 
663 		if (size > elm->Buffer.Length) {
664 			rv = AE_AML_BAD_RESOURCE_LENGTH;
665 			goto out;
666 		}
667 
668 		reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
669 
670 		switch (reg[i]->reg_spaceid) {
671 
672 		case ACPI_ADR_SPACE_SYSTEM_IO:
673 
674 			if (reg[i]->reg_addr == 0) {
675 				rv = AE_AML_ILLEGAL_ADDRESS;
676 				goto out;
677 			}
678 
679 			width = reg[i]->reg_bitwidth;
680 
681 			if (width + reg[i]->reg_bitoffset > 32) {
682 				rv = AE_AML_BAD_RESOURCE_VALUE;
683 				goto out;
684 			}
685 
686 			if (width != 8 && width != 16 && width != 32) {
687 				rv = AE_AML_BAD_RESOURCE_VALUE;
688 				goto out;
689 			}
690 
691 			break;
692 
693 		case ACPI_ADR_SPACE_FIXED_HARDWARE:
694 
695 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
696 
697 				if (reg[i]->reg_bitwidth != 64) {
698 					rv = AE_AML_BAD_RESOURCE_VALUE;
699 					goto out;
700 				}
701 
702 				if (reg[i]->reg_bitoffset != 0) {
703 					rv = AE_AML_BAD_RESOURCE_VALUE;
704 					goto out;
705 				}
706 
707 				break;
708 			}
709 
710 			if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
711 				rv = AE_SUPPORT;
712 				goto out;
713 			}
714 
715 			break;
716 
717 		default:
718 			rv = AE_AML_INVALID_SPACE_ID;
719 			goto out;
720 		}
721 	}
722 
723 	if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
724 		rv = AE_AML_INVALID_SPACE_ID;
725 		goto out;
726 	}
727 
728 	(void)memcpy(&sc->sc_pstate_control, reg[0], size);
729 	(void)memcpy(&sc->sc_pstate_status,  reg[1], size);
730 
731 	if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
732 		goto out;
733 
734 	/*
735 	 * In XPSS the control address can not be zero,
736 	 * but the status address may be. In this case,
737 	 * comparable to T-states, we can ignore the status
738 	 * check during the P-state (FFH) transition.
739 	 */
740 	if (sc->sc_pstate_control.reg_addr == 0) {
741 		rv = AE_AML_BAD_RESOURCE_LENGTH;
742 		goto out;
743 	}
744 
745 	/*
746 	 * If XPSS is present, copy the MSR addresses
747 	 * to the P-state structures for convenience.
748 	 */
749 	for (i = 0; i < sc->sc_pstate_count; i++) {
750 
751 		ps = &sc->sc_pstate[i];
752 
753 		if (ps->ps_freq == 0)
754 			continue;
755 
756 		ps->ps_status_addr  = sc->sc_pstate_status.reg_addr;
757 		ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
758 	}
759 
760 out:
761 	if (buf.Pointer != NULL)
762 		ACPI_FREE(buf.Pointer);
763 
764 	return rv;
765 }
766 
767 static int
768 acpicpu_pstate_max(struct acpicpu_softc *sc)
769 {
770 	ACPI_INTEGER val;
771 	ACPI_STATUS rv;
772 
773 	/*
774 	 * Evaluate the currently highest P-state that can be used.
775 	 * If available, we can use either this state or any lower
776 	 * power (i.e. higher numbered) state from the _PSS object.
777 	 * Note that the return value must match the _OST parameter.
778 	 */
779 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
780 
781 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
782 
783 		if (sc->sc_pstate[val].ps_freq != 0) {
784 			sc->sc_pstate_max = val;
785 			return 0;
786 		}
787 	}
788 
789 	return 1;
790 }
791 
792 static int
793 acpicpu_pstate_min(struct acpicpu_softc *sc)
794 {
795 	ACPI_INTEGER val;
796 	ACPI_STATUS rv;
797 
798 	/*
799 	 * The _PDL object defines the minimum when passive cooling
800 	 * is being performed. If available, we can use the returned
801 	 * state or any higher power (i.e. lower numbered) state.
802 	 */
803 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
804 
805 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
806 
807 		if (sc->sc_pstate[val].ps_freq == 0)
808 			return 1;
809 
810 		if (val >= sc->sc_pstate_max) {
811 			sc->sc_pstate_min = val;
812 			return 0;
813 		}
814 	}
815 
816 	return 1;
817 }
818 
819 static void
820 acpicpu_pstate_change(struct acpicpu_softc *sc)
821 {
822 	static ACPI_STATUS rv = AE_OK;
823 	ACPI_OBJECT_LIST arg;
824 	ACPI_OBJECT obj[2];
825 
826 	acpicpu_pstate_reset(sc);
827 
828 	arg.Count = 2;
829 	arg.Pointer = obj;
830 
831 	obj[0].Type = ACPI_TYPE_INTEGER;
832 	obj[1].Type = ACPI_TYPE_INTEGER;
833 
834 	obj[0].Integer.Value = ACPICPU_P_NOTIFY;
835 	obj[1].Integer.Value = acpicpu_pstate_max(sc);
836 
837 	if (sc->sc_passive != false)
838 		(void)acpicpu_pstate_min(sc);
839 
840 	if (ACPI_FAILURE(rv))
841 		return;
842 
843 	rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
844 }
845 
846 static void
847 acpicpu_pstate_reset(struct acpicpu_softc *sc)
848 {
849 
850 	sc->sc_pstate_max = 0;
851 	sc->sc_pstate_min = sc->sc_pstate_count - 1;
852 
853 }
854 
855 static void
856 acpicpu_pstate_bios(void)
857 {
858 	const uint8_t val = AcpiGbl_FADT.PstateControl;
859 	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
860 
861 	if (addr == 0 || val == 0)
862 		return;
863 
864 	(void)AcpiOsWritePort(addr, val, 8);
865 }
866 
867 int
868 acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
869 {
870 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
871 	struct acpicpu_pstate *ps = NULL;
872 	uint32_t i, val = 0;
873 	uint64_t addr;
874 	uint8_t width;
875 	int rv;
876 
877 	if (sc->sc_cold != false) {
878 		rv = EBUSY;
879 		goto fail;
880 	}
881 
882 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
883 		rv = ENODEV;
884 		goto fail;
885 	}
886 
887 	mutex_enter(&sc->sc_mtx);
888 
889 	if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
890 		*freq = sc->sc_pstate_current;
891 		mutex_exit(&sc->sc_mtx);
892 		return 0;
893 	}
894 
895 	mutex_exit(&sc->sc_mtx);
896 
897 	switch (method) {
898 
899 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
900 
901 		rv = acpicpu_md_pstate_get(sc, freq);
902 
903 		if (rv != 0)
904 			goto fail;
905 
906 		break;
907 
908 	case ACPI_ADR_SPACE_SYSTEM_IO:
909 
910 		addr  = sc->sc_pstate_status.reg_addr;
911 		width = sc->sc_pstate_status.reg_bitwidth;
912 
913 		(void)AcpiOsReadPort(addr, &val, width);
914 
915 		if (val == 0) {
916 			rv = EIO;
917 			goto fail;
918 		}
919 
920 		for (i = 0; i < sc->sc_pstate_count; i++) {
921 
922 			if (sc->sc_pstate[i].ps_freq == 0)
923 				continue;
924 
925 			if (val == sc->sc_pstate[i].ps_status) {
926 				ps = &sc->sc_pstate[i];
927 				break;
928 			}
929 		}
930 
931 		if (__predict_false(ps == NULL)) {
932 			rv = EIO;
933 			goto fail;
934 		}
935 
936 		*freq = ps->ps_freq;
937 		break;
938 
939 	default:
940 		rv = ENOTTY;
941 		goto fail;
942 	}
943 
944 	mutex_enter(&sc->sc_mtx);
945 	sc->sc_pstate_current = *freq;
946 	mutex_exit(&sc->sc_mtx);
947 
948 	return 0;
949 
950 fail:
951 	aprint_error_dev(sc->sc_dev, "failed "
952 	    "to get frequency (err %d)\n", rv);
953 
954 	mutex_enter(&sc->sc_mtx);
955 	*freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
956 	mutex_exit(&sc->sc_mtx);
957 
958 	return rv;
959 }
960 
961 int
962 acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
963 {
964 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
965 	struct acpicpu_pstate *ps = NULL;
966 	uint32_t i, val;
967 	uint64_t addr;
968 	uint8_t width;
969 	int rv;
970 
971 	if (sc->sc_cold != false) {
972 		rv = EBUSY;
973 		goto fail;
974 	}
975 
976 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
977 		rv = ENODEV;
978 		goto fail;
979 	}
980 
981 	mutex_enter(&sc->sc_mtx);
982 
983 	if (sc->sc_pstate_current == freq) {
984 		mutex_exit(&sc->sc_mtx);
985 		return 0;
986 	}
987 
988 	for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
989 
990 		if (sc->sc_pstate[i].ps_freq == 0)
991 			continue;
992 
993 		if (sc->sc_pstate[i].ps_freq == freq) {
994 			ps = &sc->sc_pstate[i];
995 			break;
996 		}
997 	}
998 
999 	mutex_exit(&sc->sc_mtx);
1000 
1001 	if (__predict_false(ps == NULL)) {
1002 		rv = EINVAL;
1003 		goto fail;
1004 	}
1005 
1006 	switch (method) {
1007 
1008 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1009 
1010 		rv = acpicpu_md_pstate_set(ps);
1011 
1012 		if (rv != 0)
1013 			goto fail;
1014 
1015 		break;
1016 
1017 	case ACPI_ADR_SPACE_SYSTEM_IO:
1018 
1019 		addr  = sc->sc_pstate_control.reg_addr;
1020 		width = sc->sc_pstate_control.reg_bitwidth;
1021 
1022 		(void)AcpiOsWritePort(addr, ps->ps_control, width);
1023 
1024 		addr  = sc->sc_pstate_status.reg_addr;
1025 		width = sc->sc_pstate_status.reg_bitwidth;
1026 
1027 		/*
1028 		 * Some systems take longer to respond
1029 		 * than the reported worst-case latency.
1030 		 */
1031 		for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
1032 
1033 			(void)AcpiOsReadPort(addr, &val, width);
1034 
1035 			if (val == ps->ps_status)
1036 				break;
1037 
1038 			DELAY(ps->ps_latency);
1039 		}
1040 
1041 		if (i == ACPICPU_P_STATE_RETRY) {
1042 			rv = EAGAIN;
1043 			goto fail;
1044 		}
1045 
1046 		break;
1047 
1048 	default:
1049 		rv = ENOTTY;
1050 		goto fail;
1051 	}
1052 
1053 	mutex_enter(&sc->sc_mtx);
1054 	ps->ps_evcnt.ev_count++;
1055 	sc->sc_pstate_current = freq;
1056 	mutex_exit(&sc->sc_mtx);
1057 
1058 	return 0;
1059 
1060 fail:
1061 	aprint_error_dev(sc->sc_dev, "failed to set "
1062 	    "frequency to %u (err %d)\n", freq, rv);
1063 
1064 	mutex_enter(&sc->sc_mtx);
1065 	sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
1066 	mutex_exit(&sc->sc_mtx);
1067 
1068 	return rv;
1069 }
1070