xref: /netbsd-src/sys/dev/acpi/acpi_cpu_pstate.c (revision 4817a0b0b8fe9612e8ebe21a9bf2d97b95038a97)
1 /* $NetBSD: acpi_cpu_pstate.c,v 1.35 2010/12/20 08:13:04 jruoho Exp $ */
2 
3 /*-
4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen@iki.fi>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.35 2010/12/20 08:13:04 jruoho Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/evcnt.h>
34 #include <sys/kmem.h>
35 #include <sys/once.h>
36 
37 #include <dev/acpi/acpireg.h>
38 #include <dev/acpi/acpivar.h>
39 #include <dev/acpi/acpi_cpu.h>
40 
41 #define _COMPONENT	 ACPI_BUS_COMPONENT
42 ACPI_MODULE_NAME	 ("acpi_cpu_pstate")
43 
44 static void		 acpicpu_pstate_attach_print(struct acpicpu_softc *);
45 static void		 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
46 static void		 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
47 static ACPI_STATUS	 acpicpu_pstate_pss(struct acpicpu_softc *);
48 static ACPI_STATUS	 acpicpu_pstate_pss_add(struct acpicpu_pstate *,
49 						ACPI_OBJECT *);
50 static ACPI_STATUS	 acpicpu_pstate_xpss(struct acpicpu_softc *);
51 static ACPI_STATUS	 acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
52 						 ACPI_OBJECT *);
53 static ACPI_STATUS	 acpicpu_pstate_pct(struct acpicpu_softc *);
54 static int		 acpicpu_pstate_max(struct acpicpu_softc *);
55 static int		 acpicpu_pstate_min(struct acpicpu_softc *);
56 static void		 acpicpu_pstate_change(struct acpicpu_softc *);
57 static void		 acpicpu_pstate_reset(struct acpicpu_softc *);
58 static void		 acpicpu_pstate_bios(void);
59 
60 static uint32_t		 acpicpu_pstate_saved = 0;
61 
62 void
63 acpicpu_pstate_attach(device_t self)
64 {
65 	struct acpicpu_softc *sc = device_private(self);
66 	const char *str;
67 	ACPI_HANDLE tmp;
68 	ACPI_STATUS rv;
69 
70 	rv = acpicpu_pstate_pss(sc);
71 
72 	if (ACPI_FAILURE(rv)) {
73 		str = "_PSS";
74 		goto fail;
75 	}
76 
77 	/*
78 	 * Append additional information from the
79 	 * extended _PSS, if available. Note that
80 	 * XPSS can not be used on Intel systems
81 	 * that use either _PDC or _OSC.
82 	 */
83 	if (sc->sc_cap == 0) {
84 
85 		rv = acpicpu_pstate_xpss(sc);
86 
87 		if (ACPI_SUCCESS(rv))
88 			sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
89 	}
90 
91 	rv = acpicpu_pstate_pct(sc);
92 
93 	if (ACPI_FAILURE(rv)) {
94 		str = "_PCT";
95 		goto fail;
96 	}
97 
98 	/*
99 	 * The ACPI 3.0 and 4.0 specifications mandate three
100 	 * objects for P-states: _PSS, _PCT, and _PPC. A less
101 	 * strict wording is however used in the earlier 2.0
102 	 * standard, and some systems conforming to ACPI 2.0
103 	 * do not have _PPC, the method for dynamic maximum.
104 	 */
105 	rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
106 
107 	if (ACPI_FAILURE(rv))
108 		aprint_debug_dev(self, "_PPC missing\n");
109 
110 	/*
111 	 * Employ the XPSS structure by filling
112 	 * it with MD information required for FFH.
113 	 */
114 	rv = acpicpu_md_pstate_pss(sc);
115 
116 	if (rv != 0) {
117 		rv = AE_SUPPORT;
118 		goto fail;
119 	}
120 
121 	sc->sc_flags |= ACPICPU_FLAG_P;
122 
123 	acpicpu_pstate_bios();
124 	acpicpu_pstate_reset(sc);
125 	acpicpu_pstate_attach_evcnt(sc);
126 	acpicpu_pstate_attach_print(sc);
127 
128 	return;
129 
130 fail:
131 	switch (rv) {
132 
133 	case AE_NOT_FOUND:
134 		return;
135 
136 	case AE_SUPPORT:
137 		aprint_verbose_dev(sc->sc_dev, "P-states not supported\n");
138 		return;
139 
140 	default:
141 		aprint_error_dev(sc->sc_dev, "failed to evaluate "
142 		    "%s: %s\n", str, AcpiFormatException(rv));
143 	}
144 }
145 
146 static void
147 acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
148 {
149 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
150 	struct acpicpu_pstate *ps;
151 	static bool once = false;
152 	const char *str;
153 	uint32_t i;
154 
155 	if (once != false)
156 		return;
157 
158 	str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
159 
160 	for (i = 0; i < sc->sc_pstate_count; i++) {
161 
162 		ps = &sc->sc_pstate[i];
163 
164 		if (ps->ps_freq == 0)
165 			continue;
166 
167 		aprint_debug_dev(sc->sc_dev, "P%d: %3s, "
168 		    "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
169 		    ps->ps_latency, ps->ps_power, ps->ps_freq);
170 	}
171 
172 	once = true;
173 }
174 
175 static void
176 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
177 {
178 	struct acpicpu_pstate *ps;
179 	uint32_t i;
180 
181 	for (i = 0; i < sc->sc_pstate_count; i++) {
182 
183 		ps = &sc->sc_pstate[i];
184 
185 		if (ps->ps_freq == 0)
186 			continue;
187 
188 		(void)snprintf(ps->ps_name, sizeof(ps->ps_name),
189 		    "P%u (%u MHz)", i, ps->ps_freq);
190 
191 		evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
192 		    NULL, device_xname(sc->sc_dev), ps->ps_name);
193 	}
194 }
195 
196 int
197 acpicpu_pstate_detach(device_t self)
198 {
199 	struct acpicpu_softc *sc = device_private(self);
200 	static ONCE_DECL(once_detach);
201 	size_t size;
202 	int rv;
203 
204 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
205 		return 0;
206 
207 	rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
208 
209 	if (rv != 0)
210 		return rv;
211 
212 	size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
213 
214 	if (sc->sc_pstate != NULL)
215 		kmem_free(sc->sc_pstate, size);
216 
217 	sc->sc_flags &= ~ACPICPU_FLAG_P;
218 	acpicpu_pstate_detach_evcnt(sc);
219 
220 	return 0;
221 }
222 
223 static void
224 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
225 {
226 	struct acpicpu_pstate *ps;
227 	uint32_t i;
228 
229 	for (i = 0; i < sc->sc_pstate_count; i++) {
230 
231 		ps = &sc->sc_pstate[i];
232 
233 		if (ps->ps_freq != 0)
234 			evcnt_detach(&ps->ps_evcnt);
235 	}
236 }
237 
238 void
239 acpicpu_pstate_start(device_t self)
240 {
241 	struct acpicpu_softc *sc = device_private(self);
242 	struct acpicpu_pstate *ps;
243 	uint32_t i;
244 	int rv;
245 
246 	rv = acpicpu_md_pstate_start();
247 
248 	if (rv != 0)
249 		goto fail;
250 
251 	/*
252 	 * Initialize the state to P0.
253 	 */
254 	for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
255 
256 		ps = &sc->sc_pstate[i];
257 
258 		if (ps->ps_freq != 0) {
259 			sc->sc_cold = false;
260 			rv = acpicpu_pstate_set(sc, ps->ps_freq);
261 			break;
262 		}
263 	}
264 
265 	if (rv != 0)
266 		goto fail;
267 
268 	return;
269 
270 fail:
271 	sc->sc_flags &= ~ACPICPU_FLAG_P;
272 
273 	if (rv == EEXIST) {
274 		aprint_error_dev(self, "driver conflicts with existing one\n");
275 		return;
276 	}
277 
278 	aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
279 }
280 
281 bool
282 acpicpu_pstate_suspend(device_t self)
283 {
284 	struct acpicpu_softc *sc = device_private(self);
285 	struct acpicpu_pstate *ps = NULL;
286 	int32_t i;
287 
288 	mutex_enter(&sc->sc_mtx);
289 	acpicpu_pstate_reset(sc);
290 	mutex_exit(&sc->sc_mtx);
291 
292 	if (acpicpu_pstate_saved != 0)
293 		return true;
294 
295 	/*
296 	 * Following design notes for Windows, we set the highest
297 	 * P-state when entering any of the system sleep states.
298 	 * When resuming, the saved P-state will be restored.
299 	 *
300 	 *	Microsoft Corporation: Windows Native Processor
301 	 *	Performance Control. Version 1.1a, November, 2002.
302 	 */
303 	for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
304 
305 		if (sc->sc_pstate[i].ps_freq != 0) {
306 			ps = &sc->sc_pstate[i];
307 			break;
308 		}
309 	}
310 
311 	if (__predict_false(ps == NULL))
312 		return true;
313 
314 	mutex_enter(&sc->sc_mtx);
315 	acpicpu_pstate_saved = sc->sc_pstate_current;
316 	mutex_exit(&sc->sc_mtx);
317 
318 	if (acpicpu_pstate_saved == ps->ps_freq)
319 		return true;
320 
321 	(void)acpicpu_pstate_set(sc, ps->ps_freq);
322 
323 	return true;
324 }
325 
326 bool
327 acpicpu_pstate_resume(device_t self)
328 {
329 	struct acpicpu_softc *sc = device_private(self);
330 
331 	if (acpicpu_pstate_saved != 0) {
332 		(void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
333 		acpicpu_pstate_saved = 0;
334 	}
335 
336 	return true;
337 }
338 
339 void
340 acpicpu_pstate_callback(void *aux)
341 {
342 	struct acpicpu_softc *sc;
343 	device_t self = aux;
344 	uint32_t old, new;
345 
346 	sc = device_private(self);
347 
348 	mutex_enter(&sc->sc_mtx);
349 	old = sc->sc_pstate_max;
350 	acpicpu_pstate_change(sc);
351 	new = sc->sc_pstate_max;
352 	mutex_exit(&sc->sc_mtx);
353 
354 	if (old != new) {
355 
356 		aprint_debug_dev(sc->sc_dev, "maximum frequency "
357 		    "changed from P%u (%u MHz) to P%u (%u MHz)\n",
358 		    old, sc->sc_pstate[old].ps_freq, new,
359 		    sc->sc_pstate[sc->sc_pstate_max].ps_freq);
360 #if 0
361 		/*
362 		 * If the maximum changed, proactively
363 		 * raise or lower the target frequency.
364 		 */
365 		(void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
366 
367 #endif
368 	}
369 }
370 
371 ACPI_STATUS
372 acpicpu_pstate_pss(struct acpicpu_softc *sc)
373 {
374 	struct acpicpu_pstate *ps;
375 	ACPI_OBJECT *obj;
376 	ACPI_BUFFER buf;
377 	ACPI_STATUS rv;
378 	uint32_t count;
379 	uint32_t i, j;
380 
381 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
382 
383 	if (ACPI_FAILURE(rv))
384 		return rv;
385 
386 	obj = buf.Pointer;
387 
388 	if (obj->Type != ACPI_TYPE_PACKAGE) {
389 		rv = AE_TYPE;
390 		goto out;
391 	}
392 
393 	sc->sc_pstate_count = obj->Package.Count;
394 
395 	if (sc->sc_pstate_count == 0) {
396 		rv = AE_NOT_EXIST;
397 		goto out;
398 	}
399 
400 	if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
401 		rv = AE_LIMIT;
402 		goto out;
403 	}
404 
405 	sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
406 	    sizeof(struct acpicpu_pstate), KM_SLEEP);
407 
408 	if (sc->sc_pstate == NULL) {
409 		rv = AE_NO_MEMORY;
410 		goto out;
411 	}
412 
413 	for (count = i = 0; i < sc->sc_pstate_count; i++) {
414 
415 		ps = &sc->sc_pstate[i];
416 		rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
417 
418 		if (ACPI_FAILURE(rv)) {
419 			ps->ps_freq = 0;
420 			continue;
421 		}
422 
423 		for (j = 0; j < i; j++) {
424 
425 			if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
426 				ps->ps_freq = 0;
427 				break;
428 			}
429 		}
430 
431 		if (ps->ps_freq != 0)
432 			count++;
433 	}
434 
435 	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
436 
437 out:
438 	if (buf.Pointer != NULL)
439 		ACPI_FREE(buf.Pointer);
440 
441 	return rv;
442 }
443 
444 static ACPI_STATUS
445 acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
446 {
447 	ACPI_OBJECT *elm;
448 	int i;
449 
450 	if (obj->Type != ACPI_TYPE_PACKAGE)
451 		return AE_TYPE;
452 
453 	if (obj->Package.Count != 6)
454 		return AE_BAD_DATA;
455 
456 	elm = obj->Package.Elements;
457 
458 	for (i = 0; i < 6; i++) {
459 
460 		if (elm[i].Type != ACPI_TYPE_INTEGER)
461 			return AE_TYPE;
462 
463 		if (elm[i].Integer.Value > UINT32_MAX)
464 			return AE_AML_NUMERIC_OVERFLOW;
465 	}
466 
467 	ps->ps_freq       = elm[0].Integer.Value;
468 	ps->ps_power      = elm[1].Integer.Value;
469 	ps->ps_latency    = elm[2].Integer.Value;
470 	ps->ps_latency_bm = elm[3].Integer.Value;
471 	ps->ps_control    = elm[4].Integer.Value;
472 	ps->ps_status     = elm[5].Integer.Value;
473 
474 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
475 		return AE_BAD_DECIMAL_CONSTANT;
476 
477 	/*
478 	 * The latency is typically around 10 usec
479 	 * on Intel CPUs. Use that as the minimum.
480 	 */
481 	if (ps->ps_latency < 10)
482 		ps->ps_latency = 10;
483 
484 	return AE_OK;
485 }
486 
487 static ACPI_STATUS
488 acpicpu_pstate_xpss(struct acpicpu_softc *sc)
489 {
490 	struct acpicpu_pstate *ps;
491 	ACPI_OBJECT *obj;
492 	ACPI_BUFFER buf;
493 	ACPI_STATUS rv;
494 	uint32_t i = 0;
495 
496 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
497 
498 	if (ACPI_FAILURE(rv))
499 		return rv;
500 
501 	obj = buf.Pointer;
502 
503 	if (obj->Type != ACPI_TYPE_PACKAGE) {
504 		rv = AE_TYPE;
505 		goto out;
506 	}
507 
508 	if (obj->Package.Count != sc->sc_pstate_count) {
509 		rv = AE_LIMIT;
510 		goto out;
511 	}
512 
513 	while (i < sc->sc_pstate_count) {
514 
515 		ps = &sc->sc_pstate[i];
516 		acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
517 
518 		i++;
519 	}
520 
521 out:
522 	if (buf.Pointer != NULL)
523 		ACPI_FREE(buf.Pointer);
524 
525 	return rv;
526 }
527 
528 static ACPI_STATUS
529 acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
530 {
531 	ACPI_OBJECT *elm;
532 	int i;
533 
534 	if (obj->Type != ACPI_TYPE_PACKAGE)
535 		return AE_TYPE;
536 
537 	if (obj->Package.Count != 8)
538 		return AE_BAD_DATA;
539 
540 	elm = obj->Package.Elements;
541 
542 	for (i = 0; i < 4; i++) {
543 
544 		if (elm[i].Type != ACPI_TYPE_INTEGER)
545 			return AE_TYPE;
546 
547 		if (elm[i].Integer.Value > UINT32_MAX)
548 			return AE_AML_NUMERIC_OVERFLOW;
549 	}
550 
551 	for (; i < 8; i++) {
552 
553 		if (elm[i].Type != ACPI_TYPE_BUFFER)
554 			return AE_TYPE;
555 
556 		if (elm[i].Buffer.Length != 8)
557 			return AE_LIMIT;
558 	}
559 
560 	/*
561 	 * Only overwrite the elements that were
562 	 * not available from the conventional _PSS.
563 	 */
564 	if (ps->ps_freq == 0)
565 		ps->ps_freq = elm[0].Integer.Value;
566 
567 	if (ps->ps_power == 0)
568 		ps->ps_power = elm[1].Integer.Value;
569 
570 	if (ps->ps_latency == 0)
571 		ps->ps_latency = elm[2].Integer.Value;
572 
573 	if (ps->ps_latency_bm == 0)
574 		ps->ps_latency_bm = elm[3].Integer.Value;
575 
576 	if (ps->ps_control == 0)
577 		ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
578 
579 	if (ps->ps_status == 0)
580 		ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
581 
582 	if (ps->ps_control_mask == 0)
583 		ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
584 
585 	if (ps->ps_status_mask == 0)
586 		ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
587 
588 	/*
589 	 * The latency is often defined to be
590 	 * zero on AMD systems. Raise that to 1.
591 	 */
592 	if (ps->ps_latency == 0)
593 		ps->ps_latency = 1;
594 
595 	ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
596 
597 	if (ps->ps_freq > 9999)
598 		return AE_BAD_DECIMAL_CONSTANT;
599 
600 	return AE_OK;
601 }
602 
603 ACPI_STATUS
604 acpicpu_pstate_pct(struct acpicpu_softc *sc)
605 {
606 	static const size_t size = sizeof(struct acpicpu_reg);
607 	struct acpicpu_reg *reg[2];
608 	struct acpicpu_pstate *ps;
609 	ACPI_OBJECT *elm, *obj;
610 	ACPI_BUFFER buf;
611 	ACPI_STATUS rv;
612 	uint8_t width;
613 	uint32_t i;
614 
615 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
616 
617 	if (ACPI_FAILURE(rv))
618 		return rv;
619 
620 	obj = buf.Pointer;
621 
622 	if (obj->Type != ACPI_TYPE_PACKAGE) {
623 		rv = AE_TYPE;
624 		goto out;
625 	}
626 
627 	if (obj->Package.Count != 2) {
628 		rv = AE_LIMIT;
629 		goto out;
630 	}
631 
632 	for (i = 0; i < 2; i++) {
633 
634 		elm = &obj->Package.Elements[i];
635 
636 		if (elm->Type != ACPI_TYPE_BUFFER) {
637 			rv = AE_TYPE;
638 			goto out;
639 		}
640 
641 		if (size > elm->Buffer.Length) {
642 			rv = AE_AML_BAD_RESOURCE_LENGTH;
643 			goto out;
644 		}
645 
646 		reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
647 
648 		switch (reg[i]->reg_spaceid) {
649 
650 		case ACPI_ADR_SPACE_SYSTEM_IO:
651 
652 			if (reg[i]->reg_addr == 0) {
653 				rv = AE_AML_ILLEGAL_ADDRESS;
654 				goto out;
655 			}
656 
657 			width = reg[i]->reg_bitwidth;
658 
659 			if (width + reg[i]->reg_bitoffset > 32) {
660 				rv = AE_AML_BAD_RESOURCE_VALUE;
661 				goto out;
662 			}
663 
664 			if (width != 8 && width != 16 && width != 32) {
665 				rv = AE_AML_BAD_RESOURCE_VALUE;
666 				goto out;
667 			}
668 
669 			break;
670 
671 		case ACPI_ADR_SPACE_FIXED_HARDWARE:
672 
673 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
674 
675 				if (reg[i]->reg_bitwidth != 64) {
676 					rv = AE_AML_BAD_RESOURCE_VALUE;
677 					goto out;
678 				}
679 
680 				if (reg[i]->reg_bitoffset != 0) {
681 					rv = AE_AML_BAD_RESOURCE_VALUE;
682 					goto out;
683 				}
684 
685 				break;
686 			}
687 
688 			if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
689 				rv = AE_SUPPORT;
690 				goto out;
691 			}
692 
693 			break;
694 
695 		default:
696 			rv = AE_AML_INVALID_SPACE_ID;
697 			goto out;
698 		}
699 	}
700 
701 	if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
702 		rv = AE_AML_INVALID_SPACE_ID;
703 		goto out;
704 	}
705 
706 	(void)memcpy(&sc->sc_pstate_control, reg[0], size);
707 	(void)memcpy(&sc->sc_pstate_status,  reg[1], size);
708 
709 	if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
710 		goto out;
711 
712 	/*
713 	 * In XPSS the control address can not be zero,
714 	 * but the status address may be. In this case,
715 	 * comparable to T-states, we can ignore the status
716 	 * check during the P-state (FFH) transition.
717 	 */
718 	if (sc->sc_pstate_control.reg_addr == 0) {
719 		rv = AE_AML_BAD_RESOURCE_LENGTH;
720 		goto out;
721 	}
722 
723 	/*
724 	 * If XPSS is present, copy the MSR addresses
725 	 * to the P-state structures for convenience.
726 	 */
727 	for (i = 0; i < sc->sc_pstate_count; i++) {
728 
729 		ps = &sc->sc_pstate[i];
730 
731 		if (ps->ps_freq == 0)
732 			continue;
733 
734 		ps->ps_status_addr  = sc->sc_pstate_status.reg_addr;
735 		ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
736 	}
737 
738 out:
739 	if (buf.Pointer != NULL)
740 		ACPI_FREE(buf.Pointer);
741 
742 	return rv;
743 }
744 
745 static int
746 acpicpu_pstate_max(struct acpicpu_softc *sc)
747 {
748 	ACPI_INTEGER val;
749 	ACPI_STATUS rv;
750 
751 	/*
752 	 * Evaluate the currently highest P-state that can be used.
753 	 * If available, we can use either this state or any lower
754 	 * power (i.e. higher numbered) state from the _PSS object.
755 	 * Note that the return value must match the _OST parameter.
756 	 */
757 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
758 
759 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
760 
761 		if (sc->sc_pstate[val].ps_freq != 0) {
762 			sc->sc_pstate_max = val;
763 			return 0;
764 		}
765 	}
766 
767 	return 1;
768 }
769 
770 static int
771 acpicpu_pstate_min(struct acpicpu_softc *sc)
772 {
773 	ACPI_INTEGER val;
774 	ACPI_STATUS rv;
775 
776 	/*
777 	 * The _PDL object defines the minimum when passive cooling
778 	 * is being performed. If available, we can use the returned
779 	 * state or any higher power (i.e. lower numbered) state.
780 	 */
781 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
782 
783 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
784 
785 		if (sc->sc_pstate[val].ps_freq == 0)
786 			return 1;
787 
788 		if (val >= sc->sc_pstate_max) {
789 			sc->sc_pstate_min = val;
790 			return 0;
791 		}
792 	}
793 
794 	return 1;
795 }
796 
797 static void
798 acpicpu_pstate_change(struct acpicpu_softc *sc)
799 {
800 	static ACPI_STATUS rv = AE_OK;
801 	ACPI_OBJECT_LIST arg;
802 	ACPI_OBJECT obj[2];
803 
804 	acpicpu_pstate_reset(sc);
805 
806 	arg.Count = 2;
807 	arg.Pointer = obj;
808 
809 	obj[0].Type = ACPI_TYPE_INTEGER;
810 	obj[1].Type = ACPI_TYPE_INTEGER;
811 
812 	obj[0].Integer.Value = ACPICPU_P_NOTIFY;
813 	obj[1].Integer.Value = acpicpu_pstate_max(sc);
814 
815 	if (sc->sc_passive != false)
816 		(void)acpicpu_pstate_min(sc);
817 
818 	if (ACPI_FAILURE(rv))
819 		return;
820 
821 	rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
822 }
823 
824 static void
825 acpicpu_pstate_reset(struct acpicpu_softc *sc)
826 {
827 
828 	sc->sc_pstate_max = 0;
829 	sc->sc_pstate_min = sc->sc_pstate_count - 1;
830 
831 }
832 
833 static void
834 acpicpu_pstate_bios(void)
835 {
836 	const uint8_t val = AcpiGbl_FADT.PstateControl;
837 	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
838 
839 	if (addr == 0 || val == 0)
840 		return;
841 
842 	(void)AcpiOsWritePort(addr, val, 8);
843 }
844 
845 int
846 acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
847 {
848 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
849 	struct acpicpu_pstate *ps = NULL;
850 	uint32_t i, val = 0;
851 	uint64_t addr;
852 	uint8_t width;
853 	int rv;
854 
855 	if (__predict_false(sc->sc_cold != false)) {
856 		rv = EBUSY;
857 		goto fail;
858 	}
859 
860 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
861 		rv = ENODEV;
862 		goto fail;
863 	}
864 
865 	mutex_enter(&sc->sc_mtx);
866 
867 	/*
868 	 * Use the cached value, if available.
869 	 */
870 	if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
871 		*freq = sc->sc_pstate_current;
872 		mutex_exit(&sc->sc_mtx);
873 		return 0;
874 	}
875 
876 	mutex_exit(&sc->sc_mtx);
877 
878 	switch (method) {
879 
880 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
881 
882 		rv = acpicpu_md_pstate_get(sc, freq);
883 
884 		if (__predict_false(rv != 0))
885 			goto fail;
886 
887 		break;
888 
889 	case ACPI_ADR_SPACE_SYSTEM_IO:
890 
891 		addr  = sc->sc_pstate_status.reg_addr;
892 		width = sc->sc_pstate_status.reg_bitwidth;
893 
894 		(void)AcpiOsReadPort(addr, &val, width);
895 
896 		if (val == 0) {
897 			rv = EIO;
898 			goto fail;
899 		}
900 
901 		for (i = 0; i < sc->sc_pstate_count; i++) {
902 
903 			if (sc->sc_pstate[i].ps_freq == 0)
904 				continue;
905 
906 			if (val == sc->sc_pstate[i].ps_status) {
907 				ps = &sc->sc_pstate[i];
908 				break;
909 			}
910 		}
911 
912 		if (ps == NULL) {
913 			rv = EIO;
914 			goto fail;
915 		}
916 
917 		*freq = ps->ps_freq;
918 		break;
919 
920 	default:
921 		rv = ENOTTY;
922 		goto fail;
923 	}
924 
925 	mutex_enter(&sc->sc_mtx);
926 	sc->sc_pstate_current = *freq;
927 	mutex_exit(&sc->sc_mtx);
928 
929 	return 0;
930 
931 fail:
932 	aprint_error_dev(sc->sc_dev, "failed "
933 	    "to get frequency (err %d)\n", rv);
934 
935 	mutex_enter(&sc->sc_mtx);
936 	*freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
937 	mutex_exit(&sc->sc_mtx);
938 
939 	return rv;
940 }
941 
942 int
943 acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
944 {
945 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
946 	struct acpicpu_pstate *ps = NULL;
947 	uint32_t i, val;
948 	uint64_t addr;
949 	uint8_t width;
950 	int rv;
951 
952 	if (__predict_false(sc->sc_cold != false)) {
953 		rv = EBUSY;
954 		goto fail;
955 	}
956 
957 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
958 		rv = ENODEV;
959 		goto fail;
960 	}
961 
962 	mutex_enter(&sc->sc_mtx);
963 
964 	if (sc->sc_pstate_current == freq) {
965 		mutex_exit(&sc->sc_mtx);
966 		return 0;
967 	}
968 
969 	/*
970 	 * Verify that the requested frequency is available.
971 	 *
972 	 * The access needs to be protected since the currently
973 	 * available maximum and minimum may change dynamically.
974 	 */
975 	for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
976 
977 		if (__predict_false(sc->sc_pstate[i].ps_freq == 0))
978 			continue;
979 
980 		if (sc->sc_pstate[i].ps_freq == freq) {
981 			ps = &sc->sc_pstate[i];
982 			break;
983 		}
984 	}
985 
986 	mutex_exit(&sc->sc_mtx);
987 
988 	if (__predict_false(ps == NULL)) {
989 		rv = EINVAL;
990 		goto fail;
991 	}
992 
993 	switch (method) {
994 
995 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
996 
997 		rv = acpicpu_md_pstate_set(ps);
998 
999 		if (__predict_false(rv != 0))
1000 			goto fail;
1001 
1002 		break;
1003 
1004 	case ACPI_ADR_SPACE_SYSTEM_IO:
1005 
1006 		addr  = sc->sc_pstate_control.reg_addr;
1007 		width = sc->sc_pstate_control.reg_bitwidth;
1008 
1009 		(void)AcpiOsWritePort(addr, ps->ps_control, width);
1010 
1011 		addr  = sc->sc_pstate_status.reg_addr;
1012 		width = sc->sc_pstate_status.reg_bitwidth;
1013 
1014 		/*
1015 		 * Some systems take longer to respond
1016 		 * than the reported worst-case latency.
1017 		 */
1018 		for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
1019 
1020 			(void)AcpiOsReadPort(addr, &val, width);
1021 
1022 			if (val == ps->ps_status)
1023 				break;
1024 
1025 			DELAY(ps->ps_latency);
1026 		}
1027 
1028 		if (i == ACPICPU_P_STATE_RETRY) {
1029 			rv = EAGAIN;
1030 			goto fail;
1031 		}
1032 
1033 		break;
1034 
1035 	default:
1036 		rv = ENOTTY;
1037 		goto fail;
1038 	}
1039 
1040 	mutex_enter(&sc->sc_mtx);
1041 	ps->ps_evcnt.ev_count++;
1042 	sc->sc_pstate_current = freq;
1043 	mutex_exit(&sc->sc_mtx);
1044 
1045 	return 0;
1046 
1047 fail:
1048 	aprint_error_dev(sc->sc_dev, "failed to set "
1049 	    "frequency to %u (err %d)\n", freq, rv);
1050 
1051 	mutex_enter(&sc->sc_mtx);
1052 	sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
1053 	mutex_exit(&sc->sc_mtx);
1054 
1055 	return rv;
1056 }
1057