xref: /netbsd-src/sys/dev/acpi/acpi_cpu_pstate.c (revision 46f5119e40af2e51998f686b2fdcc76b5488f7f3)
1 /* $NetBSD: acpi_cpu_pstate.c,v 1.48 2011/04/01 11:46:57 jruoho Exp $ */
2 
3 /*-
4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen@iki.fi>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.48 2011/04/01 11:46:57 jruoho Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/kmem.h>
34 #include <sys/once.h>
35 #include <sys/xcall.h>
36 
37 #include <dev/acpi/acpireg.h>
38 #include <dev/acpi/acpivar.h>
39 #include <dev/acpi/acpi_cpu.h>
40 
41 #define _COMPONENT	 ACPI_BUS_COMPONENT
42 ACPI_MODULE_NAME	 ("acpi_cpu_pstate")
43 
44 static ACPI_STATUS	 acpicpu_pstate_pss(struct acpicpu_softc *);
45 static ACPI_STATUS	 acpicpu_pstate_pss_add(struct acpicpu_pstate *,
46 						ACPI_OBJECT *);
47 static ACPI_STATUS	 acpicpu_pstate_xpss(struct acpicpu_softc *);
48 static ACPI_STATUS	 acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
49 						 ACPI_OBJECT *);
50 static ACPI_STATUS	 acpicpu_pstate_pct(struct acpicpu_softc *);
51 static ACPI_STATUS	 acpicpu_pstate_dep(struct acpicpu_softc *);
52 static int		 acpicpu_pstate_max(struct acpicpu_softc *);
53 static int		 acpicpu_pstate_min(struct acpicpu_softc *);
54 static void		 acpicpu_pstate_change(struct acpicpu_softc *);
55 static void		 acpicpu_pstate_reset(struct acpicpu_softc *);
56 static void		 acpicpu_pstate_bios(void);
57 static void		 acpicpu_pstate_set_xcall(void *, void *);
58 
59 extern struct acpicpu_softc **acpicpu_sc;
60 
61 void
62 acpicpu_pstate_attach(device_t self)
63 {
64 	struct acpicpu_softc *sc = device_private(self);
65 	const char *str;
66 	ACPI_HANDLE tmp;
67 	ACPI_STATUS rv;
68 
69 	rv = acpicpu_pstate_pss(sc);
70 
71 	if (ACPI_FAILURE(rv)) {
72 		str = "_PSS";
73 		goto fail;
74 	}
75 
76 	/*
77 	 * Append additional information from the extended _PSS,
78 	 * if available. Note that XPSS can not be used on Intel
79 	 * systems that use either _PDC or _OSC. From the XPSS
80 	 * method specification:
81 	 *
82 	 *   "The platform must not require the use of the
83 	 *    optional _PDC or _OSC methods to coordinate
84 	 *    between the operating system and firmware for
85 	 *    the purposes of enabling specific processor
86 	 *    power management features or implementations."
87 	 */
88 	if (sc->sc_cap == 0) {
89 
90 		rv = acpicpu_pstate_xpss(sc);
91 
92 		if (ACPI_SUCCESS(rv))
93 			sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
94 	}
95 
96 	rv = acpicpu_pstate_pct(sc);
97 
98 	if (ACPI_FAILURE(rv)) {
99 		str = "_PCT";
100 		goto fail;
101 	}
102 
103 	/*
104 	 * The ACPI 3.0 and 4.0 specifications mandate three
105 	 * objects for P-states: _PSS, _PCT, and _PPC. A less
106 	 * strict wording is however used in the earlier 2.0
107 	 * standard, and some systems conforming to ACPI 2.0
108 	 * do not have _PPC, the method for dynamic maximum.
109 	 */
110 	rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
111 
112 	if (ACPI_FAILURE(rv))
113 		aprint_debug_dev(self, "_PPC missing\n");
114 
115 	/*
116 	 * Carry out MD initialization.
117 	 */
118 	rv = acpicpu_md_pstate_init(sc);
119 
120 	if (rv != 0) {
121 		rv = AE_SUPPORT;
122 		goto fail;
123 	}
124 
125 	/*
126 	 * Query the optional _PSD.
127 	 */
128 	rv = acpicpu_pstate_dep(sc);
129 
130 	if (ACPI_SUCCESS(rv))
131 		sc->sc_flags |= ACPICPU_FLAG_P_DEP;
132 
133 	sc->sc_flags |= ACPICPU_FLAG_P;
134 
135 	acpicpu_pstate_bios();
136 	acpicpu_pstate_reset(sc);
137 
138 	return;
139 
140 fail:
141 	switch (rv) {
142 
143 	case AE_NOT_FOUND:
144 		return;
145 
146 	case AE_SUPPORT:
147 		aprint_verbose_dev(self, "P-states not supported\n");
148 		return;
149 
150 	default:
151 		aprint_error_dev(self, "failed to evaluate "
152 		    "%s: %s\n", str, AcpiFormatException(rv));
153 	}
154 }
155 
156 int
157 acpicpu_pstate_detach(device_t self)
158 {
159 	struct acpicpu_softc *sc = device_private(self);
160 	static ONCE_DECL(once_detach);
161 	size_t size;
162 	int rv;
163 
164 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
165 		return 0;
166 
167 	rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
168 
169 	if (rv != 0)
170 		return rv;
171 
172 	size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
173 
174 	if (sc->sc_pstate != NULL)
175 		kmem_free(sc->sc_pstate, size);
176 
177 	sc->sc_flags &= ~ACPICPU_FLAG_P;
178 
179 	return 0;
180 }
181 
182 void
183 acpicpu_pstate_start(device_t self)
184 {
185 	struct acpicpu_softc *sc = device_private(self);
186 	struct acpicpu_pstate *ps;
187 	uint32_t i;
188 	int rv;
189 
190 	rv = acpicpu_md_pstate_start(sc);
191 
192 	if (rv != 0)
193 		goto fail;
194 
195 	/*
196 	 * Initialize the states to P0.
197 	 */
198 	for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
199 
200 		ps = &sc->sc_pstate[i];
201 
202 		if (ps->ps_freq != 0) {
203 			acpicpu_pstate_set(sc->sc_ci, ps->ps_freq);
204 			return;
205 		}
206 	}
207 
208 fail:
209 	sc->sc_flags &= ~ACPICPU_FLAG_P;
210 	aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
211 }
212 
213 void
214 acpicpu_pstate_suspend(void *aux)
215 {
216 	struct acpicpu_pstate *ps = NULL;
217 	struct acpicpu_softc *sc;
218 	struct cpu_info *ci;
219 	device_t self = aux;
220 	uint64_t xc;
221 	int32_t i;
222 
223 	sc = device_private(self);
224 	ci = sc->sc_ci;
225 
226 	/*
227 	 * Reset any dynamic limits.
228 	 */
229 	mutex_enter(&sc->sc_mtx);
230 	acpicpu_pstate_reset(sc);
231 
232 	/*
233 	 * Following design notes for Windows, we set the highest
234 	 * P-state when entering any of the system sleep states.
235 	 * When resuming, the saved P-state will be restored.
236 	 *
237 	 *	Microsoft Corporation: Windows Native Processor
238 	 *	Performance Control. Version 1.1a, November, 2002.
239 	 */
240 	sc->sc_pstate_saved = sc->sc_pstate_current;
241 
242 	for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
243 
244 		if (sc->sc_pstate[i].ps_freq != 0) {
245 			ps = &sc->sc_pstate[i];
246 			break;
247 		}
248 	}
249 
250 	if (__predict_false(ps == NULL)) {
251 		mutex_exit(&sc->sc_mtx);
252 		return;
253 	}
254 
255 	if (sc->sc_pstate_saved == ps->ps_freq) {
256 		mutex_exit(&sc->sc_mtx);
257 		return;
258 	}
259 
260 	mutex_exit(&sc->sc_mtx);
261 
262 	xc = xc_unicast(0, acpicpu_pstate_set_xcall, &ps->ps_freq, NULL, ci);
263 	xc_wait(xc);
264 }
265 
266 void
267 acpicpu_pstate_resume(void *aux)
268 {
269 	struct acpicpu_softc *sc;
270 	device_t self = aux;
271 	uint32_t freq;
272 	uint64_t xc;
273 
274 	sc = device_private(self);
275 	freq = sc->sc_pstate_saved;
276 
277 	xc = xc_unicast(0, acpicpu_pstate_set_xcall, &freq, NULL, sc->sc_ci);
278 	xc_wait(xc);
279 }
280 
281 void
282 acpicpu_pstate_callback(void *aux)
283 {
284 	struct acpicpu_softc *sc;
285 	device_t self = aux;
286 	uint32_t freq;
287 	uint64_t xc;
288 
289 	sc = device_private(self);
290 
291 	mutex_enter(&sc->sc_mtx);
292 	acpicpu_pstate_change(sc);
293 
294 	freq = sc->sc_pstate[sc->sc_pstate_max].ps_freq;
295 
296 	if (sc->sc_pstate_saved == 0)
297 		sc->sc_pstate_saved = sc->sc_pstate_current;
298 
299 	if (sc->sc_pstate_saved <= freq) {
300 		freq = sc->sc_pstate_saved;
301 		sc->sc_pstate_saved = 0;
302 	}
303 
304 	mutex_exit(&sc->sc_mtx);
305 
306 	xc = xc_unicast(0, acpicpu_pstate_set_xcall, &freq, NULL, sc->sc_ci);
307 	xc_wait(xc);
308 }
309 
310 ACPI_STATUS
311 acpicpu_pstate_pss(struct acpicpu_softc *sc)
312 {
313 	struct acpicpu_pstate *ps;
314 	ACPI_OBJECT *obj;
315 	ACPI_BUFFER buf;
316 	ACPI_STATUS rv;
317 	uint32_t count;
318 	uint32_t i, j;
319 
320 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
321 
322 	if (ACPI_FAILURE(rv))
323 		return rv;
324 
325 	obj = buf.Pointer;
326 
327 	if (obj->Type != ACPI_TYPE_PACKAGE) {
328 		rv = AE_TYPE;
329 		goto out;
330 	}
331 
332 	sc->sc_pstate_count = obj->Package.Count;
333 
334 	if (sc->sc_pstate_count == 0) {
335 		rv = AE_NOT_EXIST;
336 		goto out;
337 	}
338 
339 	if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
340 		rv = AE_LIMIT;
341 		goto out;
342 	}
343 
344 	sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
345 	    sizeof(struct acpicpu_pstate), KM_SLEEP);
346 
347 	if (sc->sc_pstate == NULL) {
348 		rv = AE_NO_MEMORY;
349 		goto out;
350 	}
351 
352 	for (count = i = 0; i < sc->sc_pstate_count; i++) {
353 
354 		ps = &sc->sc_pstate[i];
355 		rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
356 
357 		if (ACPI_FAILURE(rv)) {
358 			aprint_error_dev(sc->sc_dev, "failed to add "
359 			    "P-state: %s\n", AcpiFormatException(rv));
360 			ps->ps_freq = 0;
361 			continue;
362 		}
363 
364 		for (j = 0; j < i; j++) {
365 
366 			if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
367 				ps->ps_freq = 0;
368 				break;
369 			}
370 		}
371 
372 		if (ps->ps_freq != 0)
373 			count++;
374 	}
375 
376 	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
377 
378 out:
379 	if (buf.Pointer != NULL)
380 		ACPI_FREE(buf.Pointer);
381 
382 	return rv;
383 }
384 
385 static ACPI_STATUS
386 acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
387 {
388 	ACPI_OBJECT *elm;
389 	int i;
390 
391 	if (obj->Type != ACPI_TYPE_PACKAGE)
392 		return AE_TYPE;
393 
394 	if (obj->Package.Count != 6)
395 		return AE_BAD_DATA;
396 
397 	elm = obj->Package.Elements;
398 
399 	for (i = 0; i < 6; i++) {
400 
401 		if (elm[i].Type != ACPI_TYPE_INTEGER)
402 			return AE_TYPE;
403 
404 		if (elm[i].Integer.Value > UINT32_MAX)
405 			return AE_AML_NUMERIC_OVERFLOW;
406 	}
407 
408 	ps->ps_freq       = elm[0].Integer.Value;
409 	ps->ps_power      = elm[1].Integer.Value;
410 	ps->ps_latency    = elm[2].Integer.Value;
411 	ps->ps_latency_bm = elm[3].Integer.Value;
412 	ps->ps_control    = elm[4].Integer.Value;
413 	ps->ps_status     = elm[5].Integer.Value;
414 
415 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
416 		return AE_BAD_DECIMAL_CONSTANT;
417 
418 	if (ps->ps_latency == 0 || ps->ps_latency > 1000)
419 		ps->ps_latency = 1;
420 
421 	return AE_OK;
422 }
423 
424 static ACPI_STATUS
425 acpicpu_pstate_xpss(struct acpicpu_softc *sc)
426 {
427 	struct acpicpu_pstate *ps;
428 	ACPI_OBJECT *obj;
429 	ACPI_BUFFER buf;
430 	ACPI_STATUS rv;
431 	uint32_t i = 0;
432 
433 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
434 
435 	if (ACPI_FAILURE(rv))
436 		goto out;
437 
438 	obj = buf.Pointer;
439 
440 	if (obj->Type != ACPI_TYPE_PACKAGE) {
441 		rv = AE_TYPE;
442 		goto out;
443 	}
444 
445 	if (obj->Package.Count != sc->sc_pstate_count) {
446 		rv = AE_LIMIT;
447 		goto out;
448 	}
449 
450 	while (i < sc->sc_pstate_count) {
451 
452 		ps = &sc->sc_pstate[i];
453 		acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
454 
455 		i++;
456 	}
457 
458 out:
459 	if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
460 		aprint_error_dev(sc->sc_dev, "failed to evaluate "
461 		    "XPSS: %s\n", AcpiFormatException(rv));
462 
463 	if (buf.Pointer != NULL)
464 		ACPI_FREE(buf.Pointer);
465 
466 	return rv;
467 }
468 
469 static ACPI_STATUS
470 acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
471 {
472 	ACPI_OBJECT *elm;
473 	int i;
474 
475 	if (obj->Type != ACPI_TYPE_PACKAGE)
476 		return AE_TYPE;
477 
478 	if (obj->Package.Count != 8)
479 		return AE_BAD_DATA;
480 
481 	elm = obj->Package.Elements;
482 
483 	for (i = 0; i < 4; i++) {
484 
485 		if (elm[i].Type != ACPI_TYPE_INTEGER)
486 			return AE_TYPE;
487 
488 		if (elm[i].Integer.Value > UINT32_MAX)
489 			return AE_AML_NUMERIC_OVERFLOW;
490 	}
491 
492 	for (; i < 8; i++) {
493 
494 		if (elm[i].Type != ACPI_TYPE_BUFFER)
495 			return AE_TYPE;
496 
497 		if (elm[i].Buffer.Length != 8)
498 			return AE_LIMIT;
499 	}
500 
501 	/*
502 	 * Only overwrite the elements that were
503 	 * not available from the conventional _PSS.
504 	 */
505 	if (ps->ps_freq == 0)
506 		ps->ps_freq = elm[0].Integer.Value;
507 
508 	if (ps->ps_power == 0)
509 		ps->ps_power = elm[1].Integer.Value;
510 
511 	if (ps->ps_latency == 0)
512 		ps->ps_latency = elm[2].Integer.Value;
513 
514 	if (ps->ps_latency_bm == 0)
515 		ps->ps_latency_bm = elm[3].Integer.Value;
516 
517 	if (ps->ps_control == 0)
518 		ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
519 
520 	if (ps->ps_status == 0)
521 		ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
522 
523 	if (ps->ps_control_mask == 0)
524 		ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
525 
526 	if (ps->ps_status_mask == 0)
527 		ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
528 
529 	ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
530 
531 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
532 		return AE_BAD_DECIMAL_CONSTANT;
533 
534 	if (ps->ps_latency == 0 || ps->ps_latency > 1000)
535 		ps->ps_latency = 1;
536 
537 	return AE_OK;
538 }
539 
540 ACPI_STATUS
541 acpicpu_pstate_pct(struct acpicpu_softc *sc)
542 {
543 	static const size_t size = sizeof(struct acpicpu_reg);
544 	struct acpicpu_reg *reg[2];
545 	struct acpicpu_pstate *ps;
546 	ACPI_OBJECT *elm, *obj;
547 	ACPI_BUFFER buf;
548 	ACPI_STATUS rv;
549 	uint8_t width;
550 	uint32_t i;
551 
552 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
553 
554 	if (ACPI_FAILURE(rv))
555 		return rv;
556 
557 	obj = buf.Pointer;
558 
559 	if (obj->Type != ACPI_TYPE_PACKAGE) {
560 		rv = AE_TYPE;
561 		goto out;
562 	}
563 
564 	if (obj->Package.Count != 2) {
565 		rv = AE_LIMIT;
566 		goto out;
567 	}
568 
569 	for (i = 0; i < 2; i++) {
570 
571 		elm = &obj->Package.Elements[i];
572 
573 		if (elm->Type != ACPI_TYPE_BUFFER) {
574 			rv = AE_TYPE;
575 			goto out;
576 		}
577 
578 		if (size > elm->Buffer.Length) {
579 			rv = AE_AML_BAD_RESOURCE_LENGTH;
580 			goto out;
581 		}
582 
583 		reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
584 
585 		switch (reg[i]->reg_spaceid) {
586 
587 		case ACPI_ADR_SPACE_SYSTEM_IO:
588 
589 			if (reg[i]->reg_addr == 0) {
590 				rv = AE_AML_ILLEGAL_ADDRESS;
591 				goto out;
592 			}
593 
594 			width = reg[i]->reg_bitwidth;
595 
596 			if (width + reg[i]->reg_bitoffset > 32) {
597 				rv = AE_AML_BAD_RESOURCE_VALUE;
598 				goto out;
599 			}
600 
601 			if (width != 8 && width != 16 && width != 32) {
602 				rv = AE_AML_BAD_RESOURCE_VALUE;
603 				goto out;
604 			}
605 
606 			break;
607 
608 		case ACPI_ADR_SPACE_FIXED_HARDWARE:
609 
610 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
611 
612 				if (reg[i]->reg_bitwidth != 64) {
613 					rv = AE_AML_BAD_RESOURCE_VALUE;
614 					goto out;
615 				}
616 
617 				if (reg[i]->reg_bitoffset != 0) {
618 					rv = AE_AML_BAD_RESOURCE_VALUE;
619 					goto out;
620 				}
621 
622 				break;
623 			}
624 
625 			if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
626 				rv = AE_SUPPORT;
627 				goto out;
628 			}
629 
630 			break;
631 
632 		default:
633 			rv = AE_AML_INVALID_SPACE_ID;
634 			goto out;
635 		}
636 	}
637 
638 	if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
639 		rv = AE_AML_INVALID_SPACE_ID;
640 		goto out;
641 	}
642 
643 	(void)memcpy(&sc->sc_pstate_control, reg[0], size);
644 	(void)memcpy(&sc->sc_pstate_status,  reg[1], size);
645 
646 	if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
647 		goto out;
648 
649 	/*
650 	 * At the very least, mandate that
651 	 * XPSS supplies the control address.
652 	 */
653 	if (sc->sc_pstate_control.reg_addr == 0) {
654 		rv = AE_AML_BAD_RESOURCE_LENGTH;
655 		goto out;
656 	}
657 
658 	/*
659 	 * If XPSS is present, copy the MSR addresses
660 	 * to the P-state structures for convenience.
661 	 */
662 	for (i = 0; i < sc->sc_pstate_count; i++) {
663 
664 		ps = &sc->sc_pstate[i];
665 
666 		if (ps->ps_freq == 0)
667 			continue;
668 
669 		ps->ps_status_addr  = sc->sc_pstate_status.reg_addr;
670 		ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
671 	}
672 
673 out:
674 	if (buf.Pointer != NULL)
675 		ACPI_FREE(buf.Pointer);
676 
677 	return rv;
678 }
679 
680 static ACPI_STATUS
681 acpicpu_pstate_dep(struct acpicpu_softc *sc)
682 {
683 	ACPI_OBJECT *elm, *obj;
684 	ACPI_BUFFER buf;
685 	ACPI_STATUS rv;
686 	uint32_t val;
687 	uint8_t i, n;
688 
689 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSD", &buf);
690 
691 	if (ACPI_FAILURE(rv))
692 		goto out;
693 
694 	obj = buf.Pointer;
695 
696 	if (obj->Type != ACPI_TYPE_PACKAGE) {
697 		rv = AE_TYPE;
698 		goto out;
699 	}
700 
701 	if (obj->Package.Count != 1) {
702 		rv = AE_LIMIT;
703 		goto out;
704 	}
705 
706 	elm = &obj->Package.Elements[0];
707 
708 	if (obj->Type != ACPI_TYPE_PACKAGE) {
709 		rv = AE_TYPE;
710 		goto out;
711 	}
712 
713 	n = elm->Package.Count;
714 
715 	if (n != 5) {
716 		rv = AE_LIMIT;
717 		goto out;
718 	}
719 
720 	elm = elm->Package.Elements;
721 
722 	for (i = 0; i < n; i++) {
723 
724 		if (elm[i].Type != ACPI_TYPE_INTEGER) {
725 			rv = AE_TYPE;
726 			goto out;
727 		}
728 
729 		if (elm[i].Integer.Value > UINT32_MAX) {
730 			rv = AE_AML_NUMERIC_OVERFLOW;
731 			goto out;
732 		}
733 	}
734 
735 	val = elm[1].Integer.Value;
736 
737 	if (val != 0)
738 		aprint_debug_dev(sc->sc_dev, "invalid revision in _PSD\n");
739 
740 	val = elm[3].Integer.Value;
741 
742 	if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) {
743 		rv = AE_AML_BAD_RESOURCE_VALUE;
744 		goto out;
745 	}
746 
747 	val = elm[4].Integer.Value;
748 
749 	if (val > sc->sc_ncpus) {
750 		rv = AE_BAD_VALUE;
751 		goto out;
752 	}
753 
754 	sc->sc_pstate_dep.dep_domain = elm[2].Integer.Value;
755 	sc->sc_pstate_dep.dep_type   = elm[3].Integer.Value;
756 	sc->sc_pstate_dep.dep_ncpus  = elm[4].Integer.Value;
757 
758 out:
759 	if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
760 		aprint_debug_dev(sc->sc_dev, "failed to evaluate "
761 		    "_PSD: %s\n", AcpiFormatException(rv));
762 
763 	if (buf.Pointer != NULL)
764 		ACPI_FREE(buf.Pointer);
765 
766 	return rv;
767 }
768 
769 static int
770 acpicpu_pstate_max(struct acpicpu_softc *sc)
771 {
772 	ACPI_INTEGER val;
773 	ACPI_STATUS rv;
774 
775 	/*
776 	 * Evaluate the currently highest P-state that can be used.
777 	 * If available, we can use either this state or any lower
778 	 * power (i.e. higher numbered) state from the _PSS object.
779 	 * Note that the return value must match the _OST parameter.
780 	 */
781 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
782 
783 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
784 
785 		if (sc->sc_pstate[val].ps_freq != 0) {
786 			sc->sc_pstate_max = val;
787 			return 0;
788 		}
789 	}
790 
791 	return 1;
792 }
793 
794 static int
795 acpicpu_pstate_min(struct acpicpu_softc *sc)
796 {
797 	ACPI_INTEGER val;
798 	ACPI_STATUS rv;
799 
800 	/*
801 	 * The _PDL object defines the minimum when passive cooling
802 	 * is being performed. If available, we can use the returned
803 	 * state or any higher power (i.e. lower numbered) state.
804 	 */
805 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
806 
807 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
808 
809 		if (sc->sc_pstate[val].ps_freq == 0)
810 			return 1;
811 
812 		if (val >= sc->sc_pstate_max) {
813 			sc->sc_pstate_min = val;
814 			return 0;
815 		}
816 	}
817 
818 	return 1;
819 }
820 
821 static void
822 acpicpu_pstate_change(struct acpicpu_softc *sc)
823 {
824 	static ACPI_STATUS rv = AE_OK;
825 	ACPI_OBJECT_LIST arg;
826 	ACPI_OBJECT obj[2];
827 	static int val = 0;
828 
829 	acpicpu_pstate_reset(sc);
830 
831 	/*
832 	 * Cache the checks as the optional
833 	 * _PDL and _OST are rarely present.
834 	 */
835 	if (val == 0)
836 		val = acpicpu_pstate_min(sc);
837 
838 	arg.Count = 2;
839 	arg.Pointer = obj;
840 
841 	obj[0].Type = ACPI_TYPE_INTEGER;
842 	obj[1].Type = ACPI_TYPE_INTEGER;
843 
844 	obj[0].Integer.Value = ACPICPU_P_NOTIFY;
845 	obj[1].Integer.Value = acpicpu_pstate_max(sc);
846 
847 	if (ACPI_FAILURE(rv))
848 		return;
849 
850 	rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
851 }
852 
853 static void
854 acpicpu_pstate_reset(struct acpicpu_softc *sc)
855 {
856 
857 	sc->sc_pstate_max = 0;
858 	sc->sc_pstate_min = sc->sc_pstate_count - 1;
859 
860 }
861 
862 static void
863 acpicpu_pstate_bios(void)
864 {
865 	const uint8_t val = AcpiGbl_FADT.PstateControl;
866 	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
867 
868 	if (addr == 0 || val == 0)
869 		return;
870 
871 	(void)AcpiOsWritePort(addr, val, 8);
872 }
873 
874 int
875 acpicpu_pstate_get(struct cpu_info *ci, uint32_t *freq)
876 {
877 	struct acpicpu_pstate *ps = NULL;
878 	struct acpicpu_softc *sc;
879 	uint32_t i, val = 0;
880 	uint64_t addr;
881 	uint8_t width;
882 	int rv;
883 
884 	sc = acpicpu_sc[ci->ci_acpiid];
885 
886 	if (__predict_false(sc == NULL)) {
887 		rv = ENXIO;
888 		goto fail;
889 	}
890 
891 	if (__predict_false(sc->sc_cold != false)) {
892 		rv = EBUSY;
893 		goto fail;
894 	}
895 
896 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
897 		rv = ENODEV;
898 		goto fail;
899 	}
900 
901 	mutex_enter(&sc->sc_mtx);
902 
903 	/*
904 	 * Use the cached value, if available.
905 	 */
906 	if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
907 		*freq = sc->sc_pstate_current;
908 		mutex_exit(&sc->sc_mtx);
909 		return 0;
910 	}
911 
912 	mutex_exit(&sc->sc_mtx);
913 
914 	switch (sc->sc_pstate_status.reg_spaceid) {
915 
916 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
917 
918 		rv = acpicpu_md_pstate_get(sc, freq);
919 
920 		if (__predict_false(rv != 0))
921 			goto fail;
922 
923 		break;
924 
925 	case ACPI_ADR_SPACE_SYSTEM_IO:
926 
927 		addr  = sc->sc_pstate_status.reg_addr;
928 		width = sc->sc_pstate_status.reg_bitwidth;
929 
930 		(void)AcpiOsReadPort(addr, &val, width);
931 
932 		if (val == 0) {
933 			rv = EIO;
934 			goto fail;
935 		}
936 
937 		for (i = 0; i < sc->sc_pstate_count; i++) {
938 
939 			if (sc->sc_pstate[i].ps_freq == 0)
940 				continue;
941 
942 			if (val == sc->sc_pstate[i].ps_status) {
943 				ps = &sc->sc_pstate[i];
944 				break;
945 			}
946 		}
947 
948 		if (ps == NULL) {
949 			rv = EIO;
950 			goto fail;
951 		}
952 
953 		*freq = ps->ps_freq;
954 		break;
955 
956 	default:
957 		rv = ENOTTY;
958 		goto fail;
959 	}
960 
961 	mutex_enter(&sc->sc_mtx);
962 	sc->sc_pstate_current = *freq;
963 	mutex_exit(&sc->sc_mtx);
964 
965 	return 0;
966 
967 fail:
968 	aprint_error_dev(sc->sc_dev, "failed "
969 	    "to get frequency (err %d)\n", rv);
970 
971 	mutex_enter(&sc->sc_mtx);
972 	*freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
973 	mutex_exit(&sc->sc_mtx);
974 
975 	return rv;
976 }
977 
978 void
979 acpicpu_pstate_set(struct cpu_info *ci, uint32_t freq)
980 {
981 	uint64_t xc;
982 
983 	xc = xc_broadcast(0, acpicpu_pstate_set_xcall, &freq, NULL);
984 	xc_wait(xc);
985 }
986 
987 static void
988 acpicpu_pstate_set_xcall(void *arg1, void *arg2)
989 {
990 	struct acpicpu_pstate *ps = NULL;
991 	struct cpu_info *ci = curcpu();
992 	struct acpicpu_softc *sc;
993 	uint32_t freq, i, val;
994 	uint64_t addr;
995 	uint8_t width;
996 	int rv;
997 
998 	freq = *(uint32_t *)arg1;
999 	sc = acpicpu_sc[ci->ci_acpiid];
1000 
1001 	if (__predict_false(sc == NULL)) {
1002 		rv = ENXIO;
1003 		goto fail;
1004 	}
1005 
1006 	if (__predict_false(sc->sc_cold != false)) {
1007 		rv = EBUSY;
1008 		goto fail;
1009 	}
1010 
1011 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
1012 		rv = ENODEV;
1013 		goto fail;
1014 	}
1015 
1016 	mutex_enter(&sc->sc_mtx);
1017 
1018 	if (sc->sc_pstate_current == freq) {
1019 		mutex_exit(&sc->sc_mtx);
1020 		return;
1021 	}
1022 
1023 	/*
1024 	 * Verify that the requested frequency is available.
1025 	 *
1026 	 * The access needs to be protected since the currently
1027 	 * available maximum and minimum may change dynamically.
1028 	 */
1029 	for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
1030 
1031 		if (__predict_false(sc->sc_pstate[i].ps_freq == 0))
1032 			continue;
1033 
1034 		if (sc->sc_pstate[i].ps_freq == freq) {
1035 			ps = &sc->sc_pstate[i];
1036 			break;
1037 		}
1038 	}
1039 
1040 	mutex_exit(&sc->sc_mtx);
1041 
1042 	if (__predict_false(ps == NULL)) {
1043 		rv = EINVAL;
1044 		goto fail;
1045 	}
1046 
1047 	switch (sc->sc_pstate_control.reg_spaceid) {
1048 
1049 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1050 
1051 		rv = acpicpu_md_pstate_set(ps);
1052 
1053 		if (__predict_false(rv != 0))
1054 			goto fail;
1055 
1056 		break;
1057 
1058 	case ACPI_ADR_SPACE_SYSTEM_IO:
1059 
1060 		addr  = sc->sc_pstate_control.reg_addr;
1061 		width = sc->sc_pstate_control.reg_bitwidth;
1062 
1063 		(void)AcpiOsWritePort(addr, ps->ps_control, width);
1064 
1065 		addr  = sc->sc_pstate_status.reg_addr;
1066 		width = sc->sc_pstate_status.reg_bitwidth;
1067 
1068 		/*
1069 		 * Some systems take longer to respond
1070 		 * than the reported worst-case latency.
1071 		 */
1072 		for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
1073 
1074 			(void)AcpiOsReadPort(addr, &val, width);
1075 
1076 			if (val == ps->ps_status)
1077 				break;
1078 
1079 			DELAY(ps->ps_latency);
1080 		}
1081 
1082 		if (i == ACPICPU_P_STATE_RETRY) {
1083 			rv = EAGAIN;
1084 			goto fail;
1085 		}
1086 
1087 		break;
1088 
1089 	default:
1090 		rv = ENOTTY;
1091 		goto fail;
1092 	}
1093 
1094 	mutex_enter(&sc->sc_mtx);
1095 	ps->ps_evcnt.ev_count++;
1096 	sc->sc_pstate_current = freq;
1097 	mutex_exit(&sc->sc_mtx);
1098 
1099 	return;
1100 
1101 fail:
1102 	aprint_error_dev(sc->sc_dev, "failed to set "
1103 	    "frequency to %u (err %d)\n", freq, rv);
1104 
1105 	mutex_enter(&sc->sc_mtx);
1106 	sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
1107 	mutex_exit(&sc->sc_mtx);
1108 }
1109