xref: /netbsd-src/sys/dev/acpi/acpi_cpu_pstate.c (revision 213144e1de7024d4193d04aa51005ba3a5ad95e7)
1 /* $NetBSD: acpi_cpu_pstate.c,v 1.37 2011/01/30 08:55:52 jruoho Exp $ */
2 
3 /*-
4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen@iki.fi>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.37 2011/01/30 08:55:52 jruoho Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/evcnt.h>
34 #include <sys/kmem.h>
35 #include <sys/once.h>
36 
37 #include <dev/acpi/acpireg.h>
38 #include <dev/acpi/acpivar.h>
39 #include <dev/acpi/acpi_cpu.h>
40 
41 #define _COMPONENT	 ACPI_BUS_COMPONENT
42 ACPI_MODULE_NAME	 ("acpi_cpu_pstate")
43 
44 static void		 acpicpu_pstate_attach_print(struct acpicpu_softc *);
45 static void		 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
46 static void		 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
47 static ACPI_STATUS	 acpicpu_pstate_pss(struct acpicpu_softc *);
48 static ACPI_STATUS	 acpicpu_pstate_pss_add(struct acpicpu_pstate *,
49 						ACPI_OBJECT *);
50 static ACPI_STATUS	 acpicpu_pstate_xpss(struct acpicpu_softc *);
51 static ACPI_STATUS	 acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
52 						 ACPI_OBJECT *);
53 static ACPI_STATUS	 acpicpu_pstate_pct(struct acpicpu_softc *);
54 static int		 acpicpu_pstate_max(struct acpicpu_softc *);
55 static int		 acpicpu_pstate_min(struct acpicpu_softc *);
56 static void		 acpicpu_pstate_change(struct acpicpu_softc *);
57 static void		 acpicpu_pstate_reset(struct acpicpu_softc *);
58 static void		 acpicpu_pstate_bios(void);
59 
60 static uint32_t		 acpicpu_pstate_saved = 0;
61 
62 void
63 acpicpu_pstate_attach(device_t self)
64 {
65 	struct acpicpu_softc *sc = device_private(self);
66 	const char *str;
67 	ACPI_HANDLE tmp;
68 	ACPI_STATUS rv;
69 
70 	rv = acpicpu_pstate_pss(sc);
71 
72 	if (ACPI_FAILURE(rv)) {
73 		str = "_PSS";
74 		goto fail;
75 	}
76 
77 	/*
78 	 * Append additional information from the extended _PSS,
79 	 * if available. Note that XPSS can not be used on Intel
80 	 * systems that use either _PDC or _OSC. From the XPSS
81 	 * method specification:
82 	 *
83 	 *   "The platform must not require the use of the
84 	 *    optional _PDC or _OSC methods to coordinate
85 	 *    between the operating system and firmware for
86 	 *    the purposes of enabling specific processor
87 	 *    power management features or implementations."
88 	 */
89 	if (sc->sc_cap == 0) {
90 
91 		rv = acpicpu_pstate_xpss(sc);
92 
93 		if (ACPI_SUCCESS(rv))
94 			sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
95 	}
96 
97 	rv = acpicpu_pstate_pct(sc);
98 
99 	if (ACPI_FAILURE(rv)) {
100 		str = "_PCT";
101 		goto fail;
102 	}
103 
104 	/*
105 	 * The ACPI 3.0 and 4.0 specifications mandate three
106 	 * objects for P-states: _PSS, _PCT, and _PPC. A less
107 	 * strict wording is however used in the earlier 2.0
108 	 * standard, and some systems conforming to ACPI 2.0
109 	 * do not have _PPC, the method for dynamic maximum.
110 	 */
111 	rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
112 
113 	if (ACPI_FAILURE(rv))
114 		aprint_debug_dev(self, "_PPC missing\n");
115 
116 	/*
117 	 * Employ the XPSS structure by filling
118 	 * it with MD information required for FFH.
119 	 */
120 	rv = acpicpu_md_pstate_pss(sc);
121 
122 	if (rv != 0) {
123 		rv = AE_SUPPORT;
124 		goto fail;
125 	}
126 
127 	sc->sc_flags |= ACPICPU_FLAG_P;
128 
129 	acpicpu_pstate_bios();
130 	acpicpu_pstate_reset(sc);
131 	acpicpu_pstate_attach_evcnt(sc);
132 	acpicpu_pstate_attach_print(sc);
133 
134 	return;
135 
136 fail:
137 	switch (rv) {
138 
139 	case AE_NOT_FOUND:
140 		return;
141 
142 	case AE_SUPPORT:
143 		aprint_verbose_dev(self, "P-states not supported\n");
144 		return;
145 
146 	default:
147 		aprint_error_dev(self, "failed to evaluate "
148 		    "%s: %s\n", str, AcpiFormatException(rv));
149 	}
150 }
151 
152 static void
153 acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
154 {
155 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
156 	struct acpicpu_pstate *ps;
157 	static bool once = false;
158 	const char *str;
159 	uint32_t i;
160 
161 	if (once != false)
162 		return;
163 
164 	str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
165 
166 	for (i = 0; i < sc->sc_pstate_count; i++) {
167 
168 		ps = &sc->sc_pstate[i];
169 
170 		if (ps->ps_freq == 0)
171 			continue;
172 
173 		aprint_verbose_dev(sc->sc_dev, "P%d: %3s, "
174 		    "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
175 		    ps->ps_latency, ps->ps_power, ps->ps_freq);
176 	}
177 
178 	once = true;
179 }
180 
181 static void
182 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
183 {
184 	struct acpicpu_pstate *ps;
185 	uint32_t i;
186 
187 	for (i = 0; i < sc->sc_pstate_count; i++) {
188 
189 		ps = &sc->sc_pstate[i];
190 
191 		if (ps->ps_freq == 0)
192 			continue;
193 
194 		(void)snprintf(ps->ps_name, sizeof(ps->ps_name),
195 		    "P%u (%u MHz)", i, ps->ps_freq);
196 
197 		evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
198 		    NULL, device_xname(sc->sc_dev), ps->ps_name);
199 	}
200 }
201 
202 int
203 acpicpu_pstate_detach(device_t self)
204 {
205 	struct acpicpu_softc *sc = device_private(self);
206 	static ONCE_DECL(once_detach);
207 	size_t size;
208 	int rv;
209 
210 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
211 		return 0;
212 
213 	rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
214 
215 	if (rv != 0)
216 		return rv;
217 
218 	size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
219 
220 	if (sc->sc_pstate != NULL)
221 		kmem_free(sc->sc_pstate, size);
222 
223 	sc->sc_flags &= ~ACPICPU_FLAG_P;
224 	acpicpu_pstate_detach_evcnt(sc);
225 
226 	return 0;
227 }
228 
229 static void
230 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
231 {
232 	struct acpicpu_pstate *ps;
233 	uint32_t i;
234 
235 	for (i = 0; i < sc->sc_pstate_count; i++) {
236 
237 		ps = &sc->sc_pstate[i];
238 
239 		if (ps->ps_freq != 0)
240 			evcnt_detach(&ps->ps_evcnt);
241 	}
242 }
243 
244 void
245 acpicpu_pstate_start(device_t self)
246 {
247 	struct acpicpu_softc *sc = device_private(self);
248 	struct acpicpu_pstate *ps;
249 	uint32_t i;
250 	int rv;
251 
252 	rv = acpicpu_md_pstate_start();
253 
254 	if (rv != 0)
255 		goto fail;
256 
257 	/*
258 	 * Initialize the state to P0.
259 	 */
260 	for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
261 
262 		ps = &sc->sc_pstate[i];
263 
264 		if (ps->ps_freq != 0) {
265 			sc->sc_cold = false;
266 			rv = acpicpu_pstate_set(sc, ps->ps_freq);
267 			break;
268 		}
269 	}
270 
271 	if (rv != 0)
272 		goto fail;
273 
274 	return;
275 
276 fail:
277 	sc->sc_flags &= ~ACPICPU_FLAG_P;
278 
279 	if (rv == EEXIST) {
280 		aprint_error_dev(self, "driver conflicts with existing one\n");
281 		return;
282 	}
283 
284 	aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
285 }
286 
287 bool
288 acpicpu_pstate_suspend(device_t self)
289 {
290 	struct acpicpu_softc *sc = device_private(self);
291 	struct acpicpu_pstate *ps = NULL;
292 	int32_t i;
293 
294 	mutex_enter(&sc->sc_mtx);
295 	acpicpu_pstate_reset(sc);
296 	mutex_exit(&sc->sc_mtx);
297 
298 	if (acpicpu_pstate_saved != 0)
299 		return true;
300 
301 	/*
302 	 * Following design notes for Windows, we set the highest
303 	 * P-state when entering any of the system sleep states.
304 	 * When resuming, the saved P-state will be restored.
305 	 *
306 	 *	Microsoft Corporation: Windows Native Processor
307 	 *	Performance Control. Version 1.1a, November, 2002.
308 	 */
309 	for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
310 
311 		if (sc->sc_pstate[i].ps_freq != 0) {
312 			ps = &sc->sc_pstate[i];
313 			break;
314 		}
315 	}
316 
317 	if (__predict_false(ps == NULL))
318 		return true;
319 
320 	mutex_enter(&sc->sc_mtx);
321 	acpicpu_pstate_saved = sc->sc_pstate_current;
322 	mutex_exit(&sc->sc_mtx);
323 
324 	if (acpicpu_pstate_saved == ps->ps_freq)
325 		return true;
326 
327 	(void)acpicpu_pstate_set(sc, ps->ps_freq);
328 
329 	return true;
330 }
331 
332 bool
333 acpicpu_pstate_resume(device_t self)
334 {
335 	struct acpicpu_softc *sc = device_private(self);
336 
337 	if (acpicpu_pstate_saved != 0) {
338 		(void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
339 		acpicpu_pstate_saved = 0;
340 	}
341 
342 	return true;
343 }
344 
345 void
346 acpicpu_pstate_callback(void *aux)
347 {
348 	struct acpicpu_softc *sc;
349 	device_t self = aux;
350 	uint32_t old, new;
351 
352 	sc = device_private(self);
353 
354 	mutex_enter(&sc->sc_mtx);
355 
356 	old = sc->sc_pstate_max;
357 	acpicpu_pstate_change(sc);
358 	new = sc->sc_pstate_max;
359 
360 	if (old == new) {
361 		mutex_exit(&sc->sc_mtx);
362 		return;
363 	}
364 
365 	mutex_exit(&sc->sc_mtx);
366 
367 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "maximum frequency "
368 		"changed from P%u (%u MHz) to P%u (%u MHz)\n",
369 		old, sc->sc_pstate[old].ps_freq, new,
370 		sc->sc_pstate[sc->sc_pstate_max].ps_freq));
371 
372 	(void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
373 }
374 
375 ACPI_STATUS
376 acpicpu_pstate_pss(struct acpicpu_softc *sc)
377 {
378 	struct acpicpu_pstate *ps;
379 	ACPI_OBJECT *obj;
380 	ACPI_BUFFER buf;
381 	ACPI_STATUS rv;
382 	uint32_t count;
383 	uint32_t i, j;
384 
385 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
386 
387 	if (ACPI_FAILURE(rv))
388 		return rv;
389 
390 	obj = buf.Pointer;
391 
392 	if (obj->Type != ACPI_TYPE_PACKAGE) {
393 		rv = AE_TYPE;
394 		goto out;
395 	}
396 
397 	sc->sc_pstate_count = obj->Package.Count;
398 
399 	if (sc->sc_pstate_count == 0) {
400 		rv = AE_NOT_EXIST;
401 		goto out;
402 	}
403 
404 	if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
405 		rv = AE_LIMIT;
406 		goto out;
407 	}
408 
409 	sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
410 	    sizeof(struct acpicpu_pstate), KM_SLEEP);
411 
412 	if (sc->sc_pstate == NULL) {
413 		rv = AE_NO_MEMORY;
414 		goto out;
415 	}
416 
417 	for (count = i = 0; i < sc->sc_pstate_count; i++) {
418 
419 		ps = &sc->sc_pstate[i];
420 		rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
421 
422 		if (ACPI_FAILURE(rv)) {
423 			aprint_error_dev(sc->sc_dev, "failed to add "
424 			    "P-state: %s\n", AcpiFormatException(rv));
425 			ps->ps_freq = 0;
426 			continue;
427 		}
428 
429 		for (j = 0; j < i; j++) {
430 
431 			if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
432 				ps->ps_freq = 0;
433 				break;
434 			}
435 		}
436 
437 		if (ps->ps_freq != 0)
438 			count++;
439 	}
440 
441 	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
442 
443 out:
444 	if (buf.Pointer != NULL)
445 		ACPI_FREE(buf.Pointer);
446 
447 	return rv;
448 }
449 
450 static ACPI_STATUS
451 acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
452 {
453 	ACPI_OBJECT *elm;
454 	int i;
455 
456 	if (obj->Type != ACPI_TYPE_PACKAGE)
457 		return AE_TYPE;
458 
459 	if (obj->Package.Count != 6)
460 		return AE_BAD_DATA;
461 
462 	elm = obj->Package.Elements;
463 
464 	for (i = 0; i < 6; i++) {
465 
466 		if (elm[i].Type != ACPI_TYPE_INTEGER)
467 			return AE_TYPE;
468 
469 		if (elm[i].Integer.Value > UINT32_MAX)
470 			return AE_AML_NUMERIC_OVERFLOW;
471 	}
472 
473 	ps->ps_freq       = elm[0].Integer.Value;
474 	ps->ps_power      = elm[1].Integer.Value;
475 	ps->ps_latency    = elm[2].Integer.Value;
476 	ps->ps_latency_bm = elm[3].Integer.Value;
477 	ps->ps_control    = elm[4].Integer.Value;
478 	ps->ps_status     = elm[5].Integer.Value;
479 
480 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
481 		return AE_BAD_DECIMAL_CONSTANT;
482 
483 	/*
484 	 * The latency is typically around 10 usec
485 	 * on Intel CPUs. Use that as the minimum.
486 	 */
487 	if (ps->ps_latency < 10)
488 		ps->ps_latency = 10;
489 
490 	return AE_OK;
491 }
492 
493 static ACPI_STATUS
494 acpicpu_pstate_xpss(struct acpicpu_softc *sc)
495 {
496 	struct acpicpu_pstate *ps;
497 	ACPI_OBJECT *obj;
498 	ACPI_BUFFER buf;
499 	ACPI_STATUS rv;
500 	uint32_t i = 0;
501 
502 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
503 
504 	if (ACPI_FAILURE(rv))
505 		goto out;
506 
507 	obj = buf.Pointer;
508 
509 	if (obj->Type != ACPI_TYPE_PACKAGE) {
510 		rv = AE_TYPE;
511 		goto out;
512 	}
513 
514 	if (obj->Package.Count != sc->sc_pstate_count) {
515 		rv = AE_LIMIT;
516 		goto out;
517 	}
518 
519 	while (i < sc->sc_pstate_count) {
520 
521 		ps = &sc->sc_pstate[i];
522 		acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
523 
524 		i++;
525 	}
526 
527 out:
528 	if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
529 		aprint_error_dev(sc->sc_dev, "failed to evaluate "
530 		    "XPSS: %s\n", AcpiFormatException(rv));
531 
532 	if (buf.Pointer != NULL)
533 		ACPI_FREE(buf.Pointer);
534 
535 	return rv;
536 }
537 
538 static ACPI_STATUS
539 acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
540 {
541 	ACPI_OBJECT *elm;
542 	int i;
543 
544 	if (obj->Type != ACPI_TYPE_PACKAGE)
545 		return AE_TYPE;
546 
547 	if (obj->Package.Count != 8)
548 		return AE_BAD_DATA;
549 
550 	elm = obj->Package.Elements;
551 
552 	for (i = 0; i < 4; i++) {
553 
554 		if (elm[i].Type != ACPI_TYPE_INTEGER)
555 			return AE_TYPE;
556 
557 		if (elm[i].Integer.Value > UINT32_MAX)
558 			return AE_AML_NUMERIC_OVERFLOW;
559 	}
560 
561 	for (; i < 8; i++) {
562 
563 		if (elm[i].Type != ACPI_TYPE_BUFFER)
564 			return AE_TYPE;
565 
566 		if (elm[i].Buffer.Length != 8)
567 			return AE_LIMIT;
568 	}
569 
570 	/*
571 	 * Only overwrite the elements that were
572 	 * not available from the conventional _PSS.
573 	 */
574 	if (ps->ps_freq == 0)
575 		ps->ps_freq = elm[0].Integer.Value;
576 
577 	if (ps->ps_power == 0)
578 		ps->ps_power = elm[1].Integer.Value;
579 
580 	if (ps->ps_latency == 0)
581 		ps->ps_latency = elm[2].Integer.Value;
582 
583 	if (ps->ps_latency_bm == 0)
584 		ps->ps_latency_bm = elm[3].Integer.Value;
585 
586 	if (ps->ps_control == 0)
587 		ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
588 
589 	if (ps->ps_status == 0)
590 		ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
591 
592 	if (ps->ps_control_mask == 0)
593 		ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
594 
595 	if (ps->ps_status_mask == 0)
596 		ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
597 
598 	/*
599 	 * The latency is often defined to be
600 	 * zero on AMD systems. Raise that to 1.
601 	 */
602 	if (ps->ps_latency == 0)
603 		ps->ps_latency = 1;
604 
605 	ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
606 
607 	if (ps->ps_freq > 9999)
608 		return AE_BAD_DECIMAL_CONSTANT;
609 
610 	return AE_OK;
611 }
612 
613 ACPI_STATUS
614 acpicpu_pstate_pct(struct acpicpu_softc *sc)
615 {
616 	static const size_t size = sizeof(struct acpicpu_reg);
617 	struct acpicpu_reg *reg[2];
618 	struct acpicpu_pstate *ps;
619 	ACPI_OBJECT *elm, *obj;
620 	ACPI_BUFFER buf;
621 	ACPI_STATUS rv;
622 	uint8_t width;
623 	uint32_t i;
624 
625 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
626 
627 	if (ACPI_FAILURE(rv))
628 		return rv;
629 
630 	obj = buf.Pointer;
631 
632 	if (obj->Type != ACPI_TYPE_PACKAGE) {
633 		rv = AE_TYPE;
634 		goto out;
635 	}
636 
637 	if (obj->Package.Count != 2) {
638 		rv = AE_LIMIT;
639 		goto out;
640 	}
641 
642 	for (i = 0; i < 2; i++) {
643 
644 		elm = &obj->Package.Elements[i];
645 
646 		if (elm->Type != ACPI_TYPE_BUFFER) {
647 			rv = AE_TYPE;
648 			goto out;
649 		}
650 
651 		if (size > elm->Buffer.Length) {
652 			rv = AE_AML_BAD_RESOURCE_LENGTH;
653 			goto out;
654 		}
655 
656 		reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
657 
658 		switch (reg[i]->reg_spaceid) {
659 
660 		case ACPI_ADR_SPACE_SYSTEM_IO:
661 
662 			if (reg[i]->reg_addr == 0) {
663 				rv = AE_AML_ILLEGAL_ADDRESS;
664 				goto out;
665 			}
666 
667 			width = reg[i]->reg_bitwidth;
668 
669 			if (width + reg[i]->reg_bitoffset > 32) {
670 				rv = AE_AML_BAD_RESOURCE_VALUE;
671 				goto out;
672 			}
673 
674 			if (width != 8 && width != 16 && width != 32) {
675 				rv = AE_AML_BAD_RESOURCE_VALUE;
676 				goto out;
677 			}
678 
679 			break;
680 
681 		case ACPI_ADR_SPACE_FIXED_HARDWARE:
682 
683 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
684 
685 				if (reg[i]->reg_bitwidth != 64) {
686 					rv = AE_AML_BAD_RESOURCE_VALUE;
687 					goto out;
688 				}
689 
690 				if (reg[i]->reg_bitoffset != 0) {
691 					rv = AE_AML_BAD_RESOURCE_VALUE;
692 					goto out;
693 				}
694 
695 				break;
696 			}
697 
698 			if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
699 				rv = AE_SUPPORT;
700 				goto out;
701 			}
702 
703 			break;
704 
705 		default:
706 			rv = AE_AML_INVALID_SPACE_ID;
707 			goto out;
708 		}
709 	}
710 
711 	if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
712 		rv = AE_AML_INVALID_SPACE_ID;
713 		goto out;
714 	}
715 
716 	(void)memcpy(&sc->sc_pstate_control, reg[0], size);
717 	(void)memcpy(&sc->sc_pstate_status,  reg[1], size);
718 
719 	if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
720 		goto out;
721 
722 	/*
723 	 * In XPSS the control address can not be zero,
724 	 * but the status address may be. In this case,
725 	 * comparable to T-states, we can ignore the status
726 	 * check during the P-state (FFH) transition.
727 	 */
728 	if (sc->sc_pstate_control.reg_addr == 0) {
729 		rv = AE_AML_BAD_RESOURCE_LENGTH;
730 		goto out;
731 	}
732 
733 	/*
734 	 * If XPSS is present, copy the MSR addresses
735 	 * to the P-state structures for convenience.
736 	 */
737 	for (i = 0; i < sc->sc_pstate_count; i++) {
738 
739 		ps = &sc->sc_pstate[i];
740 
741 		if (ps->ps_freq == 0)
742 			continue;
743 
744 		ps->ps_status_addr  = sc->sc_pstate_status.reg_addr;
745 		ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
746 	}
747 
748 out:
749 	if (buf.Pointer != NULL)
750 		ACPI_FREE(buf.Pointer);
751 
752 	return rv;
753 }
754 
755 static int
756 acpicpu_pstate_max(struct acpicpu_softc *sc)
757 {
758 	ACPI_INTEGER val;
759 	ACPI_STATUS rv;
760 
761 	/*
762 	 * Evaluate the currently highest P-state that can be used.
763 	 * If available, we can use either this state or any lower
764 	 * power (i.e. higher numbered) state from the _PSS object.
765 	 * Note that the return value must match the _OST parameter.
766 	 */
767 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
768 
769 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
770 
771 		if (sc->sc_pstate[val].ps_freq != 0) {
772 			sc->sc_pstate_max = val;
773 			return 0;
774 		}
775 	}
776 
777 	return 1;
778 }
779 
780 static int
781 acpicpu_pstate_min(struct acpicpu_softc *sc)
782 {
783 	ACPI_INTEGER val;
784 	ACPI_STATUS rv;
785 
786 	/*
787 	 * The _PDL object defines the minimum when passive cooling
788 	 * is being performed. If available, we can use the returned
789 	 * state or any higher power (i.e. lower numbered) state.
790 	 */
791 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
792 
793 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
794 
795 		if (sc->sc_pstate[val].ps_freq == 0)
796 			return 1;
797 
798 		if (val >= sc->sc_pstate_max) {
799 			sc->sc_pstate_min = val;
800 			return 0;
801 		}
802 	}
803 
804 	return 1;
805 }
806 
807 static void
808 acpicpu_pstate_change(struct acpicpu_softc *sc)
809 {
810 	static ACPI_STATUS rv = AE_OK;
811 	ACPI_OBJECT_LIST arg;
812 	ACPI_OBJECT obj[2];
813 	static int val = 0;
814 
815 	acpicpu_pstate_reset(sc);
816 
817 	/*
818 	 * Cache the checks as the optional
819 	 * _PDL and _OST are rarely present.
820 	 */
821 	if (val == 0)
822 		val = acpicpu_pstate_min(sc);
823 
824 	arg.Count = 2;
825 	arg.Pointer = obj;
826 
827 	obj[0].Type = ACPI_TYPE_INTEGER;
828 	obj[1].Type = ACPI_TYPE_INTEGER;
829 
830 	obj[0].Integer.Value = ACPICPU_P_NOTIFY;
831 	obj[1].Integer.Value = acpicpu_pstate_max(sc);
832 
833 	if (ACPI_FAILURE(rv))
834 		return;
835 
836 	rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
837 }
838 
839 static void
840 acpicpu_pstate_reset(struct acpicpu_softc *sc)
841 {
842 
843 	sc->sc_pstate_max = 0;
844 	sc->sc_pstate_min = sc->sc_pstate_count - 1;
845 
846 }
847 
848 static void
849 acpicpu_pstate_bios(void)
850 {
851 	const uint8_t val = AcpiGbl_FADT.PstateControl;
852 	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
853 
854 	if (addr == 0 || val == 0)
855 		return;
856 
857 	(void)AcpiOsWritePort(addr, val, 8);
858 }
859 
860 int
861 acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
862 {
863 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
864 	struct acpicpu_pstate *ps = NULL;
865 	uint32_t i, val = 0;
866 	uint64_t addr;
867 	uint8_t width;
868 	int rv;
869 
870 	if (__predict_false(sc->sc_cold != false)) {
871 		rv = EBUSY;
872 		goto fail;
873 	}
874 
875 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
876 		rv = ENODEV;
877 		goto fail;
878 	}
879 
880 	mutex_enter(&sc->sc_mtx);
881 
882 	/*
883 	 * Use the cached value, if available.
884 	 */
885 	if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
886 		*freq = sc->sc_pstate_current;
887 		mutex_exit(&sc->sc_mtx);
888 		return 0;
889 	}
890 
891 	mutex_exit(&sc->sc_mtx);
892 
893 	switch (method) {
894 
895 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
896 
897 		rv = acpicpu_md_pstate_get(sc, freq);
898 
899 		if (__predict_false(rv != 0))
900 			goto fail;
901 
902 		break;
903 
904 	case ACPI_ADR_SPACE_SYSTEM_IO:
905 
906 		addr  = sc->sc_pstate_status.reg_addr;
907 		width = sc->sc_pstate_status.reg_bitwidth;
908 
909 		(void)AcpiOsReadPort(addr, &val, width);
910 
911 		if (val == 0) {
912 			rv = EIO;
913 			goto fail;
914 		}
915 
916 		for (i = 0; i < sc->sc_pstate_count; i++) {
917 
918 			if (sc->sc_pstate[i].ps_freq == 0)
919 				continue;
920 
921 			if (val == sc->sc_pstate[i].ps_status) {
922 				ps = &sc->sc_pstate[i];
923 				break;
924 			}
925 		}
926 
927 		if (ps == NULL) {
928 			rv = EIO;
929 			goto fail;
930 		}
931 
932 		*freq = ps->ps_freq;
933 		break;
934 
935 	default:
936 		rv = ENOTTY;
937 		goto fail;
938 	}
939 
940 	mutex_enter(&sc->sc_mtx);
941 	sc->sc_pstate_current = *freq;
942 	mutex_exit(&sc->sc_mtx);
943 
944 	return 0;
945 
946 fail:
947 	aprint_error_dev(sc->sc_dev, "failed "
948 	    "to get frequency (err %d)\n", rv);
949 
950 	mutex_enter(&sc->sc_mtx);
951 	*freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
952 	mutex_exit(&sc->sc_mtx);
953 
954 	return rv;
955 }
956 
957 int
958 acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
959 {
960 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
961 	struct acpicpu_pstate *ps = NULL;
962 	uint32_t i, val;
963 	uint64_t addr;
964 	uint8_t width;
965 	int rv;
966 
967 	if (__predict_false(sc->sc_cold != false)) {
968 		rv = EBUSY;
969 		goto fail;
970 	}
971 
972 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
973 		rv = ENODEV;
974 		goto fail;
975 	}
976 
977 	mutex_enter(&sc->sc_mtx);
978 
979 	if (sc->sc_pstate_current == freq) {
980 		mutex_exit(&sc->sc_mtx);
981 		return 0;
982 	}
983 
984 	/*
985 	 * Verify that the requested frequency is available.
986 	 *
987 	 * The access needs to be protected since the currently
988 	 * available maximum and minimum may change dynamically.
989 	 */
990 	for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
991 
992 		if (__predict_false(sc->sc_pstate[i].ps_freq == 0))
993 			continue;
994 
995 		if (sc->sc_pstate[i].ps_freq == freq) {
996 			ps = &sc->sc_pstate[i];
997 			break;
998 		}
999 	}
1000 
1001 	mutex_exit(&sc->sc_mtx);
1002 
1003 	if (__predict_false(ps == NULL)) {
1004 		rv = EINVAL;
1005 		goto fail;
1006 	}
1007 
1008 	switch (method) {
1009 
1010 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
1011 
1012 		rv = acpicpu_md_pstate_set(ps);
1013 
1014 		if (__predict_false(rv != 0))
1015 			goto fail;
1016 
1017 		break;
1018 
1019 	case ACPI_ADR_SPACE_SYSTEM_IO:
1020 
1021 		addr  = sc->sc_pstate_control.reg_addr;
1022 		width = sc->sc_pstate_control.reg_bitwidth;
1023 
1024 		(void)AcpiOsWritePort(addr, ps->ps_control, width);
1025 
1026 		addr  = sc->sc_pstate_status.reg_addr;
1027 		width = sc->sc_pstate_status.reg_bitwidth;
1028 
1029 		/*
1030 		 * Some systems take longer to respond
1031 		 * than the reported worst-case latency.
1032 		 */
1033 		for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
1034 
1035 			(void)AcpiOsReadPort(addr, &val, width);
1036 
1037 			if (val == ps->ps_status)
1038 				break;
1039 
1040 			DELAY(ps->ps_latency);
1041 		}
1042 
1043 		if (i == ACPICPU_P_STATE_RETRY) {
1044 			rv = EAGAIN;
1045 			goto fail;
1046 		}
1047 
1048 		break;
1049 
1050 	default:
1051 		rv = ENOTTY;
1052 		goto fail;
1053 	}
1054 
1055 	mutex_enter(&sc->sc_mtx);
1056 	ps->ps_evcnt.ev_count++;
1057 	sc->sc_pstate_current = freq;
1058 	mutex_exit(&sc->sc_mtx);
1059 
1060 	return 0;
1061 
1062 fail:
1063 	aprint_error_dev(sc->sc_dev, "failed to set "
1064 	    "frequency to %u (err %d)\n", freq, rv);
1065 
1066 	mutex_enter(&sc->sc_mtx);
1067 	sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
1068 	mutex_exit(&sc->sc_mtx);
1069 
1070 	return rv;
1071 }
1072