1 /* $NetBSD: acpi_cpu_cstate.c,v 1.59 2012/02/25 17:22:52 jruoho Exp $ */ 2 3 /*- 4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen@iki.fi> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 #include <sys/cdefs.h> 30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.59 2012/02/25 17:22:52 jruoho Exp $"); 31 32 #include <sys/param.h> 33 #include <sys/cpu.h> 34 #include <sys/device.h> 35 #include <sys/kernel.h> 36 #include <sys/mutex.h> 37 #include <sys/timetc.h> 38 39 #include <dev/acpi/acpireg.h> 40 #include <dev/acpi/acpivar.h> 41 #include <dev/acpi/acpi_cpu.h> 42 #include <dev/acpi/acpi_timer.h> 43 44 #include <machine/acpi_machdep.h> 45 46 #define _COMPONENT ACPI_BUS_COMPONENT 47 ACPI_MODULE_NAME ("acpi_cpu_cstate") 48 49 static ACPI_STATUS acpicpu_cstate_cst(struct acpicpu_softc *); 50 static ACPI_STATUS acpicpu_cstate_cst_add(struct acpicpu_softc *, 51 ACPI_OBJECT *); 52 static void acpicpu_cstate_cst_bios(void); 53 static void acpicpu_cstate_memset(struct acpicpu_softc *); 54 static ACPI_STATUS acpicpu_cstate_dep(struct acpicpu_softc *); 55 static void acpicpu_cstate_fadt(struct acpicpu_softc *); 56 static void acpicpu_cstate_quirks(struct acpicpu_softc *); 57 static int acpicpu_cstate_latency(struct acpicpu_softc *); 58 static bool acpicpu_cstate_bm_check(void); 59 static void acpicpu_cstate_idle_enter(struct acpicpu_softc *,int); 60 61 extern struct acpicpu_softc **acpicpu_sc; 62 63 /* 64 * XXX: The local APIC timer (as well as TSC) is typically stopped in C3. 65 * For now, we cannot but disable C3. But there appears to be timer- 66 * related interrupt issues also in C2. The only entirely safe option 67 * at the moment is to use C1. 68 */ 69 #ifdef ACPICPU_ENABLE_C3 70 static int cs_state_max = ACPI_STATE_C3; 71 #else 72 static int cs_state_max = ACPI_STATE_C1; 73 #endif 74 75 void 76 acpicpu_cstate_attach(device_t self) 77 { 78 struct acpicpu_softc *sc = device_private(self); 79 ACPI_STATUS rv; 80 81 /* 82 * Either use the preferred _CST or resort to FADT. 83 */ 84 rv = acpicpu_cstate_cst(sc); 85 86 switch (rv) { 87 88 case AE_OK: 89 acpicpu_cstate_cst_bios(); 90 break; 91 92 default: 93 sc->sc_flags |= ACPICPU_FLAG_C_FADT; 94 acpicpu_cstate_fadt(sc); 95 break; 96 } 97 98 /* 99 * Query the optional _CSD. 100 */ 101 rv = acpicpu_cstate_dep(sc); 102 103 if (ACPI_SUCCESS(rv)) 104 sc->sc_flags |= ACPICPU_FLAG_C_DEP; 105 106 sc->sc_flags |= ACPICPU_FLAG_C; 107 108 acpicpu_cstate_quirks(sc); 109 } 110 111 void 112 acpicpu_cstate_detach(device_t self) 113 { 114 struct acpicpu_softc *sc = device_private(self); 115 116 if ((sc->sc_flags & ACPICPU_FLAG_C) == 0) 117 return; 118 119 (void)acpicpu_md_cstate_stop(); 120 121 sc->sc_flags &= ~ACPICPU_FLAG_C; 122 } 123 124 void 125 acpicpu_cstate_start(device_t self) 126 { 127 struct acpicpu_softc *sc = device_private(self); 128 129 (void)acpicpu_md_cstate_start(sc); 130 } 131 132 void 133 acpicpu_cstate_suspend(void *aux) 134 { 135 /* Nothing. */ 136 } 137 138 void 139 acpicpu_cstate_resume(void *aux) 140 { 141 acpicpu_cstate_callback(aux); 142 } 143 144 void 145 acpicpu_cstate_callback(void *aux) 146 { 147 struct acpicpu_softc *sc; 148 device_t self = aux; 149 150 sc = device_private(self); 151 152 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0) 153 return; 154 155 mutex_enter(&sc->sc_mtx); 156 (void)acpicpu_cstate_cst(sc); 157 mutex_exit(&sc->sc_mtx); 158 } 159 160 static ACPI_STATUS 161 acpicpu_cstate_cst(struct acpicpu_softc *sc) 162 { 163 struct acpicpu_cstate *cs = sc->sc_cstate; 164 ACPI_OBJECT *elm, *obj; 165 ACPI_BUFFER buf; 166 ACPI_STATUS rv; 167 uint32_t i, n; 168 uint8_t count; 169 170 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf); 171 172 if (ACPI_FAILURE(rv)) 173 return rv; 174 175 obj = buf.Pointer; 176 177 if (obj->Type != ACPI_TYPE_PACKAGE) { 178 rv = AE_TYPE; 179 goto out; 180 } 181 182 if (obj->Package.Count < 2) { 183 rv = AE_LIMIT; 184 goto out; 185 } 186 187 elm = obj->Package.Elements; 188 189 if (elm[0].Type != ACPI_TYPE_INTEGER) { 190 rv = AE_TYPE; 191 goto out; 192 } 193 194 n = elm[0].Integer.Value; 195 196 if (n != obj->Package.Count - 1) { 197 rv = AE_BAD_VALUE; 198 goto out; 199 } 200 201 if (n > ACPI_C_STATES_MAX) { 202 rv = AE_LIMIT; 203 goto out; 204 } 205 206 acpicpu_cstate_memset(sc); 207 208 /* 209 * All x86 processors should support C1 (a.k.a. HALT). 210 */ 211 cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT; 212 213 CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1); 214 CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3); 215 216 for (count = 0, i = 1; i <= n; i++) { 217 218 elm = &obj->Package.Elements[i]; 219 rv = acpicpu_cstate_cst_add(sc, elm); 220 221 if (ACPI_SUCCESS(rv)) 222 count++; 223 } 224 225 rv = (count != 0) ? AE_OK : AE_NOT_EXIST; 226 227 out: 228 if (buf.Pointer != NULL) 229 ACPI_FREE(buf.Pointer); 230 231 return rv; 232 } 233 234 static ACPI_STATUS 235 acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm) 236 { 237 struct acpicpu_cstate *cs = sc->sc_cstate; 238 struct acpicpu_cstate state; 239 struct acpicpu_reg *reg; 240 ACPI_STATUS rv = AE_OK; 241 ACPI_OBJECT *obj; 242 uint32_t type; 243 244 (void)memset(&state, 0, sizeof(*cs)); 245 246 if (elm->Type != ACPI_TYPE_PACKAGE) { 247 rv = AE_TYPE; 248 goto out; 249 } 250 251 if (elm->Package.Count != 4) { 252 rv = AE_LIMIT; 253 goto out; 254 } 255 256 /* 257 * Type. 258 */ 259 obj = &elm->Package.Elements[1]; 260 261 if (obj->Type != ACPI_TYPE_INTEGER) { 262 rv = AE_TYPE; 263 goto out; 264 } 265 266 type = obj->Integer.Value; 267 268 if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) { 269 rv = AE_TYPE; 270 goto out; 271 } 272 273 /* 274 * Latency. 275 */ 276 obj = &elm->Package.Elements[2]; 277 278 if (obj->Type != ACPI_TYPE_INTEGER) { 279 rv = AE_TYPE; 280 goto out; 281 } 282 283 state.cs_latency = obj->Integer.Value; 284 285 /* 286 * Power. 287 */ 288 obj = &elm->Package.Elements[3]; 289 290 if (obj->Type != ACPI_TYPE_INTEGER) { 291 rv = AE_TYPE; 292 goto out; 293 } 294 295 state.cs_power = obj->Integer.Value; 296 297 /* 298 * Register. 299 */ 300 obj = &elm->Package.Elements[0]; 301 302 if (obj->Type != ACPI_TYPE_BUFFER) { 303 rv = AE_TYPE; 304 goto out; 305 } 306 307 CTASSERT(sizeof(struct acpicpu_reg) == 15); 308 309 if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) { 310 rv = AE_LIMIT; 311 goto out; 312 } 313 314 reg = (struct acpicpu_reg *)obj->Buffer.Pointer; 315 316 switch (reg->reg_spaceid) { 317 318 case ACPI_ADR_SPACE_SYSTEM_IO: 319 state.cs_method = ACPICPU_C_STATE_SYSIO; 320 321 if (reg->reg_addr == 0) { 322 rv = AE_AML_ILLEGAL_ADDRESS; 323 goto out; 324 } 325 326 if (reg->reg_bitwidth != 8) { 327 rv = AE_AML_BAD_RESOURCE_LENGTH; 328 goto out; 329 } 330 331 state.cs_addr = reg->reg_addr; 332 break; 333 334 case ACPI_ADR_SPACE_FIXED_HARDWARE: 335 state.cs_method = ACPICPU_C_STATE_FFH; 336 337 switch (type) { 338 339 case ACPI_STATE_C1: 340 341 /* 342 * If ACPI wants native access (FFH), but the 343 * MD code does not support MONITOR/MWAIT, use 344 * HLT for C1 and error out for higher C-states. 345 */ 346 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) 347 state.cs_method = ACPICPU_C_STATE_HALT; 348 349 break; 350 351 case ACPI_STATE_C3: /* FALLTHROUGH */ 352 state.cs_flags = ACPICPU_FLAG_C_BM_STS; 353 354 default: 355 356 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) { 357 rv = AE_SUPPORT; 358 goto out; 359 } 360 } 361 362 if (sc->sc_cap != 0) { 363 364 /* 365 * The _CST FFH GAS encoding may contain 366 * additional hints on Intel processors. 367 * Use these to determine whether we can 368 * avoid the bus master activity check. 369 */ 370 if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0) 371 state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS; 372 } 373 374 break; 375 376 default: 377 rv = AE_AML_INVALID_SPACE_ID; 378 goto out; 379 } 380 381 cs[type].cs_addr = state.cs_addr; 382 cs[type].cs_power = state.cs_power; 383 cs[type].cs_flags = state.cs_flags; 384 cs[type].cs_method = state.cs_method; 385 cs[type].cs_latency = state.cs_latency; 386 387 out: 388 if (ACPI_FAILURE(rv)) 389 aprint_error_dev(sc->sc_dev, "failed to add " 390 "C-state: %s\n", AcpiFormatException(rv)); 391 392 return rv; 393 } 394 395 static void 396 acpicpu_cstate_cst_bios(void) 397 { 398 const uint8_t val = AcpiGbl_FADT.CstControl; 399 const uint32_t addr = AcpiGbl_FADT.SmiCommand; 400 401 if (addr == 0 || val == 0) 402 return; 403 404 (void)AcpiOsWritePort(addr, val, 8); 405 } 406 407 static void 408 acpicpu_cstate_memset(struct acpicpu_softc *sc) 409 { 410 uint8_t i = 0; 411 412 while (i < __arraycount(sc->sc_cstate)) { 413 414 sc->sc_cstate[i].cs_addr = 0; 415 sc->sc_cstate[i].cs_power = 0; 416 sc->sc_cstate[i].cs_flags = 0; 417 sc->sc_cstate[i].cs_method = 0; 418 sc->sc_cstate[i].cs_latency = 0; 419 420 i++; 421 } 422 } 423 424 static ACPI_STATUS 425 acpicpu_cstate_dep(struct acpicpu_softc *sc) 426 { 427 ACPI_OBJECT *elm, *obj; 428 ACPI_BUFFER buf; 429 ACPI_STATUS rv; 430 uint32_t val; 431 uint8_t i, n; 432 433 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CSD", &buf); 434 435 if (ACPI_FAILURE(rv)) 436 goto out; 437 438 obj = buf.Pointer; 439 440 if (obj->Type != ACPI_TYPE_PACKAGE) { 441 rv = AE_TYPE; 442 goto out; 443 } 444 445 if (obj->Package.Count != 1) { 446 rv = AE_LIMIT; 447 goto out; 448 } 449 450 elm = &obj->Package.Elements[0]; 451 452 if (obj->Type != ACPI_TYPE_PACKAGE) { 453 rv = AE_TYPE; 454 goto out; 455 } 456 457 n = elm->Package.Count; 458 459 if (n != 6) { 460 rv = AE_LIMIT; 461 goto out; 462 } 463 464 elm = elm->Package.Elements; 465 466 for (i = 0; i < n; i++) { 467 468 if (elm[i].Type != ACPI_TYPE_INTEGER) { 469 rv = AE_TYPE; 470 goto out; 471 } 472 473 if (elm[i].Integer.Value > UINT32_MAX) { 474 rv = AE_AML_NUMERIC_OVERFLOW; 475 goto out; 476 } 477 } 478 479 val = elm[1].Integer.Value; 480 481 if (val != 0) 482 aprint_debug_dev(sc->sc_dev, "invalid revision in _CSD\n"); 483 484 val = elm[3].Integer.Value; 485 486 if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) { 487 rv = AE_AML_BAD_RESOURCE_VALUE; 488 goto out; 489 } 490 491 val = elm[4].Integer.Value; 492 493 if (val > sc->sc_ncpus) { 494 rv = AE_BAD_VALUE; 495 goto out; 496 } 497 498 sc->sc_cstate_dep.dep_domain = elm[2].Integer.Value; 499 sc->sc_cstate_dep.dep_type = elm[3].Integer.Value; 500 sc->sc_cstate_dep.dep_ncpus = elm[4].Integer.Value; 501 sc->sc_cstate_dep.dep_index = elm[5].Integer.Value; 502 503 out: 504 if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND) 505 aprint_debug_dev(sc->sc_dev, "failed to evaluate " 506 "_CSD: %s\n", AcpiFormatException(rv)); 507 508 if (buf.Pointer != NULL) 509 ACPI_FREE(buf.Pointer); 510 511 return rv; 512 } 513 514 static void 515 acpicpu_cstate_fadt(struct acpicpu_softc *sc) 516 { 517 struct acpicpu_cstate *cs = sc->sc_cstate; 518 519 acpicpu_cstate_memset(sc); 520 521 /* 522 * All x86 processors should support C1 (a.k.a. HALT). 523 */ 524 cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT; 525 526 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) == 0) 527 aprint_debug_dev(sc->sc_dev, "HALT not supported?\n"); 528 529 if (sc->sc_object.ao_pblkaddr == 0) 530 return; 531 532 if (sc->sc_ncpus > 1) { 533 534 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0) 535 return; 536 } 537 538 cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO; 539 cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO; 540 541 cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency; 542 cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency; 543 544 cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4; 545 cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5; 546 547 /* 548 * The P_BLK length should always be 6. If it 549 * is not, reduce functionality accordingly. 550 */ 551 if (sc->sc_object.ao_pblklen < 5) 552 cs[ACPI_STATE_C2].cs_method = 0; 553 554 if (sc->sc_object.ao_pblklen < 6) 555 cs[ACPI_STATE_C3].cs_method = 0; 556 557 /* 558 * Sanity check the latency levels in FADT. Values above 559 * the thresholds may be used to inform that C2 and C3 are 560 * not supported -- AMD family 11h is an example; 561 * 562 * Advanced Micro Devices: BIOS and Kernel Developer's 563 * Guide (BKDG) for AMD Family 11h Processors. Section 564 * 2.4.3, Revision 3.00, July, 2008. 565 */ 566 CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100); 567 CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000); 568 569 if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX) 570 cs[ACPI_STATE_C2].cs_method = 0; 571 572 if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX) 573 cs[ACPI_STATE_C3].cs_method = 0; 574 } 575 576 static void 577 acpicpu_cstate_quirks(struct acpicpu_softc *sc) 578 { 579 const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock; 580 const uint32_t len = AcpiGbl_FADT.Pm2ControlLength; 581 582 /* 583 * Disable C3 for PIIX4. 584 */ 585 if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) { 586 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0; 587 return; 588 } 589 590 /* 591 * Check bus master arbitration. If ARB_DIS 592 * is not available, processor caches must be 593 * flushed before C3 (ACPI 4.0, section 8.2). 594 */ 595 if (reg != 0 && len != 0) { 596 sc->sc_flags |= ACPICPU_FLAG_C_ARB; 597 return; 598 } 599 600 /* 601 * Disable C3 entirely if WBINVD is not present. 602 */ 603 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0) 604 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0; 605 else { 606 /* 607 * If WBINVD is present and functioning properly, 608 * flush all processor caches before entering C3. 609 */ 610 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) 611 sc->sc_flags &= ~ACPICPU_FLAG_C_BM; 612 else 613 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0; 614 } 615 } 616 617 static int 618 acpicpu_cstate_latency(struct acpicpu_softc *sc) 619 { 620 static const uint32_t cs_factor = 3; 621 struct acpicpu_cstate *cs; 622 int i; 623 624 KASSERT(mutex_owned(&sc->sc_mtx) != 0); 625 626 for (i = cs_state_max; i > 0; i--) { 627 628 cs = &sc->sc_cstate[i]; 629 630 if (__predict_false(cs->cs_method == 0)) 631 continue; 632 633 /* 634 * Choose a state if we have previously slept 635 * longer than the worst case latency of the 636 * state times an arbitrary multiplier. 637 */ 638 if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor) 639 return i; 640 } 641 642 return ACPI_STATE_C1; 643 } 644 645 /* 646 * The main idle loop. 647 */ 648 void 649 acpicpu_cstate_idle(void) 650 { 651 struct cpu_info *ci = curcpu(); 652 struct acpicpu_softc *sc; 653 int state; 654 655 KASSERT(acpicpu_sc != NULL); 656 KASSERT(ci->ci_acpiid < maxcpus); 657 658 sc = acpicpu_sc[ci->ci_acpiid]; 659 660 if (__predict_false(sc == NULL)) 661 return; 662 663 KASSERT(ci->ci_ilevel == IPL_NONE); 664 KASSERT((sc->sc_flags & ACPICPU_FLAG_C) != 0); 665 666 if (__predict_false(sc->sc_cold != false)) 667 return; 668 669 if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0)) 670 return; 671 672 state = acpicpu_cstate_latency(sc); 673 mutex_exit(&sc->sc_mtx); 674 675 /* 676 * Apply AMD C1E quirk. 677 */ 678 if ((sc->sc_flags & ACPICPU_FLAG_C_C1E) != 0) 679 acpicpu_md_quirk_c1e(); 680 681 /* 682 * Check for bus master activity. Note that particularly usb(4) 683 * causes high activity, which may prevent the use of C3 states. 684 */ 685 if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) { 686 687 if (acpicpu_cstate_bm_check() != false) 688 state--; 689 690 if (__predict_false(sc->sc_cstate[state].cs_method == 0)) 691 state = ACPI_STATE_C1; 692 } 693 694 KASSERT(state != ACPI_STATE_C0); 695 696 if (state != ACPI_STATE_C3) { 697 acpicpu_cstate_idle_enter(sc, state); 698 return; 699 } 700 701 /* 702 * On all recent (Intel) CPUs caches are shared 703 * by CPUs and bus master control is required to 704 * keep these coherent while in C3. Flushing the 705 * CPU caches is only the last resort. 706 */ 707 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0) 708 ACPI_FLUSH_CPU_CACHE(); 709 710 /* 711 * Allow the bus master to request that any given 712 * CPU should return immediately to C0 from C3. 713 */ 714 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0) 715 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1); 716 717 /* 718 * It may be necessary to disable bus master arbitration 719 * to ensure that bus master cycles do not occur while 720 * sleeping in C3 (see ACPI 4.0, section 8.1.4). 721 */ 722 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0) 723 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1); 724 725 acpicpu_cstate_idle_enter(sc, state); 726 727 /* 728 * Disable bus master wake and re-enable the arbiter. 729 */ 730 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0) 731 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0); 732 733 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0) 734 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0); 735 } 736 737 static void 738 acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state) 739 { 740 struct acpicpu_cstate *cs = &sc->sc_cstate[state]; 741 uint32_t end, start, val; 742 743 start = acpitimer_read_fast(NULL); 744 745 switch (cs->cs_method) { 746 747 case ACPICPU_C_STATE_FFH: 748 case ACPICPU_C_STATE_HALT: 749 acpicpu_md_cstate_enter(cs->cs_method, state); 750 break; 751 752 case ACPICPU_C_STATE_SYSIO: 753 (void)AcpiOsReadPort(cs->cs_addr, &val, 8); 754 break; 755 } 756 757 cs->cs_evcnt.ev_count++; 758 end = acpitimer_read_fast(NULL); 759 sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000; 760 } 761 762 static bool 763 acpicpu_cstate_bm_check(void) 764 { 765 uint32_t val = 0; 766 ACPI_STATUS rv; 767 768 rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val); 769 770 if (ACPI_FAILURE(rv) || val == 0) 771 return false; 772 773 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1); 774 775 return true; 776 } 777