xref: /netbsd-src/sys/dev/acpi/acpi_cpu_cstate.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /* $NetBSD: acpi_cpu_cstate.c,v 1.59 2012/02/25 17:22:52 jruoho Exp $ */
2 
3 /*-
4  * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen@iki.fi>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.59 2012/02/25 17:22:52 jruoho Exp $");
31 
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/device.h>
35 #include <sys/kernel.h>
36 #include <sys/mutex.h>
37 #include <sys/timetc.h>
38 
39 #include <dev/acpi/acpireg.h>
40 #include <dev/acpi/acpivar.h>
41 #include <dev/acpi/acpi_cpu.h>
42 #include <dev/acpi/acpi_timer.h>
43 
44 #include <machine/acpi_machdep.h>
45 
46 #define _COMPONENT	 ACPI_BUS_COMPONENT
47 ACPI_MODULE_NAME	 ("acpi_cpu_cstate")
48 
49 static ACPI_STATUS	 acpicpu_cstate_cst(struct acpicpu_softc *);
50 static ACPI_STATUS	 acpicpu_cstate_cst_add(struct acpicpu_softc *,
51 						ACPI_OBJECT *);
52 static void		 acpicpu_cstate_cst_bios(void);
53 static void		 acpicpu_cstate_memset(struct acpicpu_softc *);
54 static ACPI_STATUS	 acpicpu_cstate_dep(struct acpicpu_softc *);
55 static void		 acpicpu_cstate_fadt(struct acpicpu_softc *);
56 static void		 acpicpu_cstate_quirks(struct acpicpu_softc *);
57 static int		 acpicpu_cstate_latency(struct acpicpu_softc *);
58 static bool		 acpicpu_cstate_bm_check(void);
59 static void		 acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
60 
61 extern struct acpicpu_softc **acpicpu_sc;
62 
63 /*
64  * XXX:	The local APIC timer (as well as TSC) is typically stopped in C3.
65  *	For now, we cannot but disable C3. But there appears to be timer-
66  *	related interrupt issues also in C2. The only entirely safe option
67  *	at the moment is to use C1.
68  */
69 #ifdef ACPICPU_ENABLE_C3
70 static int cs_state_max = ACPI_STATE_C3;
71 #else
72 static int cs_state_max = ACPI_STATE_C1;
73 #endif
74 
75 void
76 acpicpu_cstate_attach(device_t self)
77 {
78 	struct acpicpu_softc *sc = device_private(self);
79 	ACPI_STATUS rv;
80 
81 	/*
82 	 * Either use the preferred _CST or resort to FADT.
83 	 */
84 	rv = acpicpu_cstate_cst(sc);
85 
86 	switch (rv) {
87 
88 	case AE_OK:
89 		acpicpu_cstate_cst_bios();
90 		break;
91 
92 	default:
93 		sc->sc_flags |= ACPICPU_FLAG_C_FADT;
94 		acpicpu_cstate_fadt(sc);
95 		break;
96 	}
97 
98 	/*
99 	 * Query the optional _CSD.
100 	 */
101 	rv = acpicpu_cstate_dep(sc);
102 
103 	if (ACPI_SUCCESS(rv))
104 		sc->sc_flags |= ACPICPU_FLAG_C_DEP;
105 
106 	sc->sc_flags |= ACPICPU_FLAG_C;
107 
108 	acpicpu_cstate_quirks(sc);
109 }
110 
111 void
112 acpicpu_cstate_detach(device_t self)
113 {
114 	struct acpicpu_softc *sc = device_private(self);
115 
116 	if ((sc->sc_flags & ACPICPU_FLAG_C) == 0)
117 		return;
118 
119 	(void)acpicpu_md_cstate_stop();
120 
121 	sc->sc_flags &= ~ACPICPU_FLAG_C;
122 }
123 
124 void
125 acpicpu_cstate_start(device_t self)
126 {
127 	struct acpicpu_softc *sc = device_private(self);
128 
129 	(void)acpicpu_md_cstate_start(sc);
130 }
131 
132 void
133 acpicpu_cstate_suspend(void *aux)
134 {
135 	/* Nothing. */
136 }
137 
138 void
139 acpicpu_cstate_resume(void *aux)
140 {
141 	acpicpu_cstate_callback(aux);
142 }
143 
144 void
145 acpicpu_cstate_callback(void *aux)
146 {
147 	struct acpicpu_softc *sc;
148 	device_t self = aux;
149 
150 	sc = device_private(self);
151 
152 	if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
153 		return;
154 
155 	mutex_enter(&sc->sc_mtx);
156 	(void)acpicpu_cstate_cst(sc);
157 	mutex_exit(&sc->sc_mtx);
158 }
159 
160 static ACPI_STATUS
161 acpicpu_cstate_cst(struct acpicpu_softc *sc)
162 {
163 	struct acpicpu_cstate *cs = sc->sc_cstate;
164 	ACPI_OBJECT *elm, *obj;
165 	ACPI_BUFFER buf;
166 	ACPI_STATUS rv;
167 	uint32_t i, n;
168 	uint8_t count;
169 
170 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
171 
172 	if (ACPI_FAILURE(rv))
173 		return rv;
174 
175 	obj = buf.Pointer;
176 
177 	if (obj->Type != ACPI_TYPE_PACKAGE) {
178 		rv = AE_TYPE;
179 		goto out;
180 	}
181 
182 	if (obj->Package.Count < 2) {
183 		rv = AE_LIMIT;
184 		goto out;
185 	}
186 
187 	elm = obj->Package.Elements;
188 
189 	if (elm[0].Type != ACPI_TYPE_INTEGER) {
190 		rv = AE_TYPE;
191 		goto out;
192 	}
193 
194 	n = elm[0].Integer.Value;
195 
196 	if (n != obj->Package.Count - 1) {
197 		rv = AE_BAD_VALUE;
198 		goto out;
199 	}
200 
201 	if (n > ACPI_C_STATES_MAX) {
202 		rv = AE_LIMIT;
203 		goto out;
204 	}
205 
206 	acpicpu_cstate_memset(sc);
207 
208 	/*
209 	 * All x86 processors should support C1 (a.k.a. HALT).
210 	 */
211 	cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
212 
213 	CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
214 	CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
215 
216 	for (count = 0, i = 1; i <= n; i++) {
217 
218 		elm = &obj->Package.Elements[i];
219 		rv = acpicpu_cstate_cst_add(sc, elm);
220 
221 		if (ACPI_SUCCESS(rv))
222 			count++;
223 	}
224 
225 	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
226 
227 out:
228 	if (buf.Pointer != NULL)
229 		ACPI_FREE(buf.Pointer);
230 
231 	return rv;
232 }
233 
234 static ACPI_STATUS
235 acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm)
236 {
237 	struct acpicpu_cstate *cs = sc->sc_cstate;
238 	struct acpicpu_cstate state;
239 	struct acpicpu_reg *reg;
240 	ACPI_STATUS rv = AE_OK;
241 	ACPI_OBJECT *obj;
242 	uint32_t type;
243 
244 	(void)memset(&state, 0, sizeof(*cs));
245 
246 	if (elm->Type != ACPI_TYPE_PACKAGE) {
247 		rv = AE_TYPE;
248 		goto out;
249 	}
250 
251 	if (elm->Package.Count != 4) {
252 		rv = AE_LIMIT;
253 		goto out;
254 	}
255 
256 	/*
257 	 * Type.
258 	 */
259 	obj = &elm->Package.Elements[1];
260 
261 	if (obj->Type != ACPI_TYPE_INTEGER) {
262 		rv = AE_TYPE;
263 		goto out;
264 	}
265 
266 	type = obj->Integer.Value;
267 
268 	if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
269 		rv = AE_TYPE;
270 		goto out;
271 	}
272 
273 	/*
274 	 * Latency.
275 	 */
276 	obj = &elm->Package.Elements[2];
277 
278 	if (obj->Type != ACPI_TYPE_INTEGER) {
279 		rv = AE_TYPE;
280 		goto out;
281 	}
282 
283 	state.cs_latency = obj->Integer.Value;
284 
285 	/*
286 	 * Power.
287 	 */
288 	obj = &elm->Package.Elements[3];
289 
290 	if (obj->Type != ACPI_TYPE_INTEGER) {
291 		rv = AE_TYPE;
292 		goto out;
293 	}
294 
295 	state.cs_power = obj->Integer.Value;
296 
297 	/*
298 	 * Register.
299 	 */
300 	obj = &elm->Package.Elements[0];
301 
302 	if (obj->Type != ACPI_TYPE_BUFFER) {
303 		rv = AE_TYPE;
304 		goto out;
305 	}
306 
307 	CTASSERT(sizeof(struct acpicpu_reg) == 15);
308 
309 	if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
310 		rv = AE_LIMIT;
311 		goto out;
312 	}
313 
314 	reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
315 
316 	switch (reg->reg_spaceid) {
317 
318 	case ACPI_ADR_SPACE_SYSTEM_IO:
319 		state.cs_method = ACPICPU_C_STATE_SYSIO;
320 
321 		if (reg->reg_addr == 0) {
322 			rv = AE_AML_ILLEGAL_ADDRESS;
323 			goto out;
324 		}
325 
326 		if (reg->reg_bitwidth != 8) {
327 			rv = AE_AML_BAD_RESOURCE_LENGTH;
328 			goto out;
329 		}
330 
331 		state.cs_addr = reg->reg_addr;
332 		break;
333 
334 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
335 		state.cs_method = ACPICPU_C_STATE_FFH;
336 
337 		switch (type) {
338 
339 		case ACPI_STATE_C1:
340 
341 			/*
342 			 * If ACPI wants native access (FFH), but the
343 			 * MD code does not support MONITOR/MWAIT, use
344 			 * HLT for C1 and error out for higher C-states.
345 			 */
346 			if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
347 				state.cs_method = ACPICPU_C_STATE_HALT;
348 
349 			break;
350 
351 		case ACPI_STATE_C3: /* FALLTHROUGH */
352 			state.cs_flags = ACPICPU_FLAG_C_BM_STS;
353 
354 		default:
355 
356 			if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
357 				rv = AE_SUPPORT;
358 				goto out;
359 			}
360 		}
361 
362 		if (sc->sc_cap != 0) {
363 
364 			/*
365 			 * The _CST FFH GAS encoding may contain
366 			 * additional hints on Intel processors.
367 			 * Use these to determine whether we can
368 			 * avoid the bus master activity check.
369 			 */
370 			if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
371 				state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
372 		}
373 
374 		break;
375 
376 	default:
377 		rv = AE_AML_INVALID_SPACE_ID;
378 		goto out;
379 	}
380 
381 	cs[type].cs_addr = state.cs_addr;
382 	cs[type].cs_power = state.cs_power;
383 	cs[type].cs_flags = state.cs_flags;
384 	cs[type].cs_method = state.cs_method;
385 	cs[type].cs_latency = state.cs_latency;
386 
387 out:
388 	if (ACPI_FAILURE(rv))
389 		aprint_error_dev(sc->sc_dev, "failed to add "
390 		    "C-state: %s\n", AcpiFormatException(rv));
391 
392 	return rv;
393 }
394 
395 static void
396 acpicpu_cstate_cst_bios(void)
397 {
398 	const uint8_t val = AcpiGbl_FADT.CstControl;
399 	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
400 
401 	if (addr == 0 || val == 0)
402 		return;
403 
404 	(void)AcpiOsWritePort(addr, val, 8);
405 }
406 
407 static void
408 acpicpu_cstate_memset(struct acpicpu_softc *sc)
409 {
410 	uint8_t i = 0;
411 
412 	while (i < __arraycount(sc->sc_cstate)) {
413 
414 		sc->sc_cstate[i].cs_addr = 0;
415 		sc->sc_cstate[i].cs_power = 0;
416 		sc->sc_cstate[i].cs_flags = 0;
417 		sc->sc_cstate[i].cs_method = 0;
418 		sc->sc_cstate[i].cs_latency = 0;
419 
420 		i++;
421 	}
422 }
423 
424 static ACPI_STATUS
425 acpicpu_cstate_dep(struct acpicpu_softc *sc)
426 {
427 	ACPI_OBJECT *elm, *obj;
428 	ACPI_BUFFER buf;
429 	ACPI_STATUS rv;
430 	uint32_t val;
431 	uint8_t i, n;
432 
433 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CSD", &buf);
434 
435 	if (ACPI_FAILURE(rv))
436 		goto out;
437 
438 	obj = buf.Pointer;
439 
440 	if (obj->Type != ACPI_TYPE_PACKAGE) {
441 		rv = AE_TYPE;
442 		goto out;
443 	}
444 
445 	if (obj->Package.Count != 1) {
446 		rv = AE_LIMIT;
447 		goto out;
448 	}
449 
450 	elm = &obj->Package.Elements[0];
451 
452 	if (obj->Type != ACPI_TYPE_PACKAGE) {
453 		rv = AE_TYPE;
454 		goto out;
455 	}
456 
457 	n = elm->Package.Count;
458 
459 	if (n != 6) {
460 		rv = AE_LIMIT;
461 		goto out;
462 	}
463 
464 	elm = elm->Package.Elements;
465 
466 	for (i = 0; i < n; i++) {
467 
468 		if (elm[i].Type != ACPI_TYPE_INTEGER) {
469 			rv = AE_TYPE;
470 			goto out;
471 		}
472 
473 		if (elm[i].Integer.Value > UINT32_MAX) {
474 			rv = AE_AML_NUMERIC_OVERFLOW;
475 			goto out;
476 		}
477 	}
478 
479 	val = elm[1].Integer.Value;
480 
481 	if (val != 0)
482 		aprint_debug_dev(sc->sc_dev, "invalid revision in _CSD\n");
483 
484 	val = elm[3].Integer.Value;
485 
486 	if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) {
487 		rv = AE_AML_BAD_RESOURCE_VALUE;
488 		goto out;
489 	}
490 
491 	val = elm[4].Integer.Value;
492 
493 	if (val > sc->sc_ncpus) {
494 		rv = AE_BAD_VALUE;
495 		goto out;
496 	}
497 
498 	sc->sc_cstate_dep.dep_domain = elm[2].Integer.Value;
499 	sc->sc_cstate_dep.dep_type   = elm[3].Integer.Value;
500 	sc->sc_cstate_dep.dep_ncpus  = elm[4].Integer.Value;
501 	sc->sc_cstate_dep.dep_index  = elm[5].Integer.Value;
502 
503 out:
504 	if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
505 		aprint_debug_dev(sc->sc_dev, "failed to evaluate "
506 		    "_CSD: %s\n", AcpiFormatException(rv));
507 
508 	if (buf.Pointer != NULL)
509 		ACPI_FREE(buf.Pointer);
510 
511 	return rv;
512 }
513 
514 static void
515 acpicpu_cstate_fadt(struct acpicpu_softc *sc)
516 {
517 	struct acpicpu_cstate *cs = sc->sc_cstate;
518 
519 	acpicpu_cstate_memset(sc);
520 
521 	/*
522 	 * All x86 processors should support C1 (a.k.a. HALT).
523 	 */
524 	cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
525 
526 	if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) == 0)
527 		aprint_debug_dev(sc->sc_dev, "HALT not supported?\n");
528 
529 	if (sc->sc_object.ao_pblkaddr == 0)
530 		return;
531 
532 	if (sc->sc_ncpus > 1) {
533 
534 		if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
535 			return;
536 	}
537 
538 	cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
539 	cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
540 
541 	cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
542 	cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
543 
544 	cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
545 	cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
546 
547 	/*
548 	 * The P_BLK length should always be 6. If it
549 	 * is not, reduce functionality accordingly.
550 	 */
551 	if (sc->sc_object.ao_pblklen < 5)
552 		cs[ACPI_STATE_C2].cs_method = 0;
553 
554 	if (sc->sc_object.ao_pblklen < 6)
555 		cs[ACPI_STATE_C3].cs_method = 0;
556 
557 	/*
558 	 * Sanity check the latency levels in FADT. Values above
559 	 * the thresholds may be used to inform that C2 and C3 are
560 	 * not supported -- AMD family 11h is an example;
561 	 *
562 	 *	Advanced Micro Devices: BIOS and Kernel Developer's
563 	 *	Guide (BKDG) for AMD Family 11h Processors. Section
564 	 *	2.4.3, Revision 3.00, July, 2008.
565 	 */
566 	CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
567 	CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
568 
569 	if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
570 		cs[ACPI_STATE_C2].cs_method = 0;
571 
572 	if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
573 		cs[ACPI_STATE_C3].cs_method = 0;
574 }
575 
576 static void
577 acpicpu_cstate_quirks(struct acpicpu_softc *sc)
578 {
579 	const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
580 	const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
581 
582 	/*
583 	 * Disable C3 for PIIX4.
584 	 */
585 	if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
586 		sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
587 		return;
588 	}
589 
590 	/*
591 	 * Check bus master arbitration. If ARB_DIS
592 	 * is not available, processor caches must be
593 	 * flushed before C3 (ACPI 4.0, section 8.2).
594 	 */
595 	if (reg != 0 && len != 0) {
596 		sc->sc_flags |= ACPICPU_FLAG_C_ARB;
597 		return;
598 	}
599 
600 	/*
601 	 * Disable C3 entirely if WBINVD is not present.
602 	 */
603 	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
604 		sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
605 	else {
606 		/*
607 		 * If WBINVD is present and functioning properly,
608 		 * flush all processor caches before entering C3.
609 		 */
610 		if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
611 			sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
612 		else
613 			sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
614 	}
615 }
616 
617 static int
618 acpicpu_cstate_latency(struct acpicpu_softc *sc)
619 {
620 	static const uint32_t cs_factor = 3;
621 	struct acpicpu_cstate *cs;
622 	int i;
623 
624 	KASSERT(mutex_owned(&sc->sc_mtx) != 0);
625 
626 	for (i = cs_state_max; i > 0; i--) {
627 
628 		cs = &sc->sc_cstate[i];
629 
630 		if (__predict_false(cs->cs_method == 0))
631 			continue;
632 
633 		/*
634 		 * Choose a state if we have previously slept
635 		 * longer than the worst case latency of the
636 		 * state times an arbitrary multiplier.
637 		 */
638 		if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
639 			return i;
640 	}
641 
642 	return ACPI_STATE_C1;
643 }
644 
645 /*
646  * The main idle loop.
647  */
648 void
649 acpicpu_cstate_idle(void)
650 {
651 	struct cpu_info *ci = curcpu();
652 	struct acpicpu_softc *sc;
653 	int state;
654 
655 	KASSERT(acpicpu_sc != NULL);
656 	KASSERT(ci->ci_acpiid < maxcpus);
657 
658 	sc = acpicpu_sc[ci->ci_acpiid];
659 
660 	if (__predict_false(sc == NULL))
661 		return;
662 
663 	KASSERT(ci->ci_ilevel == IPL_NONE);
664 	KASSERT((sc->sc_flags & ACPICPU_FLAG_C) != 0);
665 
666 	if (__predict_false(sc->sc_cold != false))
667 		return;
668 
669 	if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
670 		return;
671 
672 	state = acpicpu_cstate_latency(sc);
673 	mutex_exit(&sc->sc_mtx);
674 
675 	/*
676 	 * Apply AMD C1E quirk.
677 	 */
678 	if ((sc->sc_flags & ACPICPU_FLAG_C_C1E) != 0)
679 		acpicpu_md_quirk_c1e();
680 
681 	/*
682 	 * Check for bus master activity. Note that particularly usb(4)
683 	 * causes high activity, which may prevent the use of C3 states.
684 	 */
685 	if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
686 
687 		if (acpicpu_cstate_bm_check() != false)
688 			state--;
689 
690 		if (__predict_false(sc->sc_cstate[state].cs_method == 0))
691 			state = ACPI_STATE_C1;
692 	}
693 
694 	KASSERT(state != ACPI_STATE_C0);
695 
696 	if (state != ACPI_STATE_C3) {
697 		acpicpu_cstate_idle_enter(sc, state);
698 		return;
699 	}
700 
701 	/*
702 	 * On all recent (Intel) CPUs caches are shared
703 	 * by CPUs and bus master control is required to
704 	 * keep these coherent while in C3. Flushing the
705 	 * CPU caches is only the last resort.
706 	 */
707 	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
708 		ACPI_FLUSH_CPU_CACHE();
709 
710 	/*
711 	 * Allow the bus master to request that any given
712 	 * CPU should return immediately to C0 from C3.
713 	 */
714 	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
715 		(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
716 
717 	/*
718 	 * It may be necessary to disable bus master arbitration
719 	 * to ensure that bus master cycles do not occur while
720 	 * sleeping in C3 (see ACPI 4.0, section 8.1.4).
721 	 */
722 	if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
723 		(void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
724 
725 	acpicpu_cstate_idle_enter(sc, state);
726 
727 	/*
728 	 * Disable bus master wake and re-enable the arbiter.
729 	 */
730 	if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
731 		(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
732 
733 	if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
734 		(void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
735 }
736 
737 static void
738 acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
739 {
740 	struct acpicpu_cstate *cs = &sc->sc_cstate[state];
741 	uint32_t end, start, val;
742 
743 	start = acpitimer_read_fast(NULL);
744 
745 	switch (cs->cs_method) {
746 
747 	case ACPICPU_C_STATE_FFH:
748 	case ACPICPU_C_STATE_HALT:
749 		acpicpu_md_cstate_enter(cs->cs_method, state);
750 		break;
751 
752 	case ACPICPU_C_STATE_SYSIO:
753 		(void)AcpiOsReadPort(cs->cs_addr, &val, 8);
754 		break;
755 	}
756 
757 	cs->cs_evcnt.ev_count++;
758 	end = acpitimer_read_fast(NULL);
759 	sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
760 }
761 
762 static bool
763 acpicpu_cstate_bm_check(void)
764 {
765 	uint32_t val = 0;
766 	ACPI_STATUS rv;
767 
768 	rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
769 
770 	if (ACPI_FAILURE(rv) || val == 0)
771 		return false;
772 
773 	(void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
774 
775 	return true;
776 }
777