xref: /netbsd-src/sys/ddb/db_run.c (revision fdecd6a253f999ae92b139670d9e15cc9df4497c)
1 /*	$NetBSD: db_run.c,v 1.11 1997/06/26 01:18:11 thorpej Exp $	*/
2 
3 /*
4  * Mach Operating System
5  * Copyright (c) 1993-1990 Carnegie Mellon University
6  * All Rights Reserved.
7  *
8  * Permission to use, copy, modify and distribute this software and its
9  * documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
16  * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  *
28  * 	Author: David B. Golub, Carnegie Mellon University
29  *	Date:	7/90
30  */
31 
32 /*
33  * Commands to run process.
34  */
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 
38 #include <machine/db_machdep.h>
39 
40 #include <ddb/db_run.h>
41 #include <ddb/db_lex.h>
42 #include <ddb/db_break.h>
43 #include <ddb/db_access.h>
44 #include <ddb/db_watch.h>
45 #include <ddb/db_output.h>
46 #include <ddb/db_sym.h>
47 #include <ddb/db_extern.h>
48 
49 int	db_run_mode;
50 #define	STEP_NONE	0
51 #define	STEP_ONCE	1
52 #define	STEP_RETURN	2
53 #define	STEP_CALLT	3
54 #define	STEP_CONTINUE	4
55 #define STEP_INVISIBLE	5
56 #define	STEP_COUNT	6
57 
58 boolean_t	db_sstep_print;
59 int		db_loop_count;
60 int		db_call_depth;
61 
62 boolean_t
63 db_stop_at_pc(regs, is_breakpoint)
64 	db_regs_t *regs;
65 	boolean_t	*is_breakpoint;
66 {
67 	register db_addr_t	pc;
68 	register db_breakpoint_t bkpt;
69 
70 	db_clear_single_step(regs);
71 	db_clear_breakpoints();
72 	db_clear_watchpoints();
73 	pc = PC_REGS(regs);
74 
75 #ifdef	FIXUP_PC_AFTER_BREAK
76 	if (*is_breakpoint) {
77 	    /*
78 	     * Breakpoint trap.  Fix up the PC if the
79 	     * machine requires it.
80 	     */
81 	    FIXUP_PC_AFTER_BREAK(regs);
82 	    pc = PC_REGS(regs);
83 	}
84 #endif
85 
86 	/*
87 	 * Now check for a breakpoint at this address.
88 	 */
89 	bkpt = db_find_breakpoint_here(pc);
90 	if (bkpt) {
91 	    if (--bkpt->count == 0) {
92 		bkpt->count = bkpt->init_count;
93 		*is_breakpoint = TRUE;
94 		return (TRUE);	/* stop here */
95 	    }
96 	} else if (*is_breakpoint) {
97 		PC_REGS(regs) += BKPT_SIZE;
98 	}
99 
100 	*is_breakpoint = FALSE;
101 
102 	if (db_run_mode == STEP_INVISIBLE) {
103 	    db_run_mode = STEP_CONTINUE;
104 	    return (FALSE);	/* continue */
105 	}
106 	if (db_run_mode == STEP_COUNT) {
107 	    return (FALSE); /* continue */
108 	}
109 	if (db_run_mode == STEP_ONCE) {
110 	    if (--db_loop_count > 0) {
111 		if (db_sstep_print) {
112 		    db_printf("\t\t");
113 		    db_print_loc_and_inst(pc);
114 		    db_printf("\n");
115 		}
116 		return (FALSE);	/* continue */
117 	    }
118 	}
119 	if (db_run_mode == STEP_RETURN) {
120 	    db_expr_t ins = db_get_value(pc, sizeof(int), FALSE);
121 
122 	    /* continue until matching return */
123 
124 	    if (!inst_trap_return(ins) &&
125 		(!inst_return(ins) || --db_call_depth != 0)) {
126 		if (db_sstep_print) {
127 		    if (inst_call(ins) || inst_return(ins)) {
128 			register int i;
129 
130 			db_printf("[after %6d]     ", db_inst_count);
131 			for (i = db_call_depth; --i > 0; )
132 			    db_printf("  ");
133 			db_print_loc_and_inst(pc);
134 			db_printf("\n");
135 		    }
136 		}
137 		if (inst_call(ins))
138 		    db_call_depth++;
139 		return (FALSE);	/* continue */
140 	    }
141 	}
142 	if (db_run_mode == STEP_CALLT) {
143 	    db_expr_t ins = db_get_value(pc, sizeof(int), FALSE);
144 
145 	    /* continue until call or return */
146 
147 	    if (!inst_call(ins) &&
148 		!inst_return(ins) &&
149 		!inst_trap_return(ins)) {
150 		return (FALSE);	/* continue */
151 	    }
152 	}
153 	db_run_mode = STEP_NONE;
154 	return (TRUE);
155 }
156 
157 void
158 db_restart_at_pc(regs, watchpt)
159 	db_regs_t *regs;
160 	boolean_t watchpt;
161 {
162 	register db_addr_t pc = PC_REGS(regs);
163 
164 	if ((db_run_mode == STEP_COUNT) ||
165 	    (db_run_mode == STEP_RETURN) ||
166 	    (db_run_mode == STEP_CALLT)) {
167 	    db_expr_t		ins;
168 
169 	    /*
170 	     * We are about to execute this instruction,
171 	     * so count it now.
172 	     */
173 	    ins = db_get_value(pc, sizeof(int), FALSE);
174 	    db_inst_count++;
175 	    db_load_count += inst_load(ins);
176 	    db_store_count += inst_store(ins);
177 
178 #ifdef SOFTWARE_SSTEP
179 	    /*
180 	     * Account for instructions in delay slots.
181 	     */
182 	    {
183 		db_addr_t brpc;
184 
185 		brpc = next_instr_address(pc, TRUE);
186 		if ((brpc != pc) && (inst_branch(ins) || inst_call(ins))) {
187 		    ins = db_get_value(brpc, sizeof(int), FALSE);
188 		    db_inst_count++;
189 		    db_load_count += inst_load(ins);
190 		    db_store_count += inst_store(ins);
191 		}
192 	    }
193 #endif
194 	}
195 
196 	if (db_run_mode == STEP_CONTINUE) {
197 	    if (watchpt || db_find_breakpoint_here(pc)) {
198 		/*
199 		 * Step over breakpoint/watchpoint.
200 		 */
201 		db_run_mode = STEP_INVISIBLE;
202 		db_set_single_step(regs);
203 	    } else {
204 		db_set_breakpoints();
205 		db_set_watchpoints();
206 	    }
207 	} else {
208 	    db_set_single_step(regs);
209 	}
210 }
211 
212 void
213 db_single_step(regs)
214 	db_regs_t *regs;
215 {
216 	if (db_run_mode == STEP_CONTINUE) {
217 	    db_run_mode = STEP_INVISIBLE;
218 	    db_set_single_step(regs);
219 	}
220 }
221 
222 #ifdef SOFTWARE_SSTEP
223 /*
224  *	Software implementation of single-stepping.
225  *	If your machine does not have a trace mode
226  *	similar to the vax or sun ones you can use
227  *	this implementation, done for the mips.
228  *	Just define the above conditional and provide
229  *	the functions/macros defined below.
230  *
231  * boolean_t inst_branch(int inst)
232  * boolean_t inst_call(int inst)
233  *	returns TRUE if the instruction might branch
234  *
235  * boolean_t inst_unconditional_flow_transfer(int inst)
236  *	returns TRUE if the instruction is an unconditional
237  *	transter of flow (i.e. unconditional branch)
238  *
239  * db_addr_t branch_taken(int inst, db_addr_t pc, db_regs_t *regs)
240  *	returns the target address of the branch
241  *
242  * db_addr_t next_instr_address(db_addr_t pc, boolean_t bd)
243  *	returns the address of the first instruction following the
244  *	one at "pc", which is either in the taken path of the branch
245  *	(bd == TRUE) or not.  This is for machines (e.g. mips) with
246  *	branch delays.
247  *
248  *	A single-step may involve at most 2 breakpoints -
249  *	one for branch-not-taken and one for branch taken.
250  *	If one of these addresses does not already have a breakpoint,
251  *	we allocate a breakpoint and save it here.
252  *	These breakpoints are deleted on return.
253  */
254 db_breakpoint_t	db_not_taken_bkpt = 0;
255 db_breakpoint_t	db_taken_bkpt = 0;
256 
257 void
258 db_set_single_step(regs)
259 	register db_regs_t *regs;
260 {
261 	db_addr_t pc = PC_REGS(regs), brpc;
262 	boolean_t unconditional;
263 	unsigned int inst;
264 
265 	/*
266 	 *	User was stopped at pc, e.g. the instruction
267 	 *	at pc was not executed.
268 	 */
269 	inst = db_get_value(pc, sizeof(int), FALSE);
270 	if (inst_branch(inst) || inst_call(inst)) {
271 		brpc = branch_taken(inst, pc, regs);
272 		if (brpc != pc) {	/* self-branches are hopeless */
273 			db_taken_bkpt = db_set_temp_breakpoint(brpc);
274 		} else
275 			db_taken_bkpt = 0;
276 		pc = next_instr_address(pc, TRUE);
277 	}
278 
279 	/*
280 	 *	Check if this control flow instruction is an
281 	 *	unconditional transfer.
282 	 */
283 	unconditional = inst_unconditional_flow_transfer(inst);
284 
285 	pc = next_instr_address(pc, FALSE);
286 
287 	/*
288 	 *	We only set the sequential breakpoint if previous
289 	 *	instruction was not an unconditional change of flow
290 	 *	control.  If the previous instruction is an
291 	 *	unconditional change of flow control, setting a
292 	 *	breakpoint in the next sequential location may set
293 	 *	a breakpoint in data or in another routine, which
294 	 *	could screw up in either the program or the debugger.
295 	 *	(Consider, for instance, that the next sequential
296 	 *	instruction is the start of a routine needed by the
297 	 *	debugger.)
298 	 */
299 	if (unconditional == FALSE && db_find_breakpoint_here(pc) == 0)
300 		db_not_taken_bkpt = db_set_temp_breakpoint(pc);
301 	else
302 		db_not_taken_bkpt = 0;
303 }
304 
305 void
306 db_clear_single_step(regs)
307 	db_regs_t *regs;
308 {
309 
310 	if (db_taken_bkpt != 0) {
311 	    db_delete_temp_breakpoint(db_taken_bkpt);
312 	    db_taken_bkpt = 0;
313 	}
314 	if (db_not_taken_bkpt != 0) {
315 	    db_delete_temp_breakpoint(db_not_taken_bkpt);
316 	    db_not_taken_bkpt = 0;
317 	}
318 }
319 
320 #endif /* SOFTWARE_SSTEP */
321 
322 extern int	db_cmd_loop_done;
323 
324 /* single-step */
325 /*ARGSUSED*/
326 void
327 db_single_step_cmd(addr, have_addr, count, modif)
328 	db_expr_t	addr;
329 	int		have_addr;
330 	db_expr_t	count;
331 	char *		modif;
332 {
333 	boolean_t	print = FALSE;
334 
335 	if (count == -1)
336 	    count = 1;
337 
338 	if (modif[0] == 'p')
339 	    print = TRUE;
340 
341 	db_run_mode = STEP_ONCE;
342 	db_loop_count = count;
343 	db_sstep_print = print;
344 	db_inst_count = 0;
345 	db_load_count = 0;
346 	db_store_count = 0;
347 
348 	db_cmd_loop_done = 1;
349 }
350 
351 /* trace and print until call/return */
352 /*ARGSUSED*/
353 void
354 db_trace_until_call_cmd(addr, have_addr, count, modif)
355 	db_expr_t	addr;
356 	int		have_addr;
357 	db_expr_t	count;
358 	char *		modif;
359 {
360 	boolean_t	print = FALSE;
361 
362 	if (modif[0] == 'p')
363 	    print = TRUE;
364 
365 	db_run_mode = STEP_CALLT;
366 	db_sstep_print = print;
367 	db_inst_count = 0;
368 	db_load_count = 0;
369 	db_store_count = 0;
370 
371 	db_cmd_loop_done = 1;
372 }
373 
374 /*ARGSUSED*/
375 void
376 db_trace_until_matching_cmd(addr, have_addr, count, modif)
377 	db_expr_t	addr;
378 	int		have_addr;
379 	db_expr_t	count;
380 	char *		modif;
381 {
382 	boolean_t	print = FALSE;
383 
384 	if (modif[0] == 'p')
385 	    print = TRUE;
386 
387 	db_run_mode = STEP_RETURN;
388 	db_call_depth = 1;
389 	db_sstep_print = print;
390 	db_inst_count = 0;
391 	db_load_count = 0;
392 	db_store_count = 0;
393 
394 	db_cmd_loop_done = 1;
395 }
396 
397 /* continue */
398 /*ARGSUSED*/
399 void
400 db_continue_cmd(addr, have_addr, count, modif)
401 	db_expr_t	addr;
402 	int		have_addr;
403 	db_expr_t	count;
404 	char *		modif;
405 {
406 	if (modif[0] == 'c')
407 	    db_run_mode = STEP_COUNT;
408 	else
409 	    db_run_mode = STEP_CONTINUE;
410 	db_inst_count = 0;
411 	db_load_count = 0;
412 	db_store_count = 0;
413 
414 	db_cmd_loop_done = 1;
415 }
416