xref: /netbsd-src/sys/compat/netbsd32/netbsd32_netbsd.c (revision 93f9db1b75d415b78f73ed629beeb86235153473)
1 /*	$NetBSD: netbsd32_netbsd.c,v 1.6 1998/10/01 14:27:57 eeh Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include "opt_ktrace.h"
32 #include "opt_ntp.h"
33 #include "fs_lfs.h"
34 #include "fs_nfs.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/ipc.h>
40 #include <sys/msg.h>
41 #include <sys/sem.h>
42 #include <sys/shm.h>
43 #include <sys/malloc.h>
44 #include <sys/mount.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/socketvar.h>
48 #include <sys/mbuf.h>
49 #include <sys/stat.h>
50 #include <sys/time.h>
51 #include <sys/timex.h>
52 #include <sys/signalvar.h>
53 #include <sys/wait.h>
54 #include <sys/ptrace.h>
55 #include <sys/ktrace.h>
56 #include <sys/trace.h>
57 #include <sys/resourcevar.h>
58 #include <sys/pool.h>
59 #include <sys/vnode.h>
60 #include <sys/file.h>
61 #include <sys/filedesc.h>
62 #include <sys/namei.h>
63 
64 #include <vm/vm.h>
65 #include <sys/syscallargs.h>
66 #include <sys/proc.h>
67 #include <sys/sysctl.h>
68 
69 #include <net/if.h>
70 
71 #include <compat/sparc32/sparc32.h>
72 #include <compat/sparc32/sparc32_syscallargs.h>
73 
74 #include <machine/frame.h>
75 
76 static __inline void sparc32_from_timeval __P((struct timeval *, struct sparc32_timeval *));
77 static __inline void sparc32_to_timeval __P((struct sparc32_timeval *, struct timeval *));
78 static __inline void sparc32_from_itimerval __P((struct itimerval *, struct sparc32_itimerval *));
79 static __inline void sparc32_to_itimerval __P((struct sparc32_itimerval *, struct itimerval *));
80 static __inline void sparc32_to_timespec __P((struct sparc32_timespec *, struct timespec *));
81 static __inline void sparc32_from_timespec __P((struct timespec *, struct sparc32_timespec *));
82 static __inline void sparc32_from_rusage __P((struct rusage *, struct sparc32_rusage *));
83 static __inline void sparc32_to_rusage __P((struct sparc32_rusage *, struct rusage *));
84 static __inline int sparc32_to_iovecin __P((struct sparc32_iovec *, struct iovec *, int));
85 static __inline void sparc32_to_msghdr __P((struct sparc32_msghdr *, struct msghdr *));
86 static __inline void sparc32_from_msghdr __P((struct sparc32_msghdr *, struct msghdr *));
87 static __inline void sparc32_from_statfs __P((struct statfs *, struct sparc32_statfs *));
88 static __inline void sparc32_from_timex __P((struct timex *, struct sparc32_timex *));
89 static __inline void sparc32_to_timex __P((struct sparc32_timex *, struct timex *));
90 static __inline void sparc32_from___stat13 __P((struct stat *, struct sparc32_stat *));
91 static __inline void sparc32_to_ipc_perm __P((struct sparc32_ipc_perm *, struct ipc_perm *));
92 static __inline void sparc32_from_ipc_perm __P((struct ipc_perm *, struct sparc32_ipc_perm *));
93 static __inline void sparc32_to_msg __P((struct sparc32_msg *, struct msg *));
94 static __inline void sparc32_from_msg __P((struct msg *, struct sparc32_msg *));
95 static __inline void sparc32_to_msqid_ds __P((struct sparc32_msqid_ds *, struct msqid_ds *));
96 static __inline void sparc32_from_msqid_ds __P((struct msqid_ds *, struct sparc32_msqid_ds *));
97 static __inline void sparc32_to_shmid_ds __P((struct sparc32_shmid_ds *, struct shmid_ds *));
98 static __inline void sparc32_from_shmid_ds __P((struct shmid_ds *, struct sparc32_shmid_ds *));
99 static __inline void sparc32_to_semid_ds __P((struct  sparc32_semid_ds *, struct  semid_ds *));
100 static __inline void sparc32_from_semid_ds __P((struct  semid_ds *, struct  sparc32_semid_ds *));
101 
102 
103 static int recvit32 __P((struct proc *, int, struct sparc32_msghdr *, struct iovec *, caddr_t,
104 			 register_t *));
105 static int dofilereadv32 __P((struct proc *, int, struct file *, struct sparc32_iovec *,
106 			      int, off_t *, int, register_t *));
107 static int dofilewritev32 __P((struct proc *, int, struct file *, struct sparc32_iovec *,
108 			       int,  off_t *, int, register_t *));
109 static int change_utimes32 __P((struct vnode *, struct timeval *, struct proc *));
110 
111 /* converters for structures that we need */
112 static __inline void
113 sparc32_from_timeval(tv, tv32)
114 	struct timeval *tv;
115 	struct sparc32_timeval *tv32;
116 {
117 
118 	tv32->tv_sec = (sparc32_long)tv->tv_sec;
119 	tv32->tv_usec = (sparc32_long)tv->tv_usec;
120 }
121 
122 static __inline void
123 sparc32_to_timeval(tv32, tv)
124 	struct sparc32_timeval *tv32;
125 	struct timeval *tv;
126 {
127 
128 	tv->tv_sec = (long)tv32->tv_sec;
129 	tv->tv_usec = (long)tv32->tv_usec;
130 }
131 
132 static __inline void
133 sparc32_from_itimerval(itv, itv32)
134 	struct itimerval *itv;
135 	struct sparc32_itimerval *itv32;
136 {
137 
138 	sparc32_from_timeval(&itv->it_interval,
139 			     &itv32->it_interval);
140 	sparc32_from_timeval(&itv->it_value,
141 			     &itv32->it_value);
142 }
143 
144 static __inline void
145 sparc32_to_itimerval(itv32, itv)
146 	struct sparc32_itimerval *itv32;
147 	struct itimerval *itv;
148 {
149 
150 	sparc32_to_timeval(&itv32->it_interval, &itv->it_interval);
151 	sparc32_to_timeval(&itv32->it_value, &itv->it_value);
152 }
153 
154 static __inline void
155 sparc32_to_timespec(s32p, p)
156 	struct sparc32_timespec *s32p;
157 	struct timespec *p;
158 {
159 
160 	p->tv_sec = s32p->tv_sec;
161 	p->tv_nsec = (long)s32p->tv_nsec;
162 }
163 
164 static __inline void
165 sparc32_from_timespec(p, s32p)
166 	struct timespec *p;
167 	struct sparc32_timespec *s32p;
168 {
169 
170 	s32p->tv_sec = p->tv_sec;
171 	s32p->tv_nsec = (sparc32_long)p->tv_nsec;
172 }
173 
174 static __inline void
175 sparc32_from_rusage(rup, ru32p)
176 	struct rusage *rup;
177 	struct sparc32_rusage *ru32p;
178 {
179 
180 	sparc32_from_timeval(&rup->ru_utime, &ru32p->ru_utime);
181 	sparc32_from_timeval(&rup->ru_stime, &ru32p->ru_stime);
182 #define C(var)	ru32p->var = (sparc32_long)rup->var
183 	C(ru_maxrss);
184 	C(ru_ixrss);
185 	C(ru_idrss);
186 	C(ru_isrss);
187 	C(ru_minflt);
188 	C(ru_majflt);
189 	C(ru_nswap);
190 	C(ru_inblock);
191 	C(ru_oublock);
192 	C(ru_msgsnd);
193 	C(ru_msgrcv);
194 	C(ru_nsignals);
195 	C(ru_nvcsw);
196 	C(ru_nivcsw);
197 #undef C
198 }
199 
200 static __inline void
201 sparc32_to_rusage(ru32p, rup)
202 	struct sparc32_rusage *ru32p;
203 	struct rusage *rup;
204 {
205 
206 	sparc32_to_timeval(&ru32p->ru_utime, &rup->ru_utime);
207 	sparc32_to_timeval(&ru32p->ru_stime, &rup->ru_stime);
208 #define C(var)	rup->var = (long)ru32p->var
209 	C(ru_maxrss);
210 	C(ru_ixrss);
211 	C(ru_idrss);
212 	C(ru_isrss);
213 	C(ru_minflt);
214 	C(ru_majflt);
215 	C(ru_nswap);
216 	C(ru_inblock);
217 	C(ru_oublock);
218 	C(ru_msgsnd);
219 	C(ru_msgrcv);
220 	C(ru_nsignals);
221 	C(ru_nvcsw);
222 	C(ru_nivcsw);
223 #undef C
224 }
225 
226 static __inline int
227 sparc32_to_iovecin(iov32p, iovp, len)
228 	struct sparc32_iovec *iov32p;
229 	struct iovec *iovp;
230 	int len;
231 {
232 	int i, error=0;
233 	u_int32_t iov_base;
234 	u_int32_t iov_len;
235 	/*
236 	 * We could allocate an iov32p, do a copyin, and translate
237 	 * each field and then free it all up, or we could copyin
238 	 * each field separately.  I'm doing the latter to reduce
239 	 * the number of MALLOC()s.
240 	 */
241 printf("converting iovec at %p len %lx to %p\n", iov32p, len, iovp);
242 	for (i = 0; i < len; i++, iovp++, iov32p++) {
243 		if ((error = copyin((caddr_t)&iov32p->iov_base, &iov_base, sizeof(iov_base))))
244 		    return (error);
245 		if ((error = copyin((caddr_t)&iov32p->iov_len, &iov_len, sizeof(iov_len))))
246 		    return (error);
247 		iovp->iov_base = (void *)(u_long)iov_base;
248 		iovp->iov_len = (size_t)iov_len;
249 printf("iovec slot %d base %p len %lx\n", i, iovp->iov_base, iovp->iov_len);
250 	}
251 }
252 
253 /* msg_iov must be done separately */
254 static __inline void
255 sparc32_to_msghdr(mhp32, mhp)
256 	struct sparc32_msghdr *mhp32;
257 	struct msghdr *mhp;
258 {
259 
260 	mhp->msg_name = (caddr_t)(u_long)mhp32->msg_name;
261 	mhp->msg_namelen = mhp32->msg_namelen;
262 	mhp->msg_iovlen = (size_t)mhp32->msg_iovlen;
263 	mhp->msg_control = (caddr_t)(u_long)mhp32->msg_control;
264 	mhp->msg_controllen = mhp32->msg_controllen;
265 	mhp->msg_flags = mhp32->msg_flags;
266 }
267 
268 /* msg_iov must be done separately */
269 static __inline void
270 sparc32_from_msghdr(mhp32, mhp)
271 	struct sparc32_msghdr *mhp32;
272 	struct msghdr *mhp;
273 {
274 
275 	mhp32->msg_name = mhp32->msg_name;
276 	mhp32->msg_namelen = mhp32->msg_namelen;
277 	mhp32->msg_iovlen = mhp32->msg_iovlen;
278 	mhp32->msg_control = mhp32->msg_control;
279 	mhp32->msg_controllen = mhp->msg_controllen;
280 	mhp32->msg_flags = mhp->msg_flags;
281 }
282 
283 static __inline void
284 sparc32_from_statfs(sbp, sb32p)
285 	struct statfs *sbp;
286 	struct sparc32_statfs *sb32p;
287 {
288 
289 	sb32p->f_type = sbp->f_type;
290 	sb32p->f_flags = sbp->f_flags;
291 	sb32p->f_bsize = (sparc32_long)sbp->f_bsize;
292 	sb32p->f_iosize = (sparc32_long)sbp->f_iosize;
293 	sb32p->f_blocks = (sparc32_long)sbp->f_blocks;
294 	sb32p->f_bfree = (sparc32_long)sbp->f_bfree;
295 	sb32p->f_bavail = (sparc32_long)sbp->f_bavail;
296 	sb32p->f_files = (sparc32_long)sbp->f_files;
297 	sb32p->f_ffree = (sparc32_long)sbp->f_ffree;
298 	sb32p->f_fsid = sbp->f_fsid;
299 	sb32p->f_owner = sbp->f_owner;
300 	sb32p->f_spare[0] = 0;
301 	sb32p->f_spare[1] = 0;
302 	sb32p->f_spare[2] = 0;
303 	sb32p->f_spare[3] = 0;
304 #if 1
305 	/* May as well do the whole batch in one go */
306 	memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN+MNAMELEN+MNAMELEN);
307 #else
308 	/* If we want to be careful */
309 	memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN);
310 	memcpy(sb32p->f_mntonname, sbp->f_mntonname, MNAMELEN);
311 	memcpy(sb32p->f_mntfromname, sbp->f_mntfromname, MNAMELEN);
312 #endif
313 }
314 
315 static __inline void
316 sparc32_from_timex(txp, tx32p)
317 	struct timex *txp;
318 	struct sparc32_timex *tx32p;
319 {
320 
321 	tx32p->modes = txp->modes;
322 	tx32p->offset = (sparc32_long)txp->offset;
323 	tx32p->freq = (sparc32_long)txp->freq;
324 	tx32p->maxerror = (sparc32_long)txp->maxerror;
325 	tx32p->esterror = (sparc32_long)txp->esterror;
326 	tx32p->status = txp->status;
327 	tx32p->constant = (sparc32_long)txp->constant;
328 	tx32p->precision = (sparc32_long)txp->precision;
329 	tx32p->tolerance = (sparc32_long)txp->tolerance;
330 	tx32p->ppsfreq = (sparc32_long)txp->ppsfreq;
331 	tx32p->jitter = (sparc32_long)txp->jitter;
332 	tx32p->shift = txp->shift;
333 	tx32p->stabil = (sparc32_long)txp->stabil;
334 	tx32p->jitcnt = (sparc32_long)txp->jitcnt;
335 	tx32p->calcnt = (sparc32_long)txp->calcnt;
336 	tx32p->errcnt = (sparc32_long)txp->errcnt;
337 	tx32p->stbcnt = (sparc32_long)txp->stbcnt;
338 }
339 
340 static __inline void
341 sparc32_to_timex(tx32p, txp)
342 	struct sparc32_timex *tx32p;
343 	struct timex *txp;
344 {
345 
346 	txp->modes = tx32p->modes;
347 	txp->offset = (long)tx32p->offset;
348 	txp->freq = (long)tx32p->freq;
349 	txp->maxerror = (long)tx32p->maxerror;
350 	txp->esterror = (long)tx32p->esterror;
351 	txp->status = tx32p->status;
352 	txp->constant = (long)tx32p->constant;
353 	txp->precision = (long)tx32p->precision;
354 	txp->tolerance = (long)tx32p->tolerance;
355 	txp->ppsfreq = (long)tx32p->ppsfreq;
356 	txp->jitter = (long)tx32p->jitter;
357 	txp->shift = tx32p->shift;
358 	txp->stabil = (long)tx32p->stabil;
359 	txp->jitcnt = (long)tx32p->jitcnt;
360 	txp->calcnt = (long)tx32p->calcnt;
361 	txp->errcnt = (long)tx32p->errcnt;
362 	txp->stbcnt = (long)tx32p->stbcnt;
363 }
364 
365 static __inline void
366 sparc32_from___stat13(sbp, sb32p)
367 	struct stat *sbp;
368 	struct sparc32_stat *sb32p;
369 {
370 	sb32p->st_dev = sbp->st_dev;
371 	sb32p->st_ino = sbp->st_ino;
372 	sb32p->st_mode = sbp->st_mode;
373 	sb32p->st_nlink = sbp->st_nlink;
374 	sb32p->st_uid = sbp->st_uid;
375 	sb32p->st_gid = sbp->st_gid;
376 	sb32p->st_rdev = sbp->st_rdev;
377 	if (sbp->st_size < (quad_t)1 << 32)
378 		sb32p->st_size = sbp->st_size;
379 	else
380 		sb32p->st_size = -2;
381 	sb32p->st_atimespec.tv_sec = sbp->st_atimespec.tv_sec;
382 	sb32p->st_atimespec.tv_nsec = (sparc32_long)sbp->st_atimespec.tv_nsec;
383 	sb32p->st_mtimespec.tv_sec = sbp->st_mtimespec.tv_sec;
384 	sb32p->st_mtimespec.tv_nsec = (sparc32_long)sbp->st_mtimespec.tv_nsec;
385 	sb32p->st_ctimespec.tv_sec = sbp->st_ctimespec.tv_sec;
386 	sb32p->st_ctimespec.tv_nsec = (sparc32_long)sbp->st_ctimespec.tv_nsec;
387 	sb32p->st_blksize = sbp->st_blksize;
388 	sb32p->st_blocks = sbp->st_blocks;
389 	sb32p->st_flags = sbp->st_flags;
390 	sb32p->st_gen = sbp->st_gen;
391 }
392 
393 static __inline void
394 sparc32_to_ipc_perm(ip32p, ipp)
395 	struct sparc32_ipc_perm *ip32p;
396 	struct ipc_perm *ipp;
397 {
398 
399 	ipp->cuid = ip32p->cuid;
400 	ipp->cgid = ip32p->cgid;
401 	ipp->uid = ip32p->uid;
402 	ipp->gid = ip32p->gid;
403 	ipp->mode = ip32p->mode;
404 	ipp->seq = ip32p->seq;
405 	ipp->key = (key_t)ip32p->key;
406 }
407 
408 static __inline void
409 sparc32_from_ipc_perm(ipp, ip32p)
410 	struct ipc_perm *ipp;
411 	struct sparc32_ipc_perm *ip32p;
412 {
413 
414 	ip32p->cuid = ipp->cuid;
415 	ip32p->cgid = ipp->cgid;
416 	ip32p->uid = ipp->uid;
417 	ip32p->gid = ipp->gid;
418 	ip32p->mode = ipp->mode;
419 	ip32p->seq = ipp->seq;
420 	ip32p->key = (sparc32_key_t)ipp->key;
421 }
422 
423 static __inline void
424 sparc32_to_msg(m32p, mp)
425 	struct sparc32_msg *m32p;
426 	struct msg *mp;
427 {
428 
429 	mp->msg_next = (struct msg *)(u_long)m32p->msg_next;
430 	mp->msg_type = (long)m32p->msg_type;
431 	mp->msg_ts = m32p->msg_ts;
432 	mp->msg_spot = m32p->msg_spot;
433 }
434 
435 static __inline void
436 sparc32_from_msg(mp, m32p)
437 	struct msg *mp;
438 	struct sparc32_msg *m32p;
439 {
440 
441 	m32p->msg_next = (sparc32_msgp_t)(u_long)mp->msg_next;
442 	m32p->msg_type = (sparc32_long)mp->msg_type;
443 	m32p->msg_ts = mp->msg_ts;
444 	m32p->msg_spot = mp->msg_spot;
445 }
446 
447 static __inline void
448 sparc32_to_msqid_ds(ds32p, dsp)
449 	struct sparc32_msqid_ds *ds32p;
450 	struct msqid_ds *dsp;
451 {
452 
453 	sparc32_to_ipc_perm(&ds32p->msg_perm, &dsp->msg_perm);
454 	sparc32_to_msg((struct sparc32_msg *)(u_long)ds32p->msg_first, dsp->msg_first);
455 	sparc32_to_msg((struct sparc32_msg *)(u_long)ds32p->msg_last, dsp->msg_last);
456 	dsp->msg_cbytes = (u_long)ds32p->msg_cbytes;
457 	dsp->msg_qnum = (u_long)ds32p->msg_qnum;
458 	dsp->msg_qbytes = (u_long)ds32p->msg_qbytes;
459 	dsp->msg_lspid = ds32p->msg_lspid;
460 	dsp->msg_lrpid = ds32p->msg_lrpid;
461 	dsp->msg_rtime = (time_t)ds32p->msg_rtime;
462 	dsp->msg_stime = (time_t)ds32p->msg_stime;
463 	dsp->msg_ctime = (time_t)ds32p->msg_ctime;
464 }
465 
466 static __inline void
467 sparc32_from_msqid_ds(dsp, ds32p)
468 	struct msqid_ds *dsp;
469 	struct sparc32_msqid_ds *ds32p;
470 {
471 
472 	sparc32_from_ipc_perm(&dsp->msg_perm, &ds32p->msg_perm);
473 	sparc32_from_msg(dsp->msg_first, (struct sparc32_msg *)(u_long)ds32p->msg_first);
474 	sparc32_from_msg(dsp->msg_last, (struct sparc32_msg *)(u_long)ds32p->msg_last);
475 	ds32p->msg_cbytes = (sparc32_u_long)dsp->msg_cbytes;
476 	ds32p->msg_qnum = (sparc32_u_long)dsp->msg_qnum;
477 	ds32p->msg_qbytes = (sparc32_u_long)dsp->msg_qbytes;
478 	ds32p->msg_lspid = dsp->msg_lspid;
479 	ds32p->msg_lrpid = dsp->msg_lrpid;
480 	ds32p->msg_rtime = dsp->msg_rtime;
481 	ds32p->msg_stime = dsp->msg_stime;
482 	ds32p->msg_ctime = dsp->msg_ctime;
483 }
484 
485 static __inline void
486 sparc32_to_shmid_ds(ds32p, dsp)
487 	struct sparc32_shmid_ds *ds32p;
488 	struct shmid_ds *dsp;
489 {
490 
491 	sparc32_to_ipc_perm(&ds32p->shm_perm, &dsp->shm_perm);
492 	dsp->shm_segsz = ds32p->shm_segsz;
493 	dsp->shm_lpid = ds32p->shm_lpid;
494 	dsp->shm_cpid = ds32p->shm_cpid;
495 	dsp->shm_nattch = ds32p->shm_nattch;
496 	dsp->shm_atime = (long)ds32p->shm_atime;
497 	dsp->shm_dtime = (long)ds32p->shm_dtime;
498 	dsp->shm_ctime = (long)ds32p->shm_ctime;
499 	dsp->shm_internal = (void *)(u_long)ds32p->shm_internal;
500 }
501 
502 static __inline void
503 sparc32_from_shmid_ds(dsp, ds32p)
504 	struct shmid_ds *dsp;
505 	struct sparc32_shmid_ds *ds32p;
506 {
507 
508 	sparc32_from_ipc_perm(&dsp->shm_perm, &ds32p->shm_perm);
509 	ds32p->shm_segsz = dsp->shm_segsz;
510 	ds32p->shm_lpid = dsp->shm_lpid;
511 	ds32p->shm_cpid = dsp->shm_cpid;
512 	ds32p->shm_nattch = dsp->shm_nattch;
513 	ds32p->shm_atime = (sparc32_long)dsp->shm_atime;
514 	ds32p->shm_dtime = (sparc32_long)dsp->shm_dtime;
515 	ds32p->shm_ctime = (sparc32_long)dsp->shm_ctime;
516 	ds32p->shm_internal = (sparc32_voidp)(u_long)dsp->shm_internal;
517 }
518 
519 static __inline void
520 sparc32_to_semid_ds(s32dsp, dsp)
521 	struct  sparc32_semid_ds *s32dsp;
522 	struct  semid_ds *dsp;
523 {
524 
525 	sparc32_from_ipc_perm(&dsp->sem_perm, &s32dsp->sem_perm);
526 	dsp->sem_base = (struct sem *)(u_long)s32dsp->sem_base;
527 	dsp->sem_nsems = s32dsp->sem_nsems;
528 	dsp->sem_otime = s32dsp->sem_otime;
529 	dsp->sem_ctime = s32dsp->sem_ctime;
530 }
531 
532 static __inline void
533 sparc32_from_semid_ds(dsp, s32dsp)
534 	struct  semid_ds *dsp;
535 	struct  sparc32_semid_ds *s32dsp;
536 {
537 
538 	sparc32_to_ipc_perm(&s32dsp->sem_perm, &dsp->sem_perm);
539 	s32dsp->sem_base = (sparc32_semp_t)(u_long)dsp->sem_base;
540 	s32dsp->sem_nsems = dsp->sem_nsems;
541 	s32dsp->sem_otime = dsp->sem_otime;
542 	s32dsp->sem_ctime = dsp->sem_ctime;
543 }
544 
545 /*
546  * below are all the standard NetBSD system calls, in the 32bit
547  * environment, witht he necessary conversions to 64bit before
548  * calling the real syscall.
549  */
550 
551 
552 int
553 compat_sparc32_exit(p, v, retval)
554 	struct proc *p;
555 	void *v;
556 	register_t *retval;
557 {
558 	struct compat_sparc32_exit_args /* {
559 		syscallarg(int) rval;
560 	} */ *uap = v;
561 	struct sys_exit_args ua;
562 
563 	SPARC32TO64_UAP(rval);
564 	sys_exit(p, &ua, retval);
565 }
566 
567 int
568 compat_sparc32_read(p, v, retval)
569 	struct proc *p;
570 	void *v;
571 	register_t *retval;
572 {
573 	struct compat_sparc32_read_args /* {
574 		syscallarg(int) fd;
575 		syscallarg(sparc32_voidp) buf;
576 		syscallarg(sparc32_size_t) nbyte;
577 	} */ *uap = v;
578 	struct sys_read_args ua;
579 
580 	SPARC32TO64_UAP(fd);
581 	SPARC32TOP_UAP(buf, void *);
582 	SPARC32TOX_UAP(nbyte, size_t);
583 	return sys_read(p, &ua, retval);
584 }
585 
586 int
587 compat_sparc32_write(p, v, retval)
588 	struct proc *p;
589 	void *v;
590 	register_t *retval;
591 {
592 	struct compat_sparc32_write_args /* {
593 		syscallarg(int) fd;
594 		syscallarg(const sparc32_voidp) buf;
595 		syscallarg(sparc32_size_t) nbyte;
596 	} */ *uap = v;
597 	struct sys_write_args ua;
598 
599 	SPARC32TO64_UAP(fd);
600 	SPARC32TOP_UAP(buf, void *);
601 	SPARC32TOX_UAP(nbyte, size_t);
602 	return sys_write(p, &ua, retval);
603 }
604 
605 int
606 compat_sparc32_close(p, v, retval)
607 	struct proc *p;
608 	void *v;
609 	register_t *retval;
610 {
611 	struct compat_sparc32_close_args /* {
612 		syscallarg(int) fd;
613 	} */ *uap = v;
614 	struct sys_close_args ua;
615 
616 	SPARC32TO64_UAP(fd);
617 	return sys_write(p, &ua, retval);
618 }
619 
620 int
621 compat_sparc32_open(p, v, retval)
622 	struct proc *p;
623 	void *v;
624 	register_t *retval;
625 {
626 	struct compat_sparc32_open_args /* {
627 		syscallarg(const sparc32_charp) path;
628 		syscallarg(int) flags;
629 		syscallarg(mode_t) mode;
630 	} */ *uap = v;
631 	struct sys_open_args ua;
632 	caddr_t sg;
633 
634 	SPARC32TOP_UAP(path, const char);
635 	SPARC32TO64_UAP(flags);
636 	SPARC32TO64_UAP(mode);
637 	sg = stackgap_init(p->p_emul);
638 	SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
639 
640 	return (sys_open(p, &ua, retval));
641 }
642 
643 int
644 compat_sparc32_wait4(q, v, retval)
645 	struct proc *q;
646 	void *v;
647 	register_t *retval;
648 {
649 	struct compat_sparc32_wait4_args /* {
650 		syscallarg(int) pid;
651 		syscallarg(sparc32_intp) status;
652 		syscallarg(int) options;
653 		syscallarg(sparc32_rusagep_t) rusage;
654 	} */ *uap = v;
655 	struct sparc32_rusage ru32;
656 	register int nfound;
657 	register struct proc *p, *t;
658 	int status, error;
659 
660 	if (SCARG(uap, pid) == 0)
661 		SCARG(uap, pid) = -q->p_pgid;
662 	if (SCARG(uap, options) &~ (WUNTRACED|WNOHANG))
663 		return (EINVAL);
664 
665 loop:
666 	nfound = 0;
667 	for (p = q->p_children.lh_first; p != 0; p = p->p_sibling.le_next) {
668 		if (SCARG(uap, pid) != WAIT_ANY &&
669 		    p->p_pid != SCARG(uap, pid) &&
670 		    p->p_pgid != -SCARG(uap, pid))
671 			continue;
672 		nfound++;
673 		if (p->p_stat == SZOMB) {
674 			retval[0] = p->p_pid;
675 
676 			if (SCARG(uap, status)) {
677 				status = p->p_xstat;	/* convert to int */
678 				error = copyout((caddr_t)&status,
679 						(caddr_t)(u_long)SCARG(uap, status),
680 						sizeof(status));
681 				if (error)
682 					return (error);
683 			}
684 			if (SCARG(uap, rusage)) {
685 				sparc32_from_rusage(p->p_ru, &ru32);
686 				if ((error = copyout((caddr_t)&ru32,
687 						     (caddr_t)(u_long)SCARG(uap, rusage),
688 						     sizeof(struct sparc32_rusage))))
689 					return (error);
690 			}
691 			/*
692 			 * If we got the child via ptrace(2) or procfs, and
693 			 * the parent is different (meaning the process was
694 			 * attached, rather than run as a child), then we need
695 			 * to give it back to the old parent, and send the
696 			 * parent a SIGCHLD.  The rest of the cleanup will be
697 			 * done when the old parent waits on the child.
698 			 */
699 			if ((p->p_flag & P_TRACED) &&
700 			    p->p_oppid != p->p_pptr->p_pid) {
701 				t = pfind(p->p_oppid);
702 				proc_reparent(p, t ? t : initproc);
703 				p->p_oppid = 0;
704 				p->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
705 				psignal(p->p_pptr, SIGCHLD);
706 				wakeup((caddr_t)p->p_pptr);
707 				return (0);
708 			}
709 			p->p_xstat = 0;
710 			ruadd(&q->p_stats->p_cru, p->p_ru);
711 			pool_put(&rusage_pool, p->p_ru);
712 
713 			/*
714 			 * Finally finished with old proc entry.
715 			 * Unlink it from its process group and free it.
716 			 */
717 			leavepgrp(p);
718 
719 			LIST_REMOVE(p, p_list);	/* off zombproc */
720 
721 			LIST_REMOVE(p, p_sibling);
722 
723 			/*
724 			 * Decrement the count of procs running with this uid.
725 			 */
726 			(void)chgproccnt(p->p_cred->p_ruid, -1);
727 
728 			/*
729 			 * Free up credentials.
730 			 */
731 			if (--p->p_cred->p_refcnt == 0) {
732 				crfree(p->p_cred->pc_ucred);
733 				pool_put(&pcred_pool, p->p_cred);
734 			}
735 
736 			/*
737 			 * Release reference to text vnode
738 			 */
739 			if (p->p_textvp)
740 				vrele(p->p_textvp);
741 
742 			/*
743 			 * Give machine-dependent layer a chance
744 			 * to free anything that cpu_exit couldn't
745 			 * release while still running in process context.
746 			 */
747 			cpu_wait(p);
748 			pool_put(&proc_pool, p);
749 			nprocs--;
750 			return (0);
751 		}
752 		if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
753 		    (p->p_flag & P_TRACED || SCARG(uap, options) & WUNTRACED)) {
754 			p->p_flag |= P_WAITED;
755 			retval[0] = p->p_pid;
756 
757 			if (SCARG(uap, status)) {
758 				status = W_STOPCODE(p->p_xstat);
759 				error = copyout((caddr_t)&status,
760 				    (caddr_t)(u_long)SCARG(uap, status),
761 				    sizeof(status));
762 			} else
763 				error = 0;
764 			return (error);
765 		}
766 	}
767 	if (nfound == 0)
768 		return (ECHILD);
769 	if (SCARG(uap, options) & WNOHANG) {
770 		retval[0] = 0;
771 		return (0);
772 	}
773 	if ((error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) != 0)
774 		return (error);
775 	goto loop;
776 }
777 
778 int
779 compat_sparc32_link(p, v, retval)
780 	struct proc *p;
781 	void *v;
782 	register_t *retval;
783 {
784 	struct compat_sparc32_link_args /* {
785 		syscallarg(const sparc32_charp) path;
786 		syscallarg(const sparc32_charp) link;
787 	} */ *uap = v;
788 	struct sys_link_args ua;
789 
790 	SPARC32TOP_UAP(path, const char);
791 	SPARC32TOP_UAP(link, const char);
792 	return (sys_link(p, &ua, retval));
793 }
794 
795 int
796 compat_sparc32_unlink(p, v, retval)
797 	struct proc *p;
798 	void *v;
799 	register_t *retval;
800 {
801 	struct compat_sparc32_unlink_args /* {
802 		syscallarg(const sparc32_charp) path;
803 	} */ *uap = v;
804 	struct sys_unlink_args ua;
805 
806 	SPARC32TOP_UAP(path, const char);
807 
808 	return (sys_unlink(p, &ua, retval));
809 }
810 
811 int
812 compat_sparc32_chdir(p, v, retval)
813 	struct proc *p;
814 	void *v;
815 	register_t *retval;
816 {
817 	struct compat_sparc32_chdir_args /* {
818 		syscallarg(const sparc32_charp) path;
819 	} */ *uap = v;
820 	struct sys_chdir_args ua;
821 
822 	SPARC32TOP_UAP(path, const char);
823 
824 	return (sys_chdir(p, &ua, retval));
825 }
826 
827 int
828 compat_sparc32_fchdir(p, v, retval)
829 	struct proc *p;
830 	void *v;
831 	register_t *retval;
832 {
833 	struct compat_sparc32_fchdir_args /* {
834 		syscallarg(int) fd;
835 	} */ *uap = v;
836 	struct sys_fchdir_args ua;
837 
838 	SPARC32TO64_UAP(fd);
839 
840 	return (sys_fchdir(p, &ua, retval));
841 }
842 
843 int
844 compat_sparc32_mknod(p, v, retval)
845 	struct proc *p;
846 	void *v;
847 	register_t *retval;
848 {
849 	struct compat_sparc32_mknod_args /* {
850 		syscallarg(const sparc32_charp) path;
851 		syscallarg(mode_t) mode;
852 		syscallarg(dev_t) dev;
853 	} */ *uap = v;
854 	struct sys_mknod_args ua;
855 
856 	SPARC32TOP_UAP(path, const char);
857 	SPARC32TO64_UAP(dev);
858 	SPARC32TO64_UAP(mode);
859 
860 	return (sys_mknod(p, &ua, retval));
861 }
862 
863 int
864 compat_sparc32_chmod(p, v, retval)
865 	struct proc *p;
866 	void *v;
867 	register_t *retval;
868 {
869 	struct compat_sparc32_chmod_args /* {
870 		syscallarg(const sparc32_charp) path;
871 		syscallarg(mode_t) mode;
872 	} */ *uap = v;
873 	struct sys_chmod_args ua;
874 
875 	SPARC32TOP_UAP(path, const char);
876 	SPARC32TO64_UAP(mode);
877 
878 	return (sys_chmod(p, &ua, retval));
879 }
880 
881 int
882 compat_sparc32_chown(p, v, retval)
883 	struct proc *p;
884 	void *v;
885 	register_t *retval;
886 {
887 	struct compat_sparc32_chown_args /* {
888 		syscallarg(const sparc32_charp) path;
889 		syscallarg(uid_t) uid;
890 		syscallarg(gid_t) gid;
891 	} */ *uap = v;
892 	struct sys_chown_args ua;
893 
894 	SPARC32TOP_UAP(path, const char);
895 	SPARC32TO64_UAP(uid);
896 	SPARC32TO64_UAP(gid);
897 
898 	return (sys_chown(p, &ua, retval));
899 }
900 
901 int
902 compat_sparc32_break(p, v, retval)
903 	struct proc *p;
904 	void *v;
905 	register_t *retval;
906 {
907 	struct compat_sparc32_break_args /* {
908 		syscallarg(sparc32_charp) nsize;
909 	} */ *uap = v;
910 	struct sys_obreak_args ua;
911 
912 	SCARG(&ua, nsize) = (char *)(u_long)SCARG(uap, nsize);
913 	SPARC32TOP_UAP(nsize, char);
914 	return (sys_obreak(p, &ua, retval));
915 }
916 
917 int
918 compat_sparc32_getfsstat(p, v, retval)
919 	struct proc *p;
920 	void *v;
921 	register_t *retval;
922 {
923 	struct compat_sparc32_getfsstat_args /* {
924 		syscallarg(sparc32_statfsp_t) buf;
925 		syscallarg(sparc32_long) bufsize;
926 		syscallarg(int) flags;
927 	} */ *uap = v;
928 	struct sys_getfsstat_args ua;
929 	struct statfs sb;
930 	struct sparc32_statfs *sb32p;
931 	int error;
932 
933 	sb32p = (struct sparc32_statfs *)(u_long)SCARG(uap, buf);
934 	if (sb32p)
935 		SCARG(&ua, buf) = &sb;
936 	else
937 		SCARG(&ua, buf) = NULL;
938 	SPARC32TOX_UAP(bufsize, long);
939 	SPARC32TO64_UAP(flags);
940 	error = sys_getfsstat(p, &ua, retval);
941 	if (error)
942 		return (error);
943 
944 	if (sb32p) {
945 		struct sparc32_statfs sb32;
946 		sparc32_from_statfs(&sb, &sb32);
947 		if (copyout(&sb32, sb32p, sizeof(sb32)))
948 			return EFAULT;
949 	}
950 	return (0);
951 }
952 
953 int
954 compat_sparc32_mount(p, v, retval)
955 	struct proc *p;
956 	void *v;
957 	register_t *retval;
958 {
959 	struct compat_sparc32_mount_args /* {
960 		syscallarg(const sparc32_charp) type;
961 		syscallarg(const sparc32_charp) path;
962 		syscallarg(int) flags;
963 		syscallarg(sparc32_voidp) data;
964 	} */ *uap = v;
965 	struct sys_mount_args ua;
966 
967 	SPARC32TOP_UAP(type, const char);
968 	SPARC32TOP_UAP(path, const char);
969 	SPARC32TO64_UAP(flags);
970 	SPARC32TOP_UAP(data, void);
971 	return (sys_mount(p, &ua, retval));
972 }
973 
974 int
975 compat_sparc32_unmount(p, v, retval)
976 	struct proc *p;
977 	void *v;
978 	register_t *retval;
979 {
980 	struct compat_sparc32_unmount_args /* {
981 		syscallarg(const sparc32_charp) path;
982 		syscallarg(int) flags;
983 	} */ *uap = v;
984 	struct sys_unmount_args ua;
985 
986 	SPARC32TOP_UAP(path, const char);
987 	SPARC32TO64_UAP(flags);
988 	return (sys_unmount(p, &ua, retval));
989 }
990 
991 int
992 compat_sparc32_setuid(p, v, retval)
993 	struct proc *p;
994 	void *v;
995 	register_t *retval;
996 {
997 	struct compat_sparc32_setuid_args /* {
998 		syscallarg(uid_t) uid;
999 	} */ *uap = v;
1000 	struct sys_setuid_args ua;
1001 
1002 	SPARC32TO64_UAP(uid);
1003 	return (sys_setuid(p, &ua, retval));
1004 }
1005 
1006 int
1007 compat_sparc32_ptrace(p, v, retval)
1008 	struct proc *p;
1009 	void *v;
1010 	register_t *retval;
1011 {
1012 	struct compat_sparc32_ptrace_args /* {
1013 		syscallarg(int) req;
1014 		syscallarg(pid_t) pid;
1015 		syscallarg(sparc32_caddr_t) addr;
1016 		syscallarg(int) data;
1017 	} */ *uap = v;
1018 	struct sys_ptrace_args ua;
1019 
1020 	SPARC32TO64_UAP(req);
1021 	SPARC32TO64_UAP(pid);
1022 	SPARC32TOX64_UAP(addr, caddr_t);
1023 	SPARC32TO64_UAP(data);
1024 	return (sys_ptrace(p, &ua, retval));
1025 }
1026 
1027 int
1028 compat_sparc32_recvmsg(p, v, retval)
1029 	struct proc *p;
1030 	void *v;
1031 	register_t *retval;
1032 {
1033 	struct compat_sparc32_recvmsg_args /* {
1034 		syscallarg(int) s;
1035 		syscallarg(sparc32_msghdrp_t) msg;
1036 		syscallarg(int) flags;
1037 	} */ *uap = v;
1038 	struct sparc32_msghdr msg;
1039 	struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
1040 	register int error;
1041 
1042 	error = copyin((caddr_t)(u_long)SCARG(uap, msg), (caddr_t)&msg,
1043 		       sizeof(msg));
1044 		/* sparc32_msghdr needs the iov pre-allocated */
1045 	if (error)
1046 		return (error);
1047 	if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1048 		if ((u_int)msg.msg_iovlen > IOV_MAX)
1049 			return (EMSGSIZE);
1050 		MALLOC(iov, struct iovec *,
1051 		       sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1052 		       M_WAITOK);
1053 	} else if ((u_int)msg.msg_iovlen > 0)
1054 		iov = aiov;
1055 	else
1056 		return (EMSGSIZE);
1057 #ifdef COMPAT_OLDSOCK
1058 	msg.msg_flags = SCARG(uap, flags) &~ MSG_COMPAT;
1059 #else
1060 	msg.msg_flags = SCARG(uap, flags);
1061 #endif
1062 	uiov = (struct iovec *)(u_long)msg.msg_iov;
1063 	error = sparc32_to_iovecin((struct sparc32_iovec *)uiov,
1064 				   iov, msg.msg_iovlen);
1065 	if (error)
1066 		goto done;
1067 	if ((error = recvit32(p, SCARG(uap, s), &msg, iov, (caddr_t)0, retval)) == 0) {
1068 		error = copyout((caddr_t)&msg, (caddr_t)(u_long)SCARG(uap, msg),
1069 		    sizeof(msg));
1070 	}
1071 done:
1072 	if (iov != aiov)
1073 		FREE(iov, M_IOV);
1074 	return (error);
1075 }
1076 
1077 int
1078 recvit32(p, s, mp, iov, namelenp, retsize)
1079 	struct proc *p;
1080 	int s;
1081 	struct sparc32_msghdr *mp;
1082 	struct iovec *iov;
1083 	caddr_t namelenp;
1084 	register_t *retsize;
1085 {
1086 	struct file *fp;
1087 	struct uio auio;
1088 	register int i;
1089 	int len, error;
1090 	struct mbuf *from = 0, *control = 0;
1091 	struct socket *so;
1092 #ifdef KTRACE
1093 	struct iovec *ktriov = NULL;
1094 #endif
1095 
1096 	if ((error = getsock(p->p_fd, s, &fp)) != 0)
1097 		return (error);
1098 	auio.uio_iov = (struct iovec *)(u_long)mp->msg_iov;
1099 	auio.uio_iovcnt = mp->msg_iovlen;
1100 	auio.uio_segflg = UIO_USERSPACE;
1101 	auio.uio_rw = UIO_READ;
1102 	auio.uio_procp = p;
1103 	auio.uio_offset = 0;			/* XXX */
1104 	auio.uio_resid = 0;
1105 	for (i = 0; i < mp->msg_iovlen; i++, iov++) {
1106 #if 0
1107 		/* cannot happen iov_len is unsigned */
1108 		if (iov->iov_len < 0)
1109 			return (EINVAL);
1110 #endif
1111 		/*
1112 		 * Reads return ssize_t because -1 is returned on error.
1113 		 * Therefore we must restrict the length to SSIZE_MAX to
1114 		 * avoid garbage return values.
1115 		 */
1116 		auio.uio_resid += iov->iov_len;
1117 		if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX)
1118 			return (EINVAL);
1119 	}
1120 #ifdef KTRACE
1121 	if (KTRPOINT(p, KTR_GENIO)) {
1122 		int iovlen = auio.uio_iovcnt * sizeof(struct iovec);
1123 
1124 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
1125 		memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
1126 	}
1127 #endif
1128 	len = auio.uio_resid;
1129 	so = (struct socket *)fp->f_data;
1130 	error = (*so->so_receive)(so, &from, &auio, NULL,
1131 			  mp->msg_control ? &control : NULL, &mp->msg_flags);
1132 	if (error) {
1133 		if (auio.uio_resid != len && (error == ERESTART ||
1134 		    error == EINTR || error == EWOULDBLOCK))
1135 			error = 0;
1136 	}
1137 #ifdef KTRACE
1138 	if (ktriov != NULL) {
1139 		if (error == 0)
1140 			ktrgenio(p->p_tracep, s, UIO_READ,
1141 				ktriov, len - auio.uio_resid, error);
1142 		FREE(ktriov, M_TEMP);
1143 	}
1144 #endif
1145 	if (error)
1146 		goto out;
1147 	*retsize = len - auio.uio_resid;
1148 	if (mp->msg_name) {
1149 		len = mp->msg_namelen;
1150 		if (len <= 0 || from == 0)
1151 			len = 0;
1152 		else {
1153 #ifdef COMPAT_OLDSOCK
1154 			if (mp->msg_flags & MSG_COMPAT)
1155 				mtod(from, struct osockaddr *)->sa_family =
1156 				    mtod(from, struct sockaddr *)->sa_family;
1157 #endif
1158 			if (len > from->m_len)
1159 				len = from->m_len;
1160 			/* else if len < from->m_len ??? */
1161 			error = copyout(mtod(from, caddr_t),
1162 					(caddr_t)(u_long)mp->msg_name, (unsigned)len);
1163 			if (error)
1164 				goto out;
1165 		}
1166 		mp->msg_namelen = len;
1167 		if (namelenp &&
1168 		    (error = copyout((caddr_t)&len, namelenp, sizeof(int)))) {
1169 #ifdef COMPAT_OLDSOCK
1170 			if (mp->msg_flags & MSG_COMPAT)
1171 				error = 0;	/* old recvfrom didn't check */
1172 			else
1173 #endif
1174 			goto out;
1175 		}
1176 	}
1177 	if (mp->msg_control) {
1178 #ifdef COMPAT_OLDSOCK
1179 		/*
1180 		 * We assume that old recvmsg calls won't receive access
1181 		 * rights and other control info, esp. as control info
1182 		 * is always optional and those options didn't exist in 4.3.
1183 		 * If we receive rights, trim the cmsghdr; anything else
1184 		 * is tossed.
1185 		 */
1186 		if (control && mp->msg_flags & MSG_COMPAT) {
1187 			if (mtod(control, struct cmsghdr *)->cmsg_level !=
1188 			    SOL_SOCKET ||
1189 			    mtod(control, struct cmsghdr *)->cmsg_type !=
1190 			    SCM_RIGHTS) {
1191 				mp->msg_controllen = 0;
1192 				goto out;
1193 			}
1194 			control->m_len -= sizeof(struct cmsghdr);
1195 			control->m_data += sizeof(struct cmsghdr);
1196 		}
1197 #endif
1198 		len = mp->msg_controllen;
1199 		if (len <= 0 || control == 0)
1200 			len = 0;
1201 		else {
1202 			struct mbuf *m = control;
1203 			caddr_t p = (caddr_t)(u_long)mp->msg_control;
1204 
1205 			do {
1206 				i = m->m_len;
1207 				if (len < i) {
1208 					mp->msg_flags |= MSG_CTRUNC;
1209 					i = len;
1210 				}
1211 				error = copyout(mtod(m, caddr_t), p,
1212 				    (unsigned)i);
1213 				if (m->m_next)
1214 					i = ALIGN(i);
1215 				p += i;
1216 				len -= i;
1217 				if (error != 0 || len <= 0)
1218 					break;
1219 			} while ((m = m->m_next) != NULL);
1220 			len = p - (caddr_t)(u_long)mp->msg_control;
1221 		}
1222 		mp->msg_controllen = len;
1223 	}
1224 out:
1225 	if (from)
1226 		m_freem(from);
1227 	if (control)
1228 		m_freem(control);
1229 	return (error);
1230 }
1231 
1232 
1233 int
1234 compat_sparc32_sendmsg(p, v, retval)
1235 	struct proc *p;
1236 	void *v;
1237 	register_t *retval;
1238 {
1239 	struct compat_sparc32_sendmsg_args /* {
1240 		syscallarg(int) s;
1241 		syscallarg(const sparc32_msghdrp_t) msg;
1242 		syscallarg(int) flags;
1243 	} */ *uap = v;
1244 	struct msghdr msg;
1245 	struct sparc32_msghdr msg32;
1246 	struct iovec aiov[UIO_SMALLIOV], *iov;
1247 	int error;
1248 
1249 	error = copyin((caddr_t)(u_long)SCARG(uap, msg),
1250 		       (caddr_t)&msg32, sizeof(msg32));
1251 	if (error)
1252 		return (error);
1253 	sparc32_to_msghdr(&msg32, &msg);
1254 	if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1255 		if ((u_int)msg.msg_iovlen > IOV_MAX)
1256 			return (EMSGSIZE);
1257 		MALLOC(iov, struct iovec *,
1258 		       sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1259 		       M_WAITOK);
1260 	} else if ((u_int)msg.msg_iovlen > 0)
1261 		iov = aiov;
1262 	else
1263 		return (EMSGSIZE);
1264 	error = sparc32_to_iovecin((struct sparc32_iovec *)msg.msg_iov,
1265 				   iov, msg.msg_iovlen);
1266 	if (error)
1267 		goto done;
1268 	msg.msg_iov = iov;
1269 #ifdef COMPAT_OLDSOCK
1270 	msg.msg_flags = 0;
1271 #endif
1272 	/* Luckily we can use this directly */
1273 	error = sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval);
1274 done:
1275 	if (iov != aiov)
1276 		FREE(iov, M_IOV);
1277 	return (error);
1278 }
1279 
1280 int
1281 compat_sparc32_recvfrom(p, v, retval)
1282 	struct proc *p;
1283 	void *v;
1284 	register_t *retval;
1285 {
1286 	struct compat_sparc32_recvfrom_args /* {
1287 		syscallarg(int) s;
1288 		syscallarg(sparc32_voidp) buf;
1289 		syscallarg(sparc32_size_t) len;
1290 		syscallarg(int) flags;
1291 		syscallarg(sparc32_sockaddrp_t) from;
1292 		syscallarg(sparc32_intp) fromlenaddr;
1293 	} */ *uap = v;
1294 	struct sparc32_msghdr msg;
1295 	struct iovec aiov;
1296 	int error;
1297 
1298 	if (SCARG(uap, fromlenaddr)) {
1299 		error = copyin((caddr_t)(u_long)SCARG(uap, fromlenaddr),
1300 			       (caddr_t)&msg.msg_namelen,
1301 			       sizeof(msg.msg_namelen));
1302 		if (error)
1303 			return (error);
1304 	} else
1305 		msg.msg_namelen = 0;
1306 	msg.msg_name = SCARG(uap, from);
1307 	msg.msg_iov = NULL; /* We can't store a real pointer here */
1308 	msg.msg_iovlen = 1;
1309 	aiov.iov_base = (caddr_t)(u_long)SCARG(uap, buf);
1310 	aiov.iov_len = (u_long)SCARG(uap, len);
1311 	msg.msg_control = 0;
1312 	msg.msg_flags = SCARG(uap, flags);
1313 	return (recvit32(p, SCARG(uap, s), &msg, &aiov,
1314 		       (caddr_t)(u_long)SCARG(uap, fromlenaddr), retval));
1315 }
1316 
1317 int
1318 compat_sparc32_sendto(p, v, retval)
1319 	struct proc *p;
1320 	void *v;
1321 	register_t *retval;
1322 {
1323 	struct compat_sparc32_sendto_args /* {
1324 		syscallarg(int) s;
1325 		syscallarg(const sparc32_voidp) buf;
1326 		syscallarg(sparc32_size_t) len;
1327 		syscallarg(int) flags;
1328 		syscallarg(const sparc32_sockaddrp_t) to;
1329 		syscallarg(int) tolen;
1330 	} */ *uap = v;
1331 	struct msghdr msg;
1332 	struct iovec aiov;
1333 
1334 	msg.msg_name = (caddr_t)(u_long)SCARG(uap, to);		/* XXX kills const */
1335 	msg.msg_namelen = SCARG(uap, tolen);
1336 	msg.msg_iov = &aiov;
1337 	msg.msg_iovlen = 1;
1338 	msg.msg_control = 0;
1339 #ifdef COMPAT_OLDSOCK
1340 	msg.msg_flags = 0;
1341 #endif
1342 	aiov.iov_base = (char *)(u_long)SCARG(uap, buf);	/* XXX kills const */
1343 	aiov.iov_len = SCARG(uap, len);
1344 	return (sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval));
1345 }
1346 
1347 int
1348 compat_sparc32_accept(p, v, retval)
1349 	struct proc *p;
1350 	void *v;
1351 	register_t *retval;
1352 {
1353 	struct compat_sparc32_accept_args /* {
1354 		syscallarg(int) s;
1355 		syscallarg(sparc32_sockaddrp_t) name;
1356 		syscallarg(sparc32_intp) anamelen;
1357 	} */ *uap = v;
1358 	struct sys_accept_args ua;
1359 
1360 	SPARC32TO64_UAP(s);
1361 	SPARC32TOP_UAP(name, struct sockaddr);
1362 	SPARC32TOP_UAP(anamelen, int);
1363 	return (sys_accept(p, &ua, retval));
1364 }
1365 
1366 int
1367 compat_sparc32_getpeername(p, v, retval)
1368 	struct proc *p;
1369 	void *v;
1370 	register_t *retval;
1371 {
1372 	struct compat_sparc32_getpeername_args /* {
1373 		syscallarg(int) fdes;
1374 		syscallarg(sparc32_sockaddrp_t) asa;
1375 		syscallarg(sparc32_intp) alen;
1376 	} */ *uap = v;
1377 	struct sys_getpeername_args ua;
1378 
1379 	SPARC32TO64_UAP(fdes);
1380 	SPARC32TOP_UAP(asa, struct sockaddr);
1381 	SPARC32TOP_UAP(alen, int);
1382 /* NB: do the protocol specific sockaddrs need to be converted? */
1383 	return (sys_getpeername(p, &ua, retval));
1384 }
1385 
1386 int
1387 compat_sparc32_getsockname(p, v, retval)
1388 	struct proc *p;
1389 	void *v;
1390 	register_t *retval;
1391 {
1392 	struct compat_sparc32_getsockname_args /* {
1393 		syscallarg(int) fdes;
1394 		syscallarg(sparc32_sockaddrp_t) asa;
1395 		syscallarg(sparc32_intp) alen;
1396 	} */ *uap = v;
1397 	struct sys_getsockname_args ua;
1398 
1399 	SPARC32TO64_UAP(fdes);
1400 	SPARC32TOP_UAP(asa, struct sockaddr);
1401 	SPARC32TOP_UAP(alen, int);
1402 	return (sys_getsockname(p, &ua, retval));
1403 }
1404 
1405 int
1406 compat_sparc32_access(p, v, retval)
1407 	struct proc *p;
1408 	void *v;
1409 	register_t *retval;
1410 {
1411 	struct compat_sparc32_access_args /* {
1412 		syscallarg(const sparc32_charp) path;
1413 		syscallarg(int) flags;
1414 	} */ *uap = v;
1415 	struct sys_access_args ua;
1416 	caddr_t sg;
1417 
1418 	SPARC32TOP_UAP(path, const char);
1419 	SPARC32TO64_UAP(flags);
1420 	sg = stackgap_init(p->p_emul);
1421 	SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1422 
1423 	return (sys_access(p, &ua, retval));
1424 }
1425 
1426 int
1427 compat_sparc32_chflags(p, v, retval)
1428 	struct proc *p;
1429 	void *v;
1430 	register_t *retval;
1431 {
1432 	struct compat_sparc32_chflags_args /* {
1433 		syscallarg(const sparc32_charp) path;
1434 		syscallarg(sparc32_u_long) flags;
1435 	} */ *uap = v;
1436 	struct sys_chflags_args ua;
1437 
1438 	SPARC32TOP_UAP(path, const char);
1439 	SPARC32TO64_UAP(flags);
1440 
1441 	return (sys_chflags(p, &ua, retval));
1442 }
1443 
1444 int
1445 compat_sparc32_fchflags(p, v, retval)
1446 	struct proc *p;
1447 	void *v;
1448 	register_t *retval;
1449 {
1450 	struct compat_sparc32_fchflags_args /* {
1451 		syscallarg(int) fd;
1452 		syscallarg(sparc32_u_long) flags;
1453 	} */ *uap = v;
1454 	struct sys_fchflags_args ua;
1455 
1456 	SPARC32TO64_UAP(fd);
1457 	SPARC32TO64_UAP(flags);
1458 
1459 	return (sys_fchflags(p, &ua, retval));
1460 }
1461 
1462 int
1463 compat_sparc32_kill(p, v, retval)
1464 	struct proc *p;
1465 	void *v;
1466 	register_t *retval;
1467 {
1468 	struct compat_sparc32_kill_args /* {
1469 		syscallarg(int) pid;
1470 		syscallarg(int) signum;
1471 	} */ *uap = v;
1472 	struct sys_kill_args ua;
1473 
1474 	SPARC32TO64_UAP(pid);
1475 	SPARC32TO64_UAP(signum);
1476 
1477 	return (sys_kill(p, &ua, retval));
1478 }
1479 
1480 int
1481 compat_sparc32_dup(p, v, retval)
1482 	struct proc *p;
1483 	void *v;
1484 	register_t *retval;
1485 {
1486 	struct compat_sparc32_dup_args /* {
1487 		syscallarg(int) fd;
1488 	} */ *uap = v;
1489 	struct sys_dup_args ua;
1490 
1491 	SPARC32TO64_UAP(fd);
1492 
1493 	return (sys_dup(p, &ua, retval));
1494 }
1495 
1496 int
1497 compat_sparc32_profil(p, v, retval)
1498 	struct proc *p;
1499 	void *v;
1500 	register_t *retval;
1501 {
1502 	struct compat_sparc32_profil_args /* {
1503 		syscallarg(sparc32_caddr_t) samples;
1504 		syscallarg(sparc32_size_t) size;
1505 		syscallarg(sparc32_u_long) offset;
1506 		syscallarg(u_int) scale;
1507 	} */ *uap = v;
1508 	struct sys_profil_args ua;
1509 
1510 	SPARC32TOX64_UAP(samples, caddr_t);
1511 	SPARC32TOX_UAP(size, size_t);
1512 	SPARC32TOX_UAP(offset, u_long);
1513 	SPARC32TO64_UAP(scale);
1514 	return (sys_profil(p, &ua, retval));
1515 }
1516 
1517 int
1518 compat_sparc32_ktrace(p, v, retval)
1519 	struct proc *p;
1520 	void *v;
1521 	register_t *retval;
1522 {
1523 	struct compat_sparc32_ktrace_args /* {
1524 		syscallarg(const sparc32_charp) fname;
1525 		syscallarg(int) ops;
1526 		syscallarg(int) facs;
1527 		syscallarg(int) pid;
1528 	} */ *uap = v;
1529 	struct sys_ktrace_args ua;
1530 
1531 	SPARC32TOP_UAP(fname, const char);
1532 	SPARC32TO64_UAP(ops);
1533 	SPARC32TO64_UAP(facs);
1534 	SPARC32TO64_UAP(pid);
1535 	return (sys_ktrace(p, &ua, retval));
1536 }
1537 
1538 int
1539 compat_sparc32_sigaction(p, v, retval)
1540 	struct proc *p;
1541 	void *v;
1542 	register_t *retval;
1543 {
1544 	struct compat_sparc32_sigaction_args /* {
1545 		syscallarg(int) signum;
1546 		syscallarg(const sparc32_sigactionp_t) nsa;
1547 		syscallarg(sparc32_sigactionp_t) osa;
1548 	} */ *uap = v;
1549 	struct sigaction nsa, osa;
1550 	struct sparc32_sigaction *sa32p, sa32;
1551 	int error;
1552 
1553 	if (SCARG(uap, nsa)) {
1554 		sa32p = (struct sparc32_sigaction *)(u_long)SCARG(uap, nsa);
1555 		if (copyin(sa32p, &sa32, sizeof(sa32)))
1556 			return EFAULT;
1557 		nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
1558 		nsa.sa_mask = sa32.sa_mask;
1559 		nsa.sa_flags = sa32.sa_flags;
1560 	}
1561 	error = sigaction1(p, SCARG(uap, signum),
1562 			   SCARG(uap, nsa) ? &nsa : 0,
1563 			   SCARG(uap, osa) ? &osa : 0);
1564 
1565 	if (error)
1566 		return (error);
1567 
1568 	if (SCARG(uap, osa)) {
1569 		sa32.sa_handler = (sparc32_sigactionp_t)(u_long)osa.sa_handler;
1570 		sa32.sa_mask = osa.sa_mask;
1571 		sa32.sa_flags = osa.sa_flags;
1572 		sa32p = (struct sparc32_sigaction *)(u_long)SCARG(uap, osa);
1573 		if (copyout(&sa32, sa32p, sizeof(sa32)))
1574 			return EFAULT;
1575 	}
1576 
1577 	return (0);
1578 }
1579 
1580 int
1581 compat_sparc32___getlogin(p, v, retval)
1582 	struct proc *p;
1583 	void *v;
1584 	register_t *retval;
1585 {
1586 	struct compat_sparc32___getlogin_args /* {
1587 		syscallarg(sparc32_charp) namebuf;
1588 		syscallarg(u_int) namelen;
1589 	} */ *uap = v;
1590 	struct sys___getlogin_args ua;
1591 
1592 	SPARC32TOP_UAP(namebuf, char);
1593 	SPARC32TO64_UAP(namelen);
1594 	return (sys___getlogin(p, &ua, retval));
1595 }
1596 
1597 int
1598 compat_sparc32_setlogin(p, v, retval)
1599 	struct proc *p;
1600 	void *v;
1601 	register_t *retval;
1602 {
1603 	struct compat_sparc32_setlogin_args /* {
1604 		syscallarg(const sparc32_charp) namebuf;
1605 	} */ *uap = v;
1606 	struct sys_setlogin_args ua;
1607 
1608 	SPARC32TOP_UAP(namebuf, char);
1609 	return (sys_setlogin(p, &ua, retval));
1610 }
1611 
1612 int
1613 compat_sparc32_acct(p, v, retval)
1614 	struct proc *p;
1615 	void *v;
1616 	register_t *retval;
1617 {
1618 	struct compat_sparc32_acct_args /* {
1619 		syscallarg(const sparc32_charp) path;
1620 	} */ *uap = v;
1621 	struct sys_acct_args ua;
1622 
1623 	SPARC32TOP_UAP(path, const char);
1624 	return (sys_acct(p, &ua, retval));
1625 }
1626 
1627 int
1628 compat_sparc32_revoke(p, v, retval)
1629 	struct proc *p;
1630 	void *v;
1631 	register_t *retval;
1632 {
1633 	struct compat_sparc32_revoke_args /* {
1634 		syscallarg(const sparc32_charp) path;
1635 	} */ *uap = v;
1636 	struct sys_revoke_args ua;
1637 	caddr_t sg;
1638 
1639 	SPARC32TOP_UAP(path, const char);
1640 	sg = stackgap_init(p->p_emul);
1641 	SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1642 
1643 	return (sys_revoke(p, &ua, retval));
1644 }
1645 
1646 int
1647 compat_sparc32_symlink(p, v, retval)
1648 	struct proc *p;
1649 	void *v;
1650 	register_t *retval;
1651 {
1652 	struct compat_sparc32_symlink_args /* {
1653 		syscallarg(const sparc32_charp) path;
1654 		syscallarg(const sparc32_charp) link;
1655 	} */ *uap = v;
1656 	struct sys_symlink_args ua;
1657 
1658 	SPARC32TOP_UAP(path, const char);
1659 	SPARC32TOP_UAP(link, const char);
1660 
1661 	return (sys_symlink(p, &ua, retval));
1662 }
1663 
1664 int
1665 compat_sparc32_readlink(p, v, retval)
1666 	struct proc *p;
1667 	void *v;
1668 	register_t *retval;
1669 {
1670 	struct compat_sparc32_readlink_args /* {
1671 		syscallarg(const sparc32_charp) path;
1672 		syscallarg(sparc32_charp) buf;
1673 		syscallarg(sparc32_size_t) count;
1674 	} */ *uap = v;
1675 	struct sys_readlink_args ua;
1676 	caddr_t sg;
1677 
1678 	SPARC32TOP_UAP(path, const char);
1679 	SPARC32TOP_UAP(buf, char);
1680 	SPARC32TOX_UAP(count, size_t);
1681 	sg = stackgap_init(p->p_emul);
1682 	SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1683 
1684 	return (sys_readlink(p, &ua, retval));
1685 }
1686 
1687 int
1688 compat_sparc32_execve(p, v, retval)
1689 	struct proc *p;
1690 	void *v;
1691 	register_t *retval;
1692 {
1693 	struct compat_sparc32_execve_args /* {
1694 		syscallarg(const sparc32_charp) path;
1695 		syscallarg(sparc32_charpp) argp;
1696 		syscallarg(sparc32_charpp) envp;
1697 	} */ *uap = v;
1698 	struct sys_execve_args ua;
1699 	caddr_t sg;
1700 
1701 	SPARC32TOP_UAP(path, const char);
1702 	SPARC32TOP_UAP(argp, char *);
1703 	SPARC32TOP_UAP(envp, char *);
1704 	sg = stackgap_init(p->p_emul);
1705 	SPARC32_CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1706 
1707 	return (sys_execve(p, &ua, retval));
1708 }
1709 
1710 int
1711 compat_sparc32_umask(p, v, retval)
1712 	struct proc *p;
1713 	void *v;
1714 	register_t *retval;
1715 {
1716 	struct compat_sparc32_umask_args /* {
1717 		syscallarg(mode_t) newmask;
1718 	} */ *uap = v;
1719 	struct sys_umask_args ua;
1720 
1721 	SPARC32TO64_UAP(newmask);
1722 	return (sys_umask(p, &ua, retval));
1723 }
1724 
1725 int
1726 compat_sparc32_chroot(p, v, retval)
1727 	struct proc *p;
1728 	void *v;
1729 	register_t *retval;
1730 {
1731 	struct compat_sparc32_chroot_args /* {
1732 		syscallarg(const sparc32_charp) path;
1733 	} */ *uap = v;
1734 	struct sys_chroot_args ua;
1735 
1736 	SPARC32TOP_UAP(path, const char);
1737 	return (sys_chroot(p, &ua, retval));
1738 }
1739 
1740 int
1741 compat_sparc32_sbrk(p, v, retval)
1742 	struct proc *p;
1743 	void *v;
1744 	register_t *retval;
1745 {
1746 	struct compat_sparc32_sbrk_args /* {
1747 		syscallarg(int) incr;
1748 	} */ *uap = v;
1749 	struct sys_sbrk_args ua;
1750 
1751 	SPARC32TO64_UAP(incr);
1752 	return (sys_sbrk(p, &ua, retval));
1753 }
1754 
1755 int
1756 compat_sparc32_sstk(p, v, retval)
1757 	struct proc *p;
1758 	void *v;
1759 	register_t *retval;
1760 {
1761 	struct compat_sparc32_sstk_args /* {
1762 		syscallarg(int) incr;
1763 	} */ *uap = v;
1764 	struct sys_sstk_args ua;
1765 
1766 	SPARC32TO64_UAP(incr);
1767 	return (sys_sstk(p, &ua, retval));
1768 }
1769 
1770 int
1771 compat_sparc32_munmap(p, v, retval)
1772 	struct proc *p;
1773 	void *v;
1774 	register_t *retval;
1775 {
1776 	struct compat_sparc32_munmap_args /* {
1777 		syscallarg(sparc32_voidp) addr;
1778 		syscallarg(sparc32_size_t) len;
1779 	} */ *uap = v;
1780 	struct sys_munmap_args ua;
1781 
1782 	SPARC32TOP_UAP(addr, void);
1783 	SPARC32TOX_UAP(len, size_t);
1784 	return (sys_munmap(p, &ua, retval));
1785 }
1786 
1787 int
1788 compat_sparc32_mprotect(p, v, retval)
1789 	struct proc *p;
1790 	void *v;
1791 	register_t *retval;
1792 {
1793 	struct compat_sparc32_mprotect_args /* {
1794 		syscallarg(sparc32_voidp) addr;
1795 		syscallarg(sparc32_size_t) len;
1796 		syscallarg(int) prot;
1797 	} */ *uap = v;
1798 	struct sys_mprotect_args ua;
1799 
1800 	SPARC32TOP_UAP(addr, void);
1801 	SPARC32TOX_UAP(len, size_t);
1802 	SPARC32TO64_UAP(prot);
1803 	return (sys_mprotect(p, &ua, retval));
1804 }
1805 
1806 int
1807 compat_sparc32_madvise(p, v, retval)
1808 	struct proc *p;
1809 	void *v;
1810 	register_t *retval;
1811 {
1812 	struct compat_sparc32_madvise_args /* {
1813 		syscallarg(sparc32_voidp) addr;
1814 		syscallarg(sparc32_size_t) len;
1815 		syscallarg(int) behav;
1816 	} */ *uap = v;
1817 	struct sys_madvise_args ua;
1818 
1819 	SPARC32TOP_UAP(addr, void);
1820 	SPARC32TOX_UAP(len, size_t);
1821 	SPARC32TO64_UAP(behav);
1822 	return (sys_madvise(p, &ua, retval));
1823 }
1824 
1825 int
1826 compat_sparc32_mincore(p, v, retval)
1827 	struct proc *p;
1828 	void *v;
1829 	register_t *retval;
1830 {
1831 	struct compat_sparc32_mincore_args /* {
1832 		syscallarg(sparc32_caddr_t) addr;
1833 		syscallarg(sparc32_size_t) len;
1834 		syscallarg(sparc32_charp) vec;
1835 	} */ *uap = v;
1836 	struct sys_mincore_args ua;
1837 
1838 	SPARC32TOX64_UAP(addr, caddr_t);
1839 	SPARC32TOX_UAP(len, size_t);
1840 	SPARC32TOP_UAP(vec, char);
1841 	return (sys_mincore(p, &ua, retval));
1842 }
1843 
1844 int
1845 compat_sparc32_getgroups(p, v, retval)
1846 	struct proc *p;
1847 	void *v;
1848 	register_t *retval;
1849 {
1850 	struct compat_sparc32_getgroups_args /* {
1851 		syscallarg(int) gidsetsize;
1852 		syscallarg(sparc32_gid_tp) gidset;
1853 	} */ *uap = v;
1854 	register struct pcred *pc = p->p_cred;
1855 	register int ngrp;
1856 	int error;
1857 
1858 	ngrp = SCARG(uap, gidsetsize);
1859 	if (ngrp == 0) {
1860 		*retval = pc->pc_ucred->cr_ngroups;
1861 		return (0);
1862 	}
1863 	if (ngrp < pc->pc_ucred->cr_ngroups)
1864 		return (EINVAL);
1865 	ngrp = pc->pc_ucred->cr_ngroups;
1866 	/* Should convert gid_t to sparc32_gid_t, but they're the same */
1867 	error = copyout((caddr_t)pc->pc_ucred->cr_groups,
1868 			(caddr_t)(u_long)SCARG(uap, gidset),
1869 			ngrp * sizeof(gid_t));
1870 	if (error)
1871 		return (error);
1872 	*retval = ngrp;
1873 	return (0);
1874 }
1875 
1876 int
1877 compat_sparc32_setgroups(p, v, retval)
1878 	struct proc *p;
1879 	void *v;
1880 	register_t *retval;
1881 {
1882 	struct compat_sparc32_setgroups_args /* {
1883 		syscallarg(int) gidsetsize;
1884 		syscallarg(const sparc32_gid_tp) gidset;
1885 	} */ *uap = v;
1886 	struct sys_setgroups_args ua;
1887 
1888 	SPARC32TO64_UAP(gidsetsize);
1889 	SPARC32TOP_UAP(gidset, gid_t);
1890 	return (sys_setgroups(p, &ua, retval));
1891 }
1892 
1893 int
1894 compat_sparc32_setpgid(p, v, retval)
1895 	struct proc *p;
1896 	void *v;
1897 	register_t *retval;
1898 {
1899 	struct compat_sparc32_setpgid_args /* {
1900 		syscallarg(int) pid;
1901 		syscallarg(int) pgid;
1902 	} */ *uap = v;
1903 	struct sys_setpgid_args ua;
1904 
1905 	SPARC32TO64_UAP(pid);
1906 	SPARC32TO64_UAP(pgid);
1907 	return (sys_setpgid(p, &ua, retval));
1908 }
1909 
1910 int
1911 compat_sparc32_setitimer(p, v, retval)
1912 	struct proc *p;
1913 	void *v;
1914 	register_t *retval;
1915 {
1916 	struct compat_sparc32_setitimer_args /* {
1917 		syscallarg(int) which;
1918 		syscallarg(const sparc32_itimervalp_t) itv;
1919 		syscallarg(sparc32_itimervalp_t) oitv;
1920 	} */ *uap = v;
1921 	struct sparc32_itimerval s32it, *itvp;
1922 	int which = SCARG(uap, which);
1923 	struct compat_sparc32_getitimer_args getargs;
1924 	struct itimerval aitv;
1925 	int s, error;
1926 
1927 	if ((u_int)which > ITIMER_PROF)
1928 		return (EINVAL);
1929 	itvp = (struct sparc32_itimerval *)(u_long)SCARG(uap, itv);
1930 	if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
1931 		return (error);
1932 	sparc32_to_itimerval(&s32it, &aitv);
1933 	if (SCARG(uap, oitv) != NULL) {
1934 		SCARG(&getargs, which) = which;
1935 		SCARG(&getargs, itv) = SCARG(uap, oitv);
1936 		if ((error = compat_sparc32_getitimer(p, &getargs, retval)) != 0)
1937 			return (error);
1938 	}
1939 	if (itvp == 0)
1940 		return (0);
1941 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
1942 		return (EINVAL);
1943 	s = splclock();
1944 	if (which == ITIMER_REAL) {
1945 		untimeout(realitexpire, p);
1946 		if (timerisset(&aitv.it_value)) {
1947 			timeradd(&aitv.it_value, &time, &aitv.it_value);
1948 			timeout(realitexpire, p, hzto(&aitv.it_value));
1949 		}
1950 		p->p_realtimer = aitv;
1951 	} else
1952 		p->p_stats->p_timer[which] = aitv;
1953 	splx(s);
1954 	return (0);
1955 }
1956 
1957 int
1958 compat_sparc32_getitimer(p, v, retval)
1959 	struct proc *p;
1960 	void *v;
1961 	register_t *retval;
1962 {
1963 	struct compat_sparc32_getitimer_args /* {
1964 		syscallarg(int) which;
1965 		syscallarg(sparc32_itimervalp_t) itv;
1966 	} */ *uap = v;
1967 	int which = SCARG(uap, which);
1968 	struct sparc32_itimerval s32it;
1969 	struct itimerval aitv;
1970 	int s;
1971 
1972 	if ((u_int)which > ITIMER_PROF)
1973 		return (EINVAL);
1974 	s = splclock();
1975 	if (which == ITIMER_REAL) {
1976 		/*
1977 		 * Convert from absolute to relative time in .it_value
1978 		 * part of real time timer.  If time for real time timer
1979 		 * has passed return 0, else return difference between
1980 		 * current time and time for the timer to go off.
1981 		 */
1982 		aitv = p->p_realtimer;
1983 		if (timerisset(&aitv.it_value)) {
1984 			if (timercmp(&aitv.it_value, &time, <))
1985 				timerclear(&aitv.it_value);
1986 			else
1987 				timersub(&aitv.it_value, &time, &aitv.it_value);
1988 		}
1989 	} else
1990 		aitv = p->p_stats->p_timer[which];
1991 	splx(s);
1992 	sparc32_from_itimerval(&aitv, &s32it);
1993 	return (copyout(&s32it, (caddr_t)(u_long)SCARG(uap, itv), sizeof(s32it)));
1994 }
1995 
1996 int
1997 compat_sparc32_fcntl(p, v, retval)
1998 	struct proc *p;
1999 	void *v;
2000 	register_t *retval;
2001 {
2002 	struct compat_sparc32_fcntl_args /* {
2003 		syscallarg(int) fd;
2004 		syscallarg(int) cmd;
2005 		syscallarg(sparc32_voidp) arg;
2006 	} */ *uap = v;
2007 	struct sys_fcntl_args ua;
2008 
2009 	SPARC32TO64_UAP(fd);
2010 	SPARC32TO64_UAP(cmd);
2011 	SPARC32TOP_UAP(arg, void);
2012 	/* XXXX we can do this 'cause flock doesn't change */
2013 	return (sys_fcntl(p, &ua, retval));
2014 }
2015 
2016 int
2017 compat_sparc32_dup2(p, v, retval)
2018 	struct proc *p;
2019 	void *v;
2020 	register_t *retval;
2021 {
2022 	struct compat_sparc32_dup2_args /* {
2023 		syscallarg(int) from;
2024 		syscallarg(int) to;
2025 	} */ *uap = v;
2026 	struct sys_dup2_args ua;
2027 
2028 	SPARC32TO64_UAP(from);
2029 	SPARC32TO64_UAP(to);
2030 	return (sys_dup2(p, &ua, retval));
2031 }
2032 
2033 int
2034 compat_sparc32_select(p, v, retval)
2035 	struct proc *p;
2036 	void *v;
2037 	register_t *retval;
2038 {
2039 	struct compat_sparc32_select_args /* {
2040 		syscallarg(int) nd;
2041 		syscallarg(sparc32_fd_setp_t) in;
2042 		syscallarg(sparc32_fd_setp_t) ou;
2043 		syscallarg(sparc32_fd_setp_t) ex;
2044 		syscallarg(sparc32_timevalp_t) tv;
2045 	} */ *uap = v;
2046 /* This one must be done in-line 'cause of the timeval */
2047 	struct sparc32_timeval tv32;
2048 	caddr_t bits;
2049 	char smallbits[howmany(FD_SETSIZE, NFDBITS) * sizeof(fd_mask) * 6];
2050 	struct timeval atv;
2051 	int s, ncoll, error = 0, timo;
2052 	size_t ni;
2053 	extern int	selwait, nselcoll;
2054 	extern int selscan __P((struct proc *, fd_mask *, fd_mask *, int, register_t *));
2055 
2056 	if (SCARG(uap, nd) < 0)
2057 		return (EINVAL);
2058 	if (SCARG(uap, nd) > p->p_fd->fd_nfiles) {
2059 		/* forgiving; slightly wrong */
2060 		SCARG(uap, nd) = p->p_fd->fd_nfiles;
2061 	}
2062 	ni = howmany(SCARG(uap, nd), NFDBITS) * sizeof(fd_mask);
2063 	if (ni * 6 > sizeof(smallbits))
2064 		bits = malloc(ni * 6, M_TEMP, M_WAITOK);
2065 	else
2066 		bits = smallbits;
2067 
2068 #define	getbits(name, x) \
2069 	if (SCARG(uap, name)) { \
2070 		error = copyin((caddr_t)(u_long)SCARG(uap, name), bits + ni * x, ni); \
2071 		if (error) \
2072 			goto done; \
2073 	} else \
2074 		memset(bits + ni * x, 0, ni);
2075 	getbits(in, 0);
2076 	getbits(ou, 1);
2077 	getbits(ex, 2);
2078 #undef	getbits
2079 
2080 	if (SCARG(uap, tv)) {
2081 		error = copyin((caddr_t)(u_long)SCARG(uap, tv), (caddr_t)&tv32,
2082 			sizeof(tv32));
2083 		if (error)
2084 			goto done;
2085 		sparc32_to_timeval(&tv32, &atv);
2086 		if (itimerfix(&atv)) {
2087 			error = EINVAL;
2088 			goto done;
2089 		}
2090 		s = splclock();
2091 		timeradd(&atv, &time, &atv);
2092 		timo = hzto(&atv);
2093 		/*
2094 		 * Avoid inadvertently sleeping forever.
2095 		 */
2096 		if (timo == 0)
2097 			timo = 1;
2098 		splx(s);
2099 	} else
2100 		timo = 0;
2101 retry:
2102 	ncoll = nselcoll;
2103 	p->p_flag |= P_SELECT;
2104 	error = selscan(p, (fd_mask *)(bits + ni * 0),
2105 			   (fd_mask *)(bits + ni * 3), SCARG(uap, nd), retval);
2106 	if (error || *retval)
2107 		goto done;
2108 	s = splhigh();
2109 	if (timo && timercmp(&time, &atv, >=)) {
2110 		splx(s);
2111 		goto done;
2112 	}
2113 	if ((p->p_flag & P_SELECT) == 0 || nselcoll != ncoll) {
2114 		splx(s);
2115 		goto retry;
2116 	}
2117 	p->p_flag &= ~P_SELECT;
2118 	error = tsleep((caddr_t)&selwait, PSOCK | PCATCH, "select", timo);
2119 	splx(s);
2120 	if (error == 0)
2121 		goto retry;
2122 done:
2123 	p->p_flag &= ~P_SELECT;
2124 	/* select is not restarted after signals... */
2125 	if (error == ERESTART)
2126 		error = EINTR;
2127 	if (error == EWOULDBLOCK)
2128 		error = 0;
2129 	if (error == 0) {
2130 #define	putbits(name, x) \
2131 		if (SCARG(uap, name)) { \
2132 			error = copyout(bits + ni * x, (caddr_t)(u_long)SCARG(uap, name), ni); \
2133 			if (error) \
2134 				goto out; \
2135 		}
2136 		putbits(in, 3);
2137 		putbits(ou, 4);
2138 		putbits(ex, 5);
2139 #undef putbits
2140 	}
2141 out:
2142 	if (ni * 6 > sizeof(smallbits))
2143 		free(bits, M_TEMP);
2144 	return (error);
2145 }
2146 
2147 int
2148 compat_sparc32_fsync(p, v, retval)
2149 	struct proc *p;
2150 	void *v;
2151 	register_t *retval;
2152 {
2153 	struct compat_sparc32_fsync_args /* {
2154 		syscallarg(int) fd;
2155 	} */ *uap = v;
2156 	struct sys_fsync_args ua;
2157 
2158 	SPARC32TO64_UAP(fd);
2159 	return (sys_fsync(p, &ua, retval));
2160 }
2161 
2162 int
2163 compat_sparc32_setpriority(p, v, retval)
2164 	struct proc *p;
2165 	void *v;
2166 	register_t *retval;
2167 {
2168 	struct compat_sparc32_setpriority_args /* {
2169 		syscallarg(int) which;
2170 		syscallarg(int) who;
2171 		syscallarg(int) prio;
2172 	} */ *uap = v;
2173 	struct sys_setpriority_args ua;
2174 
2175 	SPARC32TO64_UAP(which);
2176 	SPARC32TO64_UAP(who);
2177 	SPARC32TO64_UAP(prio);
2178 	return (sys_setpriority(p, &ua, retval));
2179 }
2180 
2181 int
2182 compat_sparc32_socket(p, v, retval)
2183 	struct proc *p;
2184 	void *v;
2185 	register_t *retval;
2186 {
2187 	struct compat_sparc32_socket_args /* {
2188 		syscallarg(int) domain;
2189 		syscallarg(int) type;
2190 		syscallarg(int) protocol;
2191 	} */ *uap = v;
2192 	struct sys_socket_args ua;
2193 
2194 	SPARC32TO64_UAP(domain);
2195 	SPARC32TO64_UAP(type);
2196 	SPARC32TO64_UAP(protocol);
2197 	return (sys_socket(p, &ua, retval));
2198 }
2199 
2200 int
2201 compat_sparc32_connect(p, v, retval)
2202 	struct proc *p;
2203 	void *v;
2204 	register_t *retval;
2205 {
2206 	struct compat_sparc32_connect_args /* {
2207 		syscallarg(int) s;
2208 		syscallarg(const sparc32_sockaddrp_t) name;
2209 		syscallarg(int) namelen;
2210 	} */ *uap = v;
2211 	struct sys_connect_args ua;
2212 
2213 	SPARC32TO64_UAP(s);
2214 	SPARC32TOP_UAP(name, struct sockaddr);
2215 	SPARC32TO64_UAP(namelen);
2216 	return (sys_connect(p, &ua, retval));
2217 }
2218 
2219 int
2220 compat_sparc32_getpriority(p, v, retval)
2221 	struct proc *p;
2222 	void *v;
2223 	register_t *retval;
2224 {
2225 	struct compat_sparc32_getpriority_args /* {
2226 		syscallarg(int) which;
2227 		syscallarg(int) who;
2228 	} */ *uap = v;
2229 	struct sys_getpriority_args ua;
2230 
2231 	SPARC32TO64_UAP(which);
2232 	SPARC32TO64_UAP(who);
2233 	return (sys_getpriority(p, &ua, retval));
2234 }
2235 
2236 #undef DEBUG
2237 int
2238 compat_sparc32_sigreturn(p, v, retval)
2239 	struct proc *p;
2240 	void *v;
2241 	register_t *retval;
2242 {
2243 	struct compat_sparc32_sigreturn_args /* {
2244 		syscallarg(struct sparc32_sigcontext *) sigcntxp;
2245 	} */ *uap = v;
2246 	struct sparc32_sigcontext *scp;
2247 	struct sparc32_sigcontext sc;
2248 	register struct trapframe *tf;
2249 	struct rwindow32 *rwstack, *kstack;
2250 	sigset_t mask;
2251 
2252 	/* First ensure consistent stack state (see sendsig). */
2253 	write_user_windows();
2254 	if (rwindow_save(p)) {
2255 #ifdef DEBUG
2256 		printf("sigreturn: rwindow_save(%p) failed, sending SIGILL\n", p);
2257 		Debugger();
2258 #endif
2259 		sigexit(p, SIGILL);
2260 	}
2261 #ifdef DEBUG
2262 	if (sigdebug & SDB_FOLLOW) {
2263 		printf("sigreturn: %s[%d], sigcntxp %p\n",
2264 		    p->p_comm, p->p_pid, SCARG(uap, sigcntxp));
2265 		if (sigdebug & SDB_DDB) Debugger();
2266 	}
2267 #endif
2268 	scp = (struct sparc32_sigcontext *)(u_long)SCARG(uap, sigcntxp);
2269  	if ((vaddr_t)scp & 3 || (copyin((caddr_t)scp, &sc, sizeof sc) != 0))
2270 #ifdef DEBUG
2271 	{
2272 		printf("sigreturn: copyin failed\n");
2273 		Debugger();
2274 		return (EINVAL);
2275 	}
2276 #else
2277 		return (EINVAL);
2278 #endif
2279 	tf = p->p_md.md_tf;
2280 	/*
2281 	 * Only the icc bits in the psr are used, so it need not be
2282 	 * verified.  pc and npc must be multiples of 4.  This is all
2283 	 * that is required; if it holds, just do it.
2284 	 */
2285 	if (((sc.sc_pc | sc.sc_npc) & 3) != 0)
2286 #ifdef DEBUG
2287 	{
2288 		printf("sigreturn: pc %p or npc %p invalid\n", sc.sc_pc, sc.sc_npc);
2289 		Debugger();
2290 		return (EINVAL);
2291 	}
2292 #else
2293 		return (EINVAL);
2294 #endif
2295 	/* take only psr ICC field */
2296 	tf->tf_tstate = (int64_t)(tf->tf_tstate & ~TSTATE_CCR) | PSRCC_TO_TSTATE(sc.sc_psr);
2297 	tf->tf_pc = (int64_t)sc.sc_pc;
2298 	tf->tf_npc = (int64_t)sc.sc_npc;
2299 	tf->tf_global[1] = (int64_t)sc.sc_g1;
2300 	tf->tf_out[0] = (int64_t)sc.sc_o0;
2301 	tf->tf_out[6] = (int64_t)sc.sc_sp;
2302 	rwstack = (struct rwindow32 *)tf->tf_out[6];
2303 	kstack = (struct rwindow32 *)(((caddr_t)tf)-CCFSZ);
2304 #ifdef DEBUG
2305 	if (sigdebug & SDB_FOLLOW) {
2306 		printf("sys_sigreturn: return trapframe pc=%p sp=%p tstate=%x\n",
2307 		       (int)tf->tf_pc, (int)tf->tf_out[6], (int)tf->tf_tstate);
2308 		if (sigdebug & SDB_DDB) Debugger();
2309 	}
2310 #endif
2311 	if (scp->sc_onstack & SS_ONSTACK)
2312 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
2313 	else
2314 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
2315 
2316 	/* Restore signal mask */
2317 	native_sigset13_to_sigset(&scp->sc_mask, &mask);
2318 	(void) sigprocmask1(p, SIG_SETMASK, &mask, 0);
2319 	return (EJUSTRETURN);
2320 }
2321 
2322 
2323 int
2324 compat_sparc32_bind(p, v, retval)
2325 	struct proc *p;
2326 	void *v;
2327 	register_t *retval;
2328 {
2329 	struct compat_sparc32_bind_args /* {
2330 		syscallarg(int) s;
2331 		syscallarg(const sparc32_sockaddrp_t) name;
2332 		syscallarg(int) namelen;
2333 	} */ *uap = v;
2334 	struct sys_bind_args ua;
2335 
2336 	SPARC32TO64_UAP(s);
2337 	SPARC32TOP_UAP(name, struct sockaddr);
2338 	SPARC32TO64_UAP(namelen);
2339 	return (sys_bind(p, &ua, retval));
2340 }
2341 
2342 int
2343 compat_sparc32_setsockopt(p, v, retval)
2344 	struct proc *p;
2345 	void *v;
2346 	register_t *retval;
2347 {
2348 	struct compat_sparc32_setsockopt_args /* {
2349 		syscallarg(int) s;
2350 		syscallarg(int) level;
2351 		syscallarg(int) name;
2352 		syscallarg(const sparc32_voidp) val;
2353 		syscallarg(int) valsize;
2354 	} */ *uap = v;
2355 	struct sys_setsockopt_args ua;
2356 
2357 	SPARC32TO64_UAP(s);
2358 	SPARC32TO64_UAP(level);
2359 	SPARC32TO64_UAP(name);
2360 	SPARC32TOP_UAP(val, void);
2361 	SPARC32TO64_UAP(valsize);
2362 	/* may be more efficient to do this inline. */
2363 	return (sys_setsockopt(p, &ua, retval));
2364 }
2365 
2366 int
2367 compat_sparc32_listen(p, v, retval)
2368 	struct proc *p;
2369 	void *v;
2370 	register_t *retval;
2371 {
2372 	struct compat_sparc32_listen_args /* {
2373 		syscallarg(int) s;
2374 		syscallarg(int) backlog;
2375 	} */ *uap = v;
2376 	struct sys_listen_args ua;
2377 
2378 	SPARC32TO64_UAP(s);
2379 	SPARC32TO64_UAP(backlog);
2380 	return (sys_listen(p, &ua, retval));
2381 }
2382 
2383 int
2384 compat_sparc32_vtrace(p, v, retval)
2385 	struct proc *p;
2386 	void *v;
2387 	register_t *retval;
2388 {
2389 #ifdef TRACE
2390 	struct compat_sparc32_vtrace_args /* {
2391 		syscallarg(int) request;
2392 		syscallarg(int) value;
2393 	} */ *uap = v;
2394 	struct sys_vtrace_args ua;
2395 
2396 	SPARC32TO64_UAP(request);
2397 	SPARC32TO64_UAP(value);
2398 	return (vtrace(p, &ua, retval));
2399 #else
2400 	return (ENOSYS);
2401 #endif
2402 }
2403 
2404 int
2405 compat_sparc32_gettimeofday(p, v, retval)
2406 	struct proc *p;
2407 	void *v;
2408 	register_t *retval;
2409 {
2410 	struct compat_sparc32_gettimeofday_args /* {
2411 		syscallarg(sparc32_timevalp_t) tp;
2412 		syscallarg(sparc32_timezonep_t) tzp;
2413 	} */ *uap = v;
2414 	struct timeval atv;
2415 	struct sparc32_timeval tv32;
2416 	int error = 0;
2417 	struct sparc32_timezone tzfake;
2418 
2419 	if (SCARG(uap, tp)) {
2420 		microtime(&atv);
2421 		sparc32_from_timeval(&atv, &tv32);
2422 		error = copyout(&tv32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(tv32));
2423 		if (error)
2424 			return (error);
2425 	}
2426 	if (SCARG(uap, tzp)) {
2427 		/*
2428 		 * NetBSD has no kernel notion of time zone, so we just
2429 		 * fake up a timezone struct and return it if demanded.
2430 		 */
2431 		tzfake.tz_minuteswest = 0;
2432 		tzfake.tz_dsttime = 0;
2433 		error = copyout(&tzfake, (caddr_t)(u_long)SCARG(uap, tzp), sizeof(tzfake));
2434 	}
2435 	return (error);
2436 }
2437 
2438 static int settime __P((struct timeval *));
2439 /* This function is used by clock_settime and settimeofday */
2440 static int
2441 settime(tv)
2442 	struct timeval *tv;
2443 {
2444 	struct timeval delta;
2445 	int s;
2446 
2447 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
2448 	s = splclock();
2449 	timersub(tv, &time, &delta);
2450 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
2451 		return (EPERM);
2452 #ifdef notyet
2453 	if ((delta.tv_sec < 86400) && securelevel > 0)
2454 		return (EPERM);
2455 #endif
2456 	time = *tv;
2457 	(void) splsoftclock();
2458 	timeradd(&boottime, &delta, &boottime);
2459 	timeradd(&runtime, &delta, &runtime);
2460 #	if defined(NFS) || defined(NFSSERVER)
2461 		nqnfs_lease_updatetime(delta.tv_sec);
2462 #	endif
2463 	splx(s);
2464 	resettodr();
2465 	return (0);
2466 }
2467 
2468 
2469 int
2470 compat_sparc32_settimeofday(p, v, retval)
2471 	struct proc *p;
2472 	void *v;
2473 	register_t *retval;
2474 {
2475 	struct compat_sparc32_settimeofday_args /* {
2476 		syscallarg(const sparc32_timevalp_t) tv;
2477 		syscallarg(const sparc32_timezonep_t) tzp;
2478 	} */ *uap = v;
2479 	struct sparc32_timeval atv32;
2480 	struct timeval atv;
2481 	struct sparc32_timezone atz;
2482 	int error;
2483 
2484 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
2485 		return (error);
2486 	/* Verify all parameters before changing time. */
2487 	if (SCARG(uap, tv) && (error = copyin((caddr_t)(u_long)SCARG(uap, tv),
2488 	    &atv32, sizeof(atv32))))
2489 		return (error);
2490 	sparc32_to_timeval(&atv32, &atv);
2491 	/* XXX since we don't use tz, probably no point in doing copyin. */
2492 	if (SCARG(uap, tzp) && (error = copyin((caddr_t)(u_long)SCARG(uap, tzp),
2493 	    &atz, sizeof(atz))))
2494 		return (error);
2495 	if (SCARG(uap, tv))
2496 		if ((error = settime(&atv)))
2497 			return (error);
2498 	/*
2499 	 * NetBSD has no kernel notion of time zone, and only an
2500 	 * obsolete program would try to set it, so we log a warning.
2501 	 */
2502 	if (SCARG(uap, tzp))
2503 		printf("pid %d attempted to set the "
2504 		    "(obsolete) kernel time zone\n", p->p_pid);
2505 	return (0);
2506 }
2507 
2508 int
2509 compat_sparc32_fchown(p, v, retval)
2510 	struct proc *p;
2511 	void *v;
2512 	register_t *retval;
2513 {
2514 	struct compat_sparc32_fchown_args /* {
2515 		syscallarg(int) fd;
2516 		syscallarg(uid_t) uid;
2517 		syscallarg(gid_t) gid;
2518 	} */ *uap = v;
2519 	struct sys_fchown_args ua;
2520 
2521 	SPARC32TO64_UAP(fd);
2522 	SPARC32TO64_UAP(uid);
2523 	SPARC32TO64_UAP(gid);
2524 	return (sys_fchown(p, &ua, retval));
2525 }
2526 
2527 int
2528 compat_sparc32_fchmod(p, v, retval)
2529 	struct proc *p;
2530 	void *v;
2531 	register_t *retval;
2532 {
2533 	struct compat_sparc32_fchmod_args /* {
2534 		syscallarg(int) fd;
2535 		syscallarg(mode_t) mode;
2536 	} */ *uap = v;
2537 	struct sys_fchmod_args ua;
2538 
2539 	SPARC32TO64_UAP(fd);
2540 	SPARC32TO64_UAP(mode);
2541 	return (sys_fchmod(p, &ua, retval));
2542 }
2543 
2544 int
2545 compat_sparc32_setreuid(p, v, retval)
2546 	struct proc *p;
2547 	void *v;
2548 	register_t *retval;
2549 {
2550 	struct compat_sparc32_setreuid_args /* {
2551 		syscallarg(uid_t) ruid;
2552 		syscallarg(uid_t) euid;
2553 	} */ *uap = v;
2554 	struct sys_setreuid_args ua;
2555 
2556 	SPARC32TO64_UAP(ruid);
2557 	SPARC32TO64_UAP(euid);
2558 	return (sys_setreuid(p, &ua, retval));
2559 }
2560 
2561 int
2562 compat_sparc32_setregid(p, v, retval)
2563 	struct proc *p;
2564 	void *v;
2565 	register_t *retval;
2566 {
2567 	struct compat_sparc32_setregid_args /* {
2568 		syscallarg(gid_t) rgid;
2569 		syscallarg(gid_t) egid;
2570 	} */ *uap = v;
2571 	struct sys_setregid_args ua;
2572 
2573 	SPARC32TO64_UAP(rgid);
2574 	SPARC32TO64_UAP(egid);
2575 	return (sys_setregid(p, &ua, retval));
2576 }
2577 
2578 int
2579 compat_sparc32_getrusage(p, v, retval)
2580 	struct proc *p;
2581 	void *v;
2582 	register_t *retval;
2583 {
2584 	struct compat_sparc32_getrusage_args /* {
2585 		syscallarg(int) who;
2586 		syscallarg(sparc32_rusagep_t) rusage;
2587 	} */ *uap = v;
2588 	struct rusage *rup;
2589 	struct sparc32_rusage ru;
2590 
2591 	switch (SCARG(uap, who)) {
2592 
2593 	case RUSAGE_SELF:
2594 		rup = &p->p_stats->p_ru;
2595 		calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
2596 		break;
2597 
2598 	case RUSAGE_CHILDREN:
2599 		rup = &p->p_stats->p_cru;
2600 		break;
2601 
2602 	default:
2603 		return (EINVAL);
2604 	}
2605 	sparc32_from_rusage(rup, &ru);
2606 	return (copyout(&ru, (caddr_t)(u_long)SCARG(uap, rusage), sizeof(ru)));
2607 }
2608 
2609 int
2610 compat_sparc32_getsockopt(p, v, retval)
2611 	struct proc *p;
2612 	void *v;
2613 	register_t *retval;
2614 {
2615 	struct compat_sparc32_getsockopt_args /* {
2616 		syscallarg(int) s;
2617 		syscallarg(int) level;
2618 		syscallarg(int) name;
2619 		syscallarg(sparc32_voidp) val;
2620 		syscallarg(sparc32_intp) avalsize;
2621 	} */ *uap = v;
2622 	struct sys_getsockopt_args ua;
2623 
2624 	SPARC32TO64_UAP(s);
2625 	SPARC32TO64_UAP(level);
2626 	SPARC32TO64_UAP(name);
2627 	SPARC32TOP_UAP(val, void);
2628 	SPARC32TOP_UAP(avalsize, int);
2629 	return (sys_getsockopt(p, &ua, retval));
2630 }
2631 
2632 int
2633 compat_sparc32_readv(p, v, retval)
2634 	struct proc *p;
2635 	void *v;
2636 	register_t *retval;
2637 {
2638 	struct compat_sparc32_readv_args /* {
2639 		syscallarg(int) fd;
2640 		syscallarg(const sparc32_iovecp_t) iovp;
2641 		syscallarg(int) iovcnt;
2642 	} */ *uap = v;
2643 	int fd = SCARG(uap, fd);
2644 	register struct file *fp;
2645 	register struct filedesc *fdp = p->p_fd;
2646 
2647 	if ((u_int)fd >= fdp->fd_nfiles ||
2648 	    (fp = fdp->fd_ofiles[fd]) == NULL ||
2649 	    (fp->f_flag & FREAD) == 0)
2650 		return (EBADF);
2651 
2652 	return (dofilereadv32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp),
2653 			      SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
2654 }
2655 
2656 /* Damn thing copies in the iovec! */
2657 int
2658 dofilereadv32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
2659 	struct proc *p;
2660 	int fd;
2661 	struct file *fp;
2662 	struct sparc32_iovec *iovp;
2663 	int iovcnt;
2664 	off_t *offset;
2665 	int flags;
2666 	register_t *retval;
2667 {
2668 	struct uio auio;
2669 	register struct iovec *iov;
2670 	struct iovec *needfree;
2671 	struct iovec aiov[UIO_SMALLIOV];
2672 	long i, cnt, error = 0;
2673 	u_int iovlen;
2674 #ifdef KTRACE
2675 	struct iovec *ktriov = NULL;
2676 #endif
2677 
2678 	/* note: can't use iovlen until iovcnt is validated */
2679 	iovlen = iovcnt * sizeof(struct iovec);
2680 	if ((u_int)iovcnt > UIO_SMALLIOV) {
2681 		if ((u_int)iovcnt > IOV_MAX)
2682 			return (EINVAL);
2683 		MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
2684 		needfree = iov;
2685 	} else if ((u_int)iovcnt > 0) {
2686 		iov = aiov;
2687 		needfree = NULL;
2688 	} else
2689 		return (EINVAL);
2690 
2691 	auio.uio_iov = iov;
2692 	auio.uio_iovcnt = iovcnt;
2693 	auio.uio_rw = UIO_READ;
2694 	auio.uio_segflg = UIO_USERSPACE;
2695 	auio.uio_procp = p;
2696 	error = sparc32_to_iovecin(iovp, iov, iovcnt);
2697 	if (error)
2698 		goto done;
2699 	auio.uio_resid = 0;
2700 	for (i = 0; i < iovcnt; i++) {
2701 		auio.uio_resid += iov->iov_len;
2702 		/*
2703 		 * Reads return ssize_t because -1 is returned on error.
2704 		 * Therefore we must restrict the length to SSIZE_MAX to
2705 		 * avoid garbage return values.
2706 		 */
2707 		if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
2708 			error = EINVAL;
2709 			goto done;
2710 		}
2711 		iov++;
2712 	}
2713 #ifdef KTRACE
2714 	/*
2715 	 * if tracing, save a copy of iovec
2716 	 */
2717 	if (KTRPOINT(p, KTR_GENIO))  {
2718 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
2719 		memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
2720 	}
2721 #endif
2722 	cnt = auio.uio_resid;
2723 	error = (*fp->f_ops->fo_read)(fp, offset, &auio, fp->f_cred, flags);
2724 	if (error)
2725 		if (auio.uio_resid != cnt && (error == ERESTART ||
2726 		    error == EINTR || error == EWOULDBLOCK))
2727 			error = 0;
2728 	cnt -= auio.uio_resid;
2729 #ifdef KTRACE
2730 	if (KTRPOINT(p, KTR_GENIO))
2731 		if (error == 0) {
2732 			ktrgenio(p->p_tracep, fd, UIO_READ, ktriov, cnt,
2733 			    error);
2734 		FREE(ktriov, M_TEMP);
2735 	}
2736 #endif
2737 	*retval = cnt;
2738 done:
2739 	if (needfree)
2740 		FREE(needfree, M_IOV);
2741 	return (error);
2742 }
2743 
2744 
2745 int
2746 compat_sparc32_writev(p, v, retval)
2747 	struct proc *p;
2748 	void *v;
2749 	register_t *retval;
2750 {
2751 	struct compat_sparc32_writev_args /* {
2752 		syscallarg(int) fd;
2753 		syscallarg(const sparc32_iovecp_t) iovp;
2754 		syscallarg(int) iovcnt;
2755 	} */ *uap = v;
2756 	int fd = SCARG(uap, fd);
2757 	register struct file *fp;
2758 	register struct filedesc *fdp = p->p_fd;
2759 
2760 	if ((u_int)fd >= fdp->fd_nfiles ||
2761 	    (fp = fdp->fd_ofiles[fd]) == NULL ||
2762 	    (fp->f_flag & FWRITE) == 0)
2763 		return (EBADF);
2764 
2765 	return (dofilewritev32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp),
2766 			       SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
2767 }
2768 
2769 int
2770 dofilewritev32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
2771 	struct proc *p;
2772 	int fd;
2773 	struct file *fp;
2774 	struct sparc32_iovec *iovp;
2775 	int iovcnt;
2776 	off_t *offset;
2777 	int flags;
2778 	register_t *retval;
2779 {
2780 	struct uio auio;
2781 	register struct iovec *iov;
2782 	struct iovec *needfree;
2783 	struct iovec aiov[UIO_SMALLIOV];
2784 	long i, cnt, error = 0;
2785 	u_int iovlen;
2786 #ifdef KTRACE
2787 	struct iovec *ktriov = NULL;
2788 #endif
2789 
2790 	/* note: can't use iovlen until iovcnt is validated */
2791 	iovlen = iovcnt * sizeof(struct iovec);
2792 	if ((u_int)iovcnt > UIO_SMALLIOV) {
2793 		if ((u_int)iovcnt > IOV_MAX)
2794 			return (EINVAL);
2795 		MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
2796 		needfree = iov;
2797 	} else if ((u_int)iovcnt > 0) {
2798 		iov = aiov;
2799 		needfree = NULL;
2800 	} else
2801 		return (EINVAL);
2802 
2803 	auio.uio_iov = iov;
2804 	auio.uio_iovcnt = iovcnt;
2805 	auio.uio_rw = UIO_WRITE;
2806 	auio.uio_segflg = UIO_USERSPACE;
2807 	auio.uio_procp = p;
2808 	error = sparc32_to_iovecin(iovp, iov, iovcnt);
2809 	if (error)
2810 		goto done;
2811 	auio.uio_resid = 0;
2812 	for (i = 0; i < iovcnt; i++) {
2813 		auio.uio_resid += iov->iov_len;
2814 		/*
2815 		 * Writes return ssize_t because -1 is returned on error.
2816 		 * Therefore we must restrict the length to SSIZE_MAX to
2817 		 * avoid garbage return values.
2818 		 */
2819 		if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
2820 			error = EINVAL;
2821 			goto done;
2822 		}
2823 		iov++;
2824 	}
2825 #ifdef KTRACE
2826 	/*
2827 	 * if tracing, save a copy of iovec
2828 	 */
2829 	if (KTRPOINT(p, KTR_GENIO))  {
2830 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
2831 		memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
2832 	}
2833 #endif
2834 	cnt = auio.uio_resid;
2835 	error = (*fp->f_ops->fo_write)(fp, offset, &auio, fp->f_cred, flags);
2836 	if (error) {
2837 		if (auio.uio_resid != cnt && (error == ERESTART ||
2838 		    error == EINTR || error == EWOULDBLOCK))
2839 			error = 0;
2840 		if (error == EPIPE)
2841 			psignal(p, SIGPIPE);
2842 	}
2843 	cnt -= auio.uio_resid;
2844 #ifdef KTRACE
2845 	if (KTRPOINT(p, KTR_GENIO))
2846 		if (error == 0) {
2847 			ktrgenio(p->p_tracep, fd, UIO_WRITE, ktriov, cnt,
2848 			    error);
2849 		FREE(ktriov, M_TEMP);
2850 	}
2851 #endif
2852 	*retval = cnt;
2853 done:
2854 	if (needfree)
2855 		FREE(needfree, M_IOV);
2856 	return (error);
2857 }
2858 
2859 
2860 int
2861 compat_sparc32_rename(p, v, retval)
2862 	struct proc *p;
2863 	void *v;
2864 	register_t *retval;
2865 {
2866 	struct compat_sparc32_rename_args /* {
2867 		syscallarg(const sparc32_charp) from;
2868 		syscallarg(const sparc32_charp) to;
2869 	} */ *uap = v;
2870 	struct sys_rename_args ua;
2871 
2872 	SPARC32TOP_UAP(from, const char *);
2873 	SPARC32TOP_UAP(to, const char *)
2874 
2875 	return (sys_rename(p, &ua, retval));
2876 }
2877 
2878 int
2879 compat_sparc32_flock(p, v, retval)
2880 	struct proc *p;
2881 	void *v;
2882 	register_t *retval;
2883 {
2884 	struct compat_sparc32_flock_args /* {
2885 		syscallarg(int) fd;
2886 		syscallarg(int) how;
2887 	} */ *uap = v;
2888 	struct sys_flock_args ua;
2889 
2890 	SPARC32TO64_UAP(fd);
2891 	SPARC32TO64_UAP(how)
2892 
2893 	return (sys_flock(p, &ua, retval));
2894 }
2895 
2896 int
2897 compat_sparc32_mkfifo(p, v, retval)
2898 	struct proc *p;
2899 	void *v;
2900 	register_t *retval;
2901 {
2902 	struct compat_sparc32_mkfifo_args /* {
2903 		syscallarg(const sparc32_charp) path;
2904 		syscallarg(mode_t) mode;
2905 	} */ *uap = v;
2906 	struct sys_mkfifo_args ua;
2907 
2908 	SPARC32TOP_UAP(path, const char)
2909 	SPARC32TO64_UAP(mode);
2910 	return (sys_mkfifo(p, &ua, retval));
2911 }
2912 
2913 int
2914 compat_sparc32_shutdown(p, v, retval)
2915 	struct proc *p;
2916 	void *v;
2917 	register_t *retval;
2918 {
2919 	struct compat_sparc32_shutdown_args /* {
2920 		syscallarg(int) s;
2921 		syscallarg(int) how;
2922 	} */ *uap = v;
2923 	struct sys_shutdown_args ua;
2924 
2925 	SPARC32TO64_UAP(s)
2926 	SPARC32TO64_UAP(how);
2927 	return (sys_shutdown(p, &ua, retval));
2928 }
2929 
2930 int
2931 compat_sparc32_socketpair(p, v, retval)
2932 	struct proc *p;
2933 	void *v;
2934 	register_t *retval;
2935 {
2936 	struct compat_sparc32_socketpair_args /* {
2937 		syscallarg(int) domain;
2938 		syscallarg(int) type;
2939 		syscallarg(int) protocol;
2940 		syscallarg(sparc32_intp) rsv;
2941 	} */ *uap = v;
2942 	struct sys_socketpair_args ua;
2943 
2944 	SPARC32TO64_UAP(domain);
2945 	SPARC32TO64_UAP(type);
2946 	SPARC32TO64_UAP(protocol);
2947 	SPARC32TOP_UAP(rsv, int);
2948 	/* Since we're just copying out two `int's we can do this */
2949 	return (sys_socketpair(p, &ua, retval));
2950 }
2951 
2952 int
2953 compat_sparc32_mkdir(p, v, retval)
2954 	struct proc *p;
2955 	void *v;
2956 	register_t *retval;
2957 {
2958 	struct compat_sparc32_mkdir_args /* {
2959 		syscallarg(const sparc32_charp) path;
2960 		syscallarg(mode_t) mode;
2961 	} */ *uap = v;
2962 	struct sys_mkdir_args ua;
2963 
2964 	SPARC32TOP_UAP(path, const char)
2965 	SPARC32TO64_UAP(mode);
2966 	return (sys_mkdir(p, &ua, retval));
2967 }
2968 
2969 int
2970 compat_sparc32_rmdir(p, v, retval)
2971 	struct proc *p;
2972 	void *v;
2973 	register_t *retval;
2974 {
2975 	struct compat_sparc32_rmdir_args /* {
2976 		syscallarg(const sparc32_charp) path;
2977 	} */ *uap = v;
2978 	struct sys_rmdir_args ua;
2979 
2980 	SPARC32TOP_UAP(path, const char);
2981 	return (sys_rmdir(p, &ua, retval));
2982 }
2983 
2984 int
2985 compat_sparc32_utimes(p, v, retval)
2986 	struct proc *p;
2987 	void *v;
2988 	register_t *retval;
2989 {
2990 	struct compat_sparc32_utimes_args /* {
2991 		syscallarg(const sparc32_charp) path;
2992 		syscallarg(const sparc32_timevalp_t) tptr;
2993 	} */ *uap = v;
2994 	int error;
2995 	struct nameidata nd;
2996 
2997 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
2998 	if ((error = namei(&nd)) != 0)
2999 		return (error);
3000 
3001 	error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
3002 
3003 	vrele(nd.ni_vp);
3004 	return (error);
3005 }
3006 
3007 /*
3008  * Common routine to set access and modification times given a vnode.
3009  */
3010 static int
3011 change_utimes32(vp, tptr, p)
3012 	struct vnode *vp;
3013 	struct timeval *tptr;
3014 	struct proc *p;
3015 {
3016 	struct sparc32_timeval tv32[2];
3017 	struct timeval tv[2];
3018 	struct vattr vattr;
3019 	int error;
3020 
3021 	VATTR_NULL(&vattr);
3022 	if (tptr == NULL) {
3023 		microtime(&tv[0]);
3024 		tv[1] = tv[0];
3025 		vattr.va_vaflags |= VA_UTIMES_NULL;
3026 	} else {
3027 		error = copyin(tptr, tv, sizeof(tv));
3028 		if (error)
3029 			return (error);
3030 	}
3031 	sparc32_to_timeval(&tv32[0], &tv[0]);
3032 	sparc32_to_timeval(&tv32[1], &tv[1]);
3033 	VOP_LEASE(vp, p, p->p_ucred, LEASE_WRITE);
3034 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3035 	vattr.va_atime.tv_sec = tv[0].tv_sec;
3036 	vattr.va_atime.tv_nsec = tv[0].tv_usec * 1000;
3037 	vattr.va_mtime.tv_sec = tv[1].tv_sec;
3038 	vattr.va_mtime.tv_nsec = tv[1].tv_usec * 1000;
3039 	error = VOP_SETATTR(vp, &vattr, p->p_ucred, p);
3040 	VOP_UNLOCK(vp, 0);
3041 	return (error);
3042 }
3043 
3044 int
3045 compat_sparc32_adjtime(p, v, retval)
3046 	struct proc *p;
3047 	void *v;
3048 	register_t *retval;
3049 {
3050 	struct compat_sparc32_adjtime_args /* {
3051 		syscallarg(const sparc32_timevalp_t) delta;
3052 		syscallarg(sparc32_timevalp_t) olddelta;
3053 	} */ *uap = v;
3054 	struct sparc32_timeval atv;
3055 	int32_t ndelta, ntickdelta, odelta;
3056 	int s, error;
3057 	extern long bigadj, timedelta;
3058 	extern int tickdelta;
3059 
3060 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
3061 		return (error);
3062 
3063 	error = copyin((caddr_t)(u_long)SCARG(uap, delta), &atv, sizeof(struct timeval));
3064 	if (error)
3065 		return (error);
3066 	/*
3067 	 * Compute the total correction and the rate at which to apply it.
3068 	 * Round the adjustment down to a whole multiple of the per-tick
3069 	 * delta, so that after some number of incremental changes in
3070 	 * hardclock(), tickdelta will become zero, lest the correction
3071 	 * overshoot and start taking us away from the desired final time.
3072 	 */
3073 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
3074 	if (ndelta > bigadj)
3075 		ntickdelta = 10 * tickadj;
3076 	else
3077 		ntickdelta = tickadj;
3078 	if (ndelta % ntickdelta)
3079 		ndelta = ndelta / ntickdelta * ntickdelta;
3080 
3081 	/*
3082 	 * To make hardclock()'s job easier, make the per-tick delta negative
3083 	 * if we want time to run slower; then hardclock can simply compute
3084 	 * tick + tickdelta, and subtract tickdelta from timedelta.
3085 	 */
3086 	if (ndelta < 0)
3087 		ntickdelta = -ntickdelta;
3088 	s = splclock();
3089 	odelta = timedelta;
3090 	timedelta = ndelta;
3091 	tickdelta = ntickdelta;
3092 	splx(s);
3093 
3094 	if (SCARG(uap, olddelta)) {
3095 		atv.tv_sec = odelta / 1000000;
3096 		atv.tv_usec = odelta % 1000000;
3097 		(void) copyout(&atv, (caddr_t)(u_long)SCARG(uap, olddelta),
3098 		    sizeof(struct timeval));
3099 	}
3100 	return (0);
3101 }
3102 
3103 int
3104 compat_sparc32_quotactl(p, v, retval)
3105 	struct proc *p;
3106 	void *v;
3107 	register_t *retval;
3108 {
3109 	struct compat_sparc32_quotactl_args /* {
3110 		syscallarg(const sparc32_charp) path;
3111 		syscallarg(int) cmd;
3112 		syscallarg(int) uid;
3113 		syscallarg(sparc32_caddr_t) arg;
3114 	} */ *uap = v;
3115 	struct sys_quotactl_args ua;
3116 
3117 	SPARC32TOP_UAP(path, const char);
3118 	SPARC32TO64_UAP(cmd);
3119 	SPARC32TO64_UAP(uid);
3120 	SPARC32TOX64_UAP(arg, caddr_t);
3121 	return (sys_quotactl(p, &ua, retval));
3122 }
3123 
3124 #if defined(NFS) || defined(NFSSERVER)
3125 int
3126 compat_sparc32_nfssvc(p, v, retval)
3127 	struct proc *p;
3128 	void *v;
3129 	register_t *retval;
3130 {
3131 #if 0
3132 	struct compat_sparc32_nfssvc_args /* {
3133 		syscallarg(int) flag;
3134 		syscallarg(sparc32_voidp) argp;
3135 	} */ *uap = v;
3136 	struct sys_nfssvc_args ua;
3137 
3138 	SPARC32TO64_UAP(flag);
3139 	SPARC32TOP_UAP(argp, void);
3140 	return (sys_nfssvc(p, &ua, retval));
3141 #else
3142 	/* Why would we want to support a 32-bit nfsd? */
3143 	return (ENOSYS);
3144 #endif
3145 }
3146 #endif
3147 
3148 int
3149 compat_sparc32_statfs(p, v, retval)
3150 	struct proc *p;
3151 	void *v;
3152 	register_t *retval;
3153 {
3154 	struct compat_sparc32_statfs_args /* {
3155 		syscallarg(const sparc32_charp) path;
3156 		syscallarg(sparc32_statfsp_t) buf;
3157 	} */ *uap = v;
3158 	register struct mount *mp;
3159 	register struct statfs *sp;
3160 	struct sparc32_statfs s32;
3161 	int error;
3162 	struct nameidata nd;
3163 
3164 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3165 	if ((error = namei(&nd)) != 0)
3166 		return (error);
3167 	mp = nd.ni_vp->v_mount;
3168 	sp = &mp->mnt_stat;
3169 	vrele(nd.ni_vp);
3170 	if ((error = VFS_STATFS(mp, sp, p)) != 0)
3171 		return (error);
3172 	sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3173 	sparc32_from_statfs(sp, &s32);
3174 	return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
3175 }
3176 
3177 int
3178 compat_sparc32_fstatfs(p, v, retval)
3179 	struct proc *p;
3180 	void *v;
3181 	register_t *retval;
3182 {
3183 	struct compat_sparc32_fstatfs_args /* {
3184 		syscallarg(int) fd;
3185 		syscallarg(sparc32_statfsp_t) buf;
3186 	} */ *uap = v;
3187 	struct file *fp;
3188 	register struct mount *mp;
3189 	register struct statfs *sp;
3190 	struct sparc32_statfs s32;
3191 	int error;
3192 
3193 	if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
3194 		return (error);
3195 	mp = ((struct vnode *)fp->f_data)->v_mount;
3196 	sp = &mp->mnt_stat;
3197 	if ((error = VFS_STATFS(mp, sp, p)) != 0)
3198 		return (error);
3199 	sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3200 	sparc32_from_statfs(sp, &s32);
3201 	return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
3202 }
3203 
3204 #if defined(NFS) || defined(NFSSERVER)
3205 int
3206 compat_sparc32_getfh(p, v, retval)
3207 	struct proc *p;
3208 	void *v;
3209 	register_t *retval;
3210 {
3211 	struct compat_sparc32_getfh_args /* {
3212 		syscallarg(const sparc32_charp) fname;
3213 		syscallarg(sparc32_fhandlep_t) fhp;
3214 	} */ *uap = v;
3215 	struct sys_getfh_args ua;
3216 
3217 	SPARC32TOP_UAP(fname, const char);
3218 	SPARC32TOP_UAP(fhp, struct fhandle);
3219 	/* Lucky for us a fhandlep_t doesn't change sizes */
3220 	return (sys_getfh(p, &ua, retval));
3221 }
3222 #endif
3223 
3224 int
3225 compat_sparc32_sysarch(p, v, retval)
3226 	struct proc *p;
3227 	void *v;
3228 	register_t *retval;
3229 {
3230 	struct compat_sparc32_sysarch_args /* {
3231 		syscallarg(int) op;
3232 		syscallarg(sparc32_voidp) parms;
3233 	} */ *uap = v;
3234 
3235 	switch (SCARG(uap, op)) {
3236 	default:
3237 		printf("(sparc64) compat_sparc32_sysarch(%d)\n", SCARG(uap, op));
3238 		return EINVAL;
3239 	}
3240 }
3241 
3242 int
3243 compat_sparc32_pread(p, v, retval)
3244 	struct proc *p;
3245 	void *v;
3246 	register_t *retval;
3247 {
3248 	struct compat_sparc32_pread_args /* {
3249 		syscallarg(int) fd;
3250 		syscallarg(sparc32_voidp) buf;
3251 		syscallarg(sparc32_size_t) nbyte;
3252 		syscallarg(int) pad;
3253 		syscallarg(off_t) offset;
3254 	} */ *uap = v;
3255 	struct sys_pread_args ua;
3256 	ssize_t rt;
3257 	int error;
3258 
3259 	SPARC32TO64_UAP(fd);
3260 	SPARC32TOP_UAP(buf, void);
3261 	SPARC32TOX_UAP(nbyte, size_t);
3262 	SPARC32TO64_UAP(pad);
3263 	SPARC32TO64_UAP(offset);
3264 	error = sys_pread(p, &ua, (register_t *)&rt);
3265 	*(sparc32_ssize_t *)retval = rt;
3266 	return (error);
3267 }
3268 
3269 int
3270 compat_sparc32_pwrite(p, v, retval)
3271 	struct proc *p;
3272 	void *v;
3273 	register_t *retval;
3274 {
3275 	struct compat_sparc32_pwrite_args /* {
3276 		syscallarg(int) fd;
3277 		syscallarg(const sparc32_voidp) buf;
3278 		syscallarg(sparc32_size_t) nbyte;
3279 		syscallarg(int) pad;
3280 		syscallarg(off_t) offset;
3281 	} */ *uap = v;
3282 	struct sys_pwrite_args ua;
3283 	ssize_t rt;
3284 	int error;
3285 
3286 	SPARC32TO64_UAP(fd);
3287 	SPARC32TOP_UAP(buf, void);
3288 	SPARC32TOX_UAP(nbyte, size_t);
3289 	SPARC32TO64_UAP(pad);
3290 	SPARC32TO64_UAP(offset);
3291 	error = sys_pwrite(p, &ua, (register_t *)&rt);
3292 	*(sparc32_ssize_t *)retval = rt;
3293 	return (error);
3294 }
3295 
3296 #ifdef NTP
3297 int
3298 compat_sparc32_ntp_gettime(p, v, retval)
3299 	struct proc *p;
3300 	void *v;
3301 	register_t *retval;
3302 {
3303 	struct compat_sparc32_ntp_gettime_args /* {
3304 		syscallarg(sparc32_ntptimevalp_t) ntvp;
3305 	} */ *uap = v;
3306 	struct sparc32_ntptimeval ntv32;
3307 	struct timeval atv;
3308 	struct ntptimeval ntv;
3309 	int error = 0;
3310 	int s;
3311 
3312 	/* The following are NTP variables */
3313 	extern long time_maxerror;
3314 	extern long time_esterror;
3315 	extern int time_status;
3316 	extern int time_state;	/* clock state */
3317 	extern int time_status;	/* clock status bits */
3318 
3319 	if (SCARG(uap, ntvp)) {
3320 		s = splclock();
3321 #ifdef EXT_CLOCK
3322 		/*
3323 		 * The microtime() external clock routine returns a
3324 		 * status code. If less than zero, we declare an error
3325 		 * in the clock status word and return the kernel
3326 		 * (software) time variable. While there are other
3327 		 * places that call microtime(), this is the only place
3328 		 * that matters from an application point of view.
3329 		 */
3330 		if (microtime(&atv) < 0) {
3331 			time_status |= STA_CLOCKERR;
3332 			ntv.time = time;
3333 		} else
3334 			time_status &= ~STA_CLOCKERR;
3335 #else /* EXT_CLOCK */
3336 		microtime(&atv);
3337 #endif /* EXT_CLOCK */
3338 		ntv.time = atv;
3339 		ntv.maxerror = time_maxerror;
3340 		ntv.esterror = time_esterror;
3341 		(void) splx(s);
3342 
3343 		sparc32_from_timeval(&ntv.time, &ntv32.time);
3344 		ntv32.maxerror = (sparc32_long)ntv.maxerror;
3345 		ntv32.esterror = (sparc32_long)ntv.esterror;
3346 		error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, ntvp),
3347 		    sizeof(ntv32));
3348 	}
3349 	if (!error) {
3350 
3351 		/*
3352 		 * Status word error decode. If any of these conditions
3353 		 * occur, an error is returned, instead of the status
3354 		 * word. Most applications will care only about the fact
3355 		 * the system clock may not be trusted, not about the
3356 		 * details.
3357 		 *
3358 		 * Hardware or software error
3359 		 */
3360 		if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3361 
3362 		/*
3363 		 * PPS signal lost when either time or frequency
3364 		 * synchronization requested
3365 		 */
3366 		    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3367 		    !(time_status & STA_PPSSIGNAL)) ||
3368 
3369 		/*
3370 		 * PPS jitter exceeded when time synchronization
3371 		 * requested
3372 		 */
3373 		    (time_status & STA_PPSTIME &&
3374 		    time_status & STA_PPSJITTER) ||
3375 
3376 		/*
3377 		 * PPS wander exceeded or calibration error when
3378 		 * frequency synchronization requested
3379 		 */
3380 		    (time_status & STA_PPSFREQ &&
3381 		    time_status & (STA_PPSWANDER | STA_PPSERROR)))
3382 			*retval = TIME_ERROR;
3383 		else
3384 			*retval = (register_t)time_state;
3385 	}
3386 	return(error);
3387 }
3388 
3389 int
3390 compat_sparc32_ntp_adjtime(p, v, retval)
3391 	struct proc *p;
3392 	void *v;
3393 	register_t *retval;
3394 {
3395 	struct compat_sparc32_ntp_adjtime_args /* {
3396 		syscallarg(sparc32_timexp_t) tp;
3397 	} */ *uap = v;
3398 	struct sparc32_timex ntv32;
3399 	struct timex ntv;
3400 	int error = 0;
3401 	int modes;
3402 	int s;
3403 	extern long time_freq;		/* frequency offset (scaled ppm) */
3404 	extern long time_maxerror;
3405 	extern long time_esterror;
3406 	extern int time_state;	/* clock state */
3407 	extern int time_status;	/* clock status bits */
3408 	extern long time_constant;		/* pll time constant */
3409 	extern long time_offset;		/* time offset (us) */
3410 	extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
3411 	extern long time_precision;	/* clock precision (us) */
3412 
3413 	if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), (caddr_t)&ntv32,
3414 			sizeof(ntv32))))
3415 		return (error);
3416 	sparc32_to_timex(&ntv32, &ntv);
3417 
3418 	/*
3419 	 * Update selected clock variables - only the superuser can
3420 	 * change anything. Note that there is no error checking here on
3421 	 * the assumption the superuser should know what it is doing.
3422 	 */
3423 	modes = ntv.modes;
3424 	if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
3425 		return (error);
3426 
3427 	s = splclock();
3428 	if (modes & MOD_FREQUENCY)
3429 #ifdef PPS_SYNC
3430 		time_freq = ntv.freq - pps_freq;
3431 #else /* PPS_SYNC */
3432 		time_freq = ntv.freq;
3433 #endif /* PPS_SYNC */
3434 	if (modes & MOD_MAXERROR)
3435 		time_maxerror = ntv.maxerror;
3436 	if (modes & MOD_ESTERROR)
3437 		time_esterror = ntv.esterror;
3438 	if (modes & MOD_STATUS) {
3439 		time_status &= STA_RONLY;
3440 		time_status |= ntv.status & ~STA_RONLY;
3441 	}
3442 	if (modes & MOD_TIMECONST)
3443 		time_constant = ntv.constant;
3444 	if (modes & MOD_OFFSET)
3445 		hardupdate(ntv.offset);
3446 
3447 	/*
3448 	 * Retrieve all clock variables
3449 	 */
3450 	if (time_offset < 0)
3451 		ntv.offset = -(-time_offset >> SHIFT_UPDATE);
3452 	else
3453 		ntv.offset = time_offset >> SHIFT_UPDATE;
3454 #ifdef PPS_SYNC
3455 	ntv.freq = time_freq + pps_freq;
3456 #else /* PPS_SYNC */
3457 	ntv.freq = time_freq;
3458 #endif /* PPS_SYNC */
3459 	ntv.maxerror = time_maxerror;
3460 	ntv.esterror = time_esterror;
3461 	ntv.status = time_status;
3462 	ntv.constant = time_constant;
3463 	ntv.precision = time_precision;
3464 	ntv.tolerance = time_tolerance;
3465 #ifdef PPS_SYNC
3466 	ntv.shift = pps_shift;
3467 	ntv.ppsfreq = pps_freq;
3468 	ntv.jitter = pps_jitter >> PPS_AVG;
3469 	ntv.stabil = pps_stabil;
3470 	ntv.calcnt = pps_calcnt;
3471 	ntv.errcnt = pps_errcnt;
3472 	ntv.jitcnt = pps_jitcnt;
3473 	ntv.stbcnt = pps_stbcnt;
3474 #endif /* PPS_SYNC */
3475 	(void)splx(s);
3476 
3477 	sparc32_from_timeval(&ntv, &ntv32);
3478 	error = copyout((caddr_t)&ntv32, (caddr_t)SCARG(uap, tp), sizeof(ntv32));
3479 	if (!error) {
3480 
3481 		/*
3482 		 * Status word error decode. See comments in
3483 		 * ntp_gettime() routine.
3484 		 */
3485 		if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3486 		    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3487 		    !(time_status & STA_PPSSIGNAL)) ||
3488 		    (time_status & STA_PPSTIME &&
3489 		    time_status & STA_PPSJITTER) ||
3490 		    (time_status & STA_PPSFREQ &&
3491 		    time_status & (STA_PPSWANDER | STA_PPSERROR)))
3492 			*retval = TIME_ERROR;
3493 		else
3494 			*retval = (register_t)time_state;
3495 	}
3496 	return error;
3497 }
3498 #endif
3499 
3500 int
3501 compat_sparc32_setgid(p, v, retval)
3502 	struct proc *p;
3503 	void *v;
3504 	register_t *retval;
3505 {
3506 	struct compat_sparc32_setgid_args /* {
3507 		syscallarg(gid_t) gid;
3508 	} */ *uap = v;
3509 	struct sys_setgid_args ua;
3510 
3511 	SPARC32TO64_UAP(gid);
3512 	return (sys_setgid(p, v, retval));
3513 }
3514 
3515 int
3516 compat_sparc32_setegid(p, v, retval)
3517 	struct proc *p;
3518 	void *v;
3519 	register_t *retval;
3520 {
3521 	struct compat_sparc32_setegid_args /* {
3522 		syscallarg(gid_t) egid;
3523 	} */ *uap = v;
3524 	struct sys_setegid_args ua;
3525 
3526 	SPARC32TO64_UAP(egid);
3527 	return (sys_setegid(p, v, retval));
3528 }
3529 
3530 int
3531 compat_sparc32_seteuid(p, v, retval)
3532 	struct proc *p;
3533 	void *v;
3534 	register_t *retval;
3535 {
3536 	struct compat_sparc32_seteuid_args /* {
3537 		syscallarg(gid_t) euid;
3538 	} */ *uap = v;
3539 	struct sys_seteuid_args ua;
3540 
3541 	SPARC32TO64_UAP(euid);
3542 	return (sys_seteuid(p, v, retval));
3543 }
3544 
3545 #ifdef LFS
3546 int
3547 compat_sparc32_lfs_bmapv(p, v, retval)
3548 	struct proc *p;
3549 	void *v;
3550 	register_t *retval;
3551 {
3552 #if 0
3553 	struct compat_sparc32_lfs_bmapv_args /* {
3554 		syscallarg(sparc32_fsid_tp_t) fsidp;
3555 		syscallarg(sparc32_block_infop_t) blkiov;
3556 		syscallarg(int) blkcnt;
3557 	} */ *uap = v;
3558 	struct sys_lfs_bmapv_args ua;
3559 
3560 	SPARC32TOP_UAP(fdidp, struct fsid);
3561 	SPARC32TO64_UAP(blkcnt);
3562 	/* XXX finish me */
3563 #else
3564 
3565 	return (ENOSYS);	/* XXX */
3566 #endif
3567 }
3568 
3569 int
3570 compat_sparc32_lfs_markv(p, v, retval)
3571 	struct proc *p;
3572 	void *v;
3573 	register_t *retval;
3574 {
3575 	struct compat_sparc32_lfs_markv_args /* {
3576 		syscallarg(sparc32_fsid_tp_t) fsidp;
3577 		syscallarg(sparc32_block_infop_t) blkiov;
3578 		syscallarg(int) blkcnt;
3579 	} */ *uap = v;
3580 
3581 	return (ENOSYS);	/* XXX */
3582 }
3583 
3584 int
3585 compat_sparc32_lfs_segclean(p, v, retval)
3586 	struct proc *p;
3587 	void *v;
3588 	register_t *retval;
3589 {
3590 	struct compat_sparc32_lfs_segclean_args /* {
3591 		syscallarg(sparc32_fsid_tp_t) fsidp;
3592 		syscallarg(sparc32_u_long) segment;
3593 	} */ *uap = v;
3594 	return (ENOSYS);	/* XXX */
3595 }
3596 
3597 int
3598 compat_sparc32_lfs_segwait(p, v, retval)
3599 	struct proc *p;
3600 	void *v;
3601 	register_t *retval;
3602 {
3603 	struct compat_sparc32_lfs_segwait_args /* {
3604 		syscallarg(sparc32_fsid_tp_t) fsidp;
3605 		syscallarg(sparc32_timevalp_t) tv;
3606 	} */ *uap = v;
3607 	return (ENOSYS);	/* XXX */
3608 }
3609 #endif
3610 
3611 int
3612 compat_sparc32_pathconf(p, v, retval)
3613 	struct proc *p;
3614 	void *v;
3615 	register_t *retval;
3616 {
3617 	struct compat_sparc32_pathconf_args /* {
3618 		syscallarg(int) fd;
3619 		syscallarg(int) name;
3620 	} */ *uap = v;
3621 	struct sys_pathconf_args ua;
3622 	long rt;
3623 	int error;
3624 
3625 	SPARC32TOP_UAP(path, const char);
3626 	SPARC32TO64_UAP(name);
3627 	error = sys_pathconf(p, &ua, (register_t *)&rt);
3628 	*(sparc32_long *)retval = (sparc32_long)rt;
3629 	return (error);
3630 }
3631 
3632 int
3633 compat_sparc32_fpathconf(p, v, retval)
3634 	struct proc *p;
3635 	void *v;
3636 	register_t *retval;
3637 {
3638 	struct compat_sparc32_fpathconf_args /* {
3639 		syscallarg(int) fd;
3640 		syscallarg(int) name;
3641 	} */ *uap = v;
3642 	struct sys_fpathconf_args ua;
3643 	long rt;
3644 	int error;
3645 
3646 	SPARC32TO64_UAP(fd);
3647 	SPARC32TO64_UAP(name);
3648 	error = sys_fpathconf(p, &ua, (register_t *)&rt);
3649 	*(sparc32_long *)retval = (sparc32_long)rt;
3650 	return (error);
3651 }
3652 
3653 int
3654 compat_sparc32_getrlimit(p, v, retval)
3655 	struct proc *p;
3656 	void *v;
3657 	register_t *retval;
3658 {
3659 	struct compat_sparc32_getrlimit_args /* {
3660 		syscallarg(int) which;
3661 		syscallarg(sparc32_rlimitp_t) rlp;
3662 	} */ *uap = v;
3663 	int which = SCARG(uap, which);
3664 
3665 	if ((u_int)which >= RLIM_NLIMITS)
3666 		return (EINVAL);
3667 	return (copyout(&p->p_rlimit[which], (caddr_t)(u_long)SCARG(uap, rlp),
3668 	    sizeof(struct rlimit)));
3669 }
3670 
3671 int
3672 compat_sparc32_setrlimit(p, v, retval)
3673 	struct proc *p;
3674 	void *v;
3675 	register_t *retval;
3676 {
3677 	struct compat_sparc32_setrlimit_args /* {
3678 		syscallarg(int) which;
3679 		syscallarg(const sparc32_rlimitp_t) rlp;
3680 	} */ *uap = v;
3681 		int which = SCARG(uap, which);
3682 	struct rlimit alim;
3683 	int error;
3684 
3685 	error = copyin((caddr_t)(u_long)SCARG(uap, rlp), &alim, sizeof(struct rlimit));
3686 	if (error)
3687 		return (error);
3688 	return (dosetrlimit(p, which, &alim));
3689 }
3690 
3691 int
3692 compat_sparc32_mmap(p, v, retval)
3693 	struct proc *p;
3694 	void *v;
3695 	register_t *retval;
3696 {
3697 	struct compat_sparc32_mmap_args /* {
3698 		syscallarg(sparc32_voidp) addr;
3699 		syscallarg(sparc32_size_t) len;
3700 		syscallarg(int) prot;
3701 		syscallarg(int) flags;
3702 		syscallarg(int) fd;
3703 		syscallarg(sparc32_long) pad;
3704 		syscallarg(off_t) pos;
3705 	} */ *uap = v;
3706 	struct sys_mmap_args ua;
3707 	void *rt;
3708 	int error;
3709 
3710 	SPARC32TOP_UAP(addr, void);
3711 	SPARC32TOX_UAP(len, size_t);
3712 	SPARC32TO64_UAP(prot);
3713 	SPARC32TO64_UAP(flags);
3714 	SPARC32TO64_UAP(fd);
3715 	SPARC32TOX_UAP(pad, long);
3716 	SPARC32TOX_UAP(pos, off_t);
3717 	error = sys_mmap(p, &ua, (register_t *)&rt);
3718 	if ((long)rt > (long)UINT_MAX)
3719 		printf("compat_sparc32_mmap: retval out of range: 0x%qx",
3720 		    rt);
3721 	*retval = (sparc32_voidp)(u_long)rt;
3722 	return (error);
3723 }
3724 
3725 int
3726 compat_sparc32_lseek(p, v, retval)
3727 	struct proc *p;
3728 	void *v;
3729 	register_t *retval;
3730 {
3731 	struct compat_sparc32_lseek_args /* {
3732 		syscallarg(int) fd;
3733 		syscallarg(int) pad;
3734 		syscallarg(off_t) offset;
3735 		syscallarg(int) whence;
3736 	} */ *uap = v;
3737 	struct sys_lseek_args ua;
3738 
3739 	SPARC32TO64_UAP(fd);
3740 	SPARC32TO64_UAP(pad);
3741 	SPARC32TO64_UAP(offset);
3742 	SPARC32TO64_UAP(whence);
3743 	return (sys_lseek(p, &ua, retval));
3744 }
3745 
3746 int
3747 compat_sparc32_truncate(p, v, retval)
3748 	struct proc *p;
3749 	void *v;
3750 	register_t *retval;
3751 {
3752 	struct compat_sparc32_truncate_args /* {
3753 		syscallarg(const sparc32_charp) path;
3754 		syscallarg(int) pad;
3755 		syscallarg(off_t) length;
3756 	} */ *uap = v;
3757 	struct sys_truncate_args ua;
3758 
3759 	SPARC32TOP_UAP(path, const char);
3760 	SPARC32TO64_UAP(pad);
3761 	SPARC32TO64_UAP(length);
3762 	return (sys_truncate(p, &ua, retval));
3763 }
3764 
3765 int
3766 compat_sparc32_ftruncate(p, v, retval)
3767 	struct proc *p;
3768 	void *v;
3769 	register_t *retval;
3770 {
3771 	struct compat_sparc32_ftruncate_args /* {
3772 		syscallarg(int) fd;
3773 		syscallarg(int) pad;
3774 		syscallarg(off_t) length;
3775 	} */ *uap = v;
3776 	struct sys_ftruncate_args ua;
3777 
3778 	SPARC32TO64_UAP(fd);
3779 	SPARC32TO64_UAP(pad);
3780 	SPARC32TO64_UAP(length);
3781 	return (sys_ftruncate(p, &ua, retval));
3782 }
3783 
3784 int
3785 compat_sparc32___sysctl(p, v, retval)
3786 	struct proc *p;
3787 	void *v;
3788 	register_t *retval;
3789 {
3790 	struct compat_sparc32___sysctl_args /* {
3791 		syscallarg(sparc32_intp) name;
3792 		syscallarg(u_int) namelen;
3793 		syscallarg(sparc32_voidp) old;
3794 		syscallarg(sparc32_size_tp) oldlenp;
3795 		syscallarg(sparc32_voidp) new;
3796 		syscallarg(sparc32_size_t) newlen;
3797 	} */ *uap = v;
3798 	int error, dolock = 1;
3799 	sparc32_size_t savelen = 0;
3800 	size_t oldlen = 0;
3801 	sysctlfn *fn;
3802 	int name[CTL_MAXNAME];
3803 
3804 /*
3805  * Some of these sysctl functions do their own copyin/copyout.
3806  * We need to disable or emulate the ones that need their
3807  * arguments converted.
3808  */
3809 
3810 	if (SCARG(uap, new) != NULL &&
3811 	    (error = suser(p->p_ucred, &p->p_acflag)))
3812 		return (error);
3813 	/*
3814 	 * all top-level sysctl names are non-terminal
3815 	 */
3816 	if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
3817 		return (EINVAL);
3818 	error = copyin((caddr_t)(u_long)SCARG(uap, name), &name,
3819 		       SCARG(uap, namelen) * sizeof(int));
3820 	if (error)
3821 		return (error);
3822 
3823 	switch (name[0]) {
3824 	case CTL_KERN:
3825 		fn = kern_sysctl;
3826 		if (name[2] != KERN_VNODE)	/* XXX */
3827 			dolock = 0;
3828 		break;
3829 	case CTL_HW:
3830 		fn = hw_sysctl;
3831 		break;
3832 	case CTL_VM:
3833 #if defined(UVM)
3834 		fn = uvm_sysctl;
3835 #else
3836 		fn = vm_sysctl;
3837 #endif
3838 		break;
3839 	case CTL_NET:
3840 		fn = net_sysctl;
3841 		break;
3842 	case CTL_VFS:
3843 		fn = vfs_sysctl;
3844 		break;
3845 	case CTL_MACHDEP:
3846 		fn = cpu_sysctl;
3847 		break;
3848 #ifdef DEBUG
3849 	case CTL_DEBUG:
3850 		fn = debug_sysctl;
3851 		break;
3852 #endif
3853 #ifdef DDB
3854 	case CTL_DDB:
3855 		fn = ddb_sysctl;
3856 		break;
3857 #endif
3858 	default:
3859 		return (EOPNOTSUPP);
3860 	}
3861 
3862 	if (SCARG(uap, oldlenp) &&
3863 	    (error = copyin((caddr_t)(u_long)SCARG(uap, oldlenp), &savelen, sizeof(savelen))))
3864 		return (error);
3865 	if (SCARG(uap, old) != NULL) {
3866 #if defined(UVM)
3867 		if (!uvm_useracc((caddr_t)(u_long)SCARG(uap, old), savelen, B_WRITE))
3868 #else
3869 		if (!useracc(SCARG(uap, old), savelen, B_WRITE))
3870 #endif
3871 			return (EFAULT);
3872 #if 0 /* XXXXXXXX */
3873 		while (memlock.sl_lock) {
3874 			memlock.sl_want = 1;
3875 			sleep((caddr_t)&memlock, PRIBIO+1);
3876 			memlock.sl_locked++;
3877 		}
3878 		memlock.sl_lock = 1;
3879 #endif /* XXXXXXXX */
3880 		if (dolock)
3881 #if defined(UVM)
3882 			uvm_vslock(p, SCARG(uap, old), savelen);
3883 #else
3884 			vslock(p, SCARG(uap, old), savelen);
3885 #endif
3886 		oldlen = savelen;
3887 	}
3888 	error = (*fn)(name + 1, SCARG(uap, namelen) - 1, SCARG(uap, old),
3889 	    &oldlen, SCARG(uap, new), SCARG(uap, newlen), p);
3890 	if (SCARG(uap, old) != NULL) {
3891 		if (dolock)
3892 #if defined(UVM)
3893 			uvm_vsunlock(p, SCARG(uap, old), savelen);
3894 #else
3895 			vsunlock(p, SCARG(uap, old), savelen);
3896 #endif
3897 #if 0 /* XXXXXXXXXXX */
3898 		memlock.sl_lock = 0;
3899 		if (memlock.sl_want) {
3900 			memlock.sl_want = 0;
3901 			wakeup((caddr_t)&memlock);
3902 		}
3903 #endif /* XXXXXXXXX */
3904 	}
3905 	savelen = oldlen;
3906 	if (error)
3907 		return (error);
3908 	if (SCARG(uap, oldlenp))
3909 		error = copyout(&savelen, (caddr_t)(u_long)SCARG(uap, oldlenp), sizeof(savelen));
3910 	return (error);
3911 }
3912 
3913 int
3914 compat_sparc32_mlock(p, v, retval)
3915 	struct proc *p;
3916 	void *v;
3917 	register_t *retval;
3918 {
3919 	struct compat_sparc32_mlock_args /* {
3920 		syscallarg(const sparc32_voidp) addr;
3921 		syscallarg(sparc32_size_t) len;
3922 	} */ *uap = v;
3923 	struct sys_mlock_args ua;
3924 
3925 	SPARC32TOP_UAP(addr, const void);
3926 	SPARC32TO64_UAP(len);
3927 	return (sys_mlock(p, &ua, retval));
3928 }
3929 
3930 int
3931 compat_sparc32_munlock(p, v, retval)
3932 	struct proc *p;
3933 	void *v;
3934 	register_t *retval;
3935 {
3936 	struct compat_sparc32_munlock_args /* {
3937 		syscallarg(const sparc32_voidp) addr;
3938 		syscallarg(sparc32_size_t) len;
3939 	} */ *uap = v;
3940 	struct sys_munlock_args ua;
3941 
3942 	SPARC32TOP_UAP(addr, const void);
3943 	SPARC32TO64_UAP(len);
3944 	return (sys_munlock(p, &ua, retval));
3945 }
3946 
3947 int
3948 compat_sparc32_undelete(p, v, retval)
3949 	struct proc *p;
3950 	void *v;
3951 	register_t *retval;
3952 {
3953 	struct compat_sparc32_undelete_args /* {
3954 		syscallarg(const sparc32_charp) path;
3955 	} */ *uap = v;
3956 	struct sys_undelete_args ua;
3957 
3958 	SPARC32TOP_UAP(path, const char);
3959 	return (sys_undelete(p, &ua, retval));
3960 }
3961 
3962 int
3963 compat_sparc32_futimes(p, v, retval)
3964 	struct proc *p;
3965 	void *v;
3966 	register_t *retval;
3967 {
3968 	struct compat_sparc32_futimes_args /* {
3969 		syscallarg(int) fd;
3970 		syscallarg(const sparc32_timevalp_t) tptr;
3971 	} */ *uap = v;
3972 	int error;
3973 	struct file *fp;
3974 
3975 	if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
3976 		return (error);
3977 
3978 	return (change_utimes32((struct vnode *)fp->f_data,
3979 				(struct timeval *)(u_long)SCARG(uap, tptr), p));
3980 }
3981 
3982 int
3983 compat_sparc32_getpgid(p, v, retval)
3984 	struct proc *p;
3985 	void *v;
3986 	register_t *retval;
3987 {
3988 	struct compat_sparc32_getpgid_args /* {
3989 		syscallarg(pid_t) pid;
3990 	} */ *uap = v;
3991 	struct sys_getpgid_args ua;
3992 
3993 	SPARC32TO64_UAP(pid);
3994 	return (sys_getpgid(p, &ua, retval));
3995 }
3996 
3997 int
3998 compat_sparc32_reboot(p, v, retval)
3999 	struct proc *p;
4000 	void *v;
4001 	register_t *retval;
4002 {
4003 	struct compat_sparc32_reboot_args /* {
4004 		syscallarg(int) opt;
4005 		syscallarg(sparc32_charp) bootstr;
4006 	} */ *uap = v;
4007 	struct sys_reboot_args ua;
4008 
4009 	SPARC32TO64_UAP(opt);
4010 	SPARC32TOP_UAP(bootstr, char);
4011 	return (sys_reboot(p, &ua, retval));
4012 }
4013 
4014 int
4015 compat_sparc32_poll(p, v, retval)
4016 	struct proc *p;
4017 	void *v;
4018 	register_t *retval;
4019 {
4020 	struct compat_sparc32_poll_args /* {
4021 		syscallarg(sparc32_pollfdp_t) fds;
4022 		syscallarg(u_int) nfds;
4023 		syscallarg(int) timeout;
4024 	} */ *uap = v;
4025 	struct sys_poll_args ua;
4026 
4027 	SPARC32TOP_UAP(fds, struct pollfd);
4028 	SPARC32TO64_UAP(nfds);
4029 	SPARC32TO64_UAP(timeout);
4030 	return (sys_poll(p, &ua, retval));
4031 }
4032 
4033 /*
4034  * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4035  *
4036  * This is BSD.  We won't support System V IPC.
4037  * Too much work.
4038  *
4039  * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4040  */
4041 int
4042 compat_sparc32___semctl(p, v, retval)
4043 	struct proc *p;
4044 	void *v;
4045 	register_t *retval;
4046 {
4047 #if 0
4048 	struct compat_sparc32___semctl_args /* {
4049 		syscallarg(int) semid;
4050 		syscallarg(int) semnum;
4051 		syscallarg(int) cmd;
4052 		syscallarg(sparc32_semunu_t) arg;
4053 	} */ *uap = v;
4054 	union sparc32_semun sem32;
4055 	int semid = SCARG(uap, semid);
4056 	int semnum = SCARG(uap, semnum);
4057 	int cmd = SCARG(uap, cmd);
4058 	union sparc32_semun *arg = (void*)(u_long)SCARG(uap, arg);
4059 	union sparc32_semun real_arg;
4060 	struct ucred *cred = p->p_ucred;
4061 	int i, rval, eval;
4062 	struct sparc32_semid_ds sbuf;
4063 	register struct semid_ds *semaptr;
4064 
4065 	semlock(p);
4066 
4067 	semid = IPCID_TO_IX(semid);
4068 	if (semid < 0 || semid >= seminfo.semmsl)
4069 		return(EINVAL);
4070 
4071 	semaptr = &sema[semid];
4072 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
4073 	    semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
4074 		return(EINVAL);
4075 
4076 	eval = 0;
4077 	rval = 0;
4078 
4079 	switch (cmd) {
4080 	case IPC_RMID:
4081 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
4082 			return(eval);
4083 		semaptr->sem_perm.cuid = cred->cr_uid;
4084 		semaptr->sem_perm.uid = cred->cr_uid;
4085 		semtot -= semaptr->sem_nsems;
4086 		for (i = semaptr->sem_base - sem; i < semtot; i++)
4087 			sem[i] = sem[i + semaptr->sem_nsems];
4088 		for (i = 0; i < seminfo.semmni; i++) {
4089 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
4090 			    sema[i].sem_base > semaptr->sem_base)
4091 				sema[i].sem_base -= semaptr->sem_nsems;
4092 		}
4093 		semaptr->sem_perm.mode = 0;
4094 		semundo_clear(semid, -1);
4095 		wakeup((caddr_t)semaptr);
4096 		break;
4097 
4098 	case IPC_SET:
4099 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
4100 			return(eval);
4101 		if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4102 			return(eval);
4103 		if ((eval = copyin((caddr_t)(u_long)real_arg.buf, (caddr_t)&sbuf,
4104 		    sizeof(sbuf))) != 0)
4105 			return(eval);
4106 		semaptr->sem_perm.uid = sbuf.sem_perm.uid;
4107 		semaptr->sem_perm.gid = sbuf.sem_perm.gid;
4108 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
4109 		    (sbuf.sem_perm.mode & 0777);
4110 		semaptr->sem_ctime = time.tv_sec;
4111 		break;
4112 
4113 	case IPC_STAT:
4114 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4115 			return(eval);
4116 		if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4117 			return(eval);
4118 		eval = copyout((caddr_t)semaptr, (caddr_t)(u_long)real_arg.buf,
4119 		    sizeof(struct semid_ds));
4120 		break;
4121 
4122 	case GETNCNT:
4123 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4124 			return(eval);
4125 		if (semnum < 0 || semnum >= semaptr->sem_nsems)
4126 			return(EINVAL);
4127 		rval = semaptr->sem_base[semnum].semncnt;
4128 		break;
4129 
4130 	case GETPID:
4131 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4132 			return(eval);
4133 		if (semnum < 0 || semnum >= semaptr->sem_nsems)
4134 			return(EINVAL);
4135 		rval = semaptr->sem_base[semnum].sempid;
4136 		break;
4137 
4138 	case GETVAL:
4139 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4140 			return(eval);
4141 		if (semnum < 0 || semnum >= semaptr->sem_nsems)
4142 			return(EINVAL);
4143 		rval = semaptr->sem_base[semnum].semval;
4144 		break;
4145 
4146 	case GETALL:
4147 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4148 			return(eval);
4149 		if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4150 			return(eval);
4151 		for (i = 0; i < semaptr->sem_nsems; i++) {
4152 			eval = copyout((caddr_t)&semaptr->sem_base[i].semval,
4153 			    &real_arg.array[i], sizeof(real_arg.array[0]));
4154 			if (eval != 0)
4155 				break;
4156 		}
4157 		break;
4158 
4159 	case GETZCNT:
4160 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4161 			return(eval);
4162 		if (semnum < 0 || semnum >= semaptr->sem_nsems)
4163 			return(EINVAL);
4164 		rval = semaptr->sem_base[semnum].semzcnt;
4165 		break;
4166 
4167 	case SETVAL:
4168 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4169 			return(eval);
4170 		if (semnum < 0 || semnum >= semaptr->sem_nsems)
4171 			return(EINVAL);
4172 		if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4173 			return(eval);
4174 		semaptr->sem_base[semnum].semval = real_arg.val;
4175 		semundo_clear(semid, semnum);
4176 		wakeup((caddr_t)semaptr);
4177 		break;
4178 
4179 	case SETALL:
4180 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4181 			return(eval);
4182 		if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4183 			return(eval);
4184 		for (i = 0; i < semaptr->sem_nsems; i++) {
4185 			eval = copyin(&real_arg.array[i],
4186 			    (caddr_t)&semaptr->sem_base[i].semval,
4187 			    sizeof(real_arg.array[0]));
4188 			if (eval != 0)
4189 				break;
4190 		}
4191 		semundo_clear(semid, -1);
4192 		wakeup((caddr_t)semaptr);
4193 		break;
4194 
4195 	default:
4196 		return(EINVAL);
4197 	}
4198 
4199 	if (eval == 0)
4200 		*retval = rval;
4201 	return(eval);
4202 #else
4203 	return (ENOSYS);
4204 #endif
4205 }
4206 
4207 int
4208 compat_sparc32_semget(p, v, retval)
4209 	struct proc *p;
4210 	void *v;
4211 	register_t *retval;
4212 {
4213 	struct compat_sparc32_semget_args /* {
4214 		syscallarg(sparc32_key_t) key;
4215 		syscallarg(int) nsems;
4216 		syscallarg(int) semflg;
4217 	} */ *uap = v;
4218 	struct sys_semget_args ua;
4219 
4220 	SPARC32TOX_UAP(key, key_t);
4221 	SPARC32TO64_UAP(nsems);
4222 	SPARC32TO64_UAP(semflg);
4223 	return (sys_semget(p, &ua, retval));
4224 }
4225 
4226 int
4227 compat_sparc32_semop(p, v, retval)
4228 	struct proc *p;
4229 	void *v;
4230 	register_t *retval;
4231 {
4232 	struct compat_sparc32_semop_args /* {
4233 		syscallarg(int) semid;
4234 		syscallarg(sparc32_sembufp_t) sops;
4235 		syscallarg(sparc32_size_t) nsops;
4236 	} */ *uap = v;
4237 	struct sys_semop_args ua;
4238 
4239 	SPARC32TO64_UAP(semid);
4240 	SPARC32TOP_UAP(sops, struct sembuf);
4241 	SPARC32TOX_UAP(nsops, size_t);
4242 	return (sys_semop(p, &ua, retval));
4243 }
4244 
4245 int
4246 compat_sparc32_semconfig(p, v, retval)
4247 	struct proc *p;
4248 	void *v;
4249 	register_t *retval;
4250 {
4251 	struct compat_sparc32_semconfig_args /* {
4252 		syscallarg(int) flag;
4253 	} */ *uap = v;
4254 	struct sys_semconfig_args ua;
4255 
4256 	SPARC32TO64_UAP(flag);
4257 	return (sys_semconfig(p, &ua, retval));
4258 }
4259 
4260 int
4261 compat_sparc32_msgctl(p, v, retval)
4262 	struct proc *p;
4263 	void *v;
4264 	register_t *retval;
4265 {
4266 #if 0
4267 	struct compat_sparc32_msgctl_args /* {
4268 		syscallarg(int) msqid;
4269 		syscallarg(int) cmd;
4270 		syscallarg(sparc32_msqid_dsp_t) buf;
4271 	} */ *uap = v;
4272 	struct sys_msgctl_args ua;
4273 	struct msqid_ds ds;
4274 	struct sparc32_msqid_ds *ds32p;
4275 	int error;
4276 
4277 	SPARC32TO64_UAP(msqid);
4278 	SPARC32TO64_UAP(cmd);
4279 	ds32p = (struct sparc32_msqid_ds *)(u_long)SCARG(uap, buf);
4280 	if (ds32p) {
4281 		SCARG(&ua, buf) = NULL;
4282 		sparc32_to_msqid_ds(ds32p, &ds);
4283 	} else
4284 		SCARG(&ua, buf) = NULL;
4285 	error = sys_msgctl(p, &ua, retval);
4286 	if (error)
4287 		return (error);
4288 
4289 	if (ds32p)
4290 		sparc32_from_msqid_ds(&ds, ds32p);
4291 	return (0);
4292 #else
4293 	return (ENOSYS);
4294 #endif
4295 }
4296 
4297 int
4298 compat_sparc32_msgget(p, v, retval)
4299 	struct proc *p;
4300 	void *v;
4301 	register_t *retval;
4302 {
4303 #if 0
4304 	struct compat_sparc32_msgget_args /* {
4305 		syscallarg(sparc32_key_t) key;
4306 		syscallarg(int) msgflg;
4307 	} */ *uap = v;
4308 	struct sys_msgget_args ua;
4309 
4310 	SPARC32TOX_UAP(key, key_t);
4311 	SPARC32TO64_UAP(msgflg);
4312 	return (sys_msgget(p, &ua, retval));
4313 #else
4314 	return (ENOSYS);
4315 #endif
4316 }
4317 
4318 int
4319 compat_sparc32_msgsnd(p, v, retval)
4320 	struct proc *p;
4321 	void *v;
4322 	register_t *retval;
4323 {
4324 #if 0
4325 	struct compat_sparc32_msgsnd_args /* {
4326 		syscallarg(int) msqid;
4327 		syscallarg(const sparc32_voidp) msgp;
4328 		syscallarg(sparc32_size_t) msgsz;
4329 		syscallarg(int) msgflg;
4330 	} */ *uap = v;
4331 	struct sys_msgsnd_args ua;
4332 
4333 	SPARC32TO64_UAP(msqid);
4334 	SPARC32TOP_UAP(msgp, void);
4335 	SPARC32TOX_UAP(msgsz, size_t);
4336 	SPARC32TO64_UAP(msgflg);
4337 	return (sys_msgsnd(p, &ua, retval));
4338 #else
4339 	return (ENOSYS);
4340 #endif
4341 }
4342 
4343 int
4344 compat_sparc32_msgrcv(p, v, retval)
4345 	struct proc *p;
4346 	void *v;
4347 	register_t *retval;
4348 {
4349 #if 0
4350 	struct compat_sparc32_msgrcv_args /* {
4351 		syscallarg(int) msqid;
4352 		syscallarg(sparc32_voidp) msgp;
4353 		syscallarg(sparc32_size_t) msgsz;
4354 		syscallarg(sparc32_long) msgtyp;
4355 		syscallarg(int) msgflg;
4356 	} */ *uap = v;
4357 	struct sys_msgrcv_args ua;
4358 	ssize_t rt;
4359 	int error;
4360 
4361 	SPARC32TO64_UAP(msqid);
4362 	SPARC32TOP_UAP(msgp, void);
4363 	SPARC32TOX_UAP(msgsz, size_t);
4364 	SPARC32TOX_UAP(msgtyp, long);
4365 	SPARC32TO64_UAP(msgflg);
4366 	error = sys_msgrcv(p, &ua, (register_t *)&rt);
4367 	*(sparc32_ssize_t *)retval = rt;
4368 	return (error);
4369 #else
4370 	return (ENOSYS);
4371 #endif
4372 }
4373 
4374 int
4375 compat_sparc32_shmat(p, v, retval)
4376 	struct proc *p;
4377 	void *v;
4378 	register_t *retval;
4379 {
4380 #if 0
4381 	struct compat_sparc32_shmat_args /* {
4382 		syscallarg(int) shmid;
4383 		syscallarg(const sparc32_voidp) shmaddr;
4384 		syscallarg(int) shmflg;
4385 	} */ *uap = v;
4386 	struct sys_shmat_args ua;
4387 	void *rt;
4388 	int error;
4389 
4390 	SPARC32TO64_UAP(shmid);
4391 	SPARC32TOP_UAP(shmaddr, void);
4392 	SPARC32TO64_UAP(shmflg);
4393 	error = sys_shmat(p, &ua, (register_t *)&rt);
4394 	*retval = (sparc32_voidp)(u_long)rt;
4395 	return (error);
4396 #else
4397 	return (ENOSYS);
4398 #endif
4399 }
4400 
4401 int
4402 compat_sparc32_shmctl(p, v, retval)
4403 	struct proc *p;
4404 	void *v;
4405 	register_t *retval;
4406 {
4407 #if 0
4408 	struct compat_sparc32_shmctl_args /* {
4409 		syscallarg(int) shmid;
4410 		syscallarg(int) cmd;
4411 		syscallarg(sparc32_shmid_dsp_t) buf;
4412 	} */ *uap = v;
4413 	struct sys_shmctl_args ua;
4414 	struct shmid_ds ds;
4415 	struct sparc32_shmid_ds *ds32p;
4416 	int error;
4417 
4418 	SPARC32TO64_UAP(shmid);
4419 	SPARC32TO64_UAP(cmd);
4420 	ds32p = (struct sparc32_shmid_ds *)(u_long)SCARG(uap, buf);
4421 	if (ds32p) {
4422 		SCARG(&ua, buf) = NULL;
4423 		sparc32_to_shmid_ds(ds32p, &ds);
4424 	} else
4425 		SCARG(&ua, buf) = NULL;
4426 	error = sys_shmctl(p, &ua, retval);
4427 	if (error)
4428 		return (error);
4429 
4430 	if (ds32p)
4431 		sparc32_from_shmid_ds(&ds, ds32p);
4432 	return (0);
4433 #else
4434 	return (ENOSYS);
4435 #endif
4436 }
4437 
4438 int
4439 compat_sparc32_shmdt(p, v, retval)
4440 	struct proc *p;
4441 	void *v;
4442 	register_t *retval;
4443 {
4444 #if 0
4445 	struct compat_sparc32_shmdt_args /* {
4446 		syscallarg(const sparc32_voidp) shmaddr;
4447 	} */ *uap = v;
4448 	struct sys_shmdt_args ua;
4449 
4450 	SPARC32TOP_UAP(shmaddr, const char);
4451 	return (sys_shmdt(p, &ua, retval));
4452 #else
4453 	return (ENOSYS);
4454 #endif
4455 }
4456 
4457 int
4458 compat_sparc32_shmget(p, v, retval)
4459 	struct proc *p;
4460 	void *v;
4461 	register_t *retval;
4462 {
4463 #if 0
4464 	struct compat_sparc32_shmget_args /* {
4465 		syscallarg(sparc32_key_t) key;
4466 		syscallarg(sparc32_size_t) size;
4467 		syscallarg(int) shmflg;
4468 	} */ *uap = v;
4469 	struct sys_shmget_args ua;
4470 
4471 	SPARC32TOX_UAP(key, key_t)
4472 	SPARC32TOX_UAP(size, size_t)
4473 	SPARC32TO64_UAP(shmflg);
4474 	return (sys_shmget(p, &ua, retval));
4475 #else
4476 	return (ENOSYS);
4477 #endif
4478 }
4479 
4480 int
4481 compat_sparc32_clock_gettime(p, v, retval)
4482 	struct proc *p;
4483 	void *v;
4484 	register_t *retval;
4485 {
4486 	struct compat_sparc32_clock_gettime_args /* {
4487 		syscallarg(sparc32_clockid_t) clock_id;
4488 		syscallarg(sparc32_timespecp_t) tp;
4489 	} */ *uap = v;
4490 	clockid_t clock_id;
4491 	struct timeval atv;
4492 	struct timespec ats;
4493 	struct sparc32_timespec ts32;
4494 
4495 	clock_id = SCARG(uap, clock_id);
4496 	if (clock_id != CLOCK_REALTIME)
4497 		return (EINVAL);
4498 
4499 	microtime(&atv);
4500 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
4501 	sparc32_from_timespec(&ats, &ts32);
4502 
4503 	return copyout(&ts32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts32));
4504 }
4505 
4506 int
4507 compat_sparc32_clock_settime(p, v, retval)
4508 	struct proc *p;
4509 	void *v;
4510 	register_t *retval;
4511 {
4512 	struct compat_sparc32_clock_settime_args /* {
4513 		syscallarg(sparc32_clockid_t) clock_id;
4514 		syscallarg(const sparc32_timespecp_t) tp;
4515 	} */ *uap = v;
4516 	struct sparc32_timespec ts32;
4517 	clockid_t clock_id;
4518 	struct timeval atv;
4519 	struct timespec ats;
4520 	int error;
4521 
4522 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
4523 		return (error);
4524 
4525 	clock_id = SCARG(uap, clock_id);
4526 	if (clock_id != CLOCK_REALTIME)
4527 		return (EINVAL);
4528 
4529 	if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), &ts32, sizeof(ts32))) != 0)
4530 		return (error);
4531 
4532 	sparc32_to_timespec(&ts32, &ats);
4533 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
4534 	if ((error = settime(&atv)))
4535 		return (error);
4536 
4537 	return 0;
4538 }
4539 
4540 int
4541 compat_sparc32_clock_getres(p, v, retval)
4542 	struct proc *p;
4543 	void *v;
4544 	register_t *retval;
4545 {
4546 	struct compat_sparc32_clock_getres_args /* {
4547 		syscallarg(sparc32_clockid_t) clock_id;
4548 		syscallarg(sparc32_timespecp_t) tp;
4549 	} */ *uap = v;
4550 	struct sparc32_timespec ts32;
4551 	clockid_t clock_id;
4552 	struct timespec ts;
4553 	int error = 0;
4554 
4555 	clock_id = SCARG(uap, clock_id);
4556 	if (clock_id != CLOCK_REALTIME)
4557 		return (EINVAL);
4558 
4559 	if (SCARG(uap, tp)) {
4560 		ts.tv_sec = 0;
4561 		ts.tv_nsec = 1000000000 / hz;
4562 
4563 		sparc32_from_timespec(&ts, &ts32);
4564 		error = copyout(&ts, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts));
4565 	}
4566 
4567 	return error;
4568 }
4569 
4570 int
4571 compat_sparc32_nanosleep(p, v, retval)
4572 	struct proc *p;
4573 	void *v;
4574 	register_t *retval;
4575 {
4576 	struct compat_sparc32_nanosleep_args /* {
4577 		syscallarg(const sparc32_timespecp_t) rqtp;
4578 		syscallarg(sparc32_timespecp_t) rmtp;
4579 	} */ *uap = v;
4580 	static int nanowait;
4581 	struct sparc32_timespec ts32;
4582 	struct timespec rqt;
4583 	struct timespec rmt;
4584 	struct timeval atv, utv;
4585 	int error, s, timo;
4586 
4587 	error = copyin((caddr_t)(u_long)SCARG(uap, rqtp), (caddr_t)&ts32,
4588 		       sizeof(ts32));
4589 	if (error)
4590 		return (error);
4591 
4592 	sparc32_to_timespec(&ts32, &rqt);
4593 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
4594 	if (itimerfix(&atv))
4595 		return (EINVAL);
4596 
4597 	s = splclock();
4598 	timeradd(&atv,&time,&atv);
4599 	timo = hzto(&atv);
4600 	/*
4601 	 * Avoid inadvertantly sleeping forever
4602 	 */
4603 	if (timo == 0)
4604 		timo = 1;
4605 	splx(s);
4606 
4607 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
4608 	if (error == ERESTART)
4609 		error = EINTR;
4610 	if (error == EWOULDBLOCK)
4611 		error = 0;
4612 
4613 	if (SCARG(uap, rmtp)) {
4614 		int error;
4615 
4616 		s = splclock();
4617 		utv = time;
4618 		splx(s);
4619 
4620 		timersub(&atv, &utv, &utv);
4621 		if (utv.tv_sec < 0)
4622 			timerclear(&utv);
4623 
4624 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
4625 		sparc32_from_timespec(&rmt, &ts32);
4626 		error = copyout((caddr_t)&ts32, (caddr_t)(u_long)SCARG(uap,rmtp),
4627 			sizeof(ts32));
4628 		if (error)
4629 			return (error);
4630 	}
4631 
4632 	return error;
4633 }
4634 
4635 int
4636 compat_sparc32_fdatasync(p, v, retval)
4637 	struct proc *p;
4638 	void *v;
4639 	register_t *retval;
4640 {
4641 	struct compat_sparc32_fdatasync_args /* {
4642 		syscallarg(int) fd;
4643 	} */ *uap = v;
4644 	struct sys_fdatasync_args ua;
4645 
4646 	SPARC32TO64_UAP(fd);
4647 
4648 	return (sys_fdatasync(p, &ua, retval));
4649 }
4650 
4651 int
4652 compat_sparc32___posix_rename(p, v, retval)
4653 	struct proc *p;
4654 	void *v;
4655 	register_t *retval;
4656 {
4657 	struct compat_sparc32___posix_rename_args /* {
4658 		syscallarg(const sparc32_charp) from;
4659 		syscallarg(const sparc32_charp) to;
4660 	} */ *uap = v;
4661 	struct sys___posix_rename_args ua;
4662 
4663 	SPARC32TOP_UAP(from, const char *);
4664 	SPARC32TOP_UAP(to, const char *);
4665 
4666 	return (sys___posix_rename(p, &ua, retval));
4667 }
4668 
4669 int
4670 compat_sparc32_swapctl(p, v, retval)
4671 	struct proc *p;
4672 	void *v;
4673 	register_t *retval;
4674 {
4675 	struct compat_sparc32_swapctl_args /* {
4676 		syscallarg(int) cmd;
4677 		syscallarg(const sparc32_voidp) arg;
4678 		syscallarg(int) misc;
4679 	} */ *uap = v;
4680 	struct sys_swapctl_args ua;
4681 
4682 	SPARC32TO64_UAP(cmd);
4683 	SPARC32TOP_UAP(arg, const void);
4684 	SPARC32TO64_UAP(misc);
4685 	return (sys_swapctl(p, &ua, retval));
4686 }
4687 
4688 int
4689 compat_sparc32_getdents(p, v, retval)
4690 	struct proc *p;
4691 	void *v;
4692 	register_t *retval;
4693 {
4694 	struct compat_sparc32_getdents_args /* {
4695 		syscallarg(int) fd;
4696 		syscallarg(sparc32_charp) buf;
4697 		syscallarg(sparc32_size_t) count;
4698 	} */ *uap = v;
4699 	struct file *fp;
4700 	int error, done;
4701 
4702 	if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
4703 		return (error);
4704 	if ((fp->f_flag & FREAD) == 0)
4705 		return (EBADF);
4706 	error = vn_readdir(fp, (caddr_t)(u_long)SCARG(uap, buf), UIO_USERSPACE,
4707 			SCARG(uap, count), &done, p, 0, 0);
4708 	*retval = done;
4709 	return (error);
4710 }
4711 
4712 
4713 int
4714 compat_sparc32_minherit(p, v, retval)
4715 	struct proc *p;
4716 	void *v;
4717 	register_t *retval;
4718 {
4719 	struct compat_sparc32_minherit_args /* {
4720 		syscallarg(sparc32_voidp) addr;
4721 		syscallarg(sparc32_size_t) len;
4722 		syscallarg(int) inherit;
4723 	} */ *uap = v;
4724 	struct sys_minherit_args ua;
4725 
4726 	SPARC32TOP_UAP(addr, void);
4727 	SPARC32TOX_UAP(len, size_t);
4728 	SPARC32TO64_UAP(inherit);
4729 	return (sys_minherit(p, &ua, retval));
4730 }
4731 
4732 int
4733 compat_sparc32_lchmod(p, v, retval)
4734 	struct proc *p;
4735 	void *v;
4736 	register_t *retval;
4737 {
4738 	struct compat_sparc32_lchmod_args /* {
4739 		syscallarg(const sparc32_charp) path;
4740 		syscallarg(mode_t) mode;
4741 	} */ *uap = v;
4742 	struct sys_lchmod_args ua;
4743 
4744 	SPARC32TOP_UAP(path, const char);
4745 	SPARC32TO64_UAP(mode);
4746 	return (sys_lchmod(p, &ua, retval));
4747 }
4748 
4749 int
4750 compat_sparc32_lchown(p, v, retval)
4751 	struct proc *p;
4752 	void *v;
4753 	register_t *retval;
4754 {
4755 	struct compat_sparc32_lchown_args /* {
4756 		syscallarg(const sparc32_charp) path;
4757 		syscallarg(uid_t) uid;
4758 		syscallarg(gid_t) gid;
4759 	} */ *uap = v;
4760 	struct sys_lchown_args ua;
4761 
4762 	SPARC32TOP_UAP(path, const char);
4763 	SPARC32TO64_UAP(uid);
4764 	SPARC32TO64_UAP(gid);
4765 	return (sys_lchown(p, &ua, retval));
4766 }
4767 
4768 int
4769 compat_sparc32_lutimes(p, v, retval)
4770 	struct proc *p;
4771 	void *v;
4772 	register_t *retval;
4773 {
4774 	struct compat_sparc32_lutimes_args /* {
4775 		syscallarg(const sparc32_charp) path;
4776 		syscallarg(const sparc32_timevalp_t) tptr;
4777 	} */ *uap = v;
4778 	int error;
4779 	struct nameidata nd;
4780 
4781 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, (caddr_t)(u_long)SCARG(uap, path), p);
4782 	if ((error = namei(&nd)) != 0)
4783 		return (error);
4784 
4785 	error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
4786 
4787 	vrele(nd.ni_vp);
4788 	return (error);
4789 }
4790 
4791 
4792 int
4793 compat_sparc32___msync13(p, v, retval)
4794 	struct proc *p;
4795 	void *v;
4796 	register_t *retval;
4797 {
4798 	struct compat_sparc32___msync13_args /* {
4799 		syscallarg(sparc32_voidp) addr;
4800 		syscallarg(sparc32_size_t) len;
4801 		syscallarg(int) flags;
4802 	} */ *uap = v;
4803 	struct sys___msync13_args ua;
4804 
4805 	SPARC32TOP_UAP(addr, void);
4806 	SPARC32TOX_UAP(len, size_t);
4807 	SPARC32TO64_UAP(flags);
4808 	return (sys___msync13(p, &ua, retval));
4809 }
4810 
4811 int
4812 compat_sparc32___stat13(p, v, retval)
4813 	struct proc *p;
4814 	void *v;
4815 	register_t *retval;
4816 {
4817 	struct compat_sparc32___stat13_args /* {
4818 		syscallarg(const sparc32_charp) path;
4819 		syscallarg(sparc32_statp_t) ub;
4820 	} */ *uap = v;
4821 	struct sparc32_stat sb32;
4822 	struct stat sb;
4823 	int error;
4824 	struct nameidata nd;
4825 
4826 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE,
4827 	    (caddr_t)(u_long)SCARG(uap, path), p);
4828 	if ((error = namei(&nd)) != 0)
4829 		return (error);
4830 	error = vn_stat(nd.ni_vp, &sb, p);
4831 	vput(nd.ni_vp);
4832 	if (error)
4833 		return (error);
4834 	sparc32_from___stat13(&sb, &sb32);
4835 	error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
4836 	return (error);
4837 }
4838 
4839 int
4840 compat_sparc32___fstat13(p, v, retval)
4841 	struct proc *p;
4842 	void *v;
4843 	register_t *retval;
4844 {
4845 	struct compat_sparc32___fstat13_args /* {
4846 		syscallarg(int) fd;
4847 		syscallarg(sparc32_statp_t) sb;
4848 	} */ *uap = v;
4849 	int fd = SCARG(uap, fd);
4850 	register struct filedesc *fdp = p->p_fd;
4851 	register struct file *fp;
4852 	struct sparc32_stat sb32;
4853 	struct stat ub;
4854 	int error = 0;
4855 
4856 	if ((u_int)fd >= fdp->fd_nfiles ||
4857 	    (fp = fdp->fd_ofiles[fd]) == NULL)
4858 		return (EBADF);
4859 	switch (fp->f_type) {
4860 
4861 	case DTYPE_VNODE:
4862 		error = vn_stat((struct vnode *)fp->f_data, &ub, p);
4863 		break;
4864 
4865 	case DTYPE_SOCKET:
4866 		error = soo_stat((struct socket *)fp->f_data, &ub);
4867 		break;
4868 
4869 	default:
4870 		panic("fstat");
4871 		/*NOTREACHED*/
4872 	}
4873 	if (error == 0) {
4874 		sparc32_from___stat13(&ub, &sb32);
4875 		error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, sb), sizeof(sb32));
4876 	}
4877 	return (error);
4878 }
4879 
4880 int
4881 compat_sparc32___lstat13(p, v, retval)
4882 	struct proc *p;
4883 	void *v;
4884 	register_t *retval;
4885 {
4886 	struct compat_sparc32___lstat13_args /* {
4887 		syscallarg(const sparc32_charp) path;
4888 		syscallarg(sparc32_statp_t) ub;
4889 	} */ *uap = v;
4890 	struct sparc32_stat sb32;
4891 	struct stat sb;
4892 	int error;
4893 	struct nameidata nd;
4894 
4895 	NDINIT(&nd, LOOKUP, NOFOLLOW | LOCKLEAF, UIO_USERSPACE,
4896 	    (caddr_t)(u_long)SCARG(uap, path), p);
4897 	if ((error = namei(&nd)) != 0)
4898 		return (error);
4899 	error = vn_stat(nd.ni_vp, &sb, p);
4900 	vput(nd.ni_vp);
4901 	if (error)
4902 		return (error);
4903 	sparc32_from___stat13(&sb, &sb32);
4904 	error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
4905 	return (error);
4906 }
4907 
4908 int
4909 compat_sparc32___sigaltstack14(p, v, retval)
4910 	struct proc *p;
4911 	void *v;
4912 	register_t *retval;
4913 {
4914 	struct compat_sparc32___sigaltstack14_args /* {
4915 		syscallarg(const sparc32_sigaltstackp_t) nss;
4916 		syscallarg(sparc32_sigaltstackp_t) oss;
4917 	} */ *uap = v;
4918 	struct sparc32_sigaltstack s32;
4919 	struct sigaltstack nss, oss;
4920 	int error;
4921 
4922 	if (SCARG(uap, nss)) {
4923 		error = copyin((caddr_t)(u_long)SCARG(uap, nss), &s32, sizeof(s32));
4924 		if (error)
4925 			return (error);
4926 		nss.ss_sp = (void *)(u_long)s32.ss_sp;
4927 		nss.ss_size = (size_t)s32.ss_size;
4928 		nss.ss_flags = s32.ss_flags;
4929 	}
4930 	error = sigaltstack1(p,
4931 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
4932 	if (error)
4933 		return (error);
4934 	if (SCARG(uap, oss)) {
4935 		s32.ss_sp = (sparc32_voidp)(u_long)oss.ss_sp;
4936 		s32.ss_size = (sparc32_size_t)oss.ss_size;
4937 		s32.ss_flags = oss.ss_flags;
4938 		error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, oss), sizeof(s32));
4939 		if (error)
4940 			return (error);
4941 	}
4942 	return (0);
4943 }
4944 
4945 int
4946 compat_sparc32___posix_chown(p, v, retval)
4947 	struct proc *p;
4948 	void *v;
4949 	register_t *retval;
4950 {
4951 	struct compat_sparc32___posix_chown_args /* {
4952 		syscallarg(const sparc32_charp) path;
4953 		syscallarg(uid_t) uid;
4954 		syscallarg(gid_t) gid;
4955 	} */ *uap = v;
4956 	struct sys___posix_chown_args ua;
4957 
4958 	SPARC32TOP_UAP(path, const char);
4959 	SPARC32TO64_UAP(uid);
4960 	SPARC32TO64_UAP(gid);
4961 	return (sys___posix_chown(p, &ua, retval));
4962 }
4963 
4964 int
4965 compat_sparc32___posix_fchown(p, v, retval)
4966 	struct proc *p;
4967 	void *v;
4968 	register_t *retval;
4969 {
4970 	struct compat_sparc32___posix_fchown_args /* {
4971 		syscallarg(int) fd;
4972 		syscallarg(uid_t) uid;
4973 		syscallarg(gid_t) gid;
4974 	} */ *uap = v;
4975 	struct sys___posix_fchown_args ua;
4976 
4977 	SPARC32TO64_UAP(fd);
4978 	SPARC32TO64_UAP(uid);
4979 	SPARC32TO64_UAP(gid);
4980 	return (sys___posix_fchown(p, &ua, retval));
4981 }
4982 
4983 int
4984 compat_sparc32___posix_lchown(p, v, retval)
4985 	struct proc *p;
4986 	void *v;
4987 	register_t *retval;
4988 {
4989 	struct compat_sparc32___posix_lchown_args /* {
4990 		syscallarg(const sparc32_charp) path;
4991 		syscallarg(uid_t) uid;
4992 		syscallarg(gid_t) gid;
4993 	} */ *uap = v;
4994 	struct sys___posix_lchown_args ua;
4995 
4996 	SPARC32TOP_UAP(path, const char);
4997 	SPARC32TO64_UAP(uid);
4998 	SPARC32TO64_UAP(gid);
4999 	return (sys___posix_lchown(p, &ua, retval));
5000 }
5001 
5002 int
5003 compat_sparc32_getsid(p, v, retval)
5004 	struct proc *p;
5005 	void *v;
5006 	register_t *retval;
5007 {
5008 	struct compat_sparc32_getsid_args /* {
5009 		syscallarg(pid_t) pid;
5010 	} */ *uap = v;
5011 	struct sys_getsid_args ua;
5012 
5013 	SPARC32TO64_UAP(pid);
5014 	return (sys_getsid(p, &ua, retval));
5015 }
5016 
5017 int
5018 compat_sparc32_fktrace(p, v, retval)
5019 	struct proc *p;
5020 	void *v;
5021 	register_t *retval;
5022 {
5023 	struct compat_sparc32_fktrace_args /* {
5024 		syscallarg(const int) fd;
5025 		syscallarg(int) ops;
5026 		syscallarg(int) facs;
5027 		syscallarg(int) pid;
5028 	} */ *uap = v;
5029 	struct sys_fktrace_args ua;
5030 
5031 	SPARC32TO64_UAP(fd);
5032 	SPARC32TO64_UAP(ops);
5033 	SPARC32TO64_UAP(facs);
5034 	SPARC32TO64_UAP(pid);
5035 	return (sys_fktrace(p, &ua, retval));
5036 }
5037 
5038 int
5039 compat_sparc32_preadv(p, v, retval)
5040 	struct proc *p;
5041 	void *v;
5042 	register_t *retval;
5043 {
5044 	struct compat_sparc32_preadv_args /* {
5045 		syscallarg(int) fd;
5046 		syscallarg(const sparc32_iovecp_t) iovp;
5047 		syscallarg(int) iovcnt;
5048 		syscallarg(int) pad;
5049 		syscallarg(off_t) offset;
5050 	} */ *uap = v;
5051 	struct filedesc *fdp = p->p_fd;
5052 	struct file *fp;
5053 	struct vnode *vp;
5054 	off_t offset;
5055 	int error, fd = SCARG(uap, fd);
5056 
5057 	if ((u_int)fd >= fdp->fd_nfiles ||
5058 	    (fp = fdp->fd_ofiles[fd]) == NULL ||
5059 	    (fp->f_flag & FREAD) == 0)
5060 		return (EBADF);
5061 
5062 	vp = (struct vnode *)fp->f_data;
5063 	if (fp->f_type != DTYPE_VNODE
5064 	    || vp->v_type == VFIFO)
5065 		return (ESPIPE);
5066 
5067 	offset = SCARG(uap, offset);
5068 
5069 	/*
5070 	 * XXX This works because no file systems actually
5071 	 * XXX take any action on the seek operation.
5072 	 */
5073 	if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5074 		return (error);
5075 
5076 	return (dofilereadv32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5077 	    &offset, 0, retval));
5078 }
5079 
5080 int
5081 compat_sparc32_pwritev(p, v, retval)
5082 	struct proc *p;
5083 	void *v;
5084 	register_t *retval;
5085 {
5086 	struct compat_sparc32_pwritev_args /* {
5087 		syscallarg(int) fd;
5088 		syscallarg(const sparc32_iovecp_t) iovp;
5089 		syscallarg(int) iovcnt;
5090 		syscallarg(int) pad;
5091 		syscallarg(off_t) offset;
5092 	} */ *uap = v;
5093 	struct filedesc *fdp = p->p_fd;
5094 	struct file *fp;
5095 	struct vnode *vp;
5096 	off_t offset;
5097 	int error, fd = SCARG(uap, fd);
5098 
5099 	if ((u_int)fd >= fdp->fd_nfiles ||
5100 	    (fp = fdp->fd_ofiles[fd]) == NULL ||
5101 	    (fp->f_flag & FWRITE) == 0)
5102 		return (EBADF);
5103 
5104 	vp = (struct vnode *)fp->f_data;
5105 	if (fp->f_type != DTYPE_VNODE
5106 	    || vp->v_type == VFIFO)
5107 		return (ESPIPE);
5108 
5109 	offset = SCARG(uap, offset);
5110 
5111 	/*
5112 	 * XXX This works because no file systems actually
5113 	 * XXX take any action on the seek operation.
5114 	 */
5115 	if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5116 		return (error);
5117 
5118 	return (dofilewritev32(p, fd, fp, (struct sparc32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5119 	    &offset, 0, retval));
5120 }
5121 
5122 
5123 
5124 int
5125 compat_13_compat_sparc32_sigprocmask(p, v, retval)
5126 	register struct proc *p;
5127 	void *v;
5128 	register_t *retval;
5129 {
5130 	struct compat_13_compat_sparc32_sigprocmask_args /* {
5131 		syscallarg(int) how;
5132 		syscallarg(int) mask;
5133 	} */ *uap = v;
5134 	sigset13_t ness, oess;
5135 	sigset_t nbss, obss;
5136 	int error;
5137 
5138 	ness = SCARG(uap, mask);
5139 	native_sigset13_to_sigset(&ness, &nbss);
5140 	error = sigprocmask1(p, SCARG(uap, how), &nbss, &obss);
5141 	if (error)
5142 		return (error);
5143 	native_sigset_to_sigset13(&obss, &oess);
5144 	*retval = oess;
5145 	return (0);
5146 }
5147 
5148 
5149 int
5150 compat_13_compat_sparc32_sigsuspend(p, v, retval)
5151 	register struct proc *p;
5152 	void *v;
5153 	register_t *retval;
5154 {
5155 	struct compat_13_compat_sparc32_sigsuspend_args /* {
5156 		syscallarg(sigset13_t) mask;
5157 	} */ *uap = v;
5158 	sigset13_t ess;
5159 	sigset_t bss;
5160 
5161 	ess = SCARG(uap, mask);
5162 	native_sigset13_to_sigset(&ess, &bss);
5163 	return (sigsuspend1(p, &bss));
5164 }
5165