xref: /netbsd-src/sys/compat/netbsd32/netbsd32_netbsd.c (revision 5aefcfdc06931dd97e76246d2fe0302f7b3fe094)
1 /*	$NetBSD: netbsd32_netbsd.c,v 1.47 2000/12/22 22:58:59 jdolecek Exp $	*/
2 
3 /*
4  * Copyright (c) 1998 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #if defined(_KERNEL) && !defined(_LKM)
32 #include "opt_ddb.h"
33 #include "opt_ktrace.h"
34 #include "opt_ntp.h"
35 #include "opt_compat_netbsd.h"
36 #include "opt_compat_43.h"
37 #include "opt_sysv.h"
38 
39 #include "fs_lfs.h"
40 #include "fs_nfs.h"
41 #endif
42 
43 /*
44  * Though COMPAT_OLDSOCK is needed only for COMPAT_43, SunOS, Linux,
45  * HP-UX, FreeBSD, Ultrix, OSF1, we define it unconditionally so that
46  * this would be LKM-safe.
47  */
48 #define COMPAT_OLDSOCK /* used by <sys/socket.h> */
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/filedesc.h>
53 #include <sys/kernel.h>
54 #include <sys/ipc.h>
55 #include <sys/msg.h>
56 #define msg __msg /* Don't ask me! */
57 #include <sys/sem.h>
58 #include <sys/shm.h>
59 #include <sys/malloc.h>
60 #include <sys/mount.h>
61 #include <sys/socket.h>
62 #include <sys/sockio.h>
63 #include <sys/socketvar.h>
64 #include <sys/mbuf.h>
65 #include <sys/stat.h>
66 #include <sys/time.h>
67 #include <sys/timex.h>
68 #include <sys/signalvar.h>
69 #include <sys/wait.h>
70 #include <sys/ptrace.h>
71 #include <sys/ktrace.h>
72 #include <sys/trace.h>
73 #include <sys/resourcevar.h>
74 #include <sys/pool.h>
75 #include <sys/vnode.h>
76 #include <sys/file.h>
77 #include <sys/filedesc.h>
78 #include <sys/namei.h>
79 
80 #include <uvm/uvm_extern.h>
81 
82 #include <sys/syscallargs.h>
83 #include <sys/proc.h>
84 #include <sys/acct.h>
85 #include <sys/exec.h>
86 #define	__SYSCTL_PRIVATE
87 #include <sys/sysctl.h>
88 
89 #include <net/if.h>
90 
91 #include <compat/netbsd32/netbsd32.h>
92 #include <compat/netbsd32/netbsd32_syscall.h>
93 #include <compat/netbsd32/netbsd32_syscallargs.h>
94 
95 #include <machine/frame.h>
96 
97 #if defined(DDB)
98 #include <ddb/ddbvar.h>
99 #endif
100 
101 /* this is provided by kern/kern_exec.c */
102 extern int exec_maxhdrsz;
103 extern struct lock exec_lock;
104 
105 static __inline void netbsd32_from_timeval __P((struct timeval *, struct netbsd32_timeval *));
106 static __inline void netbsd32_to_timeval __P((struct netbsd32_timeval *, struct timeval *));
107 static __inline void netbsd32_from_itimerval __P((struct itimerval *, struct netbsd32_itimerval *));
108 static __inline void netbsd32_to_itimerval __P((struct netbsd32_itimerval *, struct itimerval *));
109 static __inline void netbsd32_to_timespec __P((struct netbsd32_timespec *, struct timespec *));
110 static __inline void netbsd32_from_timespec __P((struct timespec *, struct netbsd32_timespec *));
111 static __inline void netbsd32_from_rusage __P((struct rusage *, struct netbsd32_rusage *));
112 static __inline void netbsd32_to_rusage __P((struct netbsd32_rusage *, struct rusage *));
113 static __inline int netbsd32_to_iovecin __P((struct netbsd32_iovec *, struct iovec *, int));
114 static __inline void netbsd32_to_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
115 static __inline void netbsd32_from_msghdr __P((struct netbsd32_msghdr *, struct msghdr *));
116 static __inline void netbsd32_from_statfs __P((struct statfs *, struct netbsd32_statfs *));
117 static __inline void netbsd32_from_timex __P((struct timex *, struct netbsd32_timex *));
118 static __inline void netbsd32_to_timex __P((struct netbsd32_timex *, struct timex *));
119 static __inline void netbsd32_from___stat13 __P((struct stat *, struct netbsd32_stat *));
120 static __inline void netbsd32_to_ipc_perm __P((struct netbsd32_ipc_perm *, struct ipc_perm *));
121 static __inline void netbsd32_from_ipc_perm __P((struct ipc_perm *, struct netbsd32_ipc_perm *));
122 static __inline void netbsd32_to_msg __P((struct netbsd32_msg *, struct msg *));
123 static __inline void netbsd32_from_msg __P((struct msg *, struct netbsd32_msg *));
124 static __inline void netbsd32_to_msqid_ds __P((struct netbsd32_msqid_ds *, struct msqid_ds *));
125 static __inline void netbsd32_from_msqid_ds __P((struct msqid_ds *, struct netbsd32_msqid_ds *));
126 static __inline void netbsd32_to_shmid_ds __P((struct netbsd32_shmid_ds *, struct shmid_ds *));
127 static __inline void netbsd32_from_shmid_ds __P((struct shmid_ds *, struct netbsd32_shmid_ds *));
128 static __inline void netbsd32_to_semid_ds __P((struct  netbsd32_semid_ds *, struct  semid_ds *));
129 static __inline void netbsd32_from_semid_ds __P((struct  semid_ds *, struct  netbsd32_semid_ds *));
130 
131 
132 static int recvit32 __P((struct proc *, int, struct netbsd32_msghdr *, struct iovec *, caddr_t,
133 			 register_t *));
134 static int dofilereadv32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
135 			      int, off_t *, int, register_t *));
136 static int dofilewritev32 __P((struct proc *, int, struct file *, struct netbsd32_iovec *,
137 			       int,  off_t *, int, register_t *));
138 static int change_utimes32 __P((struct vnode *, struct timeval *, struct proc *));
139 
140 extern char netbsd32_sigcode[], netbsd32_esigcode[];
141 extern struct sysent netbsd32_sysent[];
142 #ifdef SYSCALL_DEBUG
143 extern const char * const netbsd32_syscallnames[];
144 #endif
145 #ifdef __HAVE_SYSCALL_INTERN
146 void syscall_intern __P((struct proc *));
147 #else
148 void syscall __P((void));
149 #endif
150 
151 const struct emul emul_netbsd32 = {
152 	"netbsd32",
153 	"/emul/netbsd32",
154 #ifndef __HAVE_MINIMAL_EMUL
155 	0,
156 	NULL,
157 	netbsd32_SYS_syscall,
158 	netbsd32_SYS_MAXSYSCALL,
159 #endif
160 	netbsd32_sysent,
161 #ifdef SYSCALL_DEBUG
162 	netbsd32_syscallnames,
163 #else
164 	NULL,
165 #endif
166 	netbsd32_sendsig,
167 	netbsd32_sigcode,
168 	netbsd32_esigcode,
169 	NULL,
170 	NULL,
171 	NULL,
172 #ifdef __HAVE_SYSCALL_INTERN
173 	syscall_intern,
174 #else
175 	syscall,
176 #endif
177 };
178 
179 /* converters for structures that we need */
180 static __inline void
181 netbsd32_from_timeval(tv, tv32)
182 	struct timeval *tv;
183 	struct netbsd32_timeval *tv32;
184 {
185 
186 	tv32->tv_sec = (netbsd32_long)tv->tv_sec;
187 	tv32->tv_usec = (netbsd32_long)tv->tv_usec;
188 }
189 
190 static __inline void
191 netbsd32_to_timeval(tv32, tv)
192 	struct netbsd32_timeval *tv32;
193 	struct timeval *tv;
194 {
195 
196 	tv->tv_sec = (long)tv32->tv_sec;
197 	tv->tv_usec = (long)tv32->tv_usec;
198 }
199 
200 static __inline void
201 netbsd32_from_itimerval(itv, itv32)
202 	struct itimerval *itv;
203 	struct netbsd32_itimerval *itv32;
204 {
205 
206 	netbsd32_from_timeval(&itv->it_interval,
207 			     &itv32->it_interval);
208 	netbsd32_from_timeval(&itv->it_value,
209 			     &itv32->it_value);
210 }
211 
212 static __inline void
213 netbsd32_to_itimerval(itv32, itv)
214 	struct netbsd32_itimerval *itv32;
215 	struct itimerval *itv;
216 {
217 
218 	netbsd32_to_timeval(&itv32->it_interval, &itv->it_interval);
219 	netbsd32_to_timeval(&itv32->it_value, &itv->it_value);
220 }
221 
222 static __inline void
223 netbsd32_to_timespec(s32p, p)
224 	struct netbsd32_timespec *s32p;
225 	struct timespec *p;
226 {
227 
228 	p->tv_sec = (time_t)s32p->tv_sec;
229 	p->tv_nsec = (long)s32p->tv_nsec;
230 }
231 
232 static __inline void
233 netbsd32_from_timespec(p, s32p)
234 	struct timespec *p;
235 	struct netbsd32_timespec *s32p;
236 {
237 
238 	s32p->tv_sec = (netbsd32_time_t)p->tv_sec;
239 	s32p->tv_nsec = (netbsd32_long)p->tv_nsec;
240 }
241 
242 static __inline void
243 netbsd32_from_rusage(rup, ru32p)
244 	struct rusage *rup;
245 	struct netbsd32_rusage *ru32p;
246 {
247 
248 	netbsd32_from_timeval(&rup->ru_utime, &ru32p->ru_utime);
249 	netbsd32_from_timeval(&rup->ru_stime, &ru32p->ru_stime);
250 #define C(var)	ru32p->var = (netbsd32_long)rup->var
251 	C(ru_maxrss);
252 	C(ru_ixrss);
253 	C(ru_idrss);
254 	C(ru_isrss);
255 	C(ru_minflt);
256 	C(ru_majflt);
257 	C(ru_nswap);
258 	C(ru_inblock);
259 	C(ru_oublock);
260 	C(ru_msgsnd);
261 	C(ru_msgrcv);
262 	C(ru_nsignals);
263 	C(ru_nvcsw);
264 	C(ru_nivcsw);
265 #undef C
266 }
267 
268 static __inline void
269 netbsd32_to_rusage(ru32p, rup)
270 	struct netbsd32_rusage *ru32p;
271 	struct rusage *rup;
272 {
273 
274 	netbsd32_to_timeval(&ru32p->ru_utime, &rup->ru_utime);
275 	netbsd32_to_timeval(&ru32p->ru_stime, &rup->ru_stime);
276 #define C(var)	rup->var = (long)ru32p->var
277 	C(ru_maxrss);
278 	C(ru_ixrss);
279 	C(ru_idrss);
280 	C(ru_isrss);
281 	C(ru_minflt);
282 	C(ru_majflt);
283 	C(ru_nswap);
284 	C(ru_inblock);
285 	C(ru_oublock);
286 	C(ru_msgsnd);
287 	C(ru_msgrcv);
288 	C(ru_nsignals);
289 	C(ru_nvcsw);
290 	C(ru_nivcsw);
291 #undef C
292 }
293 
294 static __inline int
295 netbsd32_to_iovecin(iov32p, iovp, len)
296 	struct netbsd32_iovec *iov32p;
297 	struct iovec *iovp;
298 	int len;
299 {
300 	int i, error=0;
301 	u_int32_t iov_base;
302 	u_int32_t iov_len;
303 	/*
304 	 * We could allocate an iov32p, do a copyin, and translate
305 	 * each field and then free it all up, or we could copyin
306 	 * each field separately.  I'm doing the latter to reduce
307 	 * the number of MALLOC()s.
308 	 */
309 	for (i = 0; i < len; i++, iovp++, iov32p++) {
310 		if ((error = copyin((caddr_t)&iov32p->iov_base, &iov_base, sizeof(iov_base))))
311 		    return (error);
312 		if ((error = copyin((caddr_t)&iov32p->iov_len, &iov_len, sizeof(iov_len))))
313 		    return (error);
314 		iovp->iov_base = (void *)(u_long)iov_base;
315 		iovp->iov_len = (size_t)iov_len;
316 	}
317 	return error;
318 }
319 
320 /* msg_iov must be done separately */
321 static __inline void
322 netbsd32_to_msghdr(mhp32, mhp)
323 	struct netbsd32_msghdr *mhp32;
324 	struct msghdr *mhp;
325 {
326 
327 	mhp->msg_name = (caddr_t)(u_long)mhp32->msg_name;
328 	mhp->msg_namelen = mhp32->msg_namelen;
329 	mhp->msg_iovlen = (size_t)mhp32->msg_iovlen;
330 	mhp->msg_control = (caddr_t)(u_long)mhp32->msg_control;
331 	mhp->msg_controllen = mhp32->msg_controllen;
332 	mhp->msg_flags = mhp32->msg_flags;
333 }
334 
335 /* msg_iov must be done separately */
336 static __inline void
337 netbsd32_from_msghdr(mhp32, mhp)
338 	struct netbsd32_msghdr *mhp32;
339 	struct msghdr *mhp;
340 {
341 
342 	mhp32->msg_name = mhp32->msg_name;
343 	mhp32->msg_namelen = mhp32->msg_namelen;
344 	mhp32->msg_iovlen = mhp32->msg_iovlen;
345 	mhp32->msg_control = mhp32->msg_control;
346 	mhp32->msg_controllen = mhp->msg_controllen;
347 	mhp32->msg_flags = mhp->msg_flags;
348 }
349 
350 static __inline void
351 netbsd32_from_statfs(sbp, sb32p)
352 	struct statfs *sbp;
353 	struct netbsd32_statfs *sb32p;
354 {
355 	sb32p->f_type = sbp->f_type;
356 	sb32p->f_flags = sbp->f_flags;
357 	sb32p->f_bsize = (netbsd32_long)sbp->f_bsize;
358 	sb32p->f_iosize = (netbsd32_long)sbp->f_iosize;
359 	sb32p->f_blocks = (netbsd32_long)sbp->f_blocks;
360 	sb32p->f_bfree = (netbsd32_long)sbp->f_bfree;
361 	sb32p->f_bavail = (netbsd32_long)sbp->f_bavail;
362 	sb32p->f_files = (netbsd32_long)sbp->f_files;
363 	sb32p->f_ffree = (netbsd32_long)sbp->f_ffree;
364 	sb32p->f_fsid = sbp->f_fsid;
365 	sb32p->f_owner = sbp->f_owner;
366 	sb32p->f_spare[0] = 0;
367 	sb32p->f_spare[1] = 0;
368 	sb32p->f_spare[2] = 0;
369 	sb32p->f_spare[3] = 0;
370 #if 1
371 	/* May as well do the whole batch in one go */
372 	memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN+MNAMELEN+MNAMELEN);
373 #else
374 	/* If we want to be careful */
375 	memcpy(sb32p->f_fstypename, sbp->f_fstypename, MFSNAMELEN);
376 	memcpy(sb32p->f_mntonname, sbp->f_mntonname, MNAMELEN);
377 	memcpy(sb32p->f_mntfromname, sbp->f_mntfromname, MNAMELEN);
378 #endif
379 }
380 
381 static __inline void
382 netbsd32_from_timex(txp, tx32p)
383 	struct timex *txp;
384 	struct netbsd32_timex *tx32p;
385 {
386 
387 	tx32p->modes = txp->modes;
388 	tx32p->offset = (netbsd32_long)txp->offset;
389 	tx32p->freq = (netbsd32_long)txp->freq;
390 	tx32p->maxerror = (netbsd32_long)txp->maxerror;
391 	tx32p->esterror = (netbsd32_long)txp->esterror;
392 	tx32p->status = txp->status;
393 	tx32p->constant = (netbsd32_long)txp->constant;
394 	tx32p->precision = (netbsd32_long)txp->precision;
395 	tx32p->tolerance = (netbsd32_long)txp->tolerance;
396 	tx32p->ppsfreq = (netbsd32_long)txp->ppsfreq;
397 	tx32p->jitter = (netbsd32_long)txp->jitter;
398 	tx32p->shift = txp->shift;
399 	tx32p->stabil = (netbsd32_long)txp->stabil;
400 	tx32p->jitcnt = (netbsd32_long)txp->jitcnt;
401 	tx32p->calcnt = (netbsd32_long)txp->calcnt;
402 	tx32p->errcnt = (netbsd32_long)txp->errcnt;
403 	tx32p->stbcnt = (netbsd32_long)txp->stbcnt;
404 }
405 
406 static __inline void
407 netbsd32_to_timex(tx32p, txp)
408 	struct netbsd32_timex *tx32p;
409 	struct timex *txp;
410 {
411 
412 	txp->modes = tx32p->modes;
413 	txp->offset = (long)tx32p->offset;
414 	txp->freq = (long)tx32p->freq;
415 	txp->maxerror = (long)tx32p->maxerror;
416 	txp->esterror = (long)tx32p->esterror;
417 	txp->status = tx32p->status;
418 	txp->constant = (long)tx32p->constant;
419 	txp->precision = (long)tx32p->precision;
420 	txp->tolerance = (long)tx32p->tolerance;
421 	txp->ppsfreq = (long)tx32p->ppsfreq;
422 	txp->jitter = (long)tx32p->jitter;
423 	txp->shift = tx32p->shift;
424 	txp->stabil = (long)tx32p->stabil;
425 	txp->jitcnt = (long)tx32p->jitcnt;
426 	txp->calcnt = (long)tx32p->calcnt;
427 	txp->errcnt = (long)tx32p->errcnt;
428 	txp->stbcnt = (long)tx32p->stbcnt;
429 }
430 
431 static __inline void
432 netbsd32_from___stat13(sbp, sb32p)
433 	struct stat *sbp;
434 	struct netbsd32_stat *sb32p;
435 {
436 	sb32p->st_dev = sbp->st_dev;
437 	sb32p->st_ino = sbp->st_ino;
438 	sb32p->st_mode = sbp->st_mode;
439 	sb32p->st_nlink = sbp->st_nlink;
440 	sb32p->st_uid = sbp->st_uid;
441 	sb32p->st_gid = sbp->st_gid;
442 	sb32p->st_rdev = sbp->st_rdev;
443 	if (sbp->st_size < (quad_t)1 << 32)
444 		sb32p->st_size = sbp->st_size;
445 	else
446 		sb32p->st_size = -2;
447 	sb32p->st_atimespec.tv_sec = (netbsd32_time_t)sbp->st_atimespec.tv_sec;
448 	sb32p->st_atimespec.tv_nsec = (netbsd32_long)sbp->st_atimespec.tv_nsec;
449 	sb32p->st_mtimespec.tv_sec = (netbsd32_time_t)sbp->st_mtimespec.tv_sec;
450 	sb32p->st_mtimespec.tv_nsec = (netbsd32_long)sbp->st_mtimespec.tv_nsec;
451 	sb32p->st_ctimespec.tv_sec = (netbsd32_time_t)sbp->st_ctimespec.tv_sec;
452 	sb32p->st_ctimespec.tv_nsec = (netbsd32_long)sbp->st_ctimespec.tv_nsec;
453 	sb32p->st_blksize = sbp->st_blksize;
454 	sb32p->st_blocks = sbp->st_blocks;
455 	sb32p->st_flags = sbp->st_flags;
456 	sb32p->st_gen = sbp->st_gen;
457 }
458 
459 static __inline void
460 netbsd32_to_ipc_perm(ip32p, ipp)
461 	struct netbsd32_ipc_perm *ip32p;
462 	struct ipc_perm *ipp;
463 {
464 
465 	ipp->cuid = ip32p->cuid;
466 	ipp->cgid = ip32p->cgid;
467 	ipp->uid = ip32p->uid;
468 	ipp->gid = ip32p->gid;
469 	ipp->mode = ip32p->mode;
470 	ipp->_seq = ip32p->_seq;
471 	ipp->_key = (key_t)ip32p->_key;
472 }
473 
474 static __inline void
475 netbsd32_from_ipc_perm(ipp, ip32p)
476 	struct ipc_perm *ipp;
477 	struct netbsd32_ipc_perm *ip32p;
478 {
479 
480 	ip32p->cuid = ipp->cuid;
481 	ip32p->cgid = ipp->cgid;
482 	ip32p->uid = ipp->uid;
483 	ip32p->gid = ipp->gid;
484 	ip32p->mode = ipp->mode;
485 	ip32p->_seq = ipp->_seq;
486 	ip32p->_key = (netbsd32_key_t)ipp->_key;
487 }
488 
489 static __inline void
490 netbsd32_to_msg(m32p, mp)
491 	struct netbsd32_msg *m32p;
492 	struct msg *mp;
493 {
494 
495 	mp->msg_next = (struct msg *)(u_long)m32p->msg_next;
496 	mp->msg_type = (long)m32p->msg_type;
497 	mp->msg_ts = m32p->msg_ts;
498 	mp->msg_spot = m32p->msg_spot;
499 }
500 
501 static __inline void
502 netbsd32_from_msg(mp, m32p)
503 	struct msg *mp;
504 	struct netbsd32_msg *m32p;
505 {
506 
507 	m32p->msg_next = (netbsd32_msgp_t)(u_long)mp->msg_next;
508 	m32p->msg_type = (netbsd32_long)mp->msg_type;
509 	m32p->msg_ts = mp->msg_ts;
510 	m32p->msg_spot = mp->msg_spot;
511 }
512 
513 static __inline void
514 netbsd32_to_msqid_ds(ds32p, dsp)
515 	struct netbsd32_msqid_ds *ds32p;
516 	struct msqid_ds *dsp;
517 {
518 
519 	netbsd32_to_ipc_perm(&ds32p->msg_perm, &dsp->msg_perm);
520 	netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_first, dsp->_msg_first);
521 	netbsd32_to_msg((struct netbsd32_msg *)(u_long)ds32p->_msg_last, dsp->_msg_last);
522 	dsp->_msg_cbytes = (u_long)ds32p->_msg_cbytes;
523 	dsp->msg_qnum = (u_long)ds32p->msg_qnum;
524 	dsp->msg_qbytes = (u_long)ds32p->msg_qbytes;
525 	dsp->msg_lspid = ds32p->msg_lspid;
526 	dsp->msg_lrpid = ds32p->msg_lrpid;
527 	dsp->msg_rtime = (time_t)ds32p->msg_rtime;
528 	dsp->msg_stime = (time_t)ds32p->msg_stime;
529 	dsp->msg_ctime = (time_t)ds32p->msg_ctime;
530 }
531 
532 static __inline void
533 netbsd32_from_msqid_ds(dsp, ds32p)
534 	struct msqid_ds *dsp;
535 	struct netbsd32_msqid_ds *ds32p;
536 {
537 
538 	netbsd32_from_ipc_perm(&dsp->msg_perm, &ds32p->msg_perm);
539 	netbsd32_from_msg(dsp->_msg_first, (struct netbsd32_msg *)(u_long)ds32p->_msg_first);
540 	netbsd32_from_msg(dsp->_msg_last, (struct netbsd32_msg *)(u_long)ds32p->_msg_last);
541 	ds32p->_msg_cbytes = (netbsd32_u_long)dsp->_msg_cbytes;
542 	ds32p->msg_qnum = (netbsd32_u_long)dsp->msg_qnum;
543 	ds32p->msg_qbytes = (netbsd32_u_long)dsp->msg_qbytes;
544 	ds32p->msg_lspid = dsp->msg_lspid;
545 	ds32p->msg_lrpid = dsp->msg_lrpid;
546 	ds32p->msg_rtime = dsp->msg_rtime;
547 	ds32p->msg_stime = dsp->msg_stime;
548 	ds32p->msg_ctime = dsp->msg_ctime;
549 }
550 
551 static __inline void
552 netbsd32_to_shmid_ds(ds32p, dsp)
553 	struct netbsd32_shmid_ds *ds32p;
554 	struct shmid_ds *dsp;
555 {
556 
557 	netbsd32_to_ipc_perm(&ds32p->shm_perm, &dsp->shm_perm);
558 	dsp->shm_segsz = ds32p->shm_segsz;
559 	dsp->shm_lpid = ds32p->shm_lpid;
560 	dsp->shm_cpid = ds32p->shm_cpid;
561 	dsp->shm_nattch = ds32p->shm_nattch;
562 	dsp->shm_atime = (long)ds32p->shm_atime;
563 	dsp->shm_dtime = (long)ds32p->shm_dtime;
564 	dsp->shm_ctime = (long)ds32p->shm_ctime;
565 	dsp->_shm_internal = (void *)(u_long)ds32p->_shm_internal;
566 }
567 
568 static __inline void
569 netbsd32_from_shmid_ds(dsp, ds32p)
570 	struct shmid_ds *dsp;
571 	struct netbsd32_shmid_ds *ds32p;
572 {
573 
574 	netbsd32_from_ipc_perm(&dsp->shm_perm, &ds32p->shm_perm);
575 	ds32p->shm_segsz = dsp->shm_segsz;
576 	ds32p->shm_lpid = dsp->shm_lpid;
577 	ds32p->shm_cpid = dsp->shm_cpid;
578 	ds32p->shm_nattch = dsp->shm_nattch;
579 	ds32p->shm_atime = (netbsd32_long)dsp->shm_atime;
580 	ds32p->shm_dtime = (netbsd32_long)dsp->shm_dtime;
581 	ds32p->shm_ctime = (netbsd32_long)dsp->shm_ctime;
582 	ds32p->_shm_internal = (netbsd32_voidp)(u_long)dsp->_shm_internal;
583 }
584 
585 static __inline void
586 netbsd32_to_semid_ds(s32dsp, dsp)
587 	struct  netbsd32_semid_ds *s32dsp;
588 	struct  semid_ds *dsp;
589 {
590 
591 	netbsd32_from_ipc_perm(&dsp->sem_perm, &s32dsp->sem_perm);
592 	dsp->_sem_base = (struct __sem *)(u_long)s32dsp->_sem_base;
593 	dsp->sem_nsems = s32dsp->sem_nsems;
594 	dsp->sem_otime = s32dsp->sem_otime;
595 	dsp->sem_ctime = s32dsp->sem_ctime;
596 }
597 
598 static __inline void
599 netbsd32_from_semid_ds(dsp, s32dsp)
600 	struct  semid_ds *dsp;
601 	struct  netbsd32_semid_ds *s32dsp;
602 {
603 
604 	netbsd32_to_ipc_perm(&s32dsp->sem_perm, &dsp->sem_perm);
605 	s32dsp->_sem_base = (netbsd32_semp_t)(u_long)dsp->_sem_base;
606 	s32dsp->sem_nsems = dsp->sem_nsems;
607 	s32dsp->sem_otime = dsp->sem_otime;
608 	s32dsp->sem_ctime = dsp->sem_ctime;
609 }
610 
611 /*
612  * below are all the standard NetBSD system calls, in the 32bit
613  * environment, with the necessary conversions to 64bit before
614  * calling the real syscall, unless we need to inline the whole
615  * syscall here, sigh.
616  */
617 
618 int
619 netbsd32_exit(p, v, retval)
620 	struct proc *p;
621 	void *v;
622 	register_t *retval;
623 {
624 	struct netbsd32_exit_args /* {
625 		syscallarg(int) rval;
626 	} */ *uap = v;
627 	struct sys_exit_args ua;
628 
629 	NETBSD32TO64_UAP(rval);
630 	return sys_exit(p, &ua, retval);
631 }
632 
633 int
634 netbsd32_read(p, v, retval)
635 	struct proc *p;
636 	void *v;
637 	register_t *retval;
638 {
639 	struct netbsd32_read_args /* {
640 		syscallarg(int) fd;
641 		syscallarg(netbsd32_voidp) buf;
642 		syscallarg(netbsd32_size_t) nbyte;
643 	} */ *uap = v;
644 	struct sys_read_args ua;
645 
646 	NETBSD32TO64_UAP(fd);
647 	NETBSD32TOP_UAP(buf, void *);
648 	NETBSD32TOX_UAP(nbyte, size_t);
649 	return sys_read(p, &ua, retval);
650 }
651 
652 int
653 netbsd32_write(p, v, retval)
654 	struct proc *p;
655 	void *v;
656 	register_t *retval;
657 {
658 	struct netbsd32_write_args /* {
659 		syscallarg(int) fd;
660 		syscallarg(const netbsd32_voidp) buf;
661 		syscallarg(netbsd32_size_t) nbyte;
662 	} */ *uap = v;
663 	struct sys_write_args ua;
664 
665 	NETBSD32TO64_UAP(fd);
666 	NETBSD32TOP_UAP(buf, void *);
667 	NETBSD32TOX_UAP(nbyte, size_t);
668 	return sys_write(p, &ua, retval);
669 }
670 
671 int
672 netbsd32_close(p, v, retval)
673 	struct proc *p;
674 	void *v;
675 	register_t *retval;
676 {
677 	struct netbsd32_close_args /* {
678 		syscallarg(int) fd;
679 	} */ *uap = v;
680 	struct sys_close_args ua;
681 
682 	NETBSD32TO64_UAP(fd);
683 	return sys_close(p, &ua, retval);
684 }
685 
686 int
687 netbsd32_open(p, v, retval)
688 	struct proc *p;
689 	void *v;
690 	register_t *retval;
691 {
692 	struct netbsd32_open_args /* {
693 		syscallarg(const netbsd32_charp) path;
694 		syscallarg(int) flags;
695 		syscallarg(mode_t) mode;
696 	} */ *uap = v;
697 	struct sys_open_args ua;
698 	caddr_t sg;
699 
700 	NETBSD32TOP_UAP(path, const char);
701 	NETBSD32TO64_UAP(flags);
702 	NETBSD32TO64_UAP(mode);
703 	sg = stackgap_init(p->p_emul);
704 	CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
705 
706 	return (sys_open(p, &ua, retval));
707 }
708 
709 int
710 netbsd32_wait4(q, v, retval)
711 	struct proc *q;
712 	void *v;
713 	register_t *retval;
714 {
715 	struct netbsd32_wait4_args /* {
716 		syscallarg(int) pid;
717 		syscallarg(netbsd32_intp) status;
718 		syscallarg(int) options;
719 		syscallarg(netbsd32_rusagep_t) rusage;
720 	} */ *uap = v;
721 	struct netbsd32_rusage ru32;
722 	int nfound;
723 	struct proc *p, *t;
724 	int status, error;
725 
726 	if (SCARG(uap, pid) == 0)
727 		SCARG(uap, pid) = -q->p_pgid;
728 	if (SCARG(uap, options) &~ (WUNTRACED|WNOHANG))
729 		return (EINVAL);
730 
731 loop:
732 	nfound = 0;
733 	for (p = q->p_children.lh_first; p != 0; p = p->p_sibling.le_next) {
734 		if (SCARG(uap, pid) != WAIT_ANY &&
735 		    p->p_pid != SCARG(uap, pid) &&
736 		    p->p_pgid != -SCARG(uap, pid))
737 			continue;
738 		nfound++;
739 		if (p->p_stat == SZOMB) {
740 			retval[0] = p->p_pid;
741 
742 			if (SCARG(uap, status)) {
743 				status = p->p_xstat;	/* convert to int */
744 				error = copyout((caddr_t)&status,
745 						(caddr_t)(u_long)SCARG(uap, status),
746 						sizeof(status));
747 				if (error)
748 					return (error);
749 			}
750 			if (SCARG(uap, rusage)) {
751 				netbsd32_from_rusage(p->p_ru, &ru32);
752 				if ((error = copyout((caddr_t)&ru32,
753 						     (caddr_t)(u_long)SCARG(uap, rusage),
754 						     sizeof(struct netbsd32_rusage))))
755 					return (error);
756 			}
757 			/*
758 			 * If we got the child via ptrace(2) or procfs, and
759 			 * the parent is different (meaning the process was
760 			 * attached, rather than run as a child), then we need
761 			 * to give it back to the old parent, and send the
762 			 * parent a SIGCHLD.  The rest of the cleanup will be
763 			 * done when the old parent waits on the child.
764 			 */
765 			if ((p->p_flag & P_TRACED) &&
766 			    p->p_oppid != p->p_pptr->p_pid) {
767 				t = pfind(p->p_oppid);
768 				proc_reparent(p, t ? t : initproc);
769 				p->p_oppid = 0;
770 				p->p_flag &= ~(P_TRACED|P_WAITED|P_FSTRACE);
771 				psignal(p->p_pptr, SIGCHLD);
772 				wakeup((caddr_t)p->p_pptr);
773 				return (0);
774 			}
775 			p->p_xstat = 0;
776 			ruadd(&q->p_stats->p_cru, p->p_ru);
777 			pool_put(&rusage_pool, p->p_ru);
778 
779 			/*
780 			 * Finally finished with old proc entry.
781 			 * Unlink it from its process group and free it.
782 			 */
783 			leavepgrp(p);
784 
785 			LIST_REMOVE(p, p_list);	/* off zombproc */
786 
787 			LIST_REMOVE(p, p_sibling);
788 
789 			/*
790 			 * Decrement the count of procs running with this uid.
791 			 */
792 			(void)chgproccnt(p->p_cred->p_ruid, -1);
793 
794 			/*
795 			 * Free up credentials.
796 			 */
797 			if (--p->p_cred->p_refcnt == 0) {
798 				crfree(p->p_cred->pc_ucred);
799 				pool_put(&pcred_pool, p->p_cred);
800 			}
801 
802 			/*
803 			 * Release reference to text vnode
804 			 */
805 			if (p->p_textvp)
806 				vrele(p->p_textvp);
807 
808 			pool_put(&proc_pool, p);
809 			nprocs--;
810 			return (0);
811 		}
812 		if (p->p_stat == SSTOP && (p->p_flag & P_WAITED) == 0 &&
813 		    (p->p_flag & P_TRACED || SCARG(uap, options) & WUNTRACED)) {
814 			p->p_flag |= P_WAITED;
815 			retval[0] = p->p_pid;
816 
817 			if (SCARG(uap, status)) {
818 				status = W_STOPCODE(p->p_xstat);
819 				error = copyout((caddr_t)&status,
820 				    (caddr_t)(u_long)SCARG(uap, status),
821 				    sizeof(status));
822 			} else
823 				error = 0;
824 			return (error);
825 		}
826 	}
827 	if (nfound == 0)
828 		return (ECHILD);
829 	if (SCARG(uap, options) & WNOHANG) {
830 		retval[0] = 0;
831 		return (0);
832 	}
833 	if ((error = tsleep((caddr_t)q, PWAIT | PCATCH, "wait", 0)) != 0)
834 		return (error);
835 	goto loop;
836 }
837 
838 int
839 netbsd32_link(p, v, retval)
840 	struct proc *p;
841 	void *v;
842 	register_t *retval;
843 {
844 	struct netbsd32_link_args /* {
845 		syscallarg(const netbsd32_charp) path;
846 		syscallarg(const netbsd32_charp) link;
847 	} */ *uap = v;
848 	struct sys_link_args ua;
849 
850 	NETBSD32TOP_UAP(path, const char);
851 	NETBSD32TOP_UAP(link, const char);
852 	return (sys_link(p, &ua, retval));
853 }
854 
855 int
856 netbsd32_unlink(p, v, retval)
857 	struct proc *p;
858 	void *v;
859 	register_t *retval;
860 {
861 	struct netbsd32_unlink_args /* {
862 		syscallarg(const netbsd32_charp) path;
863 	} */ *uap = v;
864 	struct sys_unlink_args ua;
865 
866 	NETBSD32TOP_UAP(path, const char);
867 
868 	return (sys_unlink(p, &ua, retval));
869 }
870 
871 int
872 netbsd32_chdir(p, v, retval)
873 	struct proc *p;
874 	void *v;
875 	register_t *retval;
876 {
877 	struct netbsd32_chdir_args /* {
878 		syscallarg(const netbsd32_charp) path;
879 	} */ *uap = v;
880 	struct sys_chdir_args ua;
881 
882 	NETBSD32TOP_UAP(path, const char);
883 
884 	return (sys_chdir(p, &ua, retval));
885 }
886 
887 int
888 netbsd32_fchdir(p, v, retval)
889 	struct proc *p;
890 	void *v;
891 	register_t *retval;
892 {
893 	struct netbsd32_fchdir_args /* {
894 		syscallarg(int) fd;
895 	} */ *uap = v;
896 	struct sys_fchdir_args ua;
897 
898 	NETBSD32TO64_UAP(fd);
899 
900 	return (sys_fchdir(p, &ua, retval));
901 }
902 
903 int
904 netbsd32_mknod(p, v, retval)
905 	struct proc *p;
906 	void *v;
907 	register_t *retval;
908 {
909 	struct netbsd32_mknod_args /* {
910 		syscallarg(const netbsd32_charp) path;
911 		syscallarg(mode_t) mode;
912 		syscallarg(dev_t) dev;
913 	} */ *uap = v;
914 	struct sys_mknod_args ua;
915 
916 	NETBSD32TOP_UAP(path, const char);
917 	NETBSD32TO64_UAP(dev);
918 	NETBSD32TO64_UAP(mode);
919 
920 	return (sys_mknod(p, &ua, retval));
921 }
922 
923 int
924 netbsd32_chmod(p, v, retval)
925 	struct proc *p;
926 	void *v;
927 	register_t *retval;
928 {
929 	struct netbsd32_chmod_args /* {
930 		syscallarg(const netbsd32_charp) path;
931 		syscallarg(mode_t) mode;
932 	} */ *uap = v;
933 	struct sys_chmod_args ua;
934 
935 	NETBSD32TOP_UAP(path, const char);
936 	NETBSD32TO64_UAP(mode);
937 
938 	return (sys_chmod(p, &ua, retval));
939 }
940 
941 int
942 netbsd32_chown(p, v, retval)
943 	struct proc *p;
944 	void *v;
945 	register_t *retval;
946 {
947 	struct netbsd32_chown_args /* {
948 		syscallarg(const netbsd32_charp) path;
949 		syscallarg(uid_t) uid;
950 		syscallarg(gid_t) gid;
951 	} */ *uap = v;
952 	struct sys_chown_args ua;
953 
954 	NETBSD32TOP_UAP(path, const char);
955 	NETBSD32TO64_UAP(uid);
956 	NETBSD32TO64_UAP(gid);
957 
958 	return (sys_chown(p, &ua, retval));
959 }
960 
961 int
962 netbsd32_break(p, v, retval)
963 	struct proc *p;
964 	void *v;
965 	register_t *retval;
966 {
967 	struct netbsd32_break_args /* {
968 		syscallarg(netbsd32_charp) nsize;
969 	} */ *uap = v;
970 	struct sys_obreak_args ua;
971 
972 	SCARG(&ua, nsize) = (char *)(u_long)SCARG(uap, nsize);
973 	NETBSD32TOP_UAP(nsize, char);
974 	return (sys_obreak(p, &ua, retval));
975 }
976 
977 int
978 netbsd32_getfsstat(p, v, retval)
979 	struct proc *p;
980 	void *v;
981 	register_t *retval;
982 {
983 	struct netbsd32_getfsstat_args /* {
984 		syscallarg(netbsd32_statfsp_t) buf;
985 		syscallarg(netbsd32_long) bufsize;
986 		syscallarg(int) flags;
987 	} */ *uap = v;
988 	struct mount *mp, *nmp;
989 	struct statfs *sp;
990 	struct netbsd32_statfs sb32;
991 	caddr_t sfsp;
992 	long count, maxcount, error;
993 
994 	maxcount = SCARG(uap, bufsize) / sizeof(struct netbsd32_statfs);
995 	sfsp = (caddr_t)(u_long)SCARG(uap, buf);
996 	simple_lock(&mountlist_slock);
997 	count = 0;
998 	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
999 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
1000 			nmp = mp->mnt_list.cqe_next;
1001 			continue;
1002 		}
1003 		if (sfsp && count < maxcount) {
1004 			sp = &mp->mnt_stat;
1005 			/*
1006 			 * If MNT_NOWAIT or MNT_LAZY is specified, do not
1007 			 * refresh the fsstat cache. MNT_WAIT or MNT_LAXY
1008 			 * overrides MNT_NOWAIT.
1009 			 */
1010 			if (SCARG(uap, flags) != MNT_NOWAIT &&
1011 			    SCARG(uap, flags) != MNT_LAZY &&
1012 			    (SCARG(uap, flags) == MNT_WAIT ||
1013 			     SCARG(uap, flags) == 0) &&
1014 			    (error = VFS_STATFS(mp, sp, p)) != 0) {
1015 				simple_lock(&mountlist_slock);
1016 				nmp = mp->mnt_list.cqe_next;
1017 				vfs_unbusy(mp);
1018 				continue;
1019 			}
1020 			sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
1021 			sp->f_oflags = sp->f_flags & 0xffff;
1022 			netbsd32_from_statfs(sp, &sb32);
1023 			error = copyout(&sb32, sfsp, sizeof(sb32));
1024 			if (error) {
1025 				vfs_unbusy(mp);
1026 				return (error);
1027 			}
1028 			sfsp += sizeof(sb32);
1029 		}
1030 		count++;
1031 		simple_lock(&mountlist_slock);
1032 		nmp = mp->mnt_list.cqe_next;
1033 		vfs_unbusy(mp);
1034 	}
1035 	simple_unlock(&mountlist_slock);
1036 	if (sfsp && count > maxcount)
1037 		*retval = maxcount;
1038 	else
1039 		*retval = count;
1040 	return (0);
1041 }
1042 
1043 int
1044 netbsd32_mount(p, v, retval)
1045 	struct proc *p;
1046 	void *v;
1047 	register_t *retval;
1048 {
1049 	struct netbsd32_mount_args /* {
1050 		syscallarg(const netbsd32_charp) type;
1051 		syscallarg(const netbsd32_charp) path;
1052 		syscallarg(int) flags;
1053 		syscallarg(netbsd32_voidp) data;
1054 	} */ *uap = v;
1055 	struct sys_mount_args ua;
1056 
1057 	NETBSD32TOP_UAP(type, const char);
1058 	NETBSD32TOP_UAP(path, const char);
1059 	NETBSD32TO64_UAP(flags);
1060 	NETBSD32TOP_UAP(data, void);
1061 	return (sys_mount(p, &ua, retval));
1062 }
1063 
1064 int
1065 netbsd32_unmount(p, v, retval)
1066 	struct proc *p;
1067 	void *v;
1068 	register_t *retval;
1069 {
1070 	struct netbsd32_unmount_args /* {
1071 		syscallarg(const netbsd32_charp) path;
1072 		syscallarg(int) flags;
1073 	} */ *uap = v;
1074 	struct sys_unmount_args ua;
1075 
1076 	NETBSD32TOP_UAP(path, const char);
1077 	NETBSD32TO64_UAP(flags);
1078 	return (sys_unmount(p, &ua, retval));
1079 }
1080 
1081 int
1082 netbsd32_setuid(p, v, retval)
1083 	struct proc *p;
1084 	void *v;
1085 	register_t *retval;
1086 {
1087 	struct netbsd32_setuid_args /* {
1088 		syscallarg(uid_t) uid;
1089 	} */ *uap = v;
1090 	struct sys_setuid_args ua;
1091 
1092 	NETBSD32TO64_UAP(uid);
1093 	return (sys_setuid(p, &ua, retval));
1094 }
1095 
1096 int
1097 netbsd32_ptrace(p, v, retval)
1098 	struct proc *p;
1099 	void *v;
1100 	register_t *retval;
1101 {
1102 	struct netbsd32_ptrace_args /* {
1103 		syscallarg(int) req;
1104 		syscallarg(pid_t) pid;
1105 		syscallarg(netbsd32_caddr_t) addr;
1106 		syscallarg(int) data;
1107 	} */ *uap = v;
1108 	struct sys_ptrace_args ua;
1109 
1110 	NETBSD32TO64_UAP(req);
1111 	NETBSD32TO64_UAP(pid);
1112 	NETBSD32TOX64_UAP(addr, caddr_t);
1113 	NETBSD32TO64_UAP(data);
1114 	return (sys_ptrace(p, &ua, retval));
1115 }
1116 
1117 int
1118 netbsd32_recvmsg(p, v, retval)
1119 	struct proc *p;
1120 	void *v;
1121 	register_t *retval;
1122 {
1123 	struct netbsd32_recvmsg_args /* {
1124 		syscallarg(int) s;
1125 		syscallarg(netbsd32_msghdrp_t) msg;
1126 		syscallarg(int) flags;
1127 	} */ *uap = v;
1128 	struct netbsd32_msghdr msg;
1129 	struct iovec aiov[UIO_SMALLIOV], *uiov, *iov;
1130 	int error;
1131 
1132 	error = copyin((caddr_t)(u_long)SCARG(uap, msg), (caddr_t)&msg,
1133 		       sizeof(msg));
1134 		/* netbsd32_msghdr needs the iov pre-allocated */
1135 	if (error)
1136 		return (error);
1137 	if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1138 		if ((u_int)msg.msg_iovlen > IOV_MAX)
1139 			return (EMSGSIZE);
1140 		MALLOC(iov, struct iovec *,
1141 		       sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1142 		       M_WAITOK);
1143 	} else if ((u_int)msg.msg_iovlen > 0)
1144 		iov = aiov;
1145 	else
1146 		return (EMSGSIZE);
1147 #ifdef COMPAT_OLDSOCK
1148 	msg.msg_flags = SCARG(uap, flags) &~ MSG_COMPAT;
1149 #else
1150 	msg.msg_flags = SCARG(uap, flags);
1151 #endif
1152 	uiov = (struct iovec *)(u_long)msg.msg_iov;
1153 	error = netbsd32_to_iovecin((struct netbsd32_iovec *)uiov,
1154 				   iov, msg.msg_iovlen);
1155 	if (error)
1156 		goto done;
1157 	if ((error = recvit32(p, SCARG(uap, s), &msg, iov, (caddr_t)0, retval)) == 0) {
1158 		error = copyout((caddr_t)&msg, (caddr_t)(u_long)SCARG(uap, msg),
1159 		    sizeof(msg));
1160 	}
1161 done:
1162 	if (iov != aiov)
1163 		FREE(iov, M_IOV);
1164 	return (error);
1165 }
1166 
1167 int
1168 recvit32(p, s, mp, iov, namelenp, retsize)
1169 	struct proc *p;
1170 	int s;
1171 	struct netbsd32_msghdr *mp;
1172 	struct iovec *iov;
1173 	caddr_t namelenp;
1174 	register_t *retsize;
1175 {
1176 	struct file *fp;
1177 	struct uio auio;
1178 	int i;
1179 	int len, error;
1180 	struct mbuf *from = 0, *control = 0;
1181 	struct socket *so;
1182 #ifdef KTRACE
1183 	struct iovec *ktriov = NULL;
1184 #endif
1185 
1186 	/* getsock() will use the descriptor for us */
1187 	if ((error = getsock(p->p_fd, s, &fp)) != 0)
1188 		return (error);
1189 	auio.uio_iov = (struct iovec *)(u_long)mp->msg_iov;
1190 	auio.uio_iovcnt = mp->msg_iovlen;
1191 	auio.uio_segflg = UIO_USERSPACE;
1192 	auio.uio_rw = UIO_READ;
1193 	auio.uio_procp = p;
1194 	auio.uio_offset = 0;			/* XXX */
1195 	auio.uio_resid = 0;
1196 	for (i = 0; i < mp->msg_iovlen; i++, iov++) {
1197 #if 0
1198 		/* cannot happen iov_len is unsigned */
1199 		if (iov->iov_len < 0) {
1200 			error = EINVAL;
1201 			goto out1;
1202 		}
1203 #endif
1204 		/*
1205 		 * Reads return ssize_t because -1 is returned on error.
1206 		 * Therefore we must restrict the length to SSIZE_MAX to
1207 		 * avoid garbage return values.
1208 		 */
1209 		auio.uio_resid += iov->iov_len;
1210 		if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
1211 			error = EINVAL;
1212 			goto out1;
1213 		}
1214 	}
1215 #ifdef KTRACE
1216 	if (KTRPOINT(p, KTR_GENIO)) {
1217 		int iovlen = auio.uio_iovcnt * sizeof(struct iovec);
1218 
1219 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
1220 		memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
1221 	}
1222 #endif
1223 	len = auio.uio_resid;
1224 	so = (struct socket *)fp->f_data;
1225 	error = (*so->so_receive)(so, &from, &auio, NULL,
1226 			  mp->msg_control ? &control : NULL, &mp->msg_flags);
1227 	if (error) {
1228 		if (auio.uio_resid != len && (error == ERESTART ||
1229 		    error == EINTR || error == EWOULDBLOCK))
1230 			error = 0;
1231 	}
1232 #ifdef KTRACE
1233 	if (ktriov != NULL) {
1234 		if (error == 0)
1235 			ktrgenio(p, s, UIO_READ, ktriov,
1236 			    len - auio.uio_resid, error);
1237 		FREE(ktriov, M_TEMP);
1238 	}
1239 #endif
1240 	if (error)
1241 		goto out;
1242 	*retsize = len - auio.uio_resid;
1243 	if (mp->msg_name) {
1244 		len = mp->msg_namelen;
1245 		if (len <= 0 || from == 0)
1246 			len = 0;
1247 		else {
1248 #ifdef COMPAT_OLDSOCK
1249 			if (mp->msg_flags & MSG_COMPAT)
1250 				mtod(from, struct osockaddr *)->sa_family =
1251 				    mtod(from, struct sockaddr *)->sa_family;
1252 #endif
1253 			if (len > from->m_len)
1254 				len = from->m_len;
1255 			/* else if len < from->m_len ??? */
1256 			error = copyout(mtod(from, caddr_t),
1257 					(caddr_t)(u_long)mp->msg_name, (unsigned)len);
1258 			if (error)
1259 				goto out;
1260 		}
1261 		mp->msg_namelen = len;
1262 		if (namelenp &&
1263 		    (error = copyout((caddr_t)&len, namelenp, sizeof(int)))) {
1264 #ifdef COMPAT_OLDSOCK
1265 			if (mp->msg_flags & MSG_COMPAT)
1266 				error = 0;	/* old recvfrom didn't check */
1267 			else
1268 #endif
1269 			goto out;
1270 		}
1271 	}
1272 	if (mp->msg_control) {
1273 #ifdef COMPAT_OLDSOCK
1274 		/*
1275 		 * We assume that old recvmsg calls won't receive access
1276 		 * rights and other control info, esp. as control info
1277 		 * is always optional and those options didn't exist in 4.3.
1278 		 * If we receive rights, trim the cmsghdr; anything else
1279 		 * is tossed.
1280 		 */
1281 		if (control && mp->msg_flags & MSG_COMPAT) {
1282 			if (mtod(control, struct cmsghdr *)->cmsg_level !=
1283 			    SOL_SOCKET ||
1284 			    mtod(control, struct cmsghdr *)->cmsg_type !=
1285 			    SCM_RIGHTS) {
1286 				mp->msg_controllen = 0;
1287 				goto out;
1288 			}
1289 			control->m_len -= sizeof(struct cmsghdr);
1290 			control->m_data += sizeof(struct cmsghdr);
1291 		}
1292 #endif
1293 		len = mp->msg_controllen;
1294 		if (len <= 0 || control == 0)
1295 			len = 0;
1296 		else {
1297 			struct mbuf *m = control;
1298 			caddr_t p = (caddr_t)(u_long)mp->msg_control;
1299 
1300 			do {
1301 				i = m->m_len;
1302 				if (len < i) {
1303 					mp->msg_flags |= MSG_CTRUNC;
1304 					i = len;
1305 				}
1306 				error = copyout(mtod(m, caddr_t), p,
1307 				    (unsigned)i);
1308 				if (m->m_next)
1309 					i = ALIGN(i);
1310 				p += i;
1311 				len -= i;
1312 				if (error != 0 || len <= 0)
1313 					break;
1314 			} while ((m = m->m_next) != NULL);
1315 			len = p - (caddr_t)(u_long)mp->msg_control;
1316 		}
1317 		mp->msg_controllen = len;
1318 	}
1319  out:
1320 	if (from)
1321 		m_freem(from);
1322 	if (control)
1323 		m_freem(control);
1324  out1:
1325 	FILE_UNUSE(fp, p);
1326 	return (error);
1327 }
1328 
1329 
1330 int
1331 netbsd32_sendmsg(p, v, retval)
1332 	struct proc *p;
1333 	void *v;
1334 	register_t *retval;
1335 {
1336 	struct netbsd32_sendmsg_args /* {
1337 		syscallarg(int) s;
1338 		syscallarg(const netbsd32_msghdrp_t) msg;
1339 		syscallarg(int) flags;
1340 	} */ *uap = v;
1341 	struct msghdr msg;
1342 	struct netbsd32_msghdr msg32;
1343 	struct iovec aiov[UIO_SMALLIOV], *iov;
1344 	int error;
1345 
1346 	error = copyin((caddr_t)(u_long)SCARG(uap, msg),
1347 		       (caddr_t)&msg32, sizeof(msg32));
1348 	if (error)
1349 		return (error);
1350 	netbsd32_to_msghdr(&msg32, &msg);
1351 	if ((u_int)msg.msg_iovlen > UIO_SMALLIOV) {
1352 		if ((u_int)msg.msg_iovlen > IOV_MAX)
1353 			return (EMSGSIZE);
1354 		MALLOC(iov, struct iovec *,
1355 		       sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV,
1356 		       M_WAITOK);
1357 	} else if ((u_int)msg.msg_iovlen > 0)
1358 		iov = aiov;
1359 	else
1360 		return (EMSGSIZE);
1361 	error = netbsd32_to_iovecin((struct netbsd32_iovec *)msg.msg_iov,
1362 				   iov, msg.msg_iovlen);
1363 	if (error)
1364 		goto done;
1365 	msg.msg_iov = iov;
1366 #ifdef COMPAT_OLDSOCK
1367 	msg.msg_flags = 0;
1368 #endif
1369 	/* Luckily we can use this directly */
1370 	error = sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval);
1371 done:
1372 	if (iov != aiov)
1373 		FREE(iov, M_IOV);
1374 	return (error);
1375 }
1376 
1377 int
1378 netbsd32_recvfrom(p, v, retval)
1379 	struct proc *p;
1380 	void *v;
1381 	register_t *retval;
1382 {
1383 	struct netbsd32_recvfrom_args /* {
1384 		syscallarg(int) s;
1385 		syscallarg(netbsd32_voidp) buf;
1386 		syscallarg(netbsd32_size_t) len;
1387 		syscallarg(int) flags;
1388 		syscallarg(netbsd32_sockaddrp_t) from;
1389 		syscallarg(netbsd32_intp) fromlenaddr;
1390 	} */ *uap = v;
1391 	struct netbsd32_msghdr msg;
1392 	struct iovec aiov;
1393 	int error;
1394 
1395 	if (SCARG(uap, fromlenaddr)) {
1396 		error = copyin((caddr_t)(u_long)SCARG(uap, fromlenaddr),
1397 			       (caddr_t)&msg.msg_namelen,
1398 			       sizeof(msg.msg_namelen));
1399 		if (error)
1400 			return (error);
1401 	} else
1402 		msg.msg_namelen = 0;
1403 	msg.msg_name = SCARG(uap, from);
1404 	msg.msg_iov = NULL; /* We can't store a real pointer here */
1405 	msg.msg_iovlen = 1;
1406 	aiov.iov_base = (caddr_t)(u_long)SCARG(uap, buf);
1407 	aiov.iov_len = (u_long)SCARG(uap, len);
1408 	msg.msg_control = 0;
1409 	msg.msg_flags = SCARG(uap, flags);
1410 	return (recvit32(p, SCARG(uap, s), &msg, &aiov,
1411 		       (caddr_t)(u_long)SCARG(uap, fromlenaddr), retval));
1412 }
1413 
1414 int
1415 netbsd32_sendto(p, v, retval)
1416 	struct proc *p;
1417 	void *v;
1418 	register_t *retval;
1419 {
1420 	struct netbsd32_sendto_args /* {
1421 		syscallarg(int) s;
1422 		syscallarg(const netbsd32_voidp) buf;
1423 		syscallarg(netbsd32_size_t) len;
1424 		syscallarg(int) flags;
1425 		syscallarg(const netbsd32_sockaddrp_t) to;
1426 		syscallarg(int) tolen;
1427 	} */ *uap = v;
1428 	struct msghdr msg;
1429 	struct iovec aiov;
1430 
1431 	msg.msg_name = (caddr_t)(u_long)SCARG(uap, to);		/* XXX kills const */
1432 	msg.msg_namelen = SCARG(uap, tolen);
1433 	msg.msg_iov = &aiov;
1434 	msg.msg_iovlen = 1;
1435 	msg.msg_control = 0;
1436 #ifdef COMPAT_OLDSOCK
1437 	msg.msg_flags = 0;
1438 #endif
1439 	aiov.iov_base = (char *)(u_long)SCARG(uap, buf);	/* XXX kills const */
1440 	aiov.iov_len = SCARG(uap, len);
1441 	return (sendit(p, SCARG(uap, s), &msg, SCARG(uap, flags), retval));
1442 }
1443 
1444 int
1445 netbsd32_accept(p, v, retval)
1446 	struct proc *p;
1447 	void *v;
1448 	register_t *retval;
1449 {
1450 	struct netbsd32_accept_args /* {
1451 		syscallarg(int) s;
1452 		syscallarg(netbsd32_sockaddrp_t) name;
1453 		syscallarg(netbsd32_intp) anamelen;
1454 	} */ *uap = v;
1455 	struct sys_accept_args ua;
1456 
1457 	NETBSD32TO64_UAP(s);
1458 	NETBSD32TOP_UAP(name, struct sockaddr);
1459 	NETBSD32TOP_UAP(anamelen, int);
1460 	return (sys_accept(p, &ua, retval));
1461 }
1462 
1463 int
1464 netbsd32_getpeername(p, v, retval)
1465 	struct proc *p;
1466 	void *v;
1467 	register_t *retval;
1468 {
1469 	struct netbsd32_getpeername_args /* {
1470 		syscallarg(int) fdes;
1471 		syscallarg(netbsd32_sockaddrp_t) asa;
1472 		syscallarg(netbsd32_intp) alen;
1473 	} */ *uap = v;
1474 	struct sys_getpeername_args ua;
1475 
1476 	NETBSD32TO64_UAP(fdes);
1477 	NETBSD32TOP_UAP(asa, struct sockaddr);
1478 	NETBSD32TOP_UAP(alen, int);
1479 /* NB: do the protocol specific sockaddrs need to be converted? */
1480 	return (sys_getpeername(p, &ua, retval));
1481 }
1482 
1483 int
1484 netbsd32_getsockname(p, v, retval)
1485 	struct proc *p;
1486 	void *v;
1487 	register_t *retval;
1488 {
1489 	struct netbsd32_getsockname_args /* {
1490 		syscallarg(int) fdes;
1491 		syscallarg(netbsd32_sockaddrp_t) asa;
1492 		syscallarg(netbsd32_intp) alen;
1493 	} */ *uap = v;
1494 	struct sys_getsockname_args ua;
1495 
1496 	NETBSD32TO64_UAP(fdes);
1497 	NETBSD32TOP_UAP(asa, struct sockaddr);
1498 	NETBSD32TOP_UAP(alen, int);
1499 	return (sys_getsockname(p, &ua, retval));
1500 }
1501 
1502 int
1503 netbsd32_access(p, v, retval)
1504 	struct proc *p;
1505 	void *v;
1506 	register_t *retval;
1507 {
1508 	struct netbsd32_access_args /* {
1509 		syscallarg(const netbsd32_charp) path;
1510 		syscallarg(int) flags;
1511 	} */ *uap = v;
1512 	struct sys_access_args ua;
1513 	caddr_t sg;
1514 
1515 	NETBSD32TOP_UAP(path, const char);
1516 	NETBSD32TO64_UAP(flags);
1517 	sg = stackgap_init(p->p_emul);
1518 	CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1519 
1520 	return (sys_access(p, &ua, retval));
1521 }
1522 
1523 int
1524 netbsd32_chflags(p, v, retval)
1525 	struct proc *p;
1526 	void *v;
1527 	register_t *retval;
1528 {
1529 	struct netbsd32_chflags_args /* {
1530 		syscallarg(const netbsd32_charp) path;
1531 		syscallarg(netbsd32_u_long) flags;
1532 	} */ *uap = v;
1533 	struct sys_chflags_args ua;
1534 
1535 	NETBSD32TOP_UAP(path, const char);
1536 	NETBSD32TO64_UAP(flags);
1537 
1538 	return (sys_chflags(p, &ua, retval));
1539 }
1540 
1541 int
1542 netbsd32_fchflags(p, v, retval)
1543 	struct proc *p;
1544 	void *v;
1545 	register_t *retval;
1546 {
1547 	struct netbsd32_fchflags_args /* {
1548 		syscallarg(int) fd;
1549 		syscallarg(netbsd32_u_long) flags;
1550 	} */ *uap = v;
1551 	struct sys_fchflags_args ua;
1552 
1553 	NETBSD32TO64_UAP(fd);
1554 	NETBSD32TO64_UAP(flags);
1555 
1556 	return (sys_fchflags(p, &ua, retval));
1557 }
1558 
1559 int
1560 netbsd32_kill(p, v, retval)
1561 	struct proc *p;
1562 	void *v;
1563 	register_t *retval;
1564 {
1565 	struct netbsd32_kill_args /* {
1566 		syscallarg(int) pid;
1567 		syscallarg(int) signum;
1568 	} */ *uap = v;
1569 	struct sys_kill_args ua;
1570 
1571 	NETBSD32TO64_UAP(pid);
1572 	NETBSD32TO64_UAP(signum);
1573 
1574 	return (sys_kill(p, &ua, retval));
1575 }
1576 
1577 int
1578 netbsd32_dup(p, v, retval)
1579 	struct proc *p;
1580 	void *v;
1581 	register_t *retval;
1582 {
1583 	struct netbsd32_dup_args /* {
1584 		syscallarg(int) fd;
1585 	} */ *uap = v;
1586 	struct sys_dup_args ua;
1587 
1588 	NETBSD32TO64_UAP(fd);
1589 
1590 	return (sys_dup(p, &ua, retval));
1591 }
1592 
1593 int
1594 netbsd32_profil(p, v, retval)
1595 	struct proc *p;
1596 	void *v;
1597 	register_t *retval;
1598 {
1599 	struct netbsd32_profil_args /* {
1600 		syscallarg(netbsd32_caddr_t) samples;
1601 		syscallarg(netbsd32_size_t) size;
1602 		syscallarg(netbsd32_u_long) offset;
1603 		syscallarg(u_int) scale;
1604 	} */ *uap = v;
1605 	struct sys_profil_args ua;
1606 
1607 	NETBSD32TOX64_UAP(samples, caddr_t);
1608 	NETBSD32TOX_UAP(size, size_t);
1609 	NETBSD32TOX_UAP(offset, u_long);
1610 	NETBSD32TO64_UAP(scale);
1611 	return (sys_profil(p, &ua, retval));
1612 }
1613 
1614 #ifdef KTRACE
1615 int
1616 netbsd32_ktrace(p, v, retval)
1617 	struct proc *p;
1618 	void *v;
1619 	register_t *retval;
1620 {
1621 	struct netbsd32_ktrace_args /* {
1622 		syscallarg(const netbsd32_charp) fname;
1623 		syscallarg(int) ops;
1624 		syscallarg(int) facs;
1625 		syscallarg(int) pid;
1626 	} */ *uap = v;
1627 	struct sys_ktrace_args ua;
1628 
1629 	NETBSD32TOP_UAP(fname, const char);
1630 	NETBSD32TO64_UAP(ops);
1631 	NETBSD32TO64_UAP(facs);
1632 	NETBSD32TO64_UAP(pid);
1633 	return (sys_ktrace(p, &ua, retval));
1634 }
1635 #endif /* KTRACE */
1636 
1637 int
1638 netbsd32_sigaction(p, v, retval)
1639 	struct proc *p;
1640 	void *v;
1641 	register_t *retval;
1642 {
1643 	struct netbsd32_sigaction_args /* {
1644 		syscallarg(int) signum;
1645 		syscallarg(const netbsd32_sigactionp_t) nsa;
1646 		syscallarg(netbsd32_sigactionp_t) osa;
1647 	} */ *uap = v;
1648 	struct sigaction nsa, osa;
1649 	struct netbsd32_sigaction *sa32p, sa32;
1650 	int error;
1651 
1652 	if (SCARG(uap, nsa)) {
1653 		sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, nsa);
1654 		if (copyin(sa32p, &sa32, sizeof(sa32)))
1655 			return EFAULT;
1656 		nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
1657 		nsa.sa_mask = sa32.sa_mask;
1658 		nsa.sa_flags = sa32.sa_flags;
1659 	}
1660 	error = sigaction1(p, SCARG(uap, signum),
1661 			   SCARG(uap, nsa) ? &nsa : 0,
1662 			   SCARG(uap, osa) ? &osa : 0);
1663 
1664 	if (error)
1665 		return (error);
1666 
1667 	if (SCARG(uap, osa)) {
1668 		sa32.sa_handler = (netbsd32_sigactionp_t)(u_long)osa.sa_handler;
1669 		sa32.sa_mask = osa.sa_mask;
1670 		sa32.sa_flags = osa.sa_flags;
1671 		sa32p = (struct netbsd32_sigaction *)(u_long)SCARG(uap, osa);
1672 		if (copyout(&sa32, sa32p, sizeof(sa32)))
1673 			return EFAULT;
1674 	}
1675 
1676 	return (0);
1677 }
1678 
1679 int
1680 netbsd32___getlogin(p, v, retval)
1681 	struct proc *p;
1682 	void *v;
1683 	register_t *retval;
1684 {
1685 	struct netbsd32___getlogin_args /* {
1686 		syscallarg(netbsd32_charp) namebuf;
1687 		syscallarg(u_int) namelen;
1688 	} */ *uap = v;
1689 	struct sys___getlogin_args ua;
1690 
1691 	NETBSD32TOP_UAP(namebuf, char);
1692 	NETBSD32TO64_UAP(namelen);
1693 	return (sys___getlogin(p, &ua, retval));
1694 }
1695 
1696 int
1697 netbsd32_setlogin(p, v, retval)
1698 	struct proc *p;
1699 	void *v;
1700 	register_t *retval;
1701 {
1702 	struct netbsd32_setlogin_args /* {
1703 		syscallarg(const netbsd32_charp) namebuf;
1704 	} */ *uap = v;
1705 	struct sys_setlogin_args ua;
1706 
1707 	NETBSD32TOP_UAP(namebuf, char);
1708 	return (sys_setlogin(p, &ua, retval));
1709 }
1710 
1711 int
1712 netbsd32_acct(p, v, retval)
1713 	struct proc *p;
1714 	void *v;
1715 	register_t *retval;
1716 {
1717 	struct netbsd32_acct_args /* {
1718 		syscallarg(const netbsd32_charp) path;
1719 	} */ *uap = v;
1720 	struct sys_acct_args ua;
1721 
1722 	NETBSD32TOP_UAP(path, const char);
1723 	return (sys_acct(p, &ua, retval));
1724 }
1725 
1726 int
1727 netbsd32_revoke(p, v, retval)
1728 	struct proc *p;
1729 	void *v;
1730 	register_t *retval;
1731 {
1732 	struct netbsd32_revoke_args /* {
1733 		syscallarg(const netbsd32_charp) path;
1734 	} */ *uap = v;
1735 	struct sys_revoke_args ua;
1736 	caddr_t sg;
1737 
1738 	NETBSD32TOP_UAP(path, const char);
1739 	sg = stackgap_init(p->p_emul);
1740 	CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1741 
1742 	return (sys_revoke(p, &ua, retval));
1743 }
1744 
1745 int
1746 netbsd32_symlink(p, v, retval)
1747 	struct proc *p;
1748 	void *v;
1749 	register_t *retval;
1750 {
1751 	struct netbsd32_symlink_args /* {
1752 		syscallarg(const netbsd32_charp) path;
1753 		syscallarg(const netbsd32_charp) link;
1754 	} */ *uap = v;
1755 	struct sys_symlink_args ua;
1756 
1757 	NETBSD32TOP_UAP(path, const char);
1758 	NETBSD32TOP_UAP(link, const char);
1759 
1760 	return (sys_symlink(p, &ua, retval));
1761 }
1762 
1763 int
1764 netbsd32_readlink(p, v, retval)
1765 	struct proc *p;
1766 	void *v;
1767 	register_t *retval;
1768 {
1769 	struct netbsd32_readlink_args /* {
1770 		syscallarg(const netbsd32_charp) path;
1771 		syscallarg(netbsd32_charp) buf;
1772 		syscallarg(netbsd32_size_t) count;
1773 	} */ *uap = v;
1774 	struct sys_readlink_args ua;
1775 	caddr_t sg;
1776 
1777 	NETBSD32TOP_UAP(path, const char);
1778 	NETBSD32TOP_UAP(buf, char);
1779 	NETBSD32TOX_UAP(count, size_t);
1780 	sg = stackgap_init(p->p_emul);
1781 	CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1782 
1783 	return (sys_readlink(p, &ua, retval));
1784 }
1785 
1786 /*
1787  * Need to completly reimplement this syscall due to argument copying.
1788  */
1789 /* ARGSUSED */
1790 int
1791 netbsd32_execve(p, v, retval)
1792 	struct proc *p;
1793 	void *v;
1794 	register_t *retval;
1795 {
1796 	struct netbsd32_execve_args /* {
1797 		syscallarg(const netbsd32_charp) path;
1798 		syscallarg(netbsd32_charpp) argp;
1799 		syscallarg(netbsd32_charpp) envp;
1800 	} */ *uap = v;
1801 	struct sys_execve_args ua;
1802 	caddr_t sg;
1803 	/* Function args */
1804 	int error, i;
1805 	struct exec_package pack;
1806 	struct nameidata nid;
1807 	struct vattr attr;
1808 	struct ucred *cred = p->p_ucred;
1809 	char *argp;
1810 	netbsd32_charp const *cpp;
1811 	char *dp;
1812 	netbsd32_charp sp;
1813 	long argc, envc;
1814 	size_t len;
1815 	char *stack;
1816 	struct ps_strings arginfo;
1817 	struct vmspace *vm;
1818 	char **tmpfap;
1819 	int szsigcode;
1820 	struct exec_vmcmd *base_vcp = NULL;
1821 
1822 	NETBSD32TOP_UAP(path, const char);
1823 	NETBSD32TOP_UAP(argp, char *);
1824 	NETBSD32TOP_UAP(envp, char *);
1825 	sg = stackgap_init(p->p_emul);
1826 	CHECK_ALT_EXIST(p, &sg, SCARG(&ua, path));
1827 
1828 	/* init the namei data to point the file user's program name */
1829 	/* XXX cgd 960926: why do this here?  most will be clobbered. */
1830 	NDINIT(&nid, LOOKUP, NOFOLLOW, UIO_USERSPACE, SCARG(&ua, path), p);
1831 
1832 	/*
1833 	 * initialize the fields of the exec package.
1834 	 */
1835 	pack.ep_name = SCARG(&ua, path);
1836 	pack.ep_hdr = malloc(exec_maxhdrsz, M_EXEC, M_WAITOK);
1837 	pack.ep_hdrlen = exec_maxhdrsz;
1838 	pack.ep_hdrvalid = 0;
1839 	pack.ep_ndp = &nid;
1840 	pack.ep_emul_arg = NULL;
1841 	pack.ep_vmcmds.evs_cnt = 0;
1842 	pack.ep_vmcmds.evs_used = 0;
1843 	pack.ep_vap = &attr;
1844 	pack.ep_flags = 0;
1845 
1846 	lockmgr(&exec_lock, LK_SHARED, NULL);
1847 
1848 	/* see if we can run it. */
1849 	if ((error = check_exec(p, &pack)) != 0)
1850 		goto freehdr;
1851 
1852 	/* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
1853 
1854 	/* allocate an argument buffer */
1855 	argp = (char *) uvm_km_valloc_wait(exec_map, NCARGS);
1856 #ifdef DIAGNOSTIC
1857 	if (argp == (vaddr_t) 0)
1858 		panic("execve: argp == NULL");
1859 #endif
1860 	dp = argp;
1861 	argc = 0;
1862 
1863 	/* copy the fake args list, if there's one, freeing it as we go */
1864 	if (pack.ep_flags & EXEC_HASARGL) {
1865 		tmpfap = pack.ep_fa;
1866 		while (*tmpfap != NULL) {
1867 			char *cp;
1868 
1869 			cp = *tmpfap;
1870 			while (*cp)
1871 				*dp++ = *cp++;
1872 			dp++;
1873 
1874 			FREE(*tmpfap, M_EXEC);
1875 			tmpfap++; argc++;
1876 		}
1877 		FREE(pack.ep_fa, M_EXEC);
1878 		pack.ep_flags &= ~EXEC_HASARGL;
1879 	}
1880 
1881 	/* Now get argv & environment */
1882 	if (!(cpp = (netbsd32_charp *)SCARG(&ua, argp))) {
1883 		error = EINVAL;
1884 		goto bad;
1885 	}
1886 
1887 	if (pack.ep_flags & EXEC_SKIPARG)
1888 		cpp++;
1889 
1890 	while (1) {
1891 		len = argp + ARG_MAX - dp;
1892 		if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1893 			goto bad;
1894 		if (!sp)
1895 			break;
1896 		if ((error = copyinstr((char *)(u_long)sp, dp,
1897 				       len, &len)) != 0) {
1898 			if (error == ENAMETOOLONG)
1899 				error = E2BIG;
1900 			goto bad;
1901 		}
1902 		dp += len;
1903 		cpp++;
1904 		argc++;
1905 	}
1906 
1907 	envc = 0;
1908 	/* environment need not be there */
1909 	if ((cpp = (netbsd32_charp *)SCARG(&ua, envp)) != NULL ) {
1910 		while (1) {
1911 			len = argp + ARG_MAX - dp;
1912 			if ((error = copyin(cpp, &sp, sizeof(sp))) != 0)
1913 				goto bad;
1914 			if (!sp)
1915 				break;
1916 			if ((error = copyinstr((char *)(u_long)sp,
1917 					       dp, len, &len)) != 0) {
1918 				if (error == ENAMETOOLONG)
1919 					error = E2BIG;
1920 				goto bad;
1921 			}
1922 			dp += len;
1923 			cpp++;
1924 			envc++;
1925 		}
1926 	}
1927 
1928 	dp = (char *) ALIGN(dp);
1929 
1930 	szsigcode = pack.ep_es->es_emul->e_esigcode -
1931 	    pack.ep_es->es_emul->e_sigcode;
1932 
1933 	/* Now check if args & environ fit into new stack */
1934 	if (pack.ep_flags & EXEC_32)
1935 		len = ((argc + envc + 2 + pack.ep_es->es_arglen) *
1936 		    sizeof(int) + sizeof(int) + dp + STACKGAPLEN +
1937 		    szsigcode + sizeof(struct ps_strings)) - argp;
1938 	else
1939 		len = ((argc + envc + 2 + pack.ep_es->es_arglen) *
1940 		    sizeof(char *) + sizeof(int) + dp + STACKGAPLEN +
1941 		    szsigcode + sizeof(struct ps_strings)) - argp;
1942 
1943 	len = ALIGN(len);	/* make the stack "safely" aligned */
1944 
1945 	if (len > pack.ep_ssize) { /* in effect, compare to initial limit */
1946 		error = ENOMEM;
1947 		goto bad;
1948 	}
1949 
1950 	/* adjust "active stack depth" for process VSZ */
1951 	pack.ep_ssize = len;	/* maybe should go elsewhere, but... */
1952 
1953 	/*
1954 	 * Do whatever is necessary to prepare the address space
1955 	 * for remapping.  Note that this might replace the current
1956 	 * vmspace with another!
1957 	 */
1958 	uvmspace_exec(p);
1959 
1960 	/* Now map address space */
1961 	vm = p->p_vmspace;
1962 	vm->vm_taddr = (char *) pack.ep_taddr;
1963 	vm->vm_tsize = btoc(pack.ep_tsize);
1964 	vm->vm_daddr = (char *) pack.ep_daddr;
1965 	vm->vm_dsize = btoc(pack.ep_dsize);
1966 	vm->vm_ssize = btoc(pack.ep_ssize);
1967 	vm->vm_maxsaddr = (char *) pack.ep_maxsaddr;
1968 	vm->vm_minsaddr = (char *) pack.ep_minsaddr;
1969 
1970 	/* create the new process's VM space by running the vmcmds */
1971 #ifdef DIAGNOSTIC
1972 	if (pack.ep_vmcmds.evs_used == 0)
1973 		panic("execve: no vmcmds");
1974 #endif
1975 	for (i = 0; i < pack.ep_vmcmds.evs_used && !error; i++) {
1976 		struct exec_vmcmd *vcp;
1977 
1978 		vcp = &pack.ep_vmcmds.evs_cmds[i];
1979 		if (vcp->ev_flags & VMCMD_RELATIVE) {
1980 #ifdef DIAGNOSTIC
1981 			if (base_vcp == NULL)
1982 				panic("execve: relative vmcmd with no base");
1983 			if (vcp->ev_flags & VMCMD_BASE)
1984 				panic("execve: illegal base & relative vmcmd");
1985 #endif
1986 			vcp->ev_addr += base_vcp->ev_addr;
1987 		}
1988 		error = (*vcp->ev_proc)(p, vcp);
1989 #ifdef DEBUG
1990 		if (error) {
1991 			if (i > 0)
1992 				printf("vmcmd[%d] = %#lx/%#lx @ %#lx\n", i-1,
1993 				       vcp[-1].ev_addr, vcp[-1].ev_len,
1994 				       vcp[-1].ev_offset);
1995 			printf("vmcmd[%d] = %#lx/%#lx @ %#lx\n", i,
1996 			       vcp->ev_addr, vcp->ev_len, vcp->ev_offset);
1997 		}
1998 #endif
1999 		if (vcp->ev_flags & VMCMD_BASE)
2000 			base_vcp = vcp;
2001 	}
2002 
2003 	/* free the vmspace-creation commands, and release their references */
2004 	kill_vmcmds(&pack.ep_vmcmds);
2005 
2006 	/* if an error happened, deallocate and punt */
2007 	if (error) {
2008 #ifdef DEBUG
2009 		printf("execve: vmcmd %i failed: %d\n", i-1, error);
2010 #endif
2011 		goto exec_abort;
2012 	}
2013 
2014 	/* remember information about the process */
2015 	arginfo.ps_nargvstr = argc;
2016 	arginfo.ps_nenvstr = envc;
2017 
2018 	stack = (char *) (vm->vm_minsaddr - len);
2019 	/* Now copy argc, args & environ to new stack */
2020 	if (!(*pack.ep_es->es_copyargs)(&pack, &arginfo, stack, argp)) {
2021 #ifdef DEBUG
2022 		printf("execve: copyargs failed\n");
2023 #endif
2024 		goto exec_abort;
2025 	}
2026 
2027 	/* fill process ps_strings info */
2028 	p->p_psstr = (struct ps_strings *)(stack - sizeof(struct ps_strings));
2029 	p->p_psargv = offsetof(struct ps_strings, ps_argvstr);
2030 	p->p_psnargv = offsetof(struct ps_strings, ps_nargvstr);
2031 	p->p_psenv = offsetof(struct ps_strings, ps_envstr);
2032 	p->p_psnenv = offsetof(struct ps_strings, ps_nenvstr);
2033 
2034 	/* copy out the process's ps_strings structure */
2035 	if (copyout(&arginfo, (char *)p->p_psstr, sizeof(arginfo))) {
2036 #ifdef DEBUG
2037 		printf("execve: ps_strings copyout failed\n");
2038 #endif
2039 		goto exec_abort;
2040 	}
2041 
2042 	/* copy out the process's signal trapoline code */
2043 	if (szsigcode) {
2044 		if (copyout((char *)pack.ep_es->es_emul->e_sigcode,
2045 		    p->p_sigctx.ps_sigcode = (char *)p->p_psstr - szsigcode,
2046 		    szsigcode)) {
2047 #ifdef DEBUG
2048 			printf("execve: sig trampoline copyout failed\n");
2049 #endif
2050 			goto exec_abort;
2051 		}
2052 #ifdef PMAP_NEED_PROCWR
2053 		/* This is code. Let the pmap do what is needed. */
2054 		pmap_procwr(p, (vaddr_t)p->p_sigacts->ps_sigcode, szsigcode);
2055 #endif
2056 	}
2057 
2058 	stopprofclock(p);	/* stop profiling */
2059 	fdcloseexec(p);		/* handle close on exec */
2060 	execsigs(p);		/* reset catched signals */
2061 	p->p_ctxlink = NULL;	/* reset ucontext link */
2062 
2063 	/* set command name & other accounting info */
2064 	len = min(nid.ni_cnd.cn_namelen, MAXCOMLEN);
2065 	memcpy(p->p_comm, nid.ni_cnd.cn_nameptr, len);
2066 	p->p_comm[len] = 0;
2067 	p->p_acflag &= ~AFORK;
2068 
2069 	/* record proc's vnode, for use by procfs and others */
2070         if (p->p_textvp)
2071                 vrele(p->p_textvp);
2072 	VREF(pack.ep_vp);
2073 	p->p_textvp = pack.ep_vp;
2074 
2075 	p->p_flag |= P_EXEC;
2076 	if (p->p_flag & P_PPWAIT) {
2077 		p->p_flag &= ~P_PPWAIT;
2078 		wakeup((caddr_t) p->p_pptr);
2079 	}
2080 
2081 	/*
2082 	 * deal with set[ug]id.
2083 	 * MNT_NOSUID and P_TRACED have already been used to disable s[ug]id.
2084 	 */
2085 	if (((attr.va_mode & S_ISUID) != 0 && p->p_ucred->cr_uid != attr.va_uid)
2086 	 || ((attr.va_mode & S_ISGID) != 0 && p->p_ucred->cr_gid != attr.va_gid)){
2087 		p->p_ucred = crcopy(cred);
2088 #ifdef KTRACE
2089 		/*
2090 		 * If process is being ktraced, turn off - unless
2091 		 * root set it.
2092 		 */
2093 		if (p->p_tracep && !(p->p_traceflag & KTRFAC_ROOT))
2094 			ktrderef(p);
2095 #endif
2096 		if (attr.va_mode & S_ISUID)
2097 			p->p_ucred->cr_uid = attr.va_uid;
2098 		if (attr.va_mode & S_ISGID)
2099 			p->p_ucred->cr_gid = attr.va_gid;
2100 		p_sugid(p);
2101 	} else
2102 		p->p_flag &= ~P_SUGID;
2103 	p->p_cred->p_svuid = p->p_ucred->cr_uid;
2104 	p->p_cred->p_svgid = p->p_ucred->cr_gid;
2105 
2106 	doexechooks(p);
2107 
2108 	uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2109 
2110 	PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2111 	vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2112 	VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2113 	vput(pack.ep_vp);
2114 
2115 	/* setup new registers and do misc. setup. */
2116 	(*pack.ep_es->es_setregs)(p, &pack, (u_long) stack);
2117 
2118 	if (p->p_flag & P_TRACED)
2119 		psignal(p, SIGTRAP);
2120 
2121 	free(pack.ep_hdr, M_EXEC);
2122 
2123 	/*
2124 	 * Call emulation specific exec hook. This can setup setup per-process
2125 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
2126 	 *
2127 	 * If we are executing process of different emulation than the
2128 	 * original forked process, call e_proc_exit() of the old emulation
2129 	 * first, then e_proc_exec() of new emulation. If the emulation is
2130 	 * same, the exec hook code should deallocate any old emulation
2131 	 * resources held previously by this process.
2132 	 */
2133 	if (p->p_emul && p->p_emul->e_proc_exit
2134 	    && p->p_emul != pack.ep_es->es_emul)
2135 		(*p->p_emul->e_proc_exit)(p);
2136 
2137 	/*
2138 	 * Call exec hook. Emulation code may NOT store reference to anything
2139 	 * from &pack.
2140 	 */
2141         if (pack.ep_es->es_emul->e_proc_exec)
2142                 (*pack.ep_es->es_emul->e_proc_exec)(p, &pack);
2143 
2144 	/* update p_emul, the old value is no longer needed */
2145 	p->p_emul = pack.ep_es->es_emul;
2146 
2147 #ifdef KTRACE
2148 	if (KTRPOINT(p, KTR_EMUL))
2149 		ktremul(p);
2150 #endif
2151 
2152 	lockmgr(&exec_lock, LK_RELEASE, NULL);
2153 
2154 	return (EJUSTRETURN);
2155 
2156 bad:
2157 	/* free the vmspace-creation commands, and release their references */
2158 	kill_vmcmds(&pack.ep_vmcmds);
2159 	/* kill any opened file descriptor, if necessary */
2160 	if (pack.ep_flags & EXEC_HASFD) {
2161 		pack.ep_flags &= ~EXEC_HASFD;
2162 		(void) fdrelease(p, pack.ep_fd);
2163 	}
2164 	/* close and put the exec'd file */
2165 	vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2166 	VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2167 	vput(pack.ep_vp);
2168 	PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2169 	uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2170 
2171 freehdr:
2172 	lockmgr(&exec_lock, LK_RELEASE, NULL);
2173 
2174 	free(pack.ep_hdr, M_EXEC);
2175 	return error;
2176 
2177 exec_abort:
2178 	lockmgr(&exec_lock, LK_RELEASE, NULL);
2179 
2180 	/*
2181 	 * the old process doesn't exist anymore.  exit gracefully.
2182 	 * get rid of the (new) address space we have created, if any, get rid
2183 	 * of our namei data and vnode, and exit noting failure
2184 	 */
2185 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
2186 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
2187 	if (pack.ep_emul_arg)
2188 		FREE(pack.ep_emul_arg, M_TEMP);
2189 	PNBUF_PUT(nid.ni_cnd.cn_pnbuf);
2190 	vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
2191 	VOP_CLOSE(pack.ep_vp, FREAD, cred, p);
2192 	vput(pack.ep_vp);
2193 	uvm_km_free_wakeup(exec_map, (vaddr_t) argp, NCARGS);
2194 	free(pack.ep_hdr, M_EXEC);
2195 	exit1(p, W_EXITCODE(0, SIGABRT));
2196 	exit1(p, -1);
2197 
2198 	/* NOTREACHED */
2199 	return 0;
2200 }
2201 
2202 int
2203 netbsd32_umask(p, v, retval)
2204 	struct proc *p;
2205 	void *v;
2206 	register_t *retval;
2207 {
2208 	struct netbsd32_umask_args /* {
2209 		syscallarg(mode_t) newmask;
2210 	} */ *uap = v;
2211 	struct sys_umask_args ua;
2212 
2213 	NETBSD32TO64_UAP(newmask);
2214 	return (sys_umask(p, &ua, retval));
2215 }
2216 
2217 int
2218 netbsd32_chroot(p, v, retval)
2219 	struct proc *p;
2220 	void *v;
2221 	register_t *retval;
2222 {
2223 	struct netbsd32_chroot_args /* {
2224 		syscallarg(const netbsd32_charp) path;
2225 	} */ *uap = v;
2226 	struct sys_chroot_args ua;
2227 
2228 	NETBSD32TOP_UAP(path, const char);
2229 	return (sys_chroot(p, &ua, retval));
2230 }
2231 
2232 int
2233 netbsd32_sbrk(p, v, retval)
2234 	struct proc *p;
2235 	void *v;
2236 	register_t *retval;
2237 {
2238 	struct netbsd32_sbrk_args /* {
2239 		syscallarg(int) incr;
2240 	} */ *uap = v;
2241 	struct sys_sbrk_args ua;
2242 
2243 	NETBSD32TO64_UAP(incr);
2244 	return (sys_sbrk(p, &ua, retval));
2245 }
2246 
2247 int
2248 netbsd32_sstk(p, v, retval)
2249 	struct proc *p;
2250 	void *v;
2251 	register_t *retval;
2252 {
2253 	struct netbsd32_sstk_args /* {
2254 		syscallarg(int) incr;
2255 	} */ *uap = v;
2256 	struct sys_sstk_args ua;
2257 
2258 	NETBSD32TO64_UAP(incr);
2259 	return (sys_sstk(p, &ua, retval));
2260 }
2261 
2262 int
2263 netbsd32_munmap(p, v, retval)
2264 	struct proc *p;
2265 	void *v;
2266 	register_t *retval;
2267 {
2268 	struct netbsd32_munmap_args /* {
2269 		syscallarg(netbsd32_voidp) addr;
2270 		syscallarg(netbsd32_size_t) len;
2271 	} */ *uap = v;
2272 	struct sys_munmap_args ua;
2273 
2274 	NETBSD32TOP_UAP(addr, void);
2275 	NETBSD32TOX_UAP(len, size_t);
2276 	return (sys_munmap(p, &ua, retval));
2277 }
2278 
2279 int
2280 netbsd32_mprotect(p, v, retval)
2281 	struct proc *p;
2282 	void *v;
2283 	register_t *retval;
2284 {
2285 	struct netbsd32_mprotect_args /* {
2286 		syscallarg(netbsd32_voidp) addr;
2287 		syscallarg(netbsd32_size_t) len;
2288 		syscallarg(int) prot;
2289 	} */ *uap = v;
2290 	struct sys_mprotect_args ua;
2291 
2292 	NETBSD32TOP_UAP(addr, void);
2293 	NETBSD32TOX_UAP(len, size_t);
2294 	NETBSD32TO64_UAP(prot);
2295 	return (sys_mprotect(p, &ua, retval));
2296 }
2297 
2298 int
2299 netbsd32_madvise(p, v, retval)
2300 	struct proc *p;
2301 	void *v;
2302 	register_t *retval;
2303 {
2304 	struct netbsd32_madvise_args /* {
2305 		syscallarg(netbsd32_voidp) addr;
2306 		syscallarg(netbsd32_size_t) len;
2307 		syscallarg(int) behav;
2308 	} */ *uap = v;
2309 	struct sys_madvise_args ua;
2310 
2311 	NETBSD32TOP_UAP(addr, void);
2312 	NETBSD32TOX_UAP(len, size_t);
2313 	NETBSD32TO64_UAP(behav);
2314 	return (sys_madvise(p, &ua, retval));
2315 }
2316 
2317 int
2318 netbsd32_mincore(p, v, retval)
2319 	struct proc *p;
2320 	void *v;
2321 	register_t *retval;
2322 {
2323 	struct netbsd32_mincore_args /* {
2324 		syscallarg(netbsd32_caddr_t) addr;
2325 		syscallarg(netbsd32_size_t) len;
2326 		syscallarg(netbsd32_charp) vec;
2327 	} */ *uap = v;
2328 	struct sys_mincore_args ua;
2329 
2330 	NETBSD32TOX64_UAP(addr, caddr_t);
2331 	NETBSD32TOX_UAP(len, size_t);
2332 	NETBSD32TOP_UAP(vec, char);
2333 	return (sys_mincore(p, &ua, retval));
2334 }
2335 
2336 int
2337 netbsd32_getgroups(p, v, retval)
2338 	struct proc *p;
2339 	void *v;
2340 	register_t *retval;
2341 {
2342 	struct netbsd32_getgroups_args /* {
2343 		syscallarg(int) gidsetsize;
2344 		syscallarg(netbsd32_gid_tp) gidset;
2345 	} */ *uap = v;
2346 	struct pcred *pc = p->p_cred;
2347 	int ngrp;
2348 	int error;
2349 
2350 	ngrp = SCARG(uap, gidsetsize);
2351 	if (ngrp == 0) {
2352 		*retval = pc->pc_ucred->cr_ngroups;
2353 		return (0);
2354 	}
2355 	if (ngrp < pc->pc_ucred->cr_ngroups)
2356 		return (EINVAL);
2357 	ngrp = pc->pc_ucred->cr_ngroups;
2358 	/* Should convert gid_t to netbsd32_gid_t, but they're the same */
2359 	error = copyout((caddr_t)pc->pc_ucred->cr_groups,
2360 			(caddr_t)(u_long)SCARG(uap, gidset),
2361 			ngrp * sizeof(gid_t));
2362 	if (error)
2363 		return (error);
2364 	*retval = ngrp;
2365 	return (0);
2366 }
2367 
2368 int
2369 netbsd32_setgroups(p, v, retval)
2370 	struct proc *p;
2371 	void *v;
2372 	register_t *retval;
2373 {
2374 	struct netbsd32_setgroups_args /* {
2375 		syscallarg(int) gidsetsize;
2376 		syscallarg(const netbsd32_gid_tp) gidset;
2377 	} */ *uap = v;
2378 	struct sys_setgroups_args ua;
2379 
2380 	NETBSD32TO64_UAP(gidsetsize);
2381 	NETBSD32TOP_UAP(gidset, gid_t);
2382 	return (sys_setgroups(p, &ua, retval));
2383 }
2384 
2385 int
2386 netbsd32_setpgid(p, v, retval)
2387 	struct proc *p;
2388 	void *v;
2389 	register_t *retval;
2390 {
2391 	struct netbsd32_setpgid_args /* {
2392 		syscallarg(int) pid;
2393 		syscallarg(int) pgid;
2394 	} */ *uap = v;
2395 	struct sys_setpgid_args ua;
2396 
2397 	NETBSD32TO64_UAP(pid);
2398 	NETBSD32TO64_UAP(pgid);
2399 	return (sys_setpgid(p, &ua, retval));
2400 }
2401 
2402 int
2403 netbsd32_setitimer(p, v, retval)
2404 	struct proc *p;
2405 	void *v;
2406 	register_t *retval;
2407 {
2408 	struct netbsd32_setitimer_args /* {
2409 		syscallarg(int) which;
2410 		syscallarg(const netbsd32_itimervalp_t) itv;
2411 		syscallarg(netbsd32_itimervalp_t) oitv;
2412 	} */ *uap = v;
2413 	struct netbsd32_itimerval s32it, *itvp;
2414 	int which = SCARG(uap, which);
2415 	struct netbsd32_getitimer_args getargs;
2416 	struct itimerval aitv;
2417 	int s, error;
2418 
2419 	if ((u_int)which > ITIMER_PROF)
2420 		return (EINVAL);
2421 	itvp = (struct netbsd32_itimerval *)(u_long)SCARG(uap, itv);
2422 	if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
2423 		return (error);
2424 	netbsd32_to_itimerval(&s32it, &aitv);
2425 	if (SCARG(uap, oitv) != NULL) {
2426 		SCARG(&getargs, which) = which;
2427 		SCARG(&getargs, itv) = SCARG(uap, oitv);
2428 		if ((error = netbsd32_getitimer(p, &getargs, retval)) != 0)
2429 			return (error);
2430 	}
2431 	if (itvp == 0)
2432 		return (0);
2433 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
2434 		return (EINVAL);
2435 	s = splclock();
2436 	if (which == ITIMER_REAL) {
2437 		callout_stop(&p->p_realit_ch);
2438 		if (timerisset(&aitv.it_value)) {
2439 			/*
2440 			 * Don't need to check hzto() return value, here.
2441 			 * callout_reset() does it for us.
2442 			 */
2443 			timeradd(&aitv.it_value, &time, &aitv.it_value);
2444 			callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
2445 			    realitexpire, p);
2446 		}
2447 		p->p_realtimer = aitv;
2448 	} else
2449 		p->p_stats->p_timer[which] = aitv;
2450 	splx(s);
2451 	return (0);
2452 }
2453 
2454 int
2455 netbsd32_getitimer(p, v, retval)
2456 	struct proc *p;
2457 	void *v;
2458 	register_t *retval;
2459 {
2460 	struct netbsd32_getitimer_args /* {
2461 		syscallarg(int) which;
2462 		syscallarg(netbsd32_itimervalp_t) itv;
2463 	} */ *uap = v;
2464 	int which = SCARG(uap, which);
2465 	struct netbsd32_itimerval s32it;
2466 	struct itimerval aitv;
2467 	int s;
2468 
2469 	if ((u_int)which > ITIMER_PROF)
2470 		return (EINVAL);
2471 	s = splclock();
2472 	if (which == ITIMER_REAL) {
2473 		/*
2474 		 * Convert from absolute to relative time in .it_value
2475 		 * part of real time timer.  If time for real time timer
2476 		 * has passed return 0, else return difference between
2477 		 * current time and time for the timer to go off.
2478 		 */
2479 		aitv = p->p_realtimer;
2480 		if (timerisset(&aitv.it_value)) {
2481 			if (timercmp(&aitv.it_value, &time, <))
2482 				timerclear(&aitv.it_value);
2483 			else
2484 				timersub(&aitv.it_value, &time, &aitv.it_value);
2485 		}
2486 	} else
2487 		aitv = p->p_stats->p_timer[which];
2488 	splx(s);
2489 	netbsd32_from_itimerval(&aitv, &s32it);
2490 	return (copyout(&s32it, (caddr_t)(u_long)SCARG(uap, itv), sizeof(s32it)));
2491 }
2492 
2493 int
2494 netbsd32_fcntl(p, v, retval)
2495 	struct proc *p;
2496 	void *v;
2497 	register_t *retval;
2498 {
2499 	struct netbsd32_fcntl_args /* {
2500 		syscallarg(int) fd;
2501 		syscallarg(int) cmd;
2502 		syscallarg(netbsd32_voidp) arg;
2503 	} */ *uap = v;
2504 	struct sys_fcntl_args ua;
2505 
2506 	NETBSD32TO64_UAP(fd);
2507 	NETBSD32TO64_UAP(cmd);
2508 	NETBSD32TOP_UAP(arg, void);
2509 	/* XXXX we can do this 'cause flock doesn't change */
2510 	return (sys_fcntl(p, &ua, retval));
2511 }
2512 
2513 int
2514 netbsd32_dup2(p, v, retval)
2515 	struct proc *p;
2516 	void *v;
2517 	register_t *retval;
2518 {
2519 	struct netbsd32_dup2_args /* {
2520 		syscallarg(int) from;
2521 		syscallarg(int) to;
2522 	} */ *uap = v;
2523 	struct sys_dup2_args ua;
2524 
2525 	NETBSD32TO64_UAP(from);
2526 	NETBSD32TO64_UAP(to);
2527 	return (sys_dup2(p, &ua, retval));
2528 }
2529 
2530 int
2531 netbsd32_select(p, v, retval)
2532 	struct proc *p;
2533 	void *v;
2534 	register_t *retval;
2535 {
2536 	struct netbsd32_select_args /* {
2537 		syscallarg(int) nd;
2538 		syscallarg(netbsd32_fd_setp_t) in;
2539 		syscallarg(netbsd32_fd_setp_t) ou;
2540 		syscallarg(netbsd32_fd_setp_t) ex;
2541 		syscallarg(netbsd32_timevalp_t) tv;
2542 	} */ *uap = v;
2543 /* This one must be done in-line 'cause of the timeval */
2544 	struct netbsd32_timeval tv32;
2545 	caddr_t bits;
2546 	char smallbits[howmany(FD_SETSIZE, NFDBITS) * sizeof(fd_mask) * 6];
2547 	struct timeval atv;
2548 	int s, ncoll, error = 0, timo;
2549 	size_t ni;
2550 	extern int	selwait, nselcoll;
2551 	extern int selscan __P((struct proc *, fd_mask *, fd_mask *, int, register_t *));
2552 
2553 	if (SCARG(uap, nd) < 0)
2554 		return (EINVAL);
2555 	if (SCARG(uap, nd) > p->p_fd->fd_nfiles) {
2556 		/* forgiving; slightly wrong */
2557 		SCARG(uap, nd) = p->p_fd->fd_nfiles;
2558 	}
2559 	ni = howmany(SCARG(uap, nd), NFDBITS) * sizeof(fd_mask);
2560 	if (ni * 6 > sizeof(smallbits))
2561 		bits = malloc(ni * 6, M_TEMP, M_WAITOK);
2562 	else
2563 		bits = smallbits;
2564 
2565 #define	getbits(name, x) \
2566 	if (SCARG(uap, name)) { \
2567 		error = copyin((caddr_t)(u_long)SCARG(uap, name), bits + ni * x, ni); \
2568 		if (error) \
2569 			goto done; \
2570 	} else \
2571 		memset(bits + ni * x, 0, ni);
2572 	getbits(in, 0);
2573 	getbits(ou, 1);
2574 	getbits(ex, 2);
2575 #undef	getbits
2576 
2577 	if (SCARG(uap, tv)) {
2578 		error = copyin((caddr_t)(u_long)SCARG(uap, tv), (caddr_t)&tv32,
2579 			sizeof(tv32));
2580 		if (error)
2581 			goto done;
2582 		netbsd32_to_timeval(&tv32, &atv);
2583 		if (itimerfix(&atv)) {
2584 			error = EINVAL;
2585 			goto done;
2586 		}
2587 		s = splclock();
2588 		timeradd(&atv, &time, &atv);
2589 		splx(s);
2590 	} else
2591 		timo = 0;
2592 retry:
2593 	ncoll = nselcoll;
2594 	p->p_flag |= P_SELECT;
2595 	error = selscan(p, (fd_mask *)(bits + ni * 0),
2596 			   (fd_mask *)(bits + ni * 3), SCARG(uap, nd), retval);
2597 	if (error || *retval)
2598 		goto done;
2599 	if (SCARG(uap, tv)) {
2600 		/*
2601 		 * We have to recalculate the timeout on every retry.
2602 		 */
2603 		timo = hzto(&atv);
2604 		if (timo <= 0)
2605 			goto done;
2606 	}
2607 	s = splhigh();
2608 	if ((p->p_flag & P_SELECT) == 0 || nselcoll != ncoll) {
2609 		splx(s);
2610 		goto retry;
2611 	}
2612 	p->p_flag &= ~P_SELECT;
2613 	error = tsleep((caddr_t)&selwait, PSOCK | PCATCH, "select", timo);
2614 	splx(s);
2615 	if (error == 0)
2616 		goto retry;
2617 done:
2618 	p->p_flag &= ~P_SELECT;
2619 	/* select is not restarted after signals... */
2620 	if (error == ERESTART)
2621 		error = EINTR;
2622 	if (error == EWOULDBLOCK)
2623 		error = 0;
2624 	if (error == 0) {
2625 #define	putbits(name, x) \
2626 		if (SCARG(uap, name)) { \
2627 			error = copyout(bits + ni * x, (caddr_t)(u_long)SCARG(uap, name), ni); \
2628 			if (error) \
2629 				goto out; \
2630 		}
2631 		putbits(in, 3);
2632 		putbits(ou, 4);
2633 		putbits(ex, 5);
2634 #undef putbits
2635 	}
2636 out:
2637 	if (ni * 6 > sizeof(smallbits))
2638 		free(bits, M_TEMP);
2639 	return (error);
2640 }
2641 
2642 int
2643 netbsd32_fsync(p, v, retval)
2644 	struct proc *p;
2645 	void *v;
2646 	register_t *retval;
2647 {
2648 	struct netbsd32_fsync_args /* {
2649 		syscallarg(int) fd;
2650 	} */ *uap = v;
2651 	struct sys_fsync_args ua;
2652 
2653 	NETBSD32TO64_UAP(fd);
2654 	return (sys_fsync(p, &ua, retval));
2655 }
2656 
2657 int
2658 netbsd32_setpriority(p, v, retval)
2659 	struct proc *p;
2660 	void *v;
2661 	register_t *retval;
2662 {
2663 	struct netbsd32_setpriority_args /* {
2664 		syscallarg(int) which;
2665 		syscallarg(int) who;
2666 		syscallarg(int) prio;
2667 	} */ *uap = v;
2668 	struct sys_setpriority_args ua;
2669 
2670 	NETBSD32TO64_UAP(which);
2671 	NETBSD32TO64_UAP(who);
2672 	NETBSD32TO64_UAP(prio);
2673 	return (sys_setpriority(p, &ua, retval));
2674 }
2675 
2676 int
2677 netbsd32_socket(p, v, retval)
2678 	struct proc *p;
2679 	void *v;
2680 	register_t *retval;
2681 {
2682 	struct netbsd32_socket_args /* {
2683 		syscallarg(int) domain;
2684 		syscallarg(int) type;
2685 		syscallarg(int) protocol;
2686 	} */ *uap = v;
2687 	struct sys_socket_args ua;
2688 
2689 	NETBSD32TO64_UAP(domain);
2690 	NETBSD32TO64_UAP(type);
2691 	NETBSD32TO64_UAP(protocol);
2692 	return (sys_socket(p, &ua, retval));
2693 }
2694 
2695 int
2696 netbsd32_connect(p, v, retval)
2697 	struct proc *p;
2698 	void *v;
2699 	register_t *retval;
2700 {
2701 	struct netbsd32_connect_args /* {
2702 		syscallarg(int) s;
2703 		syscallarg(const netbsd32_sockaddrp_t) name;
2704 		syscallarg(int) namelen;
2705 	} */ *uap = v;
2706 	struct sys_connect_args ua;
2707 
2708 	NETBSD32TO64_UAP(s);
2709 	NETBSD32TOP_UAP(name, struct sockaddr);
2710 	NETBSD32TO64_UAP(namelen);
2711 	return (sys_connect(p, &ua, retval));
2712 }
2713 
2714 int
2715 netbsd32_getpriority(p, v, retval)
2716 	struct proc *p;
2717 	void *v;
2718 	register_t *retval;
2719 {
2720 	struct netbsd32_getpriority_args /* {
2721 		syscallarg(int) which;
2722 		syscallarg(int) who;
2723 	} */ *uap = v;
2724 	struct sys_getpriority_args ua;
2725 
2726 	NETBSD32TO64_UAP(which);
2727 	NETBSD32TO64_UAP(who);
2728 	return (sys_getpriority(p, &ua, retval));
2729 }
2730 
2731 int
2732 netbsd32_bind(p, v, retval)
2733 	struct proc *p;
2734 	void *v;
2735 	register_t *retval;
2736 {
2737 	struct netbsd32_bind_args /* {
2738 		syscallarg(int) s;
2739 		syscallarg(const netbsd32_sockaddrp_t) name;
2740 		syscallarg(int) namelen;
2741 	} */ *uap = v;
2742 	struct sys_bind_args ua;
2743 
2744 	NETBSD32TO64_UAP(s);
2745 	NETBSD32TOP_UAP(name, struct sockaddr);
2746 	NETBSD32TO64_UAP(namelen);
2747 	return (sys_bind(p, &ua, retval));
2748 }
2749 
2750 int
2751 netbsd32_setsockopt(p, v, retval)
2752 	struct proc *p;
2753 	void *v;
2754 	register_t *retval;
2755 {
2756 	struct netbsd32_setsockopt_args /* {
2757 		syscallarg(int) s;
2758 		syscallarg(int) level;
2759 		syscallarg(int) name;
2760 		syscallarg(const netbsd32_voidp) val;
2761 		syscallarg(int) valsize;
2762 	} */ *uap = v;
2763 	struct sys_setsockopt_args ua;
2764 
2765 	NETBSD32TO64_UAP(s);
2766 	NETBSD32TO64_UAP(level);
2767 	NETBSD32TO64_UAP(name);
2768 	NETBSD32TOP_UAP(val, void);
2769 	NETBSD32TO64_UAP(valsize);
2770 	/* may be more efficient to do this inline. */
2771 	return (sys_setsockopt(p, &ua, retval));
2772 }
2773 
2774 int
2775 netbsd32_listen(p, v, retval)
2776 	struct proc *p;
2777 	void *v;
2778 	register_t *retval;
2779 {
2780 	struct netbsd32_listen_args /* {
2781 		syscallarg(int) s;
2782 		syscallarg(int) backlog;
2783 	} */ *uap = v;
2784 	struct sys_listen_args ua;
2785 
2786 	NETBSD32TO64_UAP(s);
2787 	NETBSD32TO64_UAP(backlog);
2788 	return (sys_listen(p, &ua, retval));
2789 }
2790 
2791 int
2792 netbsd32_gettimeofday(p, v, retval)
2793 	struct proc *p;
2794 	void *v;
2795 	register_t *retval;
2796 {
2797 	struct netbsd32_gettimeofday_args /* {
2798 		syscallarg(netbsd32_timevalp_t) tp;
2799 		syscallarg(netbsd32_timezonep_t) tzp;
2800 	} */ *uap = v;
2801 	struct timeval atv;
2802 	struct netbsd32_timeval tv32;
2803 	int error = 0;
2804 	struct netbsd32_timezone tzfake;
2805 
2806 	if (SCARG(uap, tp)) {
2807 		microtime(&atv);
2808 		netbsd32_from_timeval(&atv, &tv32);
2809 		error = copyout(&tv32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(tv32));
2810 		if (error)
2811 			return (error);
2812 	}
2813 	if (SCARG(uap, tzp)) {
2814 		/*
2815 		 * NetBSD has no kernel notion of time zone, so we just
2816 		 * fake up a timezone struct and return it if demanded.
2817 		 */
2818 		tzfake.tz_minuteswest = 0;
2819 		tzfake.tz_dsttime = 0;
2820 		error = copyout(&tzfake, (caddr_t)(u_long)SCARG(uap, tzp), sizeof(tzfake));
2821 	}
2822 	return (error);
2823 }
2824 
2825 #if 0
2826 static int settime32 __P((struct timeval *));
2827 /* This function is used by clock_settime and settimeofday */
2828 static int
2829 settime32(tv)
2830 	struct timeval *tv;
2831 {
2832 	struct timeval delta;
2833 	int s;
2834 
2835 	/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
2836 	s = splclock();
2837 	timersub(tv, &time, &delta);
2838 	if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1)
2839 		return (EPERM);
2840 #ifdef notyet
2841 	if ((delta.tv_sec < 86400) && securelevel > 0)
2842 		return (EPERM);
2843 #endif
2844 	time = *tv;
2845 	(void) spllowersoftclock();
2846 	timeradd(&boottime, &delta, &boottime);
2847 	timeradd(&runtime, &delta, &runtime);
2848 #	if defined(NFS) || defined(NFSSERVER)
2849 	{
2850 		extern void	nqnfs_lease_updatetime __P((int));
2851 
2852 		nqnfs_lease_updatetime(delta.tv_sec);
2853 	}
2854 #	endif
2855 	splx(s);
2856 	resettodr();
2857 	return (0);
2858 }
2859 #endif
2860 
2861 int
2862 netbsd32_settimeofday(p, v, retval)
2863 	struct proc *p;
2864 	void *v;
2865 	register_t *retval;
2866 {
2867 	struct netbsd32_settimeofday_args /* {
2868 		syscallarg(const netbsd32_timevalp_t) tv;
2869 		syscallarg(const netbsd32_timezonep_t) tzp;
2870 	} */ *uap = v;
2871 	struct netbsd32_timeval atv32;
2872 	struct timeval atv;
2873 	struct netbsd32_timezone atz;
2874 	int error;
2875 
2876 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
2877 		return (error);
2878 	/* Verify all parameters before changing time. */
2879 	if (SCARG(uap, tv) && (error = copyin((caddr_t)(u_long)SCARG(uap, tv),
2880 	    &atv32, sizeof(atv32))))
2881 		return (error);
2882 	netbsd32_to_timeval(&atv32, &atv);
2883 	/* XXX since we don't use tz, probably no point in doing copyin. */
2884 	if (SCARG(uap, tzp) && (error = copyin((caddr_t)(u_long)SCARG(uap, tzp),
2885 	    &atz, sizeof(atz))))
2886 		return (error);
2887 	if (SCARG(uap, tv))
2888 		if ((error = settime(&atv)))
2889 			return (error);
2890 	/*
2891 	 * NetBSD has no kernel notion of time zone, and only an
2892 	 * obsolete program would try to set it, so we log a warning.
2893 	 */
2894 	if (SCARG(uap, tzp))
2895 		printf("pid %d attempted to set the "
2896 		    "(obsolete) kernel time zone\n", p->p_pid);
2897 	return (0);
2898 }
2899 
2900 int
2901 netbsd32_fchown(p, v, retval)
2902 	struct proc *p;
2903 	void *v;
2904 	register_t *retval;
2905 {
2906 	struct netbsd32_fchown_args /* {
2907 		syscallarg(int) fd;
2908 		syscallarg(uid_t) uid;
2909 		syscallarg(gid_t) gid;
2910 	} */ *uap = v;
2911 	struct sys_fchown_args ua;
2912 
2913 	NETBSD32TO64_UAP(fd);
2914 	NETBSD32TO64_UAP(uid);
2915 	NETBSD32TO64_UAP(gid);
2916 	return (sys_fchown(p, &ua, retval));
2917 }
2918 
2919 int
2920 netbsd32_fchmod(p, v, retval)
2921 	struct proc *p;
2922 	void *v;
2923 	register_t *retval;
2924 {
2925 	struct netbsd32_fchmod_args /* {
2926 		syscallarg(int) fd;
2927 		syscallarg(mode_t) mode;
2928 	} */ *uap = v;
2929 	struct sys_fchmod_args ua;
2930 
2931 	NETBSD32TO64_UAP(fd);
2932 	NETBSD32TO64_UAP(mode);
2933 	return (sys_fchmod(p, &ua, retval));
2934 }
2935 
2936 int
2937 netbsd32_setreuid(p, v, retval)
2938 	struct proc *p;
2939 	void *v;
2940 	register_t *retval;
2941 {
2942 	struct netbsd32_setreuid_args /* {
2943 		syscallarg(uid_t) ruid;
2944 		syscallarg(uid_t) euid;
2945 	} */ *uap = v;
2946 	struct sys_setreuid_args ua;
2947 
2948 	NETBSD32TO64_UAP(ruid);
2949 	NETBSD32TO64_UAP(euid);
2950 	return (sys_setreuid(p, &ua, retval));
2951 }
2952 
2953 int
2954 netbsd32_setregid(p, v, retval)
2955 	struct proc *p;
2956 	void *v;
2957 	register_t *retval;
2958 {
2959 	struct netbsd32_setregid_args /* {
2960 		syscallarg(gid_t) rgid;
2961 		syscallarg(gid_t) egid;
2962 	} */ *uap = v;
2963 	struct sys_setregid_args ua;
2964 
2965 	NETBSD32TO64_UAP(rgid);
2966 	NETBSD32TO64_UAP(egid);
2967 	return (sys_setregid(p, &ua, retval));
2968 }
2969 
2970 int
2971 netbsd32_getrusage(p, v, retval)
2972 	struct proc *p;
2973 	void *v;
2974 	register_t *retval;
2975 {
2976 	struct netbsd32_getrusage_args /* {
2977 		syscallarg(int) who;
2978 		syscallarg(netbsd32_rusagep_t) rusage;
2979 	} */ *uap = v;
2980 	struct rusage *rup;
2981 	struct netbsd32_rusage ru;
2982 
2983 	switch (SCARG(uap, who)) {
2984 
2985 	case RUSAGE_SELF:
2986 		rup = &p->p_stats->p_ru;
2987 		calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
2988 		break;
2989 
2990 	case RUSAGE_CHILDREN:
2991 		rup = &p->p_stats->p_cru;
2992 		break;
2993 
2994 	default:
2995 		return (EINVAL);
2996 	}
2997 	netbsd32_from_rusage(rup, &ru);
2998 	return (copyout(&ru, (caddr_t)(u_long)SCARG(uap, rusage), sizeof(ru)));
2999 }
3000 
3001 int
3002 netbsd32_getsockopt(p, v, retval)
3003 	struct proc *p;
3004 	void *v;
3005 	register_t *retval;
3006 {
3007 	struct netbsd32_getsockopt_args /* {
3008 		syscallarg(int) s;
3009 		syscallarg(int) level;
3010 		syscallarg(int) name;
3011 		syscallarg(netbsd32_voidp) val;
3012 		syscallarg(netbsd32_intp) avalsize;
3013 	} */ *uap = v;
3014 	struct sys_getsockopt_args ua;
3015 
3016 	NETBSD32TO64_UAP(s);
3017 	NETBSD32TO64_UAP(level);
3018 	NETBSD32TO64_UAP(name);
3019 	NETBSD32TOP_UAP(val, void);
3020 	NETBSD32TOP_UAP(avalsize, int);
3021 	return (sys_getsockopt(p, &ua, retval));
3022 }
3023 
3024 int
3025 netbsd32_readv(p, v, retval)
3026 	struct proc *p;
3027 	void *v;
3028 	register_t *retval;
3029 {
3030 	struct netbsd32_readv_args /* {
3031 		syscallarg(int) fd;
3032 		syscallarg(const netbsd32_iovecp_t) iovp;
3033 		syscallarg(int) iovcnt;
3034 	} */ *uap = v;
3035 	int fd = SCARG(uap, fd);
3036 	struct file *fp;
3037 	struct filedesc *fdp = p->p_fd;
3038 
3039 	if ((u_int)fd >= fdp->fd_nfiles ||
3040 	    (fp = fdp->fd_ofiles[fd]) == NULL ||
3041 	    (fp->f_flag & FREAD) == 0)
3042 		return (EBADF);
3043 
3044 	return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
3045 			      SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
3046 }
3047 
3048 /* Damn thing copies in the iovec! */
3049 int
3050 dofilereadv32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
3051 	struct proc *p;
3052 	int fd;
3053 	struct file *fp;
3054 	struct netbsd32_iovec *iovp;
3055 	int iovcnt;
3056 	off_t *offset;
3057 	int flags;
3058 	register_t *retval;
3059 {
3060 	struct uio auio;
3061 	struct iovec *iov;
3062 	struct iovec *needfree;
3063 	struct iovec aiov[UIO_SMALLIOV];
3064 	long i, cnt, error = 0;
3065 	u_int iovlen;
3066 #ifdef KTRACE
3067 	struct iovec *ktriov = NULL;
3068 #endif
3069 
3070 	/* note: can't use iovlen until iovcnt is validated */
3071 	iovlen = iovcnt * sizeof(struct iovec);
3072 	if ((u_int)iovcnt > UIO_SMALLIOV) {
3073 		if ((u_int)iovcnt > IOV_MAX)
3074 			return (EINVAL);
3075 		MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
3076 		needfree = iov;
3077 	} else if ((u_int)iovcnt > 0) {
3078 		iov = aiov;
3079 		needfree = NULL;
3080 	} else
3081 		return (EINVAL);
3082 
3083 	auio.uio_iov = iov;
3084 	auio.uio_iovcnt = iovcnt;
3085 	auio.uio_rw = UIO_READ;
3086 	auio.uio_segflg = UIO_USERSPACE;
3087 	auio.uio_procp = p;
3088 	error = netbsd32_to_iovecin(iovp, iov, iovcnt);
3089 	if (error)
3090 		goto done;
3091 	auio.uio_resid = 0;
3092 	for (i = 0; i < iovcnt; i++) {
3093 		auio.uio_resid += iov->iov_len;
3094 		/*
3095 		 * Reads return ssize_t because -1 is returned on error.
3096 		 * Therefore we must restrict the length to SSIZE_MAX to
3097 		 * avoid garbage return values.
3098 		 */
3099 		if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
3100 			error = EINVAL;
3101 			goto done;
3102 		}
3103 		iov++;
3104 	}
3105 #ifdef KTRACE
3106 	/*
3107 	 * if tracing, save a copy of iovec
3108 	 */
3109 	if (KTRPOINT(p, KTR_GENIO))  {
3110 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
3111 		memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
3112 	}
3113 #endif
3114 	cnt = auio.uio_resid;
3115 	error = (*fp->f_ops->fo_read)(fp, offset, &auio, fp->f_cred, flags);
3116 	if (error)
3117 		if (auio.uio_resid != cnt && (error == ERESTART ||
3118 		    error == EINTR || error == EWOULDBLOCK))
3119 			error = 0;
3120 	cnt -= auio.uio_resid;
3121 #ifdef KTRACE
3122 	if (KTRPOINT(p, KTR_GENIO))
3123 		if (error == 0) {
3124 			ktrgenio(p, fd, UIO_READ, ktriov, cnt,
3125 			    error);
3126 		FREE(ktriov, M_TEMP);
3127 	}
3128 #endif
3129 	*retval = cnt;
3130 done:
3131 	if (needfree)
3132 		FREE(needfree, M_IOV);
3133 	return (error);
3134 }
3135 
3136 
3137 int
3138 netbsd32_writev(p, v, retval)
3139 	struct proc *p;
3140 	void *v;
3141 	register_t *retval;
3142 {
3143 	struct netbsd32_writev_args /* {
3144 		syscallarg(int) fd;
3145 		syscallarg(const netbsd32_iovecp_t) iovp;
3146 		syscallarg(int) iovcnt;
3147 	} */ *uap = v;
3148 	int fd = SCARG(uap, fd);
3149 	struct file *fp;
3150 	struct filedesc *fdp = p->p_fd;
3151 
3152 	if ((u_int)fd >= fdp->fd_nfiles ||
3153 	    (fp = fdp->fd_ofiles[fd]) == NULL ||
3154 	    (fp->f_flag & FWRITE) == 0)
3155 		return (EBADF);
3156 
3157 	return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp),
3158 			       SCARG(uap, iovcnt), &fp->f_offset, FOF_UPDATE_OFFSET, retval));
3159 }
3160 
3161 int
3162 dofilewritev32(p, fd, fp, iovp, iovcnt, offset, flags, retval)
3163 	struct proc *p;
3164 	int fd;
3165 	struct file *fp;
3166 	struct netbsd32_iovec *iovp;
3167 	int iovcnt;
3168 	off_t *offset;
3169 	int flags;
3170 	register_t *retval;
3171 {
3172 	struct uio auio;
3173 	struct iovec *iov;
3174 	struct iovec *needfree;
3175 	struct iovec aiov[UIO_SMALLIOV];
3176 	long i, cnt, error = 0;
3177 	u_int iovlen;
3178 #ifdef KTRACE
3179 	struct iovec *ktriov = NULL;
3180 #endif
3181 
3182 	/* note: can't use iovlen until iovcnt is validated */
3183 	iovlen = iovcnt * sizeof(struct iovec);
3184 	if ((u_int)iovcnt > UIO_SMALLIOV) {
3185 		if ((u_int)iovcnt > IOV_MAX)
3186 			return (EINVAL);
3187 		MALLOC(iov, struct iovec *, iovlen, M_IOV, M_WAITOK);
3188 		needfree = iov;
3189 	} else if ((u_int)iovcnt > 0) {
3190 		iov = aiov;
3191 		needfree = NULL;
3192 	} else
3193 		return (EINVAL);
3194 
3195 	auio.uio_iov = iov;
3196 	auio.uio_iovcnt = iovcnt;
3197 	auio.uio_rw = UIO_WRITE;
3198 	auio.uio_segflg = UIO_USERSPACE;
3199 	auio.uio_procp = p;
3200 	error = netbsd32_to_iovecin(iovp, iov, iovcnt);
3201 	if (error)
3202 		goto done;
3203 	auio.uio_resid = 0;
3204 	for (i = 0; i < iovcnt; i++) {
3205 		auio.uio_resid += iov->iov_len;
3206 		/*
3207 		 * Writes return ssize_t because -1 is returned on error.
3208 		 * Therefore we must restrict the length to SSIZE_MAX to
3209 		 * avoid garbage return values.
3210 		 */
3211 		if (iov->iov_len > SSIZE_MAX || auio.uio_resid > SSIZE_MAX) {
3212 			error = EINVAL;
3213 			goto done;
3214 		}
3215 		iov++;
3216 	}
3217 #ifdef KTRACE
3218 	/*
3219 	 * if tracing, save a copy of iovec
3220 	 */
3221 	if (KTRPOINT(p, KTR_GENIO))  {
3222 		MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
3223 		memcpy((caddr_t)ktriov, (caddr_t)auio.uio_iov, iovlen);
3224 	}
3225 #endif
3226 	cnt = auio.uio_resid;
3227 	error = (*fp->f_ops->fo_write)(fp, offset, &auio, fp->f_cred, flags);
3228 	if (error) {
3229 		if (auio.uio_resid != cnt && (error == ERESTART ||
3230 		    error == EINTR || error == EWOULDBLOCK))
3231 			error = 0;
3232 		if (error == EPIPE)
3233 			psignal(p, SIGPIPE);
3234 	}
3235 	cnt -= auio.uio_resid;
3236 #ifdef KTRACE
3237 	if (KTRPOINT(p, KTR_GENIO))
3238 		if (error == 0) {
3239 			ktrgenio(p, fd, UIO_WRITE, ktriov, cnt,
3240 			    error);
3241 		FREE(ktriov, M_TEMP);
3242 	}
3243 #endif
3244 	*retval = cnt;
3245 done:
3246 	if (needfree)
3247 		FREE(needfree, M_IOV);
3248 	return (error);
3249 }
3250 
3251 
3252 int
3253 netbsd32_rename(p, v, retval)
3254 	struct proc *p;
3255 	void *v;
3256 	register_t *retval;
3257 {
3258 	struct netbsd32_rename_args /* {
3259 		syscallarg(const netbsd32_charp) from;
3260 		syscallarg(const netbsd32_charp) to;
3261 	} */ *uap = v;
3262 	struct sys_rename_args ua;
3263 
3264 	NETBSD32TOP_UAP(from, const char);
3265 	NETBSD32TOP_UAP(to, const char)
3266 
3267 	return (sys_rename(p, &ua, retval));
3268 }
3269 
3270 int
3271 netbsd32_flock(p, v, retval)
3272 	struct proc *p;
3273 	void *v;
3274 	register_t *retval;
3275 {
3276 	struct netbsd32_flock_args /* {
3277 		syscallarg(int) fd;
3278 		syscallarg(int) how;
3279 	} */ *uap = v;
3280 	struct sys_flock_args ua;
3281 
3282 	NETBSD32TO64_UAP(fd);
3283 	NETBSD32TO64_UAP(how)
3284 
3285 	return (sys_flock(p, &ua, retval));
3286 }
3287 
3288 int
3289 netbsd32_mkfifo(p, v, retval)
3290 	struct proc *p;
3291 	void *v;
3292 	register_t *retval;
3293 {
3294 	struct netbsd32_mkfifo_args /* {
3295 		syscallarg(const netbsd32_charp) path;
3296 		syscallarg(mode_t) mode;
3297 	} */ *uap = v;
3298 	struct sys_mkfifo_args ua;
3299 
3300 	NETBSD32TOP_UAP(path, const char)
3301 	NETBSD32TO64_UAP(mode);
3302 	return (sys_mkfifo(p, &ua, retval));
3303 }
3304 
3305 int
3306 netbsd32_shutdown(p, v, retval)
3307 	struct proc *p;
3308 	void *v;
3309 	register_t *retval;
3310 {
3311 	struct netbsd32_shutdown_args /* {
3312 		syscallarg(int) s;
3313 		syscallarg(int) how;
3314 	} */ *uap = v;
3315 	struct sys_shutdown_args ua;
3316 
3317 	NETBSD32TO64_UAP(s)
3318 	NETBSD32TO64_UAP(how);
3319 	return (sys_shutdown(p, &ua, retval));
3320 }
3321 
3322 int
3323 netbsd32_socketpair(p, v, retval)
3324 	struct proc *p;
3325 	void *v;
3326 	register_t *retval;
3327 {
3328 	struct netbsd32_socketpair_args /* {
3329 		syscallarg(int) domain;
3330 		syscallarg(int) type;
3331 		syscallarg(int) protocol;
3332 		syscallarg(netbsd32_intp) rsv;
3333 	} */ *uap = v;
3334 	struct sys_socketpair_args ua;
3335 
3336 	NETBSD32TO64_UAP(domain);
3337 	NETBSD32TO64_UAP(type);
3338 	NETBSD32TO64_UAP(protocol);
3339 	NETBSD32TOP_UAP(rsv, int);
3340 	/* Since we're just copying out two `int's we can do this */
3341 	return (sys_socketpair(p, &ua, retval));
3342 }
3343 
3344 int
3345 netbsd32_mkdir(p, v, retval)
3346 	struct proc *p;
3347 	void *v;
3348 	register_t *retval;
3349 {
3350 	struct netbsd32_mkdir_args /* {
3351 		syscallarg(const netbsd32_charp) path;
3352 		syscallarg(mode_t) mode;
3353 	} */ *uap = v;
3354 	struct sys_mkdir_args ua;
3355 
3356 	NETBSD32TOP_UAP(path, const char)
3357 	NETBSD32TO64_UAP(mode);
3358 	return (sys_mkdir(p, &ua, retval));
3359 }
3360 
3361 int
3362 netbsd32_rmdir(p, v, retval)
3363 	struct proc *p;
3364 	void *v;
3365 	register_t *retval;
3366 {
3367 	struct netbsd32_rmdir_args /* {
3368 		syscallarg(const netbsd32_charp) path;
3369 	} */ *uap = v;
3370 	struct sys_rmdir_args ua;
3371 
3372 	NETBSD32TOP_UAP(path, const char);
3373 	return (sys_rmdir(p, &ua, retval));
3374 }
3375 
3376 int
3377 netbsd32_utimes(p, v, retval)
3378 	struct proc *p;
3379 	void *v;
3380 	register_t *retval;
3381 {
3382 	struct netbsd32_utimes_args /* {
3383 		syscallarg(const netbsd32_charp) path;
3384 		syscallarg(const netbsd32_timevalp_t) tptr;
3385 	} */ *uap = v;
3386 	int error;
3387 	struct nameidata nd;
3388 
3389 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3390 	if ((error = namei(&nd)) != 0)
3391 		return (error);
3392 
3393 	error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
3394 
3395 	vrele(nd.ni_vp);
3396 	return (error);
3397 }
3398 
3399 /*
3400  * Common routine to set access and modification times given a vnode.
3401  */
3402 static int
3403 change_utimes32(vp, tptr, p)
3404 	struct vnode *vp;
3405 	struct timeval *tptr;
3406 	struct proc *p;
3407 {
3408 	struct netbsd32_timeval tv32[2];
3409 	struct timeval tv[2];
3410 	struct vattr vattr;
3411 	int error;
3412 
3413 	VATTR_NULL(&vattr);
3414 	if (tptr == NULL) {
3415 		microtime(&tv[0]);
3416 		tv[1] = tv[0];
3417 		vattr.va_vaflags |= VA_UTIMES_NULL;
3418 	} else {
3419 		error = copyin(tptr, tv, sizeof(tv));
3420 		if (error)
3421 			return (error);
3422 	}
3423 	netbsd32_to_timeval(&tv32[0], &tv[0]);
3424 	netbsd32_to_timeval(&tv32[1], &tv[1]);
3425 	VOP_LEASE(vp, p, p->p_ucred, LEASE_WRITE);
3426 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3427 	vattr.va_atime.tv_sec = tv[0].tv_sec;
3428 	vattr.va_atime.tv_nsec = tv[0].tv_usec * 1000;
3429 	vattr.va_mtime.tv_sec = tv[1].tv_sec;
3430 	vattr.va_mtime.tv_nsec = tv[1].tv_usec * 1000;
3431 	error = VOP_SETATTR(vp, &vattr, p->p_ucred, p);
3432 	VOP_UNLOCK(vp, 0);
3433 	return (error);
3434 }
3435 
3436 int
3437 netbsd32_adjtime(p, v, retval)
3438 	struct proc *p;
3439 	void *v;
3440 	register_t *retval;
3441 {
3442 	struct netbsd32_adjtime_args /* {
3443 		syscallarg(const netbsd32_timevalp_t) delta;
3444 		syscallarg(netbsd32_timevalp_t) olddelta;
3445 	} */ *uap = v;
3446 	struct netbsd32_timeval atv;
3447 	int32_t ndelta, ntickdelta, odelta;
3448 	int s, error;
3449 	extern long bigadj, timedelta;
3450 	extern int tickdelta;
3451 
3452 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
3453 		return (error);
3454 
3455 	error = copyin((caddr_t)(u_long)SCARG(uap, delta), &atv, sizeof(struct timeval));
3456 	if (error)
3457 		return (error);
3458 	/*
3459 	 * Compute the total correction and the rate at which to apply it.
3460 	 * Round the adjustment down to a whole multiple of the per-tick
3461 	 * delta, so that after some number of incremental changes in
3462 	 * hardclock(), tickdelta will become zero, lest the correction
3463 	 * overshoot and start taking us away from the desired final time.
3464 	 */
3465 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
3466 	if (ndelta > bigadj)
3467 		ntickdelta = 10 * tickadj;
3468 	else
3469 		ntickdelta = tickadj;
3470 	if (ndelta % ntickdelta)
3471 		ndelta = ndelta / ntickdelta * ntickdelta;
3472 
3473 	/*
3474 	 * To make hardclock()'s job easier, make the per-tick delta negative
3475 	 * if we want time to run slower; then hardclock can simply compute
3476 	 * tick + tickdelta, and subtract tickdelta from timedelta.
3477 	 */
3478 	if (ndelta < 0)
3479 		ntickdelta = -ntickdelta;
3480 	s = splclock();
3481 	odelta = timedelta;
3482 	timedelta = ndelta;
3483 	tickdelta = ntickdelta;
3484 	splx(s);
3485 
3486 	if (SCARG(uap, olddelta)) {
3487 		atv.tv_sec = odelta / 1000000;
3488 		atv.tv_usec = odelta % 1000000;
3489 		(void) copyout(&atv, (caddr_t)(u_long)SCARG(uap, olddelta),
3490 		    sizeof(struct timeval));
3491 	}
3492 	return (0);
3493 }
3494 
3495 int
3496 netbsd32_quotactl(p, v, retval)
3497 	struct proc *p;
3498 	void *v;
3499 	register_t *retval;
3500 {
3501 	struct netbsd32_quotactl_args /* {
3502 		syscallarg(const netbsd32_charp) path;
3503 		syscallarg(int) cmd;
3504 		syscallarg(int) uid;
3505 		syscallarg(netbsd32_caddr_t) arg;
3506 	} */ *uap = v;
3507 	struct sys_quotactl_args ua;
3508 
3509 	NETBSD32TOP_UAP(path, const char);
3510 	NETBSD32TO64_UAP(cmd);
3511 	NETBSD32TO64_UAP(uid);
3512 	NETBSD32TOX64_UAP(arg, caddr_t);
3513 	return (sys_quotactl(p, &ua, retval));
3514 }
3515 
3516 #if defined(NFS) || defined(NFSSERVER)
3517 int
3518 netbsd32_nfssvc(p, v, retval)
3519 	struct proc *p;
3520 	void *v;
3521 	register_t *retval;
3522 {
3523 #if 0
3524 	struct netbsd32_nfssvc_args /* {
3525 		syscallarg(int) flag;
3526 		syscallarg(netbsd32_voidp) argp;
3527 	} */ *uap = v;
3528 	struct sys_nfssvc_args ua;
3529 
3530 	NETBSD32TO64_UAP(flag);
3531 	NETBSD32TOP_UAP(argp, void);
3532 	return (sys_nfssvc(p, &ua, retval));
3533 #else
3534 	/* Why would we want to support a 32-bit nfsd? */
3535 	return (ENOSYS);
3536 #endif
3537 }
3538 #endif
3539 
3540 int
3541 netbsd32_statfs(p, v, retval)
3542 	struct proc *p;
3543 	void *v;
3544 	register_t *retval;
3545 {
3546 	struct netbsd32_statfs_args /* {
3547 		syscallarg(const netbsd32_charp) path;
3548 		syscallarg(netbsd32_statfsp_t) buf;
3549 	} */ *uap = v;
3550 	struct mount *mp;
3551 	struct statfs *sp;
3552 	struct netbsd32_statfs s32;
3553 	int error;
3554 	struct nameidata nd;
3555 
3556 	NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, (char *)(u_long)SCARG(uap, path), p);
3557 	if ((error = namei(&nd)) != 0)
3558 		return (error);
3559 	mp = nd.ni_vp->v_mount;
3560 	sp = &mp->mnt_stat;
3561 	vrele(nd.ni_vp);
3562 	if ((error = VFS_STATFS(mp, sp, p)) != 0)
3563 		return (error);
3564 	sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3565 	netbsd32_from_statfs(sp, &s32);
3566 	return (copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32)));
3567 }
3568 
3569 int
3570 netbsd32_fstatfs(p, v, retval)
3571 	struct proc *p;
3572 	void *v;
3573 	register_t *retval;
3574 {
3575 	struct netbsd32_fstatfs_args /* {
3576 		syscallarg(int) fd;
3577 		syscallarg(netbsd32_statfsp_t) buf;
3578 	} */ *uap = v;
3579 	struct file *fp;
3580 	struct mount *mp;
3581 	struct statfs *sp;
3582 	struct netbsd32_statfs s32;
3583 	int error;
3584 
3585 	/* getvnode() will use the descriptor for us */
3586 	if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
3587 		return (error);
3588 	mp = ((struct vnode *)fp->f_data)->v_mount;
3589 	sp = &mp->mnt_stat;
3590 	if ((error = VFS_STATFS(mp, sp, p)) != 0)
3591 		goto out;
3592 	sp->f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3593 	netbsd32_from_statfs(sp, &s32);
3594 	error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, buf), sizeof(s32));
3595  out:
3596 	FILE_UNUSE(fp, p);
3597 	return (error);
3598 }
3599 
3600 #if defined(NFS) || defined(NFSSERVER)
3601 int
3602 netbsd32_getfh(p, v, retval)
3603 	struct proc *p;
3604 	void *v;
3605 	register_t *retval;
3606 {
3607 	struct netbsd32_getfh_args /* {
3608 		syscallarg(const netbsd32_charp) fname;
3609 		syscallarg(netbsd32_fhandlep_t) fhp;
3610 	} */ *uap = v;
3611 	struct sys_getfh_args ua;
3612 
3613 	NETBSD32TOP_UAP(fname, const char);
3614 	NETBSD32TOP_UAP(fhp, struct fhandle);
3615 	/* Lucky for us a fhandlep_t doesn't change sizes */
3616 	return (sys_getfh(p, &ua, retval));
3617 }
3618 #endif
3619 
3620 int
3621 netbsd32_sysarch(p, v, retval)
3622 	struct proc *p;
3623 	void *v;
3624 	register_t *retval;
3625 {
3626 	struct netbsd32_sysarch_args /* {
3627 		syscallarg(int) op;
3628 		syscallarg(netbsd32_voidp) parms;
3629 	} */ *uap = v;
3630 
3631 	switch (SCARG(uap, op)) {
3632 	default:
3633 		printf("(sparc64) netbsd32_sysarch(%d)\n", SCARG(uap, op));
3634 		return EINVAL;
3635 	}
3636 }
3637 
3638 int
3639 netbsd32_pread(p, v, retval)
3640 	struct proc *p;
3641 	void *v;
3642 	register_t *retval;
3643 {
3644 	struct netbsd32_pread_args /* {
3645 		syscallarg(int) fd;
3646 		syscallarg(netbsd32_voidp) buf;
3647 		syscallarg(netbsd32_size_t) nbyte;
3648 		syscallarg(int) pad;
3649 		syscallarg(off_t) offset;
3650 	} */ *uap = v;
3651 	struct sys_pread_args ua;
3652 	ssize_t rt;
3653 	int error;
3654 
3655 	NETBSD32TO64_UAP(fd);
3656 	NETBSD32TOP_UAP(buf, void);
3657 	NETBSD32TOX_UAP(nbyte, size_t);
3658 	NETBSD32TO64_UAP(pad);
3659 	NETBSD32TO64_UAP(offset);
3660 	error = sys_pread(p, &ua, (register_t *)&rt);
3661 	*retval = rt;
3662 	return (error);
3663 }
3664 
3665 int
3666 netbsd32_pwrite(p, v, retval)
3667 	struct proc *p;
3668 	void *v;
3669 	register_t *retval;
3670 {
3671 	struct netbsd32_pwrite_args /* {
3672 		syscallarg(int) fd;
3673 		syscallarg(const netbsd32_voidp) buf;
3674 		syscallarg(netbsd32_size_t) nbyte;
3675 		syscallarg(int) pad;
3676 		syscallarg(off_t) offset;
3677 	} */ *uap = v;
3678 	struct sys_pwrite_args ua;
3679 	ssize_t rt;
3680 	int error;
3681 
3682 	NETBSD32TO64_UAP(fd);
3683 	NETBSD32TOP_UAP(buf, void);
3684 	NETBSD32TOX_UAP(nbyte, size_t);
3685 	NETBSD32TO64_UAP(pad);
3686 	NETBSD32TO64_UAP(offset);
3687 	error = sys_pwrite(p, &ua, (register_t *)&rt);
3688 	*retval = rt;
3689 	return (error);
3690 }
3691 
3692 #ifdef NTP
3693 int
3694 netbsd32_ntp_gettime(p, v, retval)
3695 	struct proc *p;
3696 	void *v;
3697 	register_t *retval;
3698 {
3699 	struct netbsd32_ntp_gettime_args /* {
3700 		syscallarg(netbsd32_ntptimevalp_t) ntvp;
3701 	} */ *uap = v;
3702 	struct netbsd32_ntptimeval ntv32;
3703 	struct timeval atv;
3704 	struct ntptimeval ntv;
3705 	int error = 0;
3706 	int s;
3707 
3708 	/* The following are NTP variables */
3709 	extern long time_maxerror;
3710 	extern long time_esterror;
3711 	extern int time_status;
3712 	extern int time_state;	/* clock state */
3713 	extern int time_status;	/* clock status bits */
3714 
3715 	if (SCARG(uap, ntvp)) {
3716 		s = splclock();
3717 #ifdef EXT_CLOCK
3718 		/*
3719 		 * The microtime() external clock routine returns a
3720 		 * status code. If less than zero, we declare an error
3721 		 * in the clock status word and return the kernel
3722 		 * (software) time variable. While there are other
3723 		 * places that call microtime(), this is the only place
3724 		 * that matters from an application point of view.
3725 		 */
3726 		if (microtime(&atv) < 0) {
3727 			time_status |= STA_CLOCKERR;
3728 			ntv.time = time;
3729 		} else
3730 			time_status &= ~STA_CLOCKERR;
3731 #else /* EXT_CLOCK */
3732 		microtime(&atv);
3733 #endif /* EXT_CLOCK */
3734 		ntv.time = atv;
3735 		ntv.maxerror = time_maxerror;
3736 		ntv.esterror = time_esterror;
3737 		(void) splx(s);
3738 
3739 		netbsd32_from_timeval(&ntv.time, &ntv32.time);
3740 		ntv32.maxerror = (netbsd32_long)ntv.maxerror;
3741 		ntv32.esterror = (netbsd32_long)ntv.esterror;
3742 		error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, ntvp),
3743 		    sizeof(ntv32));
3744 	}
3745 	if (!error) {
3746 
3747 		/*
3748 		 * Status word error decode. If any of these conditions
3749 		 * occur, an error is returned, instead of the status
3750 		 * word. Most applications will care only about the fact
3751 		 * the system clock may not be trusted, not about the
3752 		 * details.
3753 		 *
3754 		 * Hardware or software error
3755 		 */
3756 		if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3757 
3758 		/*
3759 		 * PPS signal lost when either time or frequency
3760 		 * synchronization requested
3761 		 */
3762 		    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3763 		    !(time_status & STA_PPSSIGNAL)) ||
3764 
3765 		/*
3766 		 * PPS jitter exceeded when time synchronization
3767 		 * requested
3768 		 */
3769 		    (time_status & STA_PPSTIME &&
3770 		    time_status & STA_PPSJITTER) ||
3771 
3772 		/*
3773 		 * PPS wander exceeded or calibration error when
3774 		 * frequency synchronization requested
3775 		 */
3776 		    (time_status & STA_PPSFREQ &&
3777 		    time_status & (STA_PPSWANDER | STA_PPSERROR)))
3778 			*retval = TIME_ERROR;
3779 		else
3780 			*retval = time_state;
3781 	}
3782 	return(error);
3783 }
3784 
3785 int
3786 netbsd32_ntp_adjtime(p, v, retval)
3787 	struct proc *p;
3788 	void *v;
3789 	register_t *retval;
3790 {
3791 	struct netbsd32_ntp_adjtime_args /* {
3792 		syscallarg(netbsd32_timexp_t) tp;
3793 	} */ *uap = v;
3794 	struct netbsd32_timex ntv32;
3795 	struct timex ntv;
3796 	int error = 0;
3797 	int modes;
3798 	int s;
3799 	extern long time_freq;		/* frequency offset (scaled ppm) */
3800 	extern long time_maxerror;
3801 	extern long time_esterror;
3802 	extern int time_state;	/* clock state */
3803 	extern int time_status;	/* clock status bits */
3804 	extern long time_constant;		/* pll time constant */
3805 	extern long time_offset;		/* time offset (us) */
3806 	extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
3807 	extern long time_precision;	/* clock precision (us) */
3808 
3809 	if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), (caddr_t)&ntv32,
3810 			sizeof(ntv32))))
3811 		return (error);
3812 	netbsd32_to_timex(&ntv32, &ntv);
3813 
3814 	/*
3815 	 * Update selected clock variables - only the superuser can
3816 	 * change anything. Note that there is no error checking here on
3817 	 * the assumption the superuser should know what it is doing.
3818 	 */
3819 	modes = ntv.modes;
3820 	if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
3821 		return (error);
3822 
3823 	s = splclock();
3824 	if (modes & MOD_FREQUENCY)
3825 #ifdef PPS_SYNC
3826 		time_freq = ntv.freq - pps_freq;
3827 #else /* PPS_SYNC */
3828 		time_freq = ntv.freq;
3829 #endif /* PPS_SYNC */
3830 	if (modes & MOD_MAXERROR)
3831 		time_maxerror = ntv.maxerror;
3832 	if (modes & MOD_ESTERROR)
3833 		time_esterror = ntv.esterror;
3834 	if (modes & MOD_STATUS) {
3835 		time_status &= STA_RONLY;
3836 		time_status |= ntv.status & ~STA_RONLY;
3837 	}
3838 	if (modes & MOD_TIMECONST)
3839 		time_constant = ntv.constant;
3840 	if (modes & MOD_OFFSET)
3841 		hardupdate(ntv.offset);
3842 
3843 	/*
3844 	 * Retrieve all clock variables
3845 	 */
3846 	if (time_offset < 0)
3847 		ntv.offset = -(-time_offset >> SHIFT_UPDATE);
3848 	else
3849 		ntv.offset = time_offset >> SHIFT_UPDATE;
3850 #ifdef PPS_SYNC
3851 	ntv.freq = time_freq + pps_freq;
3852 #else /* PPS_SYNC */
3853 	ntv.freq = time_freq;
3854 #endif /* PPS_SYNC */
3855 	ntv.maxerror = time_maxerror;
3856 	ntv.esterror = time_esterror;
3857 	ntv.status = time_status;
3858 	ntv.constant = time_constant;
3859 	ntv.precision = time_precision;
3860 	ntv.tolerance = time_tolerance;
3861 #ifdef PPS_SYNC
3862 	ntv.shift = pps_shift;
3863 	ntv.ppsfreq = pps_freq;
3864 	ntv.jitter = pps_jitter >> PPS_AVG;
3865 	ntv.stabil = pps_stabil;
3866 	ntv.calcnt = pps_calcnt;
3867 	ntv.errcnt = pps_errcnt;
3868 	ntv.jitcnt = pps_jitcnt;
3869 	ntv.stbcnt = pps_stbcnt;
3870 #endif /* PPS_SYNC */
3871 	(void)splx(s);
3872 
3873 	netbsd32_from_timex(&ntv, &ntv32);
3874 	error = copyout((caddr_t)&ntv32, (caddr_t)(u_long)SCARG(uap, tp),
3875 	    sizeof(ntv32));
3876 	if (!error) {
3877 
3878 		/*
3879 		 * Status word error decode. See comments in
3880 		 * ntp_gettime() routine.
3881 		 */
3882 		if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
3883 		    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
3884 		    !(time_status & STA_PPSSIGNAL)) ||
3885 		    (time_status & STA_PPSTIME &&
3886 		    time_status & STA_PPSJITTER) ||
3887 		    (time_status & STA_PPSFREQ &&
3888 		    time_status & (STA_PPSWANDER | STA_PPSERROR)))
3889 			*retval = TIME_ERROR;
3890 		else
3891 			*retval = time_state;
3892 	}
3893 	return error;
3894 }
3895 #else
3896 int
3897 netbsd32_ntp_gettime(p, v, retval)
3898 	struct proc *p;
3899 	void *v;
3900 	register_t *retval;
3901 {
3902 	return(ENOSYS);
3903 }
3904 
3905 int
3906 netbsd32_ntp_adjtime(p, v, retval)
3907 	struct proc *p;
3908 	void *v;
3909 	register_t *retval;
3910 {
3911 	return (ENOSYS);
3912 }
3913 #endif
3914 
3915 int
3916 netbsd32_setgid(p, v, retval)
3917 	struct proc *p;
3918 	void *v;
3919 	register_t *retval;
3920 {
3921 	struct netbsd32_setgid_args /* {
3922 		syscallarg(gid_t) gid;
3923 	} */ *uap = v;
3924 	struct sys_setgid_args ua;
3925 
3926 	NETBSD32TO64_UAP(gid);
3927 	return (sys_setgid(p, v, retval));
3928 }
3929 
3930 int
3931 netbsd32_setegid(p, v, retval)
3932 	struct proc *p;
3933 	void *v;
3934 	register_t *retval;
3935 {
3936 	struct netbsd32_setegid_args /* {
3937 		syscallarg(gid_t) egid;
3938 	} */ *uap = v;
3939 	struct sys_setegid_args ua;
3940 
3941 	NETBSD32TO64_UAP(egid);
3942 	return (sys_setegid(p, v, retval));
3943 }
3944 
3945 int
3946 netbsd32_seteuid(p, v, retval)
3947 	struct proc *p;
3948 	void *v;
3949 	register_t *retval;
3950 {
3951 	struct netbsd32_seteuid_args /* {
3952 		syscallarg(gid_t) euid;
3953 	} */ *uap = v;
3954 	struct sys_seteuid_args ua;
3955 
3956 	NETBSD32TO64_UAP(euid);
3957 	return (sys_seteuid(p, v, retval));
3958 }
3959 
3960 #ifdef LFS
3961 int
3962 netbsd32_sys_lfs_bmapv(p, v, retval)
3963 	struct proc *p;
3964 	void *v;
3965 	register_t *retval;
3966 {
3967 #if 0
3968 	struct netbsd32_lfs_bmapv_args /* {
3969 		syscallarg(netbsd32_fsid_tp_t) fsidp;
3970 		syscallarg(netbsd32_block_infop_t) blkiov;
3971 		syscallarg(int) blkcnt;
3972 	} */ *uap = v;
3973 	struct sys_lfs_bmapv_args ua;
3974 
3975 	NETBSD32TOP_UAP(fdidp, struct fsid);
3976 	NETBSD32TO64_UAP(blkcnt);
3977 	/* XXX finish me */
3978 #else
3979 
3980 	return (ENOSYS);	/* XXX */
3981 #endif
3982 }
3983 
3984 int
3985 netbsd32_sys_lfs_markv(p, v, retval)
3986 	struct proc *p;
3987 	void *v;
3988 	register_t *retval;
3989 {
3990 #if 0
3991 	struct netbsd32_lfs_markv_args /* {
3992 		syscallarg(netbsd32_fsid_tp_t) fsidp;
3993 		syscallarg(netbsd32_block_infop_t) blkiov;
3994 		syscallarg(int) blkcnt;
3995 	} */ *uap = v;
3996 #endif
3997 
3998 	return (ENOSYS);	/* XXX */
3999 }
4000 
4001 int
4002 netbsd32_sys_lfs_segclean(p, v, retval)
4003 	struct proc *p;
4004 	void *v;
4005 	register_t *retval;
4006 {
4007 #if 0
4008 	struct netbsd32_lfs_segclean_args /* {
4009 		syscallarg(netbsd32_fsid_tp_t) fsidp;
4010 		syscallarg(netbsd32_u_long) segment;
4011 	} */ *uap = v;
4012 #endif
4013 
4014 	return (ENOSYS);	/* XXX */
4015 }
4016 
4017 int
4018 netbsd32_sys_lfs_segwait(p, v, retval)
4019 	struct proc *p;
4020 	void *v;
4021 	register_t *retval;
4022 {
4023 #if 0
4024 	struct netbsd32_lfs_segwait_args /* {
4025 		syscallarg(netbsd32_fsid_tp_t) fsidp;
4026 		syscallarg(netbsd32_timevalp_t) tv;
4027 	} */ *uap = v;
4028 #endif
4029 
4030 	return (ENOSYS);	/* XXX */
4031 }
4032 #endif
4033 
4034 int
4035 netbsd32_pathconf(p, v, retval)
4036 	struct proc *p;
4037 	void *v;
4038 	register_t *retval;
4039 {
4040 	struct netbsd32_pathconf_args /* {
4041 		syscallarg(int) fd;
4042 		syscallarg(int) name;
4043 	} */ *uap = v;
4044 	struct sys_pathconf_args ua;
4045 	long rt;
4046 	int error;
4047 
4048 	NETBSD32TOP_UAP(path, const char);
4049 	NETBSD32TO64_UAP(name);
4050 	error = sys_pathconf(p, &ua, (register_t *)&rt);
4051 	*retval = rt;
4052 	return (error);
4053 }
4054 
4055 int
4056 netbsd32_fpathconf(p, v, retval)
4057 	struct proc *p;
4058 	void *v;
4059 	register_t *retval;
4060 {
4061 	struct netbsd32_fpathconf_args /* {
4062 		syscallarg(int) fd;
4063 		syscallarg(int) name;
4064 	} */ *uap = v;
4065 	struct sys_fpathconf_args ua;
4066 	long rt;
4067 	int error;
4068 
4069 	NETBSD32TO64_UAP(fd);
4070 	NETBSD32TO64_UAP(name);
4071 	error = sys_fpathconf(p, &ua, (register_t *)&rt);
4072 	*retval = rt;
4073 	return (error);
4074 }
4075 
4076 int
4077 netbsd32_getrlimit(p, v, retval)
4078 	struct proc *p;
4079 	void *v;
4080 	register_t *retval;
4081 {
4082 	struct netbsd32_getrlimit_args /* {
4083 		syscallarg(int) which;
4084 		syscallarg(netbsd32_rlimitp_t) rlp;
4085 	} */ *uap = v;
4086 	int which = SCARG(uap, which);
4087 
4088 	if ((u_int)which >= RLIM_NLIMITS)
4089 		return (EINVAL);
4090 	return (copyout(&p->p_rlimit[which], (caddr_t)(u_long)SCARG(uap, rlp),
4091 	    sizeof(struct rlimit)));
4092 }
4093 
4094 int
4095 netbsd32_setrlimit(p, v, retval)
4096 	struct proc *p;
4097 	void *v;
4098 	register_t *retval;
4099 {
4100 	struct netbsd32_setrlimit_args /* {
4101 		syscallarg(int) which;
4102 		syscallarg(const netbsd32_rlimitp_t) rlp;
4103 	} */ *uap = v;
4104 		int which = SCARG(uap, which);
4105 	struct rlimit alim;
4106 	int error;
4107 
4108 	error = copyin((caddr_t)(u_long)SCARG(uap, rlp), &alim, sizeof(struct rlimit));
4109 	if (error)
4110 		return (error);
4111 	return (dosetrlimit(p, p->p_cred, which, &alim));
4112 }
4113 
4114 int
4115 netbsd32_mmap(p, v, retval)
4116 	struct proc *p;
4117 	void *v;
4118 	register_t *retval;
4119 {
4120 	struct netbsd32_mmap_args /* {
4121 		syscallarg(netbsd32_voidp) addr;
4122 		syscallarg(netbsd32_size_t) len;
4123 		syscallarg(int) prot;
4124 		syscallarg(int) flags;
4125 		syscallarg(int) fd;
4126 		syscallarg(netbsd32_long) pad;
4127 		syscallarg(off_t) pos;
4128 	} */ *uap = v;
4129 	struct sys_mmap_args ua;
4130 	void *rt;
4131 	int error;
4132 
4133 	NETBSD32TOP_UAP(addr, void);
4134 	NETBSD32TOX_UAP(len, size_t);
4135 	NETBSD32TO64_UAP(prot);
4136 	NETBSD32TO64_UAP(flags);
4137 	NETBSD32TO64_UAP(fd);
4138 	NETBSD32TOX_UAP(pad, long);
4139 	NETBSD32TOX_UAP(pos, off_t);
4140 	error = sys_mmap(p, &ua, (register_t *)&rt);
4141 	if ((long)rt > (long)UINT_MAX)
4142 		printf("netbsd32_mmap: retval out of range: %p", rt);
4143 	*retval = (netbsd32_voidp)(u_long)rt;
4144 	return (error);
4145 }
4146 
4147 int
4148 netbsd32_lseek(p, v, retval)
4149 	struct proc *p;
4150 	void *v;
4151 	register_t *retval;
4152 {
4153 	struct netbsd32_lseek_args /* {
4154 		syscallarg(int) fd;
4155 		syscallarg(int) pad;
4156 		syscallarg(off_t) offset;
4157 		syscallarg(int) whence;
4158 	} */ *uap = v;
4159 	struct sys_lseek_args ua;
4160 
4161 	NETBSD32TO64_UAP(fd);
4162 	NETBSD32TO64_UAP(pad);
4163 	NETBSD32TO64_UAP(offset);
4164 	NETBSD32TO64_UAP(whence);
4165 	return (sys_lseek(p, &ua, retval));
4166 }
4167 
4168 int
4169 netbsd32_truncate(p, v, retval)
4170 	struct proc *p;
4171 	void *v;
4172 	register_t *retval;
4173 {
4174 	struct netbsd32_truncate_args /* {
4175 		syscallarg(const netbsd32_charp) path;
4176 		syscallarg(int) pad;
4177 		syscallarg(off_t) length;
4178 	} */ *uap = v;
4179 	struct sys_truncate_args ua;
4180 
4181 	NETBSD32TOP_UAP(path, const char);
4182 	NETBSD32TO64_UAP(pad);
4183 	NETBSD32TO64_UAP(length);
4184 	return (sys_truncate(p, &ua, retval));
4185 }
4186 
4187 int
4188 netbsd32_ftruncate(p, v, retval)
4189 	struct proc *p;
4190 	void *v;
4191 	register_t *retval;
4192 {
4193 	struct netbsd32_ftruncate_args /* {
4194 		syscallarg(int) fd;
4195 		syscallarg(int) pad;
4196 		syscallarg(off_t) length;
4197 	} */ *uap = v;
4198 	struct sys_ftruncate_args ua;
4199 
4200 	NETBSD32TO64_UAP(fd);
4201 	NETBSD32TO64_UAP(pad);
4202 	NETBSD32TO64_UAP(length);
4203 	return (sys_ftruncate(p, &ua, retval));
4204 }
4205 
4206 int
4207 netbsd32___sysctl(p, v, retval)
4208 	struct proc *p;
4209 	void *v;
4210 	register_t *retval;
4211 {
4212 	struct netbsd32___sysctl_args /* {
4213 		syscallarg(netbsd32_intp) name;
4214 		syscallarg(u_int) namelen;
4215 		syscallarg(netbsd32_voidp) old;
4216 		syscallarg(netbsd32_size_tp) oldlenp;
4217 		syscallarg(netbsd32_voidp) new;
4218 		syscallarg(netbsd32_size_t) newlen;
4219 	} */ *uap = v;
4220 	int error;
4221 	netbsd32_size_t savelen = 0;
4222 	size_t oldlen = 0;
4223 	sysctlfn *fn;
4224 	int name[CTL_MAXNAME];
4225 
4226 /*
4227  * Some of these sysctl functions do their own copyin/copyout.
4228  * We need to disable or emulate the ones that need their
4229  * arguments converted.
4230  */
4231 
4232 	if (SCARG(uap, new) != NULL &&
4233 	    (error = suser(p->p_ucred, &p->p_acflag)))
4234 		return (error);
4235 	/*
4236 	 * all top-level sysctl names are non-terminal
4237 	 */
4238 	if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2)
4239 		return (EINVAL);
4240 	error = copyin((caddr_t)(u_long)SCARG(uap, name), &name,
4241 		       SCARG(uap, namelen) * sizeof(int));
4242 	if (error)
4243 		return (error);
4244 
4245 	switch (name[0]) {
4246 	case CTL_KERN:
4247 		fn = kern_sysctl;
4248 		break;
4249 	case CTL_HW:
4250 		fn = hw_sysctl;
4251 		break;
4252 	case CTL_VM:
4253 		fn = uvm_sysctl;
4254 		break;
4255 	case CTL_NET:
4256 		fn = net_sysctl;
4257 		break;
4258 	case CTL_VFS:
4259 		fn = vfs_sysctl;
4260 		break;
4261 	case CTL_MACHDEP:
4262 		fn = cpu_sysctl;
4263 		break;
4264 #ifdef DEBUG
4265 	case CTL_DEBUG:
4266 		fn = debug_sysctl;
4267 		break;
4268 #endif
4269 #ifdef DDB
4270 	case CTL_DDB:
4271 		fn = ddb_sysctl;
4272 		break;
4273 #endif
4274 	case CTL_PROC:
4275 		fn = proc_sysctl;
4276 		break;
4277 	default:
4278 		return (EOPNOTSUPP);
4279 	}
4280 
4281 	/*
4282 	 * XXX Hey, we wire `old', but what about `new'?
4283 	 */
4284 
4285 	if (SCARG(uap, oldlenp) &&
4286 	    (error = copyin((caddr_t)(u_long)SCARG(uap, oldlenp), &savelen,
4287 	     sizeof(savelen))))
4288 		return (error);
4289 	if (SCARG(uap, old) != NULL) {
4290 		error = lockmgr(&sysctl_memlock, LK_EXCLUSIVE, NULL);
4291 		if (error)
4292 			return (error);
4293 		if (uvm_vslock(p, (void *)(u_long)SCARG(uap, old), savelen,
4294 		    VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) {
4295 			(void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
4296 			return (EFAULT);
4297 		}
4298 		oldlen = savelen;
4299 	}
4300 	error = (*fn)(name + 1, SCARG(uap, namelen) - 1,
4301 		      (void *)(u_long)SCARG(uap, old), &oldlen,
4302 		      (void *)(u_long)SCARG(uap, new), SCARG(uap, newlen), p);
4303 	if (SCARG(uap, old) != NULL) {
4304 		uvm_vsunlock(p, (void *)(u_long)SCARG(uap, old), savelen);
4305 		(void) lockmgr(&sysctl_memlock, LK_RELEASE, NULL);
4306 	}
4307 	savelen = oldlen;
4308 	if (error)
4309 		return (error);
4310 	if (SCARG(uap, oldlenp))
4311 		error = copyout(&savelen,
4312 		    (caddr_t)(u_long)SCARG(uap, oldlenp), sizeof(savelen));
4313 	return (error);
4314 }
4315 
4316 int
4317 netbsd32_mlock(p, v, retval)
4318 	struct proc *p;
4319 	void *v;
4320 	register_t *retval;
4321 {
4322 	struct netbsd32_mlock_args /* {
4323 		syscallarg(const netbsd32_voidp) addr;
4324 		syscallarg(netbsd32_size_t) len;
4325 	} */ *uap = v;
4326 	struct sys_mlock_args ua;
4327 
4328 	NETBSD32TOP_UAP(addr, const void);
4329 	NETBSD32TO64_UAP(len);
4330 	return (sys_mlock(p, &ua, retval));
4331 }
4332 
4333 int
4334 netbsd32_munlock(p, v, retval)
4335 	struct proc *p;
4336 	void *v;
4337 	register_t *retval;
4338 {
4339 	struct netbsd32_munlock_args /* {
4340 		syscallarg(const netbsd32_voidp) addr;
4341 		syscallarg(netbsd32_size_t) len;
4342 	} */ *uap = v;
4343 	struct sys_munlock_args ua;
4344 
4345 	NETBSD32TOP_UAP(addr, const void);
4346 	NETBSD32TO64_UAP(len);
4347 	return (sys_munlock(p, &ua, retval));
4348 }
4349 
4350 int
4351 netbsd32_undelete(p, v, retval)
4352 	struct proc *p;
4353 	void *v;
4354 	register_t *retval;
4355 {
4356 	struct netbsd32_undelete_args /* {
4357 		syscallarg(const netbsd32_charp) path;
4358 	} */ *uap = v;
4359 	struct sys_undelete_args ua;
4360 
4361 	NETBSD32TOP_UAP(path, const char);
4362 	return (sys_undelete(p, &ua, retval));
4363 }
4364 
4365 int
4366 netbsd32_futimes(p, v, retval)
4367 	struct proc *p;
4368 	void *v;
4369 	register_t *retval;
4370 {
4371 	struct netbsd32_futimes_args /* {
4372 		syscallarg(int) fd;
4373 		syscallarg(const netbsd32_timevalp_t) tptr;
4374 	} */ *uap = v;
4375 	int error;
4376 	struct file *fp;
4377 
4378 	/* getvnode() will use the descriptor for us */
4379 	if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
4380 		return (error);
4381 
4382 	error = change_utimes32((struct vnode *)fp->f_data,
4383 				(struct timeval *)(u_long)SCARG(uap, tptr), p);
4384 	FILE_UNUSE(fp, p);
4385 	return (error);
4386 }
4387 
4388 int
4389 netbsd32_getpgid(p, v, retval)
4390 	struct proc *p;
4391 	void *v;
4392 	register_t *retval;
4393 {
4394 	struct netbsd32_getpgid_args /* {
4395 		syscallarg(pid_t) pid;
4396 	} */ *uap = v;
4397 	struct sys_getpgid_args ua;
4398 
4399 	NETBSD32TO64_UAP(pid);
4400 	return (sys_getpgid(p, &ua, retval));
4401 }
4402 
4403 int
4404 netbsd32_reboot(p, v, retval)
4405 	struct proc *p;
4406 	void *v;
4407 	register_t *retval;
4408 {
4409 	struct netbsd32_reboot_args /* {
4410 		syscallarg(int) opt;
4411 		syscallarg(netbsd32_charp) bootstr;
4412 	} */ *uap = v;
4413 	struct sys_reboot_args ua;
4414 
4415 	NETBSD32TO64_UAP(opt);
4416 	NETBSD32TOP_UAP(bootstr, char);
4417 	return (sys_reboot(p, &ua, retval));
4418 }
4419 
4420 int
4421 netbsd32_poll(p, v, retval)
4422 	struct proc *p;
4423 	void *v;
4424 	register_t *retval;
4425 {
4426 	struct netbsd32_poll_args /* {
4427 		syscallarg(netbsd32_pollfdp_t) fds;
4428 		syscallarg(u_int) nfds;
4429 		syscallarg(int) timeout;
4430 	} */ *uap = v;
4431 	struct sys_poll_args ua;
4432 
4433 	NETBSD32TOP_UAP(fds, struct pollfd);
4434 	NETBSD32TO64_UAP(nfds);
4435 	NETBSD32TO64_UAP(timeout);
4436 	return (sys_poll(p, &ua, retval));
4437 }
4438 
4439 #if defined(SYSVSEM)
4440 /*
4441  * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4442  *
4443  * This is BSD.  We won't support System V IPC.
4444  * Too much work.
4445  *
4446  * XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
4447  */
4448 int
4449 netbsd32___semctl14(p, v, retval)
4450 	struct proc *p;
4451 	void *v;
4452 	register_t *retval;
4453 {
4454 #if 0
4455 	struct netbsd32___semctl_args /* {
4456 		syscallarg(int) semid;
4457 		syscallarg(int) semnum;
4458 		syscallarg(int) cmd;
4459 		syscallarg(netbsd32_semunu_t *) arg;
4460 	} */ *uap = v;
4461 	union netbsd32_semun sem32;
4462 	int semid = SCARG(uap, semid);
4463 	int semnum = SCARG(uap, semnum);
4464 	int cmd = SCARG(uap, cmd);
4465 	union netbsd32_semun *arg = (void*)(u_long)SCARG(uap, arg);
4466 	union netbsd32_semun real_arg;
4467 	struct ucred *cred = p->p_ucred;
4468 	int i, rval, eval;
4469 	struct netbsd32_semid_ds sbuf;
4470 	struct semid_ds *semaptr;
4471 
4472 	semlock(p);
4473 
4474 	semid = IPCID_TO_IX(semid);
4475 	if (semid < 0 || semid >= seminfo.semmsl)
4476 		return(EINVAL);
4477 
4478 	semaptr = &sema[semid];
4479 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
4480 	    semaptr->sem_perm.seq != IPCID_TO_SEQ(SCARG(uap, semid)))
4481 		return(EINVAL);
4482 
4483 	eval = 0;
4484 	rval = 0;
4485 
4486 	switch (cmd) {
4487 	case IPC_RMID:
4488 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
4489 			return(eval);
4490 		semaptr->sem_perm.cuid = cred->cr_uid;
4491 		semaptr->sem_perm.uid = cred->cr_uid;
4492 		semtot -= semaptr->sem_nsems;
4493 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
4494 			sem[i] = sem[i + semaptr->sem_nsems];
4495 		for (i = 0; i < seminfo.semmni; i++) {
4496 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
4497 			    sema[i]._sem_base > semaptr->_sem_base)
4498 				sema[i]._sem_base -= semaptr->sem_nsems;
4499 		}
4500 		semaptr->sem_perm.mode = 0;
4501 		semundo_clear(semid, -1);
4502 		wakeup((caddr_t)semaptr);
4503 		break;
4504 
4505 	case IPC_SET:
4506 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
4507 			return(eval);
4508 		if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4509 			return(eval);
4510 		if ((eval = copyin((caddr_t)(u_long)real_arg.buf, (caddr_t)&sbuf,
4511 		    sizeof(sbuf))) != 0)
4512 			return(eval);
4513 		semaptr->sem_perm.uid = sbuf.sem_perm.uid;
4514 		semaptr->sem_perm.gid = sbuf.sem_perm.gid;
4515 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
4516 		    (sbuf.sem_perm.mode & 0777);
4517 		semaptr->sem_ctime = time.tv_sec;
4518 		break;
4519 
4520 	case IPC_STAT:
4521 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4522 			return(eval);
4523 		if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4524 			return(eval);
4525 		eval = copyout((caddr_t)semaptr, (caddr_t)(u_long)real_arg.buf,
4526 		    sizeof(struct semid_ds));
4527 		break;
4528 
4529 	case GETNCNT:
4530 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4531 			return(eval);
4532 		if (semnum < 0 || semnum >= semaptr->sem_nsems)
4533 			return(EINVAL);
4534 		rval = semaptr->_sem_base[semnum].semncnt;
4535 		break;
4536 
4537 	case GETPID:
4538 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4539 			return(eval);
4540 		if (semnum < 0 || semnum >= semaptr->sem_nsems)
4541 			return(EINVAL);
4542 		rval = semaptr->_sem_base[semnum].sempid;
4543 		break;
4544 
4545 	case GETVAL:
4546 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4547 			return(eval);
4548 		if (semnum < 0 || semnum >= semaptr->sem_nsems)
4549 			return(EINVAL);
4550 		rval = semaptr->_sem_base[semnum].semval;
4551 		break;
4552 
4553 	case GETALL:
4554 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4555 			return(eval);
4556 		if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4557 			return(eval);
4558 		for (i = 0; i < semaptr->sem_nsems; i++) {
4559 			eval = copyout((caddr_t)&semaptr->_sem_base[i].semval,
4560 			    &real_arg.array[i], sizeof(real_arg.array[0]));
4561 			if (eval != 0)
4562 				break;
4563 		}
4564 		break;
4565 
4566 	case GETZCNT:
4567 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
4568 			return(eval);
4569 		if (semnum < 0 || semnum >= semaptr->sem_nsems)
4570 			return(EINVAL);
4571 		rval = semaptr->_sem_base[semnum].semzcnt;
4572 		break;
4573 
4574 	case SETVAL:
4575 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4576 			return(eval);
4577 		if (semnum < 0 || semnum >= semaptr->sem_nsems)
4578 			return(EINVAL);
4579 		if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4580 			return(eval);
4581 		semaptr->_sem_base[semnum].semval = real_arg.val;
4582 		semundo_clear(semid, semnum);
4583 		wakeup((caddr_t)semaptr);
4584 		break;
4585 
4586 	case SETALL:
4587 		if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
4588 			return(eval);
4589 		if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
4590 			return(eval);
4591 		for (i = 0; i < semaptr->sem_nsems; i++) {
4592 			eval = copyin(&real_arg.array[i],
4593 			    (caddr_t)&semaptr->_sem_base[i].semval,
4594 			    sizeof(real_arg.array[0]));
4595 			if (eval != 0)
4596 				break;
4597 		}
4598 		semundo_clear(semid, -1);
4599 		wakeup((caddr_t)semaptr);
4600 		break;
4601 
4602 	default:
4603 		return(EINVAL);
4604 	}
4605 
4606 	if (eval == 0)
4607 		*retval = rval;
4608 	return(eval);
4609 #else
4610 	return (ENOSYS);
4611 #endif
4612 }
4613 
4614 int
4615 netbsd32_semget(p, v, retval)
4616 	struct proc *p;
4617 	void *v;
4618 	register_t *retval;
4619 {
4620 	struct netbsd32_semget_args /* {
4621 		syscallarg(netbsd32_key_t) key;
4622 		syscallarg(int) nsems;
4623 		syscallarg(int) semflg;
4624 	} */ *uap = v;
4625 	struct sys_semget_args ua;
4626 
4627 	NETBSD32TOX_UAP(key, key_t);
4628 	NETBSD32TO64_UAP(nsems);
4629 	NETBSD32TO64_UAP(semflg);
4630 	return (sys_semget(p, &ua, retval));
4631 }
4632 
4633 int
4634 netbsd32_semop(p, v, retval)
4635 	struct proc *p;
4636 	void *v;
4637 	register_t *retval;
4638 {
4639 	struct netbsd32_semop_args /* {
4640 		syscallarg(int) semid;
4641 		syscallarg(netbsd32_sembufp_t) sops;
4642 		syscallarg(netbsd32_size_t) nsops;
4643 	} */ *uap = v;
4644 	struct sys_semop_args ua;
4645 
4646 	NETBSD32TO64_UAP(semid);
4647 	NETBSD32TOP_UAP(sops, struct sembuf);
4648 	NETBSD32TOX_UAP(nsops, size_t);
4649 	return (sys_semop(p, &ua, retval));
4650 }
4651 
4652 int
4653 netbsd32_semconfig(p, v, retval)
4654 	struct proc *p;
4655 	void *v;
4656 	register_t *retval;
4657 {
4658 	struct netbsd32_semconfig_args /* {
4659 		syscallarg(int) flag;
4660 	} */ *uap = v;
4661 	struct sys_semconfig_args ua;
4662 
4663 	NETBSD32TO64_UAP(flag);
4664 	return (sys_semconfig(p, &ua, retval));
4665 }
4666 #endif /* SYSVSEM */
4667 
4668 #if defined(SYSVMSG)
4669 
4670 int
4671 netbsd32___msgctl13(p, v, retval)
4672 	struct proc *p;
4673 	void *v;
4674 	register_t *retval;
4675 {
4676 #if 0
4677 	struct netbsd32_msgctl_args /* {
4678 		syscallarg(int) msqid;
4679 		syscallarg(int) cmd;
4680 		syscallarg(netbsd32_msqid_dsp_t) buf;
4681 	} */ *uap = v;
4682 	struct sys_msgctl_args ua;
4683 	struct msqid_ds ds;
4684 	struct netbsd32_msqid_ds *ds32p;
4685 	int error;
4686 
4687 	NETBSD32TO64_UAP(msqid);
4688 	NETBSD32TO64_UAP(cmd);
4689 	ds32p = (struct netbsd32_msqid_ds *)(u_long)SCARG(uap, buf);
4690 	if (ds32p) {
4691 		SCARG(&ua, buf) = NULL;
4692 		netbsd32_to_msqid_ds(ds32p, &ds);
4693 	} else
4694 		SCARG(&ua, buf) = NULL;
4695 	error = sys_msgctl(p, &ua, retval);
4696 	if (error)
4697 		return (error);
4698 
4699 	if (ds32p)
4700 		netbsd32_from_msqid_ds(&ds, ds32p);
4701 	return (0);
4702 #else
4703 	return (ENOSYS);
4704 #endif
4705 }
4706 
4707 int
4708 netbsd32_msgget(p, v, retval)
4709 	struct proc *p;
4710 	void *v;
4711 	register_t *retval;
4712 {
4713 #if 0
4714 	struct netbsd32_msgget_args /* {
4715 		syscallarg(netbsd32_key_t) key;
4716 		syscallarg(int) msgflg;
4717 	} */ *uap = v;
4718 	struct sys_msgget_args ua;
4719 
4720 	NETBSD32TOX_UAP(key, key_t);
4721 	NETBSD32TO64_UAP(msgflg);
4722 	return (sys_msgget(p, &ua, retval));
4723 #else
4724 	return (ENOSYS);
4725 #endif
4726 }
4727 
4728 int
4729 netbsd32_msgsnd(p, v, retval)
4730 	struct proc *p;
4731 	void *v;
4732 	register_t *retval;
4733 {
4734 #if 0
4735 	struct netbsd32_msgsnd_args /* {
4736 		syscallarg(int) msqid;
4737 		syscallarg(const netbsd32_voidp) msgp;
4738 		syscallarg(netbsd32_size_t) msgsz;
4739 		syscallarg(int) msgflg;
4740 	} */ *uap = v;
4741 	struct sys_msgsnd_args ua;
4742 
4743 	NETBSD32TO64_UAP(msqid);
4744 	NETBSD32TOP_UAP(msgp, void);
4745 	NETBSD32TOX_UAP(msgsz, size_t);
4746 	NETBSD32TO64_UAP(msgflg);
4747 	return (sys_msgsnd(p, &ua, retval));
4748 #else
4749 	return (ENOSYS);
4750 #endif
4751 }
4752 
4753 int
4754 netbsd32_msgrcv(p, v, retval)
4755 	struct proc *p;
4756 	void *v;
4757 	register_t *retval;
4758 {
4759 #if 0
4760 	struct netbsd32_msgrcv_args /* {
4761 		syscallarg(int) msqid;
4762 		syscallarg(netbsd32_voidp) msgp;
4763 		syscallarg(netbsd32_size_t) msgsz;
4764 		syscallarg(netbsd32_long) msgtyp;
4765 		syscallarg(int) msgflg;
4766 	} */ *uap = v;
4767 	struct sys_msgrcv_args ua;
4768 	ssize_t rt;
4769 	int error;
4770 
4771 	NETBSD32TO64_UAP(msqid);
4772 	NETBSD32TOP_UAP(msgp, void);
4773 	NETBSD32TOX_UAP(msgsz, size_t);
4774 	NETBSD32TOX_UAP(msgtyp, long);
4775 	NETBSD32TO64_UAP(msgflg);
4776 	error = sys_msgrcv(p, &ua, (register_t *)&rt);
4777 	*retval = rt;
4778 	return (error);
4779 #else
4780 	return (ENOSYS);
4781 #endif
4782 }
4783 #endif /* SYSVMSG */
4784 
4785 #if defined(SYSVSHM)
4786 
4787 int
4788 netbsd32_shmat(p, v, retval)
4789 	struct proc *p;
4790 	void *v;
4791 	register_t *retval;
4792 {
4793 #if 0
4794 	struct netbsd32_shmat_args /* {
4795 		syscallarg(int) shmid;
4796 		syscallarg(const netbsd32_voidp) shmaddr;
4797 		syscallarg(int) shmflg;
4798 	} */ *uap = v;
4799 	struct sys_shmat_args ua;
4800 	void *rt;
4801 	int error;
4802 
4803 	NETBSD32TO64_UAP(shmid);
4804 	NETBSD32TOP_UAP(shmaddr, void);
4805 	NETBSD32TO64_UAP(shmflg);
4806 	error = sys_shmat(p, &ua, (register_t *)&rt);
4807 	*retval = rt;
4808 	return (error);
4809 #else
4810 	return (ENOSYS);
4811 #endif
4812 }
4813 
4814 int
4815 netbsd32___shmctl13(p, v, retval)
4816 	struct proc *p;
4817 	void *v;
4818 	register_t *retval;
4819 {
4820 #if 0
4821 	struct netbsd32_shmctl_args /* {
4822 		syscallarg(int) shmid;
4823 		syscallarg(int) cmd;
4824 		syscallarg(netbsd32_shmid_dsp_t) buf;
4825 	} */ *uap = v;
4826 	struct sys_shmctl_args ua;
4827 	struct shmid_ds ds;
4828 	struct netbsd32_shmid_ds *ds32p;
4829 	int error;
4830 
4831 	NETBSD32TO64_UAP(shmid);
4832 	NETBSD32TO64_UAP(cmd);
4833 	ds32p = (struct netbsd32_shmid_ds *)(u_long)SCARG(uap, buf);
4834 	if (ds32p) {
4835 		SCARG(&ua, buf) = NULL;
4836 		netbsd32_to_shmid_ds(ds32p, &ds);
4837 	} else
4838 		SCARG(&ua, buf) = NULL;
4839 	error = sys_shmctl(p, &ua, retval);
4840 	if (error)
4841 		return (error);
4842 
4843 	if (ds32p)
4844 		netbsd32_from_shmid_ds(&ds, ds32p);
4845 	return (0);
4846 #else
4847 	return (ENOSYS);
4848 #endif
4849 }
4850 
4851 int
4852 netbsd32_shmdt(p, v, retval)
4853 	struct proc *p;
4854 	void *v;
4855 	register_t *retval;
4856 {
4857 #if 0
4858 	struct netbsd32_shmdt_args /* {
4859 		syscallarg(const netbsd32_voidp) shmaddr;
4860 	} */ *uap = v;
4861 	struct sys_shmdt_args ua;
4862 
4863 	NETBSD32TOP_UAP(shmaddr, const char);
4864 	return (sys_shmdt(p, &ua, retval));
4865 #else
4866 	return (ENOSYS);
4867 #endif
4868 }
4869 
4870 int
4871 netbsd32_shmget(p, v, retval)
4872 	struct proc *p;
4873 	void *v;
4874 	register_t *retval;
4875 {
4876 #if 0
4877 	struct netbsd32_shmget_args /* {
4878 		syscallarg(netbsd32_key_t) key;
4879 		syscallarg(netbsd32_size_t) size;
4880 		syscallarg(int) shmflg;
4881 	} */ *uap = v;
4882 	struct sys_shmget_args ua;
4883 
4884 	NETBSD32TOX_UAP(key, key_t)
4885 	NETBSD32TOX_UAP(size, size_t)
4886 	NETBSD32TO64_UAP(shmflg);
4887 	return (sys_shmget(p, &ua, retval));
4888 #else
4889 	return (ENOSYS);
4890 #endif
4891 }
4892 #endif /* SYSVSHM */
4893 
4894 int
4895 netbsd32_clock_gettime(p, v, retval)
4896 	struct proc *p;
4897 	void *v;
4898 	register_t *retval;
4899 {
4900 	struct netbsd32_clock_gettime_args /* {
4901 		syscallarg(netbsd32_clockid_t) clock_id;
4902 		syscallarg(netbsd32_timespecp_t) tp;
4903 	} */ *uap = v;
4904 	clockid_t clock_id;
4905 	struct timeval atv;
4906 	struct timespec ats;
4907 	struct netbsd32_timespec ts32;
4908 
4909 	clock_id = SCARG(uap, clock_id);
4910 	if (clock_id != CLOCK_REALTIME)
4911 		return (EINVAL);
4912 
4913 	microtime(&atv);
4914 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
4915 	netbsd32_from_timespec(&ats, &ts32);
4916 
4917 	return copyout(&ts32, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts32));
4918 }
4919 
4920 int
4921 netbsd32_clock_settime(p, v, retval)
4922 	struct proc *p;
4923 	void *v;
4924 	register_t *retval;
4925 {
4926 	struct netbsd32_clock_settime_args /* {
4927 		syscallarg(netbsd32_clockid_t) clock_id;
4928 		syscallarg(const netbsd32_timespecp_t) tp;
4929 	} */ *uap = v;
4930 	struct netbsd32_timespec ts32;
4931 	clockid_t clock_id;
4932 	struct timeval atv;
4933 	struct timespec ats;
4934 	int error;
4935 
4936 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
4937 		return (error);
4938 
4939 	clock_id = SCARG(uap, clock_id);
4940 	if (clock_id != CLOCK_REALTIME)
4941 		return (EINVAL);
4942 
4943 	if ((error = copyin((caddr_t)(u_long)SCARG(uap, tp), &ts32, sizeof(ts32))) != 0)
4944 		return (error);
4945 
4946 	netbsd32_to_timespec(&ts32, &ats);
4947 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
4948 	if ((error = settime(&atv)))
4949 		return (error);
4950 
4951 	return 0;
4952 }
4953 
4954 int
4955 netbsd32_clock_getres(p, v, retval)
4956 	struct proc *p;
4957 	void *v;
4958 	register_t *retval;
4959 {
4960 	struct netbsd32_clock_getres_args /* {
4961 		syscallarg(netbsd32_clockid_t) clock_id;
4962 		syscallarg(netbsd32_timespecp_t) tp;
4963 	} */ *uap = v;
4964 	struct netbsd32_timespec ts32;
4965 	clockid_t clock_id;
4966 	struct timespec ts;
4967 	int error = 0;
4968 
4969 	clock_id = SCARG(uap, clock_id);
4970 	if (clock_id != CLOCK_REALTIME)
4971 		return (EINVAL);
4972 
4973 	if (SCARG(uap, tp)) {
4974 		ts.tv_sec = 0;
4975 		ts.tv_nsec = 1000000000 / hz;
4976 
4977 		netbsd32_from_timespec(&ts, &ts32);
4978 		error = copyout(&ts, (caddr_t)(u_long)SCARG(uap, tp), sizeof(ts));
4979 	}
4980 
4981 	return error;
4982 }
4983 
4984 int
4985 netbsd32_nanosleep(p, v, retval)
4986 	struct proc *p;
4987 	void *v;
4988 	register_t *retval;
4989 {
4990 	struct netbsd32_nanosleep_args /* {
4991 		syscallarg(const netbsd32_timespecp_t) rqtp;
4992 		syscallarg(netbsd32_timespecp_t) rmtp;
4993 	} */ *uap = v;
4994 	static int nanowait;
4995 	struct netbsd32_timespec ts32;
4996 	struct timespec rqt;
4997 	struct timespec rmt;
4998 	struct timeval atv, utv;
4999 	int error, s, timo;
5000 
5001 	error = copyin((caddr_t)(u_long)SCARG(uap, rqtp), (caddr_t)&ts32,
5002 		       sizeof(ts32));
5003 	if (error)
5004 		return (error);
5005 
5006 	netbsd32_to_timespec(&ts32, &rqt);
5007 	TIMESPEC_TO_TIMEVAL(&atv,&rqt)
5008 	if (itimerfix(&atv))
5009 		return (EINVAL);
5010 
5011 	s = splclock();
5012 	timeradd(&atv,&time,&atv);
5013 	timo = hzto(&atv);
5014 	/*
5015 	 * Avoid inadvertantly sleeping forever
5016 	 */
5017 	if (timo == 0)
5018 		timo = 1;
5019 	splx(s);
5020 
5021 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
5022 	if (error == ERESTART)
5023 		error = EINTR;
5024 	if (error == EWOULDBLOCK)
5025 		error = 0;
5026 
5027 	if (SCARG(uap, rmtp)) {
5028 		int error;
5029 
5030 		s = splclock();
5031 		utv = time;
5032 		splx(s);
5033 
5034 		timersub(&atv, &utv, &utv);
5035 		if (utv.tv_sec < 0)
5036 			timerclear(&utv);
5037 
5038 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
5039 		netbsd32_from_timespec(&rmt, &ts32);
5040 		error = copyout((caddr_t)&ts32, (caddr_t)(u_long)SCARG(uap,rmtp),
5041 			sizeof(ts32));
5042 		if (error)
5043 			return (error);
5044 	}
5045 
5046 	return error;
5047 }
5048 
5049 int
5050 netbsd32_fdatasync(p, v, retval)
5051 	struct proc *p;
5052 	void *v;
5053 	register_t *retval;
5054 {
5055 	struct netbsd32_fdatasync_args /* {
5056 		syscallarg(int) fd;
5057 	} */ *uap = v;
5058 	struct sys_fdatasync_args ua;
5059 
5060 	NETBSD32TO64_UAP(fd);
5061 
5062 	return (sys_fdatasync(p, &ua, retval));
5063 }
5064 
5065 int
5066 netbsd32___posix_rename(p, v, retval)
5067 	struct proc *p;
5068 	void *v;
5069 	register_t *retval;
5070 {
5071 	struct netbsd32___posix_rename_args /* {
5072 		syscallarg(const netbsd32_charp) from;
5073 		syscallarg(const netbsd32_charp) to;
5074 	} */ *uap = v;
5075 	struct sys___posix_rename_args ua;
5076 
5077 	NETBSD32TOP_UAP(from, const char);
5078 	NETBSD32TOP_UAP(to, const char);
5079 
5080 	return (sys___posix_rename(p, &ua, retval));
5081 }
5082 
5083 int
5084 netbsd32_swapctl(p, v, retval)
5085 	struct proc *p;
5086 	void *v;
5087 	register_t *retval;
5088 {
5089 	struct netbsd32_swapctl_args /* {
5090 		syscallarg(int) cmd;
5091 		syscallarg(const netbsd32_voidp) arg;
5092 		syscallarg(int) misc;
5093 	} */ *uap = v;
5094 	struct sys_swapctl_args ua;
5095 
5096 	NETBSD32TO64_UAP(cmd);
5097 	NETBSD32TOP_UAP(arg, const void);
5098 	NETBSD32TO64_UAP(misc);
5099 	return (sys_swapctl(p, &ua, retval));
5100 }
5101 
5102 int
5103 netbsd32_getdents(p, v, retval)
5104 	struct proc *p;
5105 	void *v;
5106 	register_t *retval;
5107 {
5108 	struct netbsd32_getdents_args /* {
5109 		syscallarg(int) fd;
5110 		syscallarg(netbsd32_charp) buf;
5111 		syscallarg(netbsd32_size_t) count;
5112 	} */ *uap = v;
5113 	struct file *fp;
5114 	int error, done;
5115 
5116 	/* getvnode() will use the descriptor for us */
5117 	if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0)
5118 		return (error);
5119 	if ((fp->f_flag & FREAD) == 0) {
5120 		error = EBADF;
5121 		goto out;
5122 	}
5123 	error = vn_readdir(fp, (caddr_t)(u_long)SCARG(uap, buf), UIO_USERSPACE,
5124 			SCARG(uap, count), &done, p, 0, 0);
5125 	*retval = done;
5126  out:
5127 	FILE_UNUSE(fp, p);
5128 	return (error);
5129 }
5130 
5131 
5132 int
5133 netbsd32_minherit(p, v, retval)
5134 	struct proc *p;
5135 	void *v;
5136 	register_t *retval;
5137 {
5138 	struct netbsd32_minherit_args /* {
5139 		syscallarg(netbsd32_voidp) addr;
5140 		syscallarg(netbsd32_size_t) len;
5141 		syscallarg(int) inherit;
5142 	} */ *uap = v;
5143 	struct sys_minherit_args ua;
5144 
5145 	NETBSD32TOP_UAP(addr, void);
5146 	NETBSD32TOX_UAP(len, size_t);
5147 	NETBSD32TO64_UAP(inherit);
5148 	return (sys_minherit(p, &ua, retval));
5149 }
5150 
5151 int
5152 netbsd32_lchmod(p, v, retval)
5153 	struct proc *p;
5154 	void *v;
5155 	register_t *retval;
5156 {
5157 	struct netbsd32_lchmod_args /* {
5158 		syscallarg(const netbsd32_charp) path;
5159 		syscallarg(mode_t) mode;
5160 	} */ *uap = v;
5161 	struct sys_lchmod_args ua;
5162 
5163 	NETBSD32TOP_UAP(path, const char);
5164 	NETBSD32TO64_UAP(mode);
5165 	return (sys_lchmod(p, &ua, retval));
5166 }
5167 
5168 int
5169 netbsd32_lchown(p, v, retval)
5170 	struct proc *p;
5171 	void *v;
5172 	register_t *retval;
5173 {
5174 	struct netbsd32_lchown_args /* {
5175 		syscallarg(const netbsd32_charp) path;
5176 		syscallarg(uid_t) uid;
5177 		syscallarg(gid_t) gid;
5178 	} */ *uap = v;
5179 	struct sys_lchown_args ua;
5180 
5181 	NETBSD32TOP_UAP(path, const char);
5182 	NETBSD32TO64_UAP(uid);
5183 	NETBSD32TO64_UAP(gid);
5184 	return (sys_lchown(p, &ua, retval));
5185 }
5186 
5187 int
5188 netbsd32_lutimes(p, v, retval)
5189 	struct proc *p;
5190 	void *v;
5191 	register_t *retval;
5192 {
5193 	struct netbsd32_lutimes_args /* {
5194 		syscallarg(const netbsd32_charp) path;
5195 		syscallarg(const netbsd32_timevalp_t) tptr;
5196 	} */ *uap = v;
5197 	int error;
5198 	struct nameidata nd;
5199 
5200 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, (caddr_t)(u_long)SCARG(uap, path), p);
5201 	if ((error = namei(&nd)) != 0)
5202 		return (error);
5203 
5204 	error = change_utimes32(nd.ni_vp, (struct timeval *)(u_long)SCARG(uap, tptr), p);
5205 
5206 	vrele(nd.ni_vp);
5207 	return (error);
5208 }
5209 
5210 
5211 int
5212 netbsd32___msync13(p, v, retval)
5213 	struct proc *p;
5214 	void *v;
5215 	register_t *retval;
5216 {
5217 	struct netbsd32___msync13_args /* {
5218 		syscallarg(netbsd32_voidp) addr;
5219 		syscallarg(netbsd32_size_t) len;
5220 		syscallarg(int) flags;
5221 	} */ *uap = v;
5222 	struct sys___msync13_args ua;
5223 
5224 	NETBSD32TOP_UAP(addr, void);
5225 	NETBSD32TOX_UAP(len, size_t);
5226 	NETBSD32TO64_UAP(flags);
5227 	return (sys___msync13(p, &ua, retval));
5228 }
5229 
5230 int
5231 netbsd32___stat13(p, v, retval)
5232 	struct proc *p;
5233 	void *v;
5234 	register_t *retval;
5235 {
5236 	struct netbsd32___stat13_args /* {
5237 		syscallarg(const netbsd32_charp) path;
5238 		syscallarg(netbsd32_statp_t) ub;
5239 	} */ *uap = v;
5240 	struct netbsd32_stat sb32;
5241 	struct stat sb;
5242 	int error;
5243 	struct nameidata nd;
5244 	caddr_t sg;
5245 	const char *path;
5246 
5247 	path = (char *)(u_long)SCARG(uap, path);
5248 	sg = stackgap_init(p->p_emul);
5249 	CHECK_ALT_EXIST(p, &sg, path);
5250 
5251 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, path, p);
5252 	if ((error = namei(&nd)) != 0)
5253 		return (error);
5254 	error = vn_stat(nd.ni_vp, &sb, p);
5255 	vput(nd.ni_vp);
5256 	if (error)
5257 		return (error);
5258 	netbsd32_from___stat13(&sb, &sb32);
5259 	error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5260 	return (error);
5261 }
5262 
5263 int
5264 netbsd32___fstat13(p, v, retval)
5265 	struct proc *p;
5266 	void *v;
5267 	register_t *retval;
5268 {
5269 	struct netbsd32___fstat13_args /* {
5270 		syscallarg(int) fd;
5271 		syscallarg(netbsd32_statp_t) sb;
5272 	} */ *uap = v;
5273 	int fd = SCARG(uap, fd);
5274 	struct filedesc *fdp = p->p_fd;
5275 	struct file *fp;
5276 	struct netbsd32_stat sb32;
5277 	struct stat ub;
5278 	int error = 0;
5279 
5280 	if ((u_int)fd >= fdp->fd_nfiles ||
5281 	    (fp = fdp->fd_ofiles[fd]) == NULL)
5282 		return (EBADF);
5283 	switch (fp->f_type) {
5284 
5285 	case DTYPE_VNODE:
5286 		error = vn_stat((struct vnode *)fp->f_data, &ub, p);
5287 		break;
5288 
5289 	case DTYPE_SOCKET:
5290 		error = soo_stat((struct socket *)fp->f_data, &ub);
5291 		break;
5292 
5293 	default:
5294 		panic("fstat");
5295 		/*NOTREACHED*/
5296 	}
5297 	if (error == 0) {
5298 		netbsd32_from___stat13(&ub, &sb32);
5299 		error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, sb), sizeof(sb32));
5300 	}
5301 	return (error);
5302 }
5303 
5304 int
5305 netbsd32___lstat13(p, v, retval)
5306 	struct proc *p;
5307 	void *v;
5308 	register_t *retval;
5309 {
5310 	struct netbsd32___lstat13_args /* {
5311 		syscallarg(const netbsd32_charp) path;
5312 		syscallarg(netbsd32_statp_t) ub;
5313 	} */ *uap = v;
5314 	struct netbsd32_stat sb32;
5315 	struct stat sb;
5316 	int error;
5317 	struct nameidata nd;
5318 	caddr_t sg;
5319 	const char *path;
5320 
5321 	path = (char *)(u_long)SCARG(uap, path);
5322 	sg = stackgap_init(p->p_emul);
5323 	CHECK_ALT_EXIST(p, &sg, path);
5324 
5325 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, path, p);
5326 	if ((error = namei(&nd)) != 0)
5327 		return (error);
5328 	error = vn_stat(nd.ni_vp, &sb, p);
5329 	vput(nd.ni_vp);
5330 	if (error)
5331 		return (error);
5332 	netbsd32_from___stat13(&sb, &sb32);
5333 	error = copyout(&sb32, (caddr_t)(u_long)SCARG(uap, ub), sizeof(sb32));
5334 	return (error);
5335 }
5336 
5337 int
5338 netbsd32___sigaltstack14(p, v, retval)
5339 	struct proc *p;
5340 	void *v;
5341 	register_t *retval;
5342 {
5343 	struct netbsd32___sigaltstack14_args /* {
5344 		syscallarg(const netbsd32_sigaltstackp_t) nss;
5345 		syscallarg(netbsd32_sigaltstackp_t) oss;
5346 	} */ *uap = v;
5347 	struct netbsd32_sigaltstack s32;
5348 	struct sigaltstack nss, oss;
5349 	int error;
5350 
5351 	if (SCARG(uap, nss)) {
5352 		error = copyin((caddr_t)(u_long)SCARG(uap, nss), &s32, sizeof(s32));
5353 		if (error)
5354 			return (error);
5355 		nss.ss_sp = (void *)(u_long)s32.ss_sp;
5356 		nss.ss_size = (size_t)s32.ss_size;
5357 		nss.ss_flags = s32.ss_flags;
5358 	}
5359 	error = sigaltstack1(p,
5360 	    SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
5361 	if (error)
5362 		return (error);
5363 	if (SCARG(uap, oss)) {
5364 		s32.ss_sp = (netbsd32_voidp)(u_long)oss.ss_sp;
5365 		s32.ss_size = (netbsd32_size_t)oss.ss_size;
5366 		s32.ss_flags = oss.ss_flags;
5367 		error = copyout(&s32, (caddr_t)(u_long)SCARG(uap, oss), sizeof(s32));
5368 		if (error)
5369 			return (error);
5370 	}
5371 	return (0);
5372 }
5373 
5374 int
5375 netbsd32___posix_chown(p, v, retval)
5376 	struct proc *p;
5377 	void *v;
5378 	register_t *retval;
5379 {
5380 	struct netbsd32___posix_chown_args /* {
5381 		syscallarg(const netbsd32_charp) path;
5382 		syscallarg(uid_t) uid;
5383 		syscallarg(gid_t) gid;
5384 	} */ *uap = v;
5385 	struct sys___posix_chown_args ua;
5386 
5387 	NETBSD32TOP_UAP(path, const char);
5388 	NETBSD32TO64_UAP(uid);
5389 	NETBSD32TO64_UAP(gid);
5390 	return (sys___posix_chown(p, &ua, retval));
5391 }
5392 
5393 int
5394 netbsd32___posix_fchown(p, v, retval)
5395 	struct proc *p;
5396 	void *v;
5397 	register_t *retval;
5398 {
5399 	struct netbsd32___posix_fchown_args /* {
5400 		syscallarg(int) fd;
5401 		syscallarg(uid_t) uid;
5402 		syscallarg(gid_t) gid;
5403 	} */ *uap = v;
5404 	struct sys___posix_fchown_args ua;
5405 
5406 	NETBSD32TO64_UAP(fd);
5407 	NETBSD32TO64_UAP(uid);
5408 	NETBSD32TO64_UAP(gid);
5409 	return (sys___posix_fchown(p, &ua, retval));
5410 }
5411 
5412 int
5413 netbsd32___posix_lchown(p, v, retval)
5414 	struct proc *p;
5415 	void *v;
5416 	register_t *retval;
5417 {
5418 	struct netbsd32___posix_lchown_args /* {
5419 		syscallarg(const netbsd32_charp) path;
5420 		syscallarg(uid_t) uid;
5421 		syscallarg(gid_t) gid;
5422 	} */ *uap = v;
5423 	struct sys___posix_lchown_args ua;
5424 
5425 	NETBSD32TOP_UAP(path, const char);
5426 	NETBSD32TO64_UAP(uid);
5427 	NETBSD32TO64_UAP(gid);
5428 	return (sys___posix_lchown(p, &ua, retval));
5429 }
5430 
5431 int
5432 netbsd32_getsid(p, v, retval)
5433 	struct proc *p;
5434 	void *v;
5435 	register_t *retval;
5436 {
5437 	struct netbsd32_getsid_args /* {
5438 		syscallarg(pid_t) pid;
5439 	} */ *uap = v;
5440 	struct sys_getsid_args ua;
5441 
5442 	NETBSD32TO64_UAP(pid);
5443 	return (sys_getsid(p, &ua, retval));
5444 }
5445 
5446 #ifdef KTRACE
5447 int
5448 netbsd32_fktrace(p, v, retval)
5449 	struct proc *p;
5450 	void *v;
5451 	register_t *retval;
5452 {
5453 	struct netbsd32_fktrace_args /* {
5454 		syscallarg(const int) fd;
5455 		syscallarg(int) ops;
5456 		syscallarg(int) facs;
5457 		syscallarg(int) pid;
5458 	} */ *uap = v;
5459 #if 0
5460 	struct sys_fktrace_args ua;
5461 #else
5462 	/* XXXX */
5463 	struct sys_fktrace_noconst_args {
5464 		syscallarg(int) fd;
5465 		syscallarg(int) ops;
5466 		syscallarg(int) facs;
5467 		syscallarg(int) pid;
5468 	} ua;
5469 #endif
5470 
5471 	NETBSD32TOX_UAP(fd, int);
5472 	NETBSD32TO64_UAP(ops);
5473 	NETBSD32TO64_UAP(facs);
5474 	NETBSD32TO64_UAP(pid);
5475 	return (sys_fktrace(p, &ua, retval));
5476 }
5477 #endif /* KTRACE */
5478 
5479 int
5480 netbsd32_preadv(p, v, retval)
5481 	struct proc *p;
5482 	void *v;
5483 	register_t *retval;
5484 {
5485 	struct netbsd32_preadv_args /* {
5486 		syscallarg(int) fd;
5487 		syscallarg(const netbsd32_iovecp_t) iovp;
5488 		syscallarg(int) iovcnt;
5489 		syscallarg(int) pad;
5490 		syscallarg(off_t) offset;
5491 	} */ *uap = v;
5492 	struct filedesc *fdp = p->p_fd;
5493 	struct file *fp;
5494 	struct vnode *vp;
5495 	off_t offset;
5496 	int error, fd = SCARG(uap, fd);
5497 
5498 	if ((u_int)fd >= fdp->fd_nfiles ||
5499 	    (fp = fdp->fd_ofiles[fd]) == NULL ||
5500 	    (fp->f_flag & FREAD) == 0)
5501 		return (EBADF);
5502 
5503 	vp = (struct vnode *)fp->f_data;
5504 	if (fp->f_type != DTYPE_VNODE
5505 	    || vp->v_type == VFIFO)
5506 		return (ESPIPE);
5507 
5508 	offset = SCARG(uap, offset);
5509 
5510 	/*
5511 	 * XXX This works because no file systems actually
5512 	 * XXX take any action on the seek operation.
5513 	 */
5514 	if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5515 		return (error);
5516 
5517 	return (dofilereadv32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5518 	    &offset, 0, retval));
5519 }
5520 
5521 int
5522 netbsd32_pwritev(p, v, retval)
5523 	struct proc *p;
5524 	void *v;
5525 	register_t *retval;
5526 {
5527 	struct netbsd32_pwritev_args /* {
5528 		syscallarg(int) fd;
5529 		syscallarg(const netbsd32_iovecp_t) iovp;
5530 		syscallarg(int) iovcnt;
5531 		syscallarg(int) pad;
5532 		syscallarg(off_t) offset;
5533 	} */ *uap = v;
5534 	struct filedesc *fdp = p->p_fd;
5535 	struct file *fp;
5536 	struct vnode *vp;
5537 	off_t offset;
5538 	int error, fd = SCARG(uap, fd);
5539 
5540 	if ((u_int)fd >= fdp->fd_nfiles ||
5541 	    (fp = fdp->fd_ofiles[fd]) == NULL ||
5542 	    (fp->f_flag & FWRITE) == 0)
5543 		return (EBADF);
5544 
5545 	vp = (struct vnode *)fp->f_data;
5546 	if (fp->f_type != DTYPE_VNODE
5547 	    || vp->v_type == VFIFO)
5548 		return (ESPIPE);
5549 
5550 	offset = SCARG(uap, offset);
5551 
5552 	/*
5553 	 * XXX This works because no file systems actually
5554 	 * XXX take any action on the seek operation.
5555 	 */
5556 	if ((error = VOP_SEEK(vp, fp->f_offset, offset, fp->f_cred)) != 0)
5557 		return (error);
5558 
5559 	return (dofilewritev32(p, fd, fp, (struct netbsd32_iovec *)(u_long)SCARG(uap, iovp), SCARG(uap, iovcnt),
5560 	    &offset, 0, retval));
5561 }
5562 
5563 /* ARGSUSED */
5564 int
5565 netbsd32___sigaction14(p, v, retval)
5566 	struct proc *p;
5567 	void *v;
5568 	register_t *retval;
5569 {
5570 	struct netbsd32___sigaction14_args /* {
5571 		syscallarg(int) signum;
5572 		syscallarg(const struct sigaction *) nsa;
5573 		syscallarg(struct sigaction *) osa;
5574 	} */ *uap = v;
5575 	struct netbsd32_sigaction sa32;
5576 	struct sigaction nsa, osa;
5577 	int error;
5578 
5579 	if (SCARG(uap, nsa)) {
5580 		error = copyin((caddr_t)(u_long)SCARG(uap, nsa),
5581 			       &sa32, sizeof(sa32));
5582 		if (error)
5583 			return (error);
5584 		nsa.sa_handler = (void *)(u_long)sa32.sa_handler;
5585 		nsa.sa_mask = sa32.sa_mask;
5586 		nsa.sa_flags = sa32.sa_flags;
5587 	}
5588 	error = sigaction1(p, SCARG(uap, signum),
5589 	    SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0);
5590 	if (error)
5591 		return (error);
5592 	if (SCARG(uap, osa)) {
5593 		sa32.sa_handler = (netbsd32_voidp)(u_long)osa.sa_handler;
5594 		sa32.sa_mask = osa.sa_mask;
5595 		sa32.sa_flags = osa.sa_flags;
5596 		error = copyout(&sa32, (caddr_t)(u_long)SCARG(uap, osa), sizeof(sa32));
5597 		if (error)
5598 			return (error);
5599 	}
5600 	return (0);
5601 }
5602 
5603 int netbsd32___sigpending14(p, v, retval)
5604 	struct proc *p;
5605 	void   *v;
5606 	register_t *retval;
5607 {
5608 	struct netbsd32___sigpending14_args /* {
5609 		syscallarg(sigset_t *) set;
5610 	} */ *uap = v;
5611 	struct sys___sigpending14_args ua;
5612 
5613 	NETBSD32TOP_UAP(set, sigset_t);
5614 	return (sys___sigpending14(p, &ua, retval));
5615 }
5616 
5617 int netbsd32___sigprocmask14(p, v, retval)
5618 	struct proc *p;
5619 	void   *v;
5620 	register_t *retval;
5621 {
5622 	struct netbsd32___sigprocmask14_args /* {
5623 		syscallarg(int) how;
5624 		syscallarg(const sigset_t *) set;
5625 		syscallarg(sigset_t *) oset;
5626 	} */ *uap = v;
5627 	struct sys___sigprocmask14_args ua;
5628 
5629 	NETBSD32TO64_UAP(how);
5630 	NETBSD32TOP_UAP(set, sigset_t);
5631 	NETBSD32TOP_UAP(oset, sigset_t);
5632 	return (sys___sigprocmask14(p, &ua, retval));
5633 }
5634 
5635 int netbsd32___sigsuspend14(p, v, retval)
5636 	struct proc *p;
5637 	void   *v;
5638 	register_t *retval;
5639 {
5640 	struct netbsd32___sigsuspend14_args /* {
5641 		syscallarg(const sigset_t *) set;
5642 	} */ *uap = v;
5643 	struct sys___sigsuspend14_args ua;
5644 
5645 	NETBSD32TOP_UAP(set, sigset_t);
5646 	return (sys___sigsuspend14(p, &ua, retval));
5647 };
5648 
5649 
5650 /*
5651  * Find pathname of process's current directory.
5652  *
5653  * Use vfs vnode-to-name reverse cache; if that fails, fall back
5654  * to reading directory contents.
5655  */
5656 int
5657 getcwd_common __P((struct vnode *, struct vnode *,
5658 		   char **, char *, int, int, struct proc *));
5659 
5660 int netbsd32___getcwd(p, v, retval)
5661 	struct proc *p;
5662 	void   *v;
5663 	register_t *retval;
5664 {
5665 	struct netbsd32___getcwd_args /* {
5666 		syscallarg(char *) bufp;
5667 		syscallarg(size_t) length;
5668 	} */ *uap = v;
5669 
5670 	int     error;
5671 	char   *path;
5672 	char   *bp, *bend;
5673 	int     len = (int)SCARG(uap, length);
5674 	int	lenused;
5675 
5676 	if (len > MAXPATHLEN*4)
5677 		len = MAXPATHLEN*4;
5678 	else if (len < 2)
5679 		return ERANGE;
5680 
5681 	path = (char *)malloc(len, M_TEMP, M_WAITOK);
5682 	if (!path)
5683 		return ENOMEM;
5684 
5685 	bp = &path[len];
5686 	bend = bp;
5687 	*(--bp) = '\0';
5688 
5689 	/*
5690 	 * 5th argument here is "max number of vnodes to traverse".
5691 	 * Since each entry takes up at least 2 bytes in the output buffer,
5692 	 * limit it to N/2 vnodes for an N byte buffer.
5693 	 */
5694 #define GETCWD_CHECK_ACCESS 0x0001
5695 	error = getcwd_common (p->p_cwdi->cwdi_cdir, NULL, &bp, path, len/2,
5696 			       GETCWD_CHECK_ACCESS, p);
5697 
5698 	if (error)
5699 		goto out;
5700 	lenused = bend - bp;
5701 	*retval = lenused;
5702 	/* put the result into user buffer */
5703 	error = copyout(bp, (caddr_t)(u_long)SCARG(uap, bufp), lenused);
5704 
5705 out:
5706 	free(path, M_TEMP);
5707 	return error;
5708 }
5709 
5710 int netbsd32_fchroot(p, v, retval)
5711 	struct proc *p;
5712 	void *v;
5713 	register_t *retval;
5714 {
5715 	struct netbsd32_fchroot_args /* {
5716 		syscallarg(int) fd;
5717 	} */ *uap = v;
5718 	struct sys_fchroot_args ua;
5719 
5720 	NETBSD32TO64_UAP(fd);
5721 	return (sys_fchroot(p, &ua, retval));
5722 }
5723 
5724 /*
5725  * Open a file given a file handle.
5726  *
5727  * Check permissions, allocate an open file structure,
5728  * and call the device open routine if any.
5729  */
5730 int
5731 netbsd32_fhopen(p, v, retval)
5732 	struct proc *p;
5733 	void *v;
5734 	register_t *retval;
5735 {
5736 	struct netbsd32_fhopen_args /* {
5737 		syscallarg(const fhandle_t *) fhp;
5738 		syscallarg(int) flags;
5739 	} */ *uap = v;
5740 	struct sys_fhopen_args ua;
5741 
5742 	NETBSD32TOP_UAP(fhp, fhandle_t);
5743 	NETBSD32TO64_UAP(flags);
5744 	return (sys_fhopen(p, &ua, retval));
5745 }
5746 
5747 int netbsd32_fhstat(p, v, retval)
5748 	struct proc *p;
5749 	void *v;
5750 	register_t *retval;
5751 {
5752 	struct netbsd32_fhstat_args /* {
5753 		syscallarg(const netbsd32_fhandlep_t) fhp;
5754 		syscallarg(struct stat *) sb;
5755 	} */ *uap = v;
5756 	struct sys_fhstat_args ua;
5757 
5758 	NETBSD32TOP_UAP(fhp, const fhandle_t);
5759 	NETBSD32TOP_UAP(sb, struct stat);
5760 	return (sys_fhstat(p, &ua, retval));
5761 }
5762 
5763 int netbsd32_fhstatfs(p, v, retval)
5764 	struct proc *p;
5765 	void *v;
5766 	register_t *retval;
5767 {
5768 	struct netbsd32_fhstatfs_args /* {
5769 		syscallarg(const netbsd32_fhandlep_t) fhp;
5770 		syscallarg(struct statfs *) buf;
5771 	} */ *uap = v;
5772 	struct sys_fhstatfs_args ua;
5773 
5774 	NETBSD32TOP_UAP(fhp, const fhandle_t);
5775 	NETBSD32TOP_UAP(buf, struct statfs);
5776 	return (sys_fhstatfs(p, &ua, retval));
5777 }
5778 
5779 /* virtual memory syscalls */
5780 int
5781 netbsd32_ovadvise(p, v, retval)
5782 	struct proc *p;
5783 	void *v;
5784 	register_t *retval;
5785 {
5786 	struct netbsd32_ovadvise_args /* {
5787 		syscallarg(int) anom;
5788 	} */ *uap = v;
5789 	struct sys_ovadvise_args ua;
5790 
5791 	NETBSD32TO64_UAP(anom);
5792 	return (sys_ovadvise(p, &ua, retval));
5793 }
5794 
5795