xref: /netbsd-src/sys/compat/linux/common/linux_sched.c (revision 292a31115cd425403e51da039f4022d7c8f00032)
1 /*	$NetBSD: linux_sched.c,v 1.65 2011/08/18 02:26:38 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center; by Matthias Scheler.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Linux compatibility module. Try to deal with scheduler related syscalls.
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: linux_sched.c,v 1.65 2011/08/18 02:26:38 christos Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/proc.h>
43 #include <sys/systm.h>
44 #include <sys/sysctl.h>
45 #include <sys/malloc.h>
46 #include <sys/syscallargs.h>
47 #include <sys/wait.h>
48 #include <sys/kauth.h>
49 #include <sys/ptrace.h>
50 #include <sys/atomic.h>
51 
52 #include <sys/cpu.h>
53 
54 #include <compat/linux/common/linux_types.h>
55 #include <compat/linux/common/linux_signal.h>
56 #include <compat/linux/common/linux_emuldata.h>
57 #include <compat/linux/common/linux_ipc.h>
58 #include <compat/linux/common/linux_sem.h>
59 #include <compat/linux/common/linux_exec.h>
60 #include <compat/linux/common/linux_machdep.h>
61 
62 #include <compat/linux/linux_syscallargs.h>
63 
64 #include <compat/linux/common/linux_sched.h>
65 
66 static int linux_clone_nptl(struct lwp *, const struct linux_sys_clone_args *,
67     register_t *);
68 
69 #if DEBUG_LINUX
70 #define DPRINTF(x) uprintf x
71 #else
72 #define DPRINTF(x)
73 #endif
74 
75 static void
76 linux_child_return(void *arg)
77 {
78 	struct lwp *l = arg;
79 	struct proc *p = l->l_proc;
80 	struct linux_emuldata *led = l->l_emuldata;
81 	void *ctp = led->led_child_tidptr;
82 	int error;
83 
84 	if (ctp) {
85 		if ((error = copyout(&p->p_pid, ctp, sizeof(p->p_pid))) != 0)
86 			printf("%s: LINUX_CLONE_CHILD_SETTID "
87 			    "failed (child_tidptr = %p, tid = %d error =%d)\n",
88 			    __func__, ctp, p->p_pid, error);
89 	}
90 	child_return(arg);
91 }
92 
93 int
94 linux_sys_clone(struct lwp *l, const struct linux_sys_clone_args *uap,
95     register_t *retval)
96 {
97 	/* {
98 		syscallarg(int) flags;
99 		syscallarg(void *) stack;
100 		syscallarg(void *) parent_tidptr;
101 		syscallarg(void *) tls;
102 		syscallarg(void *) child_tidptr;
103 	} */
104 	struct proc *p;
105 	struct linux_emuldata *led;
106 	int flags, sig, error;
107 
108 	/*
109 	 * We don't support the Linux CLONE_PID or CLONE_PTRACE flags.
110 	 */
111 	if (SCARG(uap, flags) & (LINUX_CLONE_PID|LINUX_CLONE_PTRACE))
112 		return EINVAL;
113 
114 	/*
115 	 * Thread group implies shared signals. Shared signals
116 	 * imply shared VM. This matches what Linux kernel does.
117 	 */
118 	if (SCARG(uap, flags) & LINUX_CLONE_THREAD
119 	    && (SCARG(uap, flags) & LINUX_CLONE_SIGHAND) == 0)
120 		return EINVAL;
121 	if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND
122 	    && (SCARG(uap, flags) & LINUX_CLONE_VM) == 0)
123 		return EINVAL;
124 
125 	/*
126 	 * The thread group flavor is implemented totally differently.
127 	 */
128 	if (SCARG(uap, flags) & LINUX_CLONE_THREAD)
129 		return linux_clone_nptl(l, uap, retval);
130 
131 	flags = 0;
132 	if (SCARG(uap, flags) & LINUX_CLONE_VM)
133 		flags |= FORK_SHAREVM;
134 	if (SCARG(uap, flags) & LINUX_CLONE_FS)
135 		flags |= FORK_SHARECWD;
136 	if (SCARG(uap, flags) & LINUX_CLONE_FILES)
137 		flags |= FORK_SHAREFILES;
138 	if (SCARG(uap, flags) & LINUX_CLONE_SIGHAND)
139 		flags |= FORK_SHARESIGS;
140 	if (SCARG(uap, flags) & LINUX_CLONE_VFORK)
141 		flags |= FORK_PPWAIT;
142 
143 	sig = SCARG(uap, flags) & LINUX_CLONE_CSIGNAL;
144 	if (sig < 0 || sig >= LINUX__NSIG)
145 		return EINVAL;
146 	sig = linux_to_native_signo[sig];
147 
148 	if (SCARG(uap, flags) & LINUX_CLONE_CHILD_SETTID) {
149 		led = l->l_emuldata;
150 		led->led_child_tidptr = SCARG(uap, child_tidptr);
151 	}
152 
153 	/*
154 	 * Note that Linux does not provide a portable way of specifying
155 	 * the stack area; the caller must know if the stack grows up
156 	 * or down.  So, we pass a stack size of 0, so that the code
157 	 * that makes this adjustment is a noop.
158 	 */
159 	if ((error = fork1(l, flags, sig, SCARG(uap, stack), 0,
160 	    linux_child_return, NULL, retval, &p)) != 0) {
161 		DPRINTF(("%s: fork1: error %d\n", __func__, error));
162 		return error;
163 	}
164 
165 	return 0;
166 }
167 
168 static int
169 linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval)
170 {
171 	/* {
172 		syscallarg(int) flags;
173 		syscallarg(void *) stack;
174 		syscallarg(void *) parent_tidptr;
175 		syscallarg(void *) tls;
176 		syscallarg(void *) child_tidptr;
177 	} */
178 	struct proc *p;
179 	struct lwp *l2;
180 	struct linux_emuldata *led;
181 	void *parent_tidptr, *tls, *child_tidptr;
182 	struct schedstate_percpu *spc;
183 	vaddr_t uaddr;
184 	lwpid_t lid;
185 	int flags, tnprocs, error;
186 
187 	p = l->l_proc;
188 	flags = SCARG(uap, flags);
189 	parent_tidptr = SCARG(uap, parent_tidptr);
190 	tls = SCARG(uap, tls);
191 	child_tidptr = SCARG(uap, child_tidptr);
192 
193 	tnprocs = atomic_inc_uint_nv(&nprocs);
194 	if (__predict_false(tnprocs >= maxproc) ||
195 	    kauth_authorize_process(l->l_cred, KAUTH_PROCESS_FORK, p,
196 	    KAUTH_ARG(tnprocs), NULL, NULL) != 0) {
197 		atomic_dec_uint(&nprocs);
198 		return EAGAIN;
199 	}
200 
201 	uaddr = uvm_uarea_alloc();
202 	if (__predict_false(uaddr == 0)) {
203 		atomic_dec_uint(&nprocs);
204 		return ENOMEM;
205 	}
206 
207 	error = lwp_create(l, p, uaddr, LWP_DETACHED | LWP_PIDLID,
208 	    SCARG(uap, stack), 0, child_return, NULL, &l2, l->l_class);
209 	if (__predict_false(error)) {
210 		DPRINTF(("%s: lwp_create error=%d\n", __func__, error));
211 		atomic_dec_uint(&nprocs);
212 		uvm_uarea_free(uaddr);
213 		return error;
214 	}
215 	lid = l2->l_lid;
216 
217 	/* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */
218 	if (flags & LINUX_CLONE_CHILD_CLEARTID) {
219 		led = l2->l_emuldata;
220 		led->led_clear_tid = child_tidptr;
221 	}
222 
223 	/* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */
224 	if (flags & LINUX_CLONE_PARENT_SETTID) {
225 		if ((error = copyout(&lid, parent_tidptr, sizeof(lid))) != 0)
226 			printf("%s: LINUX_CLONE_PARENT_SETTID "
227 			    "failed (parent_tidptr = %p tid = %d error=%d)\n",
228 			    __func__, parent_tidptr, lid, error);
229 	}
230 
231 	/* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory  */
232 	if (flags & LINUX_CLONE_CHILD_SETTID) {
233 		if ((error = copyout(&lid, child_tidptr, sizeof(lid))) != 0)
234 			printf("%s: LINUX_CLONE_CHILD_SETTID "
235 			    "failed (child_tidptr = %p, tid = %d error=%d)\n",
236 			    __func__, child_tidptr, lid, error);
237 	}
238 
239 	if (flags & LINUX_CLONE_SETTLS) {
240 		error = LINUX_LWP_SETPRIVATE(l2, tls);
241 		if (error) {
242 			DPRINTF(("%s: LINUX_LWP_SETPRIVATE %d\n", __func__,
243 			    error));
244 			lwp_exit(l2);
245 			return error;
246 		}
247 	}
248 
249 	/*
250 	 * Set the new LWP running, unless the process is stopping,
251 	 * then the LWP is created stopped.
252 	 */
253 	mutex_enter(p->p_lock);
254 	lwp_lock(l2);
255 	spc = &l2->l_cpu->ci_schedstate;
256 	if ((l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
257 	    	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
258 			KASSERT(l2->l_wchan == NULL);
259 	    		l2->l_stat = LSSTOP;
260 			p->p_nrlwps--;
261 			lwp_unlock_to(l2, spc->spc_lwplock);
262 		} else {
263 			KASSERT(lwp_locked(l2, spc->spc_mutex));
264 			l2->l_stat = LSRUN;
265 			sched_enqueue(l2, false);
266 			lwp_unlock(l2);
267 		}
268 	} else {
269 		l2->l_stat = LSSUSPENDED;
270 		p->p_nrlwps--;
271 		lwp_unlock_to(l2, spc->spc_lwplock);
272 	}
273 	mutex_exit(p->p_lock);
274 
275 	retval[0] = lid;
276 	retval[1] = 0;
277 	return 0;
278 }
279 
280 /*
281  * linux realtime priority
282  *
283  * - SCHED_RR and SCHED_FIFO tasks have priorities [1,99].
284  *
285  * - SCHED_OTHER tasks don't have realtime priorities.
286  *   in particular, sched_param::sched_priority is always 0.
287  */
288 
289 #define	LINUX_SCHED_RTPRIO_MIN	1
290 #define	LINUX_SCHED_RTPRIO_MAX	99
291 
292 static int
293 sched_linux2native(int linux_policy, struct linux_sched_param *linux_params,
294     int *native_policy, struct sched_param *native_params)
295 {
296 
297 	switch (linux_policy) {
298 	case LINUX_SCHED_OTHER:
299 		if (native_policy != NULL) {
300 			*native_policy = SCHED_OTHER;
301 		}
302 		break;
303 
304 	case LINUX_SCHED_FIFO:
305 		if (native_policy != NULL) {
306 			*native_policy = SCHED_FIFO;
307 		}
308 		break;
309 
310 	case LINUX_SCHED_RR:
311 		if (native_policy != NULL) {
312 			*native_policy = SCHED_RR;
313 		}
314 		break;
315 
316 	default:
317 		return EINVAL;
318 	}
319 
320 	if (linux_params != NULL) {
321 		int prio = linux_params->sched_priority;
322 
323 		KASSERT(native_params != NULL);
324 
325 		if (linux_policy == LINUX_SCHED_OTHER) {
326 			if (prio != 0) {
327 				return EINVAL;
328 			}
329 			native_params->sched_priority = PRI_NONE; /* XXX */
330 		} else {
331 			if (prio < LINUX_SCHED_RTPRIO_MIN ||
332 			    prio > LINUX_SCHED_RTPRIO_MAX) {
333 				return EINVAL;
334 			}
335 			native_params->sched_priority =
336 			    (prio - LINUX_SCHED_RTPRIO_MIN)
337 			    * (SCHED_PRI_MAX - SCHED_PRI_MIN)
338 			    / (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
339 			    + SCHED_PRI_MIN;
340 		}
341 	}
342 
343 	return 0;
344 }
345 
346 static int
347 sched_native2linux(int native_policy, struct sched_param *native_params,
348     int *linux_policy, struct linux_sched_param *linux_params)
349 {
350 
351 	switch (native_policy) {
352 	case SCHED_OTHER:
353 		if (linux_policy != NULL) {
354 			*linux_policy = LINUX_SCHED_OTHER;
355 		}
356 		break;
357 
358 	case SCHED_FIFO:
359 		if (linux_policy != NULL) {
360 			*linux_policy = LINUX_SCHED_FIFO;
361 		}
362 		break;
363 
364 	case SCHED_RR:
365 		if (linux_policy != NULL) {
366 			*linux_policy = LINUX_SCHED_RR;
367 		}
368 		break;
369 
370 	default:
371 		panic("%s: unknown policy %d\n", __func__, native_policy);
372 	}
373 
374 	if (native_params != NULL) {
375 		int prio = native_params->sched_priority;
376 
377 		KASSERT(prio >= SCHED_PRI_MIN);
378 		KASSERT(prio <= SCHED_PRI_MAX);
379 		KASSERT(linux_params != NULL);
380 
381 		DPRINTF(("%s: native: policy %d, priority %d\n",
382 		    __func__, native_policy, prio));
383 
384 		if (native_policy == SCHED_OTHER) {
385 			linux_params->sched_priority = 0;
386 		} else {
387 			linux_params->sched_priority =
388 			    (prio - SCHED_PRI_MIN)
389 			    * (LINUX_SCHED_RTPRIO_MAX - LINUX_SCHED_RTPRIO_MIN)
390 			    / (SCHED_PRI_MAX - SCHED_PRI_MIN)
391 			    + LINUX_SCHED_RTPRIO_MIN;
392 		}
393 		DPRINTF(("%s: linux: policy %d, priority %d\n",
394 		    __func__, -1, linux_params->sched_priority));
395 	}
396 
397 	return 0;
398 }
399 
400 int
401 linux_sys_sched_setparam(struct lwp *l, const struct linux_sys_sched_setparam_args *uap, register_t *retval)
402 {
403 	/* {
404 		syscallarg(linux_pid_t) pid;
405 		syscallarg(const struct linux_sched_param *) sp;
406 	} */
407 	int error, policy;
408 	struct linux_sched_param lp;
409 	struct sched_param sp;
410 
411 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
412 		error = EINVAL;
413 		goto out;
414 	}
415 
416 	error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
417 	if (error)
418 		goto out;
419 
420 	/* We need the current policy in Linux terms. */
421 	error = do_sched_getparam(0, SCARG(uap, pid), &policy, NULL);
422 	if (error)
423 		goto out;
424 	error = sched_native2linux(policy, NULL, &policy, NULL);
425 	if (error)
426 		goto out;
427 
428 	error = sched_linux2native(policy, &lp, &policy, &sp);
429 	if (error)
430 		goto out;
431 
432 	error = do_sched_setparam(0, SCARG(uap, pid), policy, &sp);
433 	if (error)
434 		goto out;
435 
436  out:
437 	return error;
438 }
439 
440 int
441 linux_sys_sched_getparam(struct lwp *l, const struct linux_sys_sched_getparam_args *uap, register_t *retval)
442 {
443 	/* {
444 		syscallarg(linux_pid_t) pid;
445 		syscallarg(struct linux_sched_param *) sp;
446 	} */
447 	struct linux_sched_param lp;
448 	struct sched_param sp;
449 	int error, policy;
450 
451 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
452 		error = EINVAL;
453 		goto out;
454 	}
455 
456 	error = do_sched_getparam(0, SCARG(uap, pid), &policy, &sp);
457 	if (error)
458 		goto out;
459 	DPRINTF(("%s: native: policy %d, priority %d\n",
460 	    __func__, policy, sp.sched_priority));
461 
462 	error = sched_native2linux(policy, &sp, NULL, &lp);
463 	if (error)
464 		goto out;
465 	DPRINTF(("%s: linux: policy %d, priority %d\n",
466 	    __func__, policy, lp.sched_priority));
467 
468 	error = copyout(&lp, SCARG(uap, sp), sizeof(lp));
469 	if (error)
470 		goto out;
471 
472  out:
473 	return error;
474 }
475 
476 int
477 linux_sys_sched_setscheduler(struct lwp *l, const struct linux_sys_sched_setscheduler_args *uap, register_t *retval)
478 {
479 	/* {
480 		syscallarg(linux_pid_t) pid;
481 		syscallarg(int) policy;
482 		syscallarg(cont struct linux_sched_param *) sp;
483 	} */
484 	int error, policy;
485 	struct linux_sched_param lp;
486 	struct sched_param sp;
487 
488 	if (SCARG(uap, pid) < 0 || SCARG(uap, sp) == NULL) {
489 		error = EINVAL;
490 		goto out;
491 	}
492 
493 	error = copyin(SCARG(uap, sp), &lp, sizeof(lp));
494 	if (error)
495 		goto out;
496 	DPRINTF(("%s: linux: policy %d, priority %d\n",
497 	    __func__, SCARG(uap, policy), lp.sched_priority));
498 
499 	error = sched_linux2native(SCARG(uap, policy), &lp, &policy, &sp);
500 	if (error)
501 		goto out;
502 	DPRINTF(("%s: native: policy %d, priority %d\n",
503 	    __func__, policy, sp.sched_priority));
504 
505 	error = do_sched_setparam(0, SCARG(uap, pid), policy, &sp);
506 	if (error)
507 		goto out;
508 
509  out:
510 	return error;
511 }
512 
513 int
514 linux_sys_sched_getscheduler(struct lwp *l, const struct linux_sys_sched_getscheduler_args *uap, register_t *retval)
515 {
516 	/* {
517 		syscallarg(linux_pid_t) pid;
518 	} */
519 	int error, policy;
520 
521 	*retval = -1;
522 
523 	error = do_sched_getparam(0, SCARG(uap, pid), &policy, NULL);
524 	if (error)
525 		goto out;
526 
527 	error = sched_native2linux(policy, NULL, &policy, NULL);
528 	if (error)
529 		goto out;
530 
531 	*retval = policy;
532 
533  out:
534 	return error;
535 }
536 
537 int
538 linux_sys_sched_yield(struct lwp *l, const void *v, register_t *retval)
539 {
540 
541 	yield();
542 	return 0;
543 }
544 
545 int
546 linux_sys_sched_get_priority_max(struct lwp *l, const struct linux_sys_sched_get_priority_max_args *uap, register_t *retval)
547 {
548 	/* {
549 		syscallarg(int) policy;
550 	} */
551 
552 	switch (SCARG(uap, policy)) {
553 	case LINUX_SCHED_OTHER:
554 		*retval = 0;
555 		break;
556 	case LINUX_SCHED_FIFO:
557 	case LINUX_SCHED_RR:
558 		*retval = LINUX_SCHED_RTPRIO_MAX;
559 		break;
560 	default:
561 		return EINVAL;
562 	}
563 
564 	return 0;
565 }
566 
567 int
568 linux_sys_sched_get_priority_min(struct lwp *l, const struct linux_sys_sched_get_priority_min_args *uap, register_t *retval)
569 {
570 	/* {
571 		syscallarg(int) policy;
572 	} */
573 
574 	switch (SCARG(uap, policy)) {
575 	case LINUX_SCHED_OTHER:
576 		*retval = 0;
577 		break;
578 	case LINUX_SCHED_FIFO:
579 	case LINUX_SCHED_RR:
580 		*retval = LINUX_SCHED_RTPRIO_MIN;
581 		break;
582 	default:
583 		return EINVAL;
584 	}
585 
586 	return 0;
587 }
588 
589 int
590 linux_sys_exit(struct lwp *l, const struct linux_sys_exit_args *uap, register_t *retval)
591 {
592 
593 	lwp_exit(l);
594 	return 0;
595 }
596 
597 #ifndef __m68k__
598 /* Present on everything but m68k */
599 int
600 linux_sys_exit_group(struct lwp *l, const struct linux_sys_exit_group_args *uap, register_t *retval)
601 {
602 
603 	return sys_exit(l, (const void *)uap, retval);
604 }
605 #endif /* !__m68k__ */
606 
607 int
608 linux_sys_set_tid_address(struct lwp *l, const struct linux_sys_set_tid_address_args *uap, register_t *retval)
609 {
610 	/* {
611 		syscallarg(int *) tidptr;
612 	} */
613 	struct linux_emuldata *led;
614 
615 	led = (struct linux_emuldata *)l->l_emuldata;
616 	led->led_clear_tid = SCARG(uap, tid);
617 	*retval = l->l_lid;
618 
619 	return 0;
620 }
621 
622 /* ARGUSED1 */
623 int
624 linux_sys_gettid(struct lwp *l, const void *v, register_t *retval)
625 {
626 
627 	*retval = l->l_lid;
628 	return 0;
629 }
630 
631 int
632 linux_sys_sched_getaffinity(struct lwp *l, const struct linux_sys_sched_getaffinity_args *uap, register_t *retval)
633 {
634 	/* {
635 		syscallarg(linux_pid_t) pid;
636 		syscallarg(unsigned int) len;
637 		syscallarg(unsigned long *) mask;
638 	} */
639 	proc_t *p;
640 	unsigned long *lp, *data;
641 	int error, size, nb = ncpu;
642 
643 	/* Unlike Linux, dynamically calculate cpu mask size */
644 	size = sizeof(long) * ((ncpu + LONG_BIT - 1) / LONG_BIT);
645 	if (SCARG(uap, len) < size)
646 		return EINVAL;
647 
648 	/* XXX: Pointless check.  TODO: Actually implement this. */
649 	mutex_enter(proc_lock);
650 	p = proc_find(SCARG(uap, pid));
651 	mutex_exit(proc_lock);
652 	if (p == NULL) {
653 		return ESRCH;
654 	}
655 
656 	/*
657 	 * return the actual number of CPU, tag all of them as available
658 	 * The result is a mask, the first CPU being in the least significant
659 	 * bit.
660 	 */
661 	data = kmem_zalloc(size, KM_SLEEP);
662 	lp = data;
663 	while (nb > LONG_BIT) {
664 		*lp++ = ~0UL;
665 		nb -= LONG_BIT;
666 	}
667 	if (nb)
668 		*lp = (1 << ncpu) - 1;
669 
670 	error = copyout(data, SCARG(uap, mask), size);
671 	kmem_free(data, size);
672 	*retval = size;
673 	return error;
674 }
675 
676 int
677 linux_sys_sched_setaffinity(struct lwp *l, const struct linux_sys_sched_setaffinity_args *uap, register_t *retval)
678 {
679 	/* {
680 		syscallarg(linux_pid_t) pid;
681 		syscallarg(unsigned int) len;
682 		syscallarg(unsigned long *) mask;
683 	} */
684 	proc_t *p;
685 
686 	/* XXX: Pointless check.  TODO: Actually implement this. */
687 	mutex_enter(proc_lock);
688 	p = proc_find(SCARG(uap, pid));
689 	mutex_exit(proc_lock);
690 	if (p == NULL) {
691 		return ESRCH;
692 	}
693 
694 	/* Let's ignore it */
695 	DPRINTF(("%s\n", __func__));
696 	return 0;
697 }
698