1 /* $NetBSD: linux_misc.c,v 1.162 2006/09/13 19:55:49 manu Exp $ */ 2 3 /*- 4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe 9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Linux compatibility module. Try to deal with various Linux system calls. 42 */ 43 44 /* 45 * These functions have been moved to multiarch to allow 46 * selection of which machines include them to be 47 * determined by the individual files.linux_<arch> files. 48 * 49 * Function in multiarch: 50 * linux_sys_break : linux_break.c 51 * linux_sys_alarm : linux_misc_notalpha.c 52 * linux_sys_getresgid : linux_misc_notalpha.c 53 * linux_sys_nice : linux_misc_notalpha.c 54 * linux_sys_readdir : linux_misc_notalpha.c 55 * linux_sys_setresgid : linux_misc_notalpha.c 56 * linux_sys_time : linux_misc_notalpha.c 57 * linux_sys_utime : linux_misc_notalpha.c 58 * linux_sys_waitpid : linux_misc_notalpha.c 59 * linux_sys_old_mmap : linux_oldmmap.c 60 * linux_sys_oldolduname : linux_oldolduname.c 61 * linux_sys_oldselect : linux_oldselect.c 62 * linux_sys_olduname : linux_olduname.c 63 * linux_sys_pipe : linux_pipe.c 64 */ 65 66 #include <sys/cdefs.h> 67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.162 2006/09/13 19:55:49 manu Exp $"); 68 69 #if defined(_KERNEL_OPT) 70 #include "opt_ptrace.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/namei.h> 76 #include <sys/proc.h> 77 #include <sys/dirent.h> 78 #include <sys/file.h> 79 #include <sys/stat.h> 80 #include <sys/filedesc.h> 81 #include <sys/ioctl.h> 82 #include <sys/kernel.h> 83 #include <sys/malloc.h> 84 #include <sys/mbuf.h> 85 #include <sys/mman.h> 86 #include <sys/mount.h> 87 #include <sys/reboot.h> 88 #include <sys/resource.h> 89 #include <sys/resourcevar.h> 90 #include <sys/signal.h> 91 #include <sys/signalvar.h> 92 #include <sys/socket.h> 93 #include <sys/time.h> 94 #include <sys/times.h> 95 #include <sys/vnode.h> 96 #include <sys/uio.h> 97 #include <sys/wait.h> 98 #include <sys/utsname.h> 99 #include <sys/unistd.h> 100 #include <sys/swap.h> /* for SWAP_ON */ 101 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */ 102 #include <sys/kauth.h> 103 104 #include <sys/ptrace.h> 105 #include <machine/ptrace.h> 106 107 #include <sys/sa.h> 108 #include <sys/syscall.h> 109 #include <sys/syscallargs.h> 110 111 #include <compat/linux/common/linux_machdep.h> 112 #include <compat/linux/common/linux_types.h> 113 #include <compat/linux/common/linux_signal.h> 114 115 #include <compat/linux/linux_syscallargs.h> 116 117 #include <compat/linux/common/linux_fcntl.h> 118 #include <compat/linux/common/linux_mmap.h> 119 #include <compat/linux/common/linux_dirent.h> 120 #include <compat/linux/common/linux_util.h> 121 #include <compat/linux/common/linux_misc.h> 122 #ifndef COMPAT_LINUX32 123 #include <compat/linux/common/linux_limit.h> 124 #endif 125 #include <compat/linux/common/linux_ptrace.h> 126 #include <compat/linux/common/linux_reboot.h> 127 #include <compat/linux/common/linux_emuldata.h> 128 129 #ifndef COMPAT_LINUX32 130 const int linux_ptrace_request_map[] = { 131 LINUX_PTRACE_TRACEME, PT_TRACE_ME, 132 LINUX_PTRACE_PEEKTEXT, PT_READ_I, 133 LINUX_PTRACE_PEEKDATA, PT_READ_D, 134 LINUX_PTRACE_POKETEXT, PT_WRITE_I, 135 LINUX_PTRACE_POKEDATA, PT_WRITE_D, 136 LINUX_PTRACE_CONT, PT_CONTINUE, 137 LINUX_PTRACE_KILL, PT_KILL, 138 LINUX_PTRACE_ATTACH, PT_ATTACH, 139 LINUX_PTRACE_DETACH, PT_DETACH, 140 # ifdef PT_STEP 141 LINUX_PTRACE_SINGLESTEP, PT_STEP, 142 # endif 143 -1 144 }; 145 146 const struct linux_mnttypes linux_fstypes[] = { 147 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC }, 148 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC }, 149 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC }, 150 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC }, 151 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC }, 152 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC }, 153 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC }, 154 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC }, 155 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC }, 156 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC }, 157 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC }, 158 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC }, 159 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC }, 160 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC }, 161 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC }, 162 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC }, 163 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC }, 164 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC }, 165 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC }, 166 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC }, 167 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC }, 168 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC }, 169 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC }, 170 { MOUNT_TMPFS, LINUX_DEFAULT_SUPER_MAGIC } 171 }; 172 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]); 173 174 # ifdef DEBUG_LINUX 175 #define DPRINTF(a) uprintf a 176 # else 177 #define DPRINTF(a) 178 # endif 179 180 /* Local linux_misc.c functions: */ 181 # ifndef __amd64__ 182 static void bsd_to_linux_statfs __P((const struct statvfs *, 183 struct linux_statfs *)); 184 # endif 185 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *, 186 const struct linux_sys_mmap_args *)); 187 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *, 188 register_t *, off_t)); 189 190 191 /* 192 * The information on a terminated (or stopped) process needs 193 * to be converted in order for Linux binaries to get a valid signal 194 * number out of it. 195 */ 196 void 197 bsd_to_linux_wstat(st) 198 int *st; 199 { 200 201 int sig; 202 203 if (WIFSIGNALED(*st)) { 204 sig = WTERMSIG(*st); 205 if (sig >= 0 && sig < NSIG) 206 *st= (*st& ~0177) | native_to_linux_signo[sig]; 207 } else if (WIFSTOPPED(*st)) { 208 sig = WSTOPSIG(*st); 209 if (sig >= 0 && sig < NSIG) 210 *st = (*st & ~0xff00) | 211 (native_to_linux_signo[sig] << 8); 212 } 213 } 214 215 /* 216 * wait4(2). Passed on to the NetBSD call, surrounded by code to 217 * reserve some space for a NetBSD-style wait status, and converting 218 * it to what Linux wants. 219 */ 220 int 221 linux_sys_wait4(l, v, retval) 222 struct lwp *l; 223 void *v; 224 register_t *retval; 225 { 226 struct linux_sys_wait4_args /* { 227 syscallarg(int) pid; 228 syscallarg(int *) status; 229 syscallarg(int) options; 230 syscallarg(struct rusage *) rusage; 231 } */ *uap = v; 232 struct proc *p = l->l_proc; 233 struct sys_wait4_args w4a; 234 int error, *status, tstat, options, linux_options; 235 caddr_t sg; 236 237 if (SCARG(uap, status) != NULL) { 238 sg = stackgap_init(p, 0); 239 status = (int *) stackgap_alloc(p, &sg, sizeof *status); 240 } else 241 status = NULL; 242 243 linux_options = SCARG(uap, options); 244 options = 0; 245 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS)) 246 return (EINVAL); 247 248 if (linux_options & LINUX_WAIT4_WNOHANG) 249 options |= WNOHANG; 250 if (linux_options & LINUX_WAIT4_WUNTRACED) 251 options |= WUNTRACED; 252 if (linux_options & LINUX_WAIT4_WALL) 253 options |= WALLSIG; 254 if (linux_options & LINUX_WAIT4_WCLONE) 255 options |= WALTSIG; 256 # ifdef DIAGNOSTIC 257 if (linux_options & LINUX_WAIT4_WNOTHREAD) 258 printf("WARNING: %s: linux process %d.%d called " 259 "waitpid with __WNOTHREAD set!", 260 __FILE__, p->p_pid, l->l_lid); 261 262 # endif 263 264 SCARG(&w4a, pid) = SCARG(uap, pid); 265 SCARG(&w4a, status) = status; 266 SCARG(&w4a, options) = options; 267 SCARG(&w4a, rusage) = SCARG(uap, rusage); 268 269 if ((error = sys_wait4(l, &w4a, retval))) 270 return error; 271 272 sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD); 273 274 if (status != NULL) { 275 if ((error = copyin(status, &tstat, sizeof tstat))) 276 return error; 277 278 bsd_to_linux_wstat(&tstat); 279 return copyout(&tstat, SCARG(uap, status), sizeof tstat); 280 } 281 282 return 0; 283 } 284 285 /* 286 * Linux brk(2). The check if the new address is >= the old one is 287 * done in the kernel in Linux. NetBSD does it in the library. 288 */ 289 int 290 linux_sys_brk(l, v, retval) 291 struct lwp *l; 292 void *v; 293 register_t *retval; 294 { 295 struct linux_sys_brk_args /* { 296 syscallarg(char *) nsize; 297 } */ *uap = v; 298 struct proc *p = l->l_proc; 299 char *nbrk = SCARG(uap, nsize); 300 struct sys_obreak_args oba; 301 struct vmspace *vm = p->p_vmspace; 302 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata; 303 304 SCARG(&oba, nsize) = nbrk; 305 306 if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0) 307 ed->s->p_break = (char*)nbrk; 308 else 309 nbrk = ed->s->p_break; 310 311 retval[0] = (register_t)nbrk; 312 313 return 0; 314 } 315 316 # ifndef __amd64__ 317 /* 318 * Convert NetBSD statvfs structure to Linux statfs structure. 319 * Linux doesn't have f_flag, and we can't set f_frsize due 320 * to glibc statvfs() bug (see below). 321 */ 322 static void 323 bsd_to_linux_statfs(bsp, lsp) 324 const struct statvfs *bsp; 325 struct linux_statfs *lsp; 326 { 327 int i; 328 329 for (i = 0; i < linux_fstypes_cnt; i++) { 330 if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) { 331 lsp->l_ftype = linux_fstypes[i].linux; 332 break; 333 } 334 } 335 336 if (i == linux_fstypes_cnt) { 337 DPRINTF(("unhandled fstype in linux emulation: %s\n", 338 bsp->f_fstypename)); 339 lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC; 340 } 341 342 /* 343 * The sizes are expressed in number of blocks. The block 344 * size used for the size is f_frsize for POSIX-compliant 345 * statvfs. Linux statfs uses f_bsize as the block size 346 * (f_frsize used to not be available in Linux struct statfs). 347 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block 348 * counts for different f_frsize if f_frsize is provided by the kernel. 349 * POSIX conforming apps thus get wrong size if f_frsize 350 * is different to f_bsize. Thus, we just pretend we don't 351 * support f_frsize. 352 */ 353 354 lsp->l_fbsize = bsp->f_frsize; 355 lsp->l_ffrsize = 0; /* compat */ 356 lsp->l_fblocks = bsp->f_blocks; 357 lsp->l_fbfree = bsp->f_bfree; 358 lsp->l_fbavail = bsp->f_bavail; 359 lsp->l_ffiles = bsp->f_files; 360 lsp->l_fffree = bsp->f_ffree; 361 /* Linux sets the fsid to 0..., we don't */ 362 lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0]; 363 lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1]; 364 lsp->l_fnamelen = bsp->f_namemax; 365 (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare)); 366 } 367 368 /* 369 * Implement the fs stat functions. Straightforward. 370 */ 371 int 372 linux_sys_statfs(l, v, retval) 373 struct lwp *l; 374 void *v; 375 register_t *retval; 376 { 377 struct linux_sys_statfs_args /* { 378 syscallarg(const char *) path; 379 syscallarg(struct linux_statfs *) sp; 380 } */ *uap = v; 381 struct proc *p = l->l_proc; 382 struct statvfs *btmp, *bsp; 383 struct linux_statfs ltmp; 384 struct sys_statvfs1_args bsa; 385 caddr_t sg; 386 int error; 387 388 sg = stackgap_init(p, 0); 389 bsp = stackgap_alloc(p, &sg, sizeof (struct statvfs)); 390 391 CHECK_ALT_EXIST(l, &sg, SCARG(uap, path)); 392 393 SCARG(&bsa, path) = SCARG(uap, path); 394 SCARG(&bsa, buf) = bsp; 395 SCARG(&bsa, flags) = ST_WAIT; 396 397 if ((error = sys_statvfs1(l, &bsa, retval))) 398 return error; 399 400 btmp = STATVFSBUF_GET(); 401 error = copyin(bsp, btmp, sizeof(*btmp)); 402 if (error) { 403 goto out; 404 } 405 bsd_to_linux_statfs(btmp, <mp); 406 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); 407 out: 408 STATVFSBUF_PUT(btmp); 409 return error; 410 } 411 412 int 413 linux_sys_fstatfs(l, v, retval) 414 struct lwp *l; 415 void *v; 416 register_t *retval; 417 { 418 struct linux_sys_fstatfs_args /* { 419 syscallarg(int) fd; 420 syscallarg(struct linux_statfs *) sp; 421 } */ *uap = v; 422 struct proc *p = l->l_proc; 423 struct statvfs *btmp, *bsp; 424 struct linux_statfs ltmp; 425 struct sys_fstatvfs1_args bsa; 426 caddr_t sg; 427 int error; 428 429 sg = stackgap_init(p, 0); 430 bsp = stackgap_alloc(p, &sg, sizeof (struct statvfs)); 431 432 SCARG(&bsa, fd) = SCARG(uap, fd); 433 SCARG(&bsa, buf) = bsp; 434 SCARG(&bsa, flags) = ST_WAIT; 435 436 if ((error = sys_fstatvfs1(l, &bsa, retval))) 437 return error; 438 439 btmp = STATVFSBUF_GET(); 440 error = copyin(bsp, btmp, sizeof(*btmp)); 441 if (error) { 442 goto out; 443 } 444 bsd_to_linux_statfs(btmp, <mp); 445 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); 446 out: 447 STATVFSBUF_PUT(btmp); 448 return error; 449 } 450 # endif /* !__amd64__ */ 451 452 /* 453 * uname(). Just copy the info from the various strings stored in the 454 * kernel, and put it in the Linux utsname structure. That structure 455 * is almost the same as the NetBSD one, only it has fields 65 characters 456 * long, and an extra domainname field. 457 */ 458 int 459 linux_sys_uname(l, v, retval) 460 struct lwp *l; 461 void *v; 462 register_t *retval; 463 { 464 struct linux_sys_uname_args /* { 465 syscallarg(struct linux_utsname *) up; 466 } */ *uap = v; 467 struct linux_utsname luts; 468 469 strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname)); 470 strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); 471 strncpy(luts.l_release, linux_release, sizeof(luts.l_release)); 472 strncpy(luts.l_version, linux_version, sizeof(luts.l_version)); 473 # ifdef LINUX_UNAME_ARCH 474 strncpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine)); 475 # else 476 strncpy(luts.l_machine, machine, sizeof(luts.l_machine)); 477 # endif 478 strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname)); 479 480 return copyout(&luts, SCARG(uap, up), sizeof(luts)); 481 } 482 483 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */ 484 /* Used indirectly on: arm, i386, m68k */ 485 486 /* 487 * New type Linux mmap call. 488 * Only called directly on machines with >= 6 free regs. 489 */ 490 int 491 linux_sys_mmap(l, v, retval) 492 struct lwp *l; 493 void *v; 494 register_t *retval; 495 { 496 struct linux_sys_mmap_args /* { 497 syscallarg(unsigned long) addr; 498 syscallarg(size_t) len; 499 syscallarg(int) prot; 500 syscallarg(int) flags; 501 syscallarg(int) fd; 502 syscallarg(linux_off_t) offset; 503 } */ *uap = v; 504 505 if (SCARG(uap, offset) & PAGE_MASK) 506 return EINVAL; 507 508 return linux_mmap(l, uap, retval, SCARG(uap, offset)); 509 } 510 511 /* 512 * Guts of most architectures' mmap64() implementations. This shares 513 * its list of arguments with linux_sys_mmap(). 514 * 515 * The difference in linux_sys_mmap2() is that "offset" is actually 516 * (offset / pagesize), not an absolute byte count. This translation 517 * to pagesize offsets is done inside glibc between the mmap64() call 518 * point, and the actual syscall. 519 */ 520 int 521 linux_sys_mmap2(l, v, retval) 522 struct lwp *l; 523 void *v; 524 register_t *retval; 525 { 526 struct linux_sys_mmap2_args /* { 527 syscallarg(unsigned long) addr; 528 syscallarg(size_t) len; 529 syscallarg(int) prot; 530 syscallarg(int) flags; 531 syscallarg(int) fd; 532 syscallarg(linux_off_t) offset; 533 } */ *uap = v; 534 535 return linux_mmap(l, uap, retval, 536 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT); 537 } 538 539 /* 540 * Massage arguments and call system mmap(2). 541 */ 542 static int 543 linux_mmap(l, uap, retval, offset) 544 struct lwp *l; 545 struct linux_sys_mmap_args *uap; 546 register_t *retval; 547 off_t offset; 548 { 549 struct sys_mmap_args cma; 550 int error; 551 size_t mmoff=0; 552 553 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) { 554 /* 555 * Request for stack-like memory segment. On linux, this 556 * works by mmap()ping (small) segment, which is automatically 557 * extended when page fault happens below the currently 558 * allocated area. We emulate this by allocating (typically 559 * bigger) segment sized at current stack size limit, and 560 * offsetting the requested and returned address accordingly. 561 * Since physical pages are only allocated on-demand, this 562 * is effectively identical. 563 */ 564 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur; 565 566 if (SCARG(uap, len) < ssl) { 567 /* Compute the address offset */ 568 mmoff = round_page(ssl) - SCARG(uap, len); 569 570 if (SCARG(uap, addr)) 571 SCARG(uap, addr) -= mmoff; 572 573 SCARG(uap, len) = (size_t) ssl; 574 } 575 } 576 577 linux_to_bsd_mmap_args(&cma, uap); 578 SCARG(&cma, pos) = offset; 579 580 error = sys_mmap(l, &cma, retval); 581 if (error) 582 return (error); 583 584 /* Shift the returned address for stack-like segment if necessary */ 585 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff) 586 retval[0] += mmoff; 587 588 return (0); 589 } 590 591 static void 592 linux_to_bsd_mmap_args(cma, uap) 593 struct sys_mmap_args *cma; 594 const struct linux_sys_mmap_args *uap; 595 { 596 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags); 597 598 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED); 599 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE); 600 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED); 601 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON); 602 /* XXX XAX ERH: Any other flags here? There are more defined... */ 603 604 SCARG(cma, addr) = (void *)SCARG(uap, addr); 605 SCARG(cma, len) = SCARG(uap, len); 606 SCARG(cma, prot) = SCARG(uap, prot); 607 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */ 608 SCARG(cma, prot) |= VM_PROT_READ; 609 SCARG(cma, flags) = flags; 610 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd); 611 SCARG(cma, pad) = 0; 612 } 613 614 #define LINUX_MREMAP_MAYMOVE 1 615 #define LINUX_MREMAP_FIXED 2 616 617 int 618 linux_sys_mremap(l, v, retval) 619 struct lwp *l; 620 void *v; 621 register_t *retval; 622 { 623 struct linux_sys_mremap_args /* { 624 syscallarg(void *) old_address; 625 syscallarg(size_t) old_size; 626 syscallarg(size_t) new_size; 627 syscallarg(u_long) flags; 628 } */ *uap = v; 629 630 struct proc *p; 631 struct vm_map *map; 632 vaddr_t oldva; 633 vaddr_t newva; 634 size_t oldsize; 635 size_t newsize; 636 int flags; 637 int uvmflags; 638 int error; 639 640 flags = SCARG(uap, flags); 641 oldva = (vaddr_t)SCARG(uap, old_address); 642 oldsize = round_page(SCARG(uap, old_size)); 643 newsize = round_page(SCARG(uap, new_size)); 644 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) { 645 error = EINVAL; 646 goto done; 647 } 648 if ((flags & LINUX_MREMAP_FIXED) != 0) { 649 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) { 650 error = EINVAL; 651 goto done; 652 } 653 #if 0 /* notyet */ 654 newva = SCARG(uap, new_address); 655 uvmflags = UVM_MREMAP_FIXED; 656 #else /* notyet */ 657 error = EOPNOTSUPP; 658 goto done; 659 #endif /* notyet */ 660 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) { 661 uvmflags = 0; 662 } else { 663 newva = oldva; 664 uvmflags = UVM_MREMAP_FIXED; 665 } 666 p = l->l_proc; 667 map = &p->p_vmspace->vm_map; 668 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p, 669 uvmflags); 670 671 done: 672 *retval = (error != 0) ? 0 : (register_t)newva; 673 return error; 674 } 675 676 int 677 linux_sys_msync(l, v, retval) 678 struct lwp *l; 679 void *v; 680 register_t *retval; 681 { 682 struct linux_sys_msync_args /* { 683 syscallarg(caddr_t) addr; 684 syscallarg(int) len; 685 syscallarg(int) fl; 686 } */ *uap = v; 687 688 struct sys___msync13_args bma; 689 690 /* flags are ignored */ 691 SCARG(&bma, addr) = SCARG(uap, addr); 692 SCARG(&bma, len) = SCARG(uap, len); 693 SCARG(&bma, flags) = SCARG(uap, fl); 694 695 return sys___msync13(l, &bma, retval); 696 } 697 698 int 699 linux_sys_mprotect(l, v, retval) 700 struct lwp *l; 701 void *v; 702 register_t *retval; 703 { 704 struct linux_sys_mprotect_args /* { 705 syscallarg(const void *) start; 706 syscallarg(unsigned long) len; 707 syscallarg(int) prot; 708 } */ *uap = v; 709 struct vm_map_entry *entry; 710 struct vm_map *map; 711 struct proc *p; 712 vaddr_t end, start, len, stacklim; 713 int prot, grows; 714 715 start = (vaddr_t)SCARG(uap, start); 716 len = round_page(SCARG(uap, len)); 717 prot = SCARG(uap, prot); 718 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP); 719 prot &= ~grows; 720 end = start + len; 721 722 if (start & PAGE_MASK) 723 return EINVAL; 724 if (end < start) 725 return EINVAL; 726 if (end == start) 727 return 0; 728 729 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) 730 return EINVAL; 731 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP)) 732 return EINVAL; 733 734 p = l->l_proc; 735 map = &p->p_vmspace->vm_map; 736 vm_map_lock(map); 737 # ifdef notdef 738 VM_MAP_RANGE_CHECK(map, start, end); 739 # endif 740 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) { 741 vm_map_unlock(map); 742 return ENOMEM; 743 } 744 745 /* 746 * Approximate the behaviour of PROT_GROWS{DOWN,UP}. 747 */ 748 749 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 750 if (grows & LINUX_PROT_GROWSDOWN) { 751 if (USRSTACK - stacklim <= start && start < USRSTACK) { 752 start = USRSTACK - stacklim; 753 } else { 754 start = entry->start; 755 } 756 } else if (grows & LINUX_PROT_GROWSUP) { 757 if (USRSTACK <= end && end < USRSTACK + stacklim) { 758 end = USRSTACK + stacklim; 759 } else { 760 end = entry->end; 761 } 762 } 763 vm_map_unlock(map); 764 return uvm_map_protect(map, start, end, prot, FALSE); 765 } 766 767 /* 768 * This code is partly stolen from src/lib/libc/compat-43/times.c 769 */ 770 771 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz)) 772 773 int 774 linux_sys_times(l, v, retval) 775 struct lwp *l; 776 void *v; 777 register_t *retval; 778 { 779 struct linux_sys_times_args /* { 780 syscallarg(struct times *) tms; 781 } */ *uap = v; 782 struct proc *p = l->l_proc; 783 struct timeval t; 784 int error; 785 786 if (SCARG(uap, tms)) { 787 struct linux_tms ltms; 788 struct rusage ru; 789 790 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL); 791 ltms.ltms_utime = CONVTCK(ru.ru_utime); 792 ltms.ltms_stime = CONVTCK(ru.ru_stime); 793 794 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime); 795 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime); 796 797 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms))) 798 return error; 799 } 800 801 getmicrouptime(&t); 802 803 retval[0] = ((linux_clock_t)(CONVTCK(t))); 804 return 0; 805 } 806 807 #undef CONVTCK 808 809 /* 810 * Linux 'readdir' call. This code is mostly taken from the 811 * SunOS getdents call (see compat/sunos/sunos_misc.c), though 812 * an attempt has been made to keep it a little cleaner (failing 813 * miserably, because of the cruft needed if count 1 is passed). 814 * 815 * The d_off field should contain the offset of the next valid entry, 816 * but in Linux it has the offset of the entry itself. We emulate 817 * that bug here. 818 * 819 * Read in BSD-style entries, convert them, and copy them out. 820 * 821 * Note that this doesn't handle union-mounted filesystems. 822 */ 823 int 824 linux_sys_getdents(l, v, retval) 825 struct lwp *l; 826 void *v; 827 register_t *retval; 828 { 829 struct linux_sys_getdents_args /* { 830 syscallarg(int) fd; 831 syscallarg(struct linux_dirent *) dent; 832 syscallarg(unsigned int) count; 833 } */ *uap = v; 834 struct dirent *bdp; 835 struct vnode *vp; 836 caddr_t inp, tbuf; /* BSD-format */ 837 int len, reclen; /* BSD-format */ 838 caddr_t outp; /* Linux-format */ 839 int resid, linux_reclen = 0; /* Linux-format */ 840 struct file *fp; 841 struct uio auio; 842 struct iovec aiov; 843 struct linux_dirent idb; 844 off_t off; /* true file offset */ 845 int buflen, error, eofflag, nbytes, oldcall; 846 struct vattr va; 847 off_t *cookiebuf = NULL, *cookie; 848 int ncookies; 849 850 /* getvnode() will use the descriptor for us */ 851 if ((error = getvnode(l->l_proc->p_fd, SCARG(uap, fd), &fp)) != 0) 852 return (error); 853 854 if ((fp->f_flag & FREAD) == 0) { 855 error = EBADF; 856 goto out1; 857 } 858 859 vp = (struct vnode *)fp->f_data; 860 if (vp->v_type != VDIR) { 861 error = EINVAL; 862 goto out1; 863 } 864 865 if ((error = VOP_GETATTR(vp, &va, l->l_cred, l))) 866 goto out1; 867 868 nbytes = SCARG(uap, count); 869 if (nbytes == 1) { /* emulating old, broken behaviour */ 870 nbytes = sizeof (idb); 871 buflen = max(va.va_blocksize, nbytes); 872 oldcall = 1; 873 } else { 874 buflen = min(MAXBSIZE, nbytes); 875 if (buflen < va.va_blocksize) 876 buflen = va.va_blocksize; 877 oldcall = 0; 878 } 879 tbuf = malloc(buflen, M_TEMP, M_WAITOK); 880 881 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 882 off = fp->f_offset; 883 again: 884 aiov.iov_base = tbuf; 885 aiov.iov_len = buflen; 886 auio.uio_iov = &aiov; 887 auio.uio_iovcnt = 1; 888 auio.uio_rw = UIO_READ; 889 auio.uio_resid = buflen; 890 auio.uio_offset = off; 891 UIO_SETUP_SYSSPACE(&auio); 892 /* 893 * First we read into the malloc'ed buffer, then 894 * we massage it into user space, one record at a time. 895 */ 896 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, 897 &ncookies); 898 if (error) 899 goto out; 900 901 inp = tbuf; 902 outp = (caddr_t)SCARG(uap, dent); 903 resid = nbytes; 904 if ((len = buflen - auio.uio_resid) == 0) 905 goto eof; 906 907 for (cookie = cookiebuf; len > 0; len -= reclen) { 908 bdp = (struct dirent *)inp; 909 reclen = bdp->d_reclen; 910 if (reclen & 3) 911 panic("linux_readdir"); 912 if (bdp->d_fileno == 0) { 913 inp += reclen; /* it is a hole; squish it out */ 914 if (cookie) 915 off = *cookie++; 916 else 917 off += reclen; 918 continue; 919 } 920 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen); 921 if (reclen > len || resid < linux_reclen) { 922 /* entry too big for buffer, so just stop */ 923 outp++; 924 break; 925 } 926 /* 927 * Massage in place to make a Linux-shaped dirent (otherwise 928 * we have to worry about touching user memory outside of 929 * the copyout() call). 930 */ 931 idb.d_ino = bdp->d_fileno; 932 /* 933 * The old readdir() call misuses the offset and reclen fields. 934 */ 935 if (oldcall) { 936 idb.d_off = (linux_off_t)linux_reclen; 937 idb.d_reclen = (u_short)bdp->d_namlen; 938 } else { 939 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) { 940 compat_offseterr(vp, "linux_getdents"); 941 error = EINVAL; 942 goto out; 943 } 944 idb.d_off = (linux_off_t)off; 945 idb.d_reclen = (u_short)linux_reclen; 946 } 947 strcpy(idb.d_name, bdp->d_name); 948 if ((error = copyout((caddr_t)&idb, outp, linux_reclen))) 949 goto out; 950 /* advance past this real entry */ 951 inp += reclen; 952 if (cookie) 953 off = *cookie++; /* each entry points to itself */ 954 else 955 off += reclen; 956 /* advance output past Linux-shaped entry */ 957 outp += linux_reclen; 958 resid -= linux_reclen; 959 if (oldcall) 960 break; 961 } 962 963 /* if we squished out the whole block, try again */ 964 if (outp == (caddr_t)SCARG(uap, dent)) 965 goto again; 966 fp->f_offset = off; /* update the vnode offset */ 967 968 if (oldcall) 969 nbytes = resid + linux_reclen; 970 971 eof: 972 *retval = nbytes - resid; 973 out: 974 VOP_UNLOCK(vp, 0); 975 if (cookiebuf) 976 free(cookiebuf, M_TEMP); 977 free(tbuf, M_TEMP); 978 out1: 979 FILE_UNUSE(fp, l); 980 return error; 981 } 982 983 /* 984 * Even when just using registers to pass arguments to syscalls you can 985 * have 5 of them on the i386. So this newer version of select() does 986 * this. 987 */ 988 int 989 linux_sys_select(l, v, retval) 990 struct lwp *l; 991 void *v; 992 register_t *retval; 993 { 994 struct linux_sys_select_args /* { 995 syscallarg(int) nfds; 996 syscallarg(fd_set *) readfds; 997 syscallarg(fd_set *) writefds; 998 syscallarg(fd_set *) exceptfds; 999 syscallarg(struct timeval *) timeout; 1000 } */ *uap = v; 1001 1002 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds), 1003 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout)); 1004 } 1005 1006 /* 1007 * Common code for the old and new versions of select(). A couple of 1008 * things are important: 1009 * 1) return the amount of time left in the 'timeout' parameter 1010 * 2) select never returns ERESTART on Linux, always return EINTR 1011 */ 1012 int 1013 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout) 1014 struct lwp *l; 1015 register_t *retval; 1016 int nfds; 1017 fd_set *readfds, *writefds, *exceptfds; 1018 struct timeval *timeout; 1019 { 1020 struct sys_select_args bsa; 1021 struct proc *p = l->l_proc; 1022 struct timeval tv0, tv1, utv, *tvp; 1023 caddr_t sg; 1024 int error; 1025 1026 SCARG(&bsa, nd) = nfds; 1027 SCARG(&bsa, in) = readfds; 1028 SCARG(&bsa, ou) = writefds; 1029 SCARG(&bsa, ex) = exceptfds; 1030 SCARG(&bsa, tv) = timeout; 1031 1032 /* 1033 * Store current time for computation of the amount of 1034 * time left. 1035 */ 1036 if (timeout) { 1037 if ((error = copyin(timeout, &utv, sizeof(utv)))) 1038 return error; 1039 if (itimerfix(&utv)) { 1040 /* 1041 * The timeval was invalid. Convert it to something 1042 * valid that will act as it does under Linux. 1043 */ 1044 sg = stackgap_init(p, 0); 1045 tvp = stackgap_alloc(p, &sg, sizeof(utv)); 1046 utv.tv_sec += utv.tv_usec / 1000000; 1047 utv.tv_usec %= 1000000; 1048 if (utv.tv_usec < 0) { 1049 utv.tv_sec -= 1; 1050 utv.tv_usec += 1000000; 1051 } 1052 if (utv.tv_sec < 0) 1053 timerclear(&utv); 1054 if ((error = copyout(&utv, tvp, sizeof(utv)))) 1055 return error; 1056 SCARG(&bsa, tv) = tvp; 1057 } 1058 microtime(&tv0); 1059 } 1060 1061 error = sys_select(l, &bsa, retval); 1062 if (error) { 1063 /* 1064 * See fs/select.c in the Linux kernel. Without this, 1065 * Maelstrom doesn't work. 1066 */ 1067 if (error == ERESTART) 1068 error = EINTR; 1069 return error; 1070 } 1071 1072 if (timeout) { 1073 if (*retval) { 1074 /* 1075 * Compute how much time was left of the timeout, 1076 * by subtracting the current time and the time 1077 * before we started the call, and subtracting 1078 * that result from the user-supplied value. 1079 */ 1080 microtime(&tv1); 1081 timersub(&tv1, &tv0, &tv1); 1082 timersub(&utv, &tv1, &utv); 1083 if (utv.tv_sec < 0) 1084 timerclear(&utv); 1085 } else 1086 timerclear(&utv); 1087 if ((error = copyout(&utv, timeout, sizeof(utv)))) 1088 return error; 1089 } 1090 1091 return 0; 1092 } 1093 1094 /* 1095 * Get the process group of a certain process. Look it up 1096 * and return the value. 1097 */ 1098 int 1099 linux_sys_getpgid(l, v, retval) 1100 struct lwp *l; 1101 void *v; 1102 register_t *retval; 1103 { 1104 struct linux_sys_getpgid_args /* { 1105 syscallarg(int) pid; 1106 } */ *uap = v; 1107 struct proc *p = l->l_proc; 1108 struct proc *targp; 1109 1110 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) { 1111 if ((targp = pfind(SCARG(uap, pid))) == 0) 1112 return ESRCH; 1113 } 1114 else 1115 targp = p; 1116 1117 retval[0] = targp->p_pgid; 1118 return 0; 1119 } 1120 1121 /* 1122 * Set the 'personality' (emulation mode) for the current process. Only 1123 * accept the Linux personality here (0). This call is needed because 1124 * the Linux ELF crt0 issues it in an ugly kludge to make sure that 1125 * ELF binaries run in Linux mode, not SVR4 mode. 1126 */ 1127 int 1128 linux_sys_personality(l, v, retval) 1129 struct lwp *l; 1130 void *v; 1131 register_t *retval; 1132 { 1133 struct linux_sys_personality_args /* { 1134 syscallarg(int) per; 1135 } */ *uap = v; 1136 1137 if (SCARG(uap, per) != 0) 1138 return EINVAL; 1139 retval[0] = 0; 1140 return 0; 1141 } 1142 #endif /* !COMPAT_LINUX32 */ 1143 1144 #if defined(__i386__) || defined(__m68k__) || defined(COMPAT_LINUX32) 1145 /* 1146 * The calls are here because of type conversions. 1147 */ 1148 int 1149 linux_sys_setreuid16(l, v, retval) 1150 struct lwp *l; 1151 void *v; 1152 register_t *retval; 1153 { 1154 struct linux_sys_setreuid16_args /* { 1155 syscallarg(int) ruid; 1156 syscallarg(int) euid; 1157 } */ *uap = v; 1158 struct sys_setreuid_args bsa; 1159 1160 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? 1161 (uid_t)-1 : SCARG(uap, ruid); 1162 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? 1163 (uid_t)-1 : SCARG(uap, euid); 1164 1165 return sys_setreuid(l, &bsa, retval); 1166 } 1167 1168 int 1169 linux_sys_setregid16(l, v, retval) 1170 struct lwp *l; 1171 void *v; 1172 register_t *retval; 1173 { 1174 struct linux_sys_setregid16_args /* { 1175 syscallarg(int) rgid; 1176 syscallarg(int) egid; 1177 } */ *uap = v; 1178 struct sys_setregid_args bsa; 1179 1180 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? 1181 (uid_t)-1 : SCARG(uap, rgid); 1182 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? 1183 (uid_t)-1 : SCARG(uap, egid); 1184 1185 return sys_setregid(l, &bsa, retval); 1186 } 1187 1188 int 1189 linux_sys_setresuid16(l, v, retval) 1190 struct lwp *l; 1191 void *v; 1192 register_t *retval; 1193 { 1194 struct linux_sys_setresuid16_args /* { 1195 syscallarg(uid_t) ruid; 1196 syscallarg(uid_t) euid; 1197 syscallarg(uid_t) suid; 1198 } */ *uap = v; 1199 struct linux_sys_setresuid16_args lsa; 1200 1201 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? 1202 (uid_t)-1 : SCARG(uap, ruid); 1203 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? 1204 (uid_t)-1 : SCARG(uap, euid); 1205 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ? 1206 (uid_t)-1 : SCARG(uap, suid); 1207 1208 return linux_sys_setresuid(l, &lsa, retval); 1209 } 1210 1211 int 1212 linux_sys_setresgid16(l, v, retval) 1213 struct lwp *l; 1214 void *v; 1215 register_t *retval; 1216 { 1217 struct linux_sys_setresgid16_args /* { 1218 syscallarg(gid_t) rgid; 1219 syscallarg(gid_t) egid; 1220 syscallarg(gid_t) sgid; 1221 } */ *uap = v; 1222 struct linux_sys_setresgid16_args lsa; 1223 1224 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? 1225 (gid_t)-1 : SCARG(uap, rgid); 1226 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? 1227 (gid_t)-1 : SCARG(uap, egid); 1228 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ? 1229 (gid_t)-1 : SCARG(uap, sgid); 1230 1231 return linux_sys_setresgid(l, &lsa, retval); 1232 } 1233 1234 int 1235 linux_sys_getgroups16(l, v, retval) 1236 struct lwp *l; 1237 void *v; 1238 register_t *retval; 1239 { 1240 struct linux_sys_getgroups16_args /* { 1241 syscallarg(int) gidsetsize; 1242 syscallarg(linux_gid_t *) gidset; 1243 } */ *uap = v; 1244 struct proc *p = l->l_proc; 1245 caddr_t sg; 1246 int n, error, i; 1247 struct sys_getgroups_args bsa; 1248 gid_t *bset, *kbset; 1249 linux_gid_t *lset; 1250 kauth_cred_t pc = l->l_cred; 1251 1252 n = SCARG(uap, gidsetsize); 1253 if (n < 0) 1254 return EINVAL; 1255 error = 0; 1256 bset = kbset = NULL; 1257 lset = NULL; 1258 if (n > 0) { 1259 n = min(kauth_cred_ngroups(pc), n); 1260 sg = stackgap_init(p, 0); 1261 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t)); 1262 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK); 1263 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK); 1264 if (bset == NULL || kbset == NULL || lset == NULL) 1265 { 1266 error = ENOMEM; 1267 goto out; 1268 } 1269 SCARG(&bsa, gidsetsize) = n; 1270 SCARG(&bsa, gidset) = bset; 1271 error = sys_getgroups(l, &bsa, retval); 1272 if (error != 0) 1273 goto out; 1274 error = copyin(bset, kbset, n * sizeof (gid_t)); 1275 if (error != 0) 1276 goto out; 1277 for (i = 0; i < n; i++) 1278 lset[i] = (linux_gid_t)kbset[i]; 1279 error = copyout(lset, SCARG(uap, gidset), 1280 n * sizeof (linux_gid_t)); 1281 } else 1282 *retval = kauth_cred_ngroups(pc); 1283 out: 1284 if (kbset != NULL) 1285 free(kbset, M_TEMP); 1286 if (lset != NULL) 1287 free(lset, M_TEMP); 1288 return error; 1289 } 1290 1291 int 1292 linux_sys_setgroups16(l, v, retval) 1293 struct lwp *l; 1294 void *v; 1295 register_t *retval; 1296 { 1297 struct linux_sys_setgroups16_args /* { 1298 syscallarg(int) gidsetsize; 1299 syscallarg(linux_gid_t *) gidset; 1300 } */ *uap = v; 1301 struct proc *p = l->l_proc; 1302 caddr_t sg; 1303 int n; 1304 int error, i; 1305 struct sys_setgroups_args bsa; 1306 gid_t *bset, *kbset; 1307 linux_gid_t *lset; 1308 1309 n = SCARG(uap, gidsetsize); 1310 if (n < 0 || n > NGROUPS) 1311 return EINVAL; 1312 sg = stackgap_init(p, 0); 1313 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t)); 1314 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK); 1315 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK); 1316 if (bset == NULL || kbset == NULL || lset == NULL) 1317 { 1318 error = ENOMEM; 1319 goto out; 1320 } 1321 error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t)); 1322 if (error != 0) 1323 goto out; 1324 for (i = 0; i < n; i++) 1325 kbset[i] = (gid_t)lset[i]; 1326 error = copyout(kbset, bset, n * sizeof (gid_t)); 1327 if (error != 0) 1328 goto out; 1329 SCARG(&bsa, gidsetsize) = n; 1330 SCARG(&bsa, gidset) = bset; 1331 error = sys_setgroups(l, &bsa, retval); 1332 1333 out: 1334 if (lset != NULL) 1335 free(lset, M_TEMP); 1336 if (kbset != NULL) 1337 free(kbset, M_TEMP); 1338 1339 return error; 1340 } 1341 1342 #endif /* __i386__ || __m68k__ || COMPAT_LINUX32 */ 1343 1344 #ifndef COMPAT_LINUX32 1345 /* 1346 * We have nonexistent fsuid equal to uid. 1347 * If modification is requested, refuse. 1348 */ 1349 int 1350 linux_sys_setfsuid(l, v, retval) 1351 struct lwp *l; 1352 void *v; 1353 register_t *retval; 1354 { 1355 struct linux_sys_setfsuid_args /* { 1356 syscallarg(uid_t) uid; 1357 } */ *uap = v; 1358 uid_t uid; 1359 1360 uid = SCARG(uap, uid); 1361 if (kauth_cred_getuid(l->l_cred) != uid) 1362 return sys_nosys(l, v, retval); 1363 else 1364 return (0); 1365 } 1366 1367 /* XXX XXX XXX */ 1368 # ifndef alpha 1369 int 1370 linux_sys_getfsuid(l, v, retval) 1371 struct lwp *l; 1372 void *v; 1373 register_t *retval; 1374 { 1375 return sys_getuid(l, v, retval); 1376 } 1377 # endif 1378 1379 int 1380 linux_sys_setresuid(l, v, retval) 1381 struct lwp *l; 1382 void *v; 1383 register_t *retval; 1384 { 1385 struct linux_sys_setresuid_args /* { 1386 syscallarg(uid_t) ruid; 1387 syscallarg(uid_t) euid; 1388 syscallarg(uid_t) suid; 1389 } */ *uap = v; 1390 1391 /* 1392 * Note: These checks are a little different than the NetBSD 1393 * setreuid(2) call performs. This precisely follows the 1394 * behavior of the Linux kernel. 1395 */ 1396 1397 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid), 1398 SCARG(uap, suid), 1399 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S | 1400 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S | 1401 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S ); 1402 } 1403 1404 int 1405 linux_sys_getresuid(l, v, retval) 1406 struct lwp *l; 1407 void *v; 1408 register_t *retval; 1409 { 1410 struct linux_sys_getresuid_args /* { 1411 syscallarg(uid_t *) ruid; 1412 syscallarg(uid_t *) euid; 1413 syscallarg(uid_t *) suid; 1414 } */ *uap = v; 1415 kauth_cred_t pc = l->l_cred; 1416 int error; 1417 uid_t uid; 1418 1419 /* 1420 * Linux copies these values out to userspace like so: 1421 * 1422 * 1. Copy out ruid. 1423 * 2. If that succeeds, copy out euid. 1424 * 3. If both of those succeed, copy out suid. 1425 */ 1426 uid = kauth_cred_getuid(pc); 1427 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0) 1428 return (error); 1429 1430 uid = kauth_cred_geteuid(pc); 1431 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0) 1432 return (error); 1433 1434 uid = kauth_cred_getsvuid(pc); 1435 1436 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t))); 1437 } 1438 1439 int 1440 linux_sys_ptrace(l, v, retval) 1441 struct lwp *l; 1442 void *v; 1443 register_t *retval; 1444 { 1445 #if defined(PTRACE) || defined(_LKM) 1446 struct linux_sys_ptrace_args /* { 1447 i386, m68k, powerpc: T=int 1448 alpha, amd64: T=long 1449 syscallarg(T) request; 1450 syscallarg(T) pid; 1451 syscallarg(T) addr; 1452 syscallarg(T) data; 1453 } */ *uap = v; 1454 const int *ptr; 1455 int request; 1456 int error; 1457 #ifdef _LKM 1458 #define sys_ptrace (*sysent[SYS_ptrace].sy_call) 1459 #endif 1460 1461 ptr = linux_ptrace_request_map; 1462 request = SCARG(uap, request); 1463 while (*ptr != -1) 1464 if (*ptr++ == request) { 1465 struct sys_ptrace_args pta; 1466 1467 SCARG(&pta, req) = *ptr; 1468 SCARG(&pta, pid) = SCARG(uap, pid); 1469 SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr); 1470 SCARG(&pta, data) = SCARG(uap, data); 1471 1472 /* 1473 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually 1474 * to continue where the process left off previously. 1475 * The same thing is achieved by addr == (caddr_t) 1 1476 * on NetBSD, so rewrite 'addr' appropriately. 1477 */ 1478 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0) 1479 SCARG(&pta, addr) = (caddr_t) 1; 1480 1481 error = sys_ptrace(l, &pta, retval); 1482 if (error) 1483 return error; 1484 switch (request) { 1485 case LINUX_PTRACE_PEEKTEXT: 1486 case LINUX_PTRACE_PEEKDATA: 1487 error = copyout (retval, 1488 (caddr_t)SCARG(uap, data), 1489 sizeof *retval); 1490 *retval = SCARG(uap, data); 1491 break; 1492 default: 1493 break; 1494 } 1495 return error; 1496 } 1497 else 1498 ptr++; 1499 1500 return LINUX_SYS_PTRACE_ARCH(l, uap, retval); 1501 #else 1502 return ENOSYS; 1503 #endif /* PTRACE || _LKM */ 1504 } 1505 1506 int 1507 linux_sys_reboot(struct lwp *l, void *v, register_t *retval) 1508 { 1509 struct linux_sys_reboot_args /* { 1510 syscallarg(int) magic1; 1511 syscallarg(int) magic2; 1512 syscallarg(int) cmd; 1513 syscallarg(void *) arg; 1514 } */ *uap = v; 1515 struct sys_reboot_args /* { 1516 syscallarg(int) opt; 1517 syscallarg(char *) bootstr; 1518 } */ sra; 1519 int error; 1520 1521 if ((error = kauth_authorize_generic(l->l_cred, 1522 KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0) 1523 return(error); 1524 1525 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1) 1526 return(EINVAL); 1527 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 && 1528 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A && 1529 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B) 1530 return(EINVAL); 1531 1532 switch (SCARG(uap, cmd)) { 1533 case LINUX_REBOOT_CMD_RESTART: 1534 SCARG(&sra, opt) = RB_AUTOBOOT; 1535 break; 1536 case LINUX_REBOOT_CMD_HALT: 1537 SCARG(&sra, opt) = RB_HALT; 1538 break; 1539 case LINUX_REBOOT_CMD_POWER_OFF: 1540 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN; 1541 break; 1542 case LINUX_REBOOT_CMD_RESTART2: 1543 /* Reboot with an argument. */ 1544 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING; 1545 SCARG(&sra, bootstr) = SCARG(uap, arg); 1546 break; 1547 case LINUX_REBOOT_CMD_CAD_ON: 1548 return(EINVAL); /* We don't implement ctrl-alt-delete */ 1549 case LINUX_REBOOT_CMD_CAD_OFF: 1550 return(0); 1551 default: 1552 return(EINVAL); 1553 } 1554 1555 return(sys_reboot(l, &sra, retval)); 1556 } 1557 1558 /* 1559 * Copy of compat_12_sys_swapon(). 1560 */ 1561 int 1562 linux_sys_swapon(l, v, retval) 1563 struct lwp *l; 1564 void *v; 1565 register_t *retval; 1566 { 1567 struct sys_swapctl_args ua; 1568 struct linux_sys_swapon_args /* { 1569 syscallarg(const char *) name; 1570 } */ *uap = v; 1571 1572 SCARG(&ua, cmd) = SWAP_ON; 1573 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name)); 1574 SCARG(&ua, misc) = 0; /* priority */ 1575 return (sys_swapctl(l, &ua, retval)); 1576 } 1577 1578 /* 1579 * Stop swapping to the file or block device specified by path. 1580 */ 1581 int 1582 linux_sys_swapoff(l, v, retval) 1583 struct lwp *l; 1584 void *v; 1585 register_t *retval; 1586 { 1587 struct sys_swapctl_args ua; 1588 struct linux_sys_swapoff_args /* { 1589 syscallarg(const char *) path; 1590 } */ *uap = v; 1591 1592 SCARG(&ua, cmd) = SWAP_OFF; 1593 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/ 1594 return (sys_swapctl(l, &ua, retval)); 1595 } 1596 1597 /* 1598 * Copy of compat_09_sys_setdomainname() 1599 */ 1600 /* ARGSUSED */ 1601 int 1602 linux_sys_setdomainname(l, v, retval) 1603 struct lwp *l; 1604 void *v; 1605 register_t *retval; 1606 { 1607 struct linux_sys_setdomainname_args /* { 1608 syscallarg(char *) domainname; 1609 syscallarg(int) len; 1610 } */ *uap = v; 1611 int name[2]; 1612 1613 name[0] = CTL_KERN; 1614 name[1] = KERN_DOMAINNAME; 1615 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname), 1616 SCARG(uap, len), l)); 1617 } 1618 1619 /* 1620 * sysinfo() 1621 */ 1622 /* ARGSUSED */ 1623 int 1624 linux_sys_sysinfo(l, v, retval) 1625 struct lwp *l; 1626 void *v; 1627 register_t *retval; 1628 { 1629 struct linux_sys_sysinfo_args /* { 1630 syscallarg(struct linux_sysinfo *) arg; 1631 } */ *uap = v; 1632 struct linux_sysinfo si; 1633 struct loadavg *la; 1634 1635 si.uptime = time_uptime; 1636 la = &averunnable; 1637 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1638 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1639 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1640 si.totalram = ctob((u_long)physmem); 1641 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize; 1642 si.sharedram = 0; /* XXX */ 1643 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize; 1644 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize; 1645 si.freeswap = 1646 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize; 1647 si.procs = nprocs; 1648 1649 /* The following are only present in newer Linux kernels. */ 1650 si.totalbig = 0; 1651 si.freebig = 0; 1652 si.mem_unit = 1; 1653 1654 return (copyout(&si, SCARG(uap, arg), sizeof si)); 1655 } 1656 1657 int 1658 linux_sys_getrlimit(l, v, retval) 1659 struct lwp *l; 1660 void *v; 1661 register_t *retval; 1662 { 1663 struct linux_sys_getrlimit_args /* { 1664 syscallarg(int) which; 1665 # ifdef LINUX_LARGEFILE64 1666 syscallarg(struct rlimit *) rlp; 1667 # else 1668 syscallarg(struct orlimit *) rlp; 1669 # endif 1670 } */ *uap = v; 1671 struct proc *p = l->l_proc; 1672 caddr_t sg = stackgap_init(p, 0); 1673 struct sys_getrlimit_args ap; 1674 struct rlimit rl; 1675 # ifdef LINUX_LARGEFILE64 1676 struct rlimit orl; 1677 # else 1678 struct orlimit orl; 1679 # endif 1680 int error; 1681 1682 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which)); 1683 if ((error = SCARG(&ap, which)) < 0) 1684 return -error; 1685 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl); 1686 if ((error = sys_getrlimit(l, &ap, retval)) != 0) 1687 return error; 1688 if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0) 1689 return error; 1690 bsd_to_linux_rlimit(&orl, &rl); 1691 1692 return copyout(&orl, SCARG(uap, rlp), sizeof(orl)); 1693 } 1694 1695 int 1696 linux_sys_setrlimit(l, v, retval) 1697 struct lwp *l; 1698 void *v; 1699 register_t *retval; 1700 { 1701 struct linux_sys_setrlimit_args /* { 1702 syscallarg(int) which; 1703 # ifdef LINUX_LARGEFILE64 1704 syscallarg(struct rlimit *) rlp; 1705 # else 1706 syscallarg(struct orlimit *) rlp; 1707 # endif 1708 } */ *uap = v; 1709 struct proc *p = l->l_proc; 1710 caddr_t sg = stackgap_init(p, 0); 1711 struct sys_getrlimit_args ap; 1712 struct rlimit rl; 1713 # ifdef LINUX_LARGEFILE64 1714 struct rlimit orl; 1715 # else 1716 struct orlimit orl; 1717 # endif 1718 int error; 1719 1720 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which)); 1721 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl); 1722 if ((error = SCARG(&ap, which)) < 0) 1723 return -error; 1724 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0) 1725 return error; 1726 linux_to_bsd_rlimit(&rl, &orl); 1727 if ((error = copyout(&rl, SCARG(&ap, rlp), sizeof(rl))) != 0) 1728 return error; 1729 return sys_setrlimit(l, &ap, retval); 1730 } 1731 1732 # if !defined(__mips__) && !defined(__amd64__) 1733 /* XXX: this doesn't look 100% common, at least mips doesn't have it */ 1734 int 1735 linux_sys_ugetrlimit(l, v, retval) 1736 struct lwp *l; 1737 void *v; 1738 register_t *retval; 1739 { 1740 return linux_sys_getrlimit(l, v, retval); 1741 } 1742 # endif 1743 1744 /* 1745 * This gets called for unsupported syscalls. The difference to sys_nosys() 1746 * is that process does not get SIGSYS, the call just returns with ENOSYS. 1747 * This is the way Linux does it and glibc depends on this behaviour. 1748 */ 1749 int 1750 linux_sys_nosys(l, v, retval) 1751 struct lwp *l; 1752 void *v; 1753 register_t *retval; 1754 { 1755 return (ENOSYS); 1756 } 1757 1758 int 1759 linux_sys_getpriority(l, v, retval) 1760 struct lwp *l; 1761 void *v; 1762 register_t *retval; 1763 { 1764 struct linux_sys_getpriority_args /* { 1765 syscallarg(int) which; 1766 syscallarg(int) who; 1767 } */ *uap = v; 1768 struct sys_getpriority_args bsa; 1769 int error; 1770 1771 SCARG(&bsa, which) = SCARG(uap, which); 1772 SCARG(&bsa, who) = SCARG(uap, who); 1773 1774 if ((error = sys_getpriority(l, &bsa, retval))) 1775 return error; 1776 1777 *retval = NZERO - *retval; 1778 1779 return 0; 1780 } 1781 1782 #endif /* !COMPAT_LINUX32 */ 1783