1 /* $NetBSD: linux_misc.c,v 1.195 2008/04/04 12:38:53 njoly Exp $ */ 2 3 /*- 4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe 9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Linux compatibility module. Try to deal with various Linux system calls. 42 */ 43 44 /* 45 * These functions have been moved to multiarch to allow 46 * selection of which machines include them to be 47 * determined by the individual files.linux_<arch> files. 48 * 49 * Function in multiarch: 50 * linux_sys_break : linux_break.c 51 * linux_sys_alarm : linux_misc_notalpha.c 52 * linux_sys_getresgid : linux_misc_notalpha.c 53 * linux_sys_nice : linux_misc_notalpha.c 54 * linux_sys_readdir : linux_misc_notalpha.c 55 * linux_sys_setresgid : linux_misc_notalpha.c 56 * linux_sys_time : linux_misc_notalpha.c 57 * linux_sys_utime : linux_misc_notalpha.c 58 * linux_sys_waitpid : linux_misc_notalpha.c 59 * linux_sys_old_mmap : linux_oldmmap.c 60 * linux_sys_oldolduname : linux_oldolduname.c 61 * linux_sys_oldselect : linux_oldselect.c 62 * linux_sys_olduname : linux_olduname.c 63 * linux_sys_pipe : linux_pipe.c 64 */ 65 66 #include <sys/cdefs.h> 67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.195 2008/04/04 12:38:53 njoly Exp $"); 68 69 #if defined(_KERNEL_OPT) 70 #include "opt_ptrace.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/namei.h> 76 #include <sys/proc.h> 77 #include <sys/dirent.h> 78 #include <sys/file.h> 79 #include <sys/stat.h> 80 #include <sys/filedesc.h> 81 #include <sys/ioctl.h> 82 #include <sys/kernel.h> 83 #include <sys/malloc.h> 84 #include <sys/mbuf.h> 85 #include <sys/mman.h> 86 #include <sys/mount.h> 87 #include <sys/prot.h> 88 #include <sys/reboot.h> 89 #include <sys/resource.h> 90 #include <sys/resourcevar.h> 91 #include <sys/select.h> 92 #include <sys/signal.h> 93 #include <sys/signalvar.h> 94 #include <sys/socket.h> 95 #include <sys/time.h> 96 #include <sys/times.h> 97 #include <sys/vnode.h> 98 #include <sys/uio.h> 99 #include <sys/wait.h> 100 #include <sys/utsname.h> 101 #include <sys/unistd.h> 102 #include <sys/vfs_syscalls.h> 103 #include <sys/swap.h> /* for SWAP_ON */ 104 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */ 105 #include <sys/kauth.h> 106 107 #include <sys/ptrace.h> 108 #include <machine/ptrace.h> 109 110 #include <sys/syscall.h> 111 #include <sys/syscallargs.h> 112 113 #include <compat/linux/common/linux_machdep.h> 114 #include <compat/linux/common/linux_types.h> 115 #include <compat/linux/common/linux_signal.h> 116 #include <compat/linux/common/linux_ipc.h> 117 #include <compat/linux/common/linux_sem.h> 118 119 #include <compat/linux/linux_syscallargs.h> 120 121 #include <compat/linux/common/linux_fcntl.h> 122 #include <compat/linux/common/linux_mmap.h> 123 #include <compat/linux/common/linux_dirent.h> 124 #include <compat/linux/common/linux_util.h> 125 #include <compat/linux/common/linux_misc.h> 126 #ifndef COMPAT_LINUX32 127 #include <compat/linux/common/linux_statfs.h> 128 #include <compat/linux/common/linux_limit.h> 129 #endif 130 #include <compat/linux/common/linux_ptrace.h> 131 #include <compat/linux/common/linux_reboot.h> 132 #include <compat/linux/common/linux_emuldata.h> 133 134 #ifndef COMPAT_LINUX32 135 const int linux_ptrace_request_map[] = { 136 LINUX_PTRACE_TRACEME, PT_TRACE_ME, 137 LINUX_PTRACE_PEEKTEXT, PT_READ_I, 138 LINUX_PTRACE_PEEKDATA, PT_READ_D, 139 LINUX_PTRACE_POKETEXT, PT_WRITE_I, 140 LINUX_PTRACE_POKEDATA, PT_WRITE_D, 141 LINUX_PTRACE_CONT, PT_CONTINUE, 142 LINUX_PTRACE_KILL, PT_KILL, 143 LINUX_PTRACE_ATTACH, PT_ATTACH, 144 LINUX_PTRACE_DETACH, PT_DETACH, 145 # ifdef PT_STEP 146 LINUX_PTRACE_SINGLESTEP, PT_STEP, 147 # endif 148 LINUX_PTRACE_SYSCALL, PT_SYSCALL, 149 -1 150 }; 151 152 const struct linux_mnttypes linux_fstypes[] = { 153 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC }, 154 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC }, 155 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC }, 156 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC }, 157 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC }, 158 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC }, 159 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC }, 160 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC }, 161 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC }, 162 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC }, 163 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC }, 164 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC }, 165 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC }, 166 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC }, 167 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC }, 168 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC }, 169 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC }, 170 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC }, 171 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC }, 172 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC }, 173 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC }, 174 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC }, 175 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC }, 176 { MOUNT_TMPFS, LINUX_DEFAULT_SUPER_MAGIC } 177 }; 178 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]); 179 180 # ifdef DEBUG_LINUX 181 #define DPRINTF(a) uprintf a 182 # else 183 #define DPRINTF(a) 184 # endif 185 186 /* Local linux_misc.c functions: */ 187 static void linux_to_bsd_mmap_args(struct sys_mmap_args *, 188 const struct linux_sys_mmap_args *); 189 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *, 190 register_t *, off_t); 191 192 193 /* 194 * The information on a terminated (or stopped) process needs 195 * to be converted in order for Linux binaries to get a valid signal 196 * number out of it. 197 */ 198 int 199 bsd_to_linux_wstat(int st) 200 { 201 202 int sig; 203 204 if (WIFSIGNALED(st)) { 205 sig = WTERMSIG(st); 206 if (sig >= 0 && sig < NSIG) 207 st= (st & ~0177) | native_to_linux_signo[sig]; 208 } else if (WIFSTOPPED(st)) { 209 sig = WSTOPSIG(st); 210 if (sig >= 0 && sig < NSIG) 211 st = (st & ~0xff00) | 212 (native_to_linux_signo[sig] << 8); 213 } 214 return st; 215 } 216 217 /* 218 * wait4(2). Passed on to the NetBSD call, surrounded by code to 219 * reserve some space for a NetBSD-style wait status, and converting 220 * it to what Linux wants. 221 */ 222 int 223 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval) 224 { 225 /* { 226 syscallarg(int) pid; 227 syscallarg(int *) status; 228 syscallarg(int) options; 229 syscallarg(struct rusage *) rusage; 230 } */ 231 int error, status, options, linux_options, was_zombie; 232 struct rusage ru; 233 int pid = SCARG(uap, pid); 234 235 linux_options = SCARG(uap, options); 236 options = WOPTSCHECKED; 237 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS)) 238 return (EINVAL); 239 240 if (linux_options & LINUX_WAIT4_WNOHANG) 241 options |= WNOHANG; 242 if (linux_options & LINUX_WAIT4_WUNTRACED) 243 options |= WUNTRACED; 244 if (linux_options & LINUX_WAIT4_WALL) 245 options |= WALLSIG; 246 if (linux_options & LINUX_WAIT4_WCLONE) 247 options |= WALTSIG; 248 # ifdef DIAGNOSTIC 249 if (linux_options & LINUX_WAIT4_WNOTHREAD) 250 printf("WARNING: %s: linux process %d.%d called " 251 "waitpid with __WNOTHREAD set!", 252 __FILE__, l->l_proc->p_pid, l->l_lid); 253 254 # endif 255 256 error = do_sys_wait(l, &pid, &status, options, 257 SCARG(uap, rusage) != NULL ? &ru : NULL, &was_zombie); 258 259 retval[0] = pid; 260 if (pid == 0) 261 return error; 262 263 sigdelset(&l->l_proc->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */ 264 265 if (SCARG(uap, rusage) != NULL) 266 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 267 268 if (error == 0 && SCARG(uap, status) != NULL) { 269 status = bsd_to_linux_wstat(status); 270 error = copyout(&status, SCARG(uap, status), sizeof status); 271 } 272 273 return error; 274 } 275 276 /* 277 * Linux brk(2). The check if the new address is >= the old one is 278 * done in the kernel in Linux. NetBSD does it in the library. 279 */ 280 int 281 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval) 282 { 283 /* { 284 syscallarg(char *) nsize; 285 } */ 286 struct proc *p = l->l_proc; 287 char *nbrk = SCARG(uap, nsize); 288 struct sys_obreak_args oba; 289 struct vmspace *vm = p->p_vmspace; 290 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata; 291 292 SCARG(&oba, nsize) = nbrk; 293 294 if ((void *) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0) 295 ed->s->p_break = (char*)nbrk; 296 else 297 nbrk = ed->s->p_break; 298 299 retval[0] = (register_t)nbrk; 300 301 return 0; 302 } 303 304 /* 305 * Implement the fs stat functions. Straightforward. 306 */ 307 int 308 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval) 309 { 310 /* { 311 syscallarg(const char *) path; 312 syscallarg(struct linux_statfs *) sp; 313 } */ 314 struct statvfs *sb; 315 struct linux_statfs ltmp; 316 int error; 317 318 sb = STATVFSBUF_GET(); 319 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb); 320 if (error == 0) { 321 bsd_to_linux_statfs(sb, <mp); 322 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); 323 } 324 STATVFSBUF_PUT(sb); 325 326 return error; 327 } 328 329 int 330 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval) 331 { 332 /* { 333 syscallarg(int) fd; 334 syscallarg(struct linux_statfs *) sp; 335 } */ 336 struct statvfs *sb; 337 struct linux_statfs ltmp; 338 int error; 339 340 sb = STATVFSBUF_GET(); 341 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb); 342 if (error == 0) { 343 bsd_to_linux_statfs(sb, <mp); 344 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); 345 } 346 STATVFSBUF_PUT(sb); 347 348 return error; 349 } 350 351 /* 352 * uname(). Just copy the info from the various strings stored in the 353 * kernel, and put it in the Linux utsname structure. That structure 354 * is almost the same as the NetBSD one, only it has fields 65 characters 355 * long, and an extra domainname field. 356 */ 357 int 358 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval) 359 { 360 /* { 361 syscallarg(struct linux_utsname *) up; 362 } */ 363 struct linux_utsname luts; 364 365 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname)); 366 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); 367 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release)); 368 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version)); 369 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine)); 370 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname)); 371 372 return copyout(&luts, SCARG(uap, up), sizeof(luts)); 373 } 374 375 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */ 376 /* Used indirectly on: arm, i386, m68k */ 377 378 /* 379 * New type Linux mmap call. 380 * Only called directly on machines with >= 6 free regs. 381 */ 382 int 383 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval) 384 { 385 /* { 386 syscallarg(unsigned long) addr; 387 syscallarg(size_t) len; 388 syscallarg(int) prot; 389 syscallarg(int) flags; 390 syscallarg(int) fd; 391 syscallarg(linux_off_t) offset; 392 } */ 393 394 if (SCARG(uap, offset) & PAGE_MASK) 395 return EINVAL; 396 397 return linux_mmap(l, uap, retval, SCARG(uap, offset)); 398 } 399 400 /* 401 * Guts of most architectures' mmap64() implementations. This shares 402 * its list of arguments with linux_sys_mmap(). 403 * 404 * The difference in linux_sys_mmap2() is that "offset" is actually 405 * (offset / pagesize), not an absolute byte count. This translation 406 * to pagesize offsets is done inside glibc between the mmap64() call 407 * point, and the actual syscall. 408 */ 409 int 410 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval) 411 { 412 /* { 413 syscallarg(unsigned long) addr; 414 syscallarg(size_t) len; 415 syscallarg(int) prot; 416 syscallarg(int) flags; 417 syscallarg(int) fd; 418 syscallarg(linux_off_t) offset; 419 } */ 420 421 return linux_mmap(l, uap, retval, 422 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT); 423 } 424 425 /* 426 * Massage arguments and call system mmap(2). 427 */ 428 static int 429 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset) 430 { 431 struct sys_mmap_args cma; 432 int error; 433 size_t mmoff=0; 434 435 linux_to_bsd_mmap_args(&cma, uap); 436 SCARG(&cma, pos) = offset; 437 438 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) { 439 /* 440 * Request for stack-like memory segment. On linux, this 441 * works by mmap()ping (small) segment, which is automatically 442 * extended when page fault happens below the currently 443 * allocated area. We emulate this by allocating (typically 444 * bigger) segment sized at current stack size limit, and 445 * offsetting the requested and returned address accordingly. 446 * Since physical pages are only allocated on-demand, this 447 * is effectively identical. 448 */ 449 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur; 450 451 if (SCARG(&cma, len) < ssl) { 452 /* Compute the address offset */ 453 mmoff = round_page(ssl) - SCARG(uap, len); 454 455 if (SCARG(&cma, addr)) 456 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff; 457 458 SCARG(&cma, len) = (size_t) ssl; 459 } 460 } 461 462 error = sys_mmap(l, &cma, retval); 463 if (error) 464 return (error); 465 466 /* Shift the returned address for stack-like segment if necessary */ 467 retval[0] += mmoff; 468 469 return (0); 470 } 471 472 static void 473 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap) 474 { 475 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags); 476 477 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED); 478 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE); 479 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED); 480 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON); 481 /* XXX XAX ERH: Any other flags here? There are more defined... */ 482 483 SCARG(cma, addr) = (void *)SCARG(uap, addr); 484 SCARG(cma, len) = SCARG(uap, len); 485 SCARG(cma, prot) = SCARG(uap, prot); 486 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */ 487 SCARG(cma, prot) |= VM_PROT_READ; 488 SCARG(cma, flags) = flags; 489 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd); 490 SCARG(cma, pad) = 0; 491 } 492 493 #define LINUX_MREMAP_MAYMOVE 1 494 #define LINUX_MREMAP_FIXED 2 495 496 int 497 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval) 498 { 499 /* { 500 syscallarg(void *) old_address; 501 syscallarg(size_t) old_size; 502 syscallarg(size_t) new_size; 503 syscallarg(u_long) flags; 504 } */ 505 506 struct proc *p; 507 struct vm_map *map; 508 vaddr_t oldva; 509 vaddr_t newva; 510 size_t oldsize; 511 size_t newsize; 512 int flags; 513 int uvmflags; 514 int error; 515 516 flags = SCARG(uap, flags); 517 oldva = (vaddr_t)SCARG(uap, old_address); 518 oldsize = round_page(SCARG(uap, old_size)); 519 newsize = round_page(SCARG(uap, new_size)); 520 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) { 521 error = EINVAL; 522 goto done; 523 } 524 if ((flags & LINUX_MREMAP_FIXED) != 0) { 525 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) { 526 error = EINVAL; 527 goto done; 528 } 529 #if 0 /* notyet */ 530 newva = SCARG(uap, new_address); 531 uvmflags = MAP_FIXED; 532 #else /* notyet */ 533 error = EOPNOTSUPP; 534 goto done; 535 #endif /* notyet */ 536 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) { 537 uvmflags = 0; 538 } else { 539 newva = oldva; 540 uvmflags = MAP_FIXED; 541 } 542 p = l->l_proc; 543 map = &p->p_vmspace->vm_map; 544 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p, 545 uvmflags); 546 547 done: 548 *retval = (error != 0) ? 0 : (register_t)newva; 549 return error; 550 } 551 552 int 553 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval) 554 { 555 /* { 556 syscallarg(const void *) start; 557 syscallarg(unsigned long) len; 558 syscallarg(int) prot; 559 } */ 560 struct vm_map_entry *entry; 561 struct vm_map *map; 562 struct proc *p; 563 vaddr_t end, start, len, stacklim; 564 int prot, grows; 565 566 start = (vaddr_t)SCARG(uap, start); 567 len = round_page(SCARG(uap, len)); 568 prot = SCARG(uap, prot); 569 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP); 570 prot &= ~grows; 571 end = start + len; 572 573 if (start & PAGE_MASK) 574 return EINVAL; 575 if (end < start) 576 return EINVAL; 577 if (end == start) 578 return 0; 579 580 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) 581 return EINVAL; 582 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP)) 583 return EINVAL; 584 585 p = l->l_proc; 586 map = &p->p_vmspace->vm_map; 587 vm_map_lock(map); 588 # ifdef notdef 589 VM_MAP_RANGE_CHECK(map, start, end); 590 # endif 591 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) { 592 vm_map_unlock(map); 593 return ENOMEM; 594 } 595 596 /* 597 * Approximate the behaviour of PROT_GROWS{DOWN,UP}. 598 */ 599 600 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 601 if (grows & LINUX_PROT_GROWSDOWN) { 602 if (USRSTACK - stacklim <= start && start < USRSTACK) { 603 start = USRSTACK - stacklim; 604 } else { 605 start = entry->start; 606 } 607 } else if (grows & LINUX_PROT_GROWSUP) { 608 if (USRSTACK <= end && end < USRSTACK + stacklim) { 609 end = USRSTACK + stacklim; 610 } else { 611 end = entry->end; 612 } 613 } 614 vm_map_unlock(map); 615 return uvm_map_protect(map, start, end, prot, FALSE); 616 } 617 618 /* 619 * This code is partly stolen from src/lib/libc/compat-43/times.c 620 */ 621 622 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz)) 623 624 int 625 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval) 626 { 627 /* { 628 syscallarg(struct times *) tms; 629 } */ 630 struct proc *p = l->l_proc; 631 struct timeval t; 632 int error; 633 634 if (SCARG(uap, tms)) { 635 struct linux_tms ltms; 636 struct rusage ru; 637 638 mutex_enter(&p->p_smutex); 639 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL); 640 ltms.ltms_utime = CONVTCK(ru.ru_utime); 641 ltms.ltms_stime = CONVTCK(ru.ru_stime); 642 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime); 643 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime); 644 mutex_exit(&p->p_smutex); 645 646 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms))) 647 return error; 648 } 649 650 getmicrouptime(&t); 651 652 retval[0] = ((linux_clock_t)(CONVTCK(t))); 653 return 0; 654 } 655 656 #undef CONVTCK 657 658 /* 659 * Linux 'readdir' call. This code is mostly taken from the 660 * SunOS getdents call (see compat/sunos/sunos_misc.c), though 661 * an attempt has been made to keep it a little cleaner (failing 662 * miserably, because of the cruft needed if count 1 is passed). 663 * 664 * The d_off field should contain the offset of the next valid entry, 665 * but in Linux it has the offset of the entry itself. We emulate 666 * that bug here. 667 * 668 * Read in BSD-style entries, convert them, and copy them out. 669 * 670 * Note that this doesn't handle union-mounted filesystems. 671 */ 672 int 673 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval) 674 { 675 /* { 676 syscallarg(int) fd; 677 syscallarg(struct linux_dirent *) dent; 678 syscallarg(unsigned int) count; 679 } */ 680 struct dirent *bdp; 681 struct vnode *vp; 682 char *inp, *tbuf; /* BSD-format */ 683 int len, reclen; /* BSD-format */ 684 char *outp; /* Linux-format */ 685 int resid, linux_reclen = 0; /* Linux-format */ 686 struct file *fp; 687 struct uio auio; 688 struct iovec aiov; 689 struct linux_dirent idb; 690 off_t off; /* true file offset */ 691 int buflen, error, eofflag, nbytes, oldcall; 692 struct vattr va; 693 off_t *cookiebuf = NULL, *cookie; 694 int ncookies; 695 696 /* getvnode() will use the descriptor for us */ 697 if ((error = getvnode(SCARG(uap, fd), &fp)) != 0) 698 return (error); 699 700 if ((fp->f_flag & FREAD) == 0) { 701 error = EBADF; 702 goto out1; 703 } 704 705 vp = (struct vnode *)fp->f_data; 706 if (vp->v_type != VDIR) { 707 error = EINVAL; 708 goto out1; 709 } 710 711 if ((error = VOP_GETATTR(vp, &va, l->l_cred))) 712 goto out1; 713 714 nbytes = SCARG(uap, count); 715 if (nbytes == 1) { /* emulating old, broken behaviour */ 716 nbytes = sizeof (idb); 717 buflen = max(va.va_blocksize, nbytes); 718 oldcall = 1; 719 } else { 720 buflen = min(MAXBSIZE, nbytes); 721 if (buflen < va.va_blocksize) 722 buflen = va.va_blocksize; 723 oldcall = 0; 724 } 725 tbuf = malloc(buflen, M_TEMP, M_WAITOK); 726 727 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 728 off = fp->f_offset; 729 again: 730 aiov.iov_base = tbuf; 731 aiov.iov_len = buflen; 732 auio.uio_iov = &aiov; 733 auio.uio_iovcnt = 1; 734 auio.uio_rw = UIO_READ; 735 auio.uio_resid = buflen; 736 auio.uio_offset = off; 737 UIO_SETUP_SYSSPACE(&auio); 738 /* 739 * First we read into the malloc'ed buffer, then 740 * we massage it into user space, one record at a time. 741 */ 742 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, 743 &ncookies); 744 if (error) 745 goto out; 746 747 inp = tbuf; 748 outp = (void *)SCARG(uap, dent); 749 resid = nbytes; 750 if ((len = buflen - auio.uio_resid) == 0) 751 goto eof; 752 753 for (cookie = cookiebuf; len > 0; len -= reclen) { 754 bdp = (struct dirent *)inp; 755 reclen = bdp->d_reclen; 756 if (reclen & 3) 757 panic("linux_readdir"); 758 if (bdp->d_fileno == 0) { 759 inp += reclen; /* it is a hole; squish it out */ 760 if (cookie) 761 off = *cookie++; 762 else 763 off += reclen; 764 continue; 765 } 766 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen); 767 if (reclen > len || resid < linux_reclen) { 768 /* entry too big for buffer, so just stop */ 769 outp++; 770 break; 771 } 772 /* 773 * Massage in place to make a Linux-shaped dirent (otherwise 774 * we have to worry about touching user memory outside of 775 * the copyout() call). 776 */ 777 idb.d_ino = bdp->d_fileno; 778 /* 779 * The old readdir() call misuses the offset and reclen fields. 780 */ 781 if (oldcall) { 782 idb.d_off = (linux_off_t)linux_reclen; 783 idb.d_reclen = (u_short)bdp->d_namlen; 784 } else { 785 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) { 786 compat_offseterr(vp, "linux_getdents"); 787 error = EINVAL; 788 goto out; 789 } 790 idb.d_off = (linux_off_t)off; 791 idb.d_reclen = (u_short)linux_reclen; 792 } 793 strcpy(idb.d_name, bdp->d_name); 794 if ((error = copyout((void *)&idb, outp, linux_reclen))) 795 goto out; 796 /* advance past this real entry */ 797 inp += reclen; 798 if (cookie) 799 off = *cookie++; /* each entry points to itself */ 800 else 801 off += reclen; 802 /* advance output past Linux-shaped entry */ 803 outp += linux_reclen; 804 resid -= linux_reclen; 805 if (oldcall) 806 break; 807 } 808 809 /* if we squished out the whole block, try again */ 810 if (outp == (void *)SCARG(uap, dent)) 811 goto again; 812 fp->f_offset = off; /* update the vnode offset */ 813 814 if (oldcall) 815 nbytes = resid + linux_reclen; 816 817 eof: 818 *retval = nbytes - resid; 819 out: 820 VOP_UNLOCK(vp, 0); 821 if (cookiebuf) 822 free(cookiebuf, M_TEMP); 823 free(tbuf, M_TEMP); 824 out1: 825 fd_putfile(SCARG(uap, fd)); 826 return error; 827 } 828 829 /* 830 * Even when just using registers to pass arguments to syscalls you can 831 * have 5 of them on the i386. So this newer version of select() does 832 * this. 833 */ 834 int 835 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval) 836 { 837 /* { 838 syscallarg(int) nfds; 839 syscallarg(fd_set *) readfds; 840 syscallarg(fd_set *) writefds; 841 syscallarg(fd_set *) exceptfds; 842 syscallarg(struct timeval *) timeout; 843 } */ 844 845 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds), 846 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout)); 847 } 848 849 /* 850 * Common code for the old and new versions of select(). A couple of 851 * things are important: 852 * 1) return the amount of time left in the 'timeout' parameter 853 * 2) select never returns ERESTART on Linux, always return EINTR 854 */ 855 int 856 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout) 857 struct lwp *l; 858 register_t *retval; 859 int nfds; 860 fd_set *readfds, *writefds, *exceptfds; 861 struct timeval *timeout; 862 { 863 struct timeval tv0, tv1, utv, *tv = NULL; 864 int error; 865 866 /* 867 * Store current time for computation of the amount of 868 * time left. 869 */ 870 if (timeout) { 871 if ((error = copyin(timeout, &utv, sizeof(utv)))) 872 return error; 873 if (itimerfix(&utv)) { 874 /* 875 * The timeval was invalid. Convert it to something 876 * valid that will act as it does under Linux. 877 */ 878 utv.tv_sec += utv.tv_usec / 1000000; 879 utv.tv_usec %= 1000000; 880 if (utv.tv_usec < 0) { 881 utv.tv_sec -= 1; 882 utv.tv_usec += 1000000; 883 } 884 if (utv.tv_sec < 0) 885 timerclear(&utv); 886 } 887 tv = &utv; 888 microtime(&tv0); 889 } 890 891 error = selcommon(l, retval, nfds, readfds, writefds, exceptfds, 892 tv, NULL); 893 894 if (error) { 895 /* 896 * See fs/select.c in the Linux kernel. Without this, 897 * Maelstrom doesn't work. 898 */ 899 if (error == ERESTART) 900 error = EINTR; 901 return error; 902 } 903 904 if (timeout) { 905 if (*retval) { 906 /* 907 * Compute how much time was left of the timeout, 908 * by subtracting the current time and the time 909 * before we started the call, and subtracting 910 * that result from the user-supplied value. 911 */ 912 microtime(&tv1); 913 timersub(&tv1, &tv0, &tv1); 914 timersub(&utv, &tv1, &utv); 915 if (utv.tv_sec < 0) 916 timerclear(&utv); 917 } else 918 timerclear(&utv); 919 if ((error = copyout(&utv, timeout, sizeof(utv)))) 920 return error; 921 } 922 923 return 0; 924 } 925 926 /* 927 * Set the 'personality' (emulation mode) for the current process. Only 928 * accept the Linux personality here (0). This call is needed because 929 * the Linux ELF crt0 issues it in an ugly kludge to make sure that 930 * ELF binaries run in Linux mode, not SVR4 mode. 931 */ 932 int 933 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval) 934 { 935 /* { 936 syscallarg(int) per; 937 } */ 938 939 if (SCARG(uap, per) != 0) 940 return EINVAL; 941 retval[0] = 0; 942 return 0; 943 } 944 945 /* 946 * We have nonexistent fsuid equal to uid. 947 * If modification is requested, refuse. 948 */ 949 int 950 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval) 951 { 952 /* { 953 syscallarg(uid_t) uid; 954 } */ 955 uid_t uid; 956 957 uid = SCARG(uap, uid); 958 if (kauth_cred_getuid(l->l_cred) != uid) 959 return sys_nosys(l, uap, retval); 960 961 *retval = uid; 962 return 0; 963 } 964 965 int 966 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval) 967 { 968 /* { 969 syscallarg(gid_t) gid; 970 } */ 971 gid_t gid; 972 973 gid = SCARG(uap, gid); 974 if (kauth_cred_getgid(l->l_cred) != gid) 975 return sys_nosys(l, uap, retval); 976 977 *retval = gid; 978 return 0; 979 } 980 981 int 982 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval) 983 { 984 /* { 985 syscallarg(uid_t) ruid; 986 syscallarg(uid_t) euid; 987 syscallarg(uid_t) suid; 988 } */ 989 990 /* 991 * Note: These checks are a little different than the NetBSD 992 * setreuid(2) call performs. This precisely follows the 993 * behavior of the Linux kernel. 994 */ 995 996 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid), 997 SCARG(uap, suid), 998 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S | 999 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S | 1000 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S ); 1001 } 1002 1003 int 1004 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval) 1005 { 1006 /* { 1007 syscallarg(uid_t *) ruid; 1008 syscallarg(uid_t *) euid; 1009 syscallarg(uid_t *) suid; 1010 } */ 1011 kauth_cred_t pc = l->l_cred; 1012 int error; 1013 uid_t uid; 1014 1015 /* 1016 * Linux copies these values out to userspace like so: 1017 * 1018 * 1. Copy out ruid. 1019 * 2. If that succeeds, copy out euid. 1020 * 3. If both of those succeed, copy out suid. 1021 */ 1022 uid = kauth_cred_getuid(pc); 1023 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0) 1024 return (error); 1025 1026 uid = kauth_cred_geteuid(pc); 1027 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0) 1028 return (error); 1029 1030 uid = kauth_cred_getsvuid(pc); 1031 1032 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t))); 1033 } 1034 1035 int 1036 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval) 1037 { 1038 /* { 1039 i386, m68k, powerpc: T=int 1040 alpha, amd64: T=long 1041 syscallarg(T) request; 1042 syscallarg(T) pid; 1043 syscallarg(T) addr; 1044 syscallarg(T) data; 1045 } */ 1046 #if defined(PTRACE) || defined(_LKM) 1047 const int *ptr; 1048 int request; 1049 int error; 1050 #ifdef _LKM 1051 #define sys_ptrace (*sysent[SYS_ptrace].sy_call) 1052 #endif 1053 1054 ptr = linux_ptrace_request_map; 1055 request = SCARG(uap, request); 1056 while (*ptr != -1) 1057 if (*ptr++ == request) { 1058 struct sys_ptrace_args pta; 1059 1060 SCARG(&pta, req) = *ptr; 1061 SCARG(&pta, pid) = SCARG(uap, pid); 1062 SCARG(&pta, addr) = (void *)SCARG(uap, addr); 1063 SCARG(&pta, data) = SCARG(uap, data); 1064 1065 /* 1066 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually 1067 * to continue where the process left off previously. 1068 * The same thing is achieved by addr == (void *) 1 1069 * on NetBSD, so rewrite 'addr' appropriately. 1070 */ 1071 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0) 1072 SCARG(&pta, addr) = (void *) 1; 1073 1074 error = sys_ptrace(l, &pta, retval); 1075 if (error) 1076 return error; 1077 switch (request) { 1078 case LINUX_PTRACE_PEEKTEXT: 1079 case LINUX_PTRACE_PEEKDATA: 1080 error = copyout (retval, 1081 (void *)SCARG(uap, data), 1082 sizeof *retval); 1083 *retval = SCARG(uap, data); 1084 break; 1085 default: 1086 break; 1087 } 1088 return error; 1089 } 1090 else 1091 ptr++; 1092 1093 return LINUX_SYS_PTRACE_ARCH(l, uap, retval); 1094 #else 1095 return ENOSYS; 1096 #endif /* PTRACE || _LKM */ 1097 } 1098 1099 int 1100 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval) 1101 { 1102 /* { 1103 syscallarg(int) magic1; 1104 syscallarg(int) magic2; 1105 syscallarg(int) cmd; 1106 syscallarg(void *) arg; 1107 } */ 1108 struct sys_reboot_args /* { 1109 syscallarg(int) opt; 1110 syscallarg(char *) bootstr; 1111 } */ sra; 1112 int error; 1113 1114 if ((error = kauth_authorize_system(l->l_cred, 1115 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0) 1116 return(error); 1117 1118 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1) 1119 return(EINVAL); 1120 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 && 1121 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A && 1122 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B) 1123 return(EINVAL); 1124 1125 switch (SCARG(uap, cmd)) { 1126 case LINUX_REBOOT_CMD_RESTART: 1127 SCARG(&sra, opt) = RB_AUTOBOOT; 1128 break; 1129 case LINUX_REBOOT_CMD_HALT: 1130 SCARG(&sra, opt) = RB_HALT; 1131 break; 1132 case LINUX_REBOOT_CMD_POWER_OFF: 1133 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN; 1134 break; 1135 case LINUX_REBOOT_CMD_RESTART2: 1136 /* Reboot with an argument. */ 1137 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING; 1138 SCARG(&sra, bootstr) = SCARG(uap, arg); 1139 break; 1140 case LINUX_REBOOT_CMD_CAD_ON: 1141 return(EINVAL); /* We don't implement ctrl-alt-delete */ 1142 case LINUX_REBOOT_CMD_CAD_OFF: 1143 return(0); 1144 default: 1145 return(EINVAL); 1146 } 1147 1148 return(sys_reboot(l, &sra, retval)); 1149 } 1150 1151 /* 1152 * Copy of compat_12_sys_swapon(). 1153 */ 1154 int 1155 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval) 1156 { 1157 /* { 1158 syscallarg(const char *) name; 1159 } */ 1160 struct sys_swapctl_args ua; 1161 1162 SCARG(&ua, cmd) = SWAP_ON; 1163 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name)); 1164 SCARG(&ua, misc) = 0; /* priority */ 1165 return (sys_swapctl(l, &ua, retval)); 1166 } 1167 1168 /* 1169 * Stop swapping to the file or block device specified by path. 1170 */ 1171 int 1172 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval) 1173 { 1174 /* { 1175 syscallarg(const char *) path; 1176 } */ 1177 struct sys_swapctl_args ua; 1178 1179 SCARG(&ua, cmd) = SWAP_OFF; 1180 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/ 1181 return (sys_swapctl(l, &ua, retval)); 1182 } 1183 1184 /* 1185 * Copy of compat_09_sys_setdomainname() 1186 */ 1187 /* ARGSUSED */ 1188 int 1189 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval) 1190 { 1191 /* { 1192 syscallarg(char *) domainname; 1193 syscallarg(int) len; 1194 } */ 1195 int name[2]; 1196 1197 name[0] = CTL_KERN; 1198 name[1] = KERN_DOMAINNAME; 1199 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname), 1200 SCARG(uap, len), l)); 1201 } 1202 1203 /* 1204 * sysinfo() 1205 */ 1206 /* ARGSUSED */ 1207 int 1208 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval) 1209 { 1210 /* { 1211 syscallarg(struct linux_sysinfo *) arg; 1212 } */ 1213 struct linux_sysinfo si; 1214 struct loadavg *la; 1215 1216 si.uptime = time_uptime; 1217 la = &averunnable; 1218 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1219 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1220 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1221 si.totalram = ctob((u_long)physmem); 1222 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize; 1223 si.sharedram = 0; /* XXX */ 1224 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize; 1225 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize; 1226 si.freeswap = 1227 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize; 1228 si.procs = nprocs; 1229 1230 /* The following are only present in newer Linux kernels. */ 1231 si.totalbig = 0; 1232 si.freebig = 0; 1233 si.mem_unit = 1; 1234 1235 return (copyout(&si, SCARG(uap, arg), sizeof si)); 1236 } 1237 1238 int 1239 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval) 1240 { 1241 /* { 1242 syscallarg(int) which; 1243 # ifdef LINUX_LARGEFILE64 1244 syscallarg(struct rlimit *) rlp; 1245 # else 1246 syscallarg(struct orlimit *) rlp; 1247 # endif 1248 } */ 1249 # ifdef LINUX_LARGEFILE64 1250 struct rlimit orl; 1251 # else 1252 struct orlimit orl; 1253 # endif 1254 int which; 1255 1256 which = linux_to_bsd_limit(SCARG(uap, which)); 1257 if (which < 0) 1258 return -which; 1259 1260 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]); 1261 1262 return copyout(&orl, SCARG(uap, rlp), sizeof(orl)); 1263 } 1264 1265 int 1266 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval) 1267 { 1268 /* { 1269 syscallarg(int) which; 1270 # ifdef LINUX_LARGEFILE64 1271 syscallarg(struct rlimit *) rlp; 1272 # else 1273 syscallarg(struct orlimit *) rlp; 1274 # endif 1275 } */ 1276 struct rlimit rl; 1277 # ifdef LINUX_LARGEFILE64 1278 struct rlimit orl; 1279 # else 1280 struct orlimit orl; 1281 # endif 1282 int error; 1283 int which; 1284 1285 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0) 1286 return error; 1287 1288 which = linux_to_bsd_limit(SCARG(uap, which)); 1289 if (which < 0) 1290 return -which; 1291 1292 linux_to_bsd_rlimit(&rl, &orl); 1293 return dosetrlimit(l, l->l_proc, which, &rl); 1294 } 1295 1296 # if !defined(__mips__) && !defined(__amd64__) 1297 /* XXX: this doesn't look 100% common, at least mips doesn't have it */ 1298 int 1299 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval) 1300 { 1301 return linux_sys_getrlimit(l, (const void *)uap, retval); 1302 } 1303 # endif 1304 1305 /* 1306 * This gets called for unsupported syscalls. The difference to sys_nosys() 1307 * is that process does not get SIGSYS, the call just returns with ENOSYS. 1308 * This is the way Linux does it and glibc depends on this behaviour. 1309 */ 1310 int 1311 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval) 1312 { 1313 return (ENOSYS); 1314 } 1315 1316 int 1317 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval) 1318 { 1319 /* { 1320 syscallarg(int) which; 1321 syscallarg(int) who; 1322 } */ 1323 struct sys_getpriority_args bsa; 1324 int error; 1325 1326 SCARG(&bsa, which) = SCARG(uap, which); 1327 SCARG(&bsa, who) = SCARG(uap, who); 1328 1329 if ((error = sys_getpriority(l, &bsa, retval))) 1330 return error; 1331 1332 *retval = NZERO - *retval; 1333 1334 return 0; 1335 } 1336 1337 #endif /* !COMPAT_LINUX32 */ 1338