1 /* $NetBSD: linux_misc.c,v 1.203 2009/01/11 02:45:48 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1995, 1998, 1999, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe 9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Linux compatibility module. Try to deal with various Linux system calls. 35 */ 36 37 /* 38 * These functions have been moved to multiarch to allow 39 * selection of which machines include them to be 40 * determined by the individual files.linux_<arch> files. 41 * 42 * Function in multiarch: 43 * linux_sys_break : linux_break.c 44 * linux_sys_alarm : linux_misc_notalpha.c 45 * linux_sys_getresgid : linux_misc_notalpha.c 46 * linux_sys_nice : linux_misc_notalpha.c 47 * linux_sys_readdir : linux_misc_notalpha.c 48 * linux_sys_setresgid : linux_misc_notalpha.c 49 * linux_sys_time : linux_misc_notalpha.c 50 * linux_sys_utime : linux_misc_notalpha.c 51 * linux_sys_waitpid : linux_misc_notalpha.c 52 * linux_sys_old_mmap : linux_oldmmap.c 53 * linux_sys_oldolduname : linux_oldolduname.c 54 * linux_sys_oldselect : linux_oldselect.c 55 * linux_sys_olduname : linux_olduname.c 56 * linux_sys_pipe : linux_pipe.c 57 */ 58 59 #include <sys/cdefs.h> 60 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.203 2009/01/11 02:45:48 christos Exp $"); 61 62 #include <sys/param.h> 63 #include <sys/systm.h> 64 #include <sys/namei.h> 65 #include <sys/proc.h> 66 #include <sys/dirent.h> 67 #include <sys/file.h> 68 #include <sys/stat.h> 69 #include <sys/filedesc.h> 70 #include <sys/ioctl.h> 71 #include <sys/kernel.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/mman.h> 75 #include <sys/mount.h> 76 #include <sys/prot.h> 77 #include <sys/reboot.h> 78 #include <sys/resource.h> 79 #include <sys/resourcevar.h> 80 #include <sys/select.h> 81 #include <sys/signal.h> 82 #include <sys/signalvar.h> 83 #include <sys/socket.h> 84 #include <sys/time.h> 85 #include <sys/times.h> 86 #include <sys/vnode.h> 87 #include <sys/uio.h> 88 #include <sys/wait.h> 89 #include <sys/utsname.h> 90 #include <sys/unistd.h> 91 #include <sys/vfs_syscalls.h> 92 #include <sys/swap.h> /* for SWAP_ON */ 93 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */ 94 #include <sys/kauth.h> 95 96 #include <sys/ptrace.h> 97 #include <machine/ptrace.h> 98 99 #include <sys/syscall.h> 100 #include <sys/syscallargs.h> 101 102 #include <compat/linux/common/linux_machdep.h> 103 #include <compat/linux/common/linux_types.h> 104 #include <compat/linux/common/linux_signal.h> 105 #include <compat/linux/common/linux_ipc.h> 106 #include <compat/linux/common/linux_sem.h> 107 108 #include <compat/linux/linux_syscallargs.h> 109 110 #include <compat/linux/common/linux_fcntl.h> 111 #include <compat/linux/common/linux_mmap.h> 112 #include <compat/linux/common/linux_dirent.h> 113 #include <compat/linux/common/linux_util.h> 114 #include <compat/linux/common/linux_misc.h> 115 #ifndef COMPAT_LINUX32 116 #include <compat/linux/common/linux_statfs.h> 117 #include <compat/linux/common/linux_limit.h> 118 #endif 119 #include <compat/linux/common/linux_ptrace.h> 120 #include <compat/linux/common/linux_reboot.h> 121 #include <compat/linux/common/linux_emuldata.h> 122 123 #ifndef COMPAT_LINUX32 124 const int linux_ptrace_request_map[] = { 125 LINUX_PTRACE_TRACEME, PT_TRACE_ME, 126 LINUX_PTRACE_PEEKTEXT, PT_READ_I, 127 LINUX_PTRACE_PEEKDATA, PT_READ_D, 128 LINUX_PTRACE_POKETEXT, PT_WRITE_I, 129 LINUX_PTRACE_POKEDATA, PT_WRITE_D, 130 LINUX_PTRACE_CONT, PT_CONTINUE, 131 LINUX_PTRACE_KILL, PT_KILL, 132 LINUX_PTRACE_ATTACH, PT_ATTACH, 133 LINUX_PTRACE_DETACH, PT_DETACH, 134 # ifdef PT_STEP 135 LINUX_PTRACE_SINGLESTEP, PT_STEP, 136 # endif 137 LINUX_PTRACE_SYSCALL, PT_SYSCALL, 138 -1 139 }; 140 141 const struct linux_mnttypes linux_fstypes[] = { 142 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC }, 143 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC }, 144 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC }, 145 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC }, 146 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC }, 147 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC }, 148 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC }, 149 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC }, 150 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC }, 151 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC }, 152 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC }, 153 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC }, 154 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC }, 155 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC }, 156 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC }, 157 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC }, 158 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC }, 159 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC }, 160 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC }, 161 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC }, 162 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC }, 163 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC }, 164 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC }, 165 { MOUNT_TMPFS, LINUX_TMPFS_SUPER_MAGIC } 166 }; 167 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]); 168 169 # ifdef DEBUG_LINUX 170 #define DPRINTF(a) uprintf a 171 # else 172 #define DPRINTF(a) 173 # endif 174 175 /* Local linux_misc.c functions: */ 176 static void linux_to_bsd_mmap_args(struct sys_mmap_args *, 177 const struct linux_sys_mmap_args *); 178 static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *, 179 register_t *, off_t); 180 181 182 /* 183 * The information on a terminated (or stopped) process needs 184 * to be converted in order for Linux binaries to get a valid signal 185 * number out of it. 186 */ 187 int 188 bsd_to_linux_wstat(int st) 189 { 190 191 int sig; 192 193 if (WIFSIGNALED(st)) { 194 sig = WTERMSIG(st); 195 if (sig >= 0 && sig < NSIG) 196 st= (st & ~0177) | native_to_linux_signo[sig]; 197 } else if (WIFSTOPPED(st)) { 198 sig = WSTOPSIG(st); 199 if (sig >= 0 && sig < NSIG) 200 st = (st & ~0xff00) | 201 (native_to_linux_signo[sig] << 8); 202 } 203 return st; 204 } 205 206 /* 207 * wait4(2). Passed on to the NetBSD call, surrounded by code to 208 * reserve some space for a NetBSD-style wait status, and converting 209 * it to what Linux wants. 210 */ 211 int 212 linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval) 213 { 214 /* { 215 syscallarg(int) pid; 216 syscallarg(int *) status; 217 syscallarg(int) options; 218 syscallarg(struct rusage *) rusage; 219 } */ 220 int error, status, options, linux_options, was_zombie; 221 struct rusage ru; 222 int pid = SCARG(uap, pid); 223 proc_t *p; 224 225 linux_options = SCARG(uap, options); 226 options = WOPTSCHECKED; 227 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS)) 228 return (EINVAL); 229 230 if (linux_options & LINUX_WAIT4_WNOHANG) 231 options |= WNOHANG; 232 if (linux_options & LINUX_WAIT4_WUNTRACED) 233 options |= WUNTRACED; 234 if (linux_options & LINUX_WAIT4_WALL) 235 options |= WALLSIG; 236 if (linux_options & LINUX_WAIT4_WCLONE) 237 options |= WALTSIG; 238 # ifdef DIAGNOSTIC 239 if (linux_options & LINUX_WAIT4_WNOTHREAD) 240 printf("WARNING: %s: linux process %d.%d called " 241 "waitpid with __WNOTHREAD set!", 242 __FILE__, l->l_proc->p_pid, l->l_lid); 243 244 # endif 245 246 error = do_sys_wait(l, &pid, &status, options, 247 SCARG(uap, rusage) != NULL ? &ru : NULL, &was_zombie); 248 249 retval[0] = pid; 250 if (pid == 0) 251 return error; 252 253 p = curproc; 254 mutex_enter(p->p_lock); 255 sigdelset(&p->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */ 256 mutex_exit(p->p_lock); 257 258 if (SCARG(uap, rusage) != NULL) 259 error = copyout(&ru, SCARG(uap, rusage), sizeof(ru)); 260 261 if (error == 0 && SCARG(uap, status) != NULL) { 262 status = bsd_to_linux_wstat(status); 263 error = copyout(&status, SCARG(uap, status), sizeof status); 264 } 265 266 return error; 267 } 268 269 /* 270 * Linux brk(2). The check if the new address is >= the old one is 271 * done in the kernel in Linux. NetBSD does it in the library. 272 */ 273 int 274 linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval) 275 { 276 /* { 277 syscallarg(char *) nsize; 278 } */ 279 struct proc *p = l->l_proc; 280 char *nbrk = SCARG(uap, nsize); 281 struct sys_obreak_args oba; 282 struct vmspace *vm = p->p_vmspace; 283 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata; 284 285 SCARG(&oba, nsize) = nbrk; 286 287 if ((void *) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0) 288 ed->s->p_break = (char*)nbrk; 289 else 290 nbrk = ed->s->p_break; 291 292 retval[0] = (register_t)nbrk; 293 294 return 0; 295 } 296 297 /* 298 * Implement the fs stat functions. Straightforward. 299 */ 300 int 301 linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval) 302 { 303 /* { 304 syscallarg(const char *) path; 305 syscallarg(struct linux_statfs *) sp; 306 } */ 307 struct statvfs *sb; 308 struct linux_statfs ltmp; 309 int error; 310 311 sb = STATVFSBUF_GET(); 312 error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb); 313 if (error == 0) { 314 bsd_to_linux_statfs(sb, <mp); 315 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); 316 } 317 STATVFSBUF_PUT(sb); 318 319 return error; 320 } 321 322 int 323 linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval) 324 { 325 /* { 326 syscallarg(int) fd; 327 syscallarg(struct linux_statfs *) sp; 328 } */ 329 struct statvfs *sb; 330 struct linux_statfs ltmp; 331 int error; 332 333 sb = STATVFSBUF_GET(); 334 error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb); 335 if (error == 0) { 336 bsd_to_linux_statfs(sb, <mp); 337 error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); 338 } 339 STATVFSBUF_PUT(sb); 340 341 return error; 342 } 343 344 /* 345 * uname(). Just copy the info from the various strings stored in the 346 * kernel, and put it in the Linux utsname structure. That structure 347 * is almost the same as the NetBSD one, only it has fields 65 characters 348 * long, and an extra domainname field. 349 */ 350 int 351 linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval) 352 { 353 /* { 354 syscallarg(struct linux_utsname *) up; 355 } */ 356 struct linux_utsname luts; 357 358 strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname)); 359 strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); 360 strlcpy(luts.l_release, linux_release, sizeof(luts.l_release)); 361 strlcpy(luts.l_version, linux_version, sizeof(luts.l_version)); 362 strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine)); 363 strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname)); 364 365 return copyout(&luts, SCARG(uap, up), sizeof(luts)); 366 } 367 368 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */ 369 /* Used indirectly on: arm, i386, m68k */ 370 371 /* 372 * New type Linux mmap call. 373 * Only called directly on machines with >= 6 free regs. 374 */ 375 int 376 linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval) 377 { 378 /* { 379 syscallarg(unsigned long) addr; 380 syscallarg(size_t) len; 381 syscallarg(int) prot; 382 syscallarg(int) flags; 383 syscallarg(int) fd; 384 syscallarg(linux_off_t) offset; 385 } */ 386 387 if (SCARG(uap, offset) & PAGE_MASK) 388 return EINVAL; 389 390 return linux_mmap(l, uap, retval, SCARG(uap, offset)); 391 } 392 393 /* 394 * Guts of most architectures' mmap64() implementations. This shares 395 * its list of arguments with linux_sys_mmap(). 396 * 397 * The difference in linux_sys_mmap2() is that "offset" is actually 398 * (offset / pagesize), not an absolute byte count. This translation 399 * to pagesize offsets is done inside glibc between the mmap64() call 400 * point, and the actual syscall. 401 */ 402 int 403 linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval) 404 { 405 /* { 406 syscallarg(unsigned long) addr; 407 syscallarg(size_t) len; 408 syscallarg(int) prot; 409 syscallarg(int) flags; 410 syscallarg(int) fd; 411 syscallarg(linux_off_t) offset; 412 } */ 413 414 return linux_mmap(l, uap, retval, 415 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT); 416 } 417 418 /* 419 * Massage arguments and call system mmap(2). 420 */ 421 static int 422 linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset) 423 { 424 struct sys_mmap_args cma; 425 int error; 426 size_t mmoff=0; 427 428 linux_to_bsd_mmap_args(&cma, uap); 429 SCARG(&cma, pos) = offset; 430 431 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) { 432 /* 433 * Request for stack-like memory segment. On linux, this 434 * works by mmap()ping (small) segment, which is automatically 435 * extended when page fault happens below the currently 436 * allocated area. We emulate this by allocating (typically 437 * bigger) segment sized at current stack size limit, and 438 * offsetting the requested and returned address accordingly. 439 * Since physical pages are only allocated on-demand, this 440 * is effectively identical. 441 */ 442 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur; 443 444 if (SCARG(&cma, len) < ssl) { 445 /* Compute the address offset */ 446 mmoff = round_page(ssl) - SCARG(uap, len); 447 448 if (SCARG(&cma, addr)) 449 SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff; 450 451 SCARG(&cma, len) = (size_t) ssl; 452 } 453 } 454 455 error = sys_mmap(l, &cma, retval); 456 if (error) 457 return (error); 458 459 /* Shift the returned address for stack-like segment if necessary */ 460 retval[0] += mmoff; 461 462 return (0); 463 } 464 465 static void 466 linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap) 467 { 468 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags); 469 470 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED); 471 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE); 472 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED); 473 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON); 474 /* XXX XAX ERH: Any other flags here? There are more defined... */ 475 476 SCARG(cma, addr) = (void *)SCARG(uap, addr); 477 SCARG(cma, len) = SCARG(uap, len); 478 SCARG(cma, prot) = SCARG(uap, prot); 479 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */ 480 SCARG(cma, prot) |= VM_PROT_READ; 481 SCARG(cma, flags) = flags; 482 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd); 483 SCARG(cma, pad) = 0; 484 } 485 486 #define LINUX_MREMAP_MAYMOVE 1 487 #define LINUX_MREMAP_FIXED 2 488 489 int 490 linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval) 491 { 492 /* { 493 syscallarg(void *) old_address; 494 syscallarg(size_t) old_size; 495 syscallarg(size_t) new_size; 496 syscallarg(u_long) flags; 497 } */ 498 499 struct proc *p; 500 struct vm_map *map; 501 vaddr_t oldva; 502 vaddr_t newva; 503 size_t oldsize; 504 size_t newsize; 505 int flags; 506 int uvmflags; 507 int error; 508 509 flags = SCARG(uap, flags); 510 oldva = (vaddr_t)SCARG(uap, old_address); 511 oldsize = round_page(SCARG(uap, old_size)); 512 newsize = round_page(SCARG(uap, new_size)); 513 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) { 514 error = EINVAL; 515 goto done; 516 } 517 if ((flags & LINUX_MREMAP_FIXED) != 0) { 518 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) { 519 error = EINVAL; 520 goto done; 521 } 522 #if 0 /* notyet */ 523 newva = SCARG(uap, new_address); 524 uvmflags = MAP_FIXED; 525 #else /* notyet */ 526 error = EOPNOTSUPP; 527 goto done; 528 #endif /* notyet */ 529 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) { 530 uvmflags = 0; 531 } else { 532 newva = oldva; 533 uvmflags = MAP_FIXED; 534 } 535 p = l->l_proc; 536 map = &p->p_vmspace->vm_map; 537 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p, 538 uvmflags); 539 540 done: 541 *retval = (error != 0) ? 0 : (register_t)newva; 542 return error; 543 } 544 545 int 546 linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval) 547 { 548 /* { 549 syscallarg(const void *) start; 550 syscallarg(unsigned long) len; 551 syscallarg(int) prot; 552 } */ 553 struct vm_map_entry *entry; 554 struct vm_map *map; 555 struct proc *p; 556 vaddr_t end, start, len, stacklim; 557 int prot, grows; 558 559 start = (vaddr_t)SCARG(uap, start); 560 len = round_page(SCARG(uap, len)); 561 prot = SCARG(uap, prot); 562 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP); 563 prot &= ~grows; 564 end = start + len; 565 566 if (start & PAGE_MASK) 567 return EINVAL; 568 if (end < start) 569 return EINVAL; 570 if (end == start) 571 return 0; 572 573 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) 574 return EINVAL; 575 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP)) 576 return EINVAL; 577 578 p = l->l_proc; 579 map = &p->p_vmspace->vm_map; 580 vm_map_lock(map); 581 # ifdef notdef 582 VM_MAP_RANGE_CHECK(map, start, end); 583 # endif 584 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) { 585 vm_map_unlock(map); 586 return ENOMEM; 587 } 588 589 /* 590 * Approximate the behaviour of PROT_GROWS{DOWN,UP}. 591 */ 592 593 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 594 if (grows & LINUX_PROT_GROWSDOWN) { 595 if (USRSTACK - stacklim <= start && start < USRSTACK) { 596 start = USRSTACK - stacklim; 597 } else { 598 start = entry->start; 599 } 600 } else if (grows & LINUX_PROT_GROWSUP) { 601 if (USRSTACK <= end && end < USRSTACK + stacklim) { 602 end = USRSTACK + stacklim; 603 } else { 604 end = entry->end; 605 } 606 } 607 vm_map_unlock(map); 608 return uvm_map_protect(map, start, end, prot, FALSE); 609 } 610 611 /* 612 * This code is partly stolen from src/lib/libc/compat-43/times.c 613 */ 614 615 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz)) 616 617 int 618 linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval) 619 { 620 /* { 621 syscallarg(struct times *) tms; 622 } */ 623 struct proc *p = l->l_proc; 624 struct timeval t; 625 int error; 626 627 if (SCARG(uap, tms)) { 628 struct linux_tms ltms; 629 struct rusage ru; 630 631 mutex_enter(p->p_lock); 632 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL); 633 ltms.ltms_utime = CONVTCK(ru.ru_utime); 634 ltms.ltms_stime = CONVTCK(ru.ru_stime); 635 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime); 636 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime); 637 mutex_exit(p->p_lock); 638 639 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms))) 640 return error; 641 } 642 643 getmicrouptime(&t); 644 645 retval[0] = ((linux_clock_t)(CONVTCK(t))); 646 return 0; 647 } 648 649 #undef CONVTCK 650 651 /* 652 * Linux 'readdir' call. This code is mostly taken from the 653 * SunOS getdents call (see compat/sunos/sunos_misc.c), though 654 * an attempt has been made to keep it a little cleaner (failing 655 * miserably, because of the cruft needed if count 1 is passed). 656 * 657 * The d_off field should contain the offset of the next valid entry, 658 * but in Linux it has the offset of the entry itself. We emulate 659 * that bug here. 660 * 661 * Read in BSD-style entries, convert them, and copy them out. 662 * 663 * Note that this doesn't handle union-mounted filesystems. 664 */ 665 int 666 linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval) 667 { 668 /* { 669 syscallarg(int) fd; 670 syscallarg(struct linux_dirent *) dent; 671 syscallarg(unsigned int) count; 672 } */ 673 struct dirent *bdp; 674 struct vnode *vp; 675 char *inp, *tbuf; /* BSD-format */ 676 int len, reclen; /* BSD-format */ 677 char *outp; /* Linux-format */ 678 int resid, linux_reclen = 0; /* Linux-format */ 679 struct file *fp; 680 struct uio auio; 681 struct iovec aiov; 682 struct linux_dirent idb; 683 off_t off; /* true file offset */ 684 int buflen, error, eofflag, nbytes, oldcall; 685 struct vattr va; 686 off_t *cookiebuf = NULL, *cookie; 687 int ncookies; 688 689 /* fd_getvnode() will use the descriptor for us */ 690 if ((error = fd_getvnode(SCARG(uap, fd), &fp)) != 0) 691 return (error); 692 693 if ((fp->f_flag & FREAD) == 0) { 694 error = EBADF; 695 goto out1; 696 } 697 698 vp = (struct vnode *)fp->f_data; 699 if (vp->v_type != VDIR) { 700 error = EINVAL; 701 goto out1; 702 } 703 704 if ((error = VOP_GETATTR(vp, &va, l->l_cred))) 705 goto out1; 706 707 nbytes = SCARG(uap, count); 708 if (nbytes == 1) { /* emulating old, broken behaviour */ 709 nbytes = sizeof (idb); 710 buflen = max(va.va_blocksize, nbytes); 711 oldcall = 1; 712 } else { 713 buflen = min(MAXBSIZE, nbytes); 714 if (buflen < va.va_blocksize) 715 buflen = va.va_blocksize; 716 oldcall = 0; 717 } 718 tbuf = malloc(buflen, M_TEMP, M_WAITOK); 719 720 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 721 off = fp->f_offset; 722 again: 723 aiov.iov_base = tbuf; 724 aiov.iov_len = buflen; 725 auio.uio_iov = &aiov; 726 auio.uio_iovcnt = 1; 727 auio.uio_rw = UIO_READ; 728 auio.uio_resid = buflen; 729 auio.uio_offset = off; 730 UIO_SETUP_SYSSPACE(&auio); 731 /* 732 * First we read into the malloc'ed buffer, then 733 * we massage it into user space, one record at a time. 734 */ 735 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, 736 &ncookies); 737 if (error) 738 goto out; 739 740 inp = tbuf; 741 outp = (void *)SCARG(uap, dent); 742 resid = nbytes; 743 if ((len = buflen - auio.uio_resid) == 0) 744 goto eof; 745 746 for (cookie = cookiebuf; len > 0; len -= reclen) { 747 bdp = (struct dirent *)inp; 748 reclen = bdp->d_reclen; 749 if (reclen & 3) 750 panic("linux_readdir"); 751 if (bdp->d_fileno == 0) { 752 inp += reclen; /* it is a hole; squish it out */ 753 if (cookie) 754 off = *cookie++; 755 else 756 off += reclen; 757 continue; 758 } 759 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen); 760 if (reclen > len || resid < linux_reclen) { 761 /* entry too big for buffer, so just stop */ 762 outp++; 763 break; 764 } 765 /* 766 * Massage in place to make a Linux-shaped dirent (otherwise 767 * we have to worry about touching user memory outside of 768 * the copyout() call). 769 */ 770 idb.d_ino = bdp->d_fileno; 771 /* 772 * The old readdir() call misuses the offset and reclen fields. 773 */ 774 if (oldcall) { 775 idb.d_off = (linux_off_t)linux_reclen; 776 idb.d_reclen = (u_short)bdp->d_namlen; 777 } else { 778 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) { 779 compat_offseterr(vp, "linux_getdents"); 780 error = EINVAL; 781 goto out; 782 } 783 idb.d_off = (linux_off_t)off; 784 idb.d_reclen = (u_short)linux_reclen; 785 } 786 strcpy(idb.d_name, bdp->d_name); 787 if ((error = copyout((void *)&idb, outp, linux_reclen))) 788 goto out; 789 /* advance past this real entry */ 790 inp += reclen; 791 if (cookie) 792 off = *cookie++; /* each entry points to itself */ 793 else 794 off += reclen; 795 /* advance output past Linux-shaped entry */ 796 outp += linux_reclen; 797 resid -= linux_reclen; 798 if (oldcall) 799 break; 800 } 801 802 /* if we squished out the whole block, try again */ 803 if (outp == (void *)SCARG(uap, dent)) 804 goto again; 805 fp->f_offset = off; /* update the vnode offset */ 806 807 if (oldcall) 808 nbytes = resid + linux_reclen; 809 810 eof: 811 *retval = nbytes - resid; 812 out: 813 VOP_UNLOCK(vp, 0); 814 if (cookiebuf) 815 free(cookiebuf, M_TEMP); 816 free(tbuf, M_TEMP); 817 out1: 818 fd_putfile(SCARG(uap, fd)); 819 return error; 820 } 821 822 /* 823 * Even when just using registers to pass arguments to syscalls you can 824 * have 5 of them on the i386. So this newer version of select() does 825 * this. 826 */ 827 int 828 linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval) 829 { 830 /* { 831 syscallarg(int) nfds; 832 syscallarg(fd_set *) readfds; 833 syscallarg(fd_set *) writefds; 834 syscallarg(fd_set *) exceptfds; 835 syscallarg(struct timeval50 *) timeout; 836 } */ 837 838 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds), 839 SCARG(uap, writefds), SCARG(uap, exceptfds), 840 (struct linux_timeval *)SCARG(uap, timeout)); 841 } 842 843 /* 844 * Common code for the old and new versions of select(). A couple of 845 * things are important: 846 * 1) return the amount of time left in the 'timeout' parameter 847 * 2) select never returns ERESTART on Linux, always return EINTR 848 */ 849 int 850 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout) 851 struct lwp *l; 852 register_t *retval; 853 int nfds; 854 fd_set *readfds, *writefds, *exceptfds; 855 struct linux_timeval *timeout; 856 { 857 struct timeval tv0, tv1, utv, *tv = NULL; 858 struct linux_timeval ltv; 859 int error; 860 861 /* 862 * Store current time for computation of the amount of 863 * time left. 864 */ 865 if (timeout) { 866 if ((error = copyin(timeout, <v, sizeof(ltv)))) 867 return error; 868 utv.tv_sec = ltv.tv_sec; 869 utv.tv_usec = ltv.tv_usec; 870 if (itimerfix(&utv)) { 871 /* 872 * The timeval was invalid. Convert it to something 873 * valid that will act as it does under Linux. 874 */ 875 utv.tv_sec += utv.tv_usec / 1000000; 876 utv.tv_usec %= 1000000; 877 if (utv.tv_usec < 0) { 878 utv.tv_sec -= 1; 879 utv.tv_usec += 1000000; 880 } 881 if (utv.tv_sec < 0) 882 timerclear(&utv); 883 } 884 tv = &utv; 885 microtime(&tv0); 886 } 887 888 error = selcommon(l, retval, nfds, readfds, writefds, exceptfds, 889 tv, NULL); 890 891 if (error) { 892 /* 893 * See fs/select.c in the Linux kernel. Without this, 894 * Maelstrom doesn't work. 895 */ 896 if (error == ERESTART) 897 error = EINTR; 898 return error; 899 } 900 901 if (timeout) { 902 if (*retval) { 903 /* 904 * Compute how much time was left of the timeout, 905 * by subtracting the current time and the time 906 * before we started the call, and subtracting 907 * that result from the user-supplied value. 908 */ 909 microtime(&tv1); 910 timersub(&tv1, &tv0, &tv1); 911 timersub(&utv, &tv1, &utv); 912 if (utv.tv_sec < 0) 913 timerclear(&utv); 914 } else 915 timerclear(&utv); 916 ltv.tv_sec = utv.tv_sec; 917 ltv.tv_usec = utv.tv_usec; 918 if ((error = copyout(<v, timeout, sizeof(ltv)))) 919 return error; 920 } 921 922 return 0; 923 } 924 925 /* 926 * Set the 'personality' (emulation mode) for the current process. Only 927 * accept the Linux personality here (0). This call is needed because 928 * the Linux ELF crt0 issues it in an ugly kludge to make sure that 929 * ELF binaries run in Linux mode, not SVR4 mode. 930 */ 931 int 932 linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval) 933 { 934 /* { 935 syscallarg(int) per; 936 } */ 937 938 if (SCARG(uap, per) != 0) 939 return EINVAL; 940 retval[0] = 0; 941 return 0; 942 } 943 944 /* 945 * We have nonexistent fsuid equal to uid. 946 * If modification is requested, refuse. 947 */ 948 int 949 linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval) 950 { 951 /* { 952 syscallarg(uid_t) uid; 953 } */ 954 uid_t uid; 955 956 uid = SCARG(uap, uid); 957 if (kauth_cred_getuid(l->l_cred) != uid) 958 return sys_nosys(l, uap, retval); 959 960 *retval = uid; 961 return 0; 962 } 963 964 int 965 linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval) 966 { 967 /* { 968 syscallarg(gid_t) gid; 969 } */ 970 gid_t gid; 971 972 gid = SCARG(uap, gid); 973 if (kauth_cred_getgid(l->l_cred) != gid) 974 return sys_nosys(l, uap, retval); 975 976 *retval = gid; 977 return 0; 978 } 979 980 int 981 linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval) 982 { 983 /* { 984 syscallarg(uid_t) ruid; 985 syscallarg(uid_t) euid; 986 syscallarg(uid_t) suid; 987 } */ 988 989 /* 990 * Note: These checks are a little different than the NetBSD 991 * setreuid(2) call performs. This precisely follows the 992 * behavior of the Linux kernel. 993 */ 994 995 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid), 996 SCARG(uap, suid), 997 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S | 998 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S | 999 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S ); 1000 } 1001 1002 int 1003 linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval) 1004 { 1005 /* { 1006 syscallarg(uid_t *) ruid; 1007 syscallarg(uid_t *) euid; 1008 syscallarg(uid_t *) suid; 1009 } */ 1010 kauth_cred_t pc = l->l_cred; 1011 int error; 1012 uid_t uid; 1013 1014 /* 1015 * Linux copies these values out to userspace like so: 1016 * 1017 * 1. Copy out ruid. 1018 * 2. If that succeeds, copy out euid. 1019 * 3. If both of those succeed, copy out suid. 1020 */ 1021 uid = kauth_cred_getuid(pc); 1022 if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0) 1023 return (error); 1024 1025 uid = kauth_cred_geteuid(pc); 1026 if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0) 1027 return (error); 1028 1029 uid = kauth_cred_getsvuid(pc); 1030 1031 return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t))); 1032 } 1033 1034 int 1035 linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval) 1036 { 1037 /* { 1038 i386, m68k, powerpc: T=int 1039 alpha, amd64: T=long 1040 syscallarg(T) request; 1041 syscallarg(T) pid; 1042 syscallarg(T) addr; 1043 syscallarg(T) data; 1044 } */ 1045 const int *ptr; 1046 int request; 1047 int error; 1048 1049 ptr = linux_ptrace_request_map; 1050 request = SCARG(uap, request); 1051 while (*ptr != -1) 1052 if (*ptr++ == request) { 1053 struct sys_ptrace_args pta; 1054 1055 SCARG(&pta, req) = *ptr; 1056 SCARG(&pta, pid) = SCARG(uap, pid); 1057 SCARG(&pta, addr) = (void *)SCARG(uap, addr); 1058 SCARG(&pta, data) = SCARG(uap, data); 1059 1060 /* 1061 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually 1062 * to continue where the process left off previously. 1063 * The same thing is achieved by addr == (void *) 1 1064 * on NetBSD, so rewrite 'addr' appropriately. 1065 */ 1066 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0) 1067 SCARG(&pta, addr) = (void *) 1; 1068 1069 error = sysent[SYS_ptrace].sy_call(l, &pta, retval); 1070 if (error) 1071 return error; 1072 switch (request) { 1073 case LINUX_PTRACE_PEEKTEXT: 1074 case LINUX_PTRACE_PEEKDATA: 1075 error = copyout (retval, 1076 (void *)SCARG(uap, data), 1077 sizeof *retval); 1078 *retval = SCARG(uap, data); 1079 break; 1080 default: 1081 break; 1082 } 1083 return error; 1084 } 1085 else 1086 ptr++; 1087 1088 return LINUX_SYS_PTRACE_ARCH(l, uap, retval); 1089 } 1090 1091 int 1092 linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval) 1093 { 1094 /* { 1095 syscallarg(int) magic1; 1096 syscallarg(int) magic2; 1097 syscallarg(int) cmd; 1098 syscallarg(void *) arg; 1099 } */ 1100 struct sys_reboot_args /* { 1101 syscallarg(int) opt; 1102 syscallarg(char *) bootstr; 1103 } */ sra; 1104 int error; 1105 1106 if ((error = kauth_authorize_system(l->l_cred, 1107 KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0) 1108 return(error); 1109 1110 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1) 1111 return(EINVAL); 1112 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 && 1113 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A && 1114 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B) 1115 return(EINVAL); 1116 1117 switch ((unsigned long)SCARG(uap, cmd)) { 1118 case LINUX_REBOOT_CMD_RESTART: 1119 SCARG(&sra, opt) = RB_AUTOBOOT; 1120 break; 1121 case LINUX_REBOOT_CMD_HALT: 1122 SCARG(&sra, opt) = RB_HALT; 1123 break; 1124 case LINUX_REBOOT_CMD_POWER_OFF: 1125 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN; 1126 break; 1127 case LINUX_REBOOT_CMD_RESTART2: 1128 /* Reboot with an argument. */ 1129 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING; 1130 SCARG(&sra, bootstr) = SCARG(uap, arg); 1131 break; 1132 case LINUX_REBOOT_CMD_CAD_ON: 1133 return(EINVAL); /* We don't implement ctrl-alt-delete */ 1134 case LINUX_REBOOT_CMD_CAD_OFF: 1135 return(0); 1136 default: 1137 return(EINVAL); 1138 } 1139 1140 return(sys_reboot(l, &sra, retval)); 1141 } 1142 1143 /* 1144 * Copy of compat_12_sys_swapon(). 1145 */ 1146 int 1147 linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval) 1148 { 1149 /* { 1150 syscallarg(const char *) name; 1151 } */ 1152 struct sys_swapctl_args ua; 1153 1154 SCARG(&ua, cmd) = SWAP_ON; 1155 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name)); 1156 SCARG(&ua, misc) = 0; /* priority */ 1157 return (sys_swapctl(l, &ua, retval)); 1158 } 1159 1160 /* 1161 * Stop swapping to the file or block device specified by path. 1162 */ 1163 int 1164 linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval) 1165 { 1166 /* { 1167 syscallarg(const char *) path; 1168 } */ 1169 struct sys_swapctl_args ua; 1170 1171 SCARG(&ua, cmd) = SWAP_OFF; 1172 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/ 1173 return (sys_swapctl(l, &ua, retval)); 1174 } 1175 1176 /* 1177 * Copy of compat_09_sys_setdomainname() 1178 */ 1179 /* ARGSUSED */ 1180 int 1181 linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval) 1182 { 1183 /* { 1184 syscallarg(char *) domainname; 1185 syscallarg(int) len; 1186 } */ 1187 int name[2]; 1188 1189 name[0] = CTL_KERN; 1190 name[1] = KERN_DOMAINNAME; 1191 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname), 1192 SCARG(uap, len), l)); 1193 } 1194 1195 /* 1196 * sysinfo() 1197 */ 1198 /* ARGSUSED */ 1199 int 1200 linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval) 1201 { 1202 /* { 1203 syscallarg(struct linux_sysinfo *) arg; 1204 } */ 1205 struct linux_sysinfo si; 1206 struct loadavg *la; 1207 1208 si.uptime = time_uptime; 1209 la = &averunnable; 1210 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1211 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1212 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1213 si.totalram = ctob((u_long)physmem); 1214 si.freeram = (u_long)uvmexp.free * uvmexp.pagesize; 1215 si.sharedram = 0; /* XXX */ 1216 si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize; 1217 si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize; 1218 si.freeswap = 1219 (u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize; 1220 si.procs = nprocs; 1221 1222 /* The following are only present in newer Linux kernels. */ 1223 si.totalbig = 0; 1224 si.freebig = 0; 1225 si.mem_unit = 1; 1226 1227 return (copyout(&si, SCARG(uap, arg), sizeof si)); 1228 } 1229 1230 int 1231 linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval) 1232 { 1233 /* { 1234 syscallarg(int) which; 1235 # ifdef LINUX_LARGEFILE64 1236 syscallarg(struct rlimit *) rlp; 1237 # else 1238 syscallarg(struct orlimit *) rlp; 1239 # endif 1240 } */ 1241 # ifdef LINUX_LARGEFILE64 1242 struct rlimit orl; 1243 # else 1244 struct orlimit orl; 1245 # endif 1246 int which; 1247 1248 which = linux_to_bsd_limit(SCARG(uap, which)); 1249 if (which < 0) 1250 return -which; 1251 1252 bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]); 1253 1254 return copyout(&orl, SCARG(uap, rlp), sizeof(orl)); 1255 } 1256 1257 int 1258 linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval) 1259 { 1260 /* { 1261 syscallarg(int) which; 1262 # ifdef LINUX_LARGEFILE64 1263 syscallarg(struct rlimit *) rlp; 1264 # else 1265 syscallarg(struct orlimit *) rlp; 1266 # endif 1267 } */ 1268 struct rlimit rl; 1269 # ifdef LINUX_LARGEFILE64 1270 struct rlimit orl; 1271 # else 1272 struct orlimit orl; 1273 # endif 1274 int error; 1275 int which; 1276 1277 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0) 1278 return error; 1279 1280 which = linux_to_bsd_limit(SCARG(uap, which)); 1281 if (which < 0) 1282 return -which; 1283 1284 linux_to_bsd_rlimit(&rl, &orl); 1285 return dosetrlimit(l, l->l_proc, which, &rl); 1286 } 1287 1288 # if !defined(__mips__) && !defined(__amd64__) 1289 /* XXX: this doesn't look 100% common, at least mips doesn't have it */ 1290 int 1291 linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval) 1292 { 1293 return linux_sys_getrlimit(l, (const void *)uap, retval); 1294 } 1295 # endif 1296 1297 /* 1298 * This gets called for unsupported syscalls. The difference to sys_nosys() 1299 * is that process does not get SIGSYS, the call just returns with ENOSYS. 1300 * This is the way Linux does it and glibc depends on this behaviour. 1301 */ 1302 int 1303 linux_sys_nosys(struct lwp *l, const void *v, register_t *retval) 1304 { 1305 return (ENOSYS); 1306 } 1307 1308 int 1309 linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval) 1310 { 1311 /* { 1312 syscallarg(int) which; 1313 syscallarg(int) who; 1314 } */ 1315 struct sys_getpriority_args bsa; 1316 int error; 1317 1318 SCARG(&bsa, which) = SCARG(uap, which); 1319 SCARG(&bsa, who) = SCARG(uap, who); 1320 1321 if ((error = sys_getpriority(l, &bsa, retval))) 1322 return error; 1323 1324 *retval = NZERO - *retval; 1325 1326 return 0; 1327 } 1328 1329 #endif /* !COMPAT_LINUX32 */ 1330