1 /* $NetBSD: linux_misc.c,v 1.149 2006/01/31 14:02:55 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe 9 * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Linux compatibility module. Try to deal with various Linux system calls. 42 */ 43 44 /* 45 * These functions have been moved to multiarch to allow 46 * selection of which machines include them to be 47 * determined by the individual files.linux_<arch> files. 48 * 49 * Function in multiarch: 50 * linux_sys_break : linux_break.c 51 * linux_sys_alarm : linux_misc_notalpha.c 52 * linux_sys_getresgid : linux_misc_notalpha.c 53 * linux_sys_nice : linux_misc_notalpha.c 54 * linux_sys_readdir : linux_misc_notalpha.c 55 * linux_sys_setresgid : linux_misc_notalpha.c 56 * linux_sys_time : linux_misc_notalpha.c 57 * linux_sys_utime : linux_misc_notalpha.c 58 * linux_sys_waitpid : linux_misc_notalpha.c 59 * linux_sys_old_mmap : linux_oldmmap.c 60 * linux_sys_oldolduname : linux_oldolduname.c 61 * linux_sys_oldselect : linux_oldselect.c 62 * linux_sys_olduname : linux_olduname.c 63 * linux_sys_pipe : linux_pipe.c 64 */ 65 66 #include <sys/cdefs.h> 67 __KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.149 2006/01/31 14:02:55 yamt Exp $"); 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/namei.h> 72 #include <sys/proc.h> 73 #include <sys/dirent.h> 74 #include <sys/file.h> 75 #include <sys/stat.h> 76 #include <sys/filedesc.h> 77 #include <sys/ioctl.h> 78 #include <sys/kernel.h> 79 #include <sys/malloc.h> 80 #include <sys/mbuf.h> 81 #include <sys/mman.h> 82 #include <sys/mount.h> 83 #include <sys/reboot.h> 84 #include <sys/resource.h> 85 #include <sys/resourcevar.h> 86 #include <sys/signal.h> 87 #include <sys/signalvar.h> 88 #include <sys/socket.h> 89 #include <sys/time.h> 90 #include <sys/times.h> 91 #include <sys/vnode.h> 92 #include <sys/uio.h> 93 #include <sys/wait.h> 94 #include <sys/utsname.h> 95 #include <sys/unistd.h> 96 #include <sys/swap.h> /* for SWAP_ON */ 97 #include <sys/sysctl.h> /* for KERN_DOMAINNAME */ 98 99 #include <sys/ptrace.h> 100 #include <machine/ptrace.h> 101 102 #include <sys/sa.h> 103 #include <sys/syscallargs.h> 104 105 #include <compat/linux/common/linux_machdep.h> 106 #include <compat/linux/common/linux_types.h> 107 #include <compat/linux/common/linux_signal.h> 108 109 #include <compat/linux/linux_syscallargs.h> 110 111 #include <compat/linux/common/linux_fcntl.h> 112 #include <compat/linux/common/linux_mmap.h> 113 #include <compat/linux/common/linux_dirent.h> 114 #include <compat/linux/common/linux_util.h> 115 #include <compat/linux/common/linux_misc.h> 116 #include <compat/linux/common/linux_ptrace.h> 117 #include <compat/linux/common/linux_reboot.h> 118 #include <compat/linux/common/linux_emuldata.h> 119 120 const int linux_ptrace_request_map[] = { 121 LINUX_PTRACE_TRACEME, PT_TRACE_ME, 122 LINUX_PTRACE_PEEKTEXT, PT_READ_I, 123 LINUX_PTRACE_PEEKDATA, PT_READ_D, 124 LINUX_PTRACE_POKETEXT, PT_WRITE_I, 125 LINUX_PTRACE_POKEDATA, PT_WRITE_D, 126 LINUX_PTRACE_CONT, PT_CONTINUE, 127 LINUX_PTRACE_KILL, PT_KILL, 128 LINUX_PTRACE_ATTACH, PT_ATTACH, 129 LINUX_PTRACE_DETACH, PT_DETACH, 130 #ifdef PT_STEP 131 LINUX_PTRACE_SINGLESTEP, PT_STEP, 132 #endif 133 -1 134 }; 135 136 const struct linux_mnttypes linux_fstypes[] = { 137 { MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC }, 138 { MOUNT_NFS, LINUX_NFS_SUPER_MAGIC }, 139 { MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC }, 140 { MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC }, 141 { MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC }, 142 { MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC }, 143 { MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC }, 144 { MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC }, 145 { MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC }, 146 { MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC }, 147 { MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC }, 148 { MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC }, 149 { MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC }, 150 { MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC }, 151 { MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC }, 152 { MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC }, 153 { MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC }, 154 { MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC }, 155 { MOUNT_CODA, LINUX_CODA_SUPER_MAGIC }, 156 { MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC }, 157 { MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC }, 158 { MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC }, 159 { MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC }, 160 { MOUNT_TMPFS, LINUX_DEFAULT_SUPER_MAGIC } 161 }; 162 const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]); 163 164 #ifdef DEBUG_LINUX 165 #define DPRINTF(a) uprintf a 166 #else 167 #define DPRINTF(a) 168 #endif 169 170 /* Local linux_misc.c functions: */ 171 #ifndef __amd64__ 172 static void bsd_to_linux_statfs __P((const struct statvfs *, 173 struct linux_statfs *)); 174 #endif 175 static int linux_to_bsd_limit __P((int)); 176 static void linux_to_bsd_mmap_args __P((struct sys_mmap_args *, 177 const struct linux_sys_mmap_args *)); 178 static int linux_mmap __P((struct lwp *, struct linux_sys_mmap_args *, 179 register_t *, off_t)); 180 181 182 /* 183 * The information on a terminated (or stopped) process needs 184 * to be converted in order for Linux binaries to get a valid signal 185 * number out of it. 186 */ 187 void 188 bsd_to_linux_wstat(st) 189 int *st; 190 { 191 192 int sig; 193 194 if (WIFSIGNALED(*st)) { 195 sig = WTERMSIG(*st); 196 if (sig >= 0 && sig < NSIG) 197 *st= (*st& ~0177) | native_to_linux_signo[sig]; 198 } else if (WIFSTOPPED(*st)) { 199 sig = WSTOPSIG(*st); 200 if (sig >= 0 && sig < NSIG) 201 *st = (*st & ~0xff00) | 202 (native_to_linux_signo[sig] << 8); 203 } 204 } 205 206 /* 207 * wait4(2). Passed on to the NetBSD call, surrounded by code to 208 * reserve some space for a NetBSD-style wait status, and converting 209 * it to what Linux wants. 210 */ 211 int 212 linux_sys_wait4(l, v, retval) 213 struct lwp *l; 214 void *v; 215 register_t *retval; 216 { 217 struct linux_sys_wait4_args /* { 218 syscallarg(int) pid; 219 syscallarg(int *) status; 220 syscallarg(int) options; 221 syscallarg(struct rusage *) rusage; 222 } */ *uap = v; 223 struct proc *p = l->l_proc; 224 struct sys_wait4_args w4a; 225 int error, *status, tstat, options, linux_options; 226 caddr_t sg; 227 228 if (SCARG(uap, status) != NULL) { 229 sg = stackgap_init(p, 0); 230 status = (int *) stackgap_alloc(p, &sg, sizeof *status); 231 } else 232 status = NULL; 233 234 linux_options = SCARG(uap, options); 235 options = 0; 236 if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS)) 237 return (EINVAL); 238 239 if (linux_options & LINUX_WAIT4_WNOHANG) 240 options |= WNOHANG; 241 if (linux_options & LINUX_WAIT4_WUNTRACED) 242 options |= WUNTRACED; 243 if (linux_options & LINUX_WAIT4_WALL) 244 options |= WALLSIG; 245 if (linux_options & LINUX_WAIT4_WCLONE) 246 options |= WALTSIG; 247 #ifdef DIAGNOSTIC 248 if (linux_options & LINUX_WAIT4_WNOTHREAD) 249 printf("WARNING: %s: linux process %d.%d called " 250 "waitpid with __WNOTHREAD set!", 251 __FILE__, p->p_pid, l->l_lid); 252 253 #endif 254 255 SCARG(&w4a, pid) = SCARG(uap, pid); 256 SCARG(&w4a, status) = status; 257 SCARG(&w4a, options) = options; 258 SCARG(&w4a, rusage) = SCARG(uap, rusage); 259 260 if ((error = sys_wait4(l, &w4a, retval))) 261 return error; 262 263 sigdelset(&p->p_sigctx.ps_siglist, SIGCHLD); 264 265 if (status != NULL) { 266 if ((error = copyin(status, &tstat, sizeof tstat))) 267 return error; 268 269 bsd_to_linux_wstat(&tstat); 270 return copyout(&tstat, SCARG(uap, status), sizeof tstat); 271 } 272 273 return 0; 274 } 275 276 /* 277 * Linux brk(2). The check if the new address is >= the old one is 278 * done in the kernel in Linux. NetBSD does it in the library. 279 */ 280 int 281 linux_sys_brk(l, v, retval) 282 struct lwp *l; 283 void *v; 284 register_t *retval; 285 { 286 struct linux_sys_brk_args /* { 287 syscallarg(char *) nsize; 288 } */ *uap = v; 289 struct proc *p = l->l_proc; 290 char *nbrk = SCARG(uap, nsize); 291 struct sys_obreak_args oba; 292 struct vmspace *vm = p->p_vmspace; 293 struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata; 294 295 SCARG(&oba, nsize) = nbrk; 296 297 if ((caddr_t) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0) 298 ed->s->p_break = (char*)nbrk; 299 else 300 nbrk = ed->s->p_break; 301 302 retval[0] = (register_t)nbrk; 303 304 return 0; 305 } 306 307 #ifndef __amd64__ 308 /* 309 * Convert NetBSD statvfs structure to Linux statfs structure. 310 * Linux doesn't have f_flag, and we can't set f_frsize due 311 * to glibc statvfs() bug (see below). 312 */ 313 static void 314 bsd_to_linux_statfs(bsp, lsp) 315 const struct statvfs *bsp; 316 struct linux_statfs *lsp; 317 { 318 int i; 319 320 for (i = 0; i < linux_fstypes_cnt; i++) { 321 if (strcmp(bsp->f_fstypename, linux_fstypes[i].bsd) == 0) { 322 lsp->l_ftype = linux_fstypes[i].linux; 323 break; 324 } 325 } 326 327 if (i == linux_fstypes_cnt) { 328 DPRINTF(("unhandled fstype in linux emulation: %s\n", 329 bsp->f_fstypename)); 330 lsp->l_ftype = LINUX_DEFAULT_SUPER_MAGIC; 331 } 332 333 /* 334 * The sizes are expressed in number of blocks. The block 335 * size used for the size is f_frsize for POSIX-compliant 336 * statvfs. Linux statfs uses f_bsize as the block size 337 * (f_frsize used to not be available in Linux struct statfs). 338 * However, glibc 2.3.3 statvfs() wrapper fails to adjust the block 339 * counts for different f_frsize if f_frsize is provided by the kernel. 340 * POSIX conforming apps thus get wrong size if f_frsize 341 * is different to f_bsize. Thus, we just pretend we don't 342 * support f_frsize. 343 */ 344 345 lsp->l_fbsize = bsp->f_frsize; 346 lsp->l_ffrsize = 0; /* compat */ 347 lsp->l_fblocks = bsp->f_blocks; 348 lsp->l_fbfree = bsp->f_bfree; 349 lsp->l_fbavail = bsp->f_bavail; 350 lsp->l_ffiles = bsp->f_files; 351 lsp->l_fffree = bsp->f_ffree; 352 /* Linux sets the fsid to 0..., we don't */ 353 lsp->l_ffsid.val[0] = bsp->f_fsidx.__fsid_val[0]; 354 lsp->l_ffsid.val[1] = bsp->f_fsidx.__fsid_val[1]; 355 lsp->l_fnamelen = bsp->f_namemax; 356 (void)memset(lsp->l_fspare, 0, sizeof(lsp->l_fspare)); 357 } 358 359 /* 360 * Implement the fs stat functions. Straightforward. 361 */ 362 int 363 linux_sys_statfs(l, v, retval) 364 struct lwp *l; 365 void *v; 366 register_t *retval; 367 { 368 struct linux_sys_statfs_args /* { 369 syscallarg(const char *) path; 370 syscallarg(struct linux_statfs *) sp; 371 } */ *uap = v; 372 struct proc *p = l->l_proc; 373 struct statvfs btmp, *bsp; 374 struct linux_statfs ltmp; 375 struct sys_statvfs1_args bsa; 376 caddr_t sg; 377 int error; 378 379 sg = stackgap_init(p, 0); 380 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs)); 381 382 CHECK_ALT_EXIST(l, &sg, SCARG(uap, path)); 383 384 SCARG(&bsa, path) = SCARG(uap, path); 385 SCARG(&bsa, buf) = bsp; 386 SCARG(&bsa, flags) = ST_WAIT; 387 388 if ((error = sys_statvfs1(l, &bsa, retval))) 389 return error; 390 391 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp))) 392 return error; 393 394 bsd_to_linux_statfs(&btmp, <mp); 395 396 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp); 397 } 398 399 int 400 linux_sys_fstatfs(l, v, retval) 401 struct lwp *l; 402 void *v; 403 register_t *retval; 404 { 405 struct linux_sys_fstatfs_args /* { 406 syscallarg(int) fd; 407 syscallarg(struct linux_statfs *) sp; 408 } */ *uap = v; 409 struct proc *p = l->l_proc; 410 struct statvfs btmp, *bsp; 411 struct linux_statfs ltmp; 412 struct sys_fstatvfs1_args bsa; 413 caddr_t sg; 414 int error; 415 416 sg = stackgap_init(p, 0); 417 bsp = (struct statvfs *) stackgap_alloc(p, &sg, sizeof (struct statvfs)); 418 419 SCARG(&bsa, fd) = SCARG(uap, fd); 420 SCARG(&bsa, buf) = bsp; 421 SCARG(&bsa, flags) = ST_WAIT; 422 423 if ((error = sys_fstatvfs1(l, &bsa, retval))) 424 return error; 425 426 if ((error = copyin((caddr_t) bsp, (caddr_t) &btmp, sizeof btmp))) 427 return error; 428 429 bsd_to_linux_statfs(&btmp, <mp); 430 431 return copyout((caddr_t) <mp, (caddr_t) SCARG(uap, sp), sizeof ltmp); 432 } 433 #endif /* __amd64__ */ 434 435 /* 436 * uname(). Just copy the info from the various strings stored in the 437 * kernel, and put it in the Linux utsname structure. That structure 438 * is almost the same as the NetBSD one, only it has fields 65 characters 439 * long, and an extra domainname field. 440 */ 441 int 442 linux_sys_uname(l, v, retval) 443 struct lwp *l; 444 void *v; 445 register_t *retval; 446 { 447 struct linux_sys_uname_args /* { 448 syscallarg(struct linux_utsname *) up; 449 } */ *uap = v; 450 struct linux_utsname luts; 451 452 strncpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname)); 453 strncpy(luts.l_nodename, hostname, sizeof(luts.l_nodename)); 454 strncpy(luts.l_release, linux_release, sizeof(luts.l_release)); 455 strncpy(luts.l_version, linux_version, sizeof(luts.l_version)); 456 #ifdef LINUX_UNAME_ARCH 457 strncpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine)); 458 #else 459 strncpy(luts.l_machine, machine, sizeof(luts.l_machine)); 460 #endif 461 strncpy(luts.l_domainname, domainname, sizeof(luts.l_domainname)); 462 463 return copyout(&luts, SCARG(uap, up), sizeof(luts)); 464 } 465 466 /* Used directly on: alpha, mips, ppc, sparc, sparc64 */ 467 /* Used indirectly on: arm, i386, m68k */ 468 469 /* 470 * New type Linux mmap call. 471 * Only called directly on machines with >= 6 free regs. 472 */ 473 int 474 linux_sys_mmap(l, v, retval) 475 struct lwp *l; 476 void *v; 477 register_t *retval; 478 { 479 struct linux_sys_mmap_args /* { 480 syscallarg(unsigned long) addr; 481 syscallarg(size_t) len; 482 syscallarg(int) prot; 483 syscallarg(int) flags; 484 syscallarg(int) fd; 485 syscallarg(linux_off_t) offset; 486 } */ *uap = v; 487 488 if (SCARG(uap, offset) & PAGE_MASK) 489 return EINVAL; 490 491 return linux_mmap(l, uap, retval, SCARG(uap, offset)); 492 } 493 494 /* 495 * Guts of most architectures' mmap64() implementations. This shares 496 * its list of arguments with linux_sys_mmap(). 497 * 498 * The difference in linux_sys_mmap2() is that "offset" is actually 499 * (offset / pagesize), not an absolute byte count. This translation 500 * to pagesize offsets is done inside glibc between the mmap64() call 501 * point, and the actual syscall. 502 */ 503 int 504 linux_sys_mmap2(l, v, retval) 505 struct lwp *l; 506 void *v; 507 register_t *retval; 508 { 509 struct linux_sys_mmap2_args /* { 510 syscallarg(unsigned long) addr; 511 syscallarg(size_t) len; 512 syscallarg(int) prot; 513 syscallarg(int) flags; 514 syscallarg(int) fd; 515 syscallarg(linux_off_t) offset; 516 } */ *uap = v; 517 518 return linux_mmap(l, uap, retval, 519 ((off_t)SCARG(uap, offset)) << PAGE_SHIFT); 520 } 521 522 /* 523 * Massage arguments and call system mmap(2). 524 */ 525 static int 526 linux_mmap(l, uap, retval, offset) 527 struct lwp *l; 528 struct linux_sys_mmap_args *uap; 529 register_t *retval; 530 off_t offset; 531 { 532 struct sys_mmap_args cma; 533 int error; 534 size_t mmoff=0; 535 536 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) { 537 /* 538 * Request for stack-like memory segment. On linux, this 539 * works by mmap()ping (small) segment, which is automatically 540 * extended when page fault happens below the currently 541 * allocated area. We emulate this by allocating (typically 542 * bigger) segment sized at current stack size limit, and 543 * offsetting the requested and returned address accordingly. 544 * Since physical pages are only allocated on-demand, this 545 * is effectively identical. 546 */ 547 rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur; 548 549 if (SCARG(uap, len) < ssl) { 550 /* Compute the address offset */ 551 mmoff = round_page(ssl) - SCARG(uap, len); 552 553 if (SCARG(uap, addr)) 554 SCARG(uap, addr) -= mmoff; 555 556 SCARG(uap, len) = (size_t) ssl; 557 } 558 } 559 560 linux_to_bsd_mmap_args(&cma, uap); 561 SCARG(&cma, pos) = offset; 562 563 error = sys_mmap(l, &cma, retval); 564 if (error) 565 return (error); 566 567 /* Shift the returned address for stack-like segment if necessary */ 568 if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN && mmoff) 569 retval[0] += mmoff; 570 571 return (0); 572 } 573 574 static void 575 linux_to_bsd_mmap_args(cma, uap) 576 struct sys_mmap_args *cma; 577 const struct linux_sys_mmap_args *uap; 578 { 579 int flags = MAP_TRYFIXED, fl = SCARG(uap, flags); 580 581 flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED); 582 flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE); 583 flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED); 584 flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON); 585 /* XXX XAX ERH: Any other flags here? There are more defined... */ 586 587 SCARG(cma, addr) = (void *)SCARG(uap, addr); 588 SCARG(cma, len) = SCARG(uap, len); 589 SCARG(cma, prot) = SCARG(uap, prot); 590 if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */ 591 SCARG(cma, prot) |= VM_PROT_READ; 592 SCARG(cma, flags) = flags; 593 SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd); 594 SCARG(cma, pad) = 0; 595 } 596 597 #define LINUX_MREMAP_MAYMOVE 1 598 #define LINUX_MREMAP_FIXED 2 599 600 int 601 linux_sys_mremap(l, v, retval) 602 struct lwp *l; 603 void *v; 604 register_t *retval; 605 { 606 struct linux_sys_mremap_args /* { 607 syscallarg(void *) old_address; 608 syscallarg(size_t) old_size; 609 syscallarg(size_t) new_size; 610 syscallarg(u_long) flags; 611 } */ *uap = v; 612 613 struct proc *p; 614 struct vm_map *map; 615 vaddr_t oldva; 616 vaddr_t newva; 617 size_t oldsize; 618 size_t newsize; 619 int flags; 620 int uvmflags; 621 int error; 622 623 flags = SCARG(uap, flags); 624 oldva = (vaddr_t)SCARG(uap, old_address); 625 oldsize = round_page(SCARG(uap, old_size)); 626 newsize = round_page(SCARG(uap, new_size)); 627 if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) { 628 error = EINVAL; 629 goto done; 630 } 631 if ((flags & LINUX_MREMAP_FIXED) != 0) { 632 if ((flags & LINUX_MREMAP_MAYMOVE) == 0) { 633 error = EINVAL; 634 goto done; 635 } 636 #if 0 /* notyet */ 637 newva = SCARG(uap, new_address); 638 uvmflags = UVM_MREMAP_FIXED; 639 #else /* notyet */ 640 error = EOPNOTSUPP; 641 goto done; 642 #endif /* notyet */ 643 } else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) { 644 uvmflags = 0; 645 } else { 646 newva = oldva; 647 uvmflags = UVM_MREMAP_FIXED; 648 } 649 p = l->l_proc; 650 map = &p->p_vmspace->vm_map; 651 error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p, 652 uvmflags); 653 654 done: 655 *retval = (error != 0) ? 0 : (register_t)newva; 656 return error; 657 } 658 659 int 660 linux_sys_msync(l, v, retval) 661 struct lwp *l; 662 void *v; 663 register_t *retval; 664 { 665 struct linux_sys_msync_args /* { 666 syscallarg(caddr_t) addr; 667 syscallarg(int) len; 668 syscallarg(int) fl; 669 } */ *uap = v; 670 671 struct sys___msync13_args bma; 672 673 /* flags are ignored */ 674 SCARG(&bma, addr) = SCARG(uap, addr); 675 SCARG(&bma, len) = SCARG(uap, len); 676 SCARG(&bma, flags) = SCARG(uap, fl); 677 678 return sys___msync13(l, &bma, retval); 679 } 680 681 int 682 linux_sys_mprotect(l, v, retval) 683 struct lwp *l; 684 void *v; 685 register_t *retval; 686 { 687 struct linux_sys_mprotect_args /* { 688 syscallarg(const void *) start; 689 syscallarg(unsigned long) len; 690 syscallarg(int) prot; 691 } */ *uap = v; 692 struct vm_map_entry *entry; 693 struct vm_map *map; 694 struct proc *p; 695 vaddr_t end, start, len, stacklim; 696 int prot, grows; 697 698 start = (vaddr_t)SCARG(uap, start); 699 len = round_page(SCARG(uap, len)); 700 prot = SCARG(uap, prot); 701 grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP); 702 prot &= ~grows; 703 end = start + len; 704 705 if (start & PAGE_MASK) 706 return EINVAL; 707 if (end < start) 708 return EINVAL; 709 if (end == start) 710 return 0; 711 712 if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC)) 713 return EINVAL; 714 if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP)) 715 return EINVAL; 716 717 p = l->l_proc; 718 map = &p->p_vmspace->vm_map; 719 vm_map_lock(map); 720 #ifdef notdef 721 VM_MAP_RANGE_CHECK(map, start, end); 722 #endif 723 if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) { 724 vm_map_unlock(map); 725 return ENOMEM; 726 } 727 728 /* 729 * Approximate the behaviour of PROT_GROWS{DOWN,UP}. 730 */ 731 732 stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur; 733 if (grows & LINUX_PROT_GROWSDOWN) { 734 if (USRSTACK - stacklim <= start && start < USRSTACK) { 735 start = USRSTACK - stacklim; 736 } else { 737 start = entry->start; 738 } 739 } else if (grows & LINUX_PROT_GROWSUP) { 740 if (USRSTACK <= end && end < USRSTACK + stacklim) { 741 end = USRSTACK + stacklim; 742 } else { 743 end = entry->end; 744 } 745 } 746 vm_map_unlock(map); 747 return uvm_map_protect(map, start, end, prot, FALSE); 748 } 749 750 /* 751 * This code is partly stolen from src/lib/libc/compat-43/times.c 752 */ 753 754 #define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz)) 755 756 int 757 linux_sys_times(l, v, retval) 758 struct lwp *l; 759 void *v; 760 register_t *retval; 761 { 762 struct linux_sys_times_args /* { 763 syscallarg(struct times *) tms; 764 } */ *uap = v; 765 struct proc *p = l->l_proc; 766 struct timeval t; 767 int error, s; 768 769 if (SCARG(uap, tms)) { 770 struct linux_tms ltms; 771 struct rusage ru; 772 773 calcru(p, &ru.ru_utime, &ru.ru_stime, NULL); 774 ltms.ltms_utime = CONVTCK(ru.ru_utime); 775 ltms.ltms_stime = CONVTCK(ru.ru_stime); 776 777 ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime); 778 ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime); 779 780 if ((error = copyout(<ms, SCARG(uap, tms), sizeof ltms))) 781 return error; 782 } 783 784 s = splclock(); 785 timersub(&time, &boottime, &t); 786 splx(s); 787 788 retval[0] = ((linux_clock_t)(CONVTCK(t))); 789 return 0; 790 } 791 792 #undef CONVTCK 793 794 /* 795 * Linux 'readdir' call. This code is mostly taken from the 796 * SunOS getdents call (see compat/sunos/sunos_misc.c), though 797 * an attempt has been made to keep it a little cleaner (failing 798 * miserably, because of the cruft needed if count 1 is passed). 799 * 800 * The d_off field should contain the offset of the next valid entry, 801 * but in Linux it has the offset of the entry itself. We emulate 802 * that bug here. 803 * 804 * Read in BSD-style entries, convert them, and copy them out. 805 * 806 * Note that this doesn't handle union-mounted filesystems. 807 */ 808 int 809 linux_sys_getdents(l, v, retval) 810 struct lwp *l; 811 void *v; 812 register_t *retval; 813 { 814 struct linux_sys_getdents_args /* { 815 syscallarg(int) fd; 816 syscallarg(struct linux_dirent *) dent; 817 syscallarg(unsigned int) count; 818 } */ *uap = v; 819 struct proc *p = l->l_proc; 820 struct dirent *bdp; 821 struct vnode *vp; 822 caddr_t inp, tbuf; /* BSD-format */ 823 int len, reclen; /* BSD-format */ 824 caddr_t outp; /* Linux-format */ 825 int resid, linux_reclen = 0; /* Linux-format */ 826 struct file *fp; 827 struct uio auio; 828 struct iovec aiov; 829 struct linux_dirent idb; 830 off_t off; /* true file offset */ 831 int buflen, error, eofflag, nbytes, oldcall; 832 struct vattr va; 833 off_t *cookiebuf = NULL, *cookie; 834 int ncookies; 835 836 /* getvnode() will use the descriptor for us */ 837 if ((error = getvnode(p->p_fd, SCARG(uap, fd), &fp)) != 0) 838 return (error); 839 840 if ((fp->f_flag & FREAD) == 0) { 841 error = EBADF; 842 goto out1; 843 } 844 845 vp = (struct vnode *)fp->f_data; 846 if (vp->v_type != VDIR) { 847 error = EINVAL; 848 goto out1; 849 } 850 851 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l))) 852 goto out1; 853 854 nbytes = SCARG(uap, count); 855 if (nbytes == 1) { /* emulating old, broken behaviour */ 856 nbytes = sizeof (idb); 857 buflen = max(va.va_blocksize, nbytes); 858 oldcall = 1; 859 } else { 860 buflen = min(MAXBSIZE, nbytes); 861 if (buflen < va.va_blocksize) 862 buflen = va.va_blocksize; 863 oldcall = 0; 864 } 865 tbuf = malloc(buflen, M_TEMP, M_WAITOK); 866 867 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 868 off = fp->f_offset; 869 again: 870 aiov.iov_base = tbuf; 871 aiov.iov_len = buflen; 872 auio.uio_iov = &aiov; 873 auio.uio_iovcnt = 1; 874 auio.uio_rw = UIO_READ; 875 auio.uio_segflg = UIO_SYSSPACE; 876 auio.uio_lwp = NULL; 877 auio.uio_resid = buflen; 878 auio.uio_offset = off; 879 /* 880 * First we read into the malloc'ed buffer, then 881 * we massage it into user space, one record at a time. 882 */ 883 error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf, 884 &ncookies); 885 if (error) 886 goto out; 887 888 inp = tbuf; 889 outp = (caddr_t)SCARG(uap, dent); 890 resid = nbytes; 891 if ((len = buflen - auio.uio_resid) == 0) 892 goto eof; 893 894 for (cookie = cookiebuf; len > 0; len -= reclen) { 895 bdp = (struct dirent *)inp; 896 reclen = bdp->d_reclen; 897 if (reclen & 3) 898 panic("linux_readdir"); 899 if (bdp->d_fileno == 0) { 900 inp += reclen; /* it is a hole; squish it out */ 901 if (cookie) 902 off = *cookie++; 903 else 904 off += reclen; 905 continue; 906 } 907 linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen); 908 if (reclen > len || resid < linux_reclen) { 909 /* entry too big for buffer, so just stop */ 910 outp++; 911 break; 912 } 913 /* 914 * Massage in place to make a Linux-shaped dirent (otherwise 915 * we have to worry about touching user memory outside of 916 * the copyout() call). 917 */ 918 idb.d_ino = bdp->d_fileno; 919 /* 920 * The old readdir() call misuses the offset and reclen fields. 921 */ 922 if (oldcall) { 923 idb.d_off = (linux_off_t)linux_reclen; 924 idb.d_reclen = (u_short)bdp->d_namlen; 925 } else { 926 if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) { 927 compat_offseterr(vp, "linux_getdents"); 928 error = EINVAL; 929 goto out; 930 } 931 idb.d_off = (linux_off_t)off; 932 idb.d_reclen = (u_short)linux_reclen; 933 } 934 strcpy(idb.d_name, bdp->d_name); 935 if ((error = copyout((caddr_t)&idb, outp, linux_reclen))) 936 goto out; 937 /* advance past this real entry */ 938 inp += reclen; 939 if (cookie) 940 off = *cookie++; /* each entry points to itself */ 941 else 942 off += reclen; 943 /* advance output past Linux-shaped entry */ 944 outp += linux_reclen; 945 resid -= linux_reclen; 946 if (oldcall) 947 break; 948 } 949 950 /* if we squished out the whole block, try again */ 951 if (outp == (caddr_t)SCARG(uap, dent)) 952 goto again; 953 fp->f_offset = off; /* update the vnode offset */ 954 955 if (oldcall) 956 nbytes = resid + linux_reclen; 957 958 eof: 959 *retval = nbytes - resid; 960 out: 961 VOP_UNLOCK(vp, 0); 962 if (cookiebuf) 963 free(cookiebuf, M_TEMP); 964 free(tbuf, M_TEMP); 965 out1: 966 FILE_UNUSE(fp, l); 967 return error; 968 } 969 970 /* 971 * Even when just using registers to pass arguments to syscalls you can 972 * have 5 of them on the i386. So this newer version of select() does 973 * this. 974 */ 975 int 976 linux_sys_select(l, v, retval) 977 struct lwp *l; 978 void *v; 979 register_t *retval; 980 { 981 struct linux_sys_select_args /* { 982 syscallarg(int) nfds; 983 syscallarg(fd_set *) readfds; 984 syscallarg(fd_set *) writefds; 985 syscallarg(fd_set *) exceptfds; 986 syscallarg(struct timeval *) timeout; 987 } */ *uap = v; 988 989 return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds), 990 SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout)); 991 } 992 993 /* 994 * Common code for the old and new versions of select(). A couple of 995 * things are important: 996 * 1) return the amount of time left in the 'timeout' parameter 997 * 2) select never returns ERESTART on Linux, always return EINTR 998 */ 999 int 1000 linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout) 1001 struct lwp *l; 1002 register_t *retval; 1003 int nfds; 1004 fd_set *readfds, *writefds, *exceptfds; 1005 struct timeval *timeout; 1006 { 1007 struct sys_select_args bsa; 1008 struct proc *p = l->l_proc; 1009 struct timeval tv0, tv1, utv, *tvp; 1010 caddr_t sg; 1011 int error; 1012 1013 SCARG(&bsa, nd) = nfds; 1014 SCARG(&bsa, in) = readfds; 1015 SCARG(&bsa, ou) = writefds; 1016 SCARG(&bsa, ex) = exceptfds; 1017 SCARG(&bsa, tv) = timeout; 1018 1019 /* 1020 * Store current time for computation of the amount of 1021 * time left. 1022 */ 1023 if (timeout) { 1024 if ((error = copyin(timeout, &utv, sizeof(utv)))) 1025 return error; 1026 if (itimerfix(&utv)) { 1027 /* 1028 * The timeval was invalid. Convert it to something 1029 * valid that will act as it does under Linux. 1030 */ 1031 sg = stackgap_init(p, 0); 1032 tvp = stackgap_alloc(p, &sg, sizeof(utv)); 1033 utv.tv_sec += utv.tv_usec / 1000000; 1034 utv.tv_usec %= 1000000; 1035 if (utv.tv_usec < 0) { 1036 utv.tv_sec -= 1; 1037 utv.tv_usec += 1000000; 1038 } 1039 if (utv.tv_sec < 0) 1040 timerclear(&utv); 1041 if ((error = copyout(&utv, tvp, sizeof(utv)))) 1042 return error; 1043 SCARG(&bsa, tv) = tvp; 1044 } 1045 microtime(&tv0); 1046 } 1047 1048 error = sys_select(l, &bsa, retval); 1049 if (error) { 1050 /* 1051 * See fs/select.c in the Linux kernel. Without this, 1052 * Maelstrom doesn't work. 1053 */ 1054 if (error == ERESTART) 1055 error = EINTR; 1056 return error; 1057 } 1058 1059 if (timeout) { 1060 if (*retval) { 1061 /* 1062 * Compute how much time was left of the timeout, 1063 * by subtracting the current time and the time 1064 * before we started the call, and subtracting 1065 * that result from the user-supplied value. 1066 */ 1067 microtime(&tv1); 1068 timersub(&tv1, &tv0, &tv1); 1069 timersub(&utv, &tv1, &utv); 1070 if (utv.tv_sec < 0) 1071 timerclear(&utv); 1072 } else 1073 timerclear(&utv); 1074 if ((error = copyout(&utv, timeout, sizeof(utv)))) 1075 return error; 1076 } 1077 1078 return 0; 1079 } 1080 1081 /* 1082 * Get the process group of a certain process. Look it up 1083 * and return the value. 1084 */ 1085 int 1086 linux_sys_getpgid(l, v, retval) 1087 struct lwp *l; 1088 void *v; 1089 register_t *retval; 1090 { 1091 struct linux_sys_getpgid_args /* { 1092 syscallarg(int) pid; 1093 } */ *uap = v; 1094 struct proc *p = l->l_proc; 1095 struct proc *targp; 1096 1097 if (SCARG(uap, pid) != 0 && SCARG(uap, pid) != p->p_pid) { 1098 if ((targp = pfind(SCARG(uap, pid))) == 0) 1099 return ESRCH; 1100 } 1101 else 1102 targp = p; 1103 1104 retval[0] = targp->p_pgid; 1105 return 0; 1106 } 1107 1108 /* 1109 * Set the 'personality' (emulation mode) for the current process. Only 1110 * accept the Linux personality here (0). This call is needed because 1111 * the Linux ELF crt0 issues it in an ugly kludge to make sure that 1112 * ELF binaries run in Linux mode, not SVR4 mode. 1113 */ 1114 int 1115 linux_sys_personality(l, v, retval) 1116 struct lwp *l; 1117 void *v; 1118 register_t *retval; 1119 { 1120 struct linux_sys_personality_args /* { 1121 syscallarg(int) per; 1122 } */ *uap = v; 1123 1124 if (SCARG(uap, per) != 0) 1125 return EINVAL; 1126 retval[0] = 0; 1127 return 0; 1128 } 1129 1130 #if defined(__i386__) || defined(__m68k__) 1131 /* 1132 * The calls are here because of type conversions. 1133 */ 1134 int 1135 linux_sys_setreuid16(l, v, retval) 1136 struct lwp *l; 1137 void *v; 1138 register_t *retval; 1139 { 1140 struct linux_sys_setreuid16_args /* { 1141 syscallarg(int) ruid; 1142 syscallarg(int) euid; 1143 } */ *uap = v; 1144 struct sys_setreuid_args bsa; 1145 1146 SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? 1147 (uid_t)-1 : SCARG(uap, ruid); 1148 SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? 1149 (uid_t)-1 : SCARG(uap, euid); 1150 1151 return sys_setreuid(l, &bsa, retval); 1152 } 1153 1154 int 1155 linux_sys_setregid16(l, v, retval) 1156 struct lwp *l; 1157 void *v; 1158 register_t *retval; 1159 { 1160 struct linux_sys_setregid16_args /* { 1161 syscallarg(int) rgid; 1162 syscallarg(int) egid; 1163 } */ *uap = v; 1164 struct sys_setregid_args bsa; 1165 1166 SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? 1167 (uid_t)-1 : SCARG(uap, rgid); 1168 SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? 1169 (uid_t)-1 : SCARG(uap, egid); 1170 1171 return sys_setregid(l, &bsa, retval); 1172 } 1173 1174 int 1175 linux_sys_setresuid16(l, v, retval) 1176 struct lwp *l; 1177 void *v; 1178 register_t *retval; 1179 { 1180 struct linux_sys_setresuid16_args /* { 1181 syscallarg(uid_t) ruid; 1182 syscallarg(uid_t) euid; 1183 syscallarg(uid_t) suid; 1184 } */ *uap = v; 1185 struct linux_sys_setresuid16_args lsa; 1186 1187 SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ? 1188 (uid_t)-1 : SCARG(uap, ruid); 1189 SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ? 1190 (uid_t)-1 : SCARG(uap, euid); 1191 SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ? 1192 (uid_t)-1 : SCARG(uap, suid); 1193 1194 return linux_sys_setresuid(l, &lsa, retval); 1195 } 1196 1197 int 1198 linux_sys_setresgid16(l, v, retval) 1199 struct lwp *l; 1200 void *v; 1201 register_t *retval; 1202 { 1203 struct linux_sys_setresgid16_args /* { 1204 syscallarg(gid_t) rgid; 1205 syscallarg(gid_t) egid; 1206 syscallarg(gid_t) sgid; 1207 } */ *uap = v; 1208 struct linux_sys_setresgid16_args lsa; 1209 1210 SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ? 1211 (gid_t)-1 : SCARG(uap, rgid); 1212 SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ? 1213 (gid_t)-1 : SCARG(uap, egid); 1214 SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ? 1215 (gid_t)-1 : SCARG(uap, sgid); 1216 1217 return linux_sys_setresgid(l, &lsa, retval); 1218 } 1219 1220 int 1221 linux_sys_getgroups16(l, v, retval) 1222 struct lwp *l; 1223 void *v; 1224 register_t *retval; 1225 { 1226 struct linux_sys_getgroups16_args /* { 1227 syscallarg(int) gidsetsize; 1228 syscallarg(linux_gid_t *) gidset; 1229 } */ *uap = v; 1230 struct proc *p = l->l_proc; 1231 caddr_t sg; 1232 int n, error, i; 1233 struct sys_getgroups_args bsa; 1234 gid_t *bset, *kbset; 1235 linux_gid_t *lset; 1236 struct pcred *pc = p->p_cred; 1237 1238 n = SCARG(uap, gidsetsize); 1239 if (n < 0) 1240 return EINVAL; 1241 error = 0; 1242 bset = kbset = NULL; 1243 lset = NULL; 1244 if (n > 0) { 1245 n = min(pc->pc_ucred->cr_ngroups, n); 1246 sg = stackgap_init(p, 0); 1247 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t)); 1248 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK); 1249 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK); 1250 if (bset == NULL || kbset == NULL || lset == NULL) 1251 return ENOMEM; 1252 SCARG(&bsa, gidsetsize) = n; 1253 SCARG(&bsa, gidset) = bset; 1254 error = sys_getgroups(l, &bsa, retval); 1255 if (error != 0) 1256 goto out; 1257 error = copyin(bset, kbset, n * sizeof (gid_t)); 1258 if (error != 0) 1259 goto out; 1260 for (i = 0; i < n; i++) 1261 lset[i] = (linux_gid_t)kbset[i]; 1262 error = copyout(lset, SCARG(uap, gidset), 1263 n * sizeof (linux_gid_t)); 1264 } else 1265 *retval = pc->pc_ucred->cr_ngroups; 1266 out: 1267 if (kbset != NULL) 1268 free(kbset, M_TEMP); 1269 if (lset != NULL) 1270 free(lset, M_TEMP); 1271 return error; 1272 } 1273 1274 int 1275 linux_sys_setgroups16(l, v, retval) 1276 struct lwp *l; 1277 void *v; 1278 register_t *retval; 1279 { 1280 struct linux_sys_setgroups16_args /* { 1281 syscallarg(int) gidsetsize; 1282 syscallarg(linux_gid_t *) gidset; 1283 } */ *uap = v; 1284 struct proc *p = l->l_proc; 1285 caddr_t sg; 1286 int n; 1287 int error, i; 1288 struct sys_setgroups_args bsa; 1289 gid_t *bset, *kbset; 1290 linux_gid_t *lset; 1291 1292 n = SCARG(uap, gidsetsize); 1293 if (n < 0 || n > NGROUPS) 1294 return EINVAL; 1295 sg = stackgap_init(p, 0); 1296 bset = stackgap_alloc(p, &sg, n * sizeof (gid_t)); 1297 lset = malloc(n * sizeof (linux_gid_t), M_TEMP, M_WAITOK); 1298 kbset = malloc(n * sizeof (gid_t), M_TEMP, M_WAITOK); 1299 if (lset == NULL || bset == NULL) 1300 return ENOMEM; 1301 error = copyin(SCARG(uap, gidset), lset, n * sizeof (linux_gid_t)); 1302 if (error != 0) 1303 goto out; 1304 for (i = 0; i < n; i++) 1305 kbset[i] = (gid_t)lset[i]; 1306 error = copyout(kbset, bset, n * sizeof (gid_t)); 1307 if (error != 0) 1308 goto out; 1309 SCARG(&bsa, gidsetsize) = n; 1310 SCARG(&bsa, gidset) = bset; 1311 error = sys_setgroups(l, &bsa, retval); 1312 1313 out: 1314 if (lset != NULL) 1315 free(lset, M_TEMP); 1316 if (kbset != NULL) 1317 free(kbset, M_TEMP); 1318 1319 return error; 1320 } 1321 1322 #endif /* __i386__ || __m68k__ || __amd64__ */ 1323 1324 /* 1325 * We have nonexistent fsuid equal to uid. 1326 * If modification is requested, refuse. 1327 */ 1328 int 1329 linux_sys_setfsuid(l, v, retval) 1330 struct lwp *l; 1331 void *v; 1332 register_t *retval; 1333 { 1334 struct linux_sys_setfsuid_args /* { 1335 syscallarg(uid_t) uid; 1336 } */ *uap = v; 1337 struct proc *p = l->l_proc; 1338 uid_t uid; 1339 1340 uid = SCARG(uap, uid); 1341 if (p->p_cred->p_ruid != uid) 1342 return sys_nosys(l, v, retval); 1343 else 1344 return (0); 1345 } 1346 1347 /* XXX XXX XXX */ 1348 #ifndef alpha 1349 int 1350 linux_sys_getfsuid(l, v, retval) 1351 struct lwp *l; 1352 void *v; 1353 register_t *retval; 1354 { 1355 return sys_getuid(l, v, retval); 1356 } 1357 #endif 1358 1359 int 1360 linux_sys_setresuid(l, v, retval) 1361 struct lwp *l; 1362 void *v; 1363 register_t *retval; 1364 { 1365 struct linux_sys_setresuid_args /* { 1366 syscallarg(uid_t) ruid; 1367 syscallarg(uid_t) euid; 1368 syscallarg(uid_t) suid; 1369 } */ *uap = v; 1370 1371 /* 1372 * Note: These checks are a little different than the NetBSD 1373 * setreuid(2) call performs. This precisely follows the 1374 * behavior of the Linux kernel. 1375 */ 1376 1377 return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid), 1378 SCARG(uap, suid), 1379 ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S | 1380 ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S | 1381 ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S ); 1382 } 1383 1384 int 1385 linux_sys_getresuid(l, v, retval) 1386 struct lwp *l; 1387 void *v; 1388 register_t *retval; 1389 { 1390 struct linux_sys_getresuid_args /* { 1391 syscallarg(uid_t *) ruid; 1392 syscallarg(uid_t *) euid; 1393 syscallarg(uid_t *) suid; 1394 } */ *uap = v; 1395 struct proc *p = l->l_proc; 1396 struct pcred *pc = p->p_cred; 1397 int error; 1398 1399 /* 1400 * Linux copies these values out to userspace like so: 1401 * 1402 * 1. Copy out ruid. 1403 * 2. If that succeeds, copy out euid. 1404 * 3. If both of those succeed, copy out suid. 1405 */ 1406 if ((error = copyout(&pc->p_ruid, SCARG(uap, ruid), 1407 sizeof(uid_t))) != 0) 1408 return (error); 1409 1410 if ((error = copyout(&pc->pc_ucred->cr_uid, SCARG(uap, euid), 1411 sizeof(uid_t))) != 0) 1412 return (error); 1413 1414 return (copyout(&pc->p_svuid, SCARG(uap, suid), sizeof(uid_t))); 1415 } 1416 1417 int 1418 linux_sys_ptrace(l, v, retval) 1419 struct lwp *l; 1420 void *v; 1421 register_t *retval; 1422 { 1423 struct linux_sys_ptrace_args /* { 1424 i386, m68k, powerpc: T=int 1425 alpha, amd64: T=long 1426 syscallarg(T) request; 1427 syscallarg(T) pid; 1428 syscallarg(T) addr; 1429 syscallarg(T) data; 1430 } */ *uap = v; 1431 const int *ptr; 1432 int request; 1433 int error; 1434 1435 ptr = linux_ptrace_request_map; 1436 request = SCARG(uap, request); 1437 while (*ptr != -1) 1438 if (*ptr++ == request) { 1439 struct sys_ptrace_args pta; 1440 1441 SCARG(&pta, req) = *ptr; 1442 SCARG(&pta, pid) = SCARG(uap, pid); 1443 SCARG(&pta, addr) = (caddr_t)SCARG(uap, addr); 1444 SCARG(&pta, data) = SCARG(uap, data); 1445 1446 /* 1447 * Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually 1448 * to continue where the process left off previously. 1449 * The same thing is achieved by addr == (caddr_t) 1 1450 * on NetBSD, so rewrite 'addr' appropriately. 1451 */ 1452 if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0) 1453 SCARG(&pta, addr) = (caddr_t) 1; 1454 1455 error = sys_ptrace(l, &pta, retval); 1456 if (error) 1457 return error; 1458 switch (request) { 1459 case LINUX_PTRACE_PEEKTEXT: 1460 case LINUX_PTRACE_PEEKDATA: 1461 error = copyout (retval, 1462 (caddr_t)SCARG(uap, data), 1463 sizeof *retval); 1464 *retval = SCARG(uap, data); 1465 break; 1466 default: 1467 break; 1468 } 1469 return error; 1470 } 1471 else 1472 ptr++; 1473 1474 return LINUX_SYS_PTRACE_ARCH(l, uap, retval); 1475 } 1476 1477 int 1478 linux_sys_reboot(struct lwp *l, void *v, register_t *retval) 1479 { 1480 struct linux_sys_reboot_args /* { 1481 syscallarg(int) magic1; 1482 syscallarg(int) magic2; 1483 syscallarg(int) cmd; 1484 syscallarg(void *) arg; 1485 } */ *uap = v; 1486 struct sys_reboot_args /* { 1487 syscallarg(int) opt; 1488 syscallarg(char *) bootstr; 1489 } */ sra; 1490 struct proc *p = l->l_proc; 1491 int error; 1492 1493 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) 1494 return(error); 1495 1496 if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1) 1497 return(EINVAL); 1498 if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 && 1499 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A && 1500 SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B) 1501 return(EINVAL); 1502 1503 switch (SCARG(uap, cmd)) { 1504 case LINUX_REBOOT_CMD_RESTART: 1505 SCARG(&sra, opt) = RB_AUTOBOOT; 1506 break; 1507 case LINUX_REBOOT_CMD_HALT: 1508 SCARG(&sra, opt) = RB_HALT; 1509 break; 1510 case LINUX_REBOOT_CMD_POWER_OFF: 1511 SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN; 1512 break; 1513 case LINUX_REBOOT_CMD_RESTART2: 1514 /* Reboot with an argument. */ 1515 SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING; 1516 SCARG(&sra, bootstr) = SCARG(uap, arg); 1517 break; 1518 case LINUX_REBOOT_CMD_CAD_ON: 1519 return(EINVAL); /* We don't implement ctrl-alt-delete */ 1520 case LINUX_REBOOT_CMD_CAD_OFF: 1521 return(0); 1522 default: 1523 return(EINVAL); 1524 } 1525 1526 return(sys_reboot(l, &sra, retval)); 1527 } 1528 1529 /* 1530 * Copy of compat_12_sys_swapon(). 1531 */ 1532 int 1533 linux_sys_swapon(l, v, retval) 1534 struct lwp *l; 1535 void *v; 1536 register_t *retval; 1537 { 1538 struct sys_swapctl_args ua; 1539 struct linux_sys_swapon_args /* { 1540 syscallarg(const char *) name; 1541 } */ *uap = v; 1542 1543 SCARG(&ua, cmd) = SWAP_ON; 1544 SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name)); 1545 SCARG(&ua, misc) = 0; /* priority */ 1546 return (sys_swapctl(l, &ua, retval)); 1547 } 1548 1549 /* 1550 * Stop swapping to the file or block device specified by path. 1551 */ 1552 int 1553 linux_sys_swapoff(l, v, retval) 1554 struct lwp *l; 1555 void *v; 1556 register_t *retval; 1557 { 1558 struct sys_swapctl_args ua; 1559 struct linux_sys_swapoff_args /* { 1560 syscallarg(const char *) path; 1561 } */ *uap = v; 1562 1563 SCARG(&ua, cmd) = SWAP_OFF; 1564 SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/ 1565 return (sys_swapctl(l, &ua, retval)); 1566 } 1567 1568 /* 1569 * Copy of compat_09_sys_setdomainname() 1570 */ 1571 /* ARGSUSED */ 1572 int 1573 linux_sys_setdomainname(l, v, retval) 1574 struct lwp *l; 1575 void *v; 1576 register_t *retval; 1577 { 1578 struct linux_sys_setdomainname_args /* { 1579 syscallarg(char *) domainname; 1580 syscallarg(int) len; 1581 } */ *uap = v; 1582 int name[2]; 1583 1584 name[0] = CTL_KERN; 1585 name[1] = KERN_DOMAINNAME; 1586 return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname), 1587 SCARG(uap, len), l)); 1588 } 1589 1590 /* 1591 * sysinfo() 1592 */ 1593 /* ARGSUSED */ 1594 int 1595 linux_sys_sysinfo(l, v, retval) 1596 struct lwp *l; 1597 void *v; 1598 register_t *retval; 1599 { 1600 struct linux_sys_sysinfo_args /* { 1601 syscallarg(struct linux_sysinfo *) arg; 1602 } */ *uap = v; 1603 struct linux_sysinfo si; 1604 struct loadavg *la; 1605 1606 si.uptime = time.tv_sec - boottime.tv_sec; 1607 la = &averunnable; 1608 si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1609 si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1610 si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale; 1611 si.totalram = ctob(physmem); 1612 si.freeram = uvmexp.free * uvmexp.pagesize; 1613 si.sharedram = 0; /* XXX */ 1614 si.bufferram = uvmexp.filepages * uvmexp.pagesize; 1615 si.totalswap = uvmexp.swpages * uvmexp.pagesize; 1616 si.freeswap = (uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize; 1617 si.procs = nprocs; 1618 1619 /* The following are only present in newer Linux kernels. */ 1620 si.totalbig = 0; 1621 si.freebig = 0; 1622 si.mem_unit = 1; 1623 1624 return (copyout(&si, SCARG(uap, arg), sizeof si)); 1625 } 1626 1627 #ifdef LINUX_LARGEFILE64 1628 #define bsd_to_linux_rlimit1(l, b, f) \ 1629 (l)->f = ((b)->f == RLIM_INFINITY || \ 1630 ((b)->f & 0x8000000000000000UL) != 0) ? \ 1631 LINUX_RLIM_INFINITY : (b)->f 1632 #else 1633 #define bsd_to_linux_rlimit1(l, b, f) \ 1634 (l)->f = ((b)->f == RLIM_INFINITY || \ 1635 ((b)->f & 0xffffffff00000000ULL) != 0) ? \ 1636 LINUX_RLIM_INFINITY : (int32_t)(b)->f 1637 #endif 1638 #define bsd_to_linux_rlimit(l, b) \ 1639 bsd_to_linux_rlimit1(l, b, rlim_cur); \ 1640 bsd_to_linux_rlimit1(l, b, rlim_max) 1641 1642 #define linux_to_bsd_rlimit1(b, l, f) \ 1643 (b)->f = (l)->f == LINUX_RLIM_INFINITY ? RLIM_INFINITY : (l)->f 1644 #define linux_to_bsd_rlimit(b, l) \ 1645 linux_to_bsd_rlimit1(b, l, rlim_cur); \ 1646 linux_to_bsd_rlimit1(b, l, rlim_max) 1647 1648 static int 1649 linux_to_bsd_limit(lim) 1650 int lim; 1651 { 1652 switch (lim) { 1653 case LINUX_RLIMIT_CPU: 1654 return RLIMIT_CPU; 1655 case LINUX_RLIMIT_FSIZE: 1656 return RLIMIT_FSIZE; 1657 case LINUX_RLIMIT_DATA: 1658 return RLIMIT_DATA; 1659 case LINUX_RLIMIT_STACK: 1660 return RLIMIT_STACK; 1661 case LINUX_RLIMIT_CORE: 1662 return RLIMIT_CORE; 1663 case LINUX_RLIMIT_RSS: 1664 return RLIMIT_RSS; 1665 case LINUX_RLIMIT_NPROC: 1666 return RLIMIT_NPROC; 1667 case LINUX_RLIMIT_NOFILE: 1668 return RLIMIT_NOFILE; 1669 case LINUX_RLIMIT_MEMLOCK: 1670 return RLIMIT_MEMLOCK; 1671 case LINUX_RLIMIT_AS: 1672 case LINUX_RLIMIT_LOCKS: 1673 return -EOPNOTSUPP; 1674 default: 1675 return -EINVAL; 1676 } 1677 } 1678 1679 1680 int 1681 linux_sys_getrlimit(l, v, retval) 1682 struct lwp *l; 1683 void *v; 1684 register_t *retval; 1685 { 1686 struct linux_sys_getrlimit_args /* { 1687 syscallarg(int) which; 1688 #ifdef LINUX_LARGEFILE64 1689 syscallarg(struct rlimit *) rlp; 1690 #else 1691 syscallarg(struct orlimit *) rlp; 1692 #endif 1693 } */ *uap = v; 1694 struct proc *p = l->l_proc; 1695 caddr_t sg = stackgap_init(p, 0); 1696 struct sys_getrlimit_args ap; 1697 struct rlimit rl; 1698 #ifdef LINUX_LARGEFILE64 1699 struct rlimit orl; 1700 #else 1701 struct orlimit orl; 1702 #endif 1703 int error; 1704 1705 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which)); 1706 if ((error = SCARG(&ap, which)) < 0) 1707 return -error; 1708 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl); 1709 if ((error = sys_getrlimit(l, &ap, retval)) != 0) 1710 return error; 1711 if ((error = copyin(SCARG(&ap, rlp), &rl, sizeof(rl))) != 0) 1712 return error; 1713 bsd_to_linux_rlimit(&orl, &rl); 1714 1715 return copyout(&orl, SCARG(uap, rlp), sizeof(orl)); 1716 } 1717 1718 int 1719 linux_sys_setrlimit(l, v, retval) 1720 struct lwp *l; 1721 void *v; 1722 register_t *retval; 1723 { 1724 struct linux_sys_setrlimit_args /* { 1725 syscallarg(int) which; 1726 #ifdef LINUX_LARGEFILE64 1727 syscallarg(struct rlimit *) rlp; 1728 #else 1729 syscallarg(struct orlimit *) rlp; 1730 #endif 1731 } */ *uap = v; 1732 struct proc *p = l->l_proc; 1733 caddr_t sg = stackgap_init(p, 0); 1734 struct sys_getrlimit_args ap; 1735 struct rlimit rl; 1736 #ifdef LINUX_LARGEFILE64 1737 struct rlimit orl; 1738 #else 1739 struct orlimit orl; 1740 #endif 1741 int error; 1742 1743 SCARG(&ap, which) = linux_to_bsd_limit(SCARG(uap, which)); 1744 SCARG(&ap, rlp) = stackgap_alloc(p, &sg, sizeof rl); 1745 if ((error = SCARG(&ap, which)) < 0) 1746 return -error; 1747 if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0) 1748 return error; 1749 linux_to_bsd_rlimit(&rl, &orl); 1750 if ((error = copyout(&rl, SCARG(&ap, rlp), sizeof(rl))) != 0) 1751 return error; 1752 return sys_setrlimit(l, &ap, retval); 1753 } 1754 1755 #if !defined(__mips__) && !defined(__amd64__) 1756 /* XXX: this doesn't look 100% common, at least mips doesn't have it */ 1757 int 1758 linux_sys_ugetrlimit(l, v, retval) 1759 struct lwp *l; 1760 void *v; 1761 register_t *retval; 1762 { 1763 return linux_sys_getrlimit(l, v, retval); 1764 } 1765 #endif 1766 1767 /* 1768 * This gets called for unsupported syscalls. The difference to sys_nosys() 1769 * is that process does not get SIGSYS, the call just returns with ENOSYS. 1770 * This is the way Linux does it and glibc depends on this behaviour. 1771 */ 1772 int 1773 linux_sys_nosys(l, v, retval) 1774 struct lwp *l; 1775 void *v; 1776 register_t *retval; 1777 { 1778 return (ENOSYS); 1779 } 1780