1 /* $NetBSD: linux_ipccall.c,v 1.19 1999/01/10 15:05:36 tron Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Frank van der Linden and Eric Haszlakiewicz. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 #if defined(_KERNEL) && !defined(_LKM) 40 #include "opt_sysv.h" 41 #endif 42 43 #include <sys/types.h> 44 #include <sys/param.h> 45 #include <sys/shm.h> 46 #include <sys/sem.h> 47 #include <sys/msg.h> 48 #include <sys/proc.h> 49 #include <sys/systm.h> 50 51 /* real syscalls */ 52 #include <sys/mount.h> 53 #include <sys/syscallargs.h> 54 55 /* sys_ipc + args prototype */ 56 #include <compat/linux/common/linux_types.h> 57 #include <compat/linux/common/linux_signal.h> 58 59 #include <compat/linux/linux_syscallargs.h> 60 #include <compat/linux/linux_syscall.h> 61 62 /* general ipc defines */ 63 #include <compat/linux/common/linux_ipc.h> 64 65 /* prototypes for real/normal linux-emul syscalls */ 66 #include <compat/linux/common/linux_msg.h> 67 #include <compat/linux/common/linux_shm.h> 68 #include <compat/linux/common/linux_sem.h> 69 70 /* prototypes for sys_ipc stuff */ 71 #include <compat/linux/common/linux_ipccall.h> 72 73 /* Used on: arm, i386, m68k, mips, ppc, sparc, sparc64 */ 74 /* Not used on: alpha */ 75 76 /* 77 * Stuff to deal with the SysV ipc/shm/semaphore interface in Linux. 78 * The main difference is, that Linux handles it all via one 79 * system call, which has the usual maximum amount of 5 arguments. 80 * This results in a kludge for calls that take 6 of them. 81 * 82 * The SYSV??? options have to be enabled to get the appropriate 83 * functions to work. 84 */ 85 86 int 87 linux_sys_ipc(p, v, retval) 88 struct proc *p; 89 void *v; 90 register_t *retval; 91 { 92 struct linux_sys_ipc_args /* { 93 syscallarg(int) what; 94 syscallarg(int) a1; 95 syscallarg(int) a2; 96 syscallarg(int) a3; 97 syscallarg(caddr_t) ptr; 98 } */ *uap = v; 99 100 switch (SCARG(uap, what)) { 101 #ifdef SYSVSEM 102 case LINUX_SYS_semop: 103 return linux_semop(p, uap, retval); 104 case LINUX_SYS_semget: 105 return linux_semget(p, uap, retval); 106 case LINUX_SYS_semctl: { 107 struct linux_sys_semctl_args bsa; 108 union linux_semun arg; 109 int error; 110 111 SCARG(&bsa, semid) = SCARG(uap, a1); 112 SCARG(&bsa, semnum) = SCARG(uap, a2); 113 SCARG(&bsa, cmd) = SCARG(uap, a3); 114 /* Convert from (union linux_semun *) to (union linux_semun) */ 115 if ((error = copyin(SCARG(uap, ptr), &arg, sizeof arg))) 116 return error; 117 SCARG(&bsa, arg) = arg; 118 119 return linux_sys_semctl(p, &bsa, retval); 120 } 121 #endif 122 #ifdef SYSVMSG 123 case LINUX_SYS_msgsnd: 124 return linux_msgsnd(p, uap, retval); 125 case LINUX_SYS_msgrcv: 126 return linux_msgrcv(p, uap, retval); 127 case LINUX_SYS_msgget: 128 return linux_msgget(p, uap, retval); 129 case LINUX_SYS_msgctl: { 130 struct linux_sys_msgctl_args bsa; 131 132 SCARG(&bsa, msqid) = SCARG(uap, a1); 133 SCARG(&bsa, cmd) = SCARG(uap, a2); 134 SCARG(&bsa, buf) = (struct linux_msqid_ds *)SCARG(uap, ptr); 135 136 return linux_sys_msgctl(p, &bsa, retval); 137 } 138 #endif 139 #ifdef SYSVSHM 140 case LINUX_SYS_shmat: { 141 struct linux_sys_shmat_args bsa; 142 143 SCARG(&bsa, shmid) = SCARG(uap, a1); 144 SCARG(&bsa, shmaddr) = (void *)SCARG(uap, ptr); 145 SCARG(&bsa, shmflg) = SCARG(uap, a2); 146 /* XXX passing pointer inside int here */ 147 SCARG(&bsa, raddr) = (u_long *)SCARG(uap, a3); 148 149 return linux_sys_shmat(p, &bsa, retval); 150 } 151 case LINUX_SYS_shmdt: 152 return linux_shmdt(p, uap, retval); 153 case LINUX_SYS_shmget: 154 return linux_shmget(p, uap, retval); 155 case LINUX_SYS_shmctl: { 156 struct linux_sys_shmctl_args bsa; 157 158 SCARG(&bsa, shmid) = SCARG(uap, a1); 159 SCARG(&bsa, cmd) = SCARG(uap, a2); 160 SCARG(&bsa, buf) = (struct linux_shmid_ds *)SCARG(uap, ptr); 161 162 return linux_sys_shmctl(p, &bsa, retval); 163 } 164 #endif 165 default: 166 return ENOSYS; 167 } 168 } 169 170 #ifdef SYSVSEM 171 inline int 172 linux_semop(p, uap, retval) 173 struct proc *p; 174 struct linux_sys_ipc_args /* { 175 syscallarg(int) what; 176 syscallarg(int) a1; 177 syscallarg(int) a2; 178 syscallarg(int) a3; 179 syscallarg(caddr_t) ptr; 180 } */ *uap; 181 register_t *retval; 182 { 183 struct sys_semop_args bsa; 184 185 SCARG(&bsa, semid) = SCARG(uap, a1); 186 SCARG(&bsa, sops) = (struct sembuf *)SCARG(uap, ptr); 187 SCARG(&bsa, nsops) = SCARG(uap, a2); 188 189 return sys_semop(p, &bsa, retval); 190 } 191 192 inline int 193 linux_semget(p, uap, retval) 194 struct proc *p; 195 struct linux_sys_ipc_args /* { 196 syscallarg(int) what; 197 syscallarg(int) a1; 198 syscallarg(int) a2; 199 syscallarg(int) a3; 200 syscallarg(caddr_t) ptr; 201 } */ *uap; 202 register_t *retval; 203 { 204 struct sys_semget_args bsa; 205 206 SCARG(&bsa, key) = (key_t)SCARG(uap, a1); 207 SCARG(&bsa, nsems) = SCARG(uap, a2); 208 SCARG(&bsa, semflg) = SCARG(uap, a3); 209 210 return sys_semget(p, &bsa, retval); 211 } 212 213 #endif /* SYSVSEM */ 214 215 #ifdef SYSVMSG 216 217 inline int 218 linux_msgsnd(p, uap, retval) 219 struct proc *p; 220 struct linux_sys_ipc_args /* { 221 syscallarg(int) what; 222 syscallarg(int) a1; 223 syscallarg(int) a2; 224 syscallarg(int) a3; 225 syscallarg(caddr_t) ptr; 226 } */ *uap; 227 register_t *retval; 228 { 229 struct sys_msgsnd_args bma; 230 231 SCARG(&bma, msqid) = SCARG(uap, a1); 232 SCARG(&bma, msgp) = SCARG(uap, ptr); 233 SCARG(&bma, msgsz) = SCARG(uap, a2); 234 SCARG(&bma, msgflg) = SCARG(uap, a3); 235 236 return sys_msgsnd(p, &bma, retval); 237 } 238 239 inline int 240 linux_msgrcv(p, uap, retval) 241 struct proc *p; 242 struct linux_sys_ipc_args /* { 243 syscallarg(int) what; 244 syscallarg(int) a1; 245 syscallarg(int) a2; 246 syscallarg(int) a3; 247 syscallarg(caddr_t) ptr; 248 } */ *uap; 249 register_t *retval; 250 { 251 struct sys_msgrcv_args bma; 252 struct linux_msgrcv_msgarg kluge; 253 int error; 254 255 if ((error = copyin(SCARG(uap, ptr), &kluge, sizeof kluge))) 256 return error; 257 258 SCARG(&bma, msqid) = SCARG(uap, a1); 259 SCARG(&bma, msgp) = kluge.msg; 260 SCARG(&bma, msgsz) = SCARG(uap, a2); 261 SCARG(&bma, msgtyp) = kluge.type; 262 SCARG(&bma, msgflg) = SCARG(uap, a3); 263 264 return sys_msgrcv(p, &bma, retval); 265 } 266 267 inline int 268 linux_msgget(p, uap, retval) 269 struct proc *p; 270 struct linux_sys_ipc_args /* { 271 syscallarg(int) what; 272 syscallarg(int) a1; 273 syscallarg(int) a2; 274 syscallarg(int) a3; 275 syscallarg(caddr_t) ptr; 276 } */ *uap; 277 register_t *retval; 278 { 279 struct sys_msgget_args bma; 280 281 SCARG(&bma, key) = (key_t)SCARG(uap, a1); 282 SCARG(&bma, msgflg) = SCARG(uap, a2); 283 284 return sys_msgget(p, &bma, retval); 285 } 286 287 #endif /* SYSVMSG */ 288 289 #ifdef SYSVSHM 290 /* 291 * shmdt(): this could have been mapped directly, if it wasn't for 292 * the extra indirection by the linux_ipc system call. 293 */ 294 inline int 295 linux_shmdt(p, uap, retval) 296 struct proc *p; 297 struct linux_sys_ipc_args /* { 298 syscallarg(int) what; 299 syscallarg(int) a1; 300 syscallarg(int) a2; 301 syscallarg(int) a3; 302 syscallarg(caddr_t) ptr; 303 } */ *uap; 304 register_t *retval; 305 { 306 struct sys_shmdt_args bsa; 307 308 SCARG(&bsa, shmaddr) = SCARG(uap, ptr); 309 310 return sys_shmdt(p, &bsa, retval); 311 } 312 313 /* 314 * Same story as shmdt. 315 */ 316 inline int 317 linux_shmget(p, uap, retval) 318 struct proc *p; 319 struct linux_sys_ipc_args /* { 320 syscallarg(int) what; 321 syscallarg(int) a1; 322 syscallarg(int) a2; 323 syscallarg(int) a3; 324 syscallarg(caddr_t) ptr; 325 } */ *uap; 326 register_t *retval; 327 { 328 struct sys_shmget_args bsa; 329 330 SCARG(&bsa, key) = SCARG(uap, a1); 331 SCARG(&bsa, size) = SCARG(uap, a2); 332 SCARG(&bsa, shmflg) = SCARG(uap, a3); 333 334 return sys_shmget(p, &bsa, retval); 335 } 336 337 #endif /* SYSVSHM */ 338